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Abstract

Motivated by the problem of sustaining cooperation in large communities with

limited information, we analyze sequences of repeated games with imperfect public

monitoring where the population size N , discount factor δ, and signal information K

(which can measure either the cardinality of the signal space or the mutual information

between signals and actions) vary together. We show that if (1− δ)N/K → ∞ then

payoffs cannot exceed those consistent with approximately myopic play. If instead

(1− δ)N log (N) /K → 0 then a folk theorem holds under random auditing, where

each player’s action is monitored with the same probability in every period. Thus,

up to log (N) slack, the prospects for cooperation are determined by the ratio of the

discount rate r ≈ 1 − δ and the per-capita information K/N , and there is no benefit

of monitoring different players’actions “jointly.” If attention is restricted to strongly

symmetric equilibria, cooperation is possible only under much more severe parameter

restrictions.
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1 Introduction

Repeated games are used to model long-term relationships in a variety of settings, many of

which involve a large number of players. Examples include voluntary public-goods provision

(Pecorino, 1999; Miguel and Gugerty, 2005), community resource management (Ostrom,

1990; Ellickson, 1991), and informal risk-sharing (Kocherlakota, 1996; Ligon, Thomas, and

Worrall, 2002). However, the standard analysis of repeated games with patient players (e.g.,

Fudenberg, Levine, and Maskin, 1994; henceforth “FLM”) fixes all parameters of the game

except the discount factor δ and considers the limit as δ → 1. This approach does not

capture situations where, while players are patient (i.e., δ ≈ 1), they are not necessarily

patient “compared to the population size N”(i.e., (1− δ)N may or may not be close to 0).

In addition, since standard results are based on statistical identifiability conditions that hold

“generically” regardless of the number of players, they also do not capture the possibility

that more information may be required to support cooperation in larger groups.

In this paper, we extend the standard analysis of repeated games with imperfect public

monitoring by considering sequences of games where the population size N , discount factor

δ, and “signal information”K vary together, subject to uniform upper bounds on the mag-

nitude of the players’stage-game payoffs and the number of actions available to each player,

and a uniform lower bound on “noise,”which we formalize as a constraint that each player

takes each available action with positive probability. In our model, the signal information

K can measure either the cardinality of the public signal space (in logs) or the mutual infor-

mation between the public signal and the action profile (viewed as a random variable whose

distribution depends on the public history); our results are the same either way.

Up to a little slack, we find that the scope for cooperation is determined by the ratio of

the discount rate r ≈ (1− δ) and the per-capita signal information K/N . Thus, cooperation

in very large groups requires very patient players or very informative signals, or both. When

rN/K is small, so cooperation is possible, cooperation can be supported under a simple

random auditing scheme, where each player is monitored with the same probability in every

period. If instead monitoring and incentive-provision are implemented “collectively,”coop-

eration is impossible unless r is exponentially small in N . Since this condition seems unlikely
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to be satisfied in most applications, we interpret this result as an impossibility theorem for

large-group cooperation under collective monitoring, and view the totality of our results as

endorsing the importance of individual monitoring in large groups. For example, our results

suggest that it is more feasible to sustain voluntary public-goods provision in a large group

by randomly monitoring a few agents’ contributions rather than by monitoring the total

level of public goods provided.

More precisely, we first show that if (1− δ)N/K → ∞ along a sequence of repeated

games satisfying our assumptions, then eventually (along the sequence) payoffs in any perfect

public equilibrium (PPE) cannot significantly exceed those consistent with approximately

myopic play. As we discuss in detail below, this finding improves on earlier results by

Green (1980), Sabourian (1990), Fudenberg, Levine, and Pesendorfer (1998), and Al-Najjar

and Smorodinsky (2000, 2001), which establish conditions under which play in repeated

games becomes approximately myopic in the limit as N → ∞ for fixed δ and K.1 Our

result comes from combining probabilistic arguments of the kind used in these papers with

dynamic programming and geometric arguments of the kind used by FLM. Roughly speaking,

a measure of the “average influence” of the players’ actions on the public signal can be

bounded by
√
K/N , while the “average movement”of the players’continuation payoffs along

a tangent hyperplane at some extreme point of the equilibrium payoff set can be bounded

by 1/
√

1− δ, and the “average incentive”that can be provided to the players at an extreme

point of the equilibrium payoff set without sacrificing effi ciency is bounded by the product

of these terms, or
√
K/ ((1− δ)N). Since this product goes to 0 when (1− δ)N/K → ∞,

payoffs cannot exceed those consistent with approximately myopic play along such a sequence

of repeated games. Significantly, this negative result imposes no restriction on the monitoring

structures considered along the sequence, except that the signal information (i.e., signal-space

cardinality or mutual information) equals K.

We then provide a near-converse to this negative result: if (1− δ)N log (N) /K → 0 then

a folk theorem holds when monitoring takes the form of random auditing, where a constant

number of players (proportional to K) are publicly selected, uniformly at random, at the

1As we will see, the arguments in some of these papers can be adapted to give results that apply when
N , δ, and K vary together; however, these results are substantially weaker than ours.
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end of each period, and the public signal reveals only these players’actions. Thus, outside

of the “small”range of parameters where (1− δ)N/K 9∞ and (1− δ)N log (N) /K 9 0

(so that δ → 1 at least as fast as N/K → ∞ but not faster than N log (N) /K → ∞),

random auditing supports cooperation whenever cooperation can be supported under any

monitoring structure with the same signal information K: that is, random auditing is an

approximately optimal monitoring structure in large populations. In particular, there is little

benefit of “joint monitoring”schemes, where the public signal cannot be decomposed into

conditionally independent signals of distinct players’actions.2

Our main result thus establishes that a simple form of “individual monitoring”– random

auditing– is approximately optimal outside a small parameter range. We complement this

result by investigating the prospects for cooperation in strongly symmetric equilibrium (SSE)

in symmetric games. SSE are equilibria where play is symmetric at every history. These

equilibria capture an extreme form of joint monitoring, where everyone is punished together

after “bad”aggregate outcomes. In symmetric games, the gap between the range of parame-

ters where cooperation is supportable in general PPE as opposed to SSE is thus a measure

of the advantage of individual monitoring over “fully collectivized”monitoring.

We show that this gap is large: if there exists ρ > 0 such that (1− δ) exp (N1−ρ) → ∞

along a sequence of repeated games satisfying our assumptions, then eventually payoffs in

any SSE cannot exceed those consistent with approximately myopic play.3 Hence, for the

“large”set of parameters where (1− δ)N log (N) /K → 0 but (1− δ) exp (N1−ρ) → ∞ for

some ρ > 0, a folk theorem holds for PPE under random auditing, but essentially no long-

term incentives can be provided in any SSE. Intuitively, an optimal SSE provides incentive

through a statistical “tail test,”where the players are collectively punished if the number

of players who take the desired action falls below a threshold, and we show that such a

tail test can provide incentives for N players to take the desired action while maintaining a

constant “false positive rate”only if the size of the penalty when the test is failed can be

taken to be exponentially large in N . Since the maximum penalty size in a repeated game

2Note our careful wording: random auditing is approximately optimal, but joint monitoring schemes may
also be approximately optimal, and might even slightly outperform random auditing. Whether this is so is
an open question.

3We also establish a near-converse: if there exists ρ > 0 such that (1− δ) exp
(
N1+ρ

)
→ 0 then a large

set of symmetric payoff vectors can be supported in SSE.
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is proportional to 1/ (1− δ), it follows that 1/ (1− δ) must be exponentially large in N to

support cooperation in a SSE (in contrast to our main result, which says that 1/ (1− δ)

must be only approximately linear in N to support cooperation in a PPE).

The paper proceeds as follows: following a brief discussion of related literature, Section

2 presents the model, Section 3 presents our main results for PPE in general games, Section

4 presents our supporting results for SSE in symmetric games, and Section 5 concludes.

1.1 Related Literature

The most closely related papers are those on PPE in repeated games with imperfect public

monitoring and a fixed population size (e.g., Abreu, Pearce, and Stacchetti, 1990; hence-

forth, “APS”; Fudenberg and Levine, 1994; FLM) and those on justifying myopic play in

large-population repeated games (Green, 1980; Sabourian, 1990; Fudenberg, Levine, and

Pesendorfer, 1998; Al-Najjar and Smorodinsky, 2000, 2001; Pai, Roth, and Ullman, 2014).

Our results combine ideas from these two branches of the literature to characterize how the

population size, the discount factor, and the informativeness of the public signal interact to

determine the prospects for cooperation.4

We believe this paper is the first in the repeated games literature to measure signal infor-

mativeness by the mutual information between the signal and the action profile, and to inves-

tigate maximal equilibrium payoffs subject to a constraint on informativeness.5 Our results

thus concern optimal monitoring structure design in repeated games, although we consider

only asymptotic results rather than exact optimality for fixed parameters. In the context

of static moral hazard problems, optimal monitoring design subject to information-theoretic

constraints was recently studied by Georgiadis and Szentes (2020), Hoffman, Inderst, and

Opp (2020), and Li and Yang (2020), while an earlier literature (Maskin and Riley, 1985;

4For fixed N , Hörner and Takahashi (2016) consider the rate of convergence in δ of the PPE payoff set
to the limit set characterized by Fudenberg and Levine (1994) and Fudenberg, Levine, and Maskin (1994).
Their analysis, which concerns rates of convergence in one parameter to a known limit payoff set, is not very
closely related to ours, which asks how the relationship between different parameters determines the limit
payoff set. Farther afield, there is also some work suggesting that cooperation in repeated games is harder to
sustain in larger groups based on evolutionary models (Boyd and Richerson, 1988) and simulations (Bowles
and Gintis, 2011; Chapter 5).

5Entropy methods have previously been used in the repeated games literature to study automaton strate-
gies (Neyman and Okada, 1999, 2000), communication (Gossner, Hernández, and Neyman, 2006), and
reputation effects (Gossner, 2011; Ekmekci, Gossner, and Wilson, 2011; Faingold, 2020).
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Khalil and Lawarree, 1995; Lewis and Sappington, 1995) studied the choice between moni-

toring inputs and outputs. Random auditing, which we find to be approximately optimal,

also arises in static, costly state-verification models (Reinganum and Wilde, 1985; Border

and Sobel, 1987; Mookherjee and Png, 1989).

Our exercise of varying N and K together with δ relates to the literature on repeated

games with frequent actions, where the information structure varies together with δ in a

specific, parametric manner (Abreu, Milgrom, and Pearce, 1991; Fudenberg and Levine,

2007, 2009; Sannikov and Skrzypacz, 2007, 2010; Rahman, 2014). The most closely-related

results here are Sannikov and Skrzypacz’s (2007) theorem on the impossibility of collusion in

duopoly with frequent actions and Brownian noise, as well as a similar result by Fudenberg

and Levine (2007). These results are related to our anti-folk theorem for SSE, as we explain

in Section 4, but are not very related to our results for PPE.

Finally, in earlier work (Sugaya and Wolitzky, 2021) we studied the relation among N ,

K, and δ in a repeated random-matching game with private monitoring and incomplete

information, where each player is “bad”with some probability. While there are superficial

similarities in some of the results, the logic of that model is very different: society has

enough information to determine which players are bad after a single period of play, but this

information is decentralized, so the question is whether the players can aggregate information

fast enough to ensure that it pays to be good. In contrast, the current paper involves

complete information and public signals with i.i.d. noise, so the issue is the precision of

public monitoring rather than the speed of information aggregation.

2 Model

Stage Games. A stage game G = (I,A, û) consists of a finite set of players I = {1, . . . , N},

a finite action set Ai for each player i ∈ I, and a payoff function ûi : A →R for each i ∈ I

(where A =
∏

i∈I Ai and û (a) = (ûi (a))i∈I for a ∈ A). Let Mi = |Ai|. We assume that

there is some independent noise in the implementation of players’actions, so that, whenever

a player i “intends” to take an action ai ∈ Ai, the realized distribution of her action is

(1− ε) ai + (ε/ (Mi − 1))
∑

ai 6=a′i∈Ai
a′i, where ε > 0 is the noise level. (The noise level could
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easily be allowed to vary across players and actions, at the cost of slightly more complicated

notation.) Note that, by appropriately choosing a distribution of intended actions αi ∈ ∆Ai,

player i can implement any action distribution α̂i ∈ ∆Ai satisfying α̂i (âi) ≥ ε/ (Mi − 1) for

all âi ∈ Ai.6 Given a stage game G and noise level ε, we define the expected payoff function

ui : A →R for each i ∈ I by letting ui (a) equal player i’s expected payoff, with payoff

function ûi and noise ε, at intended action profile a. We assume throughout that ε ≤ 1/2

and Mi ≥ 2 for all i ∈ I.

Sets of Payoffs. Given a stage game G and noise level ε (which induce expected

payoff functions (ui)i∈I), we define the sets of feasible payoffs, feasible and individually

rational payoffs, and payoffs consistent with “almost-myopic”play. The feasible payoff set

is V = co
{
v ∈ RN : v = u (a) for some a ∈ A

}
, where co denotes convex hull. Player i’s

minmax payoff is vi = minα−i∈
∏
j 6=i ∆Aj maxai∈Ai ui (ai, α−i), where we extend payoff functions

from pure to mixed actions as usual. The feasible and individually rational payoff set is V∗ =

{v ∈ V : vi ≥ vi for all i ∈ I}. For each v ∈ RN and η > 0, let Cv (η) =
∏

i∈I [vi − η, vi + η],

and let C (η) =
{
v ∈ RN : Cv (η) ⊆ V∗

}
. That is, C (η) is the set of points v such that the

N -dimensional cube with center v and side-length 2η lies entirely within V∗.

Given a mixed action profile α ∈ ∆∗A :=
∏

i ∆Ai, player i’s maximum static deviation

gain at α is di (α) = maxai∈Ai ui (ai, α−i)− ui (α). For each η > 0, define

A (η) =

{
α ∈ ∆∗A :

1

N

∑
i∈I

di (α) ≤ η

}
,

M (η) = co
{
v ∈ RN : v = u (α) for some α ∈ A (η)

}
, and

M̄ (η) =
{
v ∈ RN : ‖v − v′‖ ≤ η for some v′ ∈M (η)

}
,

where ‖·‖ is the Euclidean norm in RN . That is, A (η) is the set of mixed actions where the

per-player average deviation gain is no more than η (i.e., the set of mixed actions consistent

with almost-myopic play),M (η) is the convex hull of the set of payoff vectors attained by

mixed actions in A (η) (i.e., the set of payoff vectors consistent with almost-myopic play),

and M̄ (η) is the set of payoff vectors within Euclidean distance η of a point inM (η).

6To do so, she sets αi (ai) = (α̂i (ai)− ε/ (Mi − 1)) / (1− εMi/ (Mi − 1)) for all ai ∈ Ai.
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To preview, our anti-folk theorem will provide conditions under which every equilib-

rium payoff vector is contained in M̄ (η), while our folk theorem will provide conditions

under which every payoff vector in C (η) arises in an equilibrium. In the Online Appendix,

we consider a canonical public-goods game where each player chooses Contribute or Don’t

Contribute, and a player’s payoff is the fraction of players who contribute less a constant

c ∈ (0, 1) (independent of N) if she contributes herself; in this game, we show that for every

v ∈ (0, 1− c), there exists η > 0 such that the symmetric payoff vector where all players

receive payoff v lies in C (η) for all N .

Repeated Games. In a repeated game, a stage game is played repeatedly in periods

t = 1, 2 . . .. Before taking actions in period t, the players observe the outcome of a public

randomization device zt drawn from the uniform distribution over [0, 1]. After taking actions

in period t, the players observe a public signal yt ∈ Y (where the set of possible signal

realizations Y is assumed to be finite) drawn from a probability distribution p (·|ât) ∈ ∆Y

that depends only on the realized actions in the current period, ât. The pair (Y , p) is the

monitoring structure. Players discount payoffs with a common discount factor δ ∈ (0, 1).

A repeated game is thus described by a tuple Γ = (G, ε, δ,Y , p). We consider sequences of

repeated games indexed by l ∈ N. Thus, I, A, û, ε, δ, Y, and p (as well as the parameter K

introduced later on, which measures signal information) all implicitly depend on l, although

we usually suppress this dependence to simplify notation. Throughout, we restrict attention

to sequences (Γ)l with uniformly bounded payoffs, a uniformly bounded number of actions

for each player, and uniformly bounded noise: there exists ū ∈ R+ such that 2
∣∣uli (a)

∣∣ ≤ ū

for all l ∈ N, i ∈ I l, and a ∈Al; there exists M ∈ N such that M l
i ≤ M for all l ∈ N and

i ∈ I l; and there exists ε > 0 such that εl ≥ ε for all l ∈ N. Note that the difference between

any two stage games payoffs is bounded by ū: for example, dli (α) ≤ ū for all l ∈ N, i ∈ I l

and α ∈ ∆∗Al.

Histories, Strategies, and Equilibria. A history hti for player i at the beginning

of period t takes the form hti =
(
(zτ , ai,τ , âi,τ , yτ )

t−1
τ=1 , zt

)
, with h1

i = z1. Thus, players

observe their own intended and realized actions (though obviously a player has no reason to

condition her play on her past intended actions). A strategy σi for player i maps histories
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hti to distributions of intended actions ∆Ai, for each t. Let vσ ∈ V denote the (expected,

discounted) payoff vector induced by strategy profile σ.

A public history ht at the beginning of period t takes the form ht =
(
(zτ , yτ )

t−1
τ=1 , zt

)
. A

strategy σi for player i is public if it depends on hti only through its public component h
t. A

perfect public equilibrium (PPE) is a profile of public strategies that, beginning at any period

t and any public history ht, forms a Nash equilibrium from that period on.7 Let E (Γ) ⊆ RN

denote the set of PPE payoff vectors in repeated game Γ: that is, the set of vectors v ∈ RN

such that v = vσ for some PPE σ.

All of our results concern PPE rather than more general sequential equilibria. Restricting

attention to PPE in repeated games with public monitoring is a common practice, which

is usually justified by the fact that such equilibria have a tractable recursive structure and

are permissive enough to yield a folk theorem under appropriate statistical conditions (as

shown by FLM). In the current context, there is an additional reason to restrict attention

to PPE, which is subtle but is crucial for our approach: we are interested in how much

information society needs to support cooperation, and in a PPE “society’s information”is

naturally measured by the informativeness of the public signal Y about the realized actions

Â. If instead players used more complex strategies that additionally depend on their own

past actions (so-called “private strategies,” as in Kandori and Obara (2006)), each player

would have different beliefs about the history of play, and it would not be obvious how to

measure the total amount of information in the system.8

Mutual Information, Signal-Space Cardinality, and Random Auditing. A stan-

dard measure of the informativeness of Y about Â is the mutual information between these

random variables. Given a joint probability distribution on Y ×A (the set of possible real-
7As usual, this definition allows players to consider deviations to arbitrary, non-public strategies; but

such deviations are irrelevant because, whenever a player’s opponents use public strategies, she has a public
strategy that is a best response.

8One can imagine different ways of measuring “decentralized societal information.”We offer one suggestion
in the Conclusion.
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izations of Y and Â), this quantity is defined as

I
(
Y, Â

)
=
∑
y∈Y

∑
â∈A

Pr (y, â) log
Pr (y, â)

Pr (y) Pr (â)
.9

Mutual information measures the expected reduction in uncertainty (entropy) about Â that

results from observing Y .10 This is an endogenous object in our model, as it depends on

the distribution of Â (and hence on the players’strategies) in addition to p (·|â). Given a

mixed action profile α ∈ ∆∗A, we write I
(
Y, Â|α

)
for the mutual information between Y

and Â under the joint distribution on Y ×A that results when the players’intended actions

are distributed according to α and then, given the resulting realized actions â, the signal is

distributed according to p (·|â). Note that, for any α ∈ ∆∗A, the entropy of Â given α is of

order N , due to the independent noise in implementing the players’actions.11

Given a stage game G, a noise level ε, and a monitoring structure (Y , p), for any number

K ≥ 0 let∆∗KA ⊆ ∆∗A denote the set of mixed action profiles α that satisfy I
(
Y, Â|α

)
≤ K.

That is, α ∈ ∆∗KA if, when the players’intended actions are distributed according to α, in

expectation observing y reduces uncertainty about the players’realized actions by at most

K. Given a repeated game Γ = (G, ε, δ,Y , p) and a number K, let E (Γ, K) ⊆ E (Γ) denote

the set of vectors v ∈ RN such that v = vσ for some PPE σ satisfying σ (ht) ∈ ∆∗KA for

every public history ht (or equivalently, I
(
Y, Â|σ (ht)

)
≤ K for every public history ht).

That is, E (Γ, K) is the set of payoff vectors that are attained in a PPE where, at any period

and any history, observing y reduces uncertainty about the realized current-period actions

by at most K. Note that, letting ∆∗∞A = ∆∗A, we have E (Γ,∞) = E (Γ).

Our anti-folk theorem (Theorem 1.1) gives conditions under which the set E (Γ, K) is

“small”under any monitoring structure. For deriving an anti-folk theorem (a negative re-

sult), it is advantageous that imposing an upper bound on mutual information places few

restriction on the monitoring structure. However, readers who prefer assumptions about the

9In this paper, all logarithms are base e.
10And also the expected reduction in uncertainty about Y that would result from observing Â, since

I
(
Y, Â

)
= I

(
Â, Y

)
. Of course, our players observe Y but not Â.

11For example, if Mi = M for all i ∈ I, then the entropy of Â attains its minimum value of
N ((1− ε) log (1/ (1− ε)) + ε log ((M − 1) /ε)) when all players take pure strategies, and it attains its max-
imum value of N logM when all players mix uniformly over all actions.
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monitoring structure that are independent of the players’strategies may note that I
(
Y, Â

)
is always bounded by the entropy of Y , which in turn is bounded by log |Y| (Theorem 2.6.3

of Cover and Thomas, 2006; henceforth “CT”), so that ∆∗KA = ∆∗A whenever whenever

log |Y| ≤ K. Therefore, the same conditions which guarantee that E (Γ, K) is small under

any monitoring structure also guarantee that E (Γ) (i.e., the entire PPE payoff set) is small

under any monitoring structure where log |Y| ≤ K (see Corollary 2.1). Our anti-folk the-

orem thus improves on earlier results that impose bounds on |Y| (Fudenberg, Levine, and

Pesendorfer, 1998; al-Najjar and Smorodinsky, 2000, 2001), both because bounding mutual

information is less restrictive than bounding |Y|, and because (as we will see) our results are

also stronger for a given bound on |Y|.

In contrast, our folk theorem (Theorem 1.2) gives conditions under which the set E (Γ, K)

is “large”whenever the monitoring structure is given by random auditing, where bK/ logMc

players are selected uniformly at random and the public signal reveals their identities and

their realized actions. For deriving a folk theorem (a positive result), limiting attention to

a restrictive class of monitoring structures again yields a stronger result. Under random

auditing, log |Y| > K because the signal reveals the monitored players’identities as well as

their actions; however, because the monitored players are selected uniformly at random, it

remains true that ∆∗KA = ∆∗A, and hence that E (Γ, K) = E (Γ). To see this formally,

write Y = (Y1,Y2), where Y1 consists of all subsets S ⊆ I with |S| = bK/ logMc, and Y2

consists of all vectors of realized actions of the form (âi)i∈S for S ⊆ I with |S| = bK/ logMc.

Under random auditing, y1 ∈ Y1 is chosen uniformly at random, and y2 = (âi)i∈y1 , so

I
(
Y, Â

)
=
∑
y1∈Y1

1

|Y1|
∑

(âi)i∈y1

Pr
(

(âi)i∈y1

)
log

1

Pr
(

(âi)i∈y1

) ≤ log

(
max
y1∈Y1

∣∣∣(Ai)i∈y1∣∣∣) ≤ K.

3 Perfect Public Equilibria in General Games

This section presents our main result, Theorem 1, which gives an anti-folk theorem under any

monitoring structure when (1− δ)N/K → ∞ and a folk theorem under random auditing

when (1− δ)N log (N) /K → 0. Our anti-folk theorem combines probabilistic arguments

with repeated-game analysis in the style of APS and FLM. To understand this result and
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its relation to the literature, it is helpful to start with a “warm-up”anti-folk theorem that

isolates the consequences of pivotality or “influence”considerations. The main anti-folk the-

orem combines these considerations with an APS/FLM-type analysis, and the folk theorem

(Theorem 1.2) shows that the resulting condition on N , δ, and K is tight up to log (N) slack.

3.1 “Warm-Up”Anti-Folk Theorem

Our first result says that if (1− δ)
√
N/K → ∞ along a sequence of repeated games, then

eventually (along the sequence), in every PPE where the mutual information between the

signal and the action profile never exceeds K, play is approximately myopic at every history.

Proposition 1 Consider a sequence of repeated games Γ and numbersK satisfying (1− δ)
√
N/K →

∞. For any η > 0, there exists l̄ > 0 such that, for every l ≥ l̄, every PPE σ in Γl such that

σ (ht) ∈ ∆∗KA for every period t and history ht, and every history ht, we have σ (ht) ∈ A (η).

Since ∆∗KA =∆∗A whenever log |Y| ≤ K, the following corollary is immediate.

Corollary 1 Consider a sequence of repeated games Γ and numbersK satisfying log |Y| ≤ K

and (1− δ)
√
N/K →∞. For any η > 0, there exists l̄ > 0 such that, for every l ≥ l̄, every

PPE σ in Γl, and every history ht, we have σ (ht) ∈ A (η).

The proof of Proposition 1 (as well as the proof of our main anti-folk theorem, Theo-

rem 1.1) relies on the notion of a player being “constrained”by noise to take a particular

action. Recall that if player i’s intended action is ai, then her realized action is âi = ai

with probability 1 − ε and is âi = a′i for each a
′
i 6= ai with probability ε/ (Mi − 1). Define

the event that player i is constrained as follows: if player i’s intended action is ai, (i) with

probability 1 − εMi/ (Mi − 1), she is unconstrained, and then her realized action is âi = ai

with conditional probability 1, and (ii) for each a′i ∈ Ai (including a′i = ai), she is constrained

to play a′i with probability ε/ (Mi − 1), and in this case her realized action is âi = a′i with

conditional probability 1 − ε and is each âi 6= a′i with conditional probability ε/ (Mi − 1).

With this notation, the total probability that a player’s realized action equals her intended

11



action ai is decomposed as

1− Mi

Mi − 1
ε︸ ︷︷ ︸

Pr(unconstrained)

+
ε

Mi − 1︸ ︷︷ ︸
Pr(constrained to play ai)

(1− ε) + (Mi − 1)
ε

Mi − 1︸ ︷︷ ︸
Pr(constrained to play some a′i 6=ai)

(
ε

Mi − 1

)
= 1− ε,

and the ε/ (Mi − 1) probability that her realized action equals each a′i 6= ai can be decom-

posed similarly.

We will make use of the following simple lemma. In what follows, Pr (â|α) is the proba-

bility that the realized action profile equals â ∈ A when the (possibly mixed) intended action

profile equals α ∈ ∆∗A.

Lemma 1 Fix a period t and an action profile ã ∈ A. For each player i, let ωi denote the

indicator function for the event that i is constrained to play ãi in period t.

1. For each player i, action ai ∈ Ai, opposing action profile α−i ∈
∏

j 6=iAj, and realized

action profile â ∈ A, we have

Pr (â|ai, α−i)−Pr (â|ãi, α−i) =

(
1− ε

Mi − 1

)
(Pr (â|ai, α−i, ωi = 0)− Pr (â|ai, α−i, ωi = 1)) .

(1)

2. We have

I
(
Y ; (ωi)i∈I

)
≤ I

(
Y ; Â

)
. (2)

Proof. For part 1, recall that Pr (ωi = 1) = ε/ (Mi − 1). By construction, we have

Pr (â|ai, α−i) =

(
1− ε

Mi − 1

)
Pr (â|ai, α−i, ωi = 0) +

ε

Mi − 1
Pr (â|ai, α−i, ωi = 1) .

Since the distribution of realized actions is the same when player i deviates to ãi as when

she is constrained to play ãi, we have Pr (â|ãi, α−i) = Pr (â|ai, α−i, ωi = 1). Hence,

Pr (â|ai, α−i)− Pr (â|ãi, α−i) = Pr (â|ai, α−i)− Pr (â|ai, α−i, ωi = 1)

=

(
1− ε

Mi − 1

)
(Pr (â|ai, α−i, ωi = 0)− Pr (â|ai, α−i, ωi = 1)) .

12



Part 2 is a consequence of the data-processing inequality (CT, Theorem 2.8.1), since Y

and (ωi)i∈I are independent conditional on Â.

Proposition 1 now follows fairly easily from Lemma 3 of Sugaya and Wolitzky (2021),

which bounds the “average influence”of N players’types on the public signal. In the proof

of Proposition 1, a player’s “type”will be the indicator function for the event that she is

constrained to play a particular action in a given period. (The notion of a player’s type and

the way the lemma is used were different in our earlier paper.12) We restate the lemma here

in a slightly different form.13 Let (x)+ = max {x, 0}.

Lemma 2 Let ω1, . . . ωN be i.i.d. binary random variables with Pr (ωi = 1) = ε ≤ 1/2 for

all i ∈ I, and let Y be a random variable satisfying I
(
Y ; (ωi)i∈I

)
≤ K. Then

1

N

∑
i∈I

∑
y∈Y

(Pr (y|ωi = 0)− Pr (y|ωi = 1))+ ≤
√

K

εN
. (3)

Lemma 2 follows from Pinsker’s inequality (CT, Lemma 11.6.1) and the Cauchy-Schwarz

inequality, together with some elementary manipulations. A simple intuition can be given

in the special case where Y = {0, 1}K (in which case I
(
Y ; (ωi)i∈I

)
≤ K for any joint

distribution of Y and (ωi)i∈I). In this case, average influence (the left-hand side of (3)) is

maximized by dividing the N players into K equal-sized groups, and specifying that the

nth component of the signal Y takes value 1 iff ωi = 1 for at least εN/K of the players in

the nth group: under this “majority rule” scheme, each player is pivotal with probability

approximately
√
K/ (εN) (the right-hand side of (3)). The results of Fudenberg, Levine

and Pesendorfer (1998) and Al-Najjar and Smorodinsky (2000, 2001) are based on a similar

bound for average influence in the K = 1 case, which can be easily be extended by induction

to give a bound of K/
√
εN in general (which is weaker than (3)). This bound can be used to

12There, the influence-bounding lemma was used to analyze players’incentives to follow a different payoff
type’s strategy for the entire game, so a player’s “type”was their payoff type, and the “signal”was the infinite
sequence of the player’s partners’histories over the course of the game. Here, we analyze different incentive
constraints in every period, so a player’s “type”reflects whether they are hit by noise in the current period,
and the “signal”is the current public signal. The argument in the earlier paper is thus quite different from
Proposition 1 in the current paper, and it is even more distant from our main anti-folk theorem, Theorem 1.
13The statement in our earlier paper assumed that Y = {0, 1}K ; however, the proof requires only that

I
(
Y ; (ωi)i∈I

)
≤ K.
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prove Proposition 1 under the stronger assumption that (1− δ)
√
N/K → ∞, by the same

reasoning as that by which (3) is used to prove Proposition 1 under the stated assumption.14

Proof of Proposition 1. Fix a PPE σ such that σ (ht) ∈ ∆∗KA for every period t and

history ht. Since σ is a PPE, for every player i, period t, history ht, and action ai ∈ Ai, we

have

(1− δ)ui
(
σ
(
ht
))

+ δ
∑
y∈Y

Pr
(
y|σ
(
ht
))
Uσ
i,t+1

(
ht, y

)
≥ (1− δ)ui

(
ai, σ−i

(
ht
))

+ δ
∑
y∈Y

Pr
(
y|ai, σ−i

(
ht
))
Uσ
i,t+1

(
ht, y

)
,

where Uσ
i,t+1 (ht, y) denotes player i’s continuation payoff from period t+ 1 at history (ht, y)

under strategy profile σ. Since ui (ai, σ−i (h
t)) − ui (σ (ht)) ≤ di (σ (ht)) and∣∣∣Uσ

i,t+1 (ht+1)− Uσ
i,t+1

(
h̃t+1

)∣∣∣ ≤ ū for any two histories ht+1 and h̃t+1, this inequality im-

plies that

di
(
σ
(
ht
))
≤ δ

1− δ
∑
y∈Y

(
Pr
(
y|σ
(
ht
))
− Pr

(
y|ai, σ−i

(
ht
)))

+
ū,

Summing over players i, for any action profile a ∈ A, we have

∑
i∈I

di
(
σ
(
ht
))
≤ δ

1− δ
∑
i∈I

∑
y∈Y

(
Pr
(
y|σ
(
ht
))
− Pr

(
y|ai, σ−i

(
ht
)))

+
ū. (4)

Now, fixing the action profile a, let ωi denote the indicator function for the event that i is

constrained to take ai in period t. Since the signal distribution depends only on the realized

actions, for each y ∈ Y, (1) implies that

(
Pr
(
y|σ
(
ht
))
− Pr

(
y|ai, σ−i

(
ht
)))

+
=

(
1− ε

M − 1

)
(Prσ (y|ωi = 0)− Prσ (y|ωi = 1))+

≤ (Prσ (y|ωi = 0)− Prσ (y|ωi = 1))+ (5)

14Earlier results by Green (1980) and Sabourian (1990) directly assume that the map from distributions
of strategies to distributions of outcomes is continuous. This approach not allow quantitative comparisons
among N , δ, and K.
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Since σ (ht) ∈ ∆∗KA, by (2) we have I
(
Y ; (ωi)i∈I

)
≤ I

(
Y ; Â

)
≤ K, and hence by (3) we

have
1

N

∑
i∈I

∑
y∈Y

(Prσ (y|ωi = 0)− Prσ (y|ωi = 1))+ ≤
√

K

εN
. (6)

By (4), (5), and (6), we have

1

N

∑
i∈I

di
(
σ
(
ht
))
≤ δ

1− δ

√
K

εN
.

Since (1− δ)
√
N/K →∞, for any η > 0 there exists l̄ such that, for every l ≥ l̄,

δ

1− δ

√
K

εN
≤ η,

and hence σ (ht) ∈ A (η).

3.2 Main Results: Folk and Anti-Folk Theorem

We are now ready to state our main result.

Theorem 1 Consider a sequence of repeated games Γ and numbers K.

1. (Anti-Folk Theorem) Suppose that (1− δ)N/K → ∞. For any η > 0, there exists l̄

such that, for every l ≥ l̄, E
(
Γl, K l

)
⊆ M̄l (η).

2. (Folk Theorem) Suppose that (Y , p) is random auditing, 1 ≤ bK/ logMc ≤ N , and

(1− δ)N log (N) /K → 0. For any η > 0, there exists l̄ such that, for every l ≥ l̄,

Cl (η) ⊆ E
(
Γl, K l

)
.

Since ∆∗KA = ∆∗A (and hence E (Γ, K) = E (Γ)) whenever log |Y| ≤ K, as well as when-

ever (Y , p) is random auditing of bK/ logMc players, the following corollary is immediate.

Corollary 2 Consider a sequence of repeated games Γ and numbers K.

1. (Anti-Folk Theorem) Suppose that log |Y| ≤ K and (1− δ)N/K →∞. For any η > 0,

there exists l̄ such that, for every l ≥ l̄, E
(
Γl
)
⊆ M̄l (η).
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2. (Folk Theorem) Suppose that (Y , p) is random auditing, 1 ≤ bK/ logMc ≤ N , and

(1− δ)N log (N) /K → 0. For any η > 0, there exists l̄ such that, for every l ≥ l̄,

Cl (η) ⊆ E
(
Γl
)
.

We defer the proof of Theorem 1 to the Appendix. Here we explain the main ideas,

including why our suffi cient condition for the folk theorem requires log (N) slack.

The proof of the anti-folk theorem starts by assuming that E * M̄ (η) (where we suppress

the dependence of E (Γ, K) on (Γ, K), and suppress the dependence of all variables on l),

and ultimately concludes that (1− δ)N/K cannot be too large. The first step in the proof

(Lemma 3) is a purely geometric result. It shows that if E * M̄ (η) then there exists a

payoff vector v∗ on boundary of E and a ball B∗ that contains E and is tangent to E at v∗

such that v∗ /∈ M (η) and the radius of B∗ is “suffi ciently small.”This result is not trivial,

because the curvature of E at an arbitrary boundary point v /∈ M̄ (η) may be very small

(or even zero). Nonetheless, we show that the existence of a boundary point v /∈ M̄ (η),

together with the fact that E andM (η) are convex sets that lie in an N -dimensional cube

with side-length ū, implies that there exists a boundary point outside M (η) (though not

necessarily outside M̄ (η)) where the curvature of E is large enough that a tangent ball of

suffi ciently small radius exists.

Next, since v∗ is on the boundary of E but outsideM (η), the per-player average static

deviation gain at an equilibrium action profile that generates v∗ (together with continuation

payoffs drawn from E) is at least η, and therefore the product of a measure of the per-

player average influence on the public signal and the average change in continuation payoffs

must exceed η. A probabilistic argument (Lemma 5), which is similar to Lemma 2 and is

likewise based on Pinsker’s inequality, bounds the average influence measure by
√
K/N .15

The average continuation payoffmovement can be decomposed into the average movement in

the direction normal to the boundary of E at v∗ and the direction tangent to the boundary of

E at v∗. We show that both of these terms are of order at most
√
N/ (1− δ). For the normal

direction, this follows from the standard self-generation and promise-keeping constraints. For

the tangent direction, it follows because the curvature of E at v∗ is suffi ciently large: that

15The difference from the
√
K/N bound of Lemma 2 comes because Lemma 5 involves the L2-norm, while

Lemma 2 involves the L1-norm.
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is, the radius on the enclosing tangent ball B∗ is “suffi ciently small,”where this is defined

precisely so that an O
(√

N/ (1− δ)
)
bound obtains. Finally, since the product of the

influence bound,
√
K/N , and the continuation payoff bound in either the normal or tangent

direction, a term of order
√
N/ (1− δ), is of order

√
K/ ((1− δ)N); and we have seen that

this product must exceed η; we can conclude that (1− δ)N/K cannot be too large.

The proof of the folk theorem is constructive. We view the repeated game as a sequence of

T -period blocks of periods, where T is a number proportional to 1/ (1− δ). At the beginning

of each block, a target payoff vector is determined by public randomization, and with high

probability the players take actions throughout the block that deliver the target payoff.

Players are randomly audited throughout the block, and the distribution of target payoffs in

the next block is determined by the players’actions in the periods where they were audited,

in such a way so as to provide incentives for correct play. Since each player is audited with

probability bK/ logMc /N in every period, the adjustment to a player’s continuation payoff

in the event that she is audited must be of order N/K to provide incentives. So long as

each player is audited a small number of times in every block and 1/ (1− δ) is much greater

than N/K, the total required adjustment to continuation payoffs is small enough that it can

be delivered by appropriately specifying the distribution of target payoffs at the start of the

next block.16

The main diffi culty in the proof is that the number of times each player is audited in

a block is random and potentially very large. With small probability, a player is audited

so many times in a block that the distribution of target payoffs for the next block cannot

be modified any further. In this case, she can no longer be incentivized to take a non-

myopic best response, and all players’behavior in the current block must change. Thus,

if any player is monitored an “abnormal” number of times in a block, all players’payoffs

in that block may be far from the target equilibrium payoffs. Therefore, to prove the folk

theorem, we need the length of a block to be long enough that the probability that any

player is monitored an abnormal number of times is small. Since each of the N players is

16The reader may wonder why we cannot use the same proof approach as FLM, which does not involve
dividing the game into blocks. FLM’s proof relies the equivalence of the Euclidean norm in RN and the
L1 norm. This equivalence is not uniform in N , so their proof does not directly apply when N and δ vary
together. We do not know if it is possible to give an alternate proof of Theorem 1.2 that is closer to FLM’s
proof.
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monitored with probability of order K/N and the length of a block is of order 1/ (1− δ), this

condition turns out to require that (1− δ)N log (N) /K is small. The extra log (N) term in

this expression arises for a similar reason as in the well-known “coupon collector’s problem”

in probability theory: if in each period K balls are drawn with replacement from an urn

containing N balls, then the expected number of periods before all N balls have been drawn

at least once is approximately N log (N) /K; and this is also the number of periods before

it becomes unlikely that the realized number of times any ball is drawn differs significantly

from its expectation.17

Let us note a surprising aspect of Theorem 1. The theorem shows that random audit-

ing is approximately optimal, in that it allows a folk theorem whenever non-myopic incen-

tives can be provided (except for the small set of parameters where (1− δ)N/K 9 ∞ but

(1− δ)N log (N) /K 9 0). But random auditing does not maximize pivot probability or

influence: average influence under random auditing is of order K/N , while average influ-

ence under joint monitoring schemes of the kind discussed in the previous subsection is of a

higher order,
√
K/N . Thus, random auditing provides “approximately maximal incentives”

but not “approximately maximal influence.”The explanation for this puzzle is that, under

the self-generation constraint that continuation payoffs must be drawn from E, there is a

tradeoff among the magnitudes of different players’continuation payoffmovements: starting

from a point near the boundary of E at which E exhibits significant curvature, continuation

payoffs remain in E if a few players’payoffs move a lot or many players’payoffs move a little,

but not if many players’payoffs move a lot. In particular, near a boundary point where E is

locally like a ball of radius O
(√

N
)
, each player’s payoff can move only about 1/

√
N times

as far when everyone’s payoffs move at once. This
√
N reduction in incentive power exactly

offsets the
√
N gain in influence from monitoring everyone at once. Hence, by monitoring a

few players each period but adjusting their continuation payoffs by a large amount, random

auditing provides as strong incentives as does any joint monitoring scheme that monitors

more players but adjusts their continuation payoffs by less.

Finally, while we have emphasized the case where N → ∞ along the sequence of re-

peated games Γ, none of our analysis requires this assumption. Note that our definition of

17See, e.g., https://en.wikipedia.org/wiki/Coupon_collector%27s_problem.
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random auditing assumes that a fixed, integer number of players bK/ logMc are monitored

each period, but the proof of Theorem 1.2 applies equally when every player is monitored

with independent probability K/ logM each period. With this alternate notion of random

auditing, the assumption that bK/ logMc ≥ 1 can be dropped, and the proof of Theorem

1.2 shows that, if N is bounded by some N̄ and every player is monitored with probability

K/ logM ≤ 1 each period, a folk theorem holds whenever (1− δ) /K → 0. Conversely, for

any N , Theorem 1.1 establishes an anti-folk theorem when the mutual information between

the signal and the action profile is bounded by K and (1− δ) /K →∞.

4 Strongly Symmetric Equilibria in Symmetric Games

We now turn to folk and anti-folk theorems for SSE in symmetric games. Our main moti-

vation for studying this restricted class of equilibria is to clarify the gap between the scope

for cooperation with individual monitoring and incentives (which was characterized by our

main result, Theorem 1) and the scope for cooperation with fully collectivized monitoring

and incentives (which is captured by SSE). One also might have expected SSE to perform

well in our setting, because collective monitoring maximizes average influence as discussed

in Section 3.1; however, this intuition turns out to be wrong, because we will see that op-

timal SSE are not those that maximize average influence. Finally, some influential papers

on collusion have restricted attention to SSE (Green and Porter, 1984; Abreu, Pearce, and

Stacchetti, 1986; Athey, Bagwell, and Sanchirico, 2004), so our results may be relevant for

analyzing collusion among many firms in industries where this restriction is well-motivated.

A stage game is symmetric if Ai= Aj for all i, j and, for every i and every permutation

ρ of I, we have ui (a1, . . . , aN) = uρ(i)

(
aρ(1), . . . , aρ(N)

)
. Denote the common action space

by A0. A public strategy profile σ = (σi)i∈I in a symmetric game is strongly symmetric if

σi (h
t) = σj (ht) for every i 6= j and every public history ht. In this case, we slightly abuse

notation by writing σ : ht → ∆A0. A strongly symmetric equilibrium (SSE) is a PPE in

strong symmetric strategies.

In a symmetric game, given a mixed action α0 ∈ ∆∗A0, denote the symmetric action

profile where all players take α0 by ᾱ0 ∈ ∆∗A0 , denote the profile where player i takes
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action a ∈ A0 and everyone else takes α0 by
(
a, ᾱ−i0

)
, and denote player i’s payoff at

this profile by u
(
a, ᾱ−i0

)
. Denote the greatest and smallest symmetric stage game pay-

offs by v̄ = maxa0∈A0 u (ā0) and v = mina0∈A0 u (ā0), respectively. Denote the greatest and

smallest symmetric stage game Nash equilibrium payoffs by v̄N and vN , respectively. Let

d̄ = mina0:u(ā0)=v̄ maxa∈A0 u
(
a, ā−i0

)
− v̄ and d = mina0:u(ā0)=v maxa∈A0 u

(
a, ā−i0

)
− v. Given

any α0 ∈ ∆A0, let d (α0) = maxa∈A0 u
(
a, ᾱ−i0

)
− u (ᾱ0). Given any η > 0, let A0 (η) =

{α0 ∈ ∆A0 : d (α0) ≤ η}. Let v̄ (η) = maxα0∈A0(η) u (ᾱ0) and let v (η) = minα0∈A0(η) u (ᾱ0).

Denote the set of SSE payoffs in repeated game Γ by ES (Γ): note that this set is an interval

due to public randomization.

The following is our folk/anti-folk theorem for SSE. Note that the signal information K

does not play a role here, except that the folk theorem requires |Y| ≥ 2. This is because,

since continuation payoffs like on the 45◦ line in an SSE, there is no advantage to allowing

more than two signal realizations. Also, since the folk theorem is the less important part

of the result, we content ourselves with a “Nash-threat”result for simplicity; this could be

strengthened to a minmax-threat folk theorem if the monitoring structure is rich enough to

track deviations from the minmaxing action profile, in addition to deviations from the target

action profile (this may require |Y| > 2).

Theorem 2 Consider a sequence (G, ε, δ). For a given monitoring structure (Y , p), let

Γ = (G, ε, δ,Y , p).

1. (Anti-Folk Theorem) Suppose that there exists ρ > 0 such that (1− δ) exp (N1−ρ) →

∞. For any sequence of monitoring structures (Y , p) and any η > 0, there exists l̄ such

that, for every l ≥ l̄, ES (Γ) ⊆ [v (η) , v̄ (η)].

2. (Folk Theorem) Suppose that there exists ρ > 0 such that (1− δ) exp (N1+ρ)→ 0.

(a) Suppose that lim sup εd̄
1−2ε

< lim inf v̄−v
N

2
. There exists a sequence of monitoring

structures (Y , p) with |Y| = 2 such that the following holds: for any

η ∈ (lim sup (M0−1)εd
M0−1−2ε

, lim inf v̄−v
N

2
), there exists l̄ such that, for every l ≥ l̄,

[
vN , v̄ − η

]
⊆

ES (Γ).

(b) Suppose that lim sup (1−ε)d
1−2ε

< lim inf v̄
N−v
2
. There exists a sequence of monitoring

structures (Y , p) with |Y| = 2 such that the following holds: for any
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η ∈ (lim sup (M0−1)(1−ε)d
M0−1−2ε

, lim inf v̄
N−v
2

), there exists l̄ such that, for every l ≥ l̄,
[
v + η, v̄N

]
⊆

ES (Γ).

Since the condition that (1− δ) exp (N1−ρ) → ∞ for some ρ > 0 is very permissive, we

view Theorem 2 primarily as an impossibility theorem for large-group cooperation under

collective monitoring.

The proof of Theorem 2 is deferred to the Online Appendix. To understand the result,

suppose we wish to enforce a symmetric pure action profile (a, . . . , a), where d (a) = η.

By standard arguments, an optimal SSE takes the form of a “tail test,”where the players

are all punished if the number of players n who take action a falls below a threshold n∗.

Due to the i.i.d. noise ε, the distribution of n is approximately normal when N is large,

with mean (1− ε)N and standard deviation
√
ε (1− ε)N . Denote the threshold z-score by

z∗ = (n∗ − (1− ε)N) /
√
ε (1− ε)N , let φ and Φ denote the standard normal pdf and cdf,

and let x ∈ [0, ū/ (1− δ)] denote the size of the penalty when the tail test is failed. We have

φ (z∗)√
ε (1− ε)N

x ≥ η and Φ (z∗)x ≤ ū,

where the first inequality is incentive-compatibility, and the second says that the expected

penalty cannot exceed the maximum difference between any two stage-game payoffs. Divid-

ing the first inequality by the second, we obtain

φ (z∗)

Φ (z∗)
≥ η

√
ε (1− ε)N
ū

.

The left-hand size of this inequality is the statistical score of a normal tail test, which is

approximately equal to −z∗ for z∗ < 0. Hence, z∗ must decrease at least linearly with
√
N .

Since φ (z∗) decreases exponentially with z∗, and hence exponentially with N , Theorem 2.1

now follows from the above incentive-compatibility condition, which implies that the product

of φ (z∗) /
√
ε (1− ε)N and ū/ (1− δ) must exceed η. Conversely, the proof of Theorem 2.2

is very simple: if (1− δ) exp (N1+ρ)→ 0 for some ρ > 0, the desired action profile (a, . . . , a)

can be enforced by a tail test with n∗ = 0, so that the players are collectively punished only

if no one takes action a.
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Theorem 2.1 is related to Proposition 1 of Sannikov and Skrzypacz (2007), which is an

anti-folk theorem for SSE in a two-player repeated game where actions are observed with

additive, normally distributed noise, with variance proportional to 1/ (1− δ). (The interpre-

tation is that players change their actions every ∆ units of time, where δ = e−r∆ for fixed

r > 0 and variance is inversely proportional to ∆, for example as a consequence of observing

the average increments of a Brownian process.) As a tail test is also optimal in their setting,

the reasoning just given implies that incentives can be provided only if 1/ (1− δ) increases

exponentially with the variance of the noise. Since in their model 1/ (1− δ) increases with

the variance only linearly, they likewise obtain an anti-folk theorem. Similarly, Proposition

2 of Fudenberg and Levine (2007) is an anti-folk theorem in a game with one long-run player

and series of short-run players, where the long-run player’s action is observed with additive,

normal noise with variance proportional to 1/ (1− δ)ρ for some ρ > 0; and their Proposition

3 is a folk theorem when the variance is constant in δ. Theorem 2 suggests that their anti-

folk theorem extends whenever the variance asymptotically dominates (log 1/ (1− δ))1/(1−ρ)

for some ρ > 0, while their folk theorem extends whenever the variance is asymptotically

dominated by (log 1/ (1− δ))1/(1+ρ) for some ρ > 0.18

5 Conclusion

To help better understand whether and how large communities with limited information

can support cooperation, we have considered sequences of repeated games with imperfect

public monitoring where the population size N , discount factor δ, and signal information

K vary together. Analyzing this problem involves combining probabilistic and information-

theoretic ideas with repeated game theory based on dynamic programming and geometry.

Our main result is that, except for a “small”range of parameters not covered by our results,

the prospects for cooperation are determined by the ratio of the discount rate r ≈ 1 − δ

and the per-capita information K/N : a folk theorem holds when the ratio rN/K is small,

18More broadly, the analysis of tail tests as optimal incentive contracts under normal noise goes back to
Mirrlees (1975). The logic of Theorem 2.1 shows that the size of the penalty in a Mirrleesian tail test must
increase exponentially with the variance of the noise. We are not aware of references to this point in the
literature.
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and an anti-folk theorem holds when it is large. Whenever the ratio is small, cooperation

can be supported by a simple random auditing scheme, which is somewhat surprising be-

cause random auditing does not maximize the players’pivot probability or “influence.” If

instead monitoring and incentives are carried out “collectively,”which we model by restrict-

ing attention to strongly symmetric equilibria, cooperation is possible only much more severe

parameter restrictions.

In reality, information in large communities is typically decentralized: different agents

have different pieces of information. Extending our model to account for decentralized in-

formation would require developing a measure of “society’s information”for this case. One

possibility (not the only one) would be to modify our model by assuming that the signal

Y is observed only by a mediator or “social planner,”who then privately recommends an

action to each player. It would be interesting to see if such a model yields results similar to

those in the public monitoring case.

A Appendix: Proof of Theorem 1

A.1 Proof of Theorem 1.1 (Anti-Folk Theorem)

We suppress the dependence of E (Γ, K) on (Γ, K). We first show that if E * M̄ (η) then

there exists a ball B∗ in RN that (i) is tangent to E at a point v∗ that lies outside ofM (η),

(ii) contains E, and (iii) has a suffi ciently small radius r.

For x ∈ R, let sign (x) = 1 if x > 0, 0 if x = 0, and −1 if x < 0. Given a vector v ∈RN ,

let sign (v) = (sign (v1) , . . . sign (vN)) ∈ {−1, 0, 1}N . Note that v·sign (v) > 0 for any v 6= 0.

For a set V ⊆ RN , let ∂V denote the relative boundary of V . Denote the set of unit vectors

(“directions”) in RN by Λ = {λ ∈ RN :
∑

i∈I |λi|
2 = 1}. A vector is normal to a surface at

a point if it is orthogonal to a tangent hyperplane.

Lemma 3 Suppose that E * M̄ (η). There exists a ball B∗ of radius r and a payoff vector

v∗ ∈ ∂E ∩ ∂B∗ \M (η) such that E ⊆ B∗ and, letting λ∗ ∈ Λ denote a normal vector of B∗

at v∗, we have

rλ∗ · sign (λ∗) ≤
(

2ū2

η
+ ū

)
N. (7)
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Figure 1: The left panel illustrates how we fix λ, d, and v̂. The center panel illustrates how
we fix h, λ∗, α∗,

∼
v, v∗, v̄, B (0), and B∗. The bottom-right panel reproduces the purple

triangle from the center panel.

Proof. Fix

λ ∈ arg max
λ′∈Λ

(
max
v′∈E

λ′ · v′ − max
v′∈M̄(η)

λ′ · v′
)
.

Since E 6⊆ M̄ (η), we have maxv′∈E λ · v′ −maxv′∈M̄(η) λ · v′ > 0. Let

d = max
v′∈E

λ · v′ − max
v′∈M(η)

λ · v′ and h = max
v′∈M(η)

λ · v′. (8)

Note that d ≤ ū
√
N , because E,M (η) ⊆ V and the Euclidean distance between any two

points in V is at most ū
√
N . It is also easily shown that d ≥ ηλ · sign (λ). To see this, note

that maxv′∈M̄(η) λ · v′ = maxv′∈M(η) λ · v′ + ηλ · sign (λ).19 Hence,

d = max
v′∈E

λ·v′− max
v′∈M(η)

λ·v′ = max
v′∈E

λ·v′−
(

max
v′∈M̄(η)

λ · v′ − ηλ · sign (λ)

)
≥ ηλ·sign (λ) . (9)

Finally, fix v̂ ∈ arg maxv′∈M(η) λ · v′. The specification of λ, d, and v̂ is illustrated in the

left panel of Figure 1.

19Proof: For each v ∈ M̄ (η), there exists v′ ∈ M (η) such that maxi |vi − v′i| ≤ η, and hence
λ · v ≤ λ · v′ + ηλ · sign (λ). Therefore, maxv∈M̄(η) λ · v ≤ maxv∈M(η) λ · v + ηλ · sign (λ). Conversely,
for each v ∈ M (η) we have v + ηsign (λ) ∈ M̄ (η), and hence maxv∈M̄(η) λ · v ≥ λ· (v + η · sign (λ)) =
maxv∈M(η) λ · v + ηλ · sign (λ).
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For any α ∈ R+, let B (α) be the N -dimensional closed ball with center v̂ − αλ and

radius

r =
ū2N + d2

d
. (10)

Since d ≤ ū
√
N , we have r ≥ ū

√
N , and therefore (since v̂, the center of B (0), is in V)

B (0) ⊇ V ⊇ E ∪M (η). Note also that dr ≤ 2ū2N . Let

α∗ = min {α ∈ R+ : ∂E ∩ ∂B (α) 6= ∅} ,

and let B∗ = B (α∗). That is, B∗ is given by translating B (0) in direction −λ until the

translated ball becomes tangent to E. Let v∗ ∈ ∂E ∩ ∂B∗ (a tangency point between E and

B∗), let λ∗ be the normal vector of B∗ at v∗, and let o∗ = v̂ − α∗λ (the center of B∗). The

specification of λ∗, v∗, B (0), B∗, and α∗ are illustrated in the center panel of Figure 1.

As E ⊆ B∗ by construction, it remains to show that v∗ /∈M (η) and that (7) holds.

We first show that λ · v∗ > h, which implies that v∗ 6∈ M (η). Let

ṽ = v̂+ (r − α∗)λ. (11)

Since B∗ has center v̂−α∗λ and radius r, we have ṽ ∈ ∂B∗, and λ is normal to B∗ at ṽ (as

illustrated in the center panel of Figure 1). Hence,

λ · ṽ = max
v′∈B∗

λ · v′. (12)

Now decompose the vector ṽ− v∗ into the direction λ and an orthogonal direction λ⊥ ∈ Λ,

so that

ṽ − v∗ = βλ+ γλ⊥ for some β, γ∈RN . (13)

(This decomposition is illustrated by the purple triangle in the center and bottom-right

panels of Figure 1). We derive bounds for β and γ.

First, since E ⊆ B∗ and (12), we have λ · ṽ = maxv′∈B∗ λ · v′ ≥ maxv′∈E λ · v′ = d + h,

and therefore

β = λ · (ṽ − v∗) ≥ d+ h− λ · v∗. (14)
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Second, we note that β ≤ r. To see this, let v̄ = v∗ + α∗λ. Since v∗ ∈ ∂B∗ and B∗ is

given by translating B (0) by α∗ in direction −λ, we have v̄ ∈ ∂B (0). Hence,

v̂ − v∗ = (β − r + α∗)λ+ γλ⊥ by (11) and (13), and v̂ − v̄= (β − r)λ+ γλ⊥. (15)

Since v∗ ∈ B (0), v̄ ∈ ∂B (0), and v̂ is the center of B (0), we have ‖v̂ − v∗‖ ≤ r = ‖v̂ − v̄‖.

This inequality implies that |β − r + α∗| ≤ |β − r|. Since α∗ ≥ 0 by construction, it follows

that β ≤ r.

Third, since v̂,v∗ ∈ V satisfy (15), we have

ū
√
N ≥ ‖v̂ − v∗‖ ≥ |γ| . (16)

Now we use these bounds to show that λ · v∗ > h. From (13) and the fact that λ is

normal to B∗ at ṽ, applying the Pythagorean identity to the orange triangle in the center

panel of Figure 1, we have

‖v∗ − o∗‖2 = ‖ṽ − o∗ − βλ‖2 +
∥∥γλ⊥∥∥2

.

Note that

‖ṽ − o∗ − βλ‖ = r − β (since ṽ − o∗ is parallel to λ and ‖ṽ − o∗‖ = r ≥ β)

≥ r − (d+ h) + λ · v∗ (by (14)).

Together with the facts that ‖v∗ − o∗‖ = r (because v∗ ∈ ∂B∗) and
∥∥γλ⊥∥∥ = |γ| ≤ ū

√
N

(by (16)), we have

r2 ≤ (r − (d+ h) + λ · v∗)2 + ū2N.

Since r ≥ β ≥ d+ h− λ · v∗, if λ · v∗ ≤ h then this inequality would require that

r2 ≤ (r − d)2 + ū2N, or r ≤ ū2N + d2

2d
,

which is false under our definition of r, (10). Hence, λ · v∗ > h.
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Next, we establish (7). Since λ∗ is normal to B∗ at v∗ we have

rλ∗ = v∗ − o∗ = ṽ − βλ− γλ⊥ − o∗ (by (13)).

Since λ is normal to B∗ at ṽ, we have rλ = ṽ−o∗. Hence, rλ∗ = (r − β)λ−γλ⊥. We have

rλ∗ · sign (λ∗) =
(
(r − β)λ− γλ⊥

)
· sign

(
(r − β)λ− γλ⊥

)
=

∑
i

∣∣(r − β)λi − γλ⊥i
∣∣

≤
∑
i

(
|(r − β)λi|+

∣∣γλ⊥i ∣∣)
= |r − β|λ · sign (λ) + |γ|λ⊥ · sign

(
λ⊥
)

≤ rλ · sign (λ) + ū
√
Nλ⊥ · sign

(
λ⊥
)

(by 0 ≤ β ≤ r and (16))

≤ r

η
d+ ūN (by (9) and λ⊥ · sign

(
λ⊥
)
≤
√
N)

≤
(

2ū2

η
+ ū

)
N (by dr ≤ 2ū2N).

Recall that E is the set of payoff vectors that are attained in a PPE satisfying σ (ht) ∈

∆∗KA for all t, ht. By standard arguments (e.g., Proposition 7.3.2 of Mailath and Samuelson,

2006), the set E is self-generating: that is, for any v ∈ E, there exist α ∈ ∆∗KA and (w (y))y

such that

Promise-Keeping. vi = (1− δ)ui (α) + δE [wi (Y ) |α] for all i ∈ I,

Incentive-Compatibility. supp (αi) ⊆ argmaxa′i (1− δ)ui (a′i, α−i)+δE [wi (Y ) |a′i, α−i] for

all i ∈ I,

Self-Generation. w (y) ∈ E for all y ∈ Y.

Take v = v∗, and take any corresponding α and (w (y))y. Since v∗ ∈ ∂B∗ \M (η) and

w (y) ∈ E ⊆ B∗ for every y, we have u (α) /∈ B∗. Moreover, sinceM (η) ⊆ B∗, this implies

that α /∈ A (η): that is,
∑

i di (α) > Nη.
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Figure 2: Decomposition of x(y) and x(y′) for two signals y and y′, where y satisfies∣∣1−δ
δ
β (y)

∣∣ ≤ r, and y′ satisfies
∣∣1−δ
δ
β (y′)

∣∣ ≥ r.

By promise-keeping and incentive-compatibility, defining

x (y) =
δ

1− δ (w (y)− v∗) , we have (17)

vi = ui (α) + E [xi (Y ) |α] for all i ∈ I, and (18)

supp (αi) ⊆ argmax
a′i

ui (a
′
i, α−i) + E [xi (Y ) |a′i, α−i] for all i ∈ I. (19)

For each y ∈ Y, decompose the vector x (y) into the normal direction λ∗ and an orthog-

onal direction λ⊥ (y) ∈ Λ:

x (y) = β (y)λ∗ + γ (y)λ⊥ (y) for some β (y) , γ (y) ∈ R. (20)

(This decomposition is illustrated in Figure 2.) Note that since v∗ = argmaxv∈B∗ λ
∗ · v and

w (Y ) ∈ E ⊆ B∗, we have β (y) ≤ 0 for all y.

We can rewrite (19) as, for each a′i,

E [xi (Y ) |α]− E [xi (Y ) |a′i, α−i] ≥ ui (a
′
i, α−i)− ui (α) . (21)

Since the signal distribution depends only on realized actions, by (1) the left-hand side of
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(21) equals

(
1− ε

Mi − 1

)
(E [xi (Y ) |α, ωi = 0]− E [xi (Y ) |α, ωi = 1])

=

(
1− ε

Mi − 1

)∑
y

(Pr (y|ωi = 0)− Pr (y|ωi = 1))xi (y) .

Recalling that di (α) = maxa′i ui (a
′
i, α−i) − ui (α) and taking a′i ∈ argmaxa′i ui (a

′
i, α−i), we

have (
1− ε

Mi − 1

)∑
y

(Pr (y|ωi = 0)− Pr (y|ωi = 1))xi (y) ≥ di (α) .

Together with (20) and
∑

i di (α) > Nη, this implies

η ≤ 1

N

∑
i

∑
y

|Pr (y|ωi = 0)− Pr (y|ωi = 1)| |β (y)λ∗i |

+
1

N

∑
i

∑
y

|Pr (y|ωi = 0)− Pr (y|ωi = 1)|
∣∣γ (y)λ⊥i (y)

∣∣ . (22)

The following lemma implies that if (1− δ)N/K → ∞ then eventually (22) is violated,

and therefore eventually E ⊆ M̄ (η). This completes the proof.

Lemma 4 If (1− δ)N/K →∞ then

1

N

∑
i

∑
y

|Pr (y|ωi = 0)− Pr (y|ωi = 1)| |β (y)λ∗i | → 0 (23)

and
1

N

∑
i

∑
y

|Pr (y|ωi = 0)− Pr (y|ωi = 1)|
∣∣γ (y)λ⊥i (y)

∣∣→ 0. (24)

We begin with a lemma concerning mutual information.

Lemma 5 Fix a mixed action profile α ∈ ∆∗A and a monitoring structure (Y , p), and

let (Pr (y, ω))y∈Y,ω∈{0,1}N denote the resulting joint probability distribution on y ∈ Y and

ω = (ω1, . . . , ωN) ∈ {0, 1}N . For each y ∈ Y, define

Py =

√∑
i

(Pr (y|ωi = 1)− Pr (y|ωi = 0))2 .
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Then

Py ≤
M

ε

√√√√2 Pr (y)
∑
i

∑
ωi∈{0,1}

Pr (y, ωi) ln
Pr (y, ωi)

Pr (y) Pr (ωi)
. (25)

Proof. Recall that, for each i, Pr (ωi = 0) ≥ Pr (ωi = 1) = ε/ (Mi − 1) ≥ ε/M . Note that

|Pr (y|ωi = 1)− Pr (y|ωi = 0)| =
∑

ωi∈{0,1}

∣∣∣∣Pr (y, ωi)− Pr (y) Pr (ωi)

Pr (ωi)

∣∣∣∣
≤ M

ε

∑
ωi∈{0,1}

|Pr (y, ωi)− Pr (y) Pr (ωi)| .

Define Di (y) =
∑

ωi∈{0,1} |Pr (y, ωi)− Pr (y) Pr (ωi)| = Pr (y)
∑

ωi∈{0,1} |Pr (ωi|y)− Pr (ωi)|.

By Pinsker’s inequality, we have

 ∑
ωi∈{0,1}

|Pr (ωi|y)− Pr (ωi)|

2

≤ 2
∑

ωi∈{0,1}

Pr (ωi|y) ln
Pr (ωi|y)

Pr (ωi)

=
2

Pr (y)

∑
ωi∈{0,1}

Pr (y, ωi) ln
Pr (y, ωi)

Pr (y) Pr (ωi)
.

Hence,

(Di (y))2 ≤ Pr (y)2

 ∑
ωi∈{0,1}

|Pr (ωi|y)− Pr (ωi)|

2

≤ 2 Pr (y)
∑

ωi∈{0,1}

Pr (y, ωi) ln
Pr (y, ωi)

Pr (y) Pr (ωi)
.

Finally, since

(Py)
2 =

∑
i

(Pr (y|ωi = 1)− Pr (y|ωi = 0))2 ≤
(
M

ε

)2∑
i

(Di (y))2 ,

we have

Py ≤
M

ε

√√√√2 Pr (y)
∑
i

∑
ωi∈{0,1}

Pr (y, ωi) ln
Pr (y, ωi)

Pr (y) Pr (ωi)
.

Finally, we prove Lemma 4.
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Proof of Lemma 4. We have

1

N

∑
i

∑
y

|Pr (y|ωi = 0)− Pr (y|ωi = 1)| |β (y)λ∗i |

≤ 1

N

∑
y

|β (y)|
√∑

i

(Pr (y|ωi = 0)− Pr (y|ωi = 1))2 (by Cauchy-Schwarz and λ∗ ∈ Λ)

≤
√

2M

εN

∑
y

√
Pr (y) β (y)2

√∑
i

∑
ωi

Pr (y, ωi) ln
Pr (y, ωi)

Pr (y) Pr (ωi)
(by (25))

≤
√

2M

εN

√∑
y

Pr (y) β (y)2

√∑
i

∑
y

∑
ωi

Pr (y, ωi) ln
Pr (y, ωi)

Pr (y) Pr (ωi)
(by Cauchy-Schwarz).

(26)

Note that ∑
y

∑
ωi

Pr (y, ωi) ln
Pr (y, ωi)

Pr (y) Pr (ωi)
= I (Y, ωi) ,

the mutual information between Y and ωi. We have

∑
i

I (Y, ωi) ≤
∑
i

I
(
Y, Âi

)
(by the data-processing inequality)

= I
(
Y, Â

)
(by independence of (âi)i conditional on α)

≤ K (by α ∈ ∆∗KA).

Together with (26), to establish (23) it suffi ces to show that

√
K

N

√∑
y

Pr (y) β (y)2 → 0. (27)

Similarly, to establish (24) it suffi ces to show that

√
K

N

√∑
y

Pr (y) γ (y)2 → 0. (28)
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We first establish (27). Recall that

x (y) =
δ

1− δ (w (y)− v∗) = β (y)λ∗ + γ (y)λ⊥ (y) by (17) and (20), and

v∗ = u (α) + E [x (Y ) |α] by (18).

Since λ∗ · λ∗ = 1, λ∗ · λ⊥ (y) = 0, u (α) ∈ V, v∗ ∈ V, and β (y) ≤ 0, we have

E [β (y)] = λ∗ · (v∗ − u (α)) ∈
[
−ū
√
N, 0

]
. (29)

Moreover, by the Pythagorean theorem, for each y we have

‖x (y)‖2 = β (y)2 + γ (y)2 ⇒ |β (y)| ≤ δ

1− δ ‖w (y)− v∗‖ ≤ ū
√
N

1− δ .

Note that the distribution of β (y) given by β (y) = −ū
√
N/ (1− δ) with probability 1 − δ

and β (y) = 0 with probability δ is a mean-preserving spread of any distribution of β (y)

that satisfies E [β (y)] = −ū
√
N and β (y) ∈

[
−ū
√
N/ (1− δ) , 0

]
for all y. Hence, since (·)2

is convex, Jensen’s inequality implies

∑
y

Pr (y) β (y)2 ≤ (1− δ)
(
− ū
√
N

1− δ

)2

+ δ (0)2 = ū2 N

1− δ .

Therefore, we have

√
K

N

√∑
y

Pr (y) β (y)2 ≤
√
K

N

√
ū2

N

1− δ = ū

√
K

N (1− δ) ,

which converges to 0 whenever (1− δ)N/K →∞. This establishes (27).

We next establish (28). Applying the Pythagorean theorem to the two red triangles in

Figure 2, we have

(
1− δ
δ

γ (y)

)2

≤

 r2 −
(
r −

∣∣1−δ
δ
β (y)

∣∣)2
if
∣∣1−δ
δ
β (y)

∣∣ ≤ r

r2 −
(∣∣1−δ

δ
β (y)

∣∣− r)2
if
∣∣1−δ
δ
β (y)

∣∣ ≥ r
≤ 4r

1− δ
δ
|β (y)| .
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Hence,

∑
y

Pr (y) γ (y)2 ≤ 4
δ

1− δ
∑
y

P (y) r |β (y)| ≤ 4
δ

1− δ r
∣∣∣∣∣∑
y

Pr (y) β (y)

∣∣∣∣∣ , (30)

where the last inequality follows because β (y) ≤ 0 for all y. By (29), we have∣∣∣∣∣∑
y

Pr (y) β (y)

∣∣∣∣∣ = λ∗ · (u (α)− v∗) ≤ ūλ∗ · sign (λ∗) .

Together with (30) and (7), we have

∑
y

Pr (y) γ (y)2 ≤ 4
δ

1− δ rūλ
∗ · sign (λ∗) ≤ 4

δ

1− δ ū
(

2ū2

η
+ ū

)
N.

Therefore,

√
K

N

√∑
y

P (y) γ (y)2 ≤
√
K

N

√
4

δ

1− δ ū
(

2ū2

η
+ ū

)
N =

√
4δū

(
2ū2

η
+ ū

)
K

(1− δ)N ,

which converges to 0 whenever (1− δ)N/K →∞. This establishes (28).

A.2 Proof of Theorem 1.2 (Folk Theorem)

A.2.1 Preliminaries

Fix any η > 0. Recall that {i ∈ y1,t} denotes the event that player i is monitored in period

t. Note that

E [1 {i ∈ y1,t}] =
1

N

⌊
K

dlogMe

⌋
, and Var (1 {i ∈ y1,t}) =

1

N

⌊
K

logM

⌋(
1− 1

N

⌊
K

logM

⌋)
.

To simplify notation, let µ = bK/ logMc /N and let ν = (bK/ logMc /N) (1− bK/ logMc /N).

Note that these variables vary with l along a sequence of repeated games, and µ ≥ 1/N be-

cause bK/ logMc ≥ 1. For any T ∈ N and Ȳ ∈ R+, Bennett’s inequality (Bennett, 1962)
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implies that

Pr

(
T∑
t=1

1 {i ∈ yi,t} ≥ Tµ+ Ȳ

)
≤ exp

(
−Tνh

(
Ȳ

Tν

))
, (31)

where h (x) = (1 + x) log (1 + x)− x is a function that will appear throughout the proof.

We begin with a lemma that will be used to choose T and Ȳ (as a function of l) so that

the bound in (31) is suffi ciently small and some other inequalities used in the proof are also

satisfied.

Lemma 6 There exists l̄ such that, for every l ≥ l̄, there exist T ∈ N and Ȳ ∈ R that satisfy

the following three inequalities:

300ūN exp

(
−Tνh

(
Ȳ

9ūTν

))
≤ η, (32)

32ū
1− δ

1− δT
Ȳ

µ
≤ η, (33)

8ū

(
1− δT

δT
+

1− δ
δT

(
T +

Ȳ

µ

))
≤ η. (34)

Proof. Fix ρ > 0 suffi ciently large so that

logM

27ūρ
<

1

2
, and (35)

32ū logM

ρ
< η. (36)

Next, fix β > 0 suffi ciently small so that

32ūβ logM

1− e−ρβ < η. (37)

24ū
(
eρβ − 1

)
< η, (38)

24ūρβe−ρβ < η, and (39)

24ūβeρβ logM < η. (40)

Such β exists because, since limβ→0 β/
(
1− e−ρβ

)
= 1/ρ, (36) implies that limβ→0 32ūβ log (M)

/
(
1− e−ρβ

)
< η. Finally, let T = bρβ/ (1− δ)c and let Ȳ = (β/ (1− δ)) (K/N). (Thus,

ρ and β are independent of l, while T and Ȳ depend on l.) With T and Ȳ so-defined as
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functions of l, we show that there exists l̄ such that conditions (32)—(34) hold for all l ≥ l̄.

Condition (32): Note that, for any x > 0,

h (x) ≥ x2

2
− x3

3
. (41)

This follows because h (0) = 0 and, for any x > 0,

d

dx
(h (x)) = log (1 + x) ≥ x

1 + x
≥ x (1− x) =

d

dx

(
x2

2
− x3

3

)
.

Note also that, for any x,

d

dx

(
h (x)

x

)
=

1

x
− log (1 + x)

x2
≥ 1

x
− x

x2
= 0. (42)

Hence, letting

x =
logM

9ūρ
=
Ȳ (1− δ)

9ūρβµ
and x′ =

Ȳ

9ūTν
,

and noting that 0 < x < x′ (since ρβ
1−δ ≥ T and µ > ν), we have

N exp

(
−Tνh

(
Y

9ūTν

))
= N exp

(
− Ȳ

9ū

1

x′
h (x′)

)
≤ N exp

(
− Ȳ

9ū

1

x
h (x)

)
(by (42))

≤ N exp

(
− Ȳ

9ū

(
x

2
− x2

3

))
(by (41))

= N exp

(
− βK

(1− δ)N
1

9ū

(
1

2

logM

9ūρ
− 1

3

(
logM

9ūρ

)2
))

= exp

(
− βψK

(1− δ)N + logN

)
,

where

ψ :=
logM

81ū2ρ

(
1

2
− logM

27ūρ

)
> 0 (by (35)).

Since (1− δ) N logN
K
→ 0, there exists l̄1 such that, for all l ≥ l̄1, we have

exp

(
− βψK

(1− δ)N + logN

)
≤ η

300ū
,
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and thus (32) holds.

Condition (33): Since Ȳ = βµ logM
1−δ and liml→∞ δ

T = limδ→1 δ
ρβ
1−δ = e−ρβ, we have

lim
l→∞

32ū
1− δ

1− δT
Ȳ

µ
= lim

l→∞

32ūβ logM

1− δT
=

32ūβ logM

1− e−ρβ < η (by (37)).

Hence, there exists l̄2 such that, for all l ≥ l̄2, (33) holds.

Condition (34): First,

lim
l→∞

8ū
1− δT

δT
= lim

δ→1
8ū

1− δ
ρβ
1−δ

δ
ρβ
1−δ

= 8ū
(
eρβ − 1

)
<
η

3
(by (38)).

Second,

lim
l→∞

8ū
1− δ
δT

T = lim
δ→1

8ū
ρβ

δ
ρβ
1−δ

= 8ū
ρβ

eρβ
<
η

3
(by (39)).

Third,

lim
l→∞

8ū
1− δ
δT

Ȳ

µ
= 8ūeρββ logM <

η

3
(by (40)).

In total, the l → ∞ limit of the left-hand side of (34) is strictly less than η. Hence, there

exists l̄3 such that, for all l ≥ l̄3, (34) holds.

The proof is now completed by taking l̄ = max
{
l̄1, l̄2, l̄3

}
.

A.2.2 Equilibrium Construction

Fix any l, T , and Ȳ that satisfy (32)—(34), as well any v ∈ C (η). For each extreme point v∗ of

Cv (η/2), we construct a PPE in a T -period, finitely repeated game augmented with contin-

uation values drawn from Cv (η/2) that generates payoff vector v∗. By standard arguments,

this implies that Cv (η/2) ⊆ E (Γ), and hence that v ∈ E (Γ).20 Finally, since v ∈ C (η) was

chosen arbitrarily, it follows that C (η) ⊂ E (Γ).

More precisely, for each ζ ∈ {−1, 1}N and v∗ = argmaxv∈Cv(η/2) ζ · v, we construct a

strategy profile σ in a T -period, finitely repeated game (which we call a block strategy profile)

together with a continuation value function w : HT+1 → RN that satisfy
20In particular, at each history hT+1 that marks the end of a block , public randomization is used to select

an extreme point v∗ to be targeted in the following block, with probabilities chosen so that the expected
payoff E [v∗] equals the promised continuation value w

(
hT+1

)
.
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Promise-Keeping. v∗i = Eσ
[
(1− δ)

∑T
t=1 δ

t−1ui,t + δTwi
(
hT+1

)]
for all i ∈ I.

Incentive-Compatibility. σi ∈ argmaxσ̃i E
σ̃i,σ−i

[
(1− δ)

∑T
t=1 δ

t−1ui,t + δTwi
(
hT+1

)]
for

all i ∈ I.

Self-Generation. w
(
hT+1

)
∈ Cv (η/2) for all hT+1. (Note that, since Cv (η/2) is cube with

side-length η and v∗ = argmaxv∈Cv(η/2) ζ · v, this is equivalent to ζ i
(
wi
(
hT+1

)
− v∗i

)
∈

[−η, 0] for all i and hT+1.)

Defining πi
(
hT+1

)
= δT/ (1− δ)

(
wi
(
hT+1

)
− v∗i

)
, these conditions can be rewritten as

Promise-Keeping.

v∗i =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui,t + πi
(
hT+1

)]
for all i. (43)

Incentive-Compatibility.

σi ∈ argmax
σ̃i

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui,t + πi
(
hT+1

)]
for all i. (44)

Self-Generation.

ζ i
1− δ
δT

πi
(
hT+1

)
∈ [−η, 0] for all i and hT+1. (45)

Fix ζ ∈ {−1, 1}N and v∗ = argmaxv∈Cv(η/2) ζ · v. We construct a block strategy profile σ

and continuation value function π which, in the next subsection, we show satisfy these three

conditions. This will complete the proof of the theorem.

First, fix a correlated action profile ᾱ ∈ ∆A such that, for each i,

ui (ᾱ) = v∗i + ζ i
η

2
. (46)

Such an ᾱ exists because v∗ ∈ Cv (η/2) and Cv (η) ⊆ F ∗. Also, fix an arbitrary static Nash

equilibrium αNE ∈ ∆∗A =
∏

i ∆Ai.

Next, for each i ∈ I and α ∈ ∆∗A, we define functions fi,α : Ai → R and gi,α : Ai → R,

which will later be used in constructing σ and π.
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Lemma 7 For each i ∈ I and α ∈ ∆∗A,

1. There exists a function fi,α : Ai → [−3ū, 3ū] such that

ui (ai, α−i) + E [fi,α (âi) |ai, α] = ui (α) for each ai ∈ Ai, (47)

E [fi,α (âi) |α] = 0. (48)

2. There exists a function gi,α : Ai → [−8ū, 8ū] such that

ui (ai, α−i) + E [gi,α (âi) |ai, α−i] = −4ζ iū for each ai ∈ Ai, (49)

ζ igi,α (âi) ≤ 0. (50)

Proof. For part 1, for each ai ∈ Ai, define

∆i,α (ai) = ui (α)− ui (ai, α−i)

and

fi,α (ai) =
1

1− ε

∆i,α (ai)−
ε

Mi

∑
a′i∈Ai

∆i,α (a′i)

 .

We verify that fi,α satisfies the desired conditions, which is a matter of straightforward

algebra. First,

|fi,α (ai)| ≤
1 + ε

1− ε max
ai∈Ai

|∆i,α (ai)| ≤
1 + ε

1− εū ≤ 3ū,
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where the last inequality holds because ε ≤ 1/2. Second,

E [fi,α (âi) |ai, α−i]

= (1− ε) fi,α (ai) +
ε

Mi

∑
a′i∈Ai

fi,α (a′i)

=

∆i,α (ai)−
ε

Mi

∑
a′i∈Ai

∆i,α (a′i)

+
ε

(1− ε)Mi

∑
a′i∈Ai

∆i,α (a′i)−
ε

Mi

∑
a′′i ∈Ai

∆i,α (a′′i )


=

∆i,α (ai)−
ε

Mi

∑
a′i∈Ai

∆i,α (a′i)

+
ε

(1− ε)Mi

∑
a′i∈Ai

∆i,α (a′i)− ε
∑
a′i∈Ai

∆i,α (a′i)


= ∆i,α (ai) .

Finally, E [fi,α (âi) |α] =
∑

ai
αi (ai)E [fi,α (âi) |ai, α−i] =

∑
ai
αi (ai) ∆i,α (ai) = ui (α) −∑

ai
αi (ai)ui (ai, α−i) = 0.

For part 2, for each ai ∈ Ai, let

gi,α (ai) = fi,α (ai)− ui (α)− 4ζ iū.

Since |fi,α (ai)| ≤ 3ū and |ui (α)| ≤ ū, we have |gi,α (ai)| ≤ 8ū. In addition, (47) implies (49),

and (48) (together with |ui (α)| ≤ ū) implies (50).

We now construct the block strategy profile, σ. For each player i ∈ I and period t ∈

{1, . . . , T}, we define a state (Ei,t, Fi,t) ∈ {0, 1}2 for player i in period t, which will determine

player i’s prescribed equilibrium action in period t. The states are determined by the public

history, and so are common knowledge among the players. We first specify players’prescribed

actions as a function of the state, and then specify the state as a function of the public history.

Prescribed Equilibrium Actions: The prescribed equilibrium actions are defined as

follows. For each period t, let at ∈ A be a pure action profile which is drawn by public

randomization at the start of period t from the distribution ᾱ ∈ ∆A fixed in (46).21

21Technically, the public randomization device Zt is always a uniform [0, 1] random variable. Throughout
the proof, whenever we say that a certain variable is “drawn by public randomization,”we mean that its
realization is encoded in the realization of public randomization, independently of the other variables in the
construction. Since we define only a finite number B of such variables, this can be done by, for example,
specifying that if n = bmodB then the nth digit of z is used to encode the realization of the bth such variable
we define.
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1. If Ei,t = Fi,t = 0 for all i ∈ I, the players take at.

2. If Ei,t = 0 for all i and there is a unique player i such that Fi,t = 1, the players

take (a′i, a−i,t) for some a
′
i ∈ BRi (a−i,t) if ζ i = 1, and take

(
a′i, α

min
−i
)
for some a′i ∈

BRi

(
αmin
−i
)
if ζ i = −1, where BRi (α−i) = argmaxai∈Ai ui (ai, α−i) is the set of i’s best

responses to α−i, and αmin
−i ∈ argminα−i∈∆∗A−i maxai∈Ai ui (ai, α−i) is a mixed action

profile that minmaxes player i.

3. If Ei,t = 1 for any i, or if Ei,t = 0 for all i and there is more than one player i such

that Fi,t = 1, the players take αNE.

Given the current state (Ei,t, Fi,t)i∈I and the public randomization realization zt, let

α∗t ∈ ∆∗A be the prescribed equilibrium action profile defined above. (In particular, α∗t ∈{
at, ((a

′
i, a−i,t))i∈I,a′i∈BRi(a−i,t)

,
((
a′i, α

min
−i
))
i∈I,a′i∈BRi(αmin−i ) , α

NE
}
.)

(It may be helpful to informally summarize the prescribed actions. So long as Ei,t = Fi,t =

0 for all players, the players take actions drawn from the target action distribution ᾱ. If

Ei,t = 1 for any player, or if Fi,t = 1 for multiple players, the players take the arbitrary static

Nash equilibrium αNE. The most subtle case is when Ei,t = 0 for all i and there is a unique

player i such that Fi,t = 1. Intuitively, this case will correspond to situations where player i’s

monitored actions are “abnormal,”which later in the proof will imply that her continuation

payoffs cannot be adjusted further without violated the self-generation constraint. In this

case, player i starts taking static best responses. Moreover, if ζ i = −1– so that player i’s

continuation payoff is already “low”– her opponents start minmaxing her.)

States: The first component of player i’s period-t state, Ei,t, is defined as

Ei,t = 1

{
t−1∑
t′=1

1 {i ∈ y1,t′} ≥ µT + Ȳ

}
. (51)

That is, Ei,t is the indicator function for the event that the number of times that player

i’s action has been monitored by period t exceeds the expected number of times that she is

monitored in the entire T -period block by at least Ȳ .

The definition of the second component of player i’s period-t state, Fi,t, is more compli-

cated. At the start of each period t, conditional on the draw of at ∈ A described above, an
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additional random variable ãt ∈ A is also drawn by public randomization, such that ãi,t = ai,t

with probability 1 − ε and ãi,t = a′i,t with probability ε/ (Mi − 1) for each ãi,t 6= a′i,t, inde-

pendently across players i. That is, the distribution of the public randomization draw ãt

conditional on the draw at is the same as the distribution of the realized action profile ât

when the profile of the players’intended actions is at; however, note that the distribution

of ãt depends only on the public randomization draw at, and not on the players’intended

actions. For each player i and period t, let fi,at : Ai → [−3ū, 3ū] be defined as in Lemma 7,

and let

fi,t =


fi,at (âi,t) if Ej,t = Fj,t = 0 for all j ∈ I,

fi,at (ãi,t) if Ej,t = 0 for all j ∈ I, Fi,t = 0, and Fj,t = 1 for some j 6= i,

0 if Ej,t = 1 for some j ∈ I or Fi,t = 1.

(52)

Thus, the value of fi,t depends on the state (Ei,t, Fi,t)i∈I , the target action profile at (which

is drawn from distribution ᾱ as described above), the additional variable ãt, and the realized

action profile ât. (Intuitively, the reason for introducing the variable ãt, rather than simply

taking ât in place of ãt in (52), is that we want to ensure that the distribution of fi,t does

not depend on Fj,t for j 6= i, even though the distribution of âi,t does depend on Fj,t.) Later

in the proof, fi,t will be a component of the “reward”earned by player i in period t, which

will be reflected in player i’s end-of-block continuation payoff function π : HT+1 → R.

We can finally define Fi,t as

Fi,t = 1

{
∃t′ ≤ t :

∣∣∣∣∣
t′−1∑
t′′=1

1 {i ∈ y1,t′′} δt
′′−1fi,t′′

∣∣∣∣∣ ≥ Ȳ

}
. (53)

That is, Fi,t is the indicator function for the event that the magnitude of the component of

player i’s reward captured by (fi,t′′)
t′−1
t′′=1 exceeds Ȳ at any time t′ ≤ t.

This completes the definition of the block strategy profile σ. Before proceeding further,

we note that a unilateral deviation from σ by any player i does not affect the distribution of

the state vector
(

(Ej,t)j , (Fj,t)j 6=i

)T
t=1
. (However, such a deviation can affect the distribution

of (Fi,t)
T
t=1.)
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Lemma 8 For any player i and block strategy σ̃i, the distribution of the random vector(
(Ej,t)j , (Fj,t)j 6=i

)T
t=1

is the same under block strategy profile (σ̃i, σ−i) as under block strategy

profile σ.

Proof. Note first that the distribution of
(

(Ej,t)j

)T
t=1
does not depend on the players’strate-

gies. Now fix a player i and strategy σ̃i. We argue that the distribution of
(

(Ej,t)j , (fj,t)j 6=i

)T
t=1

is the same under (σ̃i, σ−i) as under σ. Since the distribution of
(

(Ej,t)j

)T
t=1

does not de-

pend on anyone’s strategy, and fj,t = 0 whenever Ej′,t = 1 for any player j′ or Fj,t = 1, it

suffi ces to show that, for each t, the distribution of (fj,t)j 6=i:Fj,t=0 conditional on the event

{Ej,t′ = 0 ∀j, t′ ≤ t} and the previous realizations
((
fj,t′
)
j 6=i

)t−1

t′=1
is the same under (σ̃i, σ−i)

and σ. This follows because, conditional on {Ej,t′ = 0 ∀j, t′ ≤ t} and
((
fj,t′
)
j 6=i

)t−1

t′=1
, for any

j 6= i such that Fj,t = 0, if Fj′,t = 0 for all j′ then fj,t = fj,at (âj,t), and âj,t = aj,t with prob-

ability 1 − ε and âj,t = a′j,t with probability ε/ (Mj − 1) for each a′j,t 6= aj,t; and if Fj′,t = 1

for some j′ then fj,t = fj,at (ãj,t), and ãj,t = aj,t with probability 1 − ε and ãj,t = a′j,t with

probability ε/ (Mj − 1) for each a′j,t 6= aj,t. Hence, the distribution of
(

(Ej,t)j , (fj,t)j 6=i

)T
t=1

is the same under (σ̃i, σ−i) and σ, and therefore the distribution of
(

(Ej,t)j , (Fj,t)j 6=i

)T
t=1

is

also the same under these two profiles.

Continuation Value Function: We now construct the continuation value function

π : HT+1 → RN . For each player i and end-of-block history hT+1, player i’s continuation

value πi
(
hT+1

)
will be defined as the sum of T “rewards”πi,t, where t = 1, . . . , T , and a

constant term ci that does not depend on hT+1.

The rewards πi,t are defined as follows:

1. If Ej,t = Fj,t = 0 for all j, then

πi,t = δt−1 1 {i ∈ y1,t}
µ

(
v∗i + ζ i

η

4
− ui (α∗t ) + fi,α∗t (âi,t)

)
. (54)

2. If Ej,t = 0 for all j and player i is the unique player such that Fi,t = 1, then

πi,t = δt−1
(
v∗i + ζ i

η

4
− ui (α∗t )

)
. (55)
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3. If Ej,t = 0 for all j and there exists a player j 6= i such that Fj,t = 1, then

πi,t = δt−1 1 {i ∈ y1,t}
µ

gi,α∗t (âi,t) . (56)

4. If Ej,t = 1 for some j, then πi,t = 0.

The constant ci is defined as

ci = −E


T∑
t=1

δt−1

 (1−maxj∈I Ej,t)

 (1−maxj 6=i Fj,t)
(
v∗i + ζ i

η
4

)
+ (maxj 6=i Fj,t) (−4ζ iū)


+ (maxj∈I Ej,t)ui

(
αNE

)

+

1− δT

1− δ v
∗
i .

(57)

Note that, since (v∗i + ζ iη/4), ui
(
αNE

)
, and v∗i are all feasible payoffs, we have

|ci| ≤ 5
1− δT

1− δ ū. (58)

Finally, for each i and hT+1, player i’s continuation value at end-of-block history hT+1 is

defined as

πi
(
hT+1

)
= ci +

T∑
t=1

πi,t. (59)

A.2.3 Verification of the Equilibrium Conditions

We now verify that σ and π satisfy the promise-keeping, incentive-compatibility, and self-

generation conditions. We first establish that Ei,t = Fi,t = 0 for all i and t with high

probability, and then verify the three desired conditions in turn.

Lemma 9 We have

Pr (Ei,t = 0 for all i ∈ I and t ∈ {1, . . . , T}) ≥ 1− η

100ū
, and (60)

Pr (Fi,t = 0 for all i ∈ I and t ∈ {1, . . . , T}) ≥ 1− η

100ū
. (61)
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Proof. To establish (60), it suffi ces to show that, for each i,

Pr (Ei,T = 1) ≤ 1

N

η

100ū
.

This hold because, by (31) (i.e., Bennett’s inequality), the fact that h (x) is increasing (which

is implied by (42)), and (32), we have

Pr (Ei,T = 1) ≤ exp

(
−Tνh

(
Ȳ

Tν

))
≤ exp

(
−Tνh

(
Ȳ

9ūTν

))
≤ 1

N

η

300ū
≤ 1

N

η

100ū
.

To establish (61), it suffi ces to show that, for each i, Pr
(
maxt Fi,t∈{1,...,T} = 1

)
≤ (1/N) (η/100ū),

or

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

1 {i ∈ y1,t′} δt−1fi,t′

∣∣∣∣∣ ≥ Ȳ

)
≤ 1

N

η

100ū
. (62)

To see this, let f̃i,t = fi,at (ãi,t). Note that the variables
(
f̃i,t

)T
t=1
are independent (unlike the

variables (fi,t)
T
t=1). Since

(
f̃i,t′
)t
t′=1

and (fi,t′)
t
t′=1 have the same distribution if Ej,t = 0 for

all j ∈ I and Fi,t = 0, while fi,t = 0 if Ej,t = 1 for some j ∈ I or Fi,t = 1, we have

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

1 {i ∈ y1,t′} δt−1fi,t′

∣∣∣∣∣ ≥ Ȳ

)
≤ Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

1 {i ∈ y1,t′} δt−1f̃i,t′

∣∣∣∣∣ ≥ Ȳ

)
.

(63)

Since
(
f̃i,t

)T
t=1

are independent, Etemadi’s inequality (Billingsley, 1995; Theorem 22.5) im-

plies that

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

1 {i ∈ y1,t′} δt−1f̃i,t′

∣∣∣∣∣ ≥ Ȳ

)
≤ 3 max

t∈{1,...,T}
Pr

(∣∣∣∣∣
t∑

t′=1

1 {i ∈ y1,t′} δt−1f̃i,t′

∣∣∣∣∣ ≥ Ȳ

3

)
.

(64)

Letting xi,t = 1 {i ∈ y1,t} δt−1f̃i,t, note that |xi,t| ≤ 3ū with probability 1, E [xi,t] = 0,

and Var (xi,t) ≤ (3ū)2 ν. Therefore, by Bennett’s inequality (which again applies because(
f̃i,t

)T
t=1

are independent), the fact that h (x) /x is increasing (by (42)), and (32), we have,
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for each t ≤ T ,

Pr

(∣∣∣∣∣
t∑

t′=1

1 {i ∈ y1,t′} δt
′−1f̃i,t′

∣∣∣∣∣ ≥ Ȳ

3

)
≤ exp

(
−tνh

(
Ȳ

9ūtν

))
≤ exp

(
−Tνh

(
Ȳ

9ūTν

))
≤ 1

N

η

300ū
. (65)

Finally, (63), (64), and (65) together imply (62).

Incentive-Compatibility: The following lemma simplifies the verification of incentive-

compatibility.

Lemma 10 For each player i and block strategy profile σ, incentive-compatibility holds (i.e.,

(44) is satisfied) if and only if

suppσi
(
ht
)
⊆ argmax

ãi,t∈Ai
Eσ−i

[
δt−1ui,t + πi,t|ht, ãi,t

]
for all t and ht. (66)

Proof. We show that player i has a profitable one-shot deviation from σi at some history

ht if and only if (66) is violated at ht. To see this, we first calculate player i’s continuation

payoff under σ from period t + 1 onwards (net of the constant ci and the rewards already

accrued
∑t

t′=1 πi,t′). For any t
′ ≥ t+ 1, there are four cases, which parallel the definition of

the reward πi,t.

1. If Ej,t′ = Fj,t′ = 0 for all j, then by Lemma 7 and (54), we have

Eσ
[
δt
′−1ui,t′ + πi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′) + v∗i + ζ i

η

4
− ui (α∗t′) + E

[
fi,α∗

t′
(âi,t′) |α∗t′

])
= δt−1

(
v∗i + ζ i

η

4

)
.

2. If Ej,t = 0 for all j and player i is the unique player such that Fi,t = 1, then by Lemma

7 and (55) we have

Eσ
[
δt
′−1ui,t′ + πi,t′ |ht

′
]

= δt
′−1
(
ui (α

∗
t′) + v∗i + ζ i

η

4
− ui (α∗t′)

)
= δt−1

(
v∗i + ζ i

η

4

)
.

3. If Ej,t = 0 for all j and there exists a player j 6= i such that Fj,t = 1, then by Lemma
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7 and (56), we have

Eσ
[
δt
′−1ui,t′ + πi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′) + E

[
gi,α∗

t′
(âi,t′) |α∗t′

])
= δt−1 (−4ζ iū) .

4. If Ej,t = 1 for some j, then πi,t = 0, so we have

Eσ
[
δt
′−1ui,t′ + πi,t′|ht

′
]

= ui
(
αNE

)
.

In total, player i’s continuation payoff under σ from period t+ 1 onwards equals

Eσ
 T∑
t′=t+1

δt
′−1

 (1−maxj Ej,t′)
(
(1−maxj 6=i Fj,t′)

(
v∗i + ζ i

η
4

)
+ (maxj 6=i Fj,t′) (−4ζ iū)

)
+ (maxj Ej,t′)ui

(
αNE

)
 .

By Lemma 8, the distribution of
(

(Ej,t′)j , (Fj,t′)j 6=i

)T
t′=t+1

does not depend on player i’s

period-t action, and hence neither does player i’s continuation payoff under σ from period

t + 1 onwards. Therefore, player i’s period-t action ãi,t maximizes her continuation payoff

from period t onwards if and only if it maximizes Eσ−i [δt−1ui,t + πi,t|ht, ãi,t].

We now verify (66). Fix a player i, period t, and history ht. We again consider four

cases.

1. If Ej,t = Fj,t = 0 for all j, then for each action ãi,t, by Lemma 7 and (54) (and recalling

that α∗t = at when Ej,t = Fj,t = 0 for all j), we have

Eσ−i
[
δt−1ui,t + πi,t|ht, ãi,t

]
= δt−1

(
ui (ãi,t, a−i,t) + v∗i + ζ i

η

4
− ui (at) + E [fi,at (âi,t) |ãi,t, a−i,t]

)
= δt−1

(
v∗i + ζ i

η

4
− ui (at)

)
.

Since this does not depend on ãi,t, (66) holds.

2. If Ej,t = 0 for all j and player i is the unique player such that Fi,t = 1, then the reward

πi,t specified by (55) does not depend on ht. Hence, (66) reduces to the condition that

every action in suppσi (h
t) is a static best responses to σ−i (ht). This conditions holds

for the prescribed action profile, (a′i ∈ BRi (a−i,t) , a−i,t) or
(
a′i ∈ BRj

(
αmin
−i
)
, αmin
−i
)
.
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3. If Ej,t = 0 for all j and there exists a player j 6= i such that Fj,t = 1, then for each

action ãi,t, by Lemma 7 and (56), we have

Eσ−i
[
δt−1ui,t + πi,t|ht, ãi,t

]
= δt−1

(
ui
(
ãi,t, α

∗
−i,t
)

+ E
[
gi,α∗t (âi,t) |ãi,t, α∗−i,t

])
= δt−1 (−4ζ iū) .

Since this does not depend on ãi,t, (66) holds.

4. If Ej,t = 1 for some j, then πi,t = 0, so (66) reduces to the condition that every

action in suppσi (h
t) is a static best responses to σ−i (ht). This condition holds for the

prescribed action profile, αNE.

Promise Keeping: By the definition of πi, we have

1− δ
1− δT

Eσ
[

T∑
t=1

δt−1ui,t + πi
(
hT+1

)]

=
1− δ

1− δT

E


T∑
t=1

δt−1

 (1−maxj Ej,t)

 (1−maxj 6=i Fj,t)
(
v∗i + ζ i

η
4

)
+ (maxj 6=i Fj,t) (−4ζ iū)


+ (maxj Ej,t)ui

(
αNE

)

+ ci


= v∗i .

Self Generation: We first show that ζ iπi
(
hT+1

)
≤ 0 for every end-of-block history

hT+1, and then show that ζ i
(
(1− δ) /δT

)
πi
(
hT+1

)
≥ −η for every hT+1.

We first claim that, for every end-of-block history hT+1,

ζ i

T∑
t=1

πi,t ≤
Ȳ + 3ū

µ
. (67)

To see this, first note that if Ej,t = 1 for some j or Fj,t = 1 for some j 6= i, then (56) and

Lemma 7 imply that ζ iπi,t ≤ 0. Similarly, if Ej,t = 0 for each j ∈ I and i is the unique player

with Fi,t = 1, then (55) and (46) imply that

ζ iπi,t = δt−1
(
v∗i + ζ i

η

4
− ui (α∗t )

)
= δt−1

(
v∗i + ζ i

η

4
−
(
v∗i + ζ i

η

2

))
= −δt−1η

4
≤ 0.
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Hence, (54) implies that

ζ i

T∑
t=1

πi,t ≤ ζ i

T∑
t=1

1 {Ej,t = Fj,t = 0 ∀j ∈ I} δt−1 1 {i ∈ y1,t}
µ

(
v∗i + ζ i

η

4
− ui (at) + fi,at (âi,t)

)
.

Since Fi,t+1 = 1 whenever Ej,t = Fj,t = 0 for all j and
∣∣∣∑t′=1,..,t δ

t−11 {i ∈ y1,t} fi,at′ (âi,t′)
∣∣∣ ≥

Ȳ , and in addition v∗i + ζ iη/4−ui (at) ≤ 0 and |fi,at (âi,t)| ≤ 3ū, this inequality implies (67).

Next, by (57), we have

ζ ici = −ζ i

E


T∑
t=1

δt−1

 (1−maxj Ej,t)

 (1−maxj 6=i Fj,t)
(
v∗i + ζ i

η
4

)
+ (maxj 6=i Fj,t) (−4ζ iū)


+ (maxj Ej,t)ui

(
αNE

)

− 1− δT

1− δ v
∗
i



= −ζ i

E


T∑
t=1

δt−1

 (1−maxj Ej,t)

 (1−maxj 6=i Fj,t)
(
ζ i
η
4

)
+ (maxj 6=i Fj,t) (−4ζ iū− v∗i )


+ (maxj Ej,t)

(
ui
(
αNE

)
− v∗i

)




≤ −1− δT

1− δ

((
1− η

100ū

) η
4
− η

100ū
5ū
)

(by (60))

≤ −1− δT

1− δ
η

8
(68)

Finally, for each hT+1, we have

ζ iπi
(
hT+1

)
= ζ i

(
ci +

T∑
t=1

πi,t

)
≤ −1− δT

1− δ
η

8
+
Ȳ + 3ū

µ
(by (67) and (68))

≤ 1− δT

8 (1− δ)

(
−η + 32ū

1− δ
1− δT

Ȳ

µ

)
≤ 0 (by ū ≥ 1 and (33)).

We now show that ζ i
(
(1− δ) /δT

)
πi
(
hT+1

)
≥ −η for every end-of-block history hT+1.

Note that |πi,t| ≤ 3ū+ (1 {i ∈ yi,t} /µ) 5ū for all t, and that πi,t = 0 if |{t′ ≤ t : i ∈ y1,t′}| ≥
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µT + Ȳ . Since |ci| ≤
((

1− δT
)
/ (1− δ)

)
5ū (by (58)), we have

1− δ
δT

∣∣πi (hT+1
)∣∣ ≤ 1− δ

δT

(
1− δT

1− δ 5ū+

T∑
t=1

δt−13ū+
(
µT + Ȳ

) 5ū

µ

)

=
1− δT

δT
8ū+

1− δ
δT

(
T +

Ȳ

µ

)
5ū ≤ η (by (34)).
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B Online Appendix

B.1 A Public-Goods Game

Consider the public-goods game where each player chooses Contribute or Don’t Contribute,

and a player’s payoff is the fraction of players who contribute less a constant c ∈ (0, 1)

(independent of N) if she contributes herself. Fix any v ∈ (0, 1− c), let v = (v, . . . , v) ∈ RN ,
and let η∗ = cv (1− c− v) /4 > 0. We show that Cv (η∗) ⊆ V∗ for all N .
To see this, fix any N . Since the game is symmetric, it suffi ces to show that, for any

number n ∈ {0, . . . , N}, there exists a feasible payoffvector where n “favored”players receive
payoffs no less than v+ η∗, and the remaining N − n “disfavored”players receive payoffs no
more than v − η∗. Fix such an n, and let x = n/N .

Consider the mixed action profile α1 where favored players Contribute with probability

(v + η∗) / (1− c) ∈ (0, 1) and disfavored players always Contribute. At this profile, favored

players receive payoff

f (x) := x
v + η∗

1− c + (1− x) (1)− cv + η∗

1− c ,

while disfavored players receive payoff

g (x) := x
v + η∗

1− c + (1− x) (1)− c.

Note that f ′ (x) < 0, so f (x) ≥ f (1) = v + η∗.

Now, with f (x) so defined, consider the mixed action profile α2 where favored players

Contribute with probability (v + η∗)2 / ((1− c) f (x)) ∈ (0, 1) and disfavored players Con-

tribute with probability (v + η∗) /f (x) ∈ (0, 1). Note that each player’s payoff at profile α2

equals her payoff at profile α1 multiplied by (v + η∗) /f (x). Therefore, at profile α2, favored

players receive payoff

f (x)
v + η∗

f (x)
= v + η∗,

while disfavored players receive payoff

g (x)
v + η∗

f (x)
=

(
f (x)−

(
1− v + η∗

1− c

)
c

)
v + η∗

f (x)

≤ v + η∗ −
(

1− v + η∗

1− c

)
c (v + η∗) (since f (x) ≤ 1)

≤ v − η∗,
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where the last inequality follows from η∗ = cv (1− c− v) /4 and straightforward algebra.

B.2 Proof of Theorem 2.1 (Anti-Folk Theorem)

Fix a monitoring structure (Y , p). By standard arguments, the set ES is a closed interval:

ES =
[
vS, v̄S

]
for some vS ≤ v̄S.

Lemma 11 There exist α ∈ ∆∗A and x : Y →R such that

v̄S = u (ᾱ)− E [x (y) |ᾱ] ,

suppα ⊆ argmax
a0∈A0

u
(
a0, ᾱ

−i)− E [x (y) |a0, ᾱ
−i] for all i,

x (y) ∈
[
0,

δ

1− δ ū
]
for all y.

If the constraint x (y) ∈ [0, (δ/ (1− δ)) ū] is replaced with x (y) ∈ [− (δ/ (1− δ)) ū, 0], then

the same statement holds with vS in place of v̄S

Proof. By standard arguments, ES is self-generating: for any v ∈ ES, there exist α and

w : Y →ES such that

v = (1− δ)u (α) + δE [w (y) |α] and

suppα ⊆ argmax
a0∈A0

u
(
a0, ᾱ

−i)+ δE
[
w (y) |a0, ᾱ

−i] for all i.
Since v̄S is the greatest SSE payoff, if v = v̄S then w (y) ≤ v for all y ∈ Y. Hence, taking
v = v̄S = (1− δ)u (α) + δE [w (y) |α] and defining x (y) = (δ/ (1− δ))

(
v̄S − w (y)

)
≥ 0 for

all y, we have

u (a)− E [x (y) |a] = u (a)− E
[

δ

1− δ
(
v̄S − w (y)

)
|a
]

= (1− δ)u (a) + δE [w (y) |a]

for all a, and x (y) ≤ (δ/ (1− δ)) ū, and the result follows. Similarly, if v = vS then w (y) ≥ v

for all y ∈ Y, and the symmetric argument applies.
Lemma 11 implies that v̄S is bounded by the solution to the program

max
α,x

u (ᾱ)− E [x (y) |ᾱ] s.t.

u
(
a0, ᾱ

−i)− u (ᾱ) ≤ E
[
x (y) |a0, ᾱ

−i]− E [x (y) |ᾱ] for all a0,

x (y) ∈
[
0,

δ

1− δ ū
]
for all y,

|E [x (y) |ᾱ]| ≤ ū.
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We show that, for every monitoring structure (Y , p), every α, every x : Y →R satisfying the
constraints of this program, and every η > 0, there exists l̄ such that, whenever l ≥ l̄, we

have E [x (y) |a0, ᾱ
−i] − E [x (y) |ᾱ] ≤ η for all a0. This implies that u (a0, ᾱ

−i) − u (ᾱ) ≤ η

for all a0, and hence that v̄S is no greater than maxα∈A0(η) u (ᾱ), which completes the proof.

(The argument for vs ≥ minα∈A0(η) u (ᾱ) is symmetric.)

To show this, fix α and a0, and consider the problem

max
Y,p,x

E
[
x (y) |a0, ᾱ

−i]− E [x (y) |ᾱ] s.t.

x (y) ∈
[
0,

δ

1− δ ū
]
for all y, (69)

|E [x (y) |ᾱ]| ≤ ū. (70)

Let d denote the value of this problem. We show that if (1− δ) exp (N1−ρ) → ∞ for some

ρ > 0 then d→ 0, which completes the proof.

Lemma 12 There exists a solution (Y , p, x) to the above problem that takes the form of

a tail test: Y= {0, 1}, x (0) = 0, x (1) = (δ/ (1− δ)) ū, and there exists a number n∗ ∈
{0, 1, . . . , N} such that

p (1|â)


= 1 if |{i : âi = â0}| > n∗

∈ [0, 1] if |{i : âi = â0}| = n∗

= 0 if |{i : âi = â0}| < n∗
. (71)

Proof. We first show that there exists a solution satisfying Y= {0, 1}, x (0) = 0, and

x (1) = (δ/ (1− δ)) ū. Fix any solution, and suppose there exists y ∈Y such that x (y) ∈
(0, (δ/ (1− δ)) ū). If we replace this y with two signals (y−, y+) and specify that

p
(
y−|â

)
=

(1− δ)x (y)

δū
p (y|â) for every â,

p
(
y+|â

)
=

(
1− (1− δ)x (y)

δū

)
p (y|â) for every â,

x
(
y−
)

=
δ

1− δ ū, and x
(
y+
)

= 0,

then the resulting triple (Y , p, x) also satisfies (45) and (70), and yields the same value

for E [x (y) | (a0, ᾱ
−i)] − E [x (y) |ᾱ]. Repeatedly applying this variation for each y yields a

solution satisfying x (y) ∈ {0, ū/ (1− δ)} for all y. We may then identify all signals y such
that x (y) = (δ/ (1− δ)) ū with a single signal y = 1, and identify all signals y such that

x (y) = 0 with a single signal y = 0.
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We next show that there exists such a solution that further satisfies p (1|â) = p (1|â′)
for all â, â′ such that |{i : âi = a0}| = |{i : â′i = a0}|. Fix any solution satisfying Y= {0, 1},
x (0) = 0, and x (1) = (δ/ (1− δ)) ū, and fix any n. Let p̃ (1|â) = p (1|â) for all â such that

|{i : âi = a0}| 6= n, and let

p̃ (1|â) =

∑
â′:|{i:â′i=a0}|=n p (1|â′) Pr (â′|ᾱ)∑

â′|{i:â′i=a0}|=n Pr (â′|ᾱ)
.

for all â such that |{i : âi = a0}| = n. For any a0 and any a∗ ∈ AN such that |{i : a∗i = a0}| =
n, ∑

â

p (1|â) Pr
(
â|a0, ᾱ

−i)
=

∑
â:|{i:âi=a0}|6=n

p (1|â) Pr
(
â|a0, ᾱ

−i)+
∑

â:|{i:âi=a0}|=n

p (1|â) Pr
(
â|a0, ᾱ

−i)

=
∑

â:|{i:âi=a0}|6=n

p̃ (1|â) Pr
(
â|a0, ᾱ

−i)+

 ∑
â|{i:âi=a0}|=n

Pr (â|ᾱ)

∑â:|{i:âi=a0}|=n p (1|â) Pr (â|a0, ᾱ
−i)∑

â|{i:âi=a0}|=n Pr (â|ᾱ)

=
∑

â:|{i:âi=a0}|6=n

p̃ (1|â) Pr
(
â|a0, ᾱ

−i)+

 ∑
â|{i:âi=a0}|=n

Pr (â′|ᾱ)

 p̃ (1|a∗)

=
∑
â

p̃ (1|â) Pr
(
â|a0, ᾱ

−i) .
Hence, p̃ and p yield the same value in the above program. Repeatedly applying this variation

for each n yields a solution satisfying p (1|â) = p (1|â′) for all â, â′ such that |{i : âi = a0}| =
|{i : â′i = a0}|.
Finally, we show that there exists such a solution that further satisfies (71) for some

n∗ ∈ N. Denote the probability that a player’s realized action under α differs from a0 by χ =

1− ε/ (M0 − 1)−α (a0) (1−M0ε/ (M0 − 1)) ∈ (ε, 1− ε/ (M0 − 1)). For n ∈ {0, . . . , N} and
any â such that |{i : âi = a0}| = n, let pn = p (1|â), and let Pn = Pr (|{i 6= 1 : âi = a0}| = n),
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given by Pn =
(
N−1
n

)
(1− χ)n χN−1−n. Note that

Pr (y = 1|ᾱ) = (1− χ)

N−1∑
n=0

Pnpn+1 + χ

N−1∑
n=0

Pnpn and

Pr
(
y = 1|a0, ᾱ

−i) = (1− ε)
N−1∑
n=0

Pnpn+1 + ε

N−1∑
n=0

Pnpn, and so

Pr
(
y = 1|a0, ᾱ

−i)− Pr (1|ᾱ) = (χ− ε)
N−1∑
n=0

Pn (pn+1 − pn) .

The problem becomes

max
(pn)n∈[0,1]N+1

(χ− ε)
N−1∑
n=0

Pn (pn+1 − pn) s.t.

N−1∑
n=0

Pn ((1− χ) pn+1 + χpn) ≤ 1− δ
δ

. (72)

Letting λ ≥ 0 be the multiplier on (72), the Lagrangian is

max
(pn)n∈[0,1]N+1

N−1∑
n=0

Pn ((χ− ε− λ (1− χ)) pn+1 − (χ− ε+ λχ) pn) ,

with solution

pn


= 1 if Pn

Pn+1
> χ−ε+λχ

χ−ε−λ(1−χ)

∈ [0, 1] if Pn
Pn+1

= χ−ε+λχ
χ−ε−λ(1−χ)

= 0 if Pn
Pn+1

< χ−ε+λχ
χ−ε−λ(1−χ)

.

Since the binomial distribution is log-concave, Pn/Pn+1 is increasing, so (71) holds for some

n∗ ∈ {0, . . . , N} .
We now show that, for any η > 0, there exists l̄ such that, for every l ≥ l̄, we have d ≤ η.

Let n = |{i : âi = a0}| and let n−i = |j 6= i : âj = a0|. Note that, for any n∗

Pr
(
n = n∗|a0, ᾱ

−i) = (1− ε) Pr
(
n−i = n∗ − 1|ᾱ−i

)
+ εPr

(
n−i = n∗|ᾱ−i

)
, and

Pr (n = n∗|ᾱ) = (1− χ) Pr
(
n−i = n∗ − 1|ᾱ−i

)
+ χPr

(
n−i = n∗|ᾱ−i

)
,

and hence

Pr
(
n ≥ n∗|a0, ᾱ

−i)− Pr
(
n ≥ n∗|ᾱ−i

)
= (χ− ε) Pr

(
n−i = n∗ − 1|ᾱ−i

)
.

57



Therefore, by Lemma 12, d is given by

max
n∗∈{0,1,...,N},β∈[0,1]

δ

1− δ ū (χ− ε)
(
β Pr

(
n−i = n∗ − 1|ᾱ−i

)
+ (1− β) Pr

(
n−i = n∗|ᾱ−i

))
(73)

s.t. β Pr (n = n∗|ᾱ) + Pr (n ≥ n∗ + 1|ᾱ) ≤ 1− δ
δ

, (74)

where

Pr
(
n−i = n∗|ᾱ−i

)
=

(
N − 1

n∗

)
(1− χ)n

∗
χN−1−n∗ and

Pr (n = n∗|ᾱ) =

(
N

n∗

)
(1− χ)n

∗
χN−n

∗
.

Fix a sequence of games Γ (with (1− δ) exp (N1−ρ) → ∞ for some ρ > 0) and pairs

(n∗, β) indexed by l that satisfy the constraint (74). Suppose towards a contradiction that,

for every l̄, there is some l ≥ l̄ such that the value of the objective (73) exceeds η. Taking a

subsequence and relabeling l̄ if necessary, this implies that there exists l̄ such that, for every

l ≥ l̄, the value of the objective (73) exceeds η.

We consider two cases, and derive a contradiction in each of them.

First, suppose that there exists c > 0 such that, for every l̃, there is some l ≥ l̃ satisfying

|1− χ− (n∗ − 1) / (N − 1)| > c. By Hoeffding’s inequality,

β Pr
(
n−i = n∗ − 1|ᾱ−i

)
+ (1− β) Pr

(
n−i = n∗|ᾱ−i

)
≤ Pr

(
n−i ≥ n∗ − 1|ᾱ−i

)
≤ exp

(
−2

(
1− χ− n∗ − 1

N − 1

)2

(N − 1)

)
.

Hence, for every l̃, there is some l ≥ l̃ such that the value of (73) is at most

δ

1− δ ū (χ− ε) exp

(
−2

(
1− χ− n∗ − 1

N − 1

)2

(N − 1)

)
≤ δ

1− δ ū (χ− ε) exp
(
−2c2 (N − 1)

)
.

Since (1− δ) exp (N1−ρ) → ∞, we have exp (−c2N) / (1− δ) → 0 for all c > 0, and hence

(73) is less than η for suffi ciently large l, a contradiction.

Second, suppose that for any c > 0, there exists l̃ such that, for every l ≥ l̃, we have∣∣∣∣1− χ− n∗ − 1

N − 1

∣∣∣∣ ≤ c. (75)
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Note that

β Pr (n = n∗|ᾱ) + Pr (n ≥ n∗ + 1|ᾱ)

Pr (n−i = n∗|ᾱ−i) ≥ Pr (n ≥ n∗ + 1|ᾱ)

Pr (n−i = n∗|ᾱ−i)

=
N∑

n=n∗+1

Nχ

N − n∗
(N − n∗)!n∗!
(N − n)!n!

(
1− χ
χ

)n−n∗

=
N∑

n=n∗+1

Nχ

N − n∗

N−n∗
N

χ

N−n∗−1
N

χ
· · ·

N−n
N

χ
n
N

1−χ

n−1
N

1−χ · · ·
n∗
N

1−χ

.

By (75), for each k and γ > 0, there exists l̃ such that, for every l ≥ l̃, we have

Nχ

N − n∗

N−n∗
N

χ

N−n∗−1
N

χ
· · ·

N−n
N

χ
n
N

1−χ

n−1
N

1−χ · · ·
n∗
N

1−χ

≥ 1− γ for each n∗ + 1 ≤ n ≤ n∗ + k,

and hence
β Pr (n = n∗|ᾱ) + Pr (n ≥ n∗ + 1|ᾱ)

Pr (n−i = n∗|ᾱ−i) ≥ k (1− γ) .

Similarly, for each k and γ > 0, there exists l̃ such that, for every l ≥ l̃, we have

β Pr (n = n∗|ᾱ) + Pr (n ≥ n∗ + 1|ᾱ)

Pr (n−i = n∗ − 1|ᾱ−i) ≥ k (1− γ) .

Thus, for each k and γ > 0, there exists l̃ such that, for every l ≥ l̃, we have

β Pr (n = n∗|ᾱ) + Pr (n ≥ n∗ + 1|ᾱ)

β Pr (n−i = n∗ − 1|ᾱ−i) + (1− β) Pr (n−i = n∗|ᾱ−i) ≥ k (1− γ) ,

and therefore

δ

1− δ ū (χ− ε)
(
β Pr

(
n−i = n∗ − 1|ᾱ−i

)
+ (1− β) Pr

(
n−i = n∗|ᾱ−i

))
≤ ū (χ− ε) β Pr (n−i = n∗ − 1|ᾱ−i) + (1− β) Pr (n−i = n∗|ᾱ−i)

β Pr (n = n∗|ᾱ) + Pr (n ≥ n∗ + 1|ᾱ)
(by (74))

≤ ū (χ− ε)
k (1− γ)

.

Taking k and γ such that ū (χ− ε) / (k (1− γ)) < η gives a contradiction.
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B.3 Proof of Theorem 2.2 (Folk Theorem)

Proof of Theorem 2.2(a). Fix ā0 such that u (ā0) = v̄ and maxa∈A0 u
(
a, ā−i0

)
− v̄ =

d, fix αN such that ᾱN is a static Nash equilibrium and u
(
ᾱN
)

= vN , and fix η ∈(
lim sup (M0−1)εd

M0−1−2ε
, lim inf v̄−v

N

2

)
. We construct an equilibrium that yields expected payoff

v̄ − η. An equilibrium that yields any payoff v ∈
[
vN , v̄ − η

]
is then given by using public

randomization to appropriately mix between this equilibrium and the infinite repetition of

ᾱN .

Define (Y , p) by letting Y= {0, 1}, p (y = 1|â) = 0 if âi = a0 for any player i ∈ I, and
p (y = 1|â) = 1 if âi 6= a0 for all i ∈ I. Consider Nash reversion strategies where all players
start by taking ā0 and, in each period, permanently switch to ᾱN with probability β if y = 1

(coordinated by public randomization), for some β ∈ (0, 1) to be determined, and never

switch if y = 0. We show that there exists a value for β such that these strategies yield

expected payoff v̄ − η and form an equilibrium.

Note that, when all players take a0, Pr (âi 6= a0 ∀i) = εN , and hence Pr (y = 1) = εN . If

instead one player takes an action other than a0, then Pr (âi 6= a0 ∀i) = (1− ε/ (M0 − 1)) εN−1,

and hence Pr (y = 1) = (1− ε/ (M0 − 1)) εN−1. Therefore, taking a0 is optimal before the

“switch”iff

(1− δ) v̄ + δ
(
εNβvN +

(
1− εNβ

)
(v̄ − η)

)
≥ (1− δ) max

a∈A0
u
(
a, ā−i0

)
+ δ

((
1− ε

M0 − 1

)
εN−1βvN +

(
1−

(
1− ε

M0 − 1

)
εN−1β

)
(v̄ − η)

)
, or

β ≥ 1

εN−1
(

1− 2ε
M0−1

) 1− δ
δ

d

v̄ − vN − η . (76)

Since taking αN is clearly optimal after the switch, the prescribed strategies form an equi-

librium whenever (76) is satisfied. Moreover, the prescribed strategies yield expected payoff

v̄ − η iff

(1− δ) v̄ + δ
(
εNβvN +

(
1− εNβ

)
(v̄ − η)

)
= v̄ − η, or

β =
1

εN
1− δ
δ

η

v̄ − vN − η . (77)

If (1− δ) exp (N1+ρ)→ 0 for some ρ > 0 then (1− δ) /εN → 0. Together with the assump-

tion that η < lim inf
(
v̄ − vN

)
/2, this implies that β ∈ (0, 1) for suffi ciently large l. Finally,
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(76) is satisfied for this value of β iff

1

εN
1− δ
δ

η

v̄ − vN − η ≥ 1

εN−1
(

1− 2ε
M0−1

) 1− δ
δ

d

v̄ − vN − η , or

η ≥ (M0 − 1) εd

M0 − 1− 2ε
.

Since η > lim sup (M0−1)εd
M0−1−2ε

, this holds for suffi ciently large l, which completes the proof.

Proof of Theorem 2.2(b). The proof is parallel to that of part (a), except that now the
target action ā0 satisfies u (ā0) = v and maxa∈A0 u

(
a, ā−i0

)
− v = d, reversion a static Nash

equilibrium yielding payoff v̄N occurs with positive probability β only if âi = a0 for every

player i. The condition required for these strategies to form an equilibrium is the same as

(76), and the condition required for them to yield expected payoff v+ η is the same as (77),

except with (1− ε)N−1 in place of εN−1 in both equations. Hence, (76) (with (1− ε)N−1 in

place of εN−1) is satisfied for the required value of β iff

1

(1− ε)N
1− δ
δ

η

v̄N − v − η ≥ 1

(1− ε)N−1
(

1− 2ε
M0−1

) 1− δ
δ

d

v̄N − v − η , or

η ≥ (M0 − 1) (1− ε) d
M0 − 1− 2ε

.

Since η > lim sup (M0−1)(1−ε)d
M0−1−2ε

, this holds for suffi ciently large l, which completes the proof.
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