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Abstract

We propose a new method for generating random correlation matrices that makes it simple to

control both location and dispersion. The method is based on a vector parameterization, “ = g(C),

that shows that any distribution on Rn(n≠1)/2 translates to a distribution on the space of non-singular

n ◊ n correlation matrices. Correlation matrices with certain particular structures, such as block

structures and strictly positive correlations are simple to generate. We compare the new method

with existing methods.
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1 Introduction

The correlation matrix plays a central role in many multivariate models. Random correlation matrices

are commonly used in Bayesian analysis to specify priors and are used in frequentist analysis for the

purpose of investigating properties of estimators, hypothesis tests, and other statistics. Generating

random n ◊ n correlation matrices can become onerous when particular features or structures are

required for the correlation matrix. A variety of methods have been proposed in the literature to serve

di�erent needs, see Pourahmadi (2011) for a review. In this paper, we propose a novel method for

generating random correlation matrices that is well-suited for a wide range of objectives. It can, in

principle, be used to generate random correlation matrices with any distribution on the set on non-

singular correlation matrices. Positive definite correlation matrices are guaranteed and it is simple to

control both the location and dispersion of the correlation matrix. It is also possible to generate random

correlation matrices with some specific structures, such as block structures and correlation matrices

with the Perron-Frobenius property.

The paper is organized as follows. We introduced the new method for generating random correlation

matrices in Section 2 and discuss several features and structures that can be generated with the new

method. In Section 3, we review some existing methods for generating random correlation matrices

and discuss their properties.

2 Random Correlation Matrices: A New Method

The proposed method for generating random correlation matrices is based on the following vector

parameterization of non-singular correlation matrices,

“ = g(C) := vecl(log C),

where the operator vecl(·) vectorizes the lower o�-diagonal elements and log C is the matrix logarithm1

of C. For an n ◊ n correlation matrix the vector, “ = g(C), has dimension d = n(n ≠ 1)/2. This

parametrization was introduced in Archakov and Hansen (2021), who showed that g is a one-to-one

correspondence between the set of n ◊ n non-singular correlation matrices, denoted Cn◊n, and Rd. So,

any vector, “ œ Rd, corresponds to a unique correlation matrix C(“) © g≠1(“).

The new method for generating a random correlation matrices is simply to draw “ from a distribution
1The matrix logarithm for a non-singular correlation matrix with eigendecomposition, C = Q�QÕ, is given by log C =

Q log �QÕ, where log � = diag(log ⁄1, . . . , log ⁄n).
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on Rd and compute C(“).2 It follows that the mapping, “ ‘æ C(“), will induce a distribution on Cn◊n

from any distribution on Rd. For instance, the density, f“(“), on Rd, will translate to the density

fC(C) = f“(g(C))|Â(C)|, on Cn◊n,

where Â(C) is the determinant of d“/dÍ and Í = veclC is the vector with the correlation coe�cients

in C. A simple example, for the case n = 2, is the logistic density, f“(“) = 2e≠2“/(1 + e≠2“)2, that

translates to a random 2◊2 correlation matrix where the correlation coe�cient is uniformly distribution

on [≠1, 1], see Theorem 2 below.

The new method for generating random correlation matrices can be used to generate correlation

matrices with some specific features that we discuss in the subsections below.

2.1 Correlation Coe�cients with Identical Marginal Distributions

Some of the existing methods for generating random correlation matrices are carefully crafted to gen-

erate correlation coe�cients with identical marginal distributions (typically a Beta-distributions).

Theorem 1 (Permutation invariance). Let P œ Rn◊n be a permutation matrix and let “i = › + Ái,

where Ái, i = 1, . . . , d, are independent and identically distribution and independent of the common

random variables, ›. Then C(“) and C̃ = PC(“)P Õ are identically distributed on Cn◊n.

An immediate implication of Theorem 1 is that all the marginal distributions of the correlations,

flij , i ”= j are identical, whenever the elements of “ are independent and identically distributed., i.e.

the case were › = 0. More generally, the vector of correlations in the upper left principal submatrix,

Í = vecl[C(“)]i,j=1,...,k] œ Rk(k≠1)/2 has the same distribution as the vector of correlations corresponding

to any other principal submatrix, Í̃ = vecl[C(“)]i,jœ{i1,...,ik}], for some {i1, . . . , ik} µ {1, . . . , n}. Existing

methods for generating random correlation matrices can produce identically distributed correlation

coe�cients with a symmetric Beta distributions on [≠1, 1], as we detail in the Section 3. Theorem 1

shows that the new method makes it is possible to generate identically distributed correlation coe�cients

with a wide range of distributions, beyond Beta distributions. Theorem 1 can be generalized to the

case where
2A simple algorithm for computing C(“) is given in Archakov and Hansen (2021).
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(a) “ ≥ N3(0, I) (b) “ ≥ N3(0, 1
4 I) (c) “ ≥ N3(0, 1

16 I) (d) “ ≥ N3(0, 1
64 I)

(e) “ ≥ N3(“0, I) (f) “ ≥ N3(“0, 1
4 I) (g) “ ≥ N3(“0, 1

16 I) (h) “ ≥ N3(“0, 1
64 I)

Figure 1: Properties of random 3◊3 correlation matrices generated with “ ≥ iidN(µi, Ê2
j ), with µ0 = 0

(upper panels) µ2 = 1
3 log 4 (lower panels) and Ê2

j = 1, 1
4 , 1

16 , and 1
64 from left to right. In each panel

we show: The marginal distribution of flij ; Contour plot for the bivariate distribution of (fl12, fl13); and
the densities of ordered eigenvalues of C.

4



We illustrate the new method for generating random correlation matrices based on a Gaussian

distributed “. Key features of the resulting random correlation matrices are shown in Figure 1 for

the case where n = 3. Panels (a)-(d) corresponds to the case where “i ≥ iidN(0, Ê2), i = 1, 2, 3,

such that the random correlation matrices are located about C = I3. Panels (e)-(h) are based on

“i ≥ iidN(1
3 log 4, Ê2). This leads to random correlation matrices about the equicorrelation matrix

S

WWWWU

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

T

XXXXV
= C(“ú), “ú = log 4

3

S

WWWWU

1

1

1

T

XXXXV

We display the marginal distributions for the correlation coe�cients (upper panels), contour plots for

bivariate distributions (middle panels), and the distribution for the three eigenvalues (lower panels)

for the cases Ê2 = 1, 1
4 , 1

16 , and 1
64 . From Theorem 1 we know that the marginal distributions are

identical when the elements of “ are independent and this can be seen from the simulated densities for

fl12, fl13, and fl23, that are indistinguishable in all cases. The plots in the second row of each panel

present bivariate distributions for a pair of correlations with contour plots. We present the simulated

one for (fl12, fl13), but these bivariate distributions are identical for all pairs of correlation coe�cients,

as a consequence of Theorem 1.

When the variance of the elements of “ is relatively large, Ê2 = 1, then C(“) tends to produce

near-singular correlation matrices,. This is evident from the distribution of the smallest eigenvalue in

Panels (a) and (e), and it can also be seen from the contour plots where the mass in concentrated in

the corners. As the variance of “i is reduced, so is the variance of the resulting correlation coe�cients.

In Panels (a)-(d), the random correlation matrices become more concentrated about C(0) = I and in

Panels (e)-(h) the random correlations get more concentrated about 1
2 .

2.1.1 Heterogenous Marginal Distributions

In some applications it can be desirable to generate random correlation matrices where the dispersion

of the correlation coe�cients is heterogeneous. This situation could arise in a Bayesian context where

there is strong prior knowledge about some correlation coe�cients and less prior information about

other correlations. The new method can accommodate this situation by using di�erent variances over

the elements in “,. This follows because the Jacobian, dÍ/d“, is approximately diagonal.
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2.2 Random Perturbation of Particular Correlation Matrix

When the objective is to generate random correlation matrices in the vicinity of a particular correlation

matrix, C0 say, then this can be achieved as follows: Let “0 = g(C0) be the vector that corresponds to

C0, then we can generate random correlation matrices in the vicinity of C0 using C(“0 + Á), where Á

is a random vector centered about the zero-vector. The dispersion of the random correlation matrices

about C0 is controlled by the dispersion of Á.

2.3 Resembling the Distribution of Empirical Correlation Matrices

The method can be used to approximate the distribution of empirical correlation matrices. Let Ĉ

be an empirical correlation matrix computed from T observations and consider “̂ = g(Ĉ). Under

suitable regularity conditions, Archakov and Hansen (2021) showed that
Ô

T (“̂ ≠ “) dæ N(0, V“) and

derived an expression for V“ . This asymptotic approximation works well in finite samples and the o�-

diagonal elements of V“ tend to be close to zero, especially for high-dimensional correlation matrices,

see Archakov and Hansen (2020). This suggests that the new method can be used to resemble the

distribution of empirical correlation matrices by drawing “ from a suitable Gaussian distribution.

2.4 Equicorrelation Matrices

An equicorrelation matrix, C, is a correlation matrix where all the correlations are identical and the

corresponding “ = g(C) will be a vector whose elements are all identical. Let r denoted the common

correlation coe�cient in C and let z be the corresponding common element of “, then the relationship

between the two is given by,

z(r) = 1
n

log
1
1 + n r

1≠r

2
,

and the inverse transformation is r(z) = 1≠e≠nz

1+(n≠1)e≠nz , see e.g. Archakov and Hansen (2021). An

equicorrelation matrix has two eigenvalues, 1 + r(n ≠ 1) and 1 ≠ r, where the latter has multiplicity

n ≠ 1, see Olkin and Pratt (1958). Thus, the n ◊ n equicorrelation matrix is positive definite if and

only if r œ (≠ 1
n≠1 , 1).

The following theorem shows how a random correlation matrix can be generated in such a way that

r has a Beta distribution on this interval.

Theorem 2. Let “ = (z, . . . , z)Õ œ Rd with d = n(n ≠ 1)/2. Then C(“) is an equicorrelation ma-

trix, where the common correlation coe�cient, r, is confined to the interval (≠ 1
n≠1 , 1) for all z œ R.
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Moreover, if z has density,

fz(z) = 1
B(–, —)

e≠—
z≠µ

s

s
3

1 + e≠ z≠µ
s

4–+— , z œ R, (1)

where µ = log(n≠1)
n and s = 1

n , then r is Beta distributed, B(–, —), on the interval (≠ 1
n≠1 , 1).

The expression (1) is known as the Exponential Generalized Beta distribution of the second type

and it is also known as the Generalized Logistic Distribution of Type IV.

If we set – = — = 1, it follows immediately that r is uniformly distributed on (≠ 1
n≠1 , 1).

Corollary 1. Let “ = (z, . . . , z)Õ œ Rd with d = n(n≠1)/2, and suppose that z is logistically distributed,

fz(z) = e≠ z≠µ
s

s
3

1 + e≠ z≠µ
s

42 , z œ R, (2)

where µ = log(n≠1)
n and s = 1

n , then r is uniformly distribution on the interval (≠ 1
n≠1 , 1).

In the special case where n = 2, we have µ = 0 and s = 1/2 and the logistic distribution in (2) is

also know as a Fisher z-distribution with degrees of freedom (d1, d2) = (2, 2).3

Theorem 2 provides valuable insight about the dispersion of the elements in “ that one might expect

as the dimension of the correlation matrix, n, increases, because var(z) = fi2
3 n≠2, in the distribution

(2). This indicates that a scaling factor of 1/n should be used on the elements of “ to preserve similarly

dispersion for the correlation coe�cients in C(“) as n increases.

2.5 Block Correlation Matrices

If C has a block structure then log C and C≠1 has the same block structure, see Archakov and Hansen

(2022). This can be used to generate random correlation matrices or random precision matrices, C≠1,

with a desired block structure, where positive definiteness is always guaranteed. A correlation matrix

has a block structure if

C =

S

WWWWWWWWU

C[1,1] C[1,2] · · · C[1,K]

C[2,1] C[2,2]
... . . .

C[K,1] C[K,K]

T

XXXXXXXXV

œ Rn◊n,

3Moreover, in this case where Z ≥ logistic(0, 1
2 ) we also have that exp(2Z) ≥ F (2, 2), (the F -distribution with degrees

of freedom d1 = d2 = 2).
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where the diagonal blocks, C[i,i] œ Rni◊ni , have ones along the diagonal and fli,i œ R in all o�-diagonal

elements, and the o� diagonal blocks, C[i,j] œ Rni◊nj have all elements equal to fli,j œ R, i, j = 1, . . . , K

and n1 + · · · + nK = n.

It is also possible to generate random correlation matrices in the vicinity of a particular block

correlation matrix and the canonical representation of block matrices can also be used to generate

high-dimensional correlation matrices by taking convex combinations of permutated random block

matrices. The advantage of this approach is that each of the block matrices involve lower-dimensional

objects. In Figure 2 provides an example of this. First we generated 20 random block correlation

matrices, each having 3 ◊ 3 blocks with a single common correlation coe�cient within each block.

The rows (and columns) are then shu�ed with a random order, and their average define the random

200 ◊ 200 correlation matrix, which is guaranteed to be positive definite. The smallest eigenvalue of

the correlation matrix shown in Figure 2 is ⁄min = 0.0726 and

Figure 2: A random 200x200 correlation matrix, constructed as a the average of 20 random block
matrices whose rows and column were subject to random permutations.

2.6 Positive Random Correlation Matrices and Monotonicity

A random correlation matrix with strictly positive correlation coe�cients is guaranteed by drawing

“ from a distribution on Rd
+ (i.e. vectors with strictly positive elements). This would, for instance,

guarantee that the Perron-Frobenius theorem is applicable to C(“). The less stringent requirement
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that C has nonnegative coe�cients is guaranteed by drawing “ from a distribution on Rd
Ø0 (i.e. vectors

with non-negative elements). The latter follows from the fact that “ are the o�-diagonal elements of

log C. A matrix with non-negative o�-diagonal elements is a Metzler matrix and it is well known (from

the literature on Markov processes) that the exponential of a Metzler matrix is a non-negative matrix.

Thus, if the o�-diagonal elements of log C are non-negative, the same is true for C.

Conjecture 1. Let C̃ = g(“̃) and C = g(“) where “̃ Ø “ Ø 0, then C̃ Ø C where all inequalities are

element-wise.

2.7 A Bound for Smallest Eigenvalue of C

Conjecture 2. Let “max = maxk |“k| be the largest element of “ in absolute value. Then,

≠n“max Æ log ⁄min Æ ≠“max.

So, if maxi |“i| Æ K for some constant, K, then the smallest eigenvalue of C(“) is bounded away

from zero.

Figure 3: Scatter plots of log ⁄min against ≠“max for one million random 5 ◊ 5 correlation matrices.

In Figure 3 we have shown log ⁄min plotted against ≠“max for one million random correlation

matrices with n = 5 [add a higher dimension] along with the conjectured upper and lower bound for

log ⁄min. It appears that the lower bound is binding for very large values of “max whereas the upper

bound only becomes binding for “max ƒ 0 which is the case where C ƒ I.
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3 Existing methods for Generating Random Correlation Matrices

Next, we discuss several existing methods for generating random correlation matrices. Several of these

methods produce correlation matrices where the marginal distributions are Beta-distributions.

3.1 Random Gram Methods

A valid correlation matrix can be obtained from any matrix m ◊ n matrix, U = (u1, . . . , un), with

normalized columns, uÕ
juj = 1, for j = 1, . . . , n. It follows immediately that C = U ÕU is positive

semidefinite with ones along the diagonal. Moreover, if U has rank n, then C = U ÕU is a non-

singular correlation matrix. Several methods are based on this idea (typically with m = n), where

a random correlation matrix is obtained from from random vectors, u1, . . . , un, on the unit sphere,

Sm = {u œ Rm, uÕu = 1}. The random Gram method generates n vectors on Sn and the Gram matrix

C = U ÕU is the resulting random correlation matrix. The uniformly distribution on Sn was discussed

in Marsaglia and Olkin (1984), see also Holmes (1991), and it generates a C where the marginal

distributions of the correlation coe�cients are Beta distributed, B(1
2 , n≠1

2 ), see Marsaglia and Olkin

(1984). The vectors, uj , j = 1, . . . , n, can be drawn from other distributions, such as that proposed

by Tuitman et al. (2020), which ensures that the average correlation coe�cient is centered about a

particular value.

3.2 Standard Angles Parameterization (SAP) Method

A variant of the Random Gram method is the case where U is a triangular matrix. This choice was

discussed in Marsaglia and Olkin (1984) and a particular triangular form was proposed by Pinheiro

and Bates (1996). Their choice for U is defined from the angels, ◊ij œ [0, fi), for 1 Æ i < j Æ n, such

that

U =

S

WWWWWWWWWWWWWWWU

1 cos ◊1,2 cos ◊1,3 · · · cos ◊1,n≠1 cos ◊1,n

0 sin ◊1,2 cos ◊2,3 sin ◊1,3 · · · cos ◊2,n≠1 sin ◊1,n≠1 cos ◊2,n sin ◊1,n

0 0 �2
i=1 sin ◊i,3 cos ◊3,n≠1�2

i=1 sin ◊i,n≠1 cos ◊3,n�2
i=1 sin ◊i,n

...
... . . . . . . ...

0 0 0 �n≠2
i=1 sin ◊i,n≠1 cos ◊n≠1,n�n≠2

i=1 sin ◊i,n

0 0 0 · · · 0 �n≠1
i=1 sin ◊i,n

T

XXXXXXXXXXXXXXXV

,
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which is an upper triangular matrix. This requires d = n(n ≠ 1)/2 angles, ◊ij , and it follows that

any distribution on [0, fi)d will correspond to some distribution over the space of correlation matrices.

If the angles are independent and uniformly distributed on [0, fi) then C has coe�cients with very

heterogeneous marginal distributions. If one instead specifies ◊ij to have the density

fj(x; –) = sin2–≠j(x)
B(– ≠ j≠1

2 , 1
2)

, j = 1, . . . , n ≠ 1,

where – Ø n/2 is some parameter to be chosen, then marginal distributions of the correlation coe�cients

are identical and Beta distributed, Beta(–, –) on the interval [≠1, 1], see Pourahmadi and Wang (2015).

This method is known as the Standard Angles Parameterization (SAP) method.

3.3 Eigendecomposition Method

A di�erent approach is to use the eigendecomposition of the correlation matrix, C = QÕ�Q where QÕQ =

I and � = diag(⁄1, . . . , ⁄n). The approach has the advantage that one can control the distribution of

the eigenvalues, which are confined to the simplex {(⁄1, . . . , ⁄n) :
q

j ⁄j = n, ⁄j Ø 0}.

This eigendecomposition method generates the n random eigenvalues of C in the first step and then

determines a valid set of eigenvectors in the second step. The second step is not trivial because the set

of Q matrices that yield a valid correlation matrix for a given set of eigenvalues is a shy set in the set

of all orthonormal matrices. For the pair (�, Q) to generate a valid correlation matrix, the following

conditions must be satisfied.

1. The diagonal matrix, �, must satisfies ⁄j Ø 0, j = 1, . . . , n, and
qn

j=1 ⁄j = n.

2. The matrix Q = (q1, . . . , qn) must be orthonormal, qÕ
jqj = 1 and qÕ

iqj = 0 for all i ”= j = 1, . . . , n.

3. Combined they must satisfy qÕ
j�qj = 1, j = 1, . . . , n.

The last condition is a cross restriction on � and Q. Given a particular �, almost all Q-matrices are

precluded, such that this method requires a way to determine a valid Q-matrix. Algorithms for this

were proposed by Chalmers (1975), Bendel and Mickey (1978), Marsaglia and Olkin (1984), and Davies

and Higham (2000).4 These methods begins with an initial (random) orthonormal matrix, Q0, that is

subjected to successive transformations until a valid Q-matrix is determined. The method by Davies

and Higham (2000) is implemented in the MATLAB function gallery(’randcorr’).
4Holmes (1991) provides a comprehensive study of the statistical properties of spectral functions of correlation matrices

generated by Bendel and Mickey’s algorithm. For financial applications, Hüttner and Mai (2019) adapt the Bendel-Mickey
Algorithm to generate correlation matrices with a Perron-Frobenius property.
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3.4 Partial Correlations (PAC) Method

The partial correlation (PAC) method by Joe (2006) uses random partial correlations to generate

random correlation matrices. Specifically the n(n ≠ 1)/2 partial correlations for the i-th and j-th

variable conditional on the variables indexed between i and j. These are given by

Íij =
Cij ≠ d(i,j)

ijÒ
(1 ≠ d(i,j)

ii )(1 ≠ d(i,j)
jj )

, for 1 Æ i < j Æ n,

where d(i,j)
ij = Ci,Iij [CIij ,Iij ]≠1CIij ,j , and CIij ,Iij = [Cl,m]i<l,m<j , Ci,Iij = [Ci,m]i<m<j , and CIij ,j = C Õ

j,Iij
,

are sub-matrices of C. When j = i + 1 the partial correlation is simply the correlation, Íi,i+1 = Ci,i+1,

otherwise it is the partial correlation between the i-th and j-th variables, conditional on all variables

indexed between i and j. Clearly any correlation matrix, C, will map to {Íi,j}1Æi<jÆn and any set

of these partial correlation in (≠1, 1), will translate to a valid correlation matrix. Interestingly, the

determinant of C is given by det C =
r

1Æi<jÆn(1 ≠ Í2
ij), see Joe (2006, theorem 1).5 The PAC method

draws from a distribution on (≠1, 1)d, with d = n(n ≠ 1)/2, and reconstructs the correlations from the

partial correlations.

When the partial correlations, {Íi,j}1Æi<jÆn, are drawn independently from the Beta-distribution,

Beta(–ij , –ij) on (≠1, 1), with –ij = –+(1≠ j + i)/2, then the marginal distributions of the correlation

coe�cients are identical and given by Beta(–, –), where – Ø (n ≠ 2)/2, see Joe (2006). Moreover, the

joint density of all correlations becomes proportional to the determinant of the correlation matrix to

the power – ≠ n/2. 6

The properties of some random correlation matrices, n = 3, are shown in Figure 4. Panel (a) is the

Random Gram method where uj , j = 1, . . . , 3 are independent and uniformly distributed on the sphere,

S3,. This choice yields uniformly distributed correlation coe�cients. Panel (b) is the SAP method with

– =, Panel (c) is the eigendecomposition-based method and it produces rather bizarre marginal and

joint distributions for the correlations. This suggests that the algorithm used to determine a valid

orthonormal matrix, Q, has odd implications for the distributions of correlation coe�cients. Panel

(d) is the PAC method with – = (tiny value). Although SAP and PAC are di�erent methods, they

can produce the same marginal distributions for the correlation coe�cients – the symmetric Beta-

distributions, Beta(–, –). However, the range for PAC, – > n/2≠1, is slightly larger than that of SAP,

– > n/2.
5We have here simplified the expression Joe (2006, theorem 1), which involved three products over three indices.
6The notation in Joe (2006) is –ij = a + (n ≠ 1 ≠ j + i)/2 and – = a + (n ≠ 2)/2, which we have modified to make the

resulting distribution directly comparable to the SAP method.
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(a) Random Gram (b) SAP k=10 (c) Eigendecomposition (d) PAC (tiny)

Figure 4: Densities of pairwise correlations of dimension 3. The upper and bottom panels are corre-
sponding to Bendel and Mickey’s method with eigenvalues drawn from Exp(1) before normalization and
random Gram matrix method. The left column shows the marginal distributions. The right column
shows the bivariate densities of C21 and C31.

4 Conclusion

We have proposed a new method for generating random correlation matrices, and compare it to some

of the most commonly used methods.

The new methods provides a unified framework for generating random correlation matrices with a

with range of properties.
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“i = › + Ái, with Ái, i = 1, . . . , d, independent and identically distribution and independent of ›, then

14



“ and “̃ = vecl(G̃) have the same distribution where G̃ = vecl(PGP ) for any permutation matrix, P .

Consequently, C = C(“) and C̃ = C(“̃) have the same distribution, since the latter is given by,

C̃ = exp(G̃) = exp(PGP Õ) = P exp(G)P Õ = PCP Õ.

Here we used that exp(P log CP Õ) = exp(PQ log �QÕP Õ) = PQ exp(log �)QÕP Õ and that QÕP ÕPQ = I.

⇤

Proof of Theorem 2. Since r(z) = 1≠e≠nz

1+(n≠1)e≠nz it follows that r(z) œ (≠ 1
n≠1 , 1). Next, we determine

the expression for fz(z) =
---ˆr(z)

ˆz

--- fr(r(z)), where

fr(r) = 1
B(–, —)

1
1

n≠1 + r
2–≠1

(1 ≠ r)—≠1

1
n

n≠1

2–+—≠1 ◊ 1
{≠ 1

n≠1 <r<1}
.

Since (n ≠ 1)e≠nz = e≠ z≠µ
s = e≠’ where ’ = z≠µ

s , we can write

r(z) = 1 ≠ e≠nz

1 + (n ≠ 1)e≠nz
=

1 ≠ 1
n≠1e≠’

1 + e≠’
,

and

1
n≠1 + r(z) =

1 + e≠’ + (n ≠ 1)(1 ≠ 1
n≠1e≠’)

(n ≠ 1)(1 + e≠’) = n

n ≠ 1
1

1 + e≠’
,

1 ≠ r(z) =
1 + e≠’ ≠ (1 ≠ 1

n≠1e≠’)
1 + e≠’

=
e≠’(1 + 1

n≠1)
1 + e≠’

= n

n ≠ 1
e≠’

1 + e≠’
.

Since r(z) œ (≠ 1
n≠1 , 1) is guaranteed, it follows that

fr(r(z)) = 1
B(–, —)

1
1

1+e≠’

2–≠1 1
e≠’

1+e≠’

2—≠1

1
n

n≠1

2+1 = 1
B(–, —)

e≠—’
1
e≠’

2≠1

n
n≠1 (1 + e≠’)–+—≠2 .

Next, the derivative is given by

ˆr(z)
ˆz = n2 e≠nz

(1 + (n ≠ 1)e≠nz)2 = n
n

n ≠ 1
e≠’

1 + e≠’
,
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such that

fz(z) = n
n

n ≠ 1
e≠ z≠µ

s

1 + e≠ z≠µ
s

1
B(–, —)

e≠— z≠µ
s

1
e≠ z≠µ

s

2≠1

n
n≠1

1
1 + e≠ z≠µ

s

2–+—≠2

= 1
B(–, —)

1
s

e≠— z≠µ
s

1
1 + e≠ z≠µ

s

2–+—≠1 ,

as stated. This completes the proof. ⇤

Proof of Corollary 1. Follow from Theorem 2 by setting – = — = 1, and it can also be verified

directly that fz(z) = n≠1
n

---ˆr(z)
ˆz

--- = n(n ≠ 1) e≠nz

(1+(n≠1)e≠nz)2 . ⇤

B Expression for Determinant

We seek Â(C) = det ˆ“
ˆÍ . Let C = Q�QÕ let El œ Rd◊n2 , Eu œ Rd◊n2 and Ed œ Rn◊n2 be the elimination

matrices that extract the lower-triangle, upper-triangle, or diagonal elements of an n ◊ n matrix, i.e.

veclM = ElvecM , veclM Õ = EuvecM and diagM = EdvecM for any M œ Rn◊n. From Archakov and

Hansen (2021, proposition 3) we have that ˆÍ
ˆ“ = El

1
I ≠ ACEÕ

d

1
EdACEÕ

d

2
≠1Ed

2
AC(El + Eu)Õ, were

AC = (Q ¢ Q)�
!
Q ¢ Q

"Õ and � is the n2 ◊ n2 diagonal matrix whose elements are given by

�(i≠1)n+j,(i≠1)n+j = ›ij =

Y
__]

__[

⁄i, if ⁄i = ⁄j ,

⁄i≠⁄j

log ⁄i≠log ⁄j
, if ⁄i ”= ⁄j ,

(3)

for i = 1, . . . , n and j = 1, . . . , n. Note that AC is symmetric and positive definite, because ›ij > 0 for

all i, j. Here we have adapted the expression dvec exp X
dvecX in Linton and McCrorie (1995) to our context

where AC = dvecC
dvec log C . It follows that

Â(C) = 1
det

1
El

1
I ≠ ACEÕ

d

1
EdACEÕ

d

2
≠1Ed

2
AC(El + Eu)Õ

2 .
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