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Abstract

I propose a model of decision making when some preferences are acceptable to act on and

others are not. Through an axiomatic characterization, I demonstrate that the model has

significantly stronger identification properties than existing models with a similar scope of

application, and admits tractable extensions to between-subject data and information choice.

The between-subject extension is motivated by the concern, not addressed in existing work,

that subjects with unacceptable preferences may exhibit consistency motives in within-subject

data. I propose a simple method for determining, in between-subject data, whether there

is a gap between what subjects prefer and what they choose. I then extend the model to

information choice and show that it can accommodate and build on the findings from the large

“moral wiggle room” literature.

1 Introduction

People care about the reasons behind choices as well as the choices themselves. To determine

whether a decision maker is rational, has good moral character, is doing his duty, or is following

the law, it is often necessary to investigate his reasons as well as his actions. For instance:

• It is blameworthy to withhold a charitable donation out of stinginess rather than concerns

about the effectiveness of the charity.

• It unreasonable to evaluate a policy on the basis of partisan loyalty rather than the effects of

the policy.

• It is illegal to fire an employee because of personal animosity rather than dissatisfaction with

her work.
∗sarah.e.ridout@vanderbilt.edu. For helpful comments and suggestions, I am indebted to Ned Augenblick, Tom

Cunningham, Jon de Quidt, Christine Exley, Drew Fudenberg, Ed Glaeser, Ben Golub, Jerry Green, Yoram Halevy,
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When a decision maker wants to take an action for a reason that is unacceptable to himself or others,

he may search for a better reason to do the same thing. He may ask himself whether there is any

reasonable combination of principles, values, tastes and beliefs that would provide an acceptable

motivation for his desired action. If so, he may take the action even if he does not actually share

those principles, values, tastes and beliefs, and would not act on them in other contexts.

The following simple example, loosely based on an experiment in Exley (2016), shows how the

search for a good reason can affect choice behavior.

Example 1. The domain of choice consists of risky payments to the decision maker and risky

payments to a charity. All payments are made by the experimenter. Let

a = $10 to self with probability 1/2

b = $6 to charity with probability 1

d = $24 to charity with probability 1/4

Consider a decision maker who does not care much about the charity, but wants to avoid

appearing selfish. Since the choice of a over b can result from risk loving rather than selfishness, the

decision maker may choose a from {a, b}. Similarly, since the choice of a over d can result from risk

aversion rather than selfishness, the decision maker may choose a from {a, d}. Given both these

choices, preference maximization would imply that a is chosen from {a, b, d}. Neither risk loving

nor risk aversion justifies this choice, though; risk aversion implies that b should be chosen, while

risk loving implies that d should be chosen. Since choosing a from {a, b, d} would reveal a lack of

generosity, the decision maker may forego his preferred option in favor of one of the donations.

As Example 1 demonstrates, decision makers who care about justifying their actions sometimes

fail to maximize their preferences. However, their preferences still shape their behavior through their

choice between different justifications. For instance, the decision maker above exploits flexibility in

the range of acceptable risk attitudes to get as close to his preferred outcomes as possible. This

suggests that it might be possible to disentangle the decision maker’s underlying preferences from

his notion of what is acceptable. The first two-thirds of this paper are primarily devoted to that

task, first in deterministic and then in stochastic settings.

Readers familiar with the rationalization model of Cherepanov et al. (2013) (CFS) or the limited

attention model of Masatlioglu et al. (2012) (MNO) will wonder whether this task has not already

been completed, at least for the deterministic case. Indeed, those models are consistent with

examples like the above, and can be used to partially identify the decision maker’s preferences.

However, that identification is often too limited to be of much practical use, even under ideal

circumstances with no constraints on data collection. Choice behavior is often consistent with

multiple representations, which offer completely different views of the decision maker’s preferences

and justifications. The leading empirical example in CFS provides an illustration.
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Example 2. The decision maker must choose a room in which to watch a movie. Some rooms are

empty, and others are occupied by a physically disabled stranger. Let

a = watch movie A alone

b = watch movie B alone

d = watch movie A with disabled stranger.

Suppose the decision maker chooses

a = c(a, b) b = c(b, d) = c(a, b, d) d = c(a, d).

Notice that the decision maker chooses to sit alone if and only if there is an empty room playing

a movie that differs from the movie playing in the occupied room. This suggests that the decision

maker prefers not to sit with the disabled stranger, but only indulges his prejudice if he can use

a desire to see a particular movie as an excuse. Although CFS agree with this interpretation,

their model (and that of MNO) is consistent with a preference for d over a. This preference is the

opposite of prejudiced, as the decision maker prefers to sit with the disabled person when all else

is equal. In fact, the only conclusion the analyst can draw from the CFS model is that the decision

maker prefers movie A to movie B. I show in Section 3 that Example 2 is prototypical rather than

unusual, as exactly the same choice pattern must occur whenever the decision maker cannot justify

choosing one alternative over another. Thus, identification problems in this simple example will

propagate to more complex data sets.

In the first third of the paper, I show that a natural special case of the CFS and MNO models

greatly improves on the identification properties of both. I refer to that special case as “the

justification model.” A decision maker in the justification model is endowed with two objects: a

standard preference % on the domain of choice, and a non-empty set of preferences M on the

same domain. Given any menu of alternatives, the decision maker maximizes % over the subset of

alternatives that maximize at least one of the preferences inM. Since the decision maker does not

select any alternative that would not be selected by any of the preferences in M, the members of

M may be interpreted as the preferences that the decision maker considers it acceptable to act on.

I refer to the members of M as “justifiable preferences,” or “justifications” for short. The model

differs from preference maximization because the decision maker need not use the same justification

on different choice sets. Since the choice between justifications is governed by%, that preference may

be interpreted as capturing the decision maker’s desires or inclinations. The model is interesting

when % does not belong toM. Since the decision maker considers some of his desires or inclinations

to be unacceptable, he cannot simply maximize his preference. Instead, he strategically chooses

between justifications to get as close to his ideal outcome as possible.

3



The first main advantage of the justification model is as follows: for any choice data consistent

with the model, there exists a unique “focal preference” consistent with the data that attributes

choice to preference as far as possible. I defer the formal definition to Section 3 and give only an

intuition here. The justification model is intended to explain choice data that cannot be explained

by preference maximization, not to reinterpret data that is consistent with preference maximiza-

tion. Thus, the sensible policy is to assume that preferences are consistent with choices in the

absence of evidence to the contrary. Applying this rule to the CFS and MNO models may eliminate

some representations, but need not deliver a unique preference nor eliminate all counter-intuitive

representations. For instance, neither prejudiced nor unprejudiced preferences can be eliminated in

Example 2, so it is still impossible to draw any conclusions about the decision maker’s attitude to

disabled people. The justification model solves this problem because there is a unique focal prefer-

ence for every data set consistent with the model. Consistent with intuition, the focal preference

in Example 2 is indeed prejudiced.

The focal preference is recovered by way of an axiomatic representation theorem for the jus-

tification model. The representation theorem is based on two simple choice patterns, which are

generalizations of Examples 1 and 2. As it turns out, all the information that the analyst could

hope to recover about the decision maker’s justifications is contained in those two choice patterns.

Thus, they can be used to identify the alternatives that are unjustifiable in a given menu. The main

axiom that characterizes the model requires that choice be unchanged when alternatives revealed

to be unjustifiable are made unavailable. Intuitively, this condition is necessary because an unjusti-

fiable alternative can neither be chosen nor affect whether another alternative is justifiable. When

choice is single-valued, this condition is also sufficient. Otherwise, it is sufficient in conjunction with

the requirement that the set of selected alternatives does not shrink when unchosen alternatives

are made unavailable. The construction for the focal preference emerges from the sufficiency proof.

The only inputs to the construction are choice on two-element menus and any three-element menus

on which pairwise choices form a cycle. Thus, the construction is simple and can be executed with

very limited data. While additional data is useful for testing the model and learning more about

the justifications, it is not needed to obtain the focal preference.

The second third of the paper extends the justification model to address a significant difficulty

in collecting evidence of justification. For an experiment on justification to yield interesting results,

subjects need to make choices that are inconsistent with preference maximization. Those inconsis-

tencies allow the analyst to disentangle subjects’ preferences from the constraints they perceive. If

subjects are wary of having their preferences revealed (which is quite likely in the types of situations

the model is intended to study), they may avoid or limit inconsistencies that they would commit

if they did not expect their choices to be reviewed by a single observer. This prevents the analyst

from understanding the full extent of justifying behavior.

The simplest way to eliminate this problem is to collect data from a population of subjects, each
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of whom makes only one choice.1 However, existing models do not provide any tools for analyzing

this data. It is not appropriate to apply a single-person model to modal choices, as this can lead to

misleading results. For instance, Example 2 is actually based on the modal choices in an experiment

by Snyder et al. (1979). This experiment is commonly used as an example of justifying behavior,

but the data from the experiment is consistent with a standard random utility model.2 It is an open

question how data from a population of justifiers would depart from random utility and what those

departures might imply about the distribution of preferences and justifications in that population.

To answer this question, I extend the justification model to random choice. I take the standard

step of extending the domain of choice to lotteries and assuming that preferences have an expected-

utility form. I then study a particular class of departures from random expected utility, which I

call anomalies. Anomalies are easy to test for because they involve only simple perturbations to

three-element menus. Roughly, a three-element menu is anomalous if the probability of choosing

one alternative falls when another alternative is mixed with it. Anomalies can be used to draw

inferences about the distribution over justifications in the subject population. More precisely, each

anomaly implies a statement of the form “some people lack a justification for choosing alternative

a over alternative b.” In situations where there are natural ex ante restrictions on the justifications

people are likely to perceive, this result can also be used to test the model. Anomalies should only

be observed where they have sensible implications for the distribution over justifications.

Anomalies are even more useful in situations where different people are unlikely to perceive

opposing obligations. Under a formal version of this assumption, which is called Limited Disagree-

ment, anomalies can be used to identify the full range of obligations that people can perceive. That

is, anomalies can be used to determine which choices are always justifiable and which are sometimes

unjustifiable. Even when it is not possible to collect enough data to carry out this identification,

this result is still useful. Whenever it is sometimes unjustifiable to choose one alternative over

another, there must exist an anomaly involving those two alternatives plus a third alternative. The

discussion following the result provides some guidance about how to choose the third alternative to

observe the anomaly.

The first two results about the random justification model are simple and practical, but at the

expense of limiting the analyst to qualitative inferences. The final result requires (much) more

data and more complicated constructions, but proves that quantitative conclusions can be drawn

from between-subject data. This result focuses on the behavior of people whose preferences are the

furthest from justifiable, i.e. the people who always want to violate the constraints imposed by the

justifications. Although it is not straightforward, it is possible to construct menus that allow the

behavior of this group of people to be observed separately from the behavior of others. For any

1An alternative would be to impose a significant time lag between choices. Even if this is feasible, it is still
important to understand how randomness in preferences and justifications affects choice, as these objects are likely
to fluctuate over time.

2I am grateful to Tom Cunningham for pointing this out.
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given pair of alternatives, these constructions can be used to identify the probability that the people

in this group are unable to justify choosing one alternative over the other. Under the benchmark

assumption that preferences and sets of justifications are drawn independently, this result delivers

full identification on binary menus. Under the more plausible assumption that the people with the

least justifiable preferences are the least constrained, it delivers a lower bound on the proportion

of constrained people. That is, it delivers a conservative estimate of the extent to which behavior

departs from preference maximization.

The final third of the paper extends the random justification model to a richer choice environ-

ment, in which decision makers choose whether to acquire information about their options before

making a selection. This exercise is important because some of the strongest evidence to date of

a conflict between preferences and justifications comes from experiments on information choice in

ethical settings. There is a large empirical literature demonstrating that people often avoid infor-

mation about the effects of their actions on others.3 It is widely understood that this behavior

results from a tension between what people would like to do and what they feel they ought to

do—precisely the mechanism behind the justification model. However, there is no existing model

that links the literature on information choice to other work on justification.

I use the extension to information choice to address some questions raised by, but beyond the

scope of, existing experimental work. First, when people feel free to avoid information they do

not want, how much scope remains for using information to encourage socially desirable behavior?

Consider a benevolent policymaker4 who wishes to influence a group of people faced with a binary

choice. It turns out that information can be a useful tool for the policymaker, even if no one

feels obligated to acquire that information and no one shares the policymaker’s preferences on the

original choice set. Information avoidance limits, but does not collapse, the range of people the

policymaker can hope to reach. If people already know their justifications when choosing whether

to observe the signal offered by the policymaker, then the policymaker can only reach people whose

preferences match his own on at least one signal realization. This constraint is relaxed when

people are sufficiently uncertain about their justifications at the information choice stage. Then,

the policymaker can reach some people who disagree with him on every realization of that signal,

although it still cannot reach people whose preferences are especially misaligned with his own.

Given that free information can improve behavior, is it optimal for a benevolent policymaker to

provide as much information as possible? In an interesting class of situations that I call “ambigu-

ous,” the answer is no. A situation is ambiguous if some people have access to sets of justifications

that allow them to justify more than they could if they were limited to a single justification. In

ambiguous situations, there are signals that the policymaker would strictly prefer to withhold from

people whose preferences are sufficiently misaligned with his own. Intuitively, those signals en-

3The popularity of information choice experiments might be explained, in part, by the absence of tools for working
with other types of data—an absence this paper aims to help remedy.

4That is, a policymaker whose preferences are always justifiable.
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courage socially undesirable behavior because they allow people to exploit disagreement between

justifications.

Finally, I turn to the question of why justifiers feel able to avoid information in the first place.

I assume that people need to justify their information choices, but allow for the possibility that

the set of available justifications depends on the choice stage (information choice vs. choice over

final outcomes). I show that information avoidance does not occur if the same set of justifications

governs both stages, but does occur if the set of justifications governing information choice is strictly

more permissive than the set of justifications governing final choice. When the set of justifications

governing information choice is so permissive that it does not rule anything out, people avoid any

information that makes them worse off. However, this extreme assumption is not necessary for

avoidance. Some avoidance occurs whenever people are willing to accept weaker justifications for

choices that do not directly determine final outcomes.

The paper is organized as follows. Section 2 reviews related experimental and theoretical work

not treated elsewhere in the paper. Section 3 introduces the deterministic justification model, char-

acterizes it, and details its identification properties. Section 4 extends the model to stochastic choice

and explains how it can be used to analyze between-subject data. Section 5 studies information

choice in the stochastic model and connects it to the literature on moral wiggle room. Section 6

concludes.

2 Related work

2.1 Related experiments

2.2 Related models

3 Identification from within-subject data

This section studies the behavior of an individual decision maker on an arbitrary domain of choice,

A. Choices are made from menus, which are nonempty finite subsets of A. The collection of

all menus is denoted F(A). For all but one result in this section, the observable is a choice

correspondence c : F(A) ⇒ F(A). As usual, c is non-empty-valued and satisfies c(A) ⊆ A for all

A ∈ F(A).

A preference is a reflexive, complete and transitive binary relation on A. A generic preference

is denoted %. A justification model consists of a preference % and a non-empty set of preferences

M. A generic member of M is called a justification and denoted %m.

Two additional pieces of notation are used throughout the paper. For an alternative a and menu

b, the notation a % B means that a % b for all b ∈ B. Given a set of justifications M, the notation
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A �M b means that, for each %m∈ M, there exists a ∈ A such that a �M b. Similarly, a �M b

means that a �m b for all %m∈M.

Definition 1 (Justification representation). Justification model (%,M) is a justification represen-

tation for choice correspondence c if, for each menu A,

c(A) = max (%,M(A)) where M(A) :=
⋃

%m∈M

max (%m, A) .

The members ofM(A) are said to be justifiable in A, and the members of A that do not belong

to M(A) are said to be unjustifiable in A. Whether an alternative is justifiable always depends

on the context; for instance, any alternative is justifiable in the singleton menu containing itself.

Nevertheless, I sometimes shorten “justifiable in A” to “justifiable” for brevity.

The justification model is a special case of both the CFS and MNO models discussed in the

introduction, which are not themselves nested. The equation c(A) = max(%,M(A)) appears in

the definitions of both CFS and MNO representations. In CFS, M(A) is the set of alternatives

that maximize at least one member of a set of binary relations (as opposed to a set of preferences).

In MNO, M(A) is simply taken as primitive. It is assumed to obey the following restriction: if

M(A) ⊆ B ⊆ A, thenM(B) =M(A). This restriction is satisfied in the justification model. Since

it is easy to see that the justification model is closely related to existing work, the model definition

should not be seen as a contribution of the paper. Instead, the paper contributes by establishing

previously unknown properties of the model and using it to attack previously intractable problems.

Given any model where a decision maker maximizes a preference subject to a constraint, it is

natural to wonder whether, or to what extent, the underlying preference can be recovered from

choice data. Full identification on every data set is clearly too much to hope for, though. Consider

any dataset consistent with preference maximization. While this dataset has a representation in

which the decision maker is unconstrained and his choices reflect his preferences, it has other

representations in which the decision maker is highly constrained and his choices fail to reflect his

preferences. The justification model is no different.

There are two ways to respond to this difficulty. First, try to obtain a unique preference on a

narrower range of datasets that are “far” from consistent with preference maximization. Second, try

to find a criterion for selecting between representations that will deliver a unique preference on any

dataset consistent with the model. It turns out that both can be done within the justification model,

although neither can be done in the more general CFS and MNO models. Thus, the justification

model has desirable identification properties.

The formal identification results are derived from an axiomatic representation theorem, which is

the focus of the following section. The representation theorem may also be of independent interest

because it clarifies the choice behavior that justifiers can exhibit.
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3.1 Representation theorem

Before presenting the main representation theorem, I consider an easier exercise that builds intuition

(and delivers a key lemma used in the proof of the main theorem). Suppose that the analyst already

has a plausible candidate % for the decision maker’s preference. Under what conditions on the choice

correspondence c does there exist a set of justifications M such that (%,M) together represent c?

The answer can be expressed as a pair of axioms. The main axiom is Irrelevance of Unjustifiable

Alternatives (IUA). It says that an alternative a that the decision maker would like to choose from

menu A, but does not actually choose, can be removed from any superset of A without changing

behavior. Since the decision maker would like to choose a but does not, a must not maximize any

of the justifications on A. Thus, it cannot be chosen on any superset of A. Moreover, it cannot

prevent any other alternative from being chosen: if alternative b fails to maximize any justification

on B ⊇ A, then the same is true when a is removed. The second axiom, Optimization, is vacuous

when choice is single-valued. It says that the decision maker must be indifferent between any two

alternatives he chooses from the same menu. Together, Optimization and IUA are necessary and

sufficient for the existence of a justification representation conditional on the candidate preference.

Axiom 1 (Optimization). If {a, b} ⊂ c(A), then a ∼ b.

Axiom 2 (Irrelevance of Unjustifiable Alternatives (IUA)). If a ∈ A, a % c(A) and a /∈ c(A), then

for all B ⊇ A, c(B) = c(B \ {a}).

Theorem 1. c has a justification representation (%,M) if and only if it satisfies IUA and Opti-

mization conditional on %.

The main step in the sufficiency proof is to show that, for any choice observed in the data, there

exists some preference on A that justifies that choice, but does not justify any choice known to be

unjustifiable. If there are no almost-consistent sets in the data, the problem of finding a justification

reduces to completing an incomplete binary relation. The well-known Szpilrajn Extension Theorem

provides conditions under which a solution exists, and these conditions can easily be verified given

the axioms. Almost-consistent sets make the problem harder because they introduce conditions of

the following form: “the justification must prefer at least one of a1, a2, . . . , an to b.” I state and

prove a novel version of the Szpilrajn Extension Theorem that can handle these types of conditions.

Now I turn to characterizing the model in the absence of any candidate preference. It turns out

that the required conditions are closely related to IUA and Optimization. The main difference is

that choice data, rather than a candidate preference, must be used to determine whether a particular

alternative is unjustifiable. It turns out that two simple choice patterns can be used to identify

all the unjustifiable choices. While the definitions of these choice patterns may initially appear

strange and unfamiliar, both patterns have straightforward interpretations within the model. The

first choice pattern, a chain, appears when the decision maker cannot justify choosing a over b.
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Example 2 is the simplest instance of a chain. The second choice pattern, an almost-consistent set,

appears when the decision maker cannot justify choosing a over everything in non-singleton menu

B simultaneously, but can justify choosing a over any proper subset of B. Intuitively, this happens

because the decision maker’s justification for choosing a over one element of B is incompatible

with his justification for choosing a over the rest of B. Example 1 is the simplest instance of an

almost-consistent set.

Formally, chains are built up from (three-element) cycles. A cycle occurs whenever there are

three items a, b, d such that a ∈ c(a, b), b ∈ c(b, d), and d ∈ c(a, d), and at least one of those

choices is single-valued. Cycles are very informative in the justification model, but it is important

to keep track of choice from the triple {a, b, d} as well as the pairwise choices. Definition 2 uses

that information to impose an order on the alternatives in the cycle. That order turns out to match

the decision maker’s preference. That is, if (a, b, d) is a cycle, then a % b % d in any justification

representation for c. The preference is strict wherever choice is single-valued.

Definition 2 (Cycle). (a, b, d) is a cycle if

a ∈ c(a, b) b ∈ c(b, d) d ∈ c(a, d),

at least one of the above choices is single-valued, and

a /∈ c(a, b, d) b ∈ c(a, b, d).

A chain is a sequence of alternatives such that every adjacent pair in the sequence is also an

adjacent pair in some cycle.

Definition 3 (Chain). (a1, . . . , an) is a chain if, for each 1 ≤ i < n, there exists x such that

(x, ai, ai+1) or (ai, ai+1, x) is a cycle. A chain is strict if, for some i < n, {ai} = c(ai, ai+1).

Since the decision maker must weakly prefer a to b whenever (a, b) is an adjacent pair in some

cycle, he must also prefer a to b whenever a precedes b in a chain. Since single-valued choice

corresponds to strict preference, he must strictly prefer a to b whenever a precedes b in a strict

chain. Thus, it must be unjustifiable to choose a over b if a precedes b in a chain but a /∈ c(a, b), or

if a precedes b in a strict chain but b ∈ c(a, b).
Now we turn to the second pattern used to identify unjustifiable choices: almost-consistent sets.

We need the notion of (pairwise) consistency. A set is consistent if an available alternative that

is chosen over every other available alternative in pairwise comparison is actually chosen from the

set. A set is almost-consistent if it is not consistent, but all of its proper subsets are.

Definition 4 (Consistency). A menu A is consistent if

a ∈ A and a ∈ c(a, b) for all b ∈ A =⇒ a ∈ c(A).
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Definition 5 (Almost-consistent). A menu A is almost-consistent if all nonempty proper subsets

of A are consistent, but A is not.

It turns out that the decision maker’s preference on any almost-consistent set matches pairwise

choice on that set. Thus, if A is almost-consistent, then the decision maker would like to choose

any alternative in A that pairwise-beats everything else in A. The definition of almost-consistency

implies that the decision maker foregoes some such alternative. Thus, it is unjustifiable to choose

a from A if a pairwise-beats everything else in A, but a is not chosen from A.

Definition 6 summarizes the procedure for recovering unjustifiable choices from chains and

almost-consistent sets.

Definition 6 (Revealed unjustifiable). It is revealed unjustifiable to choose a from A 3 a if:

1. For A = {a, b}: a precedes b in a strict chain and b ∈ c(a, b), or a precedes b in a chain and

a /∈ c(a, b).

2. For |A| > 2: A is almost-consistent, a /∈ c(A), and a ∈ c(a, b) for all b ∈ A.

This definition makes possible a version of IUA that does not rely on any candidate preference.

The new version is called Irrelevance of Revealed Unjustifiable Alternatives (IRUA) because the

unjustifiable alternatives are revealed by choice data alone. Aside from the definition of “unjustifi-

able,” IRUA and IUA are the same.

Axiom 3 (Irrelevance of revealed unjustifiable alternatives (IRUA)). If it is revealed unjustifiable

to choose a from A, then for any B ⊇ A, c(B) = c(B \ {a}).

Optimization can also be modified to remove any reference to a candidate preference. The new

version, Revealed Optimization, says that a and b are tied in pairwise comparison if they are tied

on some larger menu. As before, this axiom is vacuous if choice is single-valued.

Axiom 4 (Revealed optimization). If {a, b} ⊂ c(A), then c(a, b) = {a, b}.

Together, IRUA and Revealed Optimization characterize the justification model.

Theorem 2. c has a justification representation if and only if it satisfies IRUA and Revealed

Optimization.

The sufficiency proof proceeds in two steps. The first step is to construct a candidate preference

for the decision maker. Since the decision maker’s preference is fully identified on cycles, the

candidate preference is constructed so that it delivers the correct ordering on cycles (and, by

extension, chains). For any two alternatives that are not linked by a chain, the candidate preference

agrees with pairwise choice. This ensures that the candidate preference delivers the correct ordering

on almost-consistent sets, where the decision maker’s preference is pinned down by the pairwise
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choices. The bulk of the proof consists of verifying that the construction suggested above is actually

a preference.

The second step is to check that c satisfies IUA conditional on the candidate preference. I sketch

the argument here for the case of single-valued choice. Suppose that a ∈ A and a � c(A), so it

is unjustifiable to choose a from A according to the candidate preference. There are two ways to

get a � c(A). One is that c(A) is chosen over a in pairwise comparison, but a precedes c(A) in

a chain. In that case, it is revealed unjustifiable to choose a over c(A). The other way is that a

is chosen over c(A) in pairwise comparison. In that case, the menu A violates WARP. It is easy

to check that a WARP-violating menu must contain a cycle or an almost-consistent set. Thus, it

is revealed unjustifiable to choose some item in A from some subset of A. Suppose that it is not

revealed unjustifiable to choose a from any subset of A. By IRUA, the revealed unjustifiable item

can be removed without changing choice. Since a is not removed, the WARP violation persists. We

can iterate the argument until everything is removed but a and c(A). Since choice is unchanged

at every step, c(A) must be chosen over a in pairwise comparison, which contradicts the starting

assumption. Thus, it is revealed unjustifiable to choose a from some subset of A. By IRUA, a is

irrelevant in any superset of A, so IUA holds. Theorem 1 delivers a representation.

3.2 Identification properties

With Theorem 2 in hand, we now return to the identification properties of the justification model.

We have already seen that the justification model delivers a unique preference on cycles and almost-

consistent sets. Since any dataset that is consistent with the justification model but not with pref-

erence maximization must contain at least one cycle or almost-consistent set, cycles and almost-

consistent sets are the minimal instances of justifying behavior. Since experiments are typically

designed to minimize data collection requirements, full identification on these minimal instances

implies full identification in standard experimental settings. This property is unique to the justifi-

cation model, as the CFS and MNO models do not deliver a unique preference on either cycles or

almost-consistent sets. (Non-uniqueness on cycles was discussed on Example 2.)

When dealing with more complicated datasets, there may be more than one preference consistent

with choice. However, there is a natural criterion for selecting among these possible preferences.

To motivate it, consider a decision maker whose choices are entirely consistent with maximizing a

preference %. Although those choices are also consistent with a justification model in which the

preference is the opposite of %, and % is the sole justification, this alternative model is not very ap-

pealing. It is a gratuitous departure from the classical model, and it is not parsimonious: it imposes

constraints on the decision maker that are not needed to explain his behavior. More generally, a

preference is undesirable if using that preference to explain choice would require imposing unneces-

sary constraints on the decision maker. The most desirable preference is the one that requires the
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fewest possible constraints on what the decision maker is allowed to choose. Equivalently, it is the

preference that makes choice as close to preference maximization as possible. It is not obvious that

such a preference must exist; in fact, it does not exist in the CFS or MNO models. However, it al-

ways exists (and is unique) in the justification model. I refer to this maximally desirable preference

as the “focal preference” and denote it %foc.

The formal definition of the focal preference is as follows. Say that a preference % is “possible”

for c if there is some M such that (%,M) is a justification representation for c. Formally, %foc is

the focal preference for c if, for any possible preference %, any menu A, and any a ∈ A,

c(A) % a =⇒ c(A) %foc a and c(A) � a =⇒ c(A) �foc a. (1)

No more than one preference can satisfy (1), hence the use of “the.”5

(1) captures the idea that the focal preference attributes choice to preference maximization as far

as possible. If it is possible (in some representation) to say that the decision maker chose c(A) over

a because he preferred everything in c(A) to a, then the focal preference must also rank everything

in c(A) above a. To see why this definition delivers a preference that requires as few constraints

on the decision maker as possible, suppose that c(A) %foc a but a � c(A) for some preference %

in some representation. In that representation, the decision maker would like to choose a from A,

but does not. Thus, he must lack a justification for choosing a from A. If the preference is %foc,

no such constraint is required.

Existence of the focal preference is a corollary to Theorem 2. As discussed in the previous section,

the sufficiency proof of Theorem 2 constructs a justification representation for an arbitrary choice

correspondence satisfying IRUA and Revealed Optimization. The preference in that representation

turns out to be the focal preference, although additional work is needed to verify that it satisfies (1).

Corollary 1 confirms that the focal preference exists and provides the algorithm for constructing it.

Corollary 1. If c has a justification representation, then there is a unique possible preference %foc

that satisfies (1). Moreover, a %foc b if and only if (1) a precedes b in a chain or (2) neither item

precedes the other in a strict chain and a ∈ c(a, b).

To illustrate why Corollary 1 is useful, let us return to Example 2. Recall that CFS and MNO are

consistent with both a � d and d � a—that is, with both prejudice and the opposite of prejudice.

Neither model admits a focal preference on this example, so it is not possible to use (1) to select

among representations. In the justification model, a �foc d; the focal preference is prejudiced.6

This is consistent with the intuitive interpretation of Example 2, which is shared by CFS.

Moreover, Example 2 is not an isolated case. Choice in Example 2 takes the form of a cycle.

5Suppose a %1 b and b �2 a for possible preferences %1 and %2. Since %2 is possible, a and b cannot be tied in
pairwise comparison. If a is chosen over b, then %2 violates (1), and if b is chosen over a, then %1 violates (1).

6In fact, the focal preference is the unique possible preference here.
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Recall from Theorem 2 that cycles are used to form chains, and that chains are used to infer

that it is unjustifiable to choose one alternative over another. In fact, chains are the only way

to draw this inference. In any representation that minimizes constraints on the decision maker, it

is unjustifiable to choose a over b only if a precedes b in a chain.7 Thus, a dataset that provides

evidence of justification is very likely to contain one or more instances of Example 2. The advantages

of the justification model on Example 2 will carry over to any such dataset.

Inspection of Corollary 1 reveals that only two inputs are required for constructing the focal

preference: pairwise choice and cycles. Once pairwise choice has been observed, the analyst can

observe all cycles by eliciting choice on triples for which pairwise choice is cyclic. The remainder

of the choice correspondence c is not required for constructing the focal preference. In fact, the

remainder of c is not required for verifying the existence of a justification representation. Suppose

that the analyst only observes the data required for constructing the focal preference. Then, a

justification representation exists if and only if IRUA and Revealed Optimization are satisfied on

the observed data. Corollary 2 summarizes.

Corollary 2. Suppose that the domain of cinc consists of all pairs and all triples on which pairwise

choice is cyclic.8 If cinc satisfies IRUA and Revealed Optimization on its domain, then

1. There is an extension of cinc that has a justification representation.

2. Every extension of cinc that has a justification representation has the same focal preference,

which can be recovered from cinc as described in Corollary 1.

Corollary 2 does not imply that additional data is useless for identification. Notice that the data

described in Corollary 2 will not include any almost-consistent sets. Since almost-consistent sets

are informative about the decision maker’s justifications, some information is lost by ignoring them.

Moreover, additional data can strengthen identification by ruling out some non-focal preferences.

Consider Example 1. If the analyst only observes pairwise choices, then she learns that the focal

preference is a �foc b �foc d, but she cannot rule out other preferences. Once she observes choice on

the triple, she can rule out everything but the focal preference. Thus, data not needed to construct

the focal preference can still be informative.

After so much discussion of the focal preference, the reader may wonder whether there is any

analogous concept for the justifications. The answer is a qualified yes. Whenever c has a justification

representation, it has a unique representation in which the set of justifications is maximal in the sense

of set inclusion. (Incidentally, the preference in that representation is the focal preference.) It turns

out that a preference belongs to the maximal set of justifications if and only if it does not justify any

choice that is revealed unjustifiable. Thus, the maximal set of justifications is useful because it leads

7This follows from Corollary 3 below.
8Pairwise choice is cyclic on {a, b, d} if a ∈ c(a, b), b ∈ c(b, d), d ∈ c(a, d), and at least one of those choices is

single-valued.
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to a precise characterization of the choices that the decision maker must consider unjustifiable. Since

it may contain many superfluous justifications, the maximal set of justifications is not very useful for

understanding precisely which preferences the decision maker considers acceptable. For this reason,

Corollary 3 focuses on the set of unjustifiable choices rather than the justifications themselves. It

says that there is a representation in which the set of unjustifiable choices is minimal. In that

representation, it is unjustifiable to choose a from A if and only if it is revealed unjustifiable to

choose a from a subset of A. Thus, the analyst can use chains and almost-consistent sets to recover

the minimal set of unjustifiable choices as well as the focal preference.

When reading Corollary 3, recall that the notation “A �M b” means “there is no justification

in M for choosing b over everything in A.”

Corollary 3. If c has a justification representation, then it has a representation (%foc,Mfoc) such

that

A �Mfoc
a ⇐⇒ it is revealed unjustifiable to choose a from some B ⊆ A. (2)

Moreover, the backward direction of (2) holds for any (%,M) that represents c.

4 Identification from between-subject data

The results of the previous section assume that the decision maker always chooses the most ad-

vantageous justification for the situation at hand. Thus, his decision in any given situation is not

affected by any decisions he may have made previously. This is a standard approach, shared by the

CFS and MNO models. It is fairly reasonable if the stakes are not too high and subjects can be

distracted between related choices, as in Exley (2016). It is less reasonable when subjects have a

strong incentive to conceal their preferences, i.e. in experiments on prejudice. In that case, subjects

may avoid or limit the WARP violations that constitute evidence of justification.

The results of this section will be entirely robust to consistency motives on the part of subjects.

They apply to situations where data is collected from a large population of subjects, each of whom

makes only one choice. I model this type of data by using a stochastic choice function ρ. In

random utility models, it is well known that extending the choice domain to lotteries and requiring

preferences to be expected utility improves tractability and identification. The same turns out to

be true for the justification model. Thus, I assume that all preferences and all justifications have

an expected-utility form.

The domain of choice, denoted ∆(Z), is the set of lotteries on a finite set Z. The observable

is ρ : ∆(Z) × F(∆(Z)) → [0, 1] such that
∑
a∈A ρ(a|A) = 1 for all A ∈ F(∆(Z)).9 The set of

expected-utility preferences on ∆(Z) is denoted U . A subset of U is said to be closed and convex

9In fact, it is enough for ρ to be defined on the collection menus with two or three elements. This is in contrast
to the deterministic case, where menus with more than three elements can convey additional information.
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if it can be represented by a closed and convex set of utilities. The collection of closed, convex,

nonempty subsets of U is denoted C(U). A random justification model is a probability measure P

on U × C(U).

Definition 7 (Random justification representation). Random justification model P is a random

justification representation for stochastic choice function ρ if, for each menu A and each item a ∈ A,

ρ(a|A) = P
({

(%,M) : a = c(%,M)(A)
})

where c%,M is the choice function represented by (%,M).

4.1 Qualitative inferences

This section explains how to draw qualitative inferences about justification from between-subject

data. Like the rest of the paper, the material in this section applies to any situation where desires or

inclinations conflict with principles, norms, or duties, I focus on moral decision-making to simplify

the exposition. Suppose the analyst wants to determine whether a society considers one alternative

morally worse than another, while allowing for the possibility that people differ in their moral

principles and their adherence to those principles. One reasonable (and tractable) approach is to

say that b is morally worse than b if the event “it is unjustifiable to choose b over a” has positive

probability.10 Definition 8 formalizes this idea, extending it to allow an alternative to be morally

worse than a menu.

Definition 8. Given a random justification model P : lottery b is morally worse than menu A if

P (A �M b) > 0. b is weakly morally worse than A if

b ∈ cl ({x ∈ ∆(Z) : x is morally worse than A}) .

When choice is deterministic, unjustifiable choices are pinned down by a particular class of

departures from utility maximization. When choice is stochastic, morally worse choices are pinned

down by a particular class of departures from random expected utility. Example 3 will be used to

illustrate that class of departures.

10This definition is especially appealing when it generates an asymmetric relation on the domain of choice. Then,
the statement “a is morally worse than b” can be interpreted as “everyone agrees that choosing b is morally better,
but not everyone feels obligated to do it.” I impose an assumption to that effect later on.
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Example 3. The decision maker must choose whether to volunteer for a task. Let

a = no task

b = difficult and very important task

d = easy and somewhat important task.

In the first treatment, the choice set is {a, b, d}. In the second treatment, the decision maker is

told that there may be too many volunteers for the difficult task, so anyone who volunteers for

that task will be reassigned to the easy task with probability ε ∈ (0, 1). Thus, the choice set is

{a, (1− ε)b+ εd, d}.

Random expected utility predicts that the probability of d is identical across the two treatments.

However, this is not the case in the justification model. There are exactly two groups of people

whose probability of choosing d is affected when b is mixed with d. One group has a � d � b and

can justify choosing d but not a. The other group has b � d � a and can justify choosing d but not

b. It turns out that the first group must be weakly less likely to choose d in the second treatment,

while the second group must be weakly more likely to choose d. Thus, if the probability of d falls

from the first treatment to the second, the analyst learns that there are people who cannot justify

choosing a over b and d. (In fact, the size of the fall provides a lower bound on the proportion of

such people.) If the inequality across treatments continues to hold as ε is made arbitrarily small,

the effect is entirely driven by people who cannot justify choosing a over alternatives arbitrarily

close to b. Thus, a is weakly morally worse than b. Proposition 1 formalizes this discussion.

Definition 9 (Anomalous). (a, b, d) is anomalous if

ρ(d|a, b, d) > ρ(d|a, (1− ε)b+ εd, d) (3)

for all sufficiently small ε > 0.

Proposition 1. Suppose that ρ has a random justification representation P . If (a, b, d) is anoma-

lous, then a is weakly morally worse than b.

Proposition 1 is useful in two ways. First, it explains how one might design a between-subject

experiment to obtain evidence of justification. Despite the advantages of between-subject data

discussed at the beginning of this section, this question has not been addressed in existing work.

In the absence of tools for analyzing between-subject data, single-person models have sometimes

been inappropriately applied to modal choices. As mentioned in the introduction, this practice has

led data consistent with preference maximization to be misinterpreted as evidence of justification.

Proposition 1 solves this problem because it relies on departures from preference maximization.

Second, Proposition 1 can be used to test the justification model in conjunction with natural
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restrictions on the “morally worse than” relation. Example 3 illustrates. Since it is implausible

that volunteering for an important task is morally worse than doing nothing, the triple (b, a, d)

should not be anomalous.

The weakness of Proposition 1 is that it does not specify when anomalies are likely to occur.

In particular, it does not guarantee that (a, b, d) is anomalous for some d whenever a is morally

worse than b. To see why, return to Example 3, and recall that there are two opposing forces on

the probability of choosing d when b is mixed with d. One force, which pushes in the right direction

for an anomaly, is nonzero if a is morally worse than b. The other force, which pushes in the wrong

direction, is nonzero if b is morally worse than a. If the latter force is large enough, (a, b, d) will fail

to be anomalous even if a is morally worse than b.

Of course, this is quite unlikely in the particular context of Example 3. It makes sense for a to

be morally worse than b, but not vice versa. More generally, there are many situations in which the

“morally worse” relation is likely to be asymmetric. When we restrict attention to these situations

and impose some additional technical conditions, we obtain the desired converse of Proposition 1.

The main assumption is called Limited Disagreement, and the additional technical assumptions are

together called Regularity. These assumptions will also be required for the quantitative results in

the next section.

Definition 10 (Limited disagreement). For any menu A and lottery b: if each a ∈ A is weakly

morally worse than b, then b is not weakly morally worse than A.

Limited Disagreement is easy to interpret when A is a singleton. Extending it to non-singleton

A ensures that b is not morally worse than any mixture of alternatives that are morally worse than

b itself.

Regularity consists of three assumptions. The first assumption, which says that the marginal

distribution on preferences admits a density, is only required for the next section. Since it seems

unobjectionable, I have included it here. The second assumption says that any expected-utility

preference is possible, and that any possible preference can occur together with any possible set

of justifications. The first half of this assumption can be relaxed at the expense of additional

notation.11 The third assumption is a richness condition on the sets of justifications. It says

that, for any possible set of justifications that does not already permit everything, there is another

possible set of justifications that is larger than but arbitrarily close to the original set.

Definition 11 (Regularity). Suppose that P is a random justification model. P is regular if

1. Ppref admits a density.

2. supp(P ) = U × supp (Pjust).

11For instance, it would be enough to assume that the support of Pjust includes the set of preferences that are
unjustifiable on ∆(Z) in the sense of Definition 12.
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3. For any M ∈ supp (Pjust) and any closed, convex U ⊆ U such that M ⊂ int(U), there exists

N ∈ supp (Pjust) such that M⊂ int(N ) ⊂ N ⊂ int(U).

Given Limited Disagreement and Regularity, there is an anomaly corresponding to every pair of

alternatives that are strongly morally ranked. This implies that the “morally worse than” relation

is fully pinned down by anomalies.

Theorem 3. If ρ has a regular random justification representation P that satisfies Limited Dis-

agreement, then

{a : a is morally worse than b} = int ({a : (a, b, d) is anomalous for some d}) .

The most practically useful implication of Theorem 3 is the following: if a is morally worse than

b, then there must be some d for which (a, b, d) is anomalous. The discussion of Example 3 provides

some guidance for finding an appropriate d. There should people who like a best and d second

best, and can justify choosing d over b but not a over b. Thus, d should be moderately morally

compelling, and moderately appealing to someone whose preferences are not particularly moral.

4.2 Quantitative inferences

This section turns from qualitative to quantitative inferences about justification. The results of the

previous section were intended to be simple and practical. By contrast, the results of this section

are intended to probe the limits of the model by showing what can be identified in principle.

As in the deterministic case, full identification is not possible in general. To see this, consider a

preference that always prefers b to a if a is morally worse than b. Since a person with this preference

never wants to violate the constraints imposed by the justifications, it is impossible to determine

what distribution over justifications he faces. More generally, if a is morally worse than b, it it is

impossible to learn how often someone who prefers b is able to justify a.

To avoid this problem, I focus the identification exercise on people whose preferences are the

furthest from justifiable, i.e. people who always want to violate the constraints imposed by the

justifications. These preferences are called “unjustifiable.”

Definition 12 (Unjustifiable). For any subspace X of ∆(Z) such that the restriction of the morally

worse than relation to X is nonempty: a preference %∈ U is unjustifiable on X if

y is morally worse than x =⇒ y � x

for all x, y ∈ X.

In between-subject data, it is not possible to determine precisely who the people with unjustifi-

able preferences are. Although it is not straightforward, it is possible to disentangle their aggregate
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behavior from that of others by examining the right collection of choice problems. Theorem 4 says

that it is possible to determine, for any given binary choice, the proportion of such people who

cannot justify choosing the morally worse alternative.

Theorem 4. If ρ has regular random justification representations P and Q that satisfy limited

disagreement, then for any two-dimensional subspace X of ∆(Z) and lotteries a, b ∈ X such that a

is morally worse than b,

P (b �M a| % is unjustifiable on X) = Q(b �M a| % is unjustifiable on X).

If preferences and sets of justifications are drawn independently, Theorem 4 delivers full iden-

tification on binary menus. That is, for any given binary choice, the analyst can determine what

proportion of people are choosing in accordance with their preferences and what proportion are

not.

While the independence assumption is a reasonable starting point for a model of conflict between

preferences and justifications, it is not particularly plausible. It is more plausible that people

with unjustifiable preferences are less likely than the average person to see a given alternative as

unjustifiable. Then, for any given binary choice, the fraction of such people who cannot justify the

morally worse alternative provides a lower bound on the overall probability that the morally worse

alternative is unjustifiable. This lower bound can be used to obtain an estimate of the proportion of

people who prefer the morally better alternative. That upper bound falls somewhere in between the

proportion of people who choose the morally better alternative and the proportion who actually

prefer it. Thus, it provides a conservative estimate of the extent to which choice departs from

preference maximization. The quality of the estimate depends on the degree to which people with

unjustifiable preferences depart from the rest of the population.

5 Information choice

This section studies information choice in the random justification model. It is motivated by the

large experimental literature on information choice in ethical settings, which is often called the

“moral wiggle room” literature. As discussed in Section 2, many experiments study the effects

of information about a possible negative externality to an appealing action. Subjects are less

likely to choose the action when they learn that it will cause the externality, but a substantial

fraction of subjects choose not to learn about the externality when given the option. The standard

interpretation of this behavior is that avoiding information somehow allows subjects to feel better

about indulging their desires. This interpretation suggests a conflict between desires and standards

for acceptable behavior, which is the same mechanism that drives the justification model. However,

the moral wiggle room literature is not closely linked to other work on justification. This may be
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due to the absence of a model that can accommodate both.12

The setup of this section is modeled after the moral wiggle room literature. Choice takes place

in two stages. In the second stage, subjects choose from a menu of lotteries as in Section 4. In

the first stage, subjects are offered a choice between two lotteries over second-stage menus. One

lottery, denoted δA, is degenerate. The other, denoted S, is a finite-support distribution over F(A)

such that, for each a ∈ A and each Ã ∈ supp(S), there exists ã ∈ Ã such that

a =
∑

Ã∈supp(S)

S
(
Ã
)
ã.

I refer to S as a “signal” about A.

All results in this section take as given a random justification model P . In its current form, the

justification model does not say what a given person will do at the information choice stage, but it

does say what that person prefers. For the first two results in this section, information preferences

will be enough. I return to the question of information choice in the final result.

The moral wiggle room literature provides strong evidence that many people avoid information

that might induce them to behave more morally. This finding raises concerns about the effectiveness

of public information campaigns intended to promote pro-social behavior. The first result in this

section offers some limited reassurance. Consider a situation in which people are broadly aligned in

their moral values. Suppose people must choose between two alternatives, one of which is morally

worse than the other. Suppose further that there is a policymaker who wishes to encourage morally

good behavior. It turns out that the policymaker can design a signal that will improve average

behavior among the people who prefer the morally worse alternative, even if they are entirely free

to avoid unwanted information. While the policymaker is not as well off as he would be if he could

compel people to observe the signal, he is still better off than he would be if he had not offered the

signal.

Before stating the result, we need to formalize the notion that people are broadly aligned in

their moral values. Consider a set of binary choice problems, where the alternatives in each choice

problem are morally ranked. Say that the set of binary choice problems is orderly if people can

be ranked by the strictness of the obligations they perceive. That is, if one person can justify

the morally worse alternative in choice problem 1 but not choice problem 2, then there cannot be

another person who can justify the morally worse alternative in choice problem 2 but not choice

problem 1. Definition 13 captures this requirement. Orderliness is useful for the policymaker

because it ensures that a signal realization that induces one person to behave more morally will

not induce another person to behave less morally. Thus, it makes it easy to construct a signal with

unambiguously good effects.

12For instance, Spiekermann and Weiss (2016) and Grossman and Van Der Weele (2017) propose models of infor-
mation choice in ethical settings, but do not consider any other type of choice problem.
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Definition 13 (Orderly). Let A and B be open convex nonempty subsets of ∆(Z) such that each

a ∈ A is morally worse than each b ∈ B. (A,B) is orderly if the family of sets

{{M ∈ supp(Pjust) : b �M a} : a ∈ A, b ∈ B} (4)

is totally ordered by set inclusion.

Although orderliness is a strong assumption, it is satisfied in an important class of justification

models. If people disagree on how strict to be but do not have more substantive disagreements,

then different sets of justifications will be ordered by set inclusion. In that case, (4) will be satisfied

vacuously.

Example 4. Let

a1 = order beef from sustainable farm

a2 = order beef from unusustainable farm

a =
1

2
a1 +

1

2
a2

b = do not order beef.

If Z = {a1, a2, b}, then supp(Pjust) is likely to be totally ordered by set inclusion.

Proposition 2 says that a policymaker faced with an orderly situation can use free information

to improve behavior.

Proposition 2. Suppose that (A,B) is orderly and that �pol∈ U satisfies b �pol a for all a ∈ A
and b ∈ B. For almost any (a, b) ∈ A×B, there exists a signal S about (a, b) such that∑

supp(S)

S(ai, bi)c(�,M) (ai, bi) %pol c(�,M) (a, b)

for every (�,M) such that a � b. The above holds with strict preference for a positive-probability

set of (�,M) such that a � b and∑
supp(S)

S(ai, bi)c(�,M) (ai, bi) � c(�,M) (a, b) .

Proposition 2 says that the policymaker can reach people who disagree with him on the original

choice set, but does not say that he can reach people who disagree with him on every realization

of the signal. The stronger statement would not be correct. As the proof of Proposition 2 shows,

the benefits of the signal are confined to people who agree with the policymaker on one of the
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signal realizations. This is easy to see in Example 4. Consider a policymaker who objects only to

unsustainable beef. Diners who already feel obligated not to eat beef may seek information about

sustainability, but this will not affect the policymaker. The benefit of the information comes from

diners who prefer eating beef in the absence of information, but not when they know the beef is

unsustainable.

While this point may appear obvious, it relies on the assumption that people know their justifi-

cations when choosing their information. When people are uncertain about their justifications, free

information is even more useful, as the policymaker can reach some people who disagree with him

on every realization of the signal. In Example 4, consider a diner who does not yet know whether

he will be able to justify ordering beef. Suppose that the diner prefers eating beef regardless of its

source, but enjoys it much less when he knows that the beef is unsustainable. He may be willing to

demand information about sustainability so that he will be free to indulge when the information is

good. The formal result, which is very similar to Proposition 2, is in Appendix B.

Proposition 2 is closely aligned with the moral wiggle room literature: it studies information

that induces more moral behavior, leading some people with less-than-moral preferences to choose

ignorance. This may give the impression that information is always beneficial from a moral poli-

cymaker’s point of view, and that avoidance is the only obstacle to achieving the full benefits of

information. However, that impression turns out to be mistaken. The mistake comes from neglect-

ing a key feature of the justification model: decision makers shift between justifications to get closer

to their desired outcome. In ambiguous situations, different justifications may exhibit substantive

disagreements. Some signals allow decision makers to exploit that disagreement by appealing to

different justifications on different signal realizations.

Before stating the result, we need to formalize the notion an ambiguous situation. As before,

consider a set of binary choice problems, where the alternatives in each choice problem are morally

ranked. Say that a situation is unambiguous if every possible set of justifications contains a single

justification that is maximally permissive, meaning it prefers the morally better alternative only if

every other justification does as well. Otherwise, say that the situation is ambiguous. In ambiguous

situations, there are people who benefit by using different justifications on different choice problems.

Definition 14 (Ambiguous). Let A and B be open convex nonempty subsets of ∆(Z) such that

each a ∈ A is morally worse than each b ∈ B. (A,B) is ambiguous if, for some M ∈ supp(Pjust),

there does not exist �∗m∈M such that

b �M a ⇐⇒ b �∗m a. (5)

Example 5 illustrates.

Example 5. This example is based on Norton et al. (2004). The DM must hire someone for a
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managerial role at a construction company. Let

a = male candidate

b1 = female candidate with more education, less experience than the male candidate

b2 = female candidate with more experience, less education than the male candidate

b =
1

2
b1 +

1

2
b2.

Let A := Bε(a), and B := Bε(b) for some ε > 0. (5) will hold if some decision makers have access

to different justifications that place very different weights on education vs. experience.

Although Definitions 13 and 14 may sound like opposites, they are not. Orderliness constrains

how different sets of justifications relate to one another, while ambiguity constrains how different

justifications in the same set relate to one another. For instance, Example 5 is consistent with the

possibility that different people can be ranked by the strength of the obligation they perceive to

prioritize underrepresented candidates. That would make (A,B) orderly as well as ambiguous.

Proposition 3 says that some people facing ambiguous situations can find signals that are unam-

biguously good from their point of view, and unambiguously bad from the point of view of a moral

policymaker. Despite the literature’s focus on information avoidance, it is not the only interesting

behavior that justifiers exhibit in information choice problems.

Proposition 3. Suppose that (A,B) is ambiguous and �pol∈ U satisfies b �pol a for all a ∈ A and

b ∈ B. There exists a signal S about some (a, b) ∈ A × B and a positive-probability set of (�,M)

such that

c(�,M) (ai, bi) ≺pol c(�,M) (a, b)

c(�,M) (ai, bi) � c(�,M)(a, b)

for every (ai, bi) ∈ supp(S) and every (�,M) in the set.

To illustrate, consider a decision maker in Example 5 who prefers to hire a male candidate

but cannot justify doing so in the absence of further information. He may then seek out detailed

information about both candidates’ qualifications. By choosing between justifications that place

different weights on different qualifications, he may be able to hire the male candidate in most

states of the world.

In fact, Bleemer (2019) finds that universities engage in a similar practice, although the aim

is to advantage rather than disadvantage applicants from underrepresented groups. In “holistic

review,” universities collect multidimensional information about applicants and vary the weight on

each dimension from application to application. Proposition 3 predicts that holistic review would
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increase the proportion of students from underrepresented groups, and Bleemer (2019) finds that

this is the case. This example is a good reminder that the desires-vs.-morals interpretation of the

justification model is not applicable in every situation. While I have focused on that interpretation

to simplify the terminology and exposition, the model can also apply to situations where legal or

social constraints stop decision makers from acting on preferences that are morally unobjectionable.

For the final result of the paper, I return to the question of precisely how justifiers choose

between information and ignorance. One possibility is simply that justifiers choose information

in accordance with their preferences. However, this does not fit well with the premise behind the

justification model. I propose a flexible extension of the model in which information choices do

have to be justified, but may be subject to a different set of justifications than choices over final

outcomes.

Formally, a two-stage justification model consists of a preference % and two (possibly equal) sets

of justifications, Minfo and Mfinal. I assume that the set of justifications governing information

is weakly larger than the set of justifications governing final choice. The motivating idea is that

information choices do not directly determine outcomes, so they may be subject to less thought

or scrutiny, or seen as less informative about the decision maker’s character. I also impose a

maximality condition on the sets of justifications: if adding a justification to the set would not

change what is justifiable, then that justification must already belong to the set. This assumption

ensures that a gap between Minfo and Mfinal is meaningful; it does not reflect the presence or

absence of superfluous justifications.

Definition 15 (Two-stage justification model). A two-stage justification model is a triple

(%,Minfo,Mfinal) ∈ U × C(U)2 such that

1. Minfo ⊇Mfinal.

2. (Maximality) For M∈ {Minfo,Mfinal}: if %∗∈ U has a �∗ b for all items a and b such that

a �M b, then %∗∈M.

The choice procedure is as follows. Consider a decision maker facing a two-stage choice problem,

where the first stage is information choice. A strategy consists of a signal and a selection from each

signal realization. For a given strategy to be justifiable, it must be justifiable from both the first-

stage and second-stage points of view. A strategy is justifiable from the second-stage point of

view if, for each signal realization, there is a second-stage justification for selecting the alternative

specified by the strategy. (This is the usual notion of “justifiable.”) A strategy is justifiable from

the first-stage point of view if there is a first-stage justification for carrying out the entire strategy.

When the decision maker’s first-stage choice is between ignorance and information, any strategy

that picks information in the first stage and picks justifiable alternatives in the second stage is

justifiable. Thus, the definition of “justifiable” is only distinctive for a strategy that picks ignorance

in the first stage.
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Definition 16. Fix a two-stage justification model. Given a menu A, an item a ∈ A, and a signal

S about A, the pair (δA, a) is justifiable if

a = ES
[
max

(
%info, Ã

)]
for some %info∈Minfo

and

a = max (%final, A) for some %final∈Mfinal.

Proposition 4 says that the justification model predicts some information avoidance if and only

if the set of justifications governing information choice is strictly larger than the set of justifications

governing choice over final outcomes. Thus, the justification model can account for the main finding

of the moral wiggle room literature if people are willing to use somewhat weaker justifications for

their information choices than choices that directly affect others. Admittedly, this is only a partial

account, as the justification model takes the justifications as given rather than explaining where

they come from.

Proposition 4. For any two-stage justification model, Minfo ⊃Mfinal if and only if there exist a

menu A, item a ∈ A, and signal S about A such that (δA, a) is justifiable and

a = max(%,Mfinal(A)) � ES
[
max

(
%,Mfinal

(
Ã
))]

for some %∈ U . (6)

6 Conclusion

We seem to be living in a time when people are especially concerned with having, or being seen

to have, the right values, principles, and beliefs. The goal of this paper has been to provide a

broad range of researchers (both theoretically and empirically oriented) with a common framework

for thinking about choice in these sorts of contexts. While the model owes a great deal to prior

work on rationalization and limited attention, I believe that it is unique in its strong identification

properties, its ability to handle subjects’ attempts to conceal their preferences, and its connections

to a broad range of experimental work.

One question this paper leaves open is that of welfare. While decision makers in the justification

model do have preferences that guide their actions, it would likely be a mistake to take those

preferences as a measure of welfare, at least where they are known to conflict with the justifications.

It is very plausible that people are sometimes better off when a moral principle, desire to be virtuous,

or sense of obligation stops them from indulging one of their desires.
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A Proofs of results in text

A.1 Proof of Theorem 1

Throughout this proof, justifications are assumed to be strict preferences. This is without loss of

generality.

First, we show necessity. Necessity of Optimization follows because the items that maximize a

preference over a set must all be indifferent. For IUA, fix A, a such that a ∈ A. Suppose a % c(A)

and a /∈ c(A), and fix B ⊇ A. For all �m∈ M, we have a 6%m A, so a 6%m B. To confirm that

c(B) = c(B\{a}), it suffices to show thatM(B) =M(B\{a}). Take any b ∈M(B). Since b %m B

for some �m∈ M, b %m A for some %m∈ M, so b 6= a. Since b %m B implies b %m B \ {a}, we

have b ∈M(B \{a}). Now take any b ∈M(B \{a}). There exists �m∈M such that b %m B \{a}.
Since it cannot be that a %m b %m B \ {a}, we have b %m B, so b ∈M(B).

Notation: for a menu X and item y /∈ X, write X . y if y % X and y /∈ c(X ∪ {y}).
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Let

M := {�m: y 6�m X if X . y}.

We need to show that

c(A) = max (%,M(A))

where M(A) =
⋃
�m∈Mmax(�m, A).

Fix some menu A and item b /∈ A such that b ∈ c(A ∪ {b}). We need to show that b ∈ M(A).

That is, we need to find a preference �m such that b �m A and y 6�m X if X . y. We will start by

extending .. First, we define several useful properties of ..

Definition 17 (Menu-item relation). A menu-item relation is a subset of (F(A) ∪ {∅})×A.

Definition 18 (Properness). A menu-item relation R is proper if X R x =⇒ X 6= ∅.

Definition 19 (Irreflexivity). A menu-item relation R is irreflexive if X R x =⇒ x /∈ X.

Definition 20 (Transitivity). A menu-item relation R is transitive if

X R y ∈ Y R z =⇒ X ∪ Y \ {y, z} R z.

As usual, the transitive closure of a menu-item relation R is the smallest transitive menu-item

relation that includes R. It is denoted tr(R).

Lemma 1. . is transitive.

Proof. If X . y ∈ Y . z, then z % Y and y % X. Since y ∈ Y , we have z % X ∪ Y \ {y}. By IUA,

c({z} ∪X ∪ Y \ {y}) = c({z} ∪X ∪ Y ) = c(X ∪ Y \ {z}).

Thus, z /∈ c({z} ∪X ∪ Y \ {y}. Conclude that X ∪ Y \ {y, z} . z.

Definition 21 (Consistency with b � A). A menu-item relation R is consistent with b � A if it is

not the case that A′ R b for any nonempty A′ ⊆ A.

Lemma 2. If b ∈ c({b} ∪A), then . is consistent with b � A.

Proof. Suppose that A′ . b for some A′ ⊆ A. Then, b % A′, so b % c({b} ∪A′), and b /∈ c({b} ∪A′).
By IUA, c({b} ∪A) = c(A), so b /∈ c({b} ∪A)—contradiction.

The following two lemmas will be useful for extending ..

Lemma 3. For any irreflexive, transitive and proper menu-item relation R and any distinct items

x, and y such that ¬({y} R x), the menu-item relation tr(R ∪ ({x}, y)) is irreflexive and proper.

28



Proof. Let R0 := R. For i > 0, let Ri be the extension of Ri−1 obtained by imposing k⋃
j=1

Xj ∪ {yk+1, . . . , yn}

 \ {y} Ri y
whenever

{y1, . . . , yn} R0 y and, for all j ≤ k, Xj R
i−1 yj .

Then, tr(R) =
⋃∞
i=0R

i. This is a standard result about the transitive closure. The usual proof

goes through with the version of transitivity used here.

Repeated applications of transitivity will not lead to a violation of irreflexivity, so we only need

to check whether tr(R ∪ ({x}, y)) is proper. To keep track of repeated applications of transitivity,

we introduce the notion of a tree.

Definition 22 (Q-tree). For a menu-item relation Q, a Q-tree from W ∈ F(A) ∪ {∅} to w ∈ A is

inductively defined as follows:

• z0 := w is mapped to Z1(z0) such that Z1(z0) Q z0.

• For k > 0: each zk(zk−1(zk−2(· · · ))) that does not belong to

W ∪ {zk−1(zk−2(· · · )), zk−2(· · · ), . . . , z1(z0), z0}

is mapped to Zk+1(zk(zk−1(· · · ))) such that Zk+1(zk(zk−1(· · · ))) Q zk(zk−1(· · · )).

• For some finite K > 0: each zK(zK−1(· · · )) belongs to

W ∪ {zK−1(zK−2(· · · )), zK−1(· · · ), . . . , z1(z0), z0}.

Zk(zk−1(· · · )) is called the set of parents of zk−1(· · · ). If zk(· · · ) does not have parents, it is

called a top node. A branch of a tree is a sequence (z0, z1(z0), . . . , zk(zk−1(· · · ))) such that zk(· · · )
is a top node. For any i < k, we refer to z0, . . . , zi−1(· · · ) as descendants of zi(· · · ), and to

zi+1(zi(· · · )), . . . , zk(zk−1(· · · )) as ancestors of zi(· · · ).

It is not difficult to see that (W,w) belongs to tr(Q) if and only if there is a Q-tree from W to

w. If tr(R ∪ ({x}, y)) is improper, there is a R ∪ ({x}, y)-tree from ∅ to w for some w ∈ A. Notice

that there must be at least one instance of y in the tree that has x as its sole parent. (Otherwise,

there would be any R-tree from ∅ to w, contradicting properness of R.) Suppose there are n such

instances. Let xi and yi denote the relevant instances of x and y. Let T1 denote the tree obtained

from the original tree by removing everything except x1 and its ancestors. We claim that T1 is an

R-tree. If not, there is a branch or the original tree that contains two instances of (y, x). But the
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second instance of y would have to be a top node by definition of a tree, so it could not have x as

its parent. Let V1 be the set of top nodes of T1 that are not repetitions of any of their descendants

in T1. T1 is an R-tree from V1 to x. Since R is transitive, V1 R x. Since each v ∈ V1 is a top node

of the original tree from ∅ to w, and since all the top nodes of the original tree are repetitions of

their descendants, each v ∈ V1 must be a descendant of y1.

Now construct a new tree from the original tree by removing everything except the ancestors of

w. Also remove all the ancestors of yj for each j. The result is an R-tree from {y} to w. (All the

other top nodes must be top nodes of the original tree, which are repetitions of their descendants.)

Since R is transitive, {y} R w. Now fix any parent z1 of w. Construct a new tree by removing

everything except the ancestors of w. Also remove all the ancestors of yj for each j. The result is

an R-tree from {y, w} to z1. (All the top nodes besides y must be repetitions of their descendants

in the original tree. All the descendants except w are present in the new tree.) Since {y} R w,

there is an R-tree from {y} to z1, so {y} R z1. We can iterate this process to get y R z for any

descendant z of any yi. Since each v ∈ V1 is a descendant of y1, we have {y} R v for each v ∈ V1.

Since V1 R x, we have an R-tree from {y} to x, so {y} R x—contradiction.

Lemma 4. Fix an irreflexive, transitive, proper menu-item relation R that is consistent with b � A.

For any a ∈ A, tr(R ∪ ({b}, a)) is consistent with b � A.

Proof. Suppose that tr(R ∪ ({b}, a)) is inconsistent with b � A, so (A′, b) ∈ tr(R ∪ ({b}, a)) for

some nonempty A′ ⊆ A. Then, there must be an R ∪ ({b}, a)-tree from A′ to b. Construct a new

tree by removing all the ancestors of a wherever b is the sole parent of a. The result is an R-tree

from A′′ ⊆ A′ ∪ {a} to b. Since R is transitive and proper, we have A′′ R b for some nonempty

A′′ ⊆⊆ A. This contradicts consistency of R with b � A.

Let A = {a1, . . . , an}. Let .0 := .. For i ∈ {1, . . . , n}, let .i = tr(.i−1 ∪ ({b}, ai)). Since . is

irreflexive, proper, transitive, and consistent with b � A, we can use Lemmas 3 and 4 to show that

the same is true of each .i. Notice that {b} .n a for all a ∈ A.

Now we use Lemma 3 to show that .n can be extended to an irreflexive, proper and transitive

relation .+ such that, for all distinct x, y ∈ A, {x} .+ y or {y} .+ x. The proof is similar to that

of the Szpilrajn Extension Theorem. Consider the set of irreflexive, proper and transitive relations

that extend .n, ordered by set inclusion. Take any chain in the partially ordered set. The union of

its elements is clearly irreflexive, proper and transitive, so it is an upper bound for the chain. By

Zorn’s Lemma, the partially ordered set must have a maximal element .+. Suppose that, for some

distinct x, y, neither {x}.+ y nor {x}.+ y. By Lemma 3, .+ can be extended to another irreflexive,

proper and transitive relation containing ({x}, y). Then .+ cannot be maximal, a contradiction.

Moreover, for each X ∈ F(A) and y ∈ A, .+ must satisfy

X . y =⇒
(
∃x ∈ X s.t. {x} .+ y

)
. (7)
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Suppose not. Then {y} .+ x for all x ∈ X, as well as X .+ y. Since .+ is transitive, ∅ .+ y. Since

.+ is proper, this is a contradiction. Similarly, suppose that {x} .+ y and {y} .+ x. By transitivity,

∅ .+ x, a contradiction.

We can use .+ to define a strict preference �m on A:

{x} .+ y ⇐⇒ x �m y.

It is easy to see that �m is ansymmetric and transitive, and ranks every distinct pair of items.

Because of (7), it belongs to M. It also satisfies b �m A because .+ extends .n, and {b} .n a for

all a ∈ A.

We have now shown that

c(A) ⊂ max(%,M(A)).

Now suppose that a ∈ max(%,M(A)). Since a % M(A) and c(A) ⊆ M(A), we have a % c(A).

Suppose a /∈ c(A).

Lemma 5. Fix a menu A and item a /∈ A. If a % c(A ∪ {a}) and a /∈ c(A ∪ {a}), then

{b ∈ A : a % b} . a.

Proof. Enumerate the items in A from %-best to %-worst, breaking ties arbitrarily. Suppose a % a1.

Then, A = {b ∈ A : a % b} . a, and we are done. Now suppose ai � a for i ≤ i∗, but a % i for

i > i∗. Since a1 � a % c(A∪ {a}), we have a1 � c(A∪ {a}). By Optimization, a1 /∈ c(A∪ {a}). By

IUA, c({a}∪A \ {a1}) = c({a}∪A). If i∗ = 1, we are done. Otherwise, we have a2 � c({a}∪A) =

c({a}∪A \ {a1}), which implies a2 /∈ c({a}∪A \ {a1}). By IUA, c({a}∪A \ {a1, a2}) = c({a}∪A).

We can iterate this argument until we arrive at

c(A) = c({a} ∪ {ai∗+1, . . . , an}).

Since a /∈ c(A), we have a /∈ c({a} ∪ {ai∗+1, . . . , an}) as well as a % {ai∗+1, . . . , an}. Since

{ai∗+1, . . . , an} = {b ∈ A : a % b}, we have {b ∈ A : a % b} . a as desired.

By Lemma 5,

{b ∈ A \ {a} : a % b} . a.

By definition of M, we have

a 6�m {b ∈ A \ {a} : a % b}

for all �m∈M. This implies a 6�m A\{a} for all �m∈M, so a /∈M(A)—contradiction. Conclude

that

c(A) ⊂ max(%,M(A)),
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so M represents c.

A.2 Proof of Theorem 2

Notation:

• a C b means there exists d such that (a, b, d) or (d, a, b) is a cycle.

• a C̄ b means that a precedes b in a chain.

• a S b means that a precedes b in a strict chain.

• a→ b means that neither a S b nor b S a, and {a} = c(a, b).

• a↔ b means that {a, b} = c(a, b).

Sufficiency: For each a, let

E(a) := {b ∈ A : a↔ x1 ↔ · · · ↔ xn ↔ b for some (x1, . . . , xn) and n ∈ N}.

{E(a)}a∈A partitions the domain into equivalence classes. Notice that if E(a) 6= E(b), then {a, b} 6=
c(a, b).

Now define a binary relation �E on {E(a)}a∈A as follows: for distinct Ea and Eb, impose

Ea �E Eb if

1. a S b for some a ∈ Ea and b ∈ Eb, or

2. For all a ∈ Ea and b ∈ Eb, it is not the case that a S b or b S a, and for some a ∈ Ea and

b ∈ Eb, {a} = c(a, b).

Clearly, �E ranks every distinct Ea, Eb. To show that �E is asymmetric and transitive, we

require the following lemmas.

Lemma 6. If a ∈ c(a, b), b ∈ c(b, d) and d ∈ c(a, d), and if at least one of c(a, b), c(b, d) and c(a, d)

is a singleton, then one of the following is a cycle: (a, b, d), (b, d, a), (d, a, b).

Proof. If {a, b, d} = c(a, b, d), then revealed optimization implies that none of c(a, b), c(b, d), or

c(a, d) is a singleton. Thus, {a, b, d} 6= c(a, b, d). If a /∈ c(a, b, d) then (a, b, d) is a cycle if b ∈
c(a, b, d). Otherwise, d ∈ c(a, b, d), so (b, d, a) is a cycle. If b /∈ c(a, b, d), then (b, d, a) is a cycle if

d ∈ c(a, b, d). Otherwise, a ∈ c(a, b, d), so (d, a, b) is a cycle. If d /∈ c(a, b, d), then (d, a, b) is a cycle

if a ∈ c(a, b, d). Otherwise, b ∈ c(a, b, d), so (a, b, d) is a cycle.

Lemma 7. It is not the case that x S x.
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Proof. If x S x, then we have a sequence such that xn C x1 C x2 · · · xn and {xn} = c(xn, x1).

Since xn C x1, we have xn 6= x1 by definition of a cycle. For each i > 1, we have xi S xi−1

and xi−1 ∈ c(xi−1, xi). Thus, it is revealed unjustifiable to choose xi from {xi−1, xi}. By IRUA,

xi /∈ c(x1, . . . , xn). Thus, {x1} = c(x1, . . . , xn). But x1 C̄ xn and x1 /∈ c(x1, xn), so it is revealed

unjustifiable to choose x1 from {x1, xn}. By IRUA, x1 /∈ c(x1, . . . , xn)—contradiction.

Lemma 8. If x1 S x2, then E(x1) 6= E(x2).

Proof. We begin by proving a series of claims.

Claim 1: If x1 S x2 ↔ x3 · · · xn−1 ↔ xn ↔ x1 or x1 S x2 ↔ x3 · · · xn−1 ↔ xn → x1, then

xi S xj ↔ xk ↔ xi or xi S xj ↔ xk → xi for some i, j, k. The proof is by induction on n. If n = 3,

the result is automatic. Suppose the result holds for all m < n and that x1 S x2 ↔ x3 · · ·xn−1 ↔
xn → x1. If xn−1 ↔ x1, then the result follows from the inductive hypothesis. Suppose {x1} =

c(x1, xn−1). Then, one of the following is a cycle: (x1, xn−1, xn), (xn−1, xn, x1), (xn, x1, xn−1). The

first case implies x1 S xn, and the second and third imply xn S x1. Both contradict x1 → xn.

Finally, suppose {xn−1} = c(x1, xn−1). If xn−1 S x1, then xn−1 S x2 ↔ x3 · · ·xn−1, so the

result follows from the inductive hypothesis. If x1 S xn−1, then x1 S xn−1 ↔ xn → x1, which

is the desired result. If xn−1 → x1, then x1 S x2 ↔ x3 · · ·xn−2 ↔ xn−1 → x1, so the result

follows from the inductive hypothesis. This covers all the cases. Now suppose that the result

holds for all m < n and that x1 S x2 ↔ x3 · · ·xn−1 ↔ xn ↔ x1. If xn−1 ↔ x1, the result

follows from the inductive hypothesis. Suppose {x1} = c(x1, xn−1). One of the following is a cycle:

(x1, xn−1, xn), (xn−1, xn, x1), (xn, x1, xn−1). The first and third cases imply x1 S xn. Since x1

comes before xn in a strict chain and xn ∈ c(x1, xn), IRUA implies x1 /∈ c(x1, xn)—contradiction.

Thus, xn−1 C xn C x1. We have xn−1 S x2 ↔ x3 · · ·xn−1, so the result follows from the inductive

hypothesis. Now suppose {xn−1} = c(x1, xn−1). If x1 S xn−1, then x1 S xn−1 ↔ xn ↔ x1, which

is the desired result. If xn−1 S x1, then xn−1 S x2 ↔ x3 · · ·xn−1, so the result follows from the

inductive hypothesis. If xn−1 → x1, the result again follows from the inductive hypothesis. This

covers all the cases.

Claim 2: If x1 C x2 · · · xn ↔ xn+1 ↔ x1 or x1 C x2 · · · xn ↔ xn+1 → x1, and if

{xi} = c(xi, xi+1), then xi C xi+1 · · · xn ↔ xn+1 ↔ xi or xi C xi+1 · · · xn ↔ xn+1 → xi.

The proof is by induction on i. If i = 1, the result is automatic. Suppose the result holds for all

j < i. If xn+1 ↔ x2, the result follows from the inductive hypothesis. Suppose {x2} = c(x2, xn+1).

Then, one of the following is a cycle: (x2, xn+1, x1), (xn+1, x1, x2), (x1, x2, xn+1). In the first and

third cases, x2 S xn+1, so x1 S xn+1, which contradicts both xn+1 → x1 and xn+1 ↔ x1. In the

second case, we have xn+1 S xn, which contradicts xn ↔ xn+1. Suppose {xn+1} = c(x2, xn+1). If

xn+1 S x2, we have xn+1 S xn, which contradicts xn ↔ xn+1. If x2 S xn+1, we have x1 S xn+1,

which contradicts both xn+1 → x1 and xn+1 ↔ x1. Thus, xn+1 → x2, and the result follows from

the inductive hypothesis.
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Claim 3: If x1 C x2 . . . xn ↔ xn+1 → x1 or x1 C x2 . . . xn → xn+1 → x1, and if {x1} =

c(x1, x2), then x1 C x2 ↔ xn+1 → x1 or x1 C x2 → xn+1 → x1. Similarly, if x1 C x2 . . . xn ↔
xn+1 ↔ x1 or x1 C x2 . . . xn → xn+1 ↔ x1, and if {x1} = c(x1, x2), then x1 C x2 ↔ xn+1 ↔ x1

or x1 C x2 → xn+1 ↔ x1. The proof is by induction on n. If n = 2, the result is automatic. If

xn−1 ↔ xn+1, the result follows from the inductive hypothesis. Suppose {xn+1} = c(xn−1, xn+1).

Then, one of the following is a cycle: (xn+1, xn−1, xn), (xn−1, xn, xn+1), (xn, xn+1, xn−1). In the

first case, xn+1 S xn, which contradicts both xn → xn+1 and xn ↔ xn+1. In the second case,

x1 S xn C xn+1, so x1 S xn+1, which contradicts both x1 ↔ xn+1 and xn+1 → x1. In the third

case, xn S xn−1, so xn S xn. This contradicts Lemma 7. Suppose {xn−1} = c(xn−1, xn+1). If

xn+1 S xn−1, then xn+1 S xn, which contradicts both xn → xn+1 and xn ↔ xn+1. If xn−1 S xn+1,

then x1 S xn+1, which contradicts both x1 ↔ xn+1 and xn+1 → x1. We have xn−1 → xn+1, so the

result follows from the inductive hypothesis.

Claim 4: If {x1} = c(x1, x2), then none of the following can happen: x1 C x2 ↔ x3 ↔ x1,

x1 C x2 → x3 ↔ x1, x1 C x2 ↔ x3 → x1, x1 C x2 → x3 → x1. In all of these cases, one of

the following is a cycle: (x1, x2, x3), (x2, x3, x1), (x3, x1, x2). The first case implies x1 S x3, which

contradicts both x1 ↔ x3 and x3 → x1. The second case implies x2 C x3 C x1 S x2, so x2 S x2.

This contradicts Lemma 7. The third case implies x3 S x2, which contradicts both x2 ↔ x3 and

x2 → x3.

To complete the argument, suppose x1 S x2 and E(x1) = E(x2). We have x1 S x2 ↔
x3 · · · xn ↔ x1. By Claim 1, there exists (y1, . . . , yn+1) such that y1 C y2 · · · yn ↔ yn+1 ↔ y1

or y1 C y2 · · · yn ↔ yn+1 → y1, where {yi} = c(yi, yi+1) for some i. By Claim 2, we have

yi C yi+1 · · · yn ↔ yn+1 ↔ yi or yi C yi+1 · · · yn ↔ yn+1 → yi. By Claim 3, we have yi C yi+1 ↔
yn+1 ↔ yi or yi C yi+1 ↔ yn+1 → yi or yi C yi+1 → yn+1 ↔ yi or yi C yi+1 → yn+1 → yi. By

Claim 4, all lead to contradictions.

Lemma 9. If E(x1) = E(x2) and {x2} = c(x1, x2), then x1 C̄ x2.

Proof. Suppose that y1 ↔ y2 ↔ · · · ↔ yn and that {yn} = c(y1, yn). Suppose also that, for all i

and all j > i + 1, it is not the case that yi ↔ yj . (This assumption is without loss, since we can

always get to it from y1 ↔ y2 ↔ · · · ↔ yn by deleting alternatives strictly between y1 and yn.) We

will show by induction on n that y1 C y2 C · · · C yn.

Consider n = 3. Since {y3} = c(y1, y3), one of the following is a cycle: (y1, y2, y3), (y2, y3, y1),

(y3, y1, y2). In the first case, y1 C y2 C y3 as desired. The second and third cases imply y3 S y1,

which violates Lemma 8.

Now suppose the result holds for n − 1. By assumption, it is not the case that y1 ↔ yn−1.

Suppose {y1} = c(y1, yn−1). Then, one of the following is a cycle: (y1, yn−1, yn), (yn−1, yn, y1),

(yn, y1, yn−1). In the first case, y1 S yn−1, which violates Lemma 8. In the second and third

cases, yn S y1, which also violates Lemma 8. Thus, {yn−1} = c(y1, yn−1). By the inductive
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hypothesis, y1 C y2 C · · · C yn−1. A parallel argument establishes y2 C · · · C yn. Conclude that

y1 C y2 C · · · C yn.

Lemma 10. If x1 → x2 C̄ xn or x1 ↔ x2 C̄ xn, and if E(x1) 6= E(xi) for some i, then E(x1) 6=
E(xj) for all j > i.

Proof. Suppose x1 ↔ x2 C · · · C xn. Let i be the smallest index such that E(xi) 6= E(x1). Since

xi−1 C xi and E(xi−1) = E(x1) 6= E(xi), we have {xi−1} = c(xi−1, xi). Thus, xi−1 S xj for all

j > i. By Lemma 8, we have E(xi−1) 6= E(xj), which implies E(x1) 6= E(xj).

Now suppose x1 → x2 C · · · C xn. If E(x1) = E(x2), then the argument above goes through

unchanged. Now suppose E(x2) 6= E(x1). Suppose also that E(x1) = E(x3). If x3 ∈ c(x1, x3),

then one of the following is a cycle: (x3, x1, x2), (x1, x2, x3), (x2, x3, x1). The first and second cases

imply x1 S x2, which contradicts x1 → x2. Since E(x2) 6= E(x3), we have {x2} = c(x2, x3), so

the third case implies x2 S x1. This also contradicts x1 → x2, so {x1} = c(x1, x3). By Lemma 9,

x3 C̄ x1. Since x2 S x3, we have x2 S x1, which contradicts x1 → x2.

Let j be the lowest index above 1 such that E(xj) = E(x1), and suppose j > 3. Since E(x1) 6=
E(x3), we cannot have x1 ↔ x3. Suppose {x3} = c(x1, x3). Then, one of the following is a cycle:

(x1, x2, x3), (x2, x3, x1), (x3, x1, x2). In the first and third cases, x1 S x2, which contradicts x1 → x2.

In the second case, x3 S x1, so x2 S x1, which contradicts x1 → x2. Thus, {x1} = c(x1, x3).

We already ruled out x3 S x1. If x1 S x3, then x1 S xj , which contradicts Lemma 8. Thus,

x1 → x3 C · · · C xn. We can iterate the argument until we arrive at x1 → xj−1 C xj . Since

E(x1) = E(xj) 6= E(xj−1), the argument in the previous paragraph delivers a contradiction.

Lemma 11. If x1 → x2 C · · · C xn or x1 ↔ x2 C · · · C xn, and if E(x1) 6= E(xi) for at least

one i, then x1 → xn or x1 S xn. Similarly, if x1 C x2 · · · xn−1 → xn or x1 C x2 · · · xn−1 ↔ xn,

and if E(x1) 6= E(xi) for at least one i, then x1 → xn or x1 S xn.

Proof. We prove the first sentence, as the proof of the second sentence is very similar. The proof

is by induction on n. The base case is n = 3. Suppose x1 → x2 C x3 or x1 ↔ x2 C x3 and

that E(x1) 6= E(xi) for i = 2 or i = 3. By Lemma 10, it is not the case that x1 ↔ x3. Suppose

{x3} = c(x1, x3). Then, one of the following is a cycle: (x1, x2, x3), (x2, x3, x1), (x3, x1, x2). In the

first and third cases, x1 S x2, which contradicts both x1 → x2 and x1 ↔ x2. In the second case,

x2 S x1, which also contradicts x1 → x2 and x1 ↔ x2. Thus, {x1} = c(x1, x3). If x3 S x1, then

x2 S x1, which contradicts x1 → x2 and x1 ↔ x2. Thus, we have either x1 S x3 or x1 → x3.

Suppose that the result holds for all m < n. Suppose x1 → x2 C · · · C xn or x1 ↔
x2 C · · · C xn. If E(x1) 6= E(xi) for some i < n, then the inductive hypothesis gives x1 S xn−1

or x1 → xn−1. In the first case, x1 S xn, which is the desired result. In the second case, we have

x1 → xn−1 C xn and E(x1) 6= E(xn−1). The result follows from the inductive hypothesis. Now sup-

pose that E(x1) = E(x2) = · · · = E(xn−1) 6= E(xn). If x1 ↔ xn−1, then we have x1 ↔ xn−1 C xn,
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where E(xn) 6= E(x1). The result follows from the inductive hypothesis. If {x1} = c(x1, xn−1),

Lemma 8 implies x1 → xn−1. We have x1 → xn−1 C xn, where E(xn) 6= E(x1). The result again

follows from the inductive hypothesis. If {xn−1} = c(x1, xn−1), then x1 C̄ xn−1 by Lemma 9. Since

xn−1 S xn, we have x1 S xn, which is the desired result.

Lemma 12. If a → b and b /∈ E(a), or if a S b, then for any b̂ ∈ E(b), either a S b̂ or a → b̂.

Similarly, for any â ∈ E(a), either â S b or â→ b.

Proof. We prove the first sentence, as the proof of the second sentence is very similar. It suffices

to show the following: if a → b1 ↔ b2 · · · bn or a S b1 ↔ b2 · · · bn, and if E(a) 6= E(b1), then

a → bn or a S bn. The proof is by induction on n. If n = 1, the result is automatic. Suppose the

result holds for n− 1 and that a S b1 ↔ · · · bn. By the inductive hypothesis, either a S bn−1 ↔ bn

or a → bn−1 ↔ bn. Suppose the former, so z1 C z2 · · · C zm ↔ bn for some (z1, . . . , zm) such

that z1 = a and zm = bn−1. Suppose that bn ↔ zj for some j < m. Let j denote the smallest

index i such that bn ↔ zi. Since E(a) 6= E(bn), 1 < j ≤ n − 1. We have z1 C z2 · · · zj ↔ bn.

By definition of j, it is not the case that zj−1 ↔ bn. Suppose that {bn} = c(zj−1, bn). Then, one

of the following is a cycle: (bn, zj−1, zj), (zj−1, zj , bn), (zj , bn, zj−1). In the first and third cases,

bn S zj−1, so bn S zj , which contradicts zj ↔ bn. In the second case, zj C bn. Since a C̄ zj

and E(zj) = E(bn) 6= E(a), we have a S zj , so a S bn. This is the desired result. Now suppose

{zj−1} = c(zj−1, bn). We already ruled out bn S zj−1. If zj−1 S bn, then a S bn, which is the

desired result. If zj−1 → bn, we have a C · · · zj−1 → bn. Since E(a) 6= E(bn), Lemma 11 delivers

a S bn or a→ bn, which is the desired result.

Now suppose a → bn−1 ↔ bn. Since E(a) 6= E(bn), we cannot have a ↔ bn. Suppose {bn} =

c(a, bn). Then, one of the following is a cycle: (bn, a, bn−1), (a, bn−1, bn), (bn−1, bn, a). In the first

case, bn S bn−1, which contradicts bn ↔ bn−1. In the second case, a S bn−1, which contradicts

a→ bn−1. In the third case, bn−1 S a, which contradicts a→ bn−1. Thus, {a} = c(a, bn). If bn S a,

then bn−1 → a or bn−1 S a by Lemma 11, both of which contradict a→ bn−1. The only remaining

possibilities are a S bn and a→ bn. This is the desired result.

Lemma 13. If Ea 6= Eb and neither a S b nor b S a for all a ∈ Ea and b ∈ Eb, then

a→ b for some a ∈ Ea and b ∈ Eb =⇒ a→ b for all a ∈ Ea and b ∈ Eb.

Proof. Suppose that a → b and â → b̂ for some a, â ∈ Ea and b, b̂ ∈ Eb. Since ¬(a S b̂) and

¬(b̂ S a), we have a→ b̂ and b̂→ a by Lemma 12—contradiction.

Now we show that �E is asymmetric. Suppose that Ea �E Eb and Eb �E Ea, where Ea 6= Eb.

There are two ways to have Ea �E Eb. One is a S b for some a ∈ Ea and b ∈ Eb. Then, Eb �E Ea

implies that b̂ S â for some â ∈ Ea and b̂ ∈ Eb. By Lemma 12, either a S b̂ or a → b̂. By Lemma
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12 again, either â S b̂ or â→ b̂. The former implies â S â, which contradicts Lemma 8. The latter

contradicts b̂ S â. Conclude that ¬(a S b) for all a ∈ Ea and b ∈ Eb. The other way to have

Ea �E Eb is ¬(a S b) and ¬(b S a) for all a ∈ Ea and b ∈ Eb, and a → b for some a ∈ Ea and

b ∈ Eb. In this case, the only way to have Ea �E Eb is b̂ → â for some â ∈ Ea and b̂ ∈ Eb. But

â→ b̂ by Lemma 13—contradiction.

Now we show that �E is transitive. Suppose that Ea �E Eb �E Ed. If it is not the case that

Ea �E Ed, then we have Ea �E Eb �E Ed �E Ea. Suppose that we have a S b, b̂ S d̂, and d̃ S ã

for some a, ã ∈ Ea, b, b̂ ∈ Eb, and d̂, d̃ ∈ Ed. By Lemma 12, a S b̂ or a → b̂. Also, b̂ S d̃ or b̂ → d̃.

If a S b̂ S d̃, then a S d̃. If a S b̂ → d̃ or a → b̂ S d̃, then a → d̃ or a S d̃ by Lemma 11. Thus,

the three possibilities are a S d̃, a → d̃, and a → b̂ → d̃. By Lemma 12, d̃ S a or d̃ → a. In both

cases, it cannot be that a S d̃ or a → d̃, so the only remaining possibility is a → b̂ → d̃. If d̃ S a,

then Lemma 11 implies b̂ S a or b̂ → a, both of which contradict a → b̂. If a → d̃, then one of

the following is a cycle: (a, b̂, d̃), (b̂, d̃, a), (d̃, a, b̂). The first and third cases imply a S b̂, which

contradicts a→ b̂. The second case implies b̂ S a, which also contradicts a→ b̂.

Now suppose that, for all a ∈ Ea, b ∈ Eb, and d ∈ Ed, we have ¬(a S b), ¬(b S a), ¬(b S d),

¬(d S b), ¬(a S d), and ¬(d S a). Then, we have a → b, b̂ → d̂, and d̃ → ã for some a, ã ∈ Ea,

b, b̂ ∈ Eb, and d̂, d̃ ∈ Ed. By Lemma 13, we have a → b̂, b̂ → d̃, and d̃ → a. We already derived a

contradiction from these conditions.

It is now without loss to assume that a S b for some a ∈ Ea and b ∈ Eb, that ¬(b S d) and

¬(d S b) for all b ∈ Eb and d ∈ Ed, and that b̂ → d̂ for some b̂ ∈ Eb and d̂ ∈ Ed. By Lemma 13,

we have b → d̂. By Lemma 11, we have a S d̂ or a → d̂. In the former case, Ea �E Ed, which

contradicts Ed �E Ea. Thus, a → d̂. There are two ways to have Ed �E Ea. One is ¬(ã S d̃)

and ¬(d̃ S ã) for all ã ∈ Ea and d̃ ∈ Ed, and d̃ → ã for some ã ∈ Ea and d̃ ∈ Ed. Since a → d̂,

this contradicts Lemma 13. The other way to have Ed �E Ea is d̃ S ã for some ã ∈ Ea and some

d̃ ∈ Ed. Applying Lemma 12 twice, we get d̂ S a or d̂→ a. Both contradict a→ d̂. Conclude that

�E is transitive.

We can now use �E to define a preference % on A: a % b if E(a) = E(b) or E(a) � E(b). It

remains to show that c satisfies IUA conditional on % if c satisfies IRUA.

Lemma 14. If c satisfies IRUA on A but violates WARP on A, then A contains a cycle or almost-

consistent set.

Proof. Suppose that WARP is violated on A. Since WARP is always satisfied on a pair, there exists

B ⊆ A such that WARP is violated on B, but not on any proper subset of B. Let P be the relation

on B defined by pairwise choice: a P b if a ∈ c(a, b). Clearly, P is reflexive and complete. If P is

not transitive, then there exist a, b, d in B such that a ∈ c(a, b), b ∈ c(b, d), and {d} = c(a, d). By

Lemma 6, there is a cycle containing a, b and d.

Now suppose that P is transitive, so it is a preference. Consider any nonempty proper subset D
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of B. WARP is satisfied on D, so c(D) = max(P,D), which implies that D is consistent. Suppose

that B is not almost-consistent. Then, B is consistent, so c(B) ⊇ max(P,B). Since WARP is

violated on B, the inclusion is strict: there exists b ∈ c(B) such that b /∈ max(P,B). That is,

¬(b P a) for some a ∈ B. Since P is a preference, max(P,B) is nonempty. Fix any d ∈ max(P,B),

and suppose that b P d. Since d P a, we have b P a—contradiction. Thus, {d} = c(b, d). Since

{b, d} ∈ C(B), revealed optimization implies {b, d} = c(b, d)—contradiction. Conclude that B is

almost-consistent.

For IUA, suppose that a ∈ A, a % c(A), and a /∈ c(A). It suffices to show that it is revealed

unjustifiable to choose a from some B ⊂ A. First, suppose a /∈ c(a∗, a) for some a∗ ∈ c(A). If

a ∼ a∗, then E(a) = E(a∗), so a C̄ a∗ by Lemma 9. Since a precedes a∗ in a chain and a /∈ c(a, a∗),
it is revealed unjustifiable to choose a from {a, a∗}. If a � a∗, there are two possibilities. Case 1:

for all b ∈ E(a) and b∗ ∈ E(a∗), it is not the case that b S b∗ or b∗ S b, and for some b ∈ E(a) and

b∗ ∈ E(a∗), {b} = c(b, b∗). We have b→ b∗. By Lemma 12, a→ b∗. Applying Lemma 12 again, we

have a → a∗, which contradicts a /∈ c(a∗, a). Case 2: for some b ∈ E(a) and b∗ ∈ E(a∗), we have

b S b∗. By Lemma 12, a S b∗ or a→ b∗. By Lemma 12 again, a S a∗ or a→ a∗. The latter is ruled

out by a /∈ c(a∗, a), so a S a∗. Since a precedes a∗ in a strict chain and a∗ ∈ c(a∗, a), it is revealed

unjustifiable to choose a from {a, a∗}.
Now suppose that a ∈ c(a∗, a) for some a∗ ∈ c(A). This is a WARP violation, so A contains at

least one cycle or almost-consistent set by Lemma 14. We show that it is revealed unjustifiable to

choose at least one item in A from some subset of A. Suppose that A contains the cycle (x, y, z).

Since x precedes z in a chain, it is revealed unjustifiable to choose x from {x, z} if x /∈ c(x, z).

Suppose to the contrary that {x, z} = c(x, z). Then, either {x} = c(x, y) or {y} = c(y, z), so x

precedes z in a strict chain. Since z ∈ c(x, z), it is revealed unjustifiable to choose x from {x, z}.
Now suppose that A contains the almost-consistent set B. Since B is not consistent, there exists

b∗ ∈ B such that b∗ ∈ c(b, b∗) for all b ∈ B, but b∗ /∈ c(B). Thus, it is revealed unjustifiable to

choose b∗ from B.

Toward a contradiction, suppose it is not revealed unjustifiable to choose a from any subset of

A. Fix any a1 ∈ A such that it is revealed unjustifiable to choose a1 from some subset of A, and let

A1 = A \ {a1}. By IRUA, c(A1) = c(A), so a∗ ∈ c(A) and a /∈ c(A). Thus, A1 still violates WARP.

We can iterate the argument, removing one unjustifiable alternative at each stage, until we arrive

at An = c(A) ∪ {a}. It is not revealed unjustifiable to choose anything in An from any subset of

An, but An violates WARP—contradiction.

Necessity: Necessity of revealed optimization is obvious. For necessity of IRUA, we use the

following lemmas.

Lemma 15. If (a, b, d) is a cycle, then for any justification representation (%,M), a % b % d

and d �m a for all �m∈ M. In addition, if {a} = c(a, b), then a � b. If {b} = c(b, d), then
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b � d. Additionally, if (a, b, d) is a cycle, then for every justification representation (%,M), for

every �m∈M, d �m a.

Proof. Suppose b � a in some representation (%,M). Since a ∈ c(a, b), we have a �m b for all

�m∈ M, so b /∈ c(a, b, d), which contradicts the definition of a cycle. Now suppose {a} = c(a, b)

and b % a. Again, we have a �m b for all �m∈ M, which leads to a contradiction. Now suppose

d � b. Since b ∈ c(b, d), we have b �m d for all �m∈ M. By necessity of IUA, c(a, b, d) = c(a, b).

But a ∈ c(a, b) and a /∈ c(a, b, d), so we have a contradiction. Now suppose {b} = c(b, d) and b % d.

Again, we have b �m d for all �m∈M, which leads to a contradiction.

If {a} = c(a, b) or {b} = c(b, d), we have a � d. Thus, d ∈ c(a, d) implies d �m a for all �m∈M.

If {a, b} = c(a, b) and {b, d} = c(b, d), then we have {d} = c(a, d) by definition of a cycle. Thus,

d �m a for all �m∈M.

Lemma 16. If A is almost-consistent, then for any representation (%,M) and any a, b ∈ A,

a % b ⇐⇒ a ∈ c(a, b).

For any a∗ ∈ A such that a∗ ∈ c(a, a∗) for all a ∈ A, ¬(a∗ %m A) for all %m∈M.

Proof. Suppose {a, b} = c(a, b). Then, any representation must have a ∼ b. Now suppose {a} =

c(a, b) but b % a in some representation (%,M). Then, a �m b for all �m∈ M. By necessity of

IUA, c(A) = c(A\{b}). Since A is almost-consistent, there exists a∗ ∈ A such that a∗ ∈ c(a∗, ã) for

all ã ∈ A, but a∗ /∈ c(A). Additionally, a∗ ∈ c(B) for any B ⊂ A such that a∗ ∈ B. Since b /∈ c(a, b),
it cannot be that b = a∗. But then a∗ ∈ A \ {b}. Since a∗ /∈ c(A), we have a contradiction to

c(A) = c(A \ {b}.
We just showed: if a∗ ∈ c(a∗, a) for all a ∈ A, then a∗ % A. If a∗ /∈ c(A), then ¬(a∗ %m A) for

all %m∈M.

Suppose that a precedes b in a strict chain and b ∈ c(a, b). By definition of a strict chain and

Lemma 15, we have a � b in any representation (%,M). Since b ∈ c(a, b), we have b �m a for all

�m∈ M. Now suppose that a precedes b in a weak chain and a /∈ c(a, b). By Lemma 15, we have

a % b in any representation (%,M). Since a /∈ c(a, b), we have b �m a for all �m∈ M. Since IUA

is necessary, c(D) = c(D \ {a}) for any D ⊃ {a, b}.
Now suppose that B 3 a is almost-consistent, a /∈ c(B), and a ∈ c(a, b) for all b ∈ c(B). By

Lemma 16, a % B in any representation (%,M). Since a /∈ c(B), we have ¬(a %m B) for all

�m∈M. Since IUA is necessary, c(D) = c(D \ {a}) for any D ⊇ B.
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A.3 Proof of Corollary 1

We show that the procedure for constructing % in the proof of Theorem 2 coincides with the

procedure given in Corollary 1. Suppose that a ∼ b. We have E(a) = E(b). By Lemma 8, neither

item can precede the other in a strict chain. If {a, b} = c(a, b), we have a ∼foc b. Suppose that

{a} = c(a, b). We have a %foc b by (2). By Lemma 9, b precedes a in a chain. Thus, b %foc a by

(1). Conclude that a ∼foc b.

Now suppose that a � b. We have E(a) 6= E(b). There are two ways to get a � b. One is ã S b̃

for some ã ∈ E(a) and b̃ ∈ E(b). By Lemma 12, we have either a S b or a → b. If a S b, then

a %foc b. By Lemma 8, it cannot be that b S a. Thus, a �foc b. If a → b, then a %foc b. Since

E(a) 6= E(b), if b precedes a in a chain, then b S a by Lemma 8. This contradicts a→ b, so b does

not precede a in a chain. Since b /∈ c(a, b), we have a �foc b. The other way to get a � b is ¬(ã S b̃)

and ¬(b̃ S ã) for all ã ∈ Ea and b̃ ∈ Eb, and ã→ b̃ for some ã ∈ Ea and b̃ ∈ Eb. By Lemma 13, we

have a → b. Thus, a %foc b. We already saw that b cannot precede a in a chain. Since b /∈ c(a, b),
we have a �foc b.

We have shown that a ∼ b implies a ∼foc b, and that a � b implies a �foc b. Suppose a ∼foc b.

Since it cannot be that a � b or b � a, we have a ∼ b. Now suppose a �foc b. It cannot be that

a ∼ b or that b � a, so a � b. Conclude that %=%foc.

Now we show that % satisfies (1). Suppose that c(A) %̂ a for some possible %̂, but a � c(A).

Let Ec denote the equivalence class containing the items in c(A). Since a � c(A), it cannot be

that E(a) = Ec. There are two ways to get a � c(A). One is ã S c̃ for some ã ∈ E(a) and

c̃ ∈ Ec. By Lemma 15, ã �̂ c̃. Since items in the same equivalence class must be indifferent in

any representation, we have a �̂ c(A)—contradiction. The other way to get a � c(A) is to have

¬(ã S c̃) and ¬(c̃ S ã) for all ã ∈ E(a) and c̃ ∈ Ec, and ã → c̃ for some ã ∈ E(a) and c̃ ∈ Ec. By

Lemma 13, we have a→ a∗ for all a∗ ∈ c(A). Let M̂ be any set of justifications such that (%̂,M̂)

represents c. Since a∗ �̂ a but a = c(a, a∗) for all a∗ ∈ c(A), we have a �m a∗ for all a∗ ∈ c(A∗)
an all �m∈ M̂. Since a /∈ c(A∗) but a = c(a, a∗) for all a∗ ∈ c(A), an argument from the proof of

Theorem 2 implies that it is revealed unjustifiable to choose a from some B ⊆ A. Thus, for each

�m∈ M̂, there exists b ∈ B such that b �m a. Conclude that, for each a∗ ∈ c(A) and �m∈ M̂,

there exists b ∈ B such that b �m a∗. Since B ⊆ A, this contradicts a∗ ∈ c(A). Conclude that

c(A) %̂ a implies c(A) % a.

Now suppose that c(A) �̂ a for some possible %̂, but a % c(A). If a ∼ c(A), then a and c(A)

are in the same equivalence class, so c(A) ∼̂ a—contradiction. Thus, a � c(A). The rest of the

argument goes through as above.
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A.4 Proof of Corollary 3

For any representation, the backward direction of (2) follows directly from the necessity part of the

proof of Theorem 2. We show that, for some representation (%foc,Mfoc),

a 6%m A for all �m∈Mfoc =⇒ it is revealed unjustifiable to choose a from some B ⊆ A.

In the proof of Theorem 2, we first constructed %foc such that c satisfies IUA conditional on

%foc. We then appealed to the proof of Theorem 1, which implies that c has a representation

(%foc,Mfoc) with the following property. For any item a and A 3 a,

there is no B ⊆ A s.t. a ∈ B, a %foc B and a /∈ c(B) =⇒ a %m A for some �m∈Mfoc. (8)

Suppose that a 6%m A for all �m∈Mfoc. By (8), there exists B ⊆ A such that a ∈ B, a %foc B,

and a /∈ c(B). We showed in the proof of Theorem 2 that a ∈ B, a % c(B), and a /∈ c(B) together

imply that there exists D ⊆ B such that it is revealed unjustifiable to choose a from D. Thus, it is

revealed unjustifiable to choose a from some subset of A.

A.5 Proof of Corollary 2

We first prove a stronger result, which is useful for more general incomplete data.

Start with a choice correspondence cinc defined on D ⊆ F(A), where

A ∈ D =⇒ B ∈ D for any nonempty B ⊆ A.

For a (possibly empty) menu A and item b /∈ A, write A R b if it is revealed unjustifiable, given

cinc, to choose b from a subset of A ∪ {b}. Let tr(R) denote the transitive closure of R, where we

use the notion of transitivity from Definition 20.

Axiom 5 (Incomplete IRUA). If A tr(R) a and if cinc is defined on A ∪ {a}, then cinc(A) =

cinc(A ∪ {a}).

Proposition 5. cinc satisfies revealed optimization and incomplete IRUA if and only if there is an

extension of cinc that has a justification representation.

Proof. Necessity: Suppose cinc has an extension c that has a justification representation. By

Corollary 1, c has a representation with preference %foc.

For a (possibly empty) menu A and item b /∈ A, we write A Rc b if it is revealed unjustifiable,

given c, to choose b from a subset of A∪{b}. Since c extends R, we have Rc ⊇ R. We show that Rc

is transitive. Suppose that X Rc y ∈ Y Rc z. We want to show that X ∪ Y \ {y} Rc z, i.e that it is

revealed unjustifiable, given c, to choose z from a subset of {z} ∪X ∪ Y \ {y}. It suffices to show
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that z %foc Z and z /∈ c({z}∪Z) for some Z ⊆ X ∪Y \ {y}. (We showed in the proof of Theorem 2

that z %foc Z and z /∈ c({z} ∪ Z) implies that it is revealed unjustifiable to choose z from a subset

of {z} ∪ Z.)

Since X Rc y, it is revealed unjustifiable, given c, to choose y from X ∪ {y}, where X ⊆ X. We

showed in the necessity part of the proof of Theorem 2 that y %foc X. Similarly, since Y Rc z, it

is revealed unjustifiable, given c, to choose z from Y ∪ {z}, where Y ⊆ Y and z %foc Y . If y /∈ Y ,

then Y ⊆ X ∪Y \{y}, so we are done. Suppose y ∈ Y . Since y %foc X, we have z %foc X ∪Y \{y}.
Since c must satisfy IRUA, we also have

c({z} ∪X ∪ Y \ {y}) = c({z} ∪X ∪ Y ) = c(X ∪ Y \ {z}).

Since z cannot belong to the right-hand side, we have z /∈ c({z} ∪X ∪ Y \ {y}). Conclude that Rc

is transitive.

Fix any menu A and item a such that A tr(R) a. Since R ⊃ Rc and R is transitive, A R a.

Equivalently, it is revealed unjustifiable, given c, to choose a from a subset of {a} ∪ A. Since c

satisfies IRUA, we have c(A) = c(A ∪ {a}). Since c extends cinc, we have cinc(A) = cinc(A ∪ {a}) if

cinc is defined on A ∪ {a}.
Sufficiency: For any menu A, let

c(A) := max(%foc, {a ∈ A : ¬(A \ {a} tr(R) a)}).

We show that c(A) = cinc(A) if cinc(A) is defined. Fix any a ∈ cinc(A). Since cinc satisfies

incomplete IRUA, we have ¬(A \ {a} tr(R) a). It remains to show that a %foc b for any b ∈ A such

that ¬(A \ {b} tr(R) b). Fix any b ∈ A such that b �foc a. We will show that A \ {b} R b. First,

suppose b ∈ cinc(A). Then, revealed ptimization implies {a, b} = cinc(a, b), which contradicts b �foc

a. Conclude that b /∈ cinc(A). Take any ã ∈ cinc(A). By revealed optimization, cinc(a, ã) = {a, ã},
so a ∼foc ã. We have b �foc cinc(A) as well as b /∈ c(A). Since cinc is defined on all subsets of A, we

can use the argument in the proof of Theorem 2 to show that it is revealed unjustifiable to choose

b from a subset of A. We have A \ {b} R b as desired.

Now suppose that ¬(A \ {a} tr(R) a)}) and a %foc {b ∈ A : ¬(A \ {b} tr(R) a)}). We show

that a ∈ cinc(A). Fix any a1 ∈ A such that A \ {a1} tr(R) a1, and let A1 = A \ {a1}. Since cinc

satisfies incomplete IRUA, we have cinc(A) = cinc(A1). Now fix any a2 ∈ A distinct from a1 such

that A \ {a2} tr(R) a2. Since A \ {a1} tr(R) a1, we have A1 \ {a2} tr(R) a2. Let A2 = A1 \ {a2}.
Since cinc satisfies incomplete IRUA, we have cinc(A1) = cinc(A2). We can iterate this process until

we arrive at

cinc(A) = cinc ({b ∈ A : ¬(A \ {b} tr(R) a}) .

Suppose a /∈ cinc(A). Since a %foc {b ∈ A : ¬(A\{b} tr(R) a} and a /∈ cinc ({b ∈ A : ¬(A \ {b} tr(R) a}),
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we have A \ {a} R a as above—contradiction. Conclude that a ∈ cinc(A).

The equality c(A) = cinc(A) implies that c is well defined wherever cinc is defined. Take any

menu A on which cinc is not defined, and suppose that {a ∈ A : ¬(A \ {a} tr(R) a)}) is empty. Let

A := {a1, . . . , an}. As above, we have A \ {a1, . . . , ai} tr(R) {ai}. In particular, ∅ tr(R) an. Since

cinc satisfies incomplete IRUA, we have cinc(an) = cinc(∅). Since cinc is not even defined on ∅, this

is a contradiction.

Finally, we show that c satisfies IUA conditional on %foc. Suppose that a ∈ A, a %foc c(A) and

a /∈ c(A). By definition of c, we have A \ {a} tr(R) a. Now take any B ⊇ A. We want to show

that c(B) = c(B \ {a}). It suffices to show that B \ {b} tr(R) b implies B \ {a, b} tr(R) b. Suppose

B \ {b} tr(R) b. Since A \ {a} tr(R) a, and A ⊆ B, we have B \ {a, b} tr(R) b by definition of

transitivity.

To prove the result in the text, suppose that cinc is defined only on pairs and triples for which

pairwise choice is cyclic, and satisfies IRUA on its domain. We show that cinc satisfies incomplete

IRUA. It suffices to show that R = tr(R) in this case. Notice that cinc is not defined on any

almost-consistent sets. Thus, B R a implies B = {b} where a precedes b in a chain. Suppose

that B tr(R) a. Then, there exists a finite sequence (x1, . . . , xn) such that x1 = b, xn = a, and

{xi} R xi+1 for all i < n. Since xi precedes xi+1 in a chain for each i, a precedes b in a chain. Since

cinc satisfies IRUA on its domain, and since {b} tr(R) a, we have {b} = c(b, a). Thus, it is revealed

unjustifiable to choose a from {a, b}. Equivalently, B R a. Conclude that R = tr(R).

A.6 Notation and lemmas for random model

For any menu X, any lottery x, and any M∈ supp(Pjust),

WM(X) := {y ∈ ∆(Z) : X �M y}

BM(x) := {y ∈ ∆(Z) : y �M x}

WP (X) := {y ∈ ∆(Z) : P (y ∈WM(X)) > 0}

BP (x) := {y ∈ ∆(Z) : P (y ∈ BM(x)) > 0}.

We often write W (X) instead of WM(X) when the identity of M is not important.

The following lemmas are frequently needed.

Lemma 17. For any menu B, lottery a, and M ∈ supp(Pjust): if B �M a, then there is some

b ∈ co(B) such that b �M a.

Proof. Fix a compact, convex set of utility functions, V, that represents precisely the preferences

in M. Normalize each v ∈ V so that v(a) = 0. (This will not affect the properties of V.) Write

B = {b1, . . . , bn}. For each v ∈ V, let vB be the vector in Rn that has v(bi) as its ith element. Let
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VB := {vB : v ∈ V}. Like V, VB is compact and convex. Let N := Rn−, which is closed and convex.

Since v(a) = 0 < maxb∈B v(b) for all v ∈ V, we have N ∩ VB = ∅. By the separating hyperplane

theorem, there is a nonzero α ∈ Rn and c ∈ R such that α′vB > c > α′n for all vB ∈ VB and

all n ∈ N . Since the zero vector is in N , we have c > 0. Suppose the ith element of α is strictly

negative. By choosing n with a sufficiently negative number in ith position and zeros elsewhere, we

obtain α′n > c, a contradiction. Thus, each element of α is weakly positive. If we rescale α to a

unit sum, we still have α′vB > 0 for all vB ∈ VB . This can be rewritten v(b) > v(a) for all v ∈ V,

where b :=
∑n
i=1 αiv(bi).

Lemma 18. If y ∈WP (X), then there exists x ∈ co(X) such that y ∈WP (x).

Proof. If y ∈ WP (X), then there exists M ∈ supp(Pjust) such that y ∈ WM(X). By Lemma 17,

there exists x ∈ co(X) such that y ∈ WM(x). This implies y ∈ WM̃(x) for all M̃ in an open

neighborhood of M, so y ∈WP (x).

Lemma 19. For any menus X1, X2, lottery y ∈ X1 ∩X2, and M∈ supp(Pjust):

Bε(y) ∩ co(X1) = Bε(y) ∩ co(X2)

for some ε > 0, then

y ∈WM(X1) ⇐⇒ y ∈WM(X2).

Proof. Suppose y ∈WM(X1). By Lemma 17, there exists x1 ∈ co(X1) such that y ∈WM(x1). For

each α ∈ (0, 1), let xα := αx1 + (1− α)y. Since y ∈ X1, xα ∈ co(X1). For α > 0 sufficiently small,

xα ∈ Bε(y) ∩ co(X1). Thus, αx1 + (1 − α)y ∈ co(X2). Since there exists x2 ∈ co(X2) such that

y ∈WM(x2), we have y ∈WM(X2). The other direction is symmetric.

Lemma 20. If P satisfies Limited Disagreement, then there exists %∈ U such that cl(W (y))\{y} �
y for all interior y.

Proof. It suffices to show that y /∈ co(cl(WP (y))) \ {y} for any interior y. Suppose that there exists

a finite menu X such that y ∈ co(X), y /∈ X, and x ∈ cl(WP (y)) \ {y} for each x ∈ X.

By limited disagreement, y /∈ cl(WP (X)). Since y ∈ cl(WP (y)), there exists a sequence yn → y

such that yn ∈ WP (y) for each n. That is, P (y �M yn) > 0 for all n. Since y ∈ co(X), we have

P (X �M yn) > 0 for all n. That is, yn ∈WP (X) for all n, so y ∈ cl(WP (X))—contradiction.
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A.7 Proof of Proposition 1

If ρ has a random justification representation P , then

ρ(d|a, b, d) =P (d � a, b and d /∈W (a, b))

P (a � d � b and a ∈W (b, d) and d /∈W (b))

P (b � d � a and b ∈W (a, d) and d /∈W (a))

P (a, b � d and a, b ∈W (d)).

For each ε ∈ (0, 1), let bε := (1− ε)b+ εd. Since

d � a, b and d /∈W (a, b) ⇐⇒ d � a, bε and d /∈W (a, bε)

a, b � d and a, b ∈W (d) ⇐⇒ a, bε � d and a, bε ∈W (d),

the first two terms do not change when b is replaced with bε. Also,

a � d � bε and a ∈W (bε, d) and d /∈W (bε) ⇐⇒ a � d � b and a ∈W (bε, d) and d /∈W (b)

=⇒ a � d � b and a ∈W (b, d) and d /∈W (b)

b � d � a and b ∈W (a, d) and d /∈W (a) ⇐⇒ bε � d � a and b ∈W (a, d) and d /∈W (a)

=⇒ bε � d � a and bε ∈W (a, d) and d /∈W (a).

This implies

ρ(d|a, b, d)− ρ(d|a, bε, d)

= P (a � d � b and a ∈W (b, d) and a /∈W (bε, d) and d /∈W (b))

− P (b � d � a and b /∈W (a, d) and bε ∈W (a, d) and d /∈W (a)) (9)

If ρ(d|a, b, d) > ρ(d|a, bε, d) for all sufficiently small ε > 0, then the first term above must be strictly

positive, which implies

P (a ∈W (b, d) and a /∈W (bε, d)) > 0.

By Lemma 18, this implies that for all ε > 0, there exists δ ∈ (0, ε) such that P (a ∈ W (bδ)) > 0.

Since

a ∈W (bδ) ⇐⇒ a+ (b− bδ) ∈W (b),

we can find ã arbitrarily close to a such that P (ã ∈W (b)) > 0. Conclude that a ∈ cl(WP (b)).
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A.8 Proof of Theorem 3

Suppose that a ∈WP (b). We show that (a, b, d) is anomalous for some d. Fix λ such that b+λ(b−a)

is interior. There exists ε1 > 0 such that b̃+λ(b̃−a) ∈ ∆(Z) for all b̃ ∈ Bε1(b). Since b+λ(b−a) ∈
BP (b) and BP (b) is open, there exists ε2 ∈ (0, ε1] such that b̃+ λ(b̃− a) ∈ BP (b) for all b̃ ∈ Bε2(b).

We will show that there exists b̃ ∈ Bε2(b) such that

P (b ∈ B(a) and αb̃+ (1− α)b /∈ B(a)) > 0 (10)

for all α ∈ (0, 1). Suppose that, for each b̃ ∈ Bε2(b), there exists α ∈ (0, 1) such that

b ∈ BM(a) =⇒ αb̃+ (1− α)b ∈ BM(a)

for all M ∈ supp(Pjust). Since each BM(a) is convex, conclude that there exists ε3 ∈ [0, ε2) such

that

b ∈ BM(a) =⇒ Bε3(b) ⊂ BM(a). (11)

There exists M∗ ∈ supp(Pjust) such that Bε3(b) ⊂ BM∗(a) but Bε3(b) * BN (a) for all N ∈
supp(Pjust) such that N ⊃ M∗. (Existence of M∗ is by Zorn’s Lemma.) By the third part of

Regularity and b ∈ BM∗(a), there exists N ∈ supp(Pjust) such that b ∈ BN (a) and N ⊃ M∗. By

definition of M∗, it cannot be that Bε3(b) ⊂ BN (a). This contradicts (11). Conclude that, for

some b∗ ∈ Bε2(b), for all α ∈ (0, 1), there exists Mα ∈ supp(Pjust) such that

b ∈ BMα(a) and αb∗ + (1− α)b /∈ BMα(a).

We can always choose Mα so that αb∗ + (1− α)b is not on the boundary of BMα(a). Then,

b ∈ BM(a) and αb∗ + (1− α)b /∈ BM(a)

for all M in an open neighborhood of Mα. This implies (10).

Let d := b∗ + λ(b∗ − a). Since

αd+ (1− α)b /∈ B(a) ⇐⇒ α(1 + λ)

1 + αλ
b∗ +

1− α
1 + αλ

b /∈ B(a),

we have

P (b ∈ B(a) and αd+ (1− α)b /∈ B(a)) > 0

for all α ∈ (0, 1). Since d ∈ Bε2(b), we have d ∈ BP (b). By Limited Disagreement, d /∈ WP (b).

Thus,

P (a ∈W (b) and a /∈W (αd+ (1− α)b) and d /∈W (b)) > 0.
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By the second part of Regularity,

P (a � d � b and a ∈W (b) and a /∈W (αd+ (1− α)b) and d /∈W (b)) > 0.

This is the first term in (9). To complete the argument that (a, b, d) is anomalous, we need to show

that the second term is zero. It suffices to show that, for all α > 0 sufficiently small,

P (αd+ (1− α)b ∈W (a, d) and b /∈W (a, d)) = 0.

Suppose not. Then, there exist arbitrarily small α > 0 such that

P

(
b ∈W

(
a− αd
1− α

, d

)
and b /∈W (a, d)

)
> 0.

By Lemma 18, this implies b ∈WP (ã) for ã arbitrarily close to a. This is equivalent to b+ ã− a ∈
WP (a), so b ∈ cl(WP (a)). Since a ∈ WP (b), this is a violation of limited disagreement. Conclude

that (a, b, d) is anomalous.

We have shown that (a, b, d) is anomalous for some d whenever a ∈WP (b). Since WP (b) is open,

a ∈ WP (b) implies ã ∈ WP (b) for all ã sufficiently close to a. For each such ã, there exists d̃ such

that (ã, b, d̃) is anomalous. Conclude that

WP (b) ⊆ int ({a ∈ ∆(Z) : (a, b, d) is anomalous for some d}) .

Now we show the reverse inclusion. Suppose that, for all ã sufficiently close to a, there exists d̃

such that (ã, b, d̃) is anomalous. By Proposition 1, we have a ∈ cl(WP (b)). Suppose that a /∈WP (b).

Then, there exists ã arbitrarily close to a such that ã /∈ cl(WP (b)). By Proposition 1, there cannot

be any d̃ such that (ã, b, d̃) is anomalous. This is a contradiction, so a ∈WP (b).

A.9 Proof of Theorem 4

Since any two-dimensional subspace of ∆(Z) is simply ∆(Z ′) for some |Z ′| = 3, it suffices to show

the result for |Z| = 3.

Fix any interior lotteries x, y such that x ∈ WP (y). By Lemma 20, there exists % such that

cl(WP (y)) \ {y} � y. We first show that P (x ∈W (y)| %) is identified from ρ.

Fix a lottery a 6= x such that a ∼ x. Let b := 2x− a. We can always choose a close enough to
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x that â := x+ a− b, b̂ := x+ b− a, y + a− b, and y + b− a are all interior. For n ∈ N, let

xn :=
1

n
x+

(
1− 1

n

)
d

an :=
1

n
a+

(
1− 1

n

)
d

bn :=
1

n
b+

(
1− 1

n

)
d

ân := xn + a− b

b̂n := xn + b− a.

For each n ∈ N and m ∈M, let

amn :=
1

m
an +

(
1− 1

m

)
xn

bmn :=
1

m
bn +

(
1− 1

m

)
xn.

To simplify notation, we write am and bm instead of am1 and bm1 .

We claim that, for n large enough, cl(WP (y)) ∩ co(ân, y + a − b) = ∅. Suppose otherwise: for

n arbitrarily large, there exists qn ∈ co(ân, y + a − b) such that qn ∈ cl(WP (y)). Since (qn) must

converge to y+a−b, we have y+a−b ∈ cl(WP (y)). Since y+a−b ∼ y, this contradicts the definition

of %. A parallel argument establishes that cl(WP (y))∩ co(b̂n, y+ b− a) = ∅ for n sufficiently large.

Thus, there exists N ∈ N such that WM(y)∩ cl(ân, y+a− b) = ∅ and WM(y)∩ cl(b̂n, y+ b−a) = ∅
for all n ≥ N and all M ∈ supp(Pjust). Since we must have q � y for any q ∈ WM(y), we know

WM(y) must intersect at least one of co(ân, y + a − b), co(b̂n, y + b − a), or co(ân, b̂n) for each

n ∈ N. Since we have already ruled out the first two possibilities for n ≥ N , W (y) 6= ∅ implies

W (y) ∩ co(ân, b̂n) 6= ∅ for all n ≥ N .
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The following manipulations are needed to identify P (x ∈W (y)| %):

P (x ∈W (y)| %) = P (x ∈W (y)|a ∼ b � y)

= lim
n→∞

P
(
x ∈W (y)|ân, b̂n � y

)
= lim
n→∞

P
(

lim
m→∞

{am, bm ∈W (y)} |ân, b̂n � y
)

= lim
n→∞

lim
m→∞

P
(
am, bm ∈W (y)|ân, b̂n � y

)
= lim
n→∞

lim
m→∞

{
P
(
am ∈W (bm, y)|ân, b̂n � y

)
+ P

(
bm ∈W (am, y)|ân, b̂n � y

)
−P

(
amN ∈W (bmN , y) or bmN ∈W (amN , y)|ân, b̂n � y

)}
= lim
n→∞

lim
m→∞

{
P
(
am ∈W (b, y)|ân, b̂n � y

)
+ P

(
bm ∈W (a, y)|ân, b̂n � y

)
+P

(
amN /∈W (bN , y) and bmN /∈W (aN , y)|ân, b̂n � y

)
− 1
}

= lim
n→∞

{
P
(

lim
m→∞

{am ∈W (b, y)} |ân, b̂n � y
)

+ P
(

lim
m→∞

{bm ∈W (a, y)} |ân, b̂n � y
)

+P
(

lim
m→∞

{amN /∈W (bN , y) and bmN /∈W (aN , y)} |ân, b̂n � y
)
− 1
}

= lim
n→∞

{
P
(
x ∈W (b, y)|ân, b̂n � y

)
+ P

(
x ∈W (a, y)|ân, b̂n � y

)
+P

(
W (y) = ∅

∣∣ân, b̂n � y)− 1
}

= P (x ∈W (b, y)|a ∼ b � y) + P (x ∈W (a, y)|a ∼ b � y) + P (W (y) = ∅|a ∼ b � y)− 1.

The first equality uses the fact that |Z| = 3, so % is pinned down by a ∼ b � y. The fourth

uses the fact that {am, bm ∈ W (y) and ân, b̂n � y}m∈N is an increasing sequence of events for any

n. The sixth uses Lemma 19. The seventh uses the fact that {am ∈ W (b, y) and ân, b̂n � y}m∈N
{bm ∈ W (a, y) and ân, b̂n � y}m∈N are increasing sequences of events for any n, and that {amN /∈
W (b, y) and bmN /∈ W (a, y) and ân, b̂n � y}m∈N is a decreasing sequence of events for any n. To

show the latter, notice that amN /∈W (bN , y) implies W (y)∩co(âN , a
m
N ) = ∅ and that bmN /∈W (aN , y)

implies W (y) ∩ co(bmN , b̂N ) = ∅. Since W (y) 6= ∅ implies W (y) ∩ co(âN , b̂N ) 6= ∅, we have

amN /∈W (bN , y) and bmN /∈W (aN , y) ⇐⇒ W (y) = ∅ or W (y) ∩ co(âN , b̂N ) ⊂ co(amN , b
m
N ).

The sequence of sets {W (y) = ∅ or W (y)∩co(âN , b̂N ) ⊂ co(amN , b
m
N ) and ân, b̂n � y}m∈N is decreas-

ing. The eighth equality uses the fact that the limit of this sequence is {W (y) = ∅}.
First, we show how to identify P (x ∈W (b, y)|b ∼ x � y). We claim that

ρ(b̂n|ân, b̂n, y) = P (b̂n % xn, y) (12)
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for all n ≥ N . Notice that b̂n % xn if and only if b̂n % ân, so the term on the right-hand side

is simply P (b̂n % ân, y). It suffices to show that b̂n /∈ WP (ân, y), that ân /∈ WP (b̂n, y), and that

y /∈ WP (ân, b̂n). The third part follows from the definition of % and the fact that y � ân, b̂n.

Toward a contradiction, suppose b̂n ∈ WP (ân, y). By Lemma 18, there exists α ∈ [0, 1] such that

b̂n ∈WP (αân + (1− α)y). Rearranging, we get

1− α
1 + α

b̂n +
2α

1 + α
(y + b− a) ∈WP (y),

which contradicts the fact that WP (y)∩ co(b̂N , y+ b− a) = ∅. A very similar argument establishes

ân /∈WP (b̂n, y) for all n ≥ N .

Next, we claim that

ρ(b̂n|xn, b̂n, y) = P (b̂n % xn, y) + (ân % b̂n % y and x ∈W (b, y)) (13)

for all n > N . Notice that x ∈W (b, y) if and only if xn ∈W (b̂n, y) by Lemma 19, and that ân % b̂n
if and only if xn % b̂n. Thus, the second term on the right-hand side is simply P (xn % b̂n %

y and xn ∈ W (b̂n, y)). It remains to show that y /∈ WP (b̂n, xn) and b̂n /∈ W (xn, y). The former

follows from y /∈ WP (b̂n, ân) and Lemma 18, and the latter from b̂n /∈ W (ân, y) and Lemma 19.

Combining (12) and (13), we get

ρ(b̂n|xn, b̂n, y)− ρ(b̂n|ân, b̂n, y) = P (x ∈W (b, y) and ân % b̂n % y) (14)

for all n ≥ N .

Fix any n ≥ N . We show how to identify P (ân % b̂n % y). Let bε := b̂n + ε(b̂n − ân) for each

ε > 0 small enough to make bε a lottery. Notice that ân % b̂n % y if and only if b̂n % y, bε for some

ε > 0. Thus, it suffices to identify P (b̂n % y, bε) for some ε > 0. We will do this by identifying

P (y % b̂n, bε) and P (bε % y, b̂n). We show that

ρ(bε|bε, ân, y) = P (bε % b̂n, y)

for all ε > 0 for which bε is defined. Notice that bε % b̂n, y if and only if bε % ân, y. Thus, the

term on the right-hand side is just P (bε % ân, y). It suffices to show that y /∈ WP (bε, ân), that

ân /∈ WP (bε, y), and that bε /∈ WP (ân, y). We have y /∈ WP (bε, ân) because bε, ân � y. By Lemma

19 and ân /∈ WP (b̂n, y), we have ân /∈ WP (bε, y). Also by Lemma 19, bε ∈ WP (ân, y) if and only

if bε ∈ WP (b̂n, y). Toward a contradiction, suppose bε ∈ WP (b̂n, y). By Lemma 18, there exists

α ∈ [0, 1] such that bε ∈WP (αb̂n + (1− α)y). Rearranging, we get

1− α
1− α+ 2ε

b̂n +
2ε

1− α+ 2ε
(y + b− a) ∈WP (y),
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which contradicts the fact that WP (y) ∩ co(b̂N , y + b− a) = ∅.
Since b̂n is interior, we can define b̃ := b̂n + λ(b̂n − y) for some λ > 0. We show that

ρ(y|y, bε, b̃) = P (y % b̂n, bε)

for ε > 0 sufficiently small. Since y % b̂n if and only if y % b̃, the term on the right-hand side is

just P (y % bε, b̃). It suffices to show that y /∈ WP (bε, b̃), that bε /∈ WP (b̃, y), and that b̃ /∈ W (bε, y).

We have y /∈ WP (bε, b̃) because bε, b̃ � y. By Lemma 18, bε � int(co(b̂n, b̃)), and bε /∈ WP (b̂n, y),

we have bε /∈ WP (b̃, y). Toward a contradiction, suppose b̃ ∈ WP (bε, y) for ε arbitrarily small. By

Lemma 18, for ε arbitrarily small, there exists αε ∈ [0, 1] such that b̃ ∈ WP (αεbε + (1 − αε)y).

Rearranging, we get

b̂n −
2εαε

1 + λ− αε
(b− a) ∈WP (y).

Taking a limit as ε→ 0, we obtain b̂n ∈ cl(WP (y)), which contradicts cl(WP (y))∩co(b̂N , y+b−a) =

∅. This completes the argument that P (ân % b̂n % y) is identified for all n ≥ N . Combining this

with (14), we can now identify P (x ∈ W (b, y)|ân % b̂n % y) for all n ≥ N . Taking a limit

as n → ∞ gives P (x ∈ W (b, y)|a ∼ b � y). A very similar argument suffices to show that

P (x ∈W (a, y)|a ∼ b � y) is identified.

Next, we identify P (W (y) 6= ∅|a ∼ b � y). Let

xm := x+
1

m
(x− y)

for each m small enough that xm is a lottery. We show that there exists M ∈ N such that

WM(y) 6= ∅ ⇐⇒ xm ∈W (a, b)

for all m ≥ M . The arguments used to show cl(WP (y)) ∩ co(ân, y + a − b) = ∅ and cl(WP (y)) ∩
co(b̂n, y + b− a) = ∅ for n sufficiently large can be used to show cl(WP (a)) ∩ co(â, xm + a− b) = ∅
and cl(WP (a))∩ co(xm, x) = ∅ for m sufficiently large. The arguments used to show that W (y) 6= ∅
implies W (y) ∩ co(ân, b̂n) for n sufficiently large can then be used to show that W (a) 6= ∅ implies

W (a) ∩ co(xm + a − b), xm) 6= ∅ for m sufficiently large. Similarly, WP (b) ∩ co(b̂, xm + b − a) = ∅
for m sufficiently large, and W (b) 6= ∅ implies W (b) ∩ co(xm + b − a, xm) for m sufficiently large.

Thus, there exists M ∈ N such that xm ∈ W (a, b) for all m ≥ M whenever W (a) 6= ∅ and

W (b) 6= ∅—equivalently, whenever W (y) 6= ∅. This implies

ρ(xm|a, b, xm) = P (W (y) = ∅ and xm % a, b) (15)

for all m ≥M .
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We now show how to identify P (xm % a, b) for m sufficiently large. We do this by identifying

P (a % xm, b) and P (b % xm, a). Let

b̂m := xm + xm − a

âm := xm + xm − b

for m sufficiently large that b̂m, âm are lotteries. We show that

ρ(a|a, x, b̂m) = P (a % xm, b)

for m sufficiently large. Since a % xm, b if and only if a % b̂m, x, the term on the right-hand side

is simply P (a % x, b̂m. It suffices to show that a /∈ WP (x, b̂m), x /∈ WP (b̂m, a), and b̂m /∈ WP (a, x)

for m sufficiently large. The first two claims follow because a ∼ x � b̂m. Suppose b̂m ∈ WP (a, x)

for arbitrarily large m. By Lemma 18, for arbitrarily large m, there exists αm ∈ [0, 1] such that

b̂m ∈WP (αa+ (1− α)x). Rearranging, we have

x+
2

m(1 + α)
(x− y) ∈WP (a),

which implies x ∈ cl(WP (a)). This contradicts the fact that cl(WP (a)) ∩ co(x, xm) = ∅. A parallel

argument establishes that

ρ(b|b, x, âm) = P (b % xm, a)

for m sufficiently large. Combining this with (15) allows us to identify P (W (y) = ∅|xm % a, b) for

all m sufficiently large. Taking a limit as m→∞ delivers P (W (y) = ∅|a ∼ b � y).

By the first part of regularity, Ppref admits a density. We can use the construction above to

compute this density at %:

lim
m→∞

P (xm % a, b)
Punif(xm % a, b)

,

where Punif(xm % a, b) is the probability of the event {%∈ U : xm % a, b} given a uniform distribu-

tion on U .

We have shown how to obtain P (x ∈ W (y)| %) and the density of Pjust at % for any member

of {%∈ U : cl(WP (y)) \ {y} � y}. Notice that this set is equal to int ({%∈ U :% is unjustifiable}).
Thus, we can now compute

Ppref(% is unjustifiable) =

∫
{% is unjustifiable}

dPpref(%).

This allows us to obtain the density of Ppref conditional on the event that % is unjustifiable. Using
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this density, we can compute

P (x ∈W (y)| % is unjustifiable) =

∫
{% is unjustifiable}

P (x ∈W (y)| %)dPpref(% | % is unjustifiable).

A.10 Proof of Proposition 3

Since (A,B) is ambiguous, there exists M∗ ∈ supp(Pjust) for which there is no �∗m satisfying (5).

If b �M∗ a for all a ∈ A and b ∈ B, then every �m∈ M∗ satisfies (5)—contradiction. Thus, there

exist ā ∈ A and b̄ ∈ B such that ā %m b̄ for some %m∈M∗.
Suppose that, for all a ∈ A and all b ∈ B, there exists �m∈ M∗ such that a %m b. Fix some

a∗ ∈ A ∩ int(∆(Z)). For sufficiently small ε > 0, we have a∗ + ε(b − a) ∈ ∆(Z) for all a ∈ A and

b ∈ B. Let B∗ := {a∗ + ε(b − a) : a ∈ A, b ∈ B} for some such ε. For each b∗ ∈ B∗, there exists

�m∈M∗ such that a∗ %m b∗. Notice that B∗ inherits convexity from A and B.

Fix a countable dense subset ofB∗: {b∗1, b∗2, . . .}. Suppose that, for some n ∈ N, {b∗1, . . . , b∗n} �M∗

a∗. By Lemma 17, there exists b∗ ∈ B∗ such that b∗ �M∗ a∗—contradiction. Conclude that, for

each n, there exists �n∈M∗ such that a∗ %n {b∗1, . . . , b∗n}. We can pass to a convergent subsequence

of (�n); let �∗ be the limit. SinceM∗ is closed, it contains �∗. Since a∗ %j b∗i for all j ≥ i, we have

a∗ %∗ b∗i for all i. This implies a∗ %∗ B∗, which implies a %∗ b for all a ∈ A and b ∈ B. Conclude

that �∗ satisfies (5)—contradiction. Thus, there exist a ∈ A and b ∈ B such that b �M∗ a.

By mixing (ā, b̄) and (a, b), we obtain a ∈ A and b ∈ B such that b %m a for all �m∈ M∗ and

a ∼1 b for some �1∈ M∗. It is without loss to assume that a and b are interior lotteries. Since

�1 does not satisfy (5), there exist a2 ∈ A and b2 ∈ B such that b2 �1 a2 but a2 %2 b2 for some

�2∈M∗. It is without loss to assume a2 �2 b2. Let

(a1, b1) :=
1

λ
(a, b)− 1− λ

λ
(a2, b2).

for some λ ∈ (0, 1) such that (a1, b1) ∈ A×B. Since a ∼1 b and b2 �1 a2, we have a1 �1 b1.

For each ε ∈ (0, 1), we have

εb+ (1− ε)b �M∗ εa+ (1− ε)a.

Thus, we can find (ã, b̃) arbitrarily close to (a, b) such that b̃ �M∗ ã. If we choose (ã, b̃) sufficiently

close to (a, b), we will have (ai, bi) + (ã, b̃)− (a, b) ∈ A×B and ai + ã− a �i bi + b̃− b for i = 1, 2.

Fix some (ã, b̃) that satisfies these conditions, and let (ãi, b̃i) := (ai, bi) + (ã, b̃) − (a, b). Let S be

the lottery over pairs that puts weight λ on (ã1, b̃1) and weight 1− λ on (ã2, b̃2). By construction,

S is a signal for (ã, b̃).

By construction, b̃ �M∗ ã. For each i = 1, 2, for some �m∈ M∗, we have ãi �m b̃i. The same

conditions hold for all M in an open neighborhood Njust of M∗. Let �anti be the opposite of the
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policy preference: that is, x %anti y if and only if y %pol x. Since b �pol a for all a ∈ A and b ∈ B,

and since (ãi, b̃i) ∈ A×B for i = 1, 2, we have ãi �anti b̃i for i = 1, 2. The same conditions hold for

all � in an open neighborhood Npref of �anti. Let N := Npref ×Njust. We have P (N) > 0 by the

second part of regularity.

For any (�,M) ∈ N ,

c(�,M)(ãi, b̃i) = ãi � b̃ � c(�,M)(ã, b̃)

for i = 1, 2. Since b̃ �pol ãi for i = 1, 2, we are done.

A.11 Proof of Proposition 2

Let X∗ be the (possibly empty) set of all (a, b) ∈ A×B such that, for all (ã, b̃) ∈ A×B,

b̃ �M ã =⇒ b �M a.

Suppose that X∗ has non-empty interior. Then, there exists (a∗, b∗) ∈ X∗ and ε > 0 such that

{a∗} ×Bε(b∗) ⊂ X∗. By definition of X∗,

b∗ ∈ BM(a∗) =⇒ Bε(b
∗) ⊂ BM(a∗).

This is the same as (11) in the proof of Theorem (3). We showed that (11) contradicts regularity.

Conclude that X∗ has empty interior. We show that X∗ is convex. Fix any (a, b) ∈ X∗, and let

N := {M ∈ supp(Pjust) : b �M a}.

For any (ã, b̃) ∈ X∗,
b̃ �M ã ⇐⇒ M ∈ N.

Fix any (a1, b1), (a2, b2) ∈ X∗, and any α ∈ (0, 1). Since A and B are convex, α(a1, b1) + (1 −
α)(a2, b2) ∈ A×B. Fix anyM∈ N . Since b1 �M a1 and b2 �M a2 , we have αb1 + (1−α)b2 �M
αa1 +(1−α)a2. This implies α(a1, b1)+(1−α)(a2, b2) ∈ X∗, so X∗ is convex. Since X∗ has empty

interior, it is contained in a hyperplane of ∆(Z)2. Thus, X∗ has measure zero.

For the rest of the proof, we will restrict attention to (a, b) ∈ A× B such that (a, b) /∈ X∗ and

a, b ∈ int(∆(Z)). The set of all such (a, b) has the same measure as A × B. Fix any such (a, b).

Since (a, b) /∈ X∗, we can find (ã, b̃) ∈ A×B such that

a ∈WM(b) =⇒ ã ∈WM(b̃),

but not vice versa. It is without loss to assume b̃ = b. Since there existsM∗ such that ã ∈WM∗(b)
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but a /∈ WM∗(b), and since WM∗(b) is open, there exists ε > 0 such that Bε(ã) ⊂ WM∗(b). Take

anyM such that a ∈WM(b). Since (A,B) is orderly, we must have Bε(ã) ⊂WM(b). (If not, there

is x ∈ Bε(ã) such that x /∈ WM(b) but x ∈ WM∗(b). Since a ∈ WM(b) but a /∈ WM∗(b), this is a

contradiction.) Thus, Bε(ã) ⊂WM(b) whenever a ∈WM(b). Suppose that there exists n ∈ N such

that

a ∈WM(b) =⇒ a+ (1/n)(a− ã) ∈WM(b).

Since a ∈WM(b) also implies Bε(ã) ⊂WM(b), we have

a ∈WM(b) =⇒ co ({a+ (1/n)(a− ã)} ∪Bε(ã)) ⊂WM(b).

This implies

a ∈WM(b) =⇒ Bδ(a) ⊂WM(b)

for some δ > 0. This is the same as (11) in the proof of Theorem (3), which led to a contradiction.

Conclude that, for all n ∈ N, there exists Mn ∈ supp(Pjust) such that

a ∈WMn
(b) and a+ (1/n)(a− ã) /∈WMn

(b).

We can pass to a convergent subsequence of theMn with limit M̄. Since a ∈WMn(b) for all n, we

have b %m a for all �m∈ M̄. For each n, there exists �nm∈ Mn such that a + (1/n)(a− ã) %nm b.

Passing to a convergent subsequence of �nm, we have a %m b for some %m∈ M̄. Thus, a /∈WM̄(b).

Since a ∈ WMn
(b) for all n, we have Bε(ã) ⊂ WMn

(b) for all n, so ã ∈ WM̄(b). This implies

αa+ (1−α)ã ∈WM̄(b) for all α ∈ (0, 1). By the third part of Regularity, we can find N arbitrarily

close to M̄ such that M̄ ⊂ int(N ). Since a /∈ WM̄(b), we have a /∈ WN (b) for any N ⊃ M̄. Fix

any α ∈ (0, 1). Since αa + (1 − α)ã ∈ WM̄(b), the same will be true of N if it is close enough to

M. Conclude that, for each ε > 0, there exists aε ∈ Bε(a) such that

a ∈WM(b) =⇒ aε ∈WM(b).

but not vice versa.

Since a ∈ A ∩ int(∆(Z)), there exists λ > 0 such that a+ λ(a− b) ∈ A ∩ int(∆(Z)). Let u be a

representation of �pol. Let

bε := a+

(
u(b)− u(a)

u(a)− u(aε + λ(aε − b))

)
(a− aε − λ(aε − b))

for all ε > 0 small enough that bε is a lottery. We have limε→0 bε = b. Fix some ε for which bε is

defined, and let a1 := aε+λ(aε− b) and a2 := bε. Since a ∈ co(a1, a2), there exists a signal S about

(a, b) with support {(a1, b), (a2, b)}.
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Suppose that there is some (�,M) ∈ supp(P ) such that a � b and

S(a1, b)c(�,M) (a1, b) + S(a2, b)c(�,M) (a2, b) ≺pol c(�,M) (a, b) . (16)

In that case, c(�,M)(a, b) = b. Since a � b, we have a ∈ WM(b). By construction of a1, we have

a1 ∈WM(b), so c(a1, b) = b. But since a2 ∼pol b, (16) cannot hold.

Let

Njust := {M ∈ supp(Pjust) : a1 ∈WM(b) and a /∈WM(b)}.

By construction of a1, there exists M ∈ supp(Pjust) such that a1 ∈ WM(b) and a /∈ WM(b). By

the third part of Regularity, it is without loss to assume that a is not on the boundary of WM(b).

Then, for any M̃ in an open neighborhood of M, we have a1 ∈WM̃(b) and a /∈WM̃(b). Conclude

that Pjust(Njust) > 0. Similarly, let Npref = {�∈ U : a � b � a1}. Since a1, a and b cannot be

collinear, Npref is an open nonempty subset of U . Let N := Npref × Npref. By the second part of

Regularity, P (N) > 0.

We show that

S(a1, b)c(�,M) (a1, b) + S(a2, b)c(�,M) (a2, b) � c(�,M) (a, b) (17)

for any (�,M) ∈ N . Since a /∈WM(b) and a � b, we have c(�,M)(a, b) = a. Since a1 ∈WM(b), we

have c(�,M)(a1, b) = b. Since WM(b) is convex and contains a1 but not a, we have a2 /∈ WM(b).

Since a � b � a1, we must have a2 � b. Thus, c(�,M)(a2, b) = a2. Since

S(a1, b)b+ S(a2, b)a2 � S(a1, b)a1 + S(a2, b)a2 = a,

(17) holds. Finally, (17) holds with �pol in place of � because b ∼ a2 �pol a, so b �pol a1.

A.12 Proof of Proposition 4

Suppose that Minfo ⊃Mfinal. Fix any interior a. We must have Winfo(a) ⊂Wfinal(a). (Otherwise,

maximality would imply Minfo = Mfinal.) Fix any interior b on the boundary of Wfinal(a) that is

not in cl(Winfo(a)). Suppose a %info b for all %info∈Minfo. IfMinfo contains a constant preference,

thenMinfo = U by maximality. Thus,Minfo does not contain a constant preference. By Lemma 17,

Winfo(a) 6= ∅. Fix some x ∈ Winfo(a). For all ε > 0 sufficiently small, we have a �info b + ε(x − a)

for all %info∈ Minfo. Thus, b ∈ cl(Winfo(a))—contradiction. Conclude that b �info a for some

%info∈Minfo.

Since b ∈ cl(Wfinal(a)), we can choose b ∈ Wfinal(a) arbitrarily close to b. By choosing b
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sufficiently close to b, we get b, 2b− b �info a. Let b̄ := 2b− b, and let

b∗ :=
2

3
b̄+

1

3
b.

Since b∗ ∈ co(b̄, b), there exists a signal S about {a, b∗} with support {{a, b̄}, {a, b}}.
Since b /∈ Wfinal(a), there exists %final∈ Mfinal such that b %final a. Since a �final b, we have

b̄ �final b %final a �final b. Since b∗ ∈ co(b̄, b), we have b∗ �final a. Thus, b∗ = max(%final, {a, b∗}).
Since b̄, b �info a, we have

b∗ = S
(
a, b̄
)

max
(
%info, {a, b̄}

)
+ S (a, b) max (%info, {a, b}) .

Conclude that
(
δ{b∗,a}, b

∗) is feasible.

Consider any preference %∈ U such that b, b̄ � a. We have

max (%,Mfinal (a, b∗)) = max (%, {a, b∗}) = b∗.

Since b ∈Wfinal(a) and b̄ /∈Wfinal(a),

S (a, b) max (%,Mfinal (a, b)) + S
(
a, b̄
)

max
(
%,Mfinal

(
a, b̄
))

= S (a, b) a+ S
(
a, b̄
)
b̄ ≺ b∗.

Thus, (6) holds for %.

Now suppose that Minfo = Mfinal. Toward a contradiction, suppose that (6) holds for some

menu A, item a ∈ A, and signal S about A. By (6), it cannot be possible to obtain the lottery a by

choosing an appropriate element fromMfinal(Ã) for each Ã ∈ supp(S). This contradicts feasibility

of (δA, a), which says that it is possible to obtain the lottery a by maximizing some member of

Mfinal over each Ã ∈ supp(S).

B Uncertainty about justifications

Definition 23 (Extended random justification model). An extended random justification model

P ext is a probability measure P ext on U ×∆(C(U)).

Let P ext
µ denote the marginal of P ext on ∆(C(U)), and let µ denote an arbitrary member of

supp(P ext
µ ). Let P denote the measure on U × C(U) induced by P ext, and let Pjust denote the

marginal of P on C(U).

Definition 24 (Regularity). P ext is regular if

1. P is a regular random justification model.
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2. supp(P ext) = U × supp(P ext
µ ).

3. supp(µ) = supp(Pjust) for any µ ∈ supp(P ext
µ ).

Proposition 6. Fix an extended random justification model P and �pol∈ U such that b �pol a

whenever a ∈ WP (b). Suppose that (A,B) is locally improvable. For almost any (a, b) ∈ A × B,

there exists a signal S about (a, b) such that

∑
supp(S)

S(ai, bi)

∫
M
c(�,M) (ai, bi) dµ %pol

∫
M
c(�,M) (a, b) dµ (18)

for every (�, µ) such that a � b. The above holds with strict preference for a positive-probability set

of (�,M) such that ai � bi for each (ai, bi) ∈ supp(S) and

∑
supp(S)

S(ai, bi)

∫
M
c(�,M) (ai, bi) dµ �

∫
M
c(�,M) (a, b) dµ. (19)

Proof. Since P is a regular random justification model, we can borrow the construction of S from

Proposition 2.

Recall that a2 is chosen so that a2 ∼pol b. Since x �pol y whenever y ∈ WP (x), we have

a2 /∈ WP (b), so Pjust(a2 ∈ W (b)) = 0. If a2 ∈ WM(b) for some M ∈ supp(Pjust), then the same

is true for all M̃ in an open neighborhood of M, so Pjust(a2 ∈ W (b)) > 0—contradiction. Since

supp(µ) = supp(Pjust) for all µ ∈ supp(P ext
µ ), we have a2 /∈ WM(b) for all M ∈ supp(µ). This

implies µ(a2 /∈WM(b)) for all µ ∈ supp(P ext
µ ).

Fix any µ∗ ∈ supp(P ext
µ ). Since Pjust(a ∈W (b)) > 0, there exists an open N ⊂ supp(Pjust) such

that a ∈ WM(b). By the third part of Regularity for P ext, N ⊂ supp(µ∗), so µ∗(a ∈ W (b)) > 0.

Similarly, since Pjust(a /∈ W (b) and a1 ∈ W (b)) > 0, we have µ∗(a /∈ W (b) and a1 ∈ W (b)) > 0.

Since a1 was chosen so that a1 /∈W (b) implies a /∈W (b), we have µ∗(a ∈W (b)) < µ∗(a1 ∈W (b)).

We claim that there exists �∗∈ U such that, for some representation u of �∗,

u(a2) > u(a1) > u(b) = 0 (20)

S(a1, b)u(a1)µ∗(a1 /∈W (b)) + S(a2, b)u(a2) > u(a)µ∗(a /∈W (b)). (21)

To see why, take any u1 such that u1(a1) > u1(b) = 0 and any u2 such that u2(a2) > u2(a1) =

u2(b) = 0. The utility εu1+(1−ε)u2 will satisfy (19) and exhibit the required ordering for sufficiently

small ε > 0.

By the third part of Regularity for P ext, we have (�∗, µ∗) ∈ supp(P ext). For any (�, µ) suffi-

ciently close to (�∗, µ∗), � will have a representation u that satisfies (20) and (21) with µ in place

of µ∗. Thus, there is an open neighborhood N of (�∗, µ∗) in supp(P ext) such that each (�, µ) ∈ N
satisfies a2, a1 � b and (19).
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Consider any representation upol of �pol such that upol(b) = 0. Using 0 = upol(b) = upol(a2) >

upol(a1) and µ(a1 /∈W (b)) < µ(a /∈W (b)) for all µ such that (�, µ) ∈ N , we have

S(a1, b)upol(a1)µ(a1 /∈W (b)) + S(a2, b)u(a2)µ(a2 /∈W (b)) = S(a1, b)upol(a1)µ(a1 /∈W (b))

> S(a1, b)upol(a1)µ(a /∈W (b))

= upol(a)µ(a /∈W (b))

for all (�, µ) ∈ N . This implies (18) with strict preference for any (�, µ) ∈ N .
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