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Abstract

We study how to design optimal bargaining strategies in a bargaining

model with two players, P and A, when A’s outside option changes over

time. We solve for P ’s optimal strategy and find a new, but intuitive, set of

bargaining dynamics. When A’s outside option increases, A is tempted to

cease bargaining, leading P to increase A’s continuation value by gradually

promising A a larger share of the surplus (decreasing demands) and giving

A more time to explore his outside option before being forced to make a

decision (decreasing pressure). We explore comparative statics and show

that although P ’s value of bargaining is decreasing in A’s outside option, it

increases when the expected value of A’s outside option tomorrow rises. We

show P ’s optimal strategy can be implemented without commitment.

1 Introduction

Outside options are an important determinant of bargaining outcomes. When a

firm and worker negotiate over wages, the worker’s outside option limits the set
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of wage offers he will find acceptable. As negotiations go on, the worker’s outside

option may change. For example, while negotiating with Firm 1, the worker’s

outside option may go up if he receives a competing offer from competing firms

or go down if no competing offer arrives and he becomes pessimistic about the

likelihood he will receive an offer from competing firms in the future. If the worker

rejects Firm 1’s offer today and his outside option becomes better, previous wages

offered by Firm 1 may no longer be acceptable to the worker. How should the

offers Firm 1 makes depend on changes in the worker’s outside option? Should

Firm 1 make a take-it-or-leave-it (TIOLI) offer to the worker or give him time to

explore his outside options? These questions point to two fundamental decisions

while bargaining: how much to demand (i.e., how high or low to make the wage)

and how much pressure to apply (i.e., how long to let the worker consider the

offer).

We bring a dynamic contracting approach to a classic “split-the-pie” bargaining

problem between two players, P and A, to which we add a dynamic outside option

for player A. We solve for P ’s optimal bargaining strategy and find that delay and

bargaining breakdowns are both prevalent and efficient. The bargaining process

features a history dependence that resembles haggling: when A’s outside option is

high, A threatens to walk away and take his outside option, leading P to gradually

and permanently lower his demands. The pressure exerted by P decreases as well,

giving A more time to explore his outside options before P makes a TIOLI offer

to A. Our results show a complementarity between the choice of how much to

demand and how much pressure to apply.

Unsurprisingly, we find that an increase in A’s outside option lowers P ’s ex-

pected value from bargaining as P is forced to make lower demands to prevent

A from taking his outside option. However, P ’s expected value of bargaining is

increases when the expectation of A’s outside option tomorrow increases. This

may be surprising at first glance: A’s outside option is more likely to increase

tomorrow and such an increase lowers P ’s utility. However, an increase in the

expected change of A’s outside option increases the value for A of exploring his

outside options, which allows P to increase his demands while still incentivizing

A to continue bargaining. This result rationalizes why we see firms take actions

during negotiations that may increase a worker’s future outside options (e.g., a

firm negotiating with a current employee may write a positive recommendation

letter for the worker or give the worker time to interview with competing firms).
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Unlike much of the bargaining literature, our results generate efficient delay

and gradual concessions in bargaining demands without asymmetric information

or behavioral types. The intuition for why delay is efficient can be seen by viewing

delay in reaching an agreement as “experimentation” for A. Consider a worker

deciding whether to take a firm’s wage offer today. If he expects to receive a

reasonable offer from the firm tomorrow, he may prefer to delay, knowing he can

take the offer tomorrow if his outside option goes down. In this way he can enjoy

the benefits when his outside option increases, but still be protected against the risk

that it decreases. The firm may also benefit from allowing the worker to explore

his outside option if it can appropriate a larger part of the surplus by decreasing

its wage offer when the worker’s outside option is low.

The dynamics of P ’s bargaining strategy are driven by the fact that A has the

option of walking away and taking his outside option at any time. P ’s mechanism

must therefore ensure A’s continuation value from bargaining is sufficiently high.

Treating A’s choice to take his outside option early as a deviation, we must con-

sider deviations in an infinite-dimensional space, making analysis of the problem

difficult. Nevertheless, we identify a binding class of constraints on deviations for

A and a tractable relaxed problem incorporating only these constraints that yields

a solution to our full problem.

The optimal offer process, although it features non-stationary dynamics, is still

simple and intuitive. It can be characterized by three objects: a demand function,

a split threshold and a breakdown threshold. A split is made when A’s outside

option goes below the split threshold. The placement of the split threshold tells

us how much pressure is placed on A: the higher the threshold, the less time A

has to explore his outside options before being given a TIOLI offer. We find both

P ’s demand and the location of the split threshold change over the course of the

game, decreasing in the maximum of A’s past outside options. When A’s outside

option reaches a new high, P gradually lowers his demand and the pressure on A,

keeping it fixed until A’s outside option again reaches a new high or an agreement

is reached. The bargaining process does not always end with players reaching an

agreement: if A’s outside option goes above the breakdown threshold, A walks

away and takes his outside option. Our model shows that delay and breakdowns,

natural outcomes in many real-world bargaining settings, can arise in a complete

information environment and are in fact necessary for an efficient outcome.

We also study how the structure of changes in A’s outside option affects P ’s
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value from bargaining. Would P rather A’s outside option change frequently in

small amounts or infrequently in large jumps? Imposing a constraint on the ex-

pected speed at which A’s outside option may change, we show that whenever A’s

outside option is a martingale and changes frequently, we can construct another

martingale outside option with only infrequent large jumps jumps whose optimal

mechanism yields strictly higher utility for P . This result highlights how different

types of outside option processes add distortions to the optimal mechanism through

A’s individual rationality constraint and shows that jump processes introduce less

distortions than continuously changing processes.

Although the commitment assumption is reasonable in many of our examples,

it is natural to ask how a large a role this assumption plays. We show that our

results are robust to relaxing the assumption that P can commit to his bargaining

strategy and looking at a classic discrete time alternating offers version of our model

in which we construct an equilibrium that converges to our optimal mechanism in

the frequent offer limit. This result shows that, if we allow P to select his preferred

equilibrium, the loss from dropping commitment is negligible.

Related Literature

Our paper brings a dynamic contracting approach to a bargaining environment

and so lies in the intersection of these two literatures. The two important features

of our environment, the outside option and the stochasticity of the bargaining en-

vironment, have both been the focus of attention in the bargaining literature. The

importance of the outside option in bargaining is well known and has been stud-

ied in axiomatic bargaining (Nash (1950)), strategic bargaining (Binmore et al.

(1989)), in conjuction with reputation (Compte and Jehiel (2002), Lee and Liu

(2013)) and in relation to the Coase conjecture (Board and Pycia (2014)). These

papers assume players’ outside options stay fixed throughout the game. The liter-

ature on changing bargaining envrioments has recieved growing attention in recent

years and has looked the impact of newly arriving players (Fuchs and Skrzypacz

(2010), Chaves (2019)), the impact of transparency of outside options (Hwang

and Li (2017)), the arrival of information about a seller’s type (Daley and Green

(2018)) and changing costs of supplying a good (Ortner (2017)). These papers

have typically focused on studying stationary equilibria where players’ strategies

are stationary in their beliefs about their opponent’s type.
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Rubinstein (1982) established the uniqueness of equilibrium outcomes in an

infinite-horizon alternating-offers bargaining model and found that an agreement

is reached immediately. The finding of no delay in reaching an agreement is at odds

with some real-world phenomena (e.g., haggling, labor strikes, etc.), which spurred

the search for bargaining models that generate delay. The majority of the literature

has looked to incomplete information to generate delay. Papers in the Coasian

bargaining literaure generate a cream-skimming style of delay, finding equilibrium

with a gradual, but deterministic, downward movement in demands. Papers in the

reputational bargaining literature, such as Abreu and Gul (2000), generate a war-

of-attrition style of delay, finding equilibrium in which any concession in bargaining

demands leads to immediate agreement. Our paper by contrast generates delay in

a complete information environment and features a new set of dynamics to players’

demands with sporadic and gradual concessions, along with periods of intransigence

where players hold firm to their demands, and breakdowns in bargaining after

significant delay. Backus et al. (2020) empirically document delay in bargaining

and observe that there is often delayed disagreement and gradually changing offers,

features that are outside standard bargaining models but are found in our model.

Efficient delay arises in Merlo and Wilson (1995) and Cripps (1998), who study

models where the size of the surplus to be split is stochastic. In these models, play-

ers may benefit from delay only if the expected discounted total surplus tomorrow

is greater than the surplus today. The efficiency of delay in our model is driven

instead by the option value of choosing between the outside option and a split. An

important difference is that the outside option is changing rather than the size of

the pie changing introduces very different strategic forces. The dynamic outside

option leads to a rich set incentive constraints that P must satisfy to ensure A

continues bargaining; its these incentive constraints, which do not arise when only

the size of the pie changes, that lead to the history dependence in P ’s bargaining

strategies.

The dynamics in the efficient offer processes feature a backloading of incentives

as in Ray (2002) and a downward rigidity to P ’s demands. Similar types of rigidity

are also found in Harris and Holmstrom (1982), who find such rigidity in wages

that arise from a competitive market for workers, Thomas and Worrall (1988),

who study the design of self-enforcing contracts, and in McClellan (2020), who

studies the design of approval rules to incentivize experimentation. Our paper

differs from these both in the set of tools available to P (he decides how and when
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to split the surplus, rather than choose transfers in each period as in Thomas and

Worrall (1988)) and that our solution can be implemented without commitment

(this feature was found also in McClellan (2020)).

2 Model

Two players, P and A, bargain over how to split a surplus of size one. Each player

i ∈ {P,A} has a utility function ui : [0, 1] → R over the share of the surplus they

receive if an agreement is reached. Time runs continuously between 0 and ∞ and

both players discount time at a rate of r > 0.

The game ends when either an agreement to split the surplus is reached or one

player takes their outside option. Each player can take their outside option at any

time, in which case both players will receive their outside options. P has a con-

stant outside option with value ν ≥ 0. A’s outside option is given by a stochastic

process Y with a value at time t of Yt ∈ [Y , Y ], where Y ≥ 0. At each time t, the

entire history {Ys : 0 ≤ s ≤ t} is publicly observable. Let F = {Ft}t∈[0,∞) be the

filtration generated by Y . We consider two types of stochastic processes:1

Diffusion Process : The evolution of Yt is given by

dYt = µ(Yt)dt+ σ(Yt)dBt,

where Bt is a standard Brownian motion on the canonical probability space subject

to standard conditions. Both µ(·) and σ(·) are Lipschitz continuous on (Y , Y ) with

σ(y) > 0 ∀y ∈ (Y , Y ). The boundaries Y , Y may be absorbing or reflecting.

Search Process : A receives iid draws Zt ∼ F with finite support at a Poisson rate

ζ(Yt) > 0 which is Lipschitz continuous and strictly increasing in Yt. When a new

Zt arrives, A’s outside option is then the max of Zt and his outside option right

before t: Yt = max{Zt, Yt−}. There is a reflecting barrier at Ỹ , so that if Yt > Ỹ ,

it jumps down to Ỹ in the next instant: Yt+ = Ỹ . Otherwise, Yt evolves according

to dYt = η(Yt)dt for some Lipschitz continuous η(·) < 0 on (Y , Y ). We assume Y

1We discuss in the Online Appendix the properties of these two stochastic processes that are

used in our proof. The intuition for our results does not rely Yt taking one of these two forms,

but these two stochastic processes are useful for simplifying the analysis while still capturing a

wide range of settings.
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cannot be reached in finite time from Y0.2 We provide an explicit construction of

Y in the Online Appendix.

To simplify the exposition, we take Ỹ = Y when discussing a diffusion process.

Our main result focuses on the case in which P is allowed to commit to how

he makes demands, which we call a mechanism. We can heuristically think of P

as making a demand at each moment in time that A accepts or rejects. We define

a mechanism by the outcome it induces.

Definition 1. A mechanism consists of F-measurable functions (τ, dτ , ατ ) where

i. τ is a stopping time that gives the time when the game ends; that is, a split is

made or one player takes his outside option.

ii. dτ ∈ {0, 1} is a decision rule that equals 1 if and only if a split is made at time

τ .

iii. ατ ∈ [0, 1] gives P ’s share of the surplus if a split is made at time τ .

P ’s expected payoff from a mechanism (τ, ατ , dτ ) is

J(τ, dτ , ατ ) = EY0 [e−rτ
(
dτ (uP (ατ )− ν) + ν

)
],

and A’s expected payoff is

V (τ, dτ , ατ ) = EY0 [e−rτ
(
dτ (uA(1− ατ )− Yτ ) + Yτ

)
].

For notational convenience, we will drop dependence on Y0 in EY0 where it causes

no confusion. We can easily incorporate flow costs ci from bargaining for player i.

Because the expected flow costs to i from a mechanism using τ are E[
∫ τ

0
e−rtcidt] =

E[1−e−rτ
r

ci], adding flow costs to the model is equivalent to subtracting ci
r

from i’s

utility adding ci
r

to both ui and i’s outside option.

Without loss, we focus on mechanisms in which A never takes his outside op-

tion.3 To ensure that A does not take his outside option early, we impose a dynamic

individual rationality constraint on the set of mechanisms P can use.

2This assumption is purely made for simplifying the statement of our results; the structure of

the optimal mechanism when relaxing this is discussed in the Appendix.
3Replacing any instance of A taking his outside option with P doing so does not change

players’ payoffs.
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Definition 2. (τ, dτ , ατ ) is dynamically individually rational if for every

t ≥ 0 and history up to t, A’s continuation value is weakly greater than Yt.

We place two relatively weak assumptions on the primitives of the model. Our

first assumption imposes that players’ utilities are concave, which ensures players

cannot benefit from randomization over split amounts.

Assumption 1. The utility functions satisfy u′′i (·) ≤ 0 < u′i(·) on [0, 1], i ∈ {P,A}
with strict concavity for some i and bounded derivatives.

Our next assumption ensures that the expected future discounted value of A’s

outside option is lower than his current outside option. This assumption will be

used to show that if A knows there is no possibility of reaching an agreement in

the future, then A’s best option will be to take his outside option immediately.

Assumption 2. e−rtYt is a supermartingale.

We note that Assumption 2 holds when Yt is a supermartingale. Assumption

2 is a natural property to impose on A’s outside option.4 Consider a firm-worker

wage negotiation where Yt represents the value of searching for new job offers.

Because A always has the option to ignore incoming job offers, reentering the

search market immediately cannot be worse for A than than rejecting all P ’s offers

for some length of time before reentering the search market.

Discussion

Outside Option: While a firm-worker negotiation is our main example, our model

fits many other settings where outside options may change. For example:

i. Buyer-seller negotiations where the evolution of buyer’s outside option repre-

sents the entry and exit of competing sellers.

ii. Debt negotiations between a bond holder and a politician considering default-

ing on sovereign debt where the evolution of the politician’s outside option

4Let Ȳt := sup
τ

EYt [e
−rτYτ ] be A’s optimized value choosing when to take his outside option

Yt. After walking away from bargaining, A should still be able to explore his outside option and

decide when to take it. Thus, A’s continuation upon walking way from bargaining will be Ȳt. We

could rewrite the model, only now replacing Yt with Ȳt. Standard optimal stopping results tell

us that Ȳt is a supermartingale.
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represents a change in the public approval for the politician if she exits nego-

tiations and defaults.

iii. Peace negotiations where the evolution of the outside option represents a

change in the costs of restarting the conflict or likelihood of winning the sub-

sequent conflict.

The two stochastic processes we consider give us flexibility in how A’s outside

option changes over time and show that our results hold under a wide range of

stochastic processes for Y . A diffusion process fits situations in which A’s outside

option changes continuously over time, such as a housing market in which the value

of searching for a new house changes in small amounts each day. The diffusion

model also fits learning models in which Y is A’s expected utility of a fixed, but

unknown, outside option ψ and A learns about the value of ψ over time via a

Brownian news process.

Our search process is a generalization of standard search processes and allows

for the value of search to change over time. It has a natural interpretation in the

job search example. A searches for new outside offers that have value Zt when

they arrive, which he can then decide to accept or reject.5 In the absence of the

arrival of a new offer, A becomes pessimistic about the likelihood additional offers

will arrive. Letting Yt be the optimized value of searching for new offers, this

pessimism corresponds to a decrease in Yt and ζ. The reflecting barrier Ỹ accounts

for the fact that upon rejecting a Zt offer, A’s outside option may fall; however, it

need not fall back to its level prior to the arrival of Zt if its arrival makes A more

optimistic about receiving future offers.6 The class of search processes includes as

limiting cases standard search models such as stationary search with recall (take

ζ(·) constant, η(·) = 0 and Ỹ = Y ) and stationary search without recall (take

Ỹ = Y and ζ(Y ) > 0). We discuss the optimal mechanism for these limiting cases,

5Taking Zt can be interpreted as the value of accepting an outside offer immediately or the

value of leaving the negotiations with P to bargain with a new firm.
6We can microfound this more formally by supposing that there are K possible offers for A and

the next offer arrives at a constant Poisson rate. K is unknown to both players and has a geometric

distribution. Every time A receives an offer, his belief that there are additional offers to be found

jumps up to some p̄, after which it drifts down over time as long as a new offer is not received.

Let s(t) be the length of time at t since the arrival of a new offer. Then Yt = sup
τ

E[e−rτZτ |s(t)]
and Ỹ = sup

τ
E[e−rτZτ |s(t) = 0]. By standard optimal stopping arguments (e.g., Peskir and

Shiryaev (2006)), Yt is a super-martingale.
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which will be similar to the optimal mechanism in our main results, in the Online

Appendix.

Observable Yt: The assumption of common knowledge of Yt is similar to other

papers in the literature on changing bargaining environments and is economically

reasonable in many situations. In the firm-worker example, the offers that a worker

has from other firms often can be verifiably disclosed by the worker. In the buyer-

seller example, the presence of competing sellers is likely common-knowledge.

Commitment: In contrast to much of the bargaining literature, we allow P to

commit to his demands. In many situations, such an assumption is reasonable:

in firm/worker or seller/buyer negotiations, P changing his bargaining demands

today may affect bargaining outcomes with the future workers or buyers. If a firm

reneges on a offer, it will lose credibility in future negotiations. When P is a long-

run player, such repeated game punishments will enforce the commitment solution.

Solving the problem with commitment will prove useful when we study equilibria

in a discrete-time version of our model. The commitment solution gives an upper

bound on P ’s payoffs in any equilibrium, which would otherwise be difficult to

solve for. Having identified the upper bound, it will be much easier to construct

an equilibrium that achieves this upper bound.

3 Delay

Waiting to agree to a split is inefficient: a split that is enacted in the future would

be better for both players if it were enacted immediately. By Assumption 2, we

know that delay in taking A’s outside option is also inefficient. It seems natural

to conjecture that an efficient outcome features no delay. The economic intuition

for why this conjecture is wrong can be seen by viewing delay as A experimenting

with his outside option and the option to accept a split of the surplus as insurance

against a decrease in his outside option. Bargaining creates option value for A.

For an illustrative example, suppose dYt = dBt in (Y , Y ) and ν = uP (0) = 0. If

Y0 = uA(1), the only possible bargaining split that achieves no delay and A would

accept is to give the entire surplus to A. Consider an alternative offer by P in

which he asks A to wait for ∆ length of time and commits to give 1−∆2 to A. If

A waits and his outside option goes up, he can take his new higher outside option,

but if his outside option goes down, he can take the split if Y∆ < uA(1−∆2). This

option value protects him against a decrease in his outside option. A’s expected
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Figure 1: For illustrative purposes, we treat the movement of Yt as a random walk.

The upper curved arrows indicate the movement of Y0 to Y∆, and the downward

arrows indicate discounting costs to e−r∆Y∆. The black dot indicates the expected

value of waiting until t = ∆ to make a decision.

utility of waiting is equal to uA(1) +
√

∆√
2π

+O(∆). For small ∆, this policy yields a

higher value than uA(1). The driving force for this result is the fact that allowing

A to choose the max of uA(1−∆2), Y∆ creates a kink in the underlying payoff for

A. The convexity this kink creates is enough to make it beneficial for A to delay

and take a lottery over payoffs tomorrow. P is also better off because with positive

probability he receives ∆2 share of the surplus compared to 0 before.

This intuition is economically relevant in many bargaining situations. A firm

might be able to make a TIOLI offer that a worker would choose to accept. How-

ever, in order to get the worker to forego his outside option this offer may require

such a high wage that the firm may prefer to give the worker a lower offer but grant

the worker time to explore his other options before deciding whether to accept the

firm’s offer. Such non-TIOLI offers are often used by firms.

A natural benchmark we might consider is that of a social planner who, for

some ρ ∈ [0, 1], places ρ and 1 − ρ weight on P ’s and A’s utility, respectively.

Ignoring the dynamic individual rationality requirement, the social planner will

then choose a mechanism that solves

sup
(τ,ατ ,dτ )

E[e−rτ
(
dτ
(
ρ[uP (ατ )− ν) + (1− ρ)[uA(1− ατ )− Yτ ]

)
+ ρν + (1− ρ)Yτ

)
]

The solution takes the familiar class of stationary policies : namely, we stop when-
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ever Yt first crosses one of two stationary thresholds and the split amount when an

agreement is reached is constant.

Proposition 1. There are (b, B, αb) ∈ R3
+ with b < B such that the social planner’s

mechanism is τ = inf{t : Yt 6∈ (b, B)}, dτ = 1(Yτ ≤ b), ατ = αb.

This stationary structure is familiar from standard optimal stopping problems.7

However, when ρ > 0, the social planner’s problem does not take into account the

incentive constraint that A must find it optimal to delay taking his outside option

until the prescribed time. In general, a stationary mechanism which respects A’s

incentive constraints will not be efficient.

This is easiest to see when ν = uP (0) = 0. Consider a stationary mechanism

that respects A’s incentive constraints and calls for P to demand αb > 0. Let’s

go to the moment when Yt has reached B and P is about to take his outside

option. P clearly has no incentive to take his outside option early, so A must be

indifferent between continuing and walking away at B. Suppose P were to come

to A and promise to always demands αb

2
and let A choose when to accept this

demand or take his outside option. This continuation strategy increases the value

of bargaining for A, and so, if under the stationary mechanism A was indifferent

between continuing and taking his outside option at B, he will now strictly prefer

to continue bargaining. Moreover, this would also increases P ’s utility because a

split will now be reached with positive probability. This argument implies that

any stationary policy with αb > 0 can be improved upon. We will need to look at

a larger class of mechanisms to find the P -optimal mechanism.

4 Mechanism Design Problem

We now turn to the design of the optimal mechanism. Even though we allow for

arbitrarily complex mechanisms, the solution is quite simple and intuitive. The

optimal mechanism is measurable with respect to only two state variables, Yt and

the running maximum Mt = max
s∈[0,t]

Ys, and can be described by three objects: a

demand function α∗(Mt), a split threshold S∗(Mt), and a breakdown threshold R
∗
.

An agreement is reached whenever Yt ≤ S∗(Mt), with P demanding α∗(Mt). P

takes his outside option if and only if R
∗

is crossed before S∗(Mt). The location of

7The proof follows almost immediately from Lemma A.1 in the Online Appendix and is hence

omitted.
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the split threshold S∗(Mt) corresponds to the amount of pressure being placed on

A: the higher S∗ is, the less time A has to explore his outside option before being

forced to make a decision. Theorem 1 shows that α∗ and S∗ are both decreasing

over the course of the game.

Theorem 1. There is an optimal mechanism (τ ∗, d∗τ , α
∗
τ ) given by, for some de-

creasing continuous functions S∗(·), α∗(·) and threshold R
∗
,

τ ∗ = inf{t : Yt 6∈ (S∗(Mt), R
∗
)}, d∗τ = 1(Yτ ≤ S∗(Mτ )), α

∗
τ = α∗(Mτ ).

All proofs are relegated to the Appendix or Online Appendix.

A can not recall past outside options, so why should Mt play a role in the

optimal mechanism? Although Mt is payoff irrelevant, it captures the additional

continuation value P promises A to ensure A continues bargaining. A is most

tempted to take his outside option whenever Yt is highest, namely when Yt = Mt.

P must then increase A’s continuation value to prevent A from walking away, which

is done by decreasing both α∗ and S∗. Both of these changes are rigid: α∗ and S∗

never rise after being lowered, implying a persistent effect from A having a higher

past outside option. Our results show that P provides incentives is a “smooth”

way by keeping both α∗ and S∗ constant until Mt increases. The stochasticity of

increases in Mt generates demands by P that gradually decrease, but not without

long periods of P holding firm to his demands.

P takes his outside option with positive probability when there is delay in the

optimal mechanism, an outcome we call a bargaining breakdown. Unlike much of the

bargaining literature, a breakdown in our model may happen after significant delay.

Intuitively, delay creates benefits through experimentation, which is only useful if

the result of the experimentation, a higher Yt, is sometimes taken. Otherwise,

delay would be inefficient and P would be better off making an immediate TIOLI

offer.

Gradual concession and significant delay in reaching a split or breakdown are

often observed in real life bargaining. Using data on negotiations taking place

on eBay, Backus et al. (2020) find frequent gradual concessions in demands and

delayed bargaining breakdowns, which they note cannot be explained by most

bargaining models. Our results both generate and show the efficiency of such

dynamics.

Fixing Yt, the fact that α∗ and S∗ are decreasing means that the higher A’s

outside options have been in the past, the longer it will be until an agreement is
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Figure 2: The demand and split threshold are monotonic, decreasing rapidly in

spurts and then remaining fixed as Yt goes down.

reached. For an outside observer, this might appear to be something like anchoring

effects or loss aversion. Our results show how such dynamics arise with standard

preferences.

Proof Sketch

It is expositionally useful to begin by slightly weakening the requirement that the

mechanism be dynamically individually rational. Suppose A were to deviate from

P ’s mechanism by taking his outside option early at some stopping time τ ′. A’s

expected utility would then be V (τ ∧ τ ′, dτ1(τ < τ ′), ατ ). P will need to ensure

that A prefers not to quit at τ ′ for every τ ′. We call this a DIR constraint:8

DIR : sup
τ ′

V (τ ∧ τ ′, dτ1(τ < τ ′), ατ ) ≤ V (τ, dτ , ατ ),

Quitting early is the only deviation by A we need to consider: by committing to

take his outside option upon A rejecting P ’s offer at τ , P can ensure A does not

8DIR is slightly weaker than the dynamic individual rationality constraint in that it can

violate dynamic individual rationality on a probability zero event. Lemma O.A.1 in the Online

Appendix shows that any dynamically individually rational mechanism satisfies DIR. After

solving the problem with only DIR, we will verify that the solution is dynamically individually

rationality.
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delay in accepting an individually rational offer. P ’s problem is then

J∗ = sup
(τ,dτ ,ατ )

J(τ, dτ , ατ ) (1)

subject to DIR.

For those familiar with the dynamic contracting literature, the most natural

approach to this problem would be to treat the A’s continuation value as a state

variable and use a dynamic programming approach to solve for P ’s optimal strategy

as in Sannikov (2008). However, because we also need to keep track of Yt as a state

variable, using this approach in our model would involve solving a PDE, which is

not feasible. Looking at 1, the main difficulty we face is that DIR involves finding

A’s best response for an arbitrary (τ, dτ , ατ ) among an infinite dimensional set of

τ ′, which is intractable. We will need to find a way to relax the DIR constraint in

order to make the problem more tractable.

Before introducing the relaxation, we discretize the model, using a discrete-time

framework with period length ∆. We replace Yt with a discretized outside option

Xt which moves along a countable grid of points G∆ and define MX
t = max

s∈{0,∆,..t}Xs.

We will drop the X from MX
t where it causes no confusion. If Y is a diffusion

process, then we take X to be a generalized random-walk, with Xt = Xt−∆ + wt
where wt ∈ {−ε, 0, ε} for some ε > 0. If Y is a search process, then we construct X

in the following way. In each period, Zt ∼ F∆ arrives with probability ζ∆(Xt−∆)

and supp(F∆) ⊆ G∆. If a Z arrives, then Xt = max{Zt, Xt−∆}. If no Z arrives,

X moves down to the next highest grid point: Xt = max{x ∈ G∆ : x < Xt−∆}.9
As we take ∆ → 0, we will assume that the discrete time process X converges to

its continuous time counterpart Y .10 We now define J and V as before but with

expectation over X rather than Y .

We now relax DIR by limiting the set of deviations A may take. Suppose A

takes his outside option whenever X goes above some threshold B. A’s utility from

such a strategy is V (τ ∧ τ+(B), dτ (B), ατ ) where

τ+(B) := min{t : Xt ≥ B}, dτ (B) := dτ1(τ < τ+(B)).

9We are dropping the reflecting barrier Ỹ here. This is without loss in the limit as ∆ → 0,

where our Xt process, when above Ỹ , will move below Ỹ instantaneously in the limit.
10Details on how to construct G∆ and law of motion for X to ensure convergence to Y are

provided in the Appendix.
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Our relaxed problem will limit A to choose deviations of this form. For a threshold

B, we define the constraint RDIR(B) to be

RDIR(B) : V (τ ∧ τ+(B), dτ (B), ατ ) ≤ V (τ, dτ , ατ ).

Consider A’s first-best mechanism (i.e., letting ρ = 0 in the social planner’s

problem) and let RA be the threshold at which A takes his outside option. It

is easy to see that P must take his outside option immediately at Xt ≥ RA in

any dynamically individually rational mechanism; otherwise, A can get his first-

best payoff by walking away. We therefore restrict attention to mechanisms with

τ ≤ min{t : Xt ≥ RA}.
Let XN = {X0, X1, ..., XN} be the points of G∆ in [X0, R

A) in ascending order.

Our relaxed mechanism-design problem is given by

sup
(τ,dτ ,ατ )

J(τ, dτ , ατ ) (2)

subject to RDIR(Xn) ∀Xn ∈ XN .

We employ a Lagrangian approach to solve this relaxed problem. There exists

Lagrange multipliers (λ(X0), ..., λ(XN)) ∈ RN+1
− associated with the RDIR(Xn)

constraints such that the solution to 2 solves

sup
(τ,dτ ,ατ )

E
[
e−rτ

(
dτ{uP (ατ )− ν − λ(X0)(uA(1− ατ )−Xτ )}+ ν − λ(X0)Xτ

)
(3)

+
N∑
n=1

λ(Xn)
{
e−r(τ∧τ+(Xn)

(
dτ (X

n)(uA(1− ατ )−Xτ∧τ+(Xn)) +Xτ∧τ+(Xn)

)
− e−rτ

(
dτ (uA(1− ατ )−Xτ ) +Xτ

)}]
+ λ(X0)X0.

Although the Lagrangian in 3 may appear complicated, we can use optimal stop-

ping arguments to pin down the structure of the solution.

We show the optimal (τ, dτ , ατ ) in 3 possesses a kind of “local stationarity.”

Let us focus on the optimal rule before τ+(X1) (that is, before Xt goes above X1).

Then ατ is equal to

α0 := argmaxα∈[0,1] uP (α)− λ(X0)uA(1− α),

which does not depend on Xτ . We also show there exists a split threshold S0

such that P stops and implements a split whenever Xt ≤ S0. Because of the
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discretization of X, we may require P to randomly stop with probability γ0 ∈
[0, 1) whenever Xt is at the grid point right above S0 (this randomization plays a

negligible role for small ∆). The split threshold, randomization and demand are

constant as long as t < τ+(X1).

At τ+(X1), the structure of mechanism will change. We show that the mech-

anism is again locally stationary until the next Xn above Xτ+(X1) is crossed. Re-

peating these arguments, the optimal mechanism after any history depends only

on the current Xt and the set of thresholds in XN that have been crossed, for

which Mt is a sufficient statistic. The optimal mechanism after any history takes

a similar form as before τ+(X1): P ’s demands are independent of Xτ and given

by a function α∆(Mτ ). There exists a threshold S∆(Mt) such that a split is made

immediately at any Xt ≤ S∆(Mt) and with probability γ∆(Mt) ∈ [0, 1) whenever

Xt is at the grid point right above S∆(Mt). We show that the outside option is

taken whenever Xt ≥ R
∆

for some R
∆ ≥ X0. We then define S∗, α∗, R

∗
by taking

the limit of S∆, α∆, R
∆

as ∆ → 0; we can ignore the role of γ∆ in the limit. We

verify that (τ ∗, d∗τ , α
∗
τ ) satisfies dynamic individual rationality and is optimal in

continuous time.

The main thing left to understand is how the mechanism changes with Mt.

Whenever Mt increases, P needs to increase A’s continuation value. Decreasing

α∗ provides a clear way of doing so. Decreasing S∗ provides another means, as

A benefits from the additional time to explore his outside option. A lower S∗ is

costly for P as it both lengthens the time until a split is reached and increases the

probability that Mt increases before an agreement in reached, forcing P to increase

A’s continuation value. Given these two means of increasing A’s continuation value,

it is not immediately clear which P will use. P could decrease α∗ and increase S∗,

decrease S∗ and increase α∗, or decrease both. The fact that α∗ and S∗ are both

decreasing in Mt comes from a complementarity between these two aspects of the

bargaining strategy.

To build some intuition for this complementarity, consider the choice of α∗ and

S∗ at some (Yt,Mt). As Mt increases, P must deliver A a larger continuation value

at y. For each choice of S∗, an increase in A’s continuation value leads to a lower

corresponding choice of α∗, which directly reduces P ’s marginal utility of S∗ in two

ways. First, discounting is not as costly for P when α∗ is lower, thereby reducing

the benefit to P of a higher S∗. Second, when P considers an increase in S∗, he

would need to compensate A with a further decrease in α∗ in order to maintain
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A’s continuation value. Due to the concavity of uP and uA, a decrease in α∗ when

starting at a lower α∗ is, in utility terms, more costly for P and less beneficial to

A. Together, the necessary compensating decrease in α∗ in response to an increase

in S∗ is now more costly for P .

A lower α∗ also changes the responsiveness of A’s continuation value to an

increase in S∗. When α∗ is lower, the value of stopping and taking a split is

higher for A, thereby reducing the decrease in A’s utility caused by an increase in

S∗. This force reduces the necessary utility compensation to A for an increase in

S∗, thereby increasing the marginal utility to P of increasing S∗ when α∗ is lower.

Nevertheless, we find that this effect is always smaller than the previous two effects

and P ’s marginal benefit of increasing S∗ is lower when α∗ is lower. When P needs

to increase A’s continuation value, P will find it profitable to use a decrease in S∗

as way to mitigate the decrease in α∗ that would otherwise be necessary.

Our proof shows several other notable features of the optimal mechanism. When

delay is optimal in the continuous time limit and we make Assumption 2 strict,11

the solution to our relaxed problem satisfies dynamic individual rationality in the

discrete-time model for sufficiently small ∆. Thus, our proof gives the discrete-

time optimal mechanism and shows that the qualitative features of Theorem 1 are

not artifacts of the continuous time structure.

We find that A’s continuation value is exactly equal to his outside option when

Yt = Mt. This allows us to show that optimal continuation mechanism when Yt =

Mt will be the same as the optimal mechanism from starting at Y0 = Mt. Therefore,

the form of the optimal continuation mechanism at any (Yt,Mt) is independent of

the starting Y0. This independence from the starting value Y0 is a standard feature

in Markovian individual decision-maker problems, but does not always arise when

we include strategic interactions between players. This independence relies on the

flexibility of P ’s mechanism. For example, if we were to restrict P to only choose

among stationary policies (i.e., a constant demand and split threshold), the choice

of an optimal policy would, in general, depend on Y0.

Corollary 1. (τ ∗, d∗τ , α
∗
τ ) is optimal for every Y0.

Given the history dependence of the optimal mechanism, we may be concerned

that if continuation play at some history was extremely inefficient, players would

11That is, we assume there is an r′ < r such that e−r
′tXt is a supermartingale for all sufficiently

small ∆.
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have an incentive to renegotiate the mechanism. Proposition 2 below shows the

optimal mechanism is resistant to such concerns. We say a mechanism is con-

strained Pareto efficient if there is no dynamically individually rational mecha-

nism that weakly increases both players’ utilities and strictly increases at least one

player’s utility. Proposition 2 shows we can add off-path continuation mechanisms

to (τ ∗, d∗τ , α
∗) so that it is constrained Pareto-efficient after all on- and off-path

histories.

Proposition 2. There exists an optimal mechanism that is constrained Pareto-

efficient after all histories.

5 Comparative Statics

We can use our characterization of P ’s optimal mechanism to study how changes

in the evolution of the Y affect J∗, the value of the optimal mechanism. It is easy

to show that P ’s continuation value at t is decreasing in Yt: an increase Yt when

Yt < Mt increases the probability P will have to lower his future demands and

when Yt = Mt forces P to immediately lower his demands. A more interesting

question is what the impact of an increase in the distribution tomorrow’s outside

option is, namely an increase in µ or ζ. Because an increase in Yt hurts P , a natural

guess is that an increase in the distribution of Y tomorrow will also hurt P .

Proposition 3 below shows this conjecture is incorrect and the comparative

static in fact goes in the opposite direction. This result illustrates an important

distinction between the current level of Y and the expected level of Y tomorrow :

increasing the current level hurts P while increasing the expected level tomorrow

benefits P .

Let Y ′, Y be two outside option processes that satisfy Assumption 2. We say

that Y ′ is more likely to increase than Y if either both Y ′, Y are diffusion proccesses

with respective drifts µ′, µ such that µ′(y) ≥ µ(y) ∀y ∈ [Y , Y ] or both Y ′, Y are

search processes with respective jump rates ζ ′, ζ such that ζ ′(y) ≥ ζ(y) ∀y ∈ [Y , Y ].

Proposition 3. If Y ′ is more likely to increase than Y , then P ’s value of bargaining

is higher under Y ′ than Y .

The intuition for these Proposition 2 is simple. Increasing µ or ζ makes the total

“size of the pie” larger by increasing the value of experimentation for A. Keeping
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the mechanism fixed, as the value of experimentation increases, A’s individual

rationality constraint no longer binds. P can then increase his demands while still

satisfying dynamic individual rationality and thereby extract the increase in the

size of the pie.

However, an increase in the Y0 increases the social planner’s value from bar-

gaining, so we can also view an increase in Y0 as also increasing the size of the

pie. Why does a increase in the size of the pie through µ or ζ change the sign of

the comparative static on J∗ when compared to an increase in Y0? The difference

comes from how the increase in value is allocated to players. The additional value

created by an increase in the increase of Y0 is already given entirely to A: due to

the DIR constraint, P is forced to give A a larger continuation value and is not

able to extract the additional surplus created. In contrast, when µ or ζ increase,

A’s participation constraint at t = 0 continues to bind and P alone benefits from

the increase in surplus. The key difference is that an increase in µ or ζ does not

improve A’s bargaining position today.

Proposition 3 implies that P would benefit from taking actions, or encouraging

A to take actions, that make A’s expected outside option tomorrow better. Con-

sider a firm P and worker A bargaining over a new contract upon the expiration of

an old contract. P benefits from taking actions such as writing a positive letter of

recommendation or permitting A to take time to interview with other firms even

though these actions may increase the probability P is forced to increase his wage

offer or A accepts an outside offer. Such actions are often observed in firm-worker

relationships and are rationalized by our model.

Our next two results fix the expected change in Yt by focusing martingale

processes. Martingale processes arise naturally when changes in Yt are driven by

the arrival of information.

We start by showing that increasing the “speed” of the evolution of Yt increases

J∗. For a diffusion process, this corresponds to an increase in σ(y). For a search

process, this corresponds to an decrease in η(y) when we decease ζ(y) an appro-

priate amount to ensure Y remains a martingale. Holding the mechanism fixed,

these changes increase both P ’s and A’s expected utility by reducing delay time.

Proposition 4. If Y is a martingale below Ỹ , then J∗ increases if σ(y) or −η(y)

increase for all y ∈ [Y , Y ].

The different structures of diffusion and search processes brings another natural
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question: would P rather changes in A’s outside option come in small increments,

as in a diffusion process, or in large jumps, as in a search process?

To answer this question, we look at a limiting case of a search process. A pure

jump process for Yt, when at Y0, jumps down to some y− < Y0 at Poisson rate

ζ− and up to some y+ > Y0 at Poisson rate ζ+; otherwise it is stationary. The

optimal mechanism for a pure jump process can be shown to take the same form

as in Theorem 1 (this is discussed in more detail in the Online Appendix).

In order to stay away from the limit as σ or −η →∞, in which delay becomes

insignificant, we provide some discipline on the set of proccesses we compare by

placing a bound on the expected speed of changes in Yt. For some continuous

concave function H, we impose a capacity constraint −E[ d
dt
H(Yt)|Yt] ≤ dt. Such

constraints have been used in experimentation models (e.g., Zhong (2019)). When

the evolution of Yt is driven by the arrival of new information, the capacity con-

straint represents a cap on the amount of information that can be acquired in any

instant.

Proposition 5. For every diffusion process and search process that satisfies the ca-

pacity constraint, there is a pure jump process that satisfies the capacity constraint

and generates higher expected utility for P .

For an arbitrary diffusion or search process we find an upper bound on P ’s

expected utility by solving the design problem for that process when only imposing

an ex-ante participation constraint for A. This upper-bound mechanism uses a

constant split threshold and demand function. We then find a pure jump process

that increases P ’s utility when we keep the upper-bound mechanism fixed.

This result is driven by two forces. First, as shown by Zhong (2017), moving

to a pure jump process increases P ’s payoff when we keep the upper bound mech-

anism fixed. Second, the pure jump process we construct is less susceptible to

the distortions introduced by the dynamic individual rationality constraint. This

is most easily seen when comparing it to a diffusion process. The upper bound

mechanism is dynamically individually rational with a pure jump process but not

with a diffusion process. Yt will go above Y0 with probability one with a diffusion

process, at which point A’s continuation value will be too low and P will then need

to lower his demands. With our pure jump process, a jump up to y+ is the first

time Yt goes above Y0 and leads to P immediately taking his outside option.

When changes in Y are driven by the arrival of new information, Proposition
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5 tells us about P ’s preference on the information structure. P benefits when

information arrives in large, “decisive” amounts that trigger an immediate end

to bargaining and prefers that beliefs stay the same in the absence of a decisive

signal. This result illustrates the optimality of backloading information as a way to

reducing the distortions caused by the arrival of non-decisive information through

the dynamic individual rationality constraint.

6 Alternating Offers Bargaining

The assumption that P can commit to his bargaining strategy sets us apart from

much of the bargaining literature. While we believe such an assumption is reason-

able in many settings such as the firm-worker example, it is natural to ask how

robust our results are to relaxing commitment. Our optimal mechanism relies on

P promising to lower future demands. How credible are these promises without

commitment? Using a canonical discrete time alternating offers protocol, Theorem

2 below shows that the outcome of P ’s optimal mechanism can be implemented in

the frequent offer limit even without commitment power.

The alternating offers game is as follows. Players make demands in a pre-

specified alternating order at t = 0,∆, 2∆, .... A’s outside option follows the dis-

cretization used in the proof of Theorem 1.12 Within each period, both players

first observe the realization of Xt, after which the proposing player i makes his

demand. Player k 6= i can then either accept, reject or take his outside option. If k

accepts i’s demand, the game ends and the agreed upon split is made. If k rejects

i’s demand, then i is given a chance to take his outside option or move to the next

period. Both players discount by e−r∆. We make Assumption 2 strict by assuming

that there exists an r′ < r such that e−r
′tXt is a supermartingale as ∆ → 0; we

note that this is satisfied when Xt is a supermartingale. Finally, to simplify the

proof, we assume there is a public randomization device observed by both players

at the beginning of each period.

Theorem 1 gives us strategies that yield an upper-bound on P ’s equilibrium

value of bargaining. We need to consider if these strategies can be supported in

equilibrium. It is not clear ex-ante whether this is possible. For example, when

Xt = Mt, P promises to lower his demands at the split threshold. But when A’s

12An earlier version of the paper showed Theorem 2 holds for more general discrete-time pro-

cesses.
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outside option reaches the split threshold and P makes his demand, he may be

tempted to renege and increase his demand. Because past outside options cannot

be taken, now that Xt is low, it may be rational for A to accept P ’s higher demand.

Foreseeing this, back when Xt = Mt A may not view P ’s promise to decrease his

demand in the future as credible and may instead choose to take his outside option.

We construct off-path punishment equilibria to prevent this type of unraveling.

When player i increases his demand at t higher than he is called to, we move to a

punishment equilibrium in which k rejects i’s demand and makes a high demand

of his own demand at t+ ∆. If k can credibly threaten to take his outside option

upon i rejecting at t + ∆, i will find it optimal to accept k’s high demand. This

allows us to threaten i with a harsh punishment for increasing his demand at t. In

the proof, we build subsequent off-path equilibria that make k’s threat to take his

outside option credible.

Theorem 2. There exists a sequence of subgame-perfect equilibria with equilibrium

payoff J∆ for P when the period length is ∆ such that lim
∆→0

J∆ = J∗.

Although this is not quite an “anything goes” type of result (for example,

equilibria must satisfy dynamic individual rationality constraints for both A and

P ), there exist a multiplicity of equilibria in this setting. We view Theorem 2 as

a possibility result: If, as is standard in mechanism design, we allow P to choose

his preferred equilibrium, the loss to P from relaxing commitment is negligible in

the frequent offer limit

Our proof also allows us to, under some conditions, find an equilibrium that

exactly achieves the commitment upper-bound at positive ∆. The equilibrium

we construct in Theorem 2 uses the mechanism we derived in the discrete-time

approximation of Xt in the proof of Theorem 1. When there is delay in the optimal

mechanism (i.e., S∗(X0) < min{Ỹ , X0}), the discrete time strategies we use are

able to achieve the commitment upper-bound for positive ∆.

Corollary 2. If S∗(Y0) < min{Ỹ , Y0}, then J∆ is equal to the value of P ’s optimal

discrete time mechanism for sufficiently small ∆.

7 Conclusion

In this paper, we study a bargaining game in which one player’s outside option may

change over time. A changing outside option leads to a rich set of dynamics in
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the optimal bargaining outcome when one side can commit to their demands. The

committed party gradually decreases the demands he makes and the pressure being

placed on the other party over the course of the game, with periods of intransigence

followed by quick spurts of concession reminiscent of haggling. Our model shows a

new interplay between demands and pressure and finds they are complementary in

providing incentives to continue bargaining. Our results show how natural features

of bargaining outcomes such as delay, gradual concessions and breakdowns can

arise in a complete information bargaining model. We study how changes in the

evolution to one parties’ outside option change the value of the optimal mechanism,

finding, for example, an increase in the drift of A’s outside option may increase

P ’s value of bargaining. We also explore how to relax the assumption that one

party can commit to his demand process by studying a classic alternating-offers

bargaining game, finding subgame perfect equilibrium that implements our optimal

mechanism when the period length becomes small.
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Appendix A

In this Appendix we provide proofs of Theorems 1 and 2. All remaining proofs can

be found in the Online Appendix.

Discrete Time Model

Probability Space: We replace Y with a Markovian stochastic process X = {Xt :

t ∈ {0,∆, ...}} on a filtered probability space (Ω∆,F∆, (F∆
t )t≥0,P

∆). For a fixed

sample point ω ∈ Ω∆, the function (t,X0) 7→ Xt(ω,X0) is the sample path asso-

ciated with ω when starting at X0; we assume this function is increasing in X0.13

We let τ(ω,X0) be the stopping time induced by (ω,X0), with similar definitions

for dτ (ω,X0) and ατ (ω,X0).

Discretization: In each period t ∈ {0,∆, ...}, Xt and a public randomization device

are observed by both players, P then makes a demand, after which A decides to

accept, reject or take his outside option. If A rejects, we move to the next period

which players discount by e−r∆. The discrete time Xt moves on a countable grid

G∆ = {..., X−1, X0, X1, ...} where X i is increasing in i and X0 = X0. The distance

between a grid point x = Xn and the next highest grid point is εx = Xn+1 −Xn.

Notation: We say (τ ′, d′τ , α
′
τ ) is the continuation mechanism of (τ, dτ , ατ ) after

history ht = (x0, ..., xt) if τ ′(ω,X0) = τ(ω,X0) − t, d′τ (ω,X0) = dτ (ω,X0), and

α′τ (ω,X0) = ατ (ω,X0) for all ω ∈ Ω∆ such that (X0, X1(ω,X0), ..., Xt(ω,X0)) =

13Because our discrete time Xt+∆ will be increasing in Xt in a FOSD sense, assuming the

mapping from (t,X0) into Xt(ω,X0) is increasing in X0 is without loss.
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(x0, x1, ..., xt). A mechanism (τ, dτ , ατ ) is stationary in (X,M) if, for each (x,m),

the distribution of outcomes is the same for all continuation mechanisms of (τ, dτ , ατ )

after every history ht with (Xt,Mt) = (x,m).

Diffusion Approximation: We follow the discretization in the text. Our grid G∆ is

defined by X0 = X0 = Y0 and Xj = Xj−1+ε. Let q+(Xt−∆) = P(wt = ε|Xt−∆) and

q−(Xt−∆) = P(wt = −ε|Xt−∆). To ensure for convergence of X to Y as ∆ → 0,

we let σ0 = max
y∈[Y ,Y ]

σ(y) and set

ε = σ0

√
∆, q+(x) =

1

2
(
σ2(x)

σ2
0

+
µ(x)

σ0

√
∆), q−(x) =

1

2
(
σ2(x)

σ2
0

− µ(x)

σ0

√
∆).

Convergence of X to Y as ∆ → 0 follows from Theorem 4.1 of Bhattacharya and

Waymire (2009). With some abuse of language, we will continue to call the random

walk a diffusion process.

Search Approximation: We again follow the discretization in the text. Let Wt(w) =∫ t
0
η(Ws(w))ds with W0(w) = min{Ỹ , w}; if no Z arrive in [t, t+ ∆], then Yt+∆ =

W∆(Yt). We define our grid G∆ in the following way. Let Ỹ = Xk ∈ G∆ for

some k. For j ≥ k, let Xj+1 = min{z ∈ supp(F ) : z > Xj}. For j < k, let

Xj−1 = W∆(Xj). If Y0 > Ỹ and Y0 6∈ supp(F ), then we insert Y0 into G∆. We

take X0 = min
x∈G∆ |x − Y0| and rename indices so that X0 = X0. If x ≤ Ỹ , we set

ζ∆(x) = 1 − exp(−
∫ ∆

0
Ws(x)ds); if x > Ỹ , we set ζ∆(x) = ζ(x)∆. We determine

the value of Z in discrete time by drawing Z ′ ∼ F and rounding up to the nearest

point in G∆. For an arbitrary function f , EZ [f(Z)] =
∑

z∈supp(F∆) f(z)P∆(Z = z).

A formal construction of the discrete time search process is provided in the Online

Appendix alongside the construction of the continuous time search process.

The solution to our discrete time problem will hold for general transition prob-

abilities for X, not just those needed for convergence of X to Y , as long as e−rtXt

is a supermartingale, which we will assume throughout. By the convergence of Y ,

it is easily shown that e−rtXt is a supermartingale for sufficiently small ∆ if, for

some r′ < r, e−r
′tYt is a supermartingale. We can potentially run into problems

with ensuring e−rtXt is a supermartingale if e−rtYt is a martingale over some range

of [Y , Y ]. In such a case, the proof of Theorem 1 will proceed by deriving the

optimal continuous time mechanism when the discount rate is r′′ > r and taking
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r′′ → r.

Derivation of the Optimal Mechanism

Our first Lemma characterizes A’s first-best mechanism and will allow us to par-

tially characterize the optimal mechanism. If A takes his outside option at some

x in his first-best mechanism, then, because A can achieve his first-best payoff by

taking his outside option immediately, P cannot incentivize A to continue bar-

gaining at x while satisfying dynamic individual rationality. We show that the set

of such x takes a simple form. The proof is standard and deferred to the Online

Appendix.

Lemma A.1. For some SA, RA, A’s first-best mechanism is

τA = min{t : Xt 6∈ (SA, RA)}, dAτ = 1(Xτ < RA), αAτ = 1.

We restrict attention to mechanisms with τ ≤ τ+(RA) and dτ = 0 at Xτ ≥ RA.

We now turn to characterizing the optimal mechanism in our relaxed problem

2. Our next Lemma shows that we can restrict attention to mechanisms which

are stationary in (X,M). The proof is a relatively straightforward application of

results in Altman (1999) and is therefore deferred to the Online Appendix.

Lemma A.2. There exists an optimal mechanism that is stationary in (X,M).

We let (τ∆, d∆
τ , α

∆
τ ) be an optimal mechanism which is stationary in (X,M).

Players’ continuation values after every history ht with (Xt,Mt) = (x,m) will be

the same as at the first time s such that (Xs,Ms) = (x,m). Define τ1(x,m) =

min{t : (Xt,Mt) = (x,m)}. For expositional ease, we will henceforth say

“(τ, dτ , ατ ) is the continuation mechanism at (x,m)” as short-hand for “(τ, dτ , ατ )

is the continuation mechanism for (τ∆, d∆
τ , α

∆
τ ) after a history hτ1(x,m).”

Let (τ (x,m), d
(x,m)
τ , α

(x,m)
τ ) be the continuation mechanism of (τ∆, d∆

τ , α
∆) at

(x,m) and τ
(x,m)
+ (x′) be the length of time after τ1(x,m) until X goes above x′:

τ
(x,m)
+ (x′) = min{s : s ≥ τ1(x,m), Xs ≥ x′} − τ1(x,m). Similar to τ+ and τ

(x,m)
+ ,

we define a lower threshold stopping rule τ−(S) = min{t : Xt ≤ S} and let

τ
(x,m)
− (x′) = min{s : s ≥ τ1(x,m), Xs ≤ x′} − τ1(x,m). When conditioning on

(x,m) in an expectation, we mean conditional on the history hτ1(x,m).

With some abuse of notation, we let J(x,m) and V (x,m) be P ’s and A’s

respective continuation values from (τ∆, d∆
τ , α

∆
τ ) at the beginning of a period t
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with (Xt,Mt) = (x,m). We define R to be the set of (x,m) which are reached

with positive probability under τ∆:

R = {(x,m) : P
(
∃t < τ∆ s.t. (Xt,Mt) = (x,m)

)
> 0}.

We use a Lagrangian approach to solve the relaxed problem in 2. By Theorem

9.10 of Altman (1999),14 there exist multipliers (λ(X0), ..., λ(XN)) ∈ RN+1
− such

that 2 has a solution that solves:

L(X0) = max
(τ,dτ ,ατ )

E
[
e−rτ

(
dτ{uP (ατ )− ν − λ(X0)(uA(1− ατ )−Xτ )}+ ν − λ(X0)Xτ

)
+

N∑
n=1

λ(Xn)
{
e−r(τ∧τ+(Xn))

(
dτ (X

n)(uA(1− ατ )−Xτ∧τ+(Xn)) +Xτ∧τ+(Xn)

)
− e−rτ

(
dτ (uA(1− ατ )−Xτ ) +Xτ

)}]
+ λ(X0)X0. (4)

Our next Lemma uses 4 to characterize when, prior to τ+(X1), a split is reached

and what the split amount is. A standard solution to optimal stopping problems

is to stop the first time some chosen threshold is crossed. We show that the

same type of solution holds prior to τ+(X1) when we generalize the notion of the

stopping threshold. We say a mechanism uses a (S, γ)-split threshold if it stops and

implements a split with probability γ ∈ [0, 1) in each period t with Xt = S + εS
and with probability one when Xt ≤ S.

Lemma A.3. If a split is made with positive probability prior to τ+(X1), then

there are unique α0 and S ′ such that every stationary solution to 4 has ατ = α0 if

τ < τ+(X1) and uses an (S0, γ0)-split threshold prior to τ+(X1) for some (S0, γ0)

such that S0 is either S ′ or max{x ∈ G∆ : x < S ′}

Proof. From 4, if a split is made before τ+(X1), then ατ is equal to α0 as defined

in the text, which is independent of Xτ and unique by our concavity assumption.

If it is strictly optimal to stop immediately at t = 0, then we are done. Suppose

it is not. Let K(x′) be the continuation value in 4 at τ+(X1) when Xτ+(X1) =

x′. Let L(x, τ, dτ ) be the continuation value in 4 at (Xt,Mt) = (x,X0) if we

14Theorem 9.10 assumes a Slater-type condition which is satisfied in our problem by the mech-

anism (τA, dAτ , α
A
τ ). Although Theorem 9.10 is stated in terms of a “total cost” formulation of

the constrained optimization problem, Chapter 10 of Altman (1999) shows how to translate the

the discounted cost structure of our problem into the total cost formulation.
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use a continuation mechanism (τ, dτ , α
0) until τ+(X1) and revert to the optimal

mechanism at τ+(X1):

L(x, τ, dτ ) =Ex
[
e−rτ

{
dτ [uP (α0)− ν − λ(X0)(uA(1− α0)−Xτ )]

+ ν − λ(X0)Xτ

}
1(τ < τ+(X1)) + e−rτ+(X1)K(Xτ+(X1))1(τ ≥ τ+(X1))

]
.

Define L∗(x) = max
(τ,dτ )

L(x, τ, dτ ). Then L(X0) = L(X0, τ
∆, d∆

τ ) = L∗(X0). Let D(x)

be the value of stopping at Xt = x when t < τ+(X1) and C be the continuation

region:

D(x) = max{uP (α0)− λ(X0)uA(1− α0), ν − λ(X0)x},
C = {x : x < X1, ∃(τ, dτ ) s.t. L(x, τ, dτ ) ≥ D(x) and P(τ > 0) > 0.}.

By standard arguments it is weakly optimal to continue at x if x ∈ C and strictly

optimal to stop immediately at x if x 6∈ C.
A useful property of X is that the distribution of Xτ+(X1) is independent of the

current Xt. Therefore, the expected continuation value at τ+(X1) when X0 = x

(i.e., Ex[K(Xτ+(X1))]) is the same for all x. Because it is not strictly optimal to stop

immediately atX0 andD(X0) ≥ D(x) ∀x ≤ X0, it must be that EX0 [K(Xτ+(X1))] >

D(X0).

Take any x′ ∈ C such that (x′, X0) ∈ R. We will show L∗(x′′) > L∗(x′) ∀x′′ > x′.

Let (τx′ , dτ,x′) ∈ argmax(τ,dτ ) L(x′, τ, dτ ) such that P(τx′ > 0) > 0 and x′′ > x′.

Define τ̃(ω, x′′) = τx′(ω, x
′) and d̃τ (ω, x

′′) = dτ,x′(ω, x
′). For each ω, we have

τ+(X1)(ω, x′′) ≤ τ+(X1)(ω, x′) and so

τ̃(ω, x′′) ∧ τ+(X1)(ω, x′′) ≤ τx′(ω, x
′) ∧ τ+(X1)(ω, x′).

Because Xt(ω, x
′′) ≥ Xt(ω, x

′), the value of stopping before τ+(X1) is weakly higher

when starting at x′′. Additionally, P(τ̃ ≥ τ+(X1)|x′′) > P(τx′ ≥ τ+(X1)|x′), which

increases the value of L because Ex[K(Xτ+(X1))] > D(x) ∀x < X1. Therefore,

L∗(x′′) ≥ L(x′′, τ̃ , d̃τ ) > L∗(x′).

Let S ′ = max{x : L∗(x) = uP (α0)−λ(X0)uA(1−α0), x ≤ X0}. If there was an

x ∈ C such that x < S ′ and (x,X0) ∈ R, then L∗(x) ≥ D(x) = D(S ′) = L∗(S ′), a

contradiction. Therefore, if it is weakly optimal to immediately implement a split

at S ′, then it is strictly optimal to immediately implement a split at all x < S ′

which are reached with positive probability. Every solution to 4 must either stop

at S ′ with probability one or, if S ′ ∈ C, mix at S ′ and stop with probability one at

max{x ∈ G∆ : x < S ′}.
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The continuation mechanism at τ+(X1) when Xτ+(X1) = X` solves K(X`).

Defining λ(X`) =
∑

k≤` λ(Xk), K(X`) is equal to

max
(τ,dτ ,ατ )

EX`

[
e−rτ

(
dτ
{
uP (ατ )− ν − λ(X`)(uA(1− ατ )−Xτ )

}
+ ν − λ(X`)Xτ

)
+
∑
j>`

λ(Xj)
{
e−r(τ∧τ+(Xj)

(
dτ (X

j)
(
uA(1− ατ )−Xτ∧τ+(Xj)

)
+Xτ∧τ+(Xj))

)
− e−rτ (dτ (uA(1− ατ )−Xτ ) +Xτ )

}]
+
∑
k≤`

λ(Xk)Xk.

The similarity to 4 is clear and we can apply the same arguments as in Lemma A.3

when solving K(X`) to conclude that a (S, γ)-split threshold and constant split

amount are used until τ+(X`+εX`). Repeating these arguments, we conclude that,

for some functions S(·), γ(·) and α(·), when Mt = m, the optimal continuation

mechanism from τ+(m) to τ+(m + εm) uses a (S(m), γ(m))-split threshold and a

split gives P α(m).

Complementary slackness conditions imply λ(Xn) = 0 whenever RDIR(Xn) is

slack. It is easily verified that α, S and γ only change when we reach a new X`

for which RDIR(X`) binds. Otherwise, they remain constant. For any Xk < X`

such that RDIR(Xn) is slack for all Xn ∈ (Xk, X`), S(m), α(m), γ(m), J(x,m)

and V (x,m) are constant in m for all m ∈ [Xk, X`).

Before providing more structure to α(·) and S(·), it is useful to look at P ’s

and A’s continuation values. The next Lemma pins down properties of V (x,m)

and is important for establishing that our mechanism is dynamically individually

rational. In order to not continually specify whether we are at an (x,m) which

can be reached in the optimal mechanism, it is useful to specify “off-path” con-

tinuation mechanisms. For any (x,m) 6∈ R with x < min{RA,m}, we specify

that the continuation mechanism at date t with (Xt,Mt) = (x,m) is A’s first-best

mechanism; for all other (x,m) 6∈ R, the continuation mechanism takes the outside

option immediately.15

Lemma A.4. V (x,m) ≥ x, with equality if x = m.

Proof. The desired properties hold at (m,m) with m ≥ RA and all (x,m) 6∈ R.

We proceed by induction. Suppose m ≥ X0 is such that V (m′,m′) = m′ ∀m′ > m.

15 Even though A’s continuation value is higher in these off-path continuation mechanisms, the

decision of when to stop is entirely in the hands of P , so there is no deviation by A which can

lead to these off-path mechanisms.
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Let I−(m) = 1(τ∆ < τ+(m)), and I+(m′,m) = 1(τ∆ ≥ τ+(m), Xτ+(m) = m′).

RDIR(m) implies

E[e−rτ
∆

(d∆
τ (uA(1− α∆

τ )−Xτ∆) +Xτ∆)I−(m)] +
∑
m′≥m

E[e−rτ+(m)m′I+(m′,m)]

≤ E[e−rτ
∆(
d∆
τ (uA(1− α∆

τ )−Xτ∆) +Xτ∆

)
I−(m)] +

∑
m′≥m

E[e−rτ+(m)V (m′,m′) I+(m′,m)],

⇒
∑
m′≥m

E[e−rτ+(m)m′I+(m′,m)] ≤
∑
m′≥m

E[e−rτ+(m)V (m′,m′)I+(m′,m)]. (5)

Because V (m′,m′) = m′ ∀m′ > m, we have V (m,m) ≥ m, with equality if

RDIR(m) binds.

Suppose there is an (x,m) ∈ R such that V (x,m) ≤ x . Define τ̌ = τ (m,m) ∧
τ

(m,m)
− (x) ∧ τ (m,m)

+ (m + εm)-namely, the length of time after τ1(m,m) until the

mechanism stops or Xt exits the interval (x,m+ εm). If x > S(m), then τ (m,m) <

τ
(m,m)
− (x) ∧ τ (m,m)

+ (m + εm) implies d
(m,m)
τ = 0. If x = S(m), then V (x,m) ≤ x

implies uA(1 − α(m)) ≤ x, so A’s utility at τ (m,m) when τ (m,m) < τ
(m,m)
− (x) ∧

τ
(m,m)
+ (m + εm) is always weakly less than Xτ (m,m) . Together, V (x,m) ≤ x and

V (m′,m′) = m′ ∀m′ > m imply

V (m,m) = E
[
e−rτ̌

(
V (x,m)1(τ̌ = τ

(m,m)
− (x))

+
(
d(m,m)
τ (uA(1− α(m))−Xτ (m,m)) +Xτ (m,m)

)
· 1(τ̌ = τ (m,m) < τ

(m,m)
− (x) ∧ τ (m,m)

+ (m+ εm))

+ V (X
τ

(m,m)
+ (m+εm)

, X
τ

(m,m)
+ (m+εm)

)1(τ̌ = τ
(m,m)
+ (m+ εm))

)
|(m,m)

]
≤ E[e−rτ̌Xτ̌ |(m,m)]

≤ m, (6)

where the final inequality follows from Doob’s Optional Stopping Theorem. The

first inequality is strict if V (x,m) < x, which contradicts V (m,m) ≥ m. Therefore,

when V (m′,m′) = m′ ∀m′ > m, we have V (x,m) ≥ x ∀x ≤ m.

We conclude the inductive step by showing V (m,m) = m. Suppose V (m,m) >

m. Let m̂ = max{x : x < m, RDIR(x) binds, (x, x) ∈ R}.16 For all x ∈
[m̂,m], V (x,m′) is constant in m′ ∈ [x,m] because all RDIR(m′) constraints are

16m̂ exists because RDIR(X0) binds; if it were slack P could increase his demand before

τ+(X1) without violating any constraints.
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slack. Because V (m̂, m̂) = V (m̂,m), taking x = m̂ in 6, we get V (m,m) ≤ m if

V (m̂, m̂) ≤ m̂. Therefore V (m,m) > m implies V (m̂, m̂) > m̂.

Because RDIR(m̂) is binding, the same steps as in 5 imply∑
m′≥m̂

E[e−rτ+(m̂)m′I+(m′, m̂)] =
∑
m′≥m̂

E[e−rτ+(m̂)V (m′,m′)I+(m′, m̂)]. (7)

For a diffusion process, because Xτ+(m̂) = m̂, 7 implies V (m̂, m̂) = m̂, a con-

tradiction. For a search process, 7 and V (m̂, m̂) > m̂ imply V (m′′,m′′) < m′′

for some m′′ ∈ (m̂,m) with P(Xτ+(m̂) = m′′) > 0. By our previous arguments,

V (m′′,m′′) = V (m′′,m) ≥ m′′, a contradiction. Therefore, V (m,m) = m.

The next Lemma shows that P ’s continuation value is always higher than his

outside option.

Lemma A.5. J(x,m) ≥ ν ∀(x,m) ∈ R with strict inequality if x < m. If P

doesn’t take his outside option with probability one when (Xt,Mt) = (m+ εm,m+

εm), then J(m,m) > J(m+ εm,m+ εm).

Proof. If ν > J(m,m), P is better off taking his outside option immediately at

(m,m). Doing so does not change A’s continuation value because V (m,m) = m

by Lemma A.4. Therefore, J(m,m) ≥ ν ∀m such that (m,m) ∈ R.

We show J(x,m) ≥ ν by induction. For the base case, let m̄ = max{m′ :

(m′,m′) ∈ R}. Then J(m̄, m̄) ≥ ν and, vacuously, J(m̄, m̄) ≥ J(m′,m′) for all

m′ > m̄ such that (m′,m′) ∈ R. We show the inductive step in two steps. In the

first step, for an arbitrary m such that (m,m) ∈ R, we show that if J(m,m) ≥
J(m′,m′) ≥ ν for all m′ > m such that (m′,m′) ∈ R, then J(x,m) ≥ ν for all

(x,m) ∈ R. In the second step, we let m− = max{m′ : m′ < m and (m′,m′) ∈ R}
and show that J(m−,m−) ≥ J(m,m).

Take an m such that J(m,m) ≥ J(m′,m′) ≥ ν for all (m′,m′) ∈ R with

m′ > m. If (x,m) ∈ R, then (x′,m) ∈ R for all x′ ∈ [x,m] because the only

way to reach (x,m) from (m,m) is to go through (x′,m). We show, for any

(x,m) ∈ R and x′ ∈ [x,m], that J(x,m) ≥ J(x′,m) ≥ ν. This is done by

induction as well. For the base case, take x = m. For the inductive step, suppose

J(x,m) ≥ J(x′,m) ≥ ν ∀x′ ∈ [x,m]. Let x− = max{x′′ ∈ G∆ : x′′ < x}. If

(x−,m) 6∈ R, we are done.
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Suppose (x−,m) ∈ R. Note that

J(x,m) = E[e−rτ
(x,m)
− (x−)J(x−,m)1(τ

(x,m)
− (x−) ≤ τ

(x,m)
+ (x+ εx) ∧ τ (x,m)))

+ e−rτ
(x,m)

(d(x,m)
τ (uP (α(m))− ν) + ν)1(τ (x,m) < τ

(x,m)
− (x−) ∧ τ (x,m)

+ (x+ εx))

+ e−rτ
(x,m)
+ (x+εx)J(X

τ
(x,m)
+ (x+εx)

,max{m,X
τ

(x,m)
+ (x+εx)

})

· 1(τ
(x,m)
+ (x+ εx) ≤ τ

(x,m)
− (x−) ∧ τ (x,m))|(x,m)],

≤ E[e−rτ
(x,m)
− (x−)J(x−,m)1(τ

(x,m)
− (x−) ≤ τ

(x,m)
+ (x+ εx) ∧ τ (x,m)))

+ e−rτ
(x,m)

(d(x,m)
τ (uP (α(m))− ν) + ν)1(τ (x,m) < τ

(x,m)
− (x−) ∧ τ (x,m)

+ (x+))

+ e−rτ
(x,m)
+ (x+εx)J(x,m)1(τ

(x,m)
+ (x+ εx) ≤ τ

(x,m)
− (x−) ∧ τ (x,m))|(x,m)].

Thus, due to discounting, J(x,m) is strictly less than either J(x−,m) or, when

τ (x,m) < τ
(x,m)
− (x−) ∧ τ (x,m)

+ (x+), d
(x,m)
τ (uP (α(m)) − ν) + ν. If S(m) = x−, then

J(x−,m) = uP (α(m)), which, because J(x,m) ≥ ν and d
(x,m)
τ (uP (α(m)) − ν) +

ν ∈ {uP (α(m)), ν}, implies J(x−,m) > J(x,m). If S(m) < x−, then d
(x,m)
τ = 0

whenever τ (x,m) < τ
(x,m)
− (x−) ∧ τ (x,m)

+ (x + εx), which implies J(x−,m) > J(x,m).

This concludes the inductive step and shows J(x,m) ≥ ν for all x such that

(x,m) ∈ R, with strict inequality if x < m.

We next prove the second step. If P takes his outside option at (m,m), then

J(m,m) = ν and we are done because J(m−,m−) ≥ ν. Suppose P doesn’t take

his outside option with probability one at (m,m). If S(m) ≥ m−, then α(m) ≤
1 − u−1

A (S(m)) because V (S(m),m) ≥ S(m). P could make a TIOLI demand of

1 − u−1
A (m−) at (m−,m−) and without changing A’s continuation value because

V (m−,m−) = m−. This implies

J(m−,m−) ≥ uP (1− u−1
A (m−)) > uP (1− u−1

A (S(m))) ≥ J(m,m).

If S(m) < m−, then by our arguments above J(m−,m) > J(m,m). Because

V (m−,m) ≥ m− = V (m−,m−), at (m−,m−) P could use the continuation mecha-

nism at (m−,m) without violating A’s RDIR constraints. Therefore, J(m−,m−) ≥
J(m−,m) > J(m,m) ≥ ν.

The next two Lemmas add more structure to (τ∆, d∆
τ , α

∆
τ ).

Lemma A.6. d∆
τ = 1(Xτ < R) for some R ≥ X0.
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Proof. Suppose P takes his outside option at (Xt,Mt) = (x,m) ∈ R with x < m

with probability p ∈ (0, 1]. Because V (x,m) ≥ x, A’s continuation value when

P does not take his outside option today is weakly greater than x. Because A

weakly prefers to continue bargaining, for p ∈ (0, 1] to be optimal, it must be that

ν > J(x,m), contradicting Lemma A.5. Therefore, there is an optimal mechanism

stationary in (X,M) in which P does not take his outside option at any x < m.

Let R = min{m : J(m,m) = ν}. Lemma A.5 shows J(R,R) ≥ J(m,m) ∀m > R

with (m,m) ∈ R and so it is optimal for P to take his outside option at such

m.

Lemma A.7. S(m) and α(m) are decreasing in m.

Proof. The monotonicity of α(·) follows from pointwise optimization of α in 4 at

(Xt,Mt) = (x,m):

α(m) = argmaxα∈[0,1] uP (α)−
∑
Xn≤m

λ(Xn)uA(1− α).

Because λ(Xn) ≤ 0, α(m) is decreasing in m. It then immediately follows that, at

the optimal choice of S(m) and γ(m), P ’s utility is strictly increasing in S(m) and

γ(m), as increasing either decreases both delay time and the chance that P ’s future

demand will decrease. This means that A’s utility must be strictly decreasing in

S(m) and γ(m); otherwise it would be optimal for P to increase S(m) or γ(m).

Next, we argue that S(·) is decreasing. Take some m < R. By stationarity of

the mechanism between τ+(m) and τ+(m + εm), both players’ continuation value

will be the same at τ
(m,m)
+ (m+ εm) and τ

(m,m+εm)
+ (m+ εm). Starting at X0 = m, we

consider an alternative problem in which we fix continuation values at τ+(m+ εm)

to be J(Xτ+(m+εm), Xτ+(m+εm)) and Xτ+(m+εm) for P and A respectively and allow

P to choose S, γ and α. We also impose a promise-keeping constraint to deliver

W expected utility to A.

Let τS,γ be the stopping time induced by an (S, γ)-split threshold. We define

Φ(S, γ) = Em[e−rτ+(m+εm)1(τS,γ > τ+(m + εm))] and φ(S, γ) = Em[e−rτ
S,γ
1(τS,γ <

τ+(m + εm))]. The promise-keeping constraint for W pins down the split amount

α(W,S, γ):

W = Φ(S, γ)E[Xτ+(m+εm)] + φ(S, γ)uA(1− α(W,S, γ)),

⇒ α(W,S, γ) = 1− u−1
A (

W − Φ(S, γ)E[Xτ+(m+εm)]

φ(S, γ)
).
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P ’s problem is to choose S, γ subject to α = α(W,S, γ):

Ĵ(W ) := max
S,γ

Φ(S, γ)E[J(Xτ+(m+εm), Xτ+(m+εm))] + φ(S, γ)uP (α(W,S, γ)). (8)

Ĵ is decreasing in W . When W = V (m,m), we have Ĵ(W ) = J(m,m) and the

solution to 8 is S(m), γ(m). When W = V (m,m+ εm), Ĵ(W ) = J(m,m+ εm) and

the solution to 8 is S(m+ εm), γ(m+ εm).

Compare two (S, γ)-split thresholds (S1, γ1) and (S2, γ2) and let αj(W ) =

α(W,Sj, γj). P prefers (S1, γ1) to (S2, γ2) if

Φ(S1, γ1)E[J(Xτ+(m+εm), Xτ+(m+εm))] + φ(S1, γ1)uP (α1(W )) (9)

−
[
Φ(S2, γ2)E[J(Xτ+(m+εm), Xτ+(m+εm))] + φ(S2, γ2)uP (α2(W ))

]
≥ 0.

When we increase W , 9 changes by

φ(S1, γ1)u′P (α1(W ))α′1(W )− φ(S2, γ2)u′P (α2(W ))α′2(W ). (10)

Using α′i(W ) = −1
φ(Si,γi)u′A(1−αi(W ))

, 10 becomes

u′P (α2(W ))

u′A(1− α2(W ))
− u′P (α1(W ))

u′A(1− α1(W ))
.

By concavity of uP and uA, 10 is strictly positive if and only if α1(W ) > α2(W ).

We argue the optimal S is decreasing in W for W ∈ [V (m,m), V (m,m+ εm)].

Consider a point W ′ at which P is indifferent between two optimal choices (S1, γ1)

and (S2, γ2) with S1 < S2. For the sake of contradiction, suppose α1(W ′) ≤ α2(W ′).

Let τ i be the stopping time induced by (Si, γi)-split threshold in the alternative

problem. Because τ 2 ≤ τ 1, P ’s indifference between (S1, γ1) and (S2, γ2) implies

Ĵ(W ′) =Em[e−rτ
2

uP (α2(W ′))1(τ 2 < τ+(m+ εm))]

+ Em[e−rτ+(m+εm)J(Xτ+(m+εm), Xτ+(m+εm))1(τ 2 > τ+(m+ εm))]

=Em
[
e−rτ

2

1(τ 2 < τ+(m+ εm))Em
[
e−r(τ

1−τ2)uP (α1(W ′))1(τ 1 < τ+(m+ εm))

+ e−r(τ+(m+εm)−τ2)E[J(Xτ+(m+εm), Xτ+(m+εm))]1(τ 1 > τ+(m+ εm))|hτ2

]]
+ Em[e−rτ+(m+εm)J(Xτ+(m+εm), Xτ+(m+εm))1(τ 2 > τ+(m+ εm))],

⇒E[J(Xτ+(m+εm), Xτ+(m+εm))] > uP (α2(W ′)),

⇒Ĵ(W ′) < E[J(Xτ+(m+εm), Xτ+(m+εm))].
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By Lemma A.5, J(m,m+ εm) ≥ J(m′,m′) ∀m′ ≥ m+ εm, so

Ĵ(W ′) ≥ Ĵ(V (m,m+ εm)) = J(m,m+ εm) ≥ E[J(Xτ+(m+εm), Xτ+(m+εm))],

a contradiction. Thus, α1(W ′) > α2(W ′) and P strictly prefers (S1, γ1) at higher

W . Thus, the optimal choice of S is decreasing in W and S(m+ εm) ≤ S(m).

We now look in the limit as ∆ → 0. For each ∆, let S∆(Mt), α
∆, R

∆
be

the respective optimal approval threshold, split amount and breakdown threshold

in the discrete time relaxed problem. Let S∗, α∗, R
∗

= lim
∆→0

S∆, α∆, R
∆

.17 Use

S∗, α∗, R
∗

to define the mechanism (τ ∗, d∗τ , α
∗
τ ) as in Theorem 1. If S∗(Y0) ≥ Y0,

we take τ ∗ = 0, d∗τ = 1(Y0 < R) and α∗τ = 1− u−1
A (Y0).

The limit threshold and demand functions S∗ and α∗ are continuous. This

result follows from the fact that V (m,m) = m and, as noted in Lemma A.7, A’s

utility is decreasing in the S∆ and α∆. A discrete jump down in S∗ or α∗ at m

would mean that A strictly preferred to continue bargaining at (Xt,Mt) = (m,m)

for small ∆; P could then increase S∗ and α∗ without violating dynamic individual

rationality. The proof is deferred to the Online Appendix.

Lemma A.8. S∗ and α∗ are continuous.

Before formally proving Theorem 1, we note an auxiliary result that shows that,

under some conditions, the mechanism (τ∆, d∆
τ , α

∆
τ ) is the optimal discrete time

dynamically individually rational mechanism. By Lemma A.4, to show dynamic

individual rationality it suffices to show that A finds it optimal to accept a split

when offered one. We show that when when there is non-vanishing delay in reaching

a split as ∆ → 0, namely S∗(Y0) < min{Ỹ , Y0}, and A’s expected discounted

value of Xt+∆ is strictly less than Xt, then (τ∆, d∆, α∆
τ ) is dynamically individually

rational for small ∆. The proof is in the Online Appendix.

Proposition A.1. Suppose there exists an r′ < r such that x ≥ Ex[e−r
′∆X∆] ∀x

as ∆ → 0. If S∗(Y0) < min{Ỹ , Y0}, then (τ∆, d∆
τ , α

∆
τ ) is dynamically individually

rational for sufficiently small ∆.

The fact that (τ ∗, d∗τ , α
∗
τ ) is optimal in continuous time follows from the conver-

gence of X to Y , thereby yielding Theorem 1. Let E∆ be the expectation over Xt

17Because S∆ and α∆ are decreasing and uniformly bounded, by Helly’s Selection Theorem

the sequence as ∆→ 0 has a subsequence converging to decreasing functions S∗ and α∗.
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with period length ∆ and Ec be the expectation over Yt. We provide the proof for

a diffusion process below. The proof for a search process is similar, but requires

more details on the construction of the continuous time search process, and so is

deferred to the Online Appendix.

Proof. Let us extendXt to continuous time by keepingX constant on [0,∆), [∆, 2∆), ....

That P ’s utility from (τ∆, d∆
τ , α

∆
τ ) converges to the (τ ∗, d∗τ , α

∗
τ ) as ∆ → 0 and his

continuous time utility from (τ ∗, d∗τ , α
∗
τ )-namely,

lim
∆→0

E∆[e−rτ
∆

(d∆
τ (uP (α∆

τ )− ν) + ν)] = lim
∆→0

E∆[e−rτ
∗
(d∗τ (uP (α∗τ )− ν) + ν)]

= Ec[e−rτ∗(d∗τ (uP (α∗τ )− ν) + ν)],

is straightforward from the continuity of S∗, α∗ and the well-known fact that there

exists a probability space such that for any T, δ > 0, for small enough ∆ we have

P( max
t∈[0,T ]
|Xt − Yt| > δ) < δ. The same convergence holds for A’s discrete and

continuous time utility from (τ ∗, d∗τ , α
∗
τ ). It is easily seen that A’s continuous time

continuation value under (τ ∗, d∗τ , α
∗
τ ) is, for each (y,m) the same for every history

with (Yt,Mt) = (y,m). Let V c(y,m) and V ∆(x,m) be A’s continuous and discrete

time continuation values respectively. Then (τ ∗, d∗τ , α
∗
τ ) is dynamically individually

rational if V c(y,m) ≥ y for all m < R
∗

and y ∈ (S∗(m),m]. Suppose V c(y,m) < y

for some such (y,m). Let (x∆,m∆) be a sequence such that (x∆,m∆) ↑ (y,m) and

(x∆,m∆) ∈ G∆ × G∆. Then lim
∆→0

V ∆(x∆,m∆) = V c(y,m) < y, contradicting the

fact that V ∆(x∆,m∆) ≥ x∆ by Lemma A.4. Therefore, (τ ∗, d∗τ , α
∗
τ ) is dynamically

individually rational.

All that is left is to show is that (τ ∗, d∗τ , α
∗
τ ) is optimal in continuous time.

Suppose there was a dynamically individually rational continuous time mechanism

(τ ∗∗, d∗∗τ , α
∗∗
τ ) such that J∗∗ := J(τ ∗∗, d∗∗τ , α

∗∗
τ ) > J(τ ∗, d∗τ , α

∗
τ ).

We start by extending uP and uA to be defined on R rather than [0, 1] in any

way that satisfies u′′i ≤ 0 < u′i for i = P,A with each u′i uniformly bounded away

from 0 and ∞. We also expand the range of ατ to (−∞, 1]. With this extended

environment, all the steps in the derivation of the optimal discrete time mechanism

go through verbatim and the optimal mechanism takes the same form as when we

restricted ατ ≥ 0. 18 We will use this extended model for the rest of the proof.

18Note that in our optimal mechanism, the restriction to ατ ≥ 0 was not binding; even if P

could choose ατ < 0, the monotonicity of α∆(m) and the fact that V (m,m) = m implies that,

whenever α∆(m) < 0, P would be better off taking his outside option at (m,m). Thus, the value
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Take some small δ, δα, δT > 0 and T such that e−rTuP (1) = δT . We use a

single probability space so that convergence in probability of Xt to Yt holds over

[0, T ]. Let ∆(δ, δT ) be a ∆ such that P( max
t∈[0,T ]

|Yt − Xt| > δ) < δ. We allow the

discrete time mechanism to depend on the realization of Y as well as X. Because

Y is payoff irrelevant, allowing our discrete-time mechanism to be measurable with

respect to Yt changes neither the optimal mechanism (τ∆, d∆
τ , α

∆
τ ) nor P ’s value

from (τ∆, d∆
τ , α

∆
τ ).

Let dte∆ be t rounded up the nearest date in {0,∆, ...} and α < 1−u−1
A (Y ) < 0.

We define a discrete-time mechanism (τ̂ , d̂τ , α̂τ ) that approximates (τ ∗∗, d∗∗τ , α
∗∗
τ )

as long as τ ∗∗ < T and Yt and Xt are close; otherwise it gives 1 − α to A. Let

τ̂ = dτ ∗∗ ∧ T ∧ inf{t : |Yt −Xt| > δ}e∆. If τ̂ < dT ∧ inf{t : |Yt −Xt| > δ}e∆ and

Xτ̂ < uA(1−ατ̂ + δα), then d̂τ = dτ∗∗ and α̂τ = ατ∗∗ − δα; otherwise, d̂τ = 1, α̂τ =

α− δα.

Let δ, δT → 0 (which implies ∆(δ, δT ) → 0). Because δα > 0, A receives a

discrete increase in utility from any split. By the convergence of X to Y , for small

∆, A’s continuation value at any t in the discrete-time mechanism is strictly higher

than than his continuous time continuation value from (τ ∗∗, d∗∗τ , α
∗∗
τ ). Because

(τ ∗∗, d∗∗τ , α
∗∗
τ ) satisfies dynamic individual rationality, so too will (τ̂ , d̂τ , α̂τ ). Taking

δ, δT → 0, P ’s value from (τ̂ , d̂τ , α̂τ ) when ∆ = ∆(δ, δT ) is bounded below by

J∗∗ + u′P (−δα)δα + O(δ2
α). Because δα is arbitrary, we can take δα → 0 to get

a dynamically individually rational mechanism that gets arbitrarily close to J∗∗

for small ∆. But this contradicts the fact P ’s utility from (τ∆, d∆
τ , α

∆
τ ) is the

solution to P ’s relaxed problem and converges to J(τ ∗, d∗τ , α
∗
τ ). Therefore, no such

(τ ∗∗, d∗∗, α∗∗τ ) exists.

Appendix B Alternating Offers Bargaining

Define χ = uA(1 − u−1
P (ν)). There is an immediate split at t that is individually

rational (IR) for both parties if and only if Xt ≤ χ. By constrained Pareto

efficiency, we know R
∗
> χ. Because, at any (Xt,Mt), the continuation mechanism

in our relaxed problem does not depend on X0 and S∗(M) is decreasing in M ,

there exists M∗ such that the optimal mechanism has an immediate split if and

only if X0 ≤ M∗. Note that M∗ < χ; otherwise J(M∗,M∗) < ν, a contradiction

of the optimal mechanism with these extended utility functions is the same as when restricting

ατ ∈ [0, 1].
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of Lemma A.5. If S∗(Y0) > Ỹ , then an immediate agreement is reached. We will

treat such situations as if S∗(Y0) = Y0.

Equilibrium Definition

Let αt and βt be P ’s and A’s respective demands at time t. Fix some κ ∈ (0, χ−M∗)

and let Mκ = M∗ + κ. Suppose X0 ≥ Mκ. We specify on-path strategies that

implement the same outcomes as (τ∆, d∆
τ , α

∆
τ ). The proposer at τ∆ is called to make

a demand that gives P and A, respectively, α∆(Mτ ) and 1−α∆(Mτ ) if Xτ∆ < R
∆

and take his outside option if Xτ∆ ≥ R
∆

. Prior to τ∆, the proposer demands the

entire surplus and the responder rejects. Whether a split is proposed at S∆(Mt) +

εS∆(Mt) when γ∆(Mt) ∈ (0, 1) is determined by the public randomization device.

To support these on-path strategies, we define several off-path punishment

equilibria. In an outside equilibrium, the proposer makes the maximal possible

demand subject to the responder’s individual rationality (IR) constraint-namely,

αt = 1−u−1
A (Xt) and βt = 1−u−1

P (ν). The responder accepts any IR demand and

rejects otherwise. If the responder rejects the demand, the proposer immediately

takes his outside option.

We now define an A-inside equilibrium beginning at t+ ∆. The A-inside equi-

librium begins when P proposes at t + ∆ and will depend on the value of Xt. If

Xt ≥ Mκ, P uses the same continuation strategies from t + ∆ on as if we were

on-path at time ∆ when starting at (X0,M0) = (Xt, Xt). By Lemma A.4, A’s

continuation value is Xt.

If Xt < Mκ, at t + ∆ P demands α̂t+∆, which is chosen to leave A indifferent

between waiting until t + ∆ or taking his outside option immediately at t. A

accepts any demand with αt+∆ ≤ α̂t+∆ and rejects otherwise. For a diffusion

process, α̂t+∆ = 1− u−1
A (Xt+∆)− δA, where δA is chosen so that

Xt = e−r∆EXt [uA(u−1
A (X∆) + δA))].

For a search process, α̂t+∆ = 1 − u−1
A (Xt − εXt) − δA if there is Xt+∆ < Xt,

α̂t+∆ = 1− u−1
A (Xt+∆) if Xt+∆ ∈ [Xt, χ). If Xt+∆ > χ, P makes no offer and takes

his outside option. We choose δA so that

Xt = e−r∆
[
ζ∆(Xt)EZ [max{Zt, Xt}] + (1− ζ∆(Xt))uA(u−1

A (Xt − εXt)− δA)
]
.

As ∆→ 0, δA → 0 and α̂t+∆ → 1− u−1
A (Xt). P ’s continuation value at t from the

A-inside equilibrium begining at t+ ∆ converges to uP (1− u−1
A (Xt)) > ν.
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We now define a P-inside equilibrium beginning at t + ∆. The P -inside equi-

librium begins when A proposes at t+ ∆ and will also depend on the value of Xt.

At t+ ∆, A makes a demand β̂t+∆. P accepts any demand with βt+∆ ≤ β̂t+∆ and

rejects otherwise. For a diffusion process, β̂t+∆ = 1 − u−1
P (ν) − δP ; δP is set to

leave P indifferent between waiting for A’s demand and taking his outside option

immediately:

ν = e−r∆uP (u−1
P (ν) + δP ).

For a search process, β̂t+∆ = 1 − u−1
P (ν) − δP if Xt+∆ < Xt, β̂t+∆ = 1 − u−1

P (ν) if

Xt+∆ ∈ [Xt, χ). If Xt+∆ > χ, A makes no offer and takes his outside option. We

choose δP so that

ν = e−r∆[ζ∆(Xt)ν + (1− ζ∆(Xt))uP (u−1
P (ν) + δP )].

As ∆→ 0, δP → 0 and A’s continuation value at t converges to χ. For any Xt < χ,

A will find it strictly optimal to wait at t rather than take his outside option for

all sufficiently small ∆.

When X0 ≥ Mκ, we specify the following reaction to a deviation. If i is the

proposer and deviates at t by making a larger demand when k is called to accept

the equilibrium demand, then k rejects i’s demand and i moves to the next period.

Continuation play is given by the i-inside equilibrium beginning at t+∆. If k either

rejects i’s demand when k is called to accept or fails to take his outside option when

called to, then i immediately takes his outside option. If i does not take his outside

option, we move to the outside equilibrium for all subsequent periods. We note

that, for small ∆, the only equilibrium demands for which IR is not binding and

are called to be accepted are made at Xt ≤Mκ.

If X0 < Mκ and P is the first proposer, then we start in the outside equilibrium.

If A is the first proposer, then we fix a small δ > 0 and specify that A demands

u−1
A (X0 + δ) and P accepts immediately. If A raises his demand, P rejects and we

move to an A-inside equilibrium.

Proof of Theorem 2

Proof. For X0 ≥Mκ, by Theorem 1, the on-path strategies converge to the optimal

continuous time mechanism. Because κ was arbitrary, this holds for any X0 > M∗.

For X0 ≤M∗, convergence to the continuous time mechanism is clear as κ, δ → 0.

We need only verify that the strategies are a sub-game perfect equilibrium.
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We first argue that the outside equilibrium is sub-game perfect. The proposer

has no incentive to change his demand because he is getting the maximal amount he

can subject to the responder’s IR constraint. Taking his outside option following

a rejection is optimal for the proposer because he has a continuation value in the

next period equal to his outside option. His opponent finds it optimal to accept

the proposer’s demand because it is IR and rejection will lead to the proposing

player taking his outside option immediately.

We now argue that our on-path and inside equilibria strategies are sub-game

perfect. In on-path play, due to the constrained Pareto-efficiency of continuation

play (Proposition 2), there is no deviating demand before τ∆ that would be prof-

itable for the proposer and which the responder would accept. Continuation play

is always dynamically individually rational for small ∆,19so neither player has an

incentive to take their outside option earlier than called to. At t + ∆, the splits

agreed upon are IR for both players. Thus, the responder has no incentive to

reject a demand he is called to accept because a rejection leads to the proposer

immediately taking his outside option. The proposer has no incentive to raise his

demands as they will be rejected and his continuation value will be equal to his

outside option.

All that is left to show is that player k, when called to reject a deviating

demand by player i, finds it optimal to do so. Suppose P were to increase his

demand in a period in which A is called to accept P ’s equilibrium demand and P ’s

increased demand was IR for A. For small ∆, P only makes an equilibrium IR

demand for A if Xt ≤ Mκ. If A rejects, A’s continuation value in the subsequent

P -inside equilibrium is approximately uA(1 − u−1
P (ν)) > Mκ. Fixing any demand

amount αt > u−1
P (ν), for all ∆ small enough, A will find it optimal to reject P ’s

deviating demand. When X0 ≥Mκ or we are in a A-inside equilibrium that began

at Xt ≥Mκ, P ’s equilibrium demand when A is called to accept is bounded away

from u−1
P (ν); otherwise, due to discounting costs, P would be better off taking his

outside option at X0 or the beginning of the A-inside equilibrium, contradicting

Lemma A.5. Thus, an increased demand by P will be rejected by A.

Now suppose A increases his demand in a period in which P is called to accept

A’s equilibrium demand. P ’s continuation value in the A-inside equilibrium is equal

to J(Xt, Xt) if Xt ≥Mκ or, if Xt < Mκ, approximately uP (1−u−1
A (Xt)) as ∆→ 0.

In a P -inside equilibrium, A’s equilibrium demands leave P with approximately a

19For A, this follows from Proposition A.1; for P it follows from Lemma A.5.
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utility of ν if Xt < χ and exactly equal to ν if Xt ≥ χ. Because J(Xt, Xt) > ν

for Xt < χ by Lemma A.5, in a P -inside equilibrium, any increase in A’s demand

will be rejected by P . In the on-path equilibrium, A is making a demand that is

called to be accepted only at τ∆ and Xτ∆ < Mκ. At τ∆, A is making a demand

which, for small ∆, gives A utility which is bounded away from his outside option:

βt = 1−α∆(Mt) > u−1
A (Xt), which gives P a utility strictly less than (and bounded

away from as ∆ → 0) uP (1 − u−1
A (Xt)). P ’s utility from the A-inside equilibrium

if he rejects is approximately uP (1 − u−1
A (Xt)). Thus, an increased demand by A

will be rejected by P .
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Appendix O.A Online Appendix

Proof of Lemma A.1

Proof. That ατ = 1 is immediate. To find the optimal (τ, dτ ), we partition G∆ into

a continuation set C and a stopping set D and partition D into DS, where it is

optimal to take the split, and DO, where it is optimal to take the outside option:

C = {x : V ∗(x) > max{uA(1), x}},
DS = {x : V ∗(x) = uA(1) ≥ x},
DO = {x : V ∗(x) = x > uA(1)}.

It is clear that min{x ∈ DO} > max{x ∈ DS}. As is standard, the optimal

stopping rule is then given by τ = min{t : Xt ∈ D} with dτ = 1(Xτ ∈ DS).

We want to show C = (SA, RA) ∩ G∆ for SA = max{x : x ∈ DS} and RA =

min{x : x ∈ DO}. Let x1, x2 ∈ D such that x2 > x1 + εx1 and x ∈ C ∀x ∈ (x1, x2).

Take x′ ∈ (x1, x2). We argue that it must be that x1 ∈ DS and x2 ∈ DO. This

suffices to show C = (SA, RA)∩G∆ as otherwise there would exist such x1, x2 ∈ DS
or x1, x2 ∈ DO.

We first consider a diffusion process. Suppose x1, x2 ∈ DS. Then

V ∗(x′) = Ex′ [e−r(τ−(x1)∧τ+(x2))V ∗(Xτ−(x1)∧τ+(x2))]

= Ex′ [e−r(τ−(x1)∧τ+(x2))uA(1)]

< uA(1),

contradicting x′ ∈ C. Next, suppose x1, x2 ∈ DO . Then

V ∗(x′) = Ex′ [e−r(τ−(x1)∧τ+(x2))V ∗(Xτ−(x1)∧τ+(x2))]

= Ex′ [e−r(τ−(x1)∧τ+(x2))Xτ−(x1)∧τ+(x2)]

≤ x′,

where the inequality follows from Doob’s Optional Stopping Theorem, contradict-

ing x′ ∈ C.
We next consider a search process. It is easily seen that V ∗(x) is increasing

in x. Suppose x1, x2 ∈ DS. The fact that continuing for one additional period is

optimal at x1 + εx1 and it is optimal to stop at x1 implies

V ∗(x1 + εx1) = e−r∆[ζ∆(x1 + εx1)EZ [V ∗(max{Z, x1 + εx1}))] + (1− ζ∆(x1 + εx1))uA(1)]

> uA(1). (11)
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For this to be true, we must have EZ [V ∗(max{Z, x1 + εx1})] > uA(1). The fact

that it is not optimal to continue for one more period at x2 implies

e−r∆[ζ∆(x2)EZ [V ∗(max{Z, x2})] + (1− ζ∆(x2))uA(1)] < uA(1) = V ∗(x2).

a contradiction of 11 because ζ∆(x) and EZ [V ∗(max{Z, x})] are increasing in x.

Now suppose x1, x2 ∈ DO. When X0 = x′, Xt must travel through x1 to go

below x1. Therefore min{t : Xt ∈ D} = min{t : Xt ∈ DO} and

V ∗(x′) = sup
τ

Ex′ [e−rτmax{uA(1), Xτ}] = sup
τ
Ex′ [e−rτXτ ] ≤ x′,

where the inequality follows from Doob’s Optional Stopping Theorem, contradict-

ing x′ ∈ C.

Proof of Lemma A.2

Proof. Our goal is to write the relaxed problem 2 as a constrained Markov decision

problem (as in Altman (1999)) with state space is {0, 1} × G∆ × G∆ and generic

state (Ht, Xt,Mt) at time t. Xt and Mt are taken from the discretized outside

option process while Ht is a indicator variable for whether P has not stopped prior

to t. An action in period t is (at, dt, αt) ∈ {0, 1} × {0, 1} × [0, 1] where at is the

action to stop at time t, dt is an indicator for a split being made when stopping

at t and αt is the share of the surplus going to P when implementing a split t. A

history at t > 0 takes the form ht = (H0, X0,M0, a0, d0, α0, H1, ...., αt−1, Ht, Xt,Mt)

with h0 = (H0, X0,M0). A strategy (τ, dτ , ατ ) maps histories ht into a probability

mixture over (at, dt, αt).
20 By our restriction after Lemma A.1, we set at = 1, dt = 0

whenever Xt ≥ RA. The transition probability for H is Ht+∆ = Ht(1 − at) and

H0 = 1.

We now show how to write the objective function and constraint set with state

space (H,X,M) and in the form used in Altman (1999). The objective function,

P ’s expected utility, is equal to

E[
∑

t∈{0,∆,...}

e−rtHtat
(
dt(uP (αt)− ν) + ν)

)
].

20Altman (1999) shows it is without loss to focus on behavioral policies which do not condition

on past randomization.
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We can rewrite RDIR(Xn) as

V (τ ∧ τ+(Xn), dτ (X
n), ατ )− V (τ, dτ , ατ ) ≤ 0. (12)

Similar to the objective function, V (τ, dτ , ατ ) is equal to

E[
∑

t∈{0,∆,...}

e−rtHtat
(
dt(uA(1− αt)−Xt) +Xt)

)
].

If Xn = X0, then V (τ ∧ τ+(Xn), dτ (X
n), ατ ) = X0 and we are done. When

Xn > X0, V (τ ∧ τ+(Xn), dτ (X
n), ατ ) is equal to

E[
∑

t∈{0,∆,...}

e−rtHtat(dt(uA(1− αt)−Xt) +Xt)1(Mt < Xn)]

+ E[
∑

t∈{∆,...}

e−rtHt1(Mt−∆ < Xn)1(Xn ≤ Xt)Xt].

The first line is the payoff of the mechanism stopping prior to τ+(Xn) and the

second line is the payoff from taking the outside option at τ+(Xn).21 Let Px,x′ =

P(Xt+∆ = x|Xt = x′) The second line is equal to

E
[ ∑
t∈{∆,...}

e−rtHt1(Mt−∆ < Xn)
∑
x′≥Xn

PXt−∆,x′x
′]. (13)

Because Ht = Ht−∆(1− at−∆), 13 is equal to

E
[ ∑
t∈{0,∆,...}

e−rtHt(1− at)1(Mt < Xn)e−r∆
∑
x′≥Xn

PXt,x′x
′].

We can clearly see that RDIR(Xn) depends only on P ’s strategy and (H,X,M).

By Theorem 8.4 of Altman (1999), there exists a optimal solution to our relaxed

problem which is stationary in (H,X,M);22 that is, conditional on Ht = 1, in each

period the probability distribution over (at, dt, αt) is a function only of (Xt,Mt).

21We drop t = 0 from the summation because the probability of going above Xn at t = 0 is

zero.
22The application of Theorem 8.4 follows the discussion on pg. 138 of Altman (1999) which,

using Altman’s terminology, assumes a non-negative immediate cost. We can rewrite RDIR(Xn)

to satisfy the non-negative immediate costs by adding
∑
t={0,∆,...} e

−rtX to both sides of 12.
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Dynamic Individual Rationality

We prove below that DIR is weaker than dynamic individual rationality.

Lemma O.A.1. Any mechanism that satisfies dynamic individual rationality sat-

isfies DIR.

Proof. Suppose (τ, dτ , ατ ) is dynamically individually rational. For any τ ′ and

corresponding history hτ ′ , we have V (τ, dτ , ατ )−V (τ ∧ τ ′, dτ1(τ < τ ′), ατ ) is equal

to

E
[
e−rτ

′E[e−r(τ−τ
′)(dτ (uA(1− ατ )−Xτ ) +Xτ )|hτ ′ ]1(τ ′ ≤ τ)

]
,

which is positive by the fact thatA’s continuation value at hτ ′ , E[e−r(τ−τ
′)(dτ (uA(1−

ατ ) − Xτ ) + Xτ )|hτ ′ ], is positive by dynamic individual rationality. Because this

holds for all τ ′, DIR is satisfied.

Proof of Proposition A.1

We start with a simple Lemma pointing out that the solution to our discrete time

relaxed is “almost” dynamically individually rational for any ∆. Lemma A.4 shows

A’s continuation value is above his outside option at the beginning of a period

after every history. This is close to, but not quite, dynamic individual rationality.

We still need to check that A prefers to accept a split when offered one. The

next Lemma shows this will be true except, potentially, when reaching a split at

S∆(X0) + εS∆(X0).

Lemma O.A.2. uA(1− α∆(Mτ )) > Xτ except, potentially, when Xτ = S∆(X0) +

εS∆(X0).

Proof. If uA(1−α∆(X0)) ≥ S∆(X0)+εS∆(X0), then, because α∆(m) and S∆(m) are

decreasing, uA(1−α∆(Mτ )) ≥ S∆(Mτ )+εS∆(Mτ ) ≥ Xτ . Suppose uA(1−α∆(X0)) <

S∆(X0) + εS∆(X0). If uA(1 − α∆(X0)) < S∆(X0), then, because A’s continuation

value at τ+(X1) is Xτ+(X1)

V (X0, X0) = E[e−r(τ∧τ+(X1))
(
Xτ+(X1)1(τ∆ > τ+(X1)) + uA(1− α∆(X0))1(τ∆ < τ+(X1))

)
]

< E[e−r(τ∧τ+(X1))
(
Xτ+(X1)1(τ∆ > τ+(X1)) +Xτ∆1(τ∆ < τ+(X1))

)
]

≤ X0,
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where the final inequality follows from Doob’s Optional Stopping Theorem. There-

fore we must have uA(1 − α∆(X0)) ≥ S∆(X0). Because α∆(m) and S∆(m) are

decreasing, uA(1 − α∆(Mτ )) ≥ S∆(Mτ ) + εS∆(Mτ ) > S∆(Mτ ) for all Mτ such that

S∆(Mτ ) < S∆(X0).

We can now prove Proposition A.1.

Proof. By Lemma A.4, V (x,m) ≥ x, so to establish dynamic individual rationality

we only need to verify that, whenever offered a split, A prefers to accept P ’s

proposed split rather than take his outside option. By Lemma O.A.2, it suffices to

show that uA(1− α∆(X0)) ≥ S∆(X0) + εS∆(X0).

Suppose, for arbitrarily small ∆, uA(1 − α∆(X0)) < S∆(X0) + εS∆(X0). Let

x = argminx′∈G∆ |x′ − S∗(X0)+min{Ỹ ,X0}
2

|. Let τ ′ = τ
(x,X0)
− (S∆(X0)) ∧ τ (x,X0)

+ (X1).

Because A strictly prefers to continue than take the split S∆(X0) + εS∆(X0), we

can (weakly) increase A’s utility by setting γ∆(X0) to 0. This lets us bound A’s

continuation value at (x,X0):

V (x,X0) ≤ E[e−rτ
(x,X0)
− (S∆(X0))uA(1− α∆(X0))1(τ

(x,X0)
− (S∆(X0)) < τ

(x,X0)
+ (X1))

+ e−rτ
(x,X0)
+ (X1)V (Xτ+(X1), Xτ+(X1))1(τ

(x,X0)
− (S∆(X0)) > τ

(x,X0)
+ (X1))|(x,X0)]

< E[e−rτ
(x,X0)
− (S∆(X0))(S∆(X0) + εS∆(X0))1(τ

(x,X0)
− (S∆(X0)) < τ

(x,X0)
+ (X1))

+ e−rτ
(x,X0)
+ (X1)Xτ+(X1)1(τ

(x,X0)
− (S∆(X0)) > τ ′+(X1))|(x,X0)]

= E[e−rτ
′
Xτ ′|(x,X0)] + εS∆(X0)E[e−rτ

′
1(τ ′−(S∆(X0)) < τ

(x,X0)
+ (X1))|(x,X0)],

≤ E[e−rτ
′
Xτ ′|(x,X0)] + εS∆(X0). (14)

By our choice of x, the expected length of time until τ ′ is strictly bounded away

from 0 as ∆→ 0. Take r′ < r such that x′ ≥ e−r
′∆Ex′ [X∆] for all x′ ∈ [S∆(X0), X1].

Then e−r
′tXt is a supermartingale on [S∆(X0), X1] and, by Doob’s Optional Stop-

ping Theorem, E[e−r
′τ ′Xτ ′ |(x,X0)] ≤ x. Because this holds for all ∆, there is a

k < 1 such that

lim
∆→0

E[e−rτ
′
Xτ ′|(x,X0)] < lim

∆→0
kE[e−r

′τ ′Xτ ′|(x,X0)] ≤ kx.

Substituting this into 14, because εS∆(X0) → 0, we get V (x,X0) < x for sufficiently

small ∆, a contradiction of Lemma A.4. Therefore, uA(1 − α∆(X0)) ≥ S∆(X0) +

εS∆(X0).

48



Proof of Lemma A.8

Proof. Take an arbitrary (S, γ) and let τS,γ be the stopping rule induced by the

(S, γ)-split threshold. For arbitrary x, we consider a problem in which we start

at X0 = x and allow A to choose a stopping time τ ′ ≤ τS,γ at which point he

can choose to take his outside option or take a split giving him 1 − α. A’s value

function in this problem is

Ṽ ∗(x, S, γ, α) = max
τ ′
Ṽ (x, S, γ, α, τ ′) (15)

where Ṽ (x, S, γ, α, τ ′) := Ex[e−r(τ
′∧τS,γ)max{Xτ ′∧τS,γ , uA(1− α)}].

Let C(S, γ, α) be the region for which it is weakly optimal to continue:

C(S, γ, α) = {x : ∃τ ′ s.t. P(τ ′ > 0), Ṽ (x, S, γ, α, τ ′) = Ṽ ∗(x, S, γ, α)}.

Let B(S, γ, α) = max{x : x ∈ C(S, γ, α)} and b(S, γ, α) = min{x : x ∈
C(S, γ, α)}. By similar arguments as in Lemma A.1, A’s optimal stopping time

takes the form τ ′ = min{t : Xt 6∈ (b(S, γ, α), B(S, γ, α))} with b(S, γ, α) ≥ S.23 A

only takes his outside option when stopping at x ≥ B(S, γ, α).

For any (S ′, γ′, α′) and (S ′′, γ′′, α′′) with α′ ≥ α′′ and either S ′ > S ′′ or S ′ = S ′′

and γ′ ≥ γ′′, it is easily seen that Ṽ ∗(x, S ′, γ′, α′) ≤ Ṽ ∗(x, S ′′, γ′′, α′′), which implies

B(S ′, γ′, α′) ≤ B(S ′′, γ′′, α′′).

Let B∗(m) = B(S∆(m), γ∆(m), α∆(m)) and b∗(m) = b(S∆(m), γ∆(m), α∆(m)).

Because V (m,m) = m, we have Ṽ ∗(x, S∆(m), γ∆(m), α∆(m)) ≥ V (x,m) for x < m

with equality if b∗(m) = S∆(m) and B∗(m) = m. If B∗(m) > m, then, for m′ ∈
[m,B∗(m)), A would be willing to continue bargaining even if P didn’t decrease S∆

or α∆. P could increase his expected utility from (τ∆, d∆
τ , α

∆
τ ) by increasing S∆(m′)

to b∗(m) and α∆(m′) to α∆(m) while setting γ∆(m′) = γ∆(m)1(b∗(m) = S∆(m′))

without violating RDIR(m′). If B∗(m) < m, then Ṽ ∗(x, S∆(m), γ∆(m), α∆(m)) =

x for x > B∗(m) and x 6∈ C(S, γ, α). Because V (x,m) ≥ x, A would find it weakly

optimal to not stop immediately in 15 by taking B∗ = m and using b∗ = S∆(m),

a contradiction of x 6∈ C(S, γ, α). We must therefore have B∗(m) = m. To see

that b∗(m) = S∆(m), remember that P would better off if A takes a split sooner.

If b∗(m) > S∆(m), P could increase the split threshold from S∆(m) to b∗(m) and

make both players strictly better off.

23This is without loss because setting b < S is equivalent to b = S.
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As noted in Lemma A.7, A’s utility from increasing the split threshold at S∆(m)

is strictly negative. A fixed decrease in the split threshold from S to S ′ < S will,

for small ∆, lead to a discrete increase in Ṽ ∗ and B. A similar conclusion holds

for a fixed discrete decrease in α. Suppose there is a discontinuity in S∗ or α∗ at

md. Because B is increasing in S and α, there is a δ > 0 such that, for small

enough ∆, we have B∗(md + εmd) > B∗(md) + δ = md + δ, a contradiction of

B∗(md + εmd) = md + εmd when ∆ is small enough that δ > εmd . Therefore, no

such discontinuity exists.

Search Process Construction

We provide a construction of a search process Y and its discrete time approximation

X and prove the convergence of (τ ∗, d∗τ , α
∗
τ ) under X to (τ ∗, d∗τ , α

∗
τ ) under Y as

∆ → 0. The proof, while intuitive, is somewhat long and tedious and can be

skipped by the reader without much loss.

Let Z∞ be a sequence (Z1, Z2, ...) of iid draws of Zk ∼ F and U∞ be a sequence

(U1, U2, ...) of iid draws Uk ∼ U [0, 1]. LetG(t, w) = exp(−
∫ t

0
ζ(W (s, w))ds), where

W (s, w) is the solution at time s of the differential equation dWt = η(Wt)dt with

initial condition W0 = min{Ỹ , w}.
Let W 0 = min{Ỹ , Y0} and T1(W 0) = inf{t : G(t,W 0) ≤ U1} be the ar-

rival time of the first Z draw, namely Z1. Let W 1 = W (T1(W 0),W 0) be the

value of W at T1(W 0). For k ≥ 1, let W k = W (Tk−1(W k−1),W k−1), W k =

max{min{Zk, Ỹ },W k} and Tk+1(W k) = inf{t : G(t,W k) ≤ Uk+1} be the

length of time between the arrival of Zk and Zk+1. Then Zk arrives at T
k

=∑k
j=1 Tj(W

j−1) with T
0

= 0. We define Yt for t > 0 by

Yt =
∞∑
k=0

W (t− T k,W k)1(T
k
< t < T

k+1
) + 1(t = T

k
)max{Zk,W k}.

We construct X in a similar way. If w > Ỹ , let nF (w) = |{x ∈ G∆ : x ∈
(Ỹ , w]}| be the number of periods X remains above Ỹ when starting at X0 = w

if no new Z arrives before X crosses Ỹ ; if w ≤ Ỹ , let nF (w) = 0. Note that

nF (w) ≤ F := |supp(F )|+ 1.24. Let ξ(`, w) be the value of x which is ` grid points

below w, with ξ(0, w) = w and define ξ̄(w) =
∑

x∈G∆∩(Ỹ ,w] ζ(x). We define the

24The addition to |supp(F )| accounts for the possible addition of Y0 to G∆.
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discrete time analogue of G by

G∆(s, w) =


1 if s ∈ [0,∆)

exp
(
−
∑

x∈[ξ(b s−∆
∆
c),w),w] ζ(x)∆

)
if s ∈ [∆, nF (w)∆),

exp
(
− {ξ̄(w)∆ +

∫ s
nF (w)

ζ(W (t− nF (w)∆, w))dt}
)

if s ≥ nF (w)∆.

where W (t, w) is defined as before. The key difference is that we need to consider

the movement downwards of X across points in G∆ above Ỹ ; this enters G∆ in

the sum over x ∈ (Ỹ , w]. Because ζ(x) is bounded and F is finite, it is clear that

G∆(s, w)→ G(s, w) as ∆→ 0.

We define a discrete time version of W at t when starting at w as

W∆(t, w) = 1(t < nF (w)∆)ξ(b t
∆
c, w) + 1(t ≥ nF (w)∆)W (t− nF (w)∆, w).

We define (Z1,∆, Z2,∆, ...) by rounding (Z1, Z2, ...) up to the nearest point in

G∆: Zk,∆ = min{x ∈ G∆ : x > Zk}. Let T = {0,∆, ...}. The initial value of

X is W 0,∆ = X0 and the length of time until the arrival of Z1,∆ is T∆
1 (W 0,∆) =

min{t ∈ T : G∆(t,W 0,∆) ≤ U0}. At T∆
1 (W 0,∆), the value of W∆ is W∆

0 =

W (T∆
1 (W 0,∆),W 0,∆). For k ≥ 1, let W∆

k = W∆(T∆
k−1(W k−1,∆),W k−1,∆), W k,∆ =

max{Zk,∆,W∆
k−1} and T∆

k+1(W k,∆) = min{t ∈ T : G∆(t,W k,∆) ≤ Uk+1}. The

time of the arrival of Zk,∆ is then T
k,∆

=
∑k

j=1 T
∆
j (W j−1,∆) and T

0,∆
= 0. We

define Xt for t ∈ T by

Xt =
∞∑
k=0

W∆(t− T k,∆,W k,∆)1(T
k,∆

< t < T
k+1,∆

) + 1(t = T
k,∆

)max{Zk,∆,W k,∆}.

Let η = max
y∈[Y ,Y ]

|η(y)| and η = min
y∈[S∗(R

∗
),Ỹ ]
|η(y)|. By our definition of G∆, η∆ ≥

max
x<Ỹ

εx. In the definition of η we restrict to y ≥ S∗(R
∗
) because we will be

concerned with bounds on the speed of the decrease in W when it is above S∗, for

which S∗(R
∗
) is a lower bound. We note that S∗(R

∗
) > Y ; otherwise, for small

∆, it would take arbitrarily long to reach S∆(Mt) when Mt ≈ R
∆

, which would

violate RDIR. Let Θ be the length of time it takes W∆, when starting at Y , to

reach S∗(R
∗
), which is defined by W∆(Θ, Y ) = S∗(R

∗
). This is an upper bound

on the maximum amount of time that can occur between arrivals of Z before X

or Y stop under (τ ∗, d∗τ , α
∗
τ ).

Before proving our convergence result, we start with a technical Lemma.
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Lemma O.A.3. W (t, w) and Tk+1(w) are Lipschitz continuous for any k ≥ 0

as long as W (t, w) ∈ [Y , S∗(R
∗
)] and Tk+1(w) ∈ [0,Θ] with Lipschitz constants

KW , KT .

Proof. We start with W . Because we have not reached S∗, we know |η(W (t, w))| ≥
η. Take w′ < w. Then W (t, w′) < W (t, w). Note that W (t, w′) ≥ w′ − ηt and

W (t, w) ≤ w − ηt. If W (t, w) ≥ w′, then ηt < w − w′ and

W (t, w)−W (t, w′) ≤ (w − ηt− (w′ − ηt)) ≤ (w − w′)η
η
.

Suppose W (t, w) < w′ and let ϑ(w,w′) be defined by W (ϑ(w,w′), w) = w′; note

that ϑ(w,w′) ≤ (w − w′)η−1. Then W (t, w) = W (t− ϑ(w,w′), w′) and

W (t, w)−W (t, w′) = W (t− ϑ(w,w′), w′)−W (t, w′) ≤ ηϑ(w,w′) ≤ (w − w′)η
η
.

To see that W (t, w) is Lipschitz continuous in t, we note that for t′ > t, W (t, w)−
W (t′, w) ≤ η(t′ − t). Let KW be the Lipschitz constant for W .

Now we turn to Tk+1. Remember, Tk+1(w) is defined by
∫ Tk+1(w)

0
ζ(W (s, w))ds =

log(Uk+1). Let w′ < w. BecauseW (s, w′) < W (s, w) and ζ is increasing, Tk+1(w′) >

Tk+1(w). Let Kζ be the Lipschitz constant for ζ. We then have

ζ(W (s, w))−ζ(W (s, w′)) ≤ ζ(W (s, w′)+KW (w−w′))−ζ(W (s, w′)) ≤ KζKW (w−w′).

Therefore,
∫ Tk+1(w)

0
ζ(W (s, w))ds ≤

∫ Tk+1(w)

0
ζ(W (s, w′))ds+KWKζ(w−w′)Tk+1(w).

Thus we have∫ Tk+1(w′)

Tk+1(w)

ζ(W (s, w′))ds+

∫ Tk+1(w)

0

ζ(W (s, w′))ds =

∫ Tk+1(w)

0

ζ(W (s, w))ds

⇒
∫ Tk+1(w′)

Tk+1(w)

ζ(W (s, w′))ds ≤ KWKζ(w − w′)Tk+1(w) ≤ KWKζ(w − w′)Θ

⇒(Tk+1(w′)− Tk+1(w))ζ(S∗(R)) ≤ KWKζ(w − w′)Θ

Thus Tk+1(w) is Lipschitz in w as long as neither X or Y have reached S∗ between

the arrival of the kth and k + 1st Z.

Let (τ ∗,c, d∗,cτ , α
∗,c
τ ) and (τ ∗,∆, d∗,∆τ , α∗,∆τ ) be the continuous time and discrete

time outcomes induced by the mechanism defined in Theorem 1. Given our
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construction, it should be intuitive that (τ ∗,∆, d∗,∆τ , α∗,∆τ ) under Xt converges to

(τ ∗,c, d∗,cτ , α
∗,c
τ ) under Yt. The following technical Lemma verifies this fact. It is

immediate from this Lemma that P ’s and A’s utility from (τ ∗, d∗τ , α
∗
τ ) in discrete

time converges to their utility from (τ ∗, d∗τ , α
∗
τ ) in continuous time.

Lemma O.A.4. (τ ∗,∆, d∗,∆τ , α∗,∆τ )
p−→ (τ ∗,c, d∗,cτ , α

∗,c
τ ).

Proof. Let us focus on the event EL in which Uk < exp(−Fζ(Y )∆)) for all k ∈
{1, ..., L} for some large L. This restriction on Uk implies T∆

k (W k,∆) ≥ F∆ and

W∆(T∆
k (W k,∆),W k,∆) ≤ Ỹ . As ∆→ 0, the probability of EL converges to 1. The

probability there are L arrivals of Z before τ ∗,c or τ ∗,∆ is less than (1 − F (R
∗
))L,

which goes to 0 as L → ∞. To show convergence of τ ∗,c, τ ∗,∆, it is therefore

sufficient to show that for any δ > 0 and finite L, P(|τ ∗,c ∧ TL − τ ∗,∆ ∧ TL,∆| >
δ|EL) < δ for sufficiently small ∆. Because M,MX can only increase at the

arrival of Z, |MX

T
k,∆ −MT

k | < η∆. If we can show that τ ∗,c ∈ (T
k
, T

k+1
) implies

τ ∗,∆ ∈ (T
k,∆
, T

k+1,∆
) with high probability for all k ∈ {1, ..., L} (and vice versa),

then convergence of d∗,∆τ , α∗,∆τ to d∗,cτ , α
∗,c
τ is straightforward.

We argue that there exists (Γ0,Γ
T
0 ,Γ1, ...,Γ

T
L) ∈ R2(L+1)

+ such that, as long as nei-

ther Y norX has reached S∗ before T
k

or T
k,∆

respectively, we have |min{Ỹ ,W k,∆}−
W k| ≤ Γk∆ and |T∆

k (W k,∆)− Tk(W k)| ≤ ΓTk∆. We proceed by induction. Taking

T∆
0 , T0 = 0, this holds for k = 0 by taking ΓK = η and ΓT0 = 0. For the inductive

step, suppose Y and X have both realized k Z arrivals and have not stopped and

|min{Ỹ ,W k,∆} −W k| ≤ Γk∆.

We start by putting bounds on the difference between T∆
k+1(w) and Tk+1(w) in

the event that neither X nor Y stop between the kth and k + 1st arrival of Z. If

w ≤ Ỹ , then G(t, w) = G∆(t, w), which implies |T∆
k+1(w) − Tk+1(w)| ≤ ∆. When

w > Ỹ , for t ≥ nF (w)∆

G∆(t, w) = exp(−ξ̄(w)∆)G(t− nF (w)∆, w).

Thus G∆(t, w) ≤ G(t, w). Take some δS ∈ (0, S∗(R
∗
) − Y ) and let ∆ be small

53



enough that W (t+ F ζ(R
∗
)

ζ(S∗(R
∗
)−δS)

∆, w) > S∗(R
∗
)− δS. Then we have∫ t

nF (w)

ζ(W (s− nF (w), w))ds+ ξ̄(w)∆

≤
∫ t

0

ζ(W (s, w))ds+ Fζ(R
∗
)∆

≤
∫ t

0

ζ(W (s, w))ds+

∫ t+F
ζ(R
∗

)

ζ(S∗(R∗)−δS)
∆

t

ζ(S∗(R
∗
)− δS)ds

≤
∫ t+F

ζ(R
∗

)

ζ(S∗(R∗)−δS)
∆

0

ζ(W (s, w))ds

We therefore have G(t + F ζ(R
∗
)

ζ(S∗(R
∗
)−δS)

∆, w) ≤ G∆(t, w). From the definition of

T∆
k , Tk, we have |T∆

k+1(w)− Tk+1(w)| ≤ (F ζ(R
∗
)

ζ(S∗(R
∗
)−δS)

+ 1)∆.

We can then bound the difference between T∆
k+1(W k,∆), Tk+1(W k) in the event

that neither X, Y stop between the kth and k+1st arrival of Z. Because Tk+1(w) =

Tk+1(min{Ỹ , w}), we have

|T∆
k+1(W k,∆)− Tk+1(W k)| ≤ |T∆

k+1(W k,∆)− Tk+1(W k,∆)|
+ |Tk+1(min{Ỹ ,W k,∆})− Tk+1(W k)|]

≤ (F
ζ(R

∗
)

ζ(S∗(R
∗
)− δS)

+ 1)∆ +KT |min{Ỹ ,W k,∆})−W k|

≤ (F
ζ(R

∗
)

ζ(S∗(R
∗
)− δS)

+KTΓk + 1)∆

Define ΓTk+1 = F ζ(R
∗
)

ζ(S∗(R
∗
)−δS)

+KTΓk + 1.

We now argue that the values of X and Y just after the k + 1st arrival of

Z will be close. In the event EL, W∆(T∆
k+1(W k,∆),W k,∆) = W (T∆

k+1(W k,∆) −
nF (W k,∆)∆,min{Ỹ ,W k,∆}) and so

|W∆(T∆
k+1(W k,∆),W k,∆)−W (Tk+1(W k),W k)|

= |W (T∆
k+1(W k,∆)− nF (W k,∆)∆,min{Ỹ ,W k,∆})−W (Tk+1(W k),W k)|

≤ KW

(
|min{Ỹ ,W k,∆} −W k|+ |Tk+1(W k)− T∆

k+1(W k,∆) + nF (W k,∆)∆|
)

≤ KW

(
Γk + ΓTk+1 + F

)
∆
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We know |Zk+1,∆ − Zk+1| ≤ η∆. Let Γk+1 = KW

(
Γk + ΓTk+1 + F

)
+ η. From

the definition of W k+1,∆ and W k+1, we have |min{Ỹ ,W k+1,∆} −W k+1| ≤ Γk+1∆,

completing the inductive step.

We next argue that if either Y or X stop before the k + 1st jump, then the

other process stops too with a probability converging to 1 as ∆→ 0. Let θ̂(w, b) be

length of time, in the absence of a Z arrival, until Y crosses some threshold b when

starting at w ≥ b, defined by W (θ̂(w, b), w) = b. Define θ(w,m) = θ̂(w, S∗(m)).

We similarly define the length of time θ̂∆(w∆, b) it takes X to cross b when start-

ing at w∆ in the absence of Z arrival, defined by W∆(θ̂∆(w∆, b), w∆) = b, and

θ∆(w∆,m) = θ̂∆(w∆, S∗(m)). Let D∆
S = max

y∈[Y ,Y−η∆]
S∗(y) − S∗(y − η∆). Let

m = MTk(Wk−1) and m∆ = MX
T∆
k (Wk−1,∆)

be the maximum of Y and X after the

kth arrival of Z. Because |m−m∆| ≤ η∆, we must have S∗(m∆) ≥ S∗(m)−D∆
S .

Because it takes at most F∆ length of time for W∆ to reach Ỹ and, from Ỹ it

takes at most θ̂(min{Ỹ , w}, S∗(m)−D∆
S ) length of time to reach S∗(m∆), we have

θ∆(w,m) ≤ θ̂(min{Ỹ , w}, S∗(m)−D∆
S ) + F∆.

We now want to show, for small ∆, θ̂(w, b) is Lipschitz when w < Ỹ and

b < S∗(R). If w′ < w, then W (t, w) < w′ if t > η−1(w − w′). Having reached w′,

then length of time to reach b is then θ̂(w′, b); thus θ̂(w, b)− θ̂(w′, b) ≤ η−1(w−w′).
Similarly, for b′ ∈ (S∗(R

∗
), b) we have 0 ≤ θ̂(w, b′) − θ̂(w, b) ≤ η−1(b − b′). Let

Kθ̂ = η−1 be the Lipschitz constant for θ̂.

Suppose Y stops at S∗(m). This implies that Uk+1 ≤ G(θ(W k,m),W k). Sup-

pose Zk+1,∆ arrives prior toX reaching S∗(m∆). This implies Uk+1 ≥ G∆(θ∆(W k,∆,m∆)+

∆,W k,∆) ≥ G∆(θ̂∆(W k,∆, S(m)−D∆
S ) + ∆,W k,∆).25 Because ζ,W are Lipschitz,

25We add ∆ to θ∆ to account of the rounding up of θ∆ to a date in {0,∆, ...}.
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so is G(t, w). Let KG be a Lipschitz constant for G. Then

|G(θ(W k,m),W k)−G∆(θ̂∆(W k,∆, S(m)−D∆
S ) + ∆,W k,∆)|

≤ G(θ(W k,m),W k)−G(θ̂∆(W k,∆, S(m)−D∆
S ) + (F

ζ(R
∗
)

ζ(S∗(R
∗
)− δS)

+ 1)∆,W k,∆)

≤ KG

(
|W k −W k,∆|+ (F

ζ(R
∗
)

ζ(S∗(R
∗
)− δS)

+ 1)∆

+ |θ̂(W k, S∗(m))− θ̂∆(W k,∆, S∗(m)−D∆
S )|
)

≤ KG

(
|W k −W k,∆|+ (F

ζ(R
∗
)

ζ(S∗(R
∗
)− δS)

+ 1)∆)

+ |θ̂(W k, S∗(m))− θ̂(min{Ỹ ,W k,∆}, S∗(m)−D∆
S )|+ F∆

)
≤
(
KG(Γk(1 +Kθ̂) + (2F

ζ(R
∗
)

ζ(S∗(R
∗
)− δS)

+ 1)
)
∆) +Kθ̂D

∆
S

Thus, the probability Uk+1 ∈ (G∆(θ∆(W k,∆,m∆) + ∆,W k,∆), G(θ(W k,m),W k))

is at most KG(|W k −W k,∆|(1 + Kθ̂) + Kθ̂D
∆
S + F ζ(R

∗
)

ζ(S∗(R
∗
)−δS)

∆). As ∆ → 0, this

goes to 0 and the probability that X stops at S∗(m∆) conditional on Y stopping at

S∗(m) goes to one. The case when X at S∗(m∆) first is similar and the probability

that Y stops at S∗(m) goes to one as well.

Proof of Theorem 1 for a Search Process

The proof of Theorem 1 for a search process immediately follows from the following

two Lemmas. The first Lemma shows that the upper-bound on our relaxed prob-

lem, given by P ’s utility from (τ∆, d∆
τ , α

∆
τ ), converges to P ’s utility from (τ ∗, d∗τ , α

∗
τ )

as ∆→ 0. The second Lemma shows that (τ ∗, d∗τ , α
∗
τ ) is dynamically individually

rational and there is no dynamically individually rational continuous time mecha-

nism that does strictly better than (τ ∗, d∗τ , α
∗
τ ).

Lemma O.A.5. P ’s utility from (τ ∗, d∗τ , α
∗
τ ) is optimal in the limit as ∆→ 0:

lim
∆→0

E∆[e−rτ
∆

(d∆
τ (uP (α∆

τ )− ν) + ν)] = lim
∆→0

E∆[e−rτ
∗
(d∗τ (uP (α∗τ )− ν) + ν)].

Proof. Convergence is obvious when S∗(Y0) > Y0. Consider the case in which

S∗(Y0) = Y0. For ∆ > 0, α∆(X0) represents an upper-bound on P ’s utility from
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(τ∆, d∆
τ , α

∆
τ ). As |S∆(X0)−X0| → 0, P(τ∆ > τ+(X1))→ 0 and

E[e−rτ
∆

uP (α∆(X0))1(τ∆ < τ+(X1))

+ e−rτ+(X1)J(Xτ+(X1), Xτ+(X1))1(τ∆ > τ+(X1))]
∆→0−−−→ uP (α∗(Y0))

Optimality in the limit then follows from the fact that uP (α∗(Y0)) = lim
∆→0

uP (α∆(X0)).

Now suppose S∗(Y0) < Y0. For some small δ ∈ (0, S∗(R
∗
) − Y ), let ζ

∆
=

max
y ζ∆(y) and ηδ = min

y≥S∗(R)−δ
|η(y)|. Let `∆ be the maximum number of grid points

between S∆(M) and S∗(M), which is at most max
m∈[X0,R

∆
]

|S∗(m)−S∆(m)|
ηδ∆

for small ∆.

Because S∗ is continuous and S∆ is monotone, convergence to S∗ is uniform; there-

fore, `∆∆ → 0 as ∆ → 0. At τ ∗ ∧ τ∆, we know τ ∗ ∨ τ∆ arrives in at most `∆ + 1

periods if there is no Z arrival; thus,

P(|τ ∗ − τ∆| ≤ (`∆ + 1)∆) ≥ 1− ζ∆
(`∆ + 1)∆,

and so lim
∆→0

P(|τ ∗−τ∆| ≤ (`∆ +1)∆) = 1. In the event no Z arrives between τ ∗∧τ∆

and τ ∗ ∨ τ∆, the split amount will be the same at both τ ∗ and τ∆. Convergence

of P ’s expected utility from (τ∆, d∆
τ , α

∆
τ ) to his expected utility from (τ ∗, d∗τ , α

∗
τ )

follows.

Lemma O.A.6. (τ ∗, d∗τ , α
∗
τ ) is dynamically individually rational in continuous

time. There exists no dynamically individually rational continuous time mecha-

nism which yields strictly higher utility than (τ ∗, d∗τ , α
∗
τ ).

Proof. That (τ ∗, d∗τ , α
∗
τ ) is dynamically individually rational in continuous time

follows from the same arguments as in the case of a diffusion process.

Suppose there was a dynamically individually rational (τ ∗∗, d∗∗τ , α
∗∗
τ ) which in

continuous time gave P an expected utility of J∗∗ with J∗∗ > lim
∆→0

E∆[e−rτ
∆

(d∆
τ (uP (α∆

τ )−
ν) + ν)]. We consider below the same extension of uP and uA to allow for ατ ∈
(−∞, 1] as in the proof of Theorem 1 for a diffusion process. For our continuous

time process, it is without loss to only consider mechanisms which are measurable

to histories of the form h′t = (k, Z1, U1, ..., Zk, Uk, U
k+1

t ) where k is determined by

t ∈ (T
k
, T

k+1
) and U

k+1

t is the upper-bound on Uk+1 implied by no arrival of Zk+1

by time t. This information maps out then entire history {Ys : 0 ≤ s ≤ t} and so

any mechanism measurable with respect to Y will be measurable with respect to

such histories.
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We define a discrete time mechanism which is measurable with respect to these

same histories; for the same reasons as in continuous time, this is without loss. Fix

some small δα > 0. Let τ̂ ∗∗ = dτ ∗∗e∆, d̂∗∗τ = d∗∗τ and α̂∗∗τ = (α∗∗τ − δα)1(uA(1 −
α∗∗τ + δα)) > Xτ̂∗∗) + ᾱ1(uA(1 − α∗∗τ + δα)) < Xτ̂∗∗) where uA(1 − ᾱ) > Y (where

ᾱ is defined in the same way as in the diffusion process case). As ∆ → 0, it is

straightforward to see that P ’s discrete time value from (τ̂ ∗∗, d̂∗∗τ , α̂
∗∗
τ ) is bounded

below by J∗∗− u′(0)δα +O(δ2
α) and, because δα > 0, it is dynamically individually

rational for small enough ∆. Because δα is arbitrary, we can find a discrete-time

dynamically individually rational mechanism whose value to P is arbitrarily close

to J∗∗, which is strictly greater than E∆[e−rτ
∆

(d∆
τ (uP (α∆

τ )−ν) +ν)] for small ∆, a

contradiction of the fact that (τ∆, d∆
τ , α

∆
τ ) delivers an upper-bound on P ’s value of

the discrete time optimal mechanism. Therefore, no such (τ ∗∗, d∗∗τ , α
∗∗
τ ) exists.

Role of Assumptions on Stochastic Processes

We assumed that every search process had η(y) < 0 ∀y and inf{t : Yt = Y } =∞.

These assumptions simplify the statement of the optimal mechanism by allowing

us to write the decision of when to stop and reach a split as the first time Yt crosses

S∗(Mt). Suppose that we allowed for Y to reach y′ that are absorbing until the

arrival of a new Zt > y′-namely, y′ such that η(y′) = 0. It is easy to incorporate

such absorbing y′ into our discrete-time relaxed problem. As we take the limit as

∆→ 0, if y′ is absorbing and S∗(Mt) = y′, then P will offer a split at a Poisson rate

γ∗(Mt) ∈ R+∪{∞} where γ∗(Mt) =∞ implies an immediate split at S∗(Mt) = y′.

This observation allows us to extend our results to cover the stationary search

without recall model. Once a Zt offer has been rejected, Yt+ = Y , at which point

P proceeds to make a TIOLI offer with demand α∗(Mt) at a rate γ∗(Mt). The

case of stationary search with recall is less interesting. Because A’s outside option

is only increasing, the optimal mechanism will have no delay: either P makes an

immediate TIOLI offer or A takes his outside option immediately.

The proofs of Theorem 1 its supporting Lemmas rely on several properties that

are shared by the diffusion and search processes. These two processes are both

approximated by X which satisfy:

1. Downward Continuity: if Xs < Xt for t < s, then for every x ∈ (Xs, Xt) ∩ G∆,

∃q ∈ (t, s) such that Xq = x.
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2. Upward Crossing Independence: for every x′ and τ ′ := min{t : Xt ≥ x′}, the

distribution of Xτ ′ is the same for all X0 < x′.

The intuition for our results does not rely on these two properties; their role is

purely to simplify the analysis. These two properties are not exclusive to diffusion

and search processes. We can extend our results to other Y processes, such as pure-

jump processes, which can be approximated by X possessing the two properties

above. For a pure-jump process, even though we have an absorbing state at y−, it

will be optimal to stop immediately at y− because there can be no further change

of Y and any additional delay will be purely wasteful. Thus a pure-jump process

has an optimal mechanism taking the same form as in Theorem 1.

Proof of Proposition 2

Proof. Suppose that, after some history ht with (Yt,Mt) = (y,m), the continuation

mechanism was not constrained Pareto efficient. Let V c(y,m) be the continuation

value for A after such a history. By replacing the continuation mechanism after ht
with an optimal dynamically individually rational mechanism for P when we add

a promise-keeping constraint to deliver at least V c(y,m) continuation value to A,

we can increase P ’s payoffs. Moreover, this change would not affect the incentive

of A to take his outside option before t because A evaluates the continuation value

after ht in the new mechanism as the same as in the old mechanism. Therefore, A’s

continuation value at every history hs that might lead to ht is exactly the same:

if A had no strict incentive to take his outside option at s in the old mechanism,

then he will have no strict incentive to take his outside option at s in the new

mechanism.

Comparative Statics Proofs

Proof of Proposition 3

Proof. Consider the discrete time relaxed problem. For a diffusion process, an

increase in µ(x′) leads to an increase in q+(x′) and decrease in q−(x′). For a search

process, an increase in ζ(x′) leads to an increase in ζ∆(x′). Let µ, µ and ζ∆, ζ
∆

be two pairs of functions such that µ(x) ≤ µ(x) and ζ∆(x) ≤ ζ
∆

(x) for all x. We
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show that P ’s utility from the solution to the discrete time problem in 2 increases

when we increase µ from µ to µ or ζ∆ from ζ∆ to ζ
∆

. The Proposition then follows

by taking the limit as ∆→ 0.

We start with a diffusion process. Let J(x,m;µ) be P ’s value of the discrete

time relaxed problem when the drift is µ. Let m = max{x ∈ G∆ : x < R
∆
, (x, x) ∈

R} be the highest value of x at which (τ∆, d∆
τ , α

∆
τ ) does not immediately stop,

where we define R
∆

as the breakdown threshold in the optimal mechanism when

µ = µ. Consider the optimal choice of (τ, dτ , ατ ) at (m,m) subject to RDIR(m)

when we fix continuation value at τ+(m+ εm) for P and A to be ν and Xτ+(m+εm)

respectively. P ’s problem for a fixed µ is

Ĵ(m,m;µ) = max
(τ,dτ ,ατ )

Em[e−rτuP (α)1(τ < τ+(m+ εm)) (16)

+ e−rτ+(m+εm)ν1(τ > τ+(m+ εm))|µ],

subject to m ≤ Em[e−rτuA(1− α)1(τ < τ+(m+ εm))

+ e−rτ+(m+εm)Xτ+(m+εm)1(τ > τ+(m+ εm))|µ].

We condition on µ to mean conditional on the law of motion for X given the

function µ that determines q+(Xt) and q−(Xt).

When µ = µ, the solution to 16 and its value Ĵ(m,m;µ) = J(m,m;µ). We

now modify 16 to allow P to choose the drift µ(x) ∈ [µ(x), µ(x)] at each x. Let Ξ

be the set of µ such that µ(x) ∈ [µ(x), µ(x)] ∀x and let P ’s choice of µ be µP ∈ Ξ.

P ’s value when he can choose µ is then

Ĵ∗(m,m) := max
µP∈Ξ

Ĵ(m,m;µP ). (17)

Because P could always choose µP = µ, we have Ĵ∗(m,m) ≥ J(m,m;µ).

Let λ be the Lagrange multiplier on RDIR(m) in 17 and define J ∗ as

J ∗(x;µP ) = max
(τ,dτ ,ατ )

Ex[e−r(τ∧τ+(m+εm))
{

[dτ (uP (α)− λuA(1− α)− ν + λXτ )

+ ν − λXτ ]1(τ < τ+(m+ εm))

+ [ν − λXτ+(m+εm)]1(τ > τ+(m+ εm))
}
|µP ].

For each choice of µP , the same arguments as in Lemma A.3 imply that P uses a

(S, γ)-split threshold at (m,m) and a constant demand αm and that J ∗(x;µP ) is

strictly increasing in x. Let J ∗∗(m) = max
µP∈Ξ
J ∗(m;µP ) be the Lagrangian for our

problem in 17.
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We next show that J ∗∗(x) = J ∗(x;µ) for all x. Let (Sm, γm) be the optimal

(S, γ)-threshold in 17. At x ≤ Sm we have J ∗∗(x) = J ∗(x;µP ) = uP (αm) for any

choice of µP . At x > Sm we have26

J ∗∗(x) = max
µP (x)∈[µ(x),µ(x)]

1(x = Sm + εSm)γmuP (αm) + e−r∆
[1
2

(
σ2(x)

σ2
0

+
µP (x)

σ0

)J ∗∗(x+ ε)

+
1

2
(
σ2(x)

σ2
0

− µP (x)

σ0

)J ∗∗(x− ε) + (1− σ2(x)

σ2
0

)J ∗∗(x)
]
.

Because J ∗∗(x) is strictly increasing in x, it is clear that the uniquely optimal

choice of µP (x) is µ(x). Because this holds for all x, µ is P ’s optimal µP .

Now consider m− = max{x ∈ G∆ : x < m, (x, x) ∈ R}. Replacing m with

m− in the problem for Ĵ∗(m,m) and let Ĵ∗(m,m) replace ν as P ’s continuation

value at τ+(m−+ εm−), we can apply the same arguments to conclude that µP = µ

is optimal for m−. Proceeding by induction, we conclude that choosing µ is always

optimal.

Let us return of our original relaxed problem when the choice of µ is fixed to µ.

We can define a mechanism when µ = µ by, at each (m′,m′), using the correspond-

ing (Sm
′
, γm

′
)-split thresholds and split amount αm

′
found above until τ+(m′+εm′).

This new mechanism gives P a time zero continuation value of Ĵ∗(X0, X0;µ), which

is higher than Ĵ∗(X0, X0;µ) = J(X0, X0;µ). This new mechanism is easily seen

to be dynamically individually rational by the imposition of RDIR(m′) at each

(m′,m′). Therefore, P ’s utility from our discrete time relaxed problem when µ = µ

is higher than when µ = µ.

We can repeat the same argument for a search process, replacing the choice

of µP ∈ Ξ with ζ∆,P ∈ Ξ when we redefine Ξ to be the set of functions ζ∆ such

that ζ∆(x) ∈ [ζ∆(x), ζ
∆

(x)] for all x. At x ≤ Sm we have J ∗∗(x) = J ∗(x; ζ∆,P ) =

uP (αm) for any choice of ζ∆,P ∈ Ξ. Our Lagrangian J ∗∗ at x > Sm is

J ∗∗(x) = max
ζ∆,P (x)∈[ζ∆(x),ζ(x)]

1(x = Sm + εSm)γmuP (α)

+ e−r∆
[
ζ∆,P (x)EZ [J ∗∗(max{Z, x})] + (1− ζ∆,P (x))J ∗∗(x− εx)].

Again, by the same arguments as in Lemma A.3, EZ [J ∗∗(max{Z, x})] > J ∗∗(x−
εx), so the optimal choice of ζ∆,P is ζ

∆
The same arguments used for a diffusion

process imply that P ’s utility in our discrete time relaxed problem is higher when

ζ∆ = ζ
∆

.

26Because J ∗∗(x) ≥ J(x, x;µ), it is never optimal to stop below R
∆

.

61



Proof of Proposition 4

Proof. Fixing the mechanism, the result is shown clearly through the HJB equation

for P ’s continuation value. For a diffusion process, when J(y,m) is P ’s continuous

time continuation value at (Yt,Mt) = (y,m), we have

rJ(y,m) =
σ2(y)

2

∂2J(y,m)

∂y2
.

By Lemma A.5, J(y,m) ≥ ν ≥ 0, so we have ∂2J(y,m)
∂y2 ≥ 0. Therefore, an increase

in σ(y) increases J(y,m). For a search process, when y < Ỹ we take ζ(y) =
−η(y)

EZ [max{Z,y}] to ensure Y is a martingale. P ’s value function is then

rJ(y,m) = η(y)
∂J(y,m)

∂y
+ ζ(y)

[
EZ [J(max{Z, y},max{Z,m})]− J(y,m)

]
= η(y)

(∂J(y,m)

∂y
− EZ [J(max{Z, y},max{Z,m})]− J(y,m)]

EZ [max{Z,min{Ỹ , y}}]
)

which is decreasing in η(y) because, by J(y,m) ≥ 0 and η(y) < 0,

∂J(y,m)

∂y
− EZ[J(max{Z, y},max{Z,m})]− J(y,m)]

EZ [max{Z, y}]
< 0.

Replacing J with V , we get that A’s continuation value is also increasing in

σ(y),−η(y). By reoptimizing the mechanism, P may do even better.

Proof of Proposition 5

Proof. We first consider an upper-bound on the value of J∗ for a diffusion or search

process. Let us replace DIR in P ’s problem 1 with only RDIR(Y0):

sup
(τ,dτ ,ατ )

J(τ, dτ , ατ ) (18)

subject to V (τ, dτ , ατ ) ≥ Y0.

It is straightforward to show by the arguments in the proof of Theorem 1 that the

solution to 18 will take a stationary form: for some constants S̃, R̃ and α̃, the

solution is

τ̃ = inf{t : Yt 6∈ (S̃, R̃)}, d̃τ = 1(Yτ ≤ S̃), α̃τ = α̃.
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In order to satisfy RDIR(Y0), it must be that uA(1− α̃) ≥ S̃.

Take the pure jump process which jumps from Y0 either to S̃ or R̃, where the

jump rates are pinned down by the martingale restriction and capacity constraint.

By Theorem 3 of Zhong (2017), this pure jump process gives P the highest payoff

among all martingale processes that satisfy the capacity constraint when we fix

the mechanism to be (τ̃ , d̃τ , α̃τ ). A similar observation holds for A’s continuation

value. All that is left is the verify is that (τ̃ , d̃τ , α̃τ ) is dynamically individually

rational for a pure jump process. Because the mechanism satisfies RDIR(Y0),

A’s continuation value is weakly greater than Y0 as long as Yt = Y0. Because

uA(1 − α̃) ≥ S̃, the split at S̃ is individually rational for A, so the mechanism is

dynamically individually rational.
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