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Abstract

This paper studies the implications of household heterogeneity for the effective-

ness of quantitative easing (QE). We consider a heterogeneous agent New Keynesian

(HANK) model with uninsurable household income risk. Financial intermediaries are

subject to an endogenous leverage constraint that allows QE to matter. We find that

macro aggregates react very similarly to a QE shock in a HANK model compared to

a representative agent (RANK) version of the model. This finding is robust across

different micro- and macro- distributions of wealth, although these distribution rules

have implications for popular inequality metrics as well as the fraction of households

that are at the borrowing constraint.
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1 Introduction

In response to the Great Recession, the Federal Reserve (Fed) lowered its short-term pol-

icy rate to zero. With its conventional stabilization tool unavailable, the Fed resorted to

unconventional policy to provide support to the US economy. The most prominent of its

unconventional policy tools was quantitative easing (QE, also referred to as large scale as-

set purchases, or LSAPs). Purchasing longer-term Treasuries and agency-backed mortgage

backed securities (MBSs), the Fed more than doubled its balance sheet within the span of

a few months in late 2008. By the time it halted active asset purchases in the middle part

of the 2010s, the Fed’s balance sheet had more than quadrupled in size relative to its pre-

Great Recession level. The Fed resumed active asset purchases in 2020 in response to the

COVID-19 pandemic, once again doubling the size of its balance sheet in the span of less

than a year.

There is a large and still growing literature on the effectiveness of QE. Most models

in this literature are representative agent dynamic stochastic general equilibrium (DSGE)

models – see, for example, Gertler and Karadi (2013), Sims and Wu (2020, 2021a), and

Sims, Wu and Zhang (forthcoming). At the same time, there has been significant interest in

the implications of micro-level heterogeneity for macroeconomic fluctuations in general, and

in particular with respect to the transmission of monetary policy (e.g. Kaplan, Moll and

Violante 2018).1 To date, however, this literature has mainly considered the implications

of heterogeneity for conventional monetary policy in the form of movements in short-term

interest rates. The the goal of our paper is to marry these two literatures to investigate

whether, and to what extent, household heterogeneity matters for the effectiveness of QE.

We develop a quantitative model with household heterogeneity and scope for QE to mat-

ter. In our model, households face uninsurable idiosyncratic unemployment risk, which is

similar to Krusell and Smith (1998), but with endogenous labor supply. They may save

1For other applications of HANK models to the study of monetary policy, see also McKay et al. 2016,
Auclert (2019), Acharya and Dogra (2020), Alves, Kaplan, Moll and Violante (2020), and Ravn and Sterk
(2020).
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via short-term deposits with financial intermediaries, subject to a borrowing constraint, and

receive dividends from their ownership in production firms and financial intermediaries. The

rest of the model is similar to Sims and Wu (2021a). Financial intermediaries engage in

maturity transformation, standing between households who save via short-term deposits,

and production firms who float long-term debt to finance investment. Financial intermedi-

aries face an endogenous leverage constraint, and production firms are required to finance

a fraction of their investment by issuing long term bonds. Prices and nominal wages are

sticky. Central bank purchases of long-term assets can ease the leverage constraint facing

intermediaries, resulting in lower interest rate spreads and more investment.

In our benchmark specification, we assume that all households receive the same dividend

payout each period. In this specification, the responses of aggregate variables to a QE shock

are nearly identical to a representative agent (RANK) version of the model, even though the

HANK version features substantial wealth inequality due to uninsurable employment risk

and a borrowing constraint. The only noticeable difference is the response of consumption of

the very poorest households in the HANK version, which increases sharply after a QE shock.

But this distributional difference has little impact on the responses of aggregate variables.

We consider robustness of our results with respect to both micro- and macro- distribu-

tions of wealth. First, regarding the micro distribution, we allow a more general dividend

distribution rule, in which dividends vary, potentially non-linearly, with household wealth.

We explore the implications of this distribution rule for popular inequality metrics, such

as the Lorenz Curve and the Gini Coefficient. With a significant gap between dividends

received by the richest and poorest households, and sufficient non-linearity in the relation-

ship between dividend receipt and wealth, our model can generate substantially more wealth

inequality that closer aligns with what is observed in the data. One might expect that more

wealth inequality would matter for the aggregate effects of QE shocks. We find, however,

that it does not. Regardless of how we specify the dividend distribution rule, we find that

the impulse responses of aggregate variables to a QE shock are remarkably similar, and in
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turn almost identical to a RANK version of the model.

Next, we investigate the extent to which macro parameterizations related to the wealth

distribution influence the aggregate transmission of QE shocks. In our baseline HANK

specification, not many households are located at or near the borrowing constraint in the

stationary wealth distribution. We focus on two parameters. First, we allow a higher propor-

tion of the population to be unemployed. This results in more households being located at or

near the borrowing constraint, and makes the aggregate effects of QE shocks slightly bigger,

but these differences are not economically significant. We also consider a parameterization in

which the benefit to unemployed households is much larger. With a such parameterization,

we are able to generate many more households located at or near the borrowing constraint

in the stationary distribution. In order to get a large fraction of households at the borrowing

constraint, the unemployment benefit needs to be implausibly high such that unemployment

becomes a benefit rather than a risk. With a parameterization that generates about 30

percent of households being constrained, we find that, like with the aggregate unemploy-

ment rate, the impact on the aggregate transmission of a QE shock relative to a RANK

specification are modest.

There are two potentially important takeaways from our quantitative exercises. The first

is that there seems to be little gained by formally modeling household heterogeneity if what

one is most interested in is the aggregate effects of a QE shock. Our finding that a RANK

specification is a good approximation to a substantially more complicated and numerically

more demanding HANK model is consistent with a recent paper by Debortoli and Gali (2022),

who argue that idiosyncratic income uncertainty is unimportant for aggregate fluctuations.

Another important takeaway from our analysis is that there seems to be little relationship

between various inequality metrics and aggregate dynamics in response to a QE shock. Much

of the existing literature uses moments such as the Gini coefficient as summary statistics for

inequality (e.g. Kaplan, Moll and Violante 2018 and Alves, Kaplan, Moll and Violante 2020).

To the extent to which one is only interested in aggregate dynamics, our results suggest that
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this focus on inequality metrics might be misplaced.

In addition to these substantive issues, our paper also makes a methodological con-

tribution. Though our model features idiosyncratic income risk, wealth inequality, and a

borrowing constraint, we are able to solve the model using perturbation methods in Dynare,

a popular program for the solution, simulation, and estimation of representative agent DSGE

models. Our paper is similar in this respect to Winberry (2018), who also develops a way to

solve a heterogeneous agent model with perturbation methods in Dynare. We depart from

him in that we follow Young (2010) to approximate the cross-sectional distribution of wealth

with a non-parametric histogram, whereas Winberry (2018) follows Algan et al. (2008) to

approximate this distribution within a parameteric family. The advantage of our approach

is that it does not involve numerical optimization, which slows the calculation when done

repeatedly and often does not guarantee convergence. Our method is not limited to the QE

application on which we focus in this paper, nor is it specific to the exact form of household

heterogeneity.

The remainder of the paper is organized as follows. Section 2 lays out our model. Section 3

discusses our method for solving the model. Section 4 compares and contrasts impulse

responses to an exogenous QE shock with and without household heterogeneity. Section 5

discuss our model’s implications for popular inequality metrics and considers a more general

form of the dividend distribution rule to study how that affects the aggregate dynamics

in response to a QE shock. Section 6 considers changing macro parameters to get more

households located near the borrowing constraint, and investigates the extent to which this

matters for aggregate dynamics in response to a QE shock. The final section concludes.

2 Model

Our model introduces financial frictions, a banking sector, and has scope for central bank

asset purchases to matter, as in Sims and Wu (2021a). The main difference is that households
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are heterogeneous and face uninsurable unemployment risk, similarly to Krusell and Smith

(1998). In this section,we provide detail on key elements of the model and relegate remaining

details to an appendix.

2.1 Households

The household sector is similar to Krusell and Smith (1998), except that labor supply is

endogenous. There are a continuum of households indexed by j ∈ [0, 1]. Each maximizes

the present discounted value of lifetime flow utility:

E0

∞∑
t=0

βt

(
log cj,t − χ

l1+η
j,t

1 + η

)
,

where cj,t and lj,t are an individual household’s consumption and labor supply. β ∈ (0, 1) is

a discount factor, χ > 0 is a scaling parameter, and η is the inverse Frisch elasticity.

Each household faces an exogenous idiosyncratic labor productivity shock, εj,t ∈ {0, 1}.

This productivity shock can be interpreted as an employment shock, where εj,t = 0 indicates

unemployed and consequently lj,t = 0, while εj,t = 1 means that the household will earn

a positive market wage and will hence choose to work, lj,t > 0. εj,t evolves stochastically

according to a two-state Markov process with the transition matrix

 p(εj,t+1 = 0|εjt = 0) p(εj,t+1 = 1|εjt = 0)

p(εj,t+1 = 0|εjt = 1) p(εj,t+1 = 1|εjt = 1)

 =

 p 1− p
U

1−U (1− p) 1− U
1−U (1− p)

 . (2.1)

The aggregate unemployment rate is U = p(εj,t = 0) and is fixed. Total labor supply is

Lt =
∫ 1

0
lj,tdj.

Household j saves via deposits, dj,t, with financial intermediaries, which earn the gross

interest rate, Rd
t , from t to t+ 1. Deposits are the only asset the household can accumulate.

A household faces the following flow budget constraint:
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dj,t =
Rd
t−1

Πt

dj,t−1 +mrst[(1− τ)lj,tεj,t + µ(1− εj,t)]− cj,t − Tt + divj,t −X, (2.2)

where Πt is the gross inflation rate, mrst is the real wage, τ is a tax rate on labor income,

µ ×mrst is an unemployment benefit, Tt is a lump-sum tax, and X is a real transfer paid

out to new financial intermediaries, to be discussed below. divj,t is a dividend transfer from

all firms. This dividend is taken as given by households; we will discuss how it is distributed

across agents in Section 4 and Section 5. dj,t, cj,t,and lj,t are endogenous choice variables.

Each household faces a borrowing constraint and a constraint on its time endowment:

dj,t ≥ d (2.3)

lj,t ≤ l̄. (2.4)

The first order conditions are

c−1
j,t ≥ βRd

tEt
c−1
j,t+1

Πt+1

(2.5)

lηj,t ≤
(1− τ)mrst

χcj,t
. (2.6)

The equalities hold when the constraints in (2.3) and (2.4) do not bind.

2.2 Labor Market

We introduce wage rigidity into our model via labor unions. Unions are indexed by h ∈

[0, 1]. These unions purchase labor from households at real wage mrst, repackage it into

Ld,t(h), and sell it to a representative labor contractor at nominal wage, Wt(h). The labor

contractor combines differentiated labor into final labor available for production, Ld,t via a

CES technology. Final labor is sold to a representative production firm at nominal wage,
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Wt.

Unions are subject to a Calvo-style nominal rigidity. Each period, a union can adjust

its wage, Wt(h), with probability 1 − φw, where φw ∈ [0, 1]. Non-updated wages can be

indexed to lagged aggregate inflation via the parameter γw ∈ [0, 1]. This setup gives rise to

a conventional wage Phillips curve. See the appendix for details.

2.3 Production

There are four different types of firms in our model. A representative capital goods producer

transforms raw investment goods into new physical capital subject to a convex adjustment

cost. A competitive final good producer aggregates retail output into final output via a

CES technology and sells it at nominal price, Pt. A continuum of retail firms, indexed

by f ∈ [0, 1], repackage wholesale output and sell it to the final good producer at Pt(h).

Retailers have market power and are subject to a Calvo-style nominal rigidity, updating

their prices with probability 1 − φp each period. Non-updated prices can be indexed to

lagged inflation via the parameter γp ∈ [0, 1]. The representative wholesale firm accumulates

its own capital, purchases new capital from the capital goods producer, and hires labor from

the labor contractor. It produces wholesale output, Ym,t, from capital and labor, and sells

this output to retail firms at Pm,t. The wholesale firm can choose the intensity with which

it utilizes physical capital, ut, the cost of which is faster depreciation.

With the exception of the wholesale firm, the production side of the model is reasonably

standard, and details are relegated to an appendix. The wholesale firm accumulates its own

physical capital, Kt. It purchases new physical capital, Ît, from the capital goods producer

at nominal price P k
t . We require that the wholesale firm finance a fraction, ψ ∈ [0, 1], of

its purchases of new physical capital by issuing long-term bonds. As in Woodford (2001),

these long-term bonds take the form of perpetuities with decaying coupon payments. Let

κ ∈ [0, 1] denote the decay parameter for coupon payments. A bond in period t is sold for

Qt dollars and obligates the issuer to a coupon payment of one dollar in t + 1, κ dollars
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in t + 2, κ2 dollars in t + 3, and so on. The total nominal coupon liability due in t from

all past issuances is denoted by Fm,t−1; new issuance of bonds in t is therefore denoted by

Fm,t − κFm,t−1, which generates Qt dollars for the issuer. The “loan in advance” constraint

facing the wholesale firm is:

ψP k
t Ît ≤ Qt(Fm,t − κFm,t−1). (2.7)

(2.7) distorts standard first order conditions related to capital investment and bond

issuance. It therefore generates “investment” and “financial” wedges. Fluctuations in these

wedges are the mechanism through which QE-type policies transmit to the real economy.

2.4 Financial Intermediaries

Financial intermediaries are structured similarly to Gertler and Karadi (2011, 2013), and

Sims and Wu (2021a,b). Each period there is a fixed mass of intermediaries indexed by i.

Intermediaries finance themselves with net worth, Ni,t, and deposits taken from households,

Di,t. Each period, a fraction 1 − σ, with σ ∈ [0, 1], stochastically exit and return their net

worth to their household owner. They are replaced by an equal number of new intermediaries

that begin with real start up funds of X given to them by their household owner.

Intermediaries hold privately issued bonds, Fi,t; government issued nominal bonds, Bi,t;

and interest-bearing reserves, REi,t, which are held on account with the central bank. Gov-

ernment bonds are structured similarly to private long-term bonds and are priced at QB,t.

The balance sheet condition of a typical intermediary is:

QtFi,t +QB,tBi,t +REi,t = Di,t +Ni,t (2.8)

A financial intermediary accumulates net worth until stochastically exiting. Net worth
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for surviving intermediaries evolves according to:

Ni,t =
(
RF
t −Rd

t−1

)
Qt−1Fi,t−1+

(
RB
t −Rd

t−1

)
QB,t−1Bi,t−1+

(
Rre
t−1 −Rd

t−1

)
REi,t−1+Rd

t−1Ni,t−1

(2.9)

Rre
t−1 is the (gross) interest rate on reserves, which is set by the central bank and known at

t−1. Rd
t−1 is the deposit rate, which is determined in equilibrium. (RF

t −Rd
t−1), (RB

t −Rd
t−1),

and (Rre
t−1−Rd

t−1) are, respectively, the excess returns from holding private bonds, government

bonds, and reserves relative to the cost of funding via deposits. The term Rd
t−1Ni,t−1 measures

the cost-savings from financing via net worth as opposed to deposits. RF
t and RB

t are the

realized holding period returns on private and government bonds and satisfy:

RF
t =

1 + κQt

Qt−1

(2.10)

RB
t =

1 + κQB,t

QB,t−1

(2.11)

The objective of an intermediary is to maximize its expected terminal net worth where

discounting is by the stochastic discount factor of the household, Λt,t+1 = Πt+1

Rd
t

. Consider the

problem of an intermediary continuing after period t. There is a 1 − σ probability that it

will exit after t+1, a (1−σ)σ probability that it will exit after t+2, and so on. Accordingly,

its objective is

Vi,t = max (1− σ)Et
∞∑
j=1

σj−1Λt,t+jni,t+j, (2.12)

where ni,t = Ni,t/Pt is real net worth, with Pt the price of final output.

A financial intermediary faces a costly enforcement constraint as in Gertler and Karadi

(2011, 2013). A financial intermediary can choose to abscond with some assets at the end of a

period rather than continuing as an intermediary. If an intermediary does this, depositors can

recover a fraction of the intermediary’s assets, with the intermediary retaining the rest. For

depositors to be willing to lend to intermediaries, it must not be optimal for the intermediary
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to divert funds in this way, which we refer to as going into bankruptcy. Accordingly:

Vi,t ≥ θ(Qtfi,t + ∆QB,tbi,t) (2.13)

In (2.13), the right hand side of the inequality represents the (real) funds that a financial

intermediary can keep should it choose to enter bankruptcy, while the left hand side is the

value of continuing as an intermediary.2 Should it choose to divert, an intermediary can keep

a fraction of its private bonds, θ, and a fraction of government bonds, θ∆, where 0 ≤ ∆ ≤ 1.

We assume that the third type of asset held by intermediaries – reserves – is fully recoverable

by depositors in the event of bankruptcy.

All financial intermediaries will behave in the same way with identical optimality condi-

tions. These are

EtΛt,t+1Ωt+1Π−1
t+1

(
RF
t+1 −Rd

t

)
=

λt
1 + λt

θ (2.14)

EtΛt,t+1Ωt+1Π−1
t+1

(
RB
t+1 −Rd

t

)
=

λt
1 + λt

θ∆ (2.15)

EtΛt,t+1Ωt+1Π−1
t+1

(
Rre
t −Rd

t

)
= 0, (2.16)

where

Ωt = 1− σ + σθφt (2.17)

φt =
1 + λt
θt

Et[Λt,t+1Ωt+1Π−1
t+1]Rd

t . (2.18)

(2.14) - (2.16) are the key equilibrium conditions. λt ≥ 0 is the multiplier on the costly

enforcement constraint. If this constraint does not bind, then to first order expected returns

on all three types of assets must equal the cost of funds (i.e. the deposit rate). If the costly

enforcement constraint binds, then there will be excess returns of long-term private and

2fi,t = Fi,t/Pt and bi,t = Bi,t/Pt are real private and government bond holdings, respectively.
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public bonds over the deposit rate. Because reserves are fully recoverable in the event of

liquidation, arbitrage requires that the interest rate on deposits equal the interest rate on

reserves. (2.17) is an auxiliary variable introduced to simplify the analysis.

The value of an intermediary satisfies

Vi,t = θφtni,t. (2.19)

When the constraint in (2.13) binds,

φt =
Qtfi,t + ∆QB,tbi,t

ni,t
, (2.20)

which is an endogenous leverage ratio, whose equilibrium condition is in (2.18). The con-

straint makes the financial intermediary less levered than it would find optimal. This en-

dogenous leverage constraint is ultimately what can give rise to excess returns.

One can show from (2.18) that:

θφt ≥ 1 + λt (2.21)

If (2.13) does not bind, then λt+j = 0 for all j, which implies that θtφt = 1.3 Intuitively,

this means that net worth is as valuable to a household as to an intermediary. In this case,

returns on all assets would be equal. Hence, whether an intermediary invests in Ft, Dt or

REt would be irrelevant. When the costly enforcement constraint binds, then λt > 0 and

θφt is larger than one. In this case, there exist excess returns on holding long term assets

(private and government bonds). Hence, net worth is more valuable inside an intermediary

as opposed to a household (who cannot hold these assets and hence cannot take advantage

of these excess returns).

3In this circumstance, Ωt = 1.
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2.5 Fiscal authority

A fiscal authority finances its expenditure by levying lump sum taxes and a labor income tax

on households, from receipt of a transfer, Tcb,t, from the central bank, and by issuing long-

term bonds. Its expenditure includes purchases of output, Gt, and unemployment benefits.

For simplicity, we assume that the government has a fixed real stock of long-term bonds

issued, b̄G. The government’s budget constraint is:

Gt + Π−1
t b̄G +mrstµU = Tt + Tcb,t +QB,tb̄G(1− κΠ−1

t ) + τmrstLt (2.22)

2.6 Monetary policy

The central bank controls the interest on reserves Rre
t , which evolves according to a Taylor

(1993)-type interest rate rule:

lnRre
t = (1− ρr) lnRre + ρr lnRre

t−1 +

(1− ρr) [φπ (ln Πt − ln Π) + φy (lnYt − lnYt−1)] + σrεr,t, (2.23)

where 0 ≤ ρr < 1, φπ > 1, and φy ≥ 0. εr,t is a policy shock. We do not formally analyze

the implications of the ZLB in our analysis, but it would be straightforward to do so.

In addition to setting the interest rate on reserves, the central bank can buy and sell long-

term bonds (either privately issued bonds or government bonds). It finances these holdings

via reserves, which are held in the banking system. The central bank’s balance sheet, in

nominal terms, is:

QtFcb,t +QB,tBcb,t = REt (2.24)

We model a quantitative easing shock as an exogenous and persistent change in central

bank bond holdings. In particular, we assume that real central bank holdings of privately

issued bonds, fcb,t, follow a stationary AR(1) process (and similarly for holdings of real
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government bonds, bcb,t):

ln fcb,t = (1− ρf )fcb + ρf ln fcb,t−1 + σfεf,t, (2.25)

where 0 ≤ ρf < 1 and fcb denotes steady state real bond holdings.

If financial intermediaries are unconstrained (i.e. (2.13) does not bind), then fluctuations

in central bank bond holdings are irrelevant. But if intermediaries are constrained, then

increases in central bank bond holdings ease the endogenous leverage constraint, resulting in

higher long-term bond prices (equivalently, lower long-term yields). This filters through to

the real economy by relaxing the loan in advance constraint on wholesale producers, leading

to more investment and higher aggregate demand.

3 Solution Method and Calibration

In this section, we outline our solution method and discuss the parameterization of our

model.

3.1 Solution Method

We solve our model using perturbation methods with the popular software Dynare. Pertur-

bation methods can accommodate a large number of state variables and require less compu-

tational time. Though it is straightforward to solve a RANK model using perturbation, in

general it is not possible to do so when there is substantial household heterogeneity.

Solving the aggregate part of the model via Dynare is straightforward. The key step

we take to solve the entire model via perturbation is to approximate the individual’s policy

functions and the cross-sectional distribution in the space of (εt, dt−1).

As we detail in Appendix Appendix B, we approximate the conditional expectation of the

right-hand side of (2.5) using Chebyshev polynomials (see, for example, Judd 1998). This

gives the inverse of consumption in period t if the borrowing constraint does not bind. We
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then solve for the policy function for deposits as the maximum of what would be implied

by the budget constraint when (2.5) holds with equality and the minimum level of deposits.

The policy function for labor is the minimum of what would be implied by (2.6) and the

maximum employment level, l̄. Given policy functions for labor and deposits, we get a policy

function for consumption via the budget constraint. We are left with a system of dynamic

equations on the Chebyshev loadings and policy functions over consumption, deposits, and

labor supply, i.e. dt(dt−1, εt), ct(dt−1, εt), and lt(dt−1, εt).

Next, We update the cross-sectional distribution from t to t + 1. We use the non-

parametric method proposed by Young (2010) by approximating the joint distribution p(dt, εt+1)

with a histogram over the grid {dm}Mm=0 and εt+1 = {0, 1}. The transition dynamics for the

cross-sectional distribution are given by:

p(dt, εt+1) =
∑
εt

∑
dt−1

p(dt|dt−1, εt)p(εt+1|εt)p(dt−1, εt), (3.1)

where p(εt+1|εt) is given in (2.1).

We know dt(dt−1, εt) from the policy function. However, even with dt−1 on a discrete

grid, dt does not necessarily fall on a grid point. We follow Young (2010) and approximate

p(dt|dt−1, εt) with the dm grid: find the two neighboring grids dm′ , dm′+1 that are closest to

dt, where m′ = 0, ....,M − 1. Assign weights to them using

p(dt = dm′|dt−1 = dm, εt) = 1− dt − dm′
dm′+1 − dm′

p(dt = dm′+1|dt−1 = dm, εt) =
dt − dm′

dm′+1 − dm′
(3.2)

With the transition probabilities in (3.2) and (2.1), we can move (3.1) one period forward

from p(dt−1 = dm, εt) to p(dt = dm, εt+1). Altogether, we have a system of equations that

can be solved using perturbation methods with aggregate shocks in Dynare. See Appendix

C for the full set of equilibrium conditions.

For the stationary equilibrium without aggregate shocks, we solve a fixed-point problem
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over aggregate deposits, D, and labor supply, L (aggregate consumption is then determined

given the resource constraint). We proceed in steps. First, given guesses of D and L, we

can compute stationary equilibrium values of all aggregate variables. Then we solve for the

stationary equilibrium values of the Chebyshev coefficients; this step is also a fixed point

problem. Third, we solve the stationary distribution p(d, ε) by iterating (3.1) forward on

the discretized grid until convergence. Once we have the distribution from this step and

the policy functions from the Chebyshev step, we can compute updated values of aggregate

deposits, D̃, and labor, L̃. We then iterate over these steps until D ≈ D̃ and L ≈ L̃. For

details of solving the stationary equilibrium, see Appendix D.

Our solution method is closely related to Winberry (2018). He also proposes a method-

ology to solve a model with heterogeneous agents in Dynare. The main difference relative

to our approach is that he approximates the cross-sectional distribution of wealth following

Algan, Allais and Haan (2008), who use a parametric family. This methodology requires a

large number of numerical optimization procedures. The optimization routines do not guar-

antee convergence and the computational burden is high. The numerical behavior of their

approach becomes problematic when the distribution is far away from a normal distribution,

which is the case for our application.

We, instead, follow Young (2010), who uses a histogram over a fixed grid to constructed

the cross-sectional distribution of wealth. In his approach, updating the approximate cross-

sectional distribution is analytical and does not require numerical optimization. Therefore,

it works well with highly skewed distributions like the ones in our paper. One downside of

Young’s (2010) approach is to accurately approximate the distribution, it requires a large

number of grids, which are state variables in the perturbation solution. This makes adding

additional idiosyncratic state increasingly difficult if not impossible. Our solution method

is also related to Reiter (2009) in the sense that he also approximates the cross-sectional

distribution with a histogram and employ a perturbation method.
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Table 1: Calibration of HANK parameters

Parameters Value Target Description

U 0.05 Fraction unemployed
p 0.5 unemployment duration two quarters Probability of staying unemployed
χ LRANK = 0.95 Labor disutility scaling parameter
µ 0.4 Unemployment benefit as percentage of wage
τ 0.3 Labor income tax rate
d 0 Borrowing constraint
l̄ 1.5 Time endowment

3.2 Calibration

Table 1 lists the parameter values that are unique to the HANK setup. We set U = 0.05,

which is the fraction of households with low productivity (ε = 0), and hence can be inter-

preted as the aggregate unemployment rate. Conditional on being unemployed, the prob-

ability of remaining unemployed, p, is 0.5. This means that the expected unemployment

duration is two quarters. The scaling parameter governing the disutility of labor, χ, is cho-

sen so that steady state labor supply in a representative agent version of the model would

be LRANK = 0.95.4 The unemployment benefit is set to 40 percent the wage, so µ = 0.4.

This follows Shimer (2005). The labor income tax rate is 30% following Kaplan et al. (2018).

d = 0 implies agents are not allowed to borrow, and l̄ = 1.5 implies the time endowment for

work is 150% of lRANK = 1. If we interpret lRANK = 1 to eight hours a day, l̄ = 1.5 means

the maximum amount someone can work is 12 hours a day. For other parameters, we follow

the calibration from Sims and Wu (2021a); see details in Table E.1 of Appendix E.

4This could be interpreted as 95 percent of the population supplying lRANK = 1 unit of labor each, which
is comparable to the targeted 5 percent unemployment rate in the HANK specification.
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4 HANK vs RANK

In this section, we compute impulse responses to a QE shock and compare and contrast

those responses under the HANK and RANK specifications.5

How taxes and dividends are distributed among agents might be important for how

shocks transmit into aggregate variables in HANK models (McKay, Nakamura and Steinsson

2016). We focus on how dividend payments from firms are distributed across households.

One can replicate dividend redistribution rules by varying the tax distribution rule. We

explore this in more detail in Section 5. But, for the purposes of this section, we simply

assume that dividends are distributed evenly across households, where

∫ 1

0

divj,tdj = divt

and divi,t = divj,t for all i and j.

Even with this equal dividend distribution rule, there remains significant household het-

erogeneity in wealth arising from uninsurable employment/productivity risk. Figure 1 plots

the stationary distribution of wealth across households. We do so for both unemployed

households (solid blue line) and employed households (dashed red line). With our dividend

redistribution rule, few households are located at the borrowing constraint (not shown in the

plot) in the stationary distribution. Nevertheless, most households are relatively poor, with

the distribution of wealth highly right skewed. There are a decent number of households

who are quite wealthy and far away from the borrowing constraint. The distribution of un-

employed households is slightly towards the left of the employed households. which implies

the former have less wealth than the latter.

Figure 2 plots impulse responses to a persistent, private QE shock. The shock is scaled to

represent a four-percent increase in central bank bond holdings.6 The solid blue lines show

responses under a RANK version of the model, while the dashed red lines are responses

5The representative household of the RANK model is standard; we discuss the problem facing the house-
hold, and the associated first order optimality conditions, in Appendix F.

6This shock generates a similar-sized response of output as to a conventional shock to the policy rule
for the short-term interest rate with a size of 25 basis points; see Figure G.1 in the appendix. As noted in
Appendix E, we assume an autoregressive parameter of 0.8. Responses to a public QE shock (i.e. a purchase
of long-term government bonds, instead of privately-issued bonds), would produce exactly the same-shaped
impulse responses, albeit at a smaller scale.
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Figure 1: Stationary Distribution
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Figure 2: Impulse responses to a QE shock: RANK vs. HANK
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and Y-axis is the percentage change from steady state.

generated from the HANK specification.
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The responses of aggregate variables to a shock to central bank bond-holdings in the

RANK specification (blue) are similar to Sims and Wu (2021a). Bond purchases ease the

leverage constraint on intermediaries, which results in declining interest rate spreads. This,

in turn, results in more investment. Higher aggregate demand results in output, labor, and

inflation all rising temporarily.

For all aggregate variables, the responses under the HANK specification (dashed red

lines) are qualitatively and quantitatively similar to the RANK version of the model. Con-

sumption, output and labor rise slightly more in the HANK specification on impact, but

these differences are small and short-lived.

We next inspect the reasons for the slight differences in aggregate responses in the HANK

vs. RANK setups. Figure 3 plots the first-period responses of individual choice variables to

a QE shock against the percentile of the wealth distribution. We do so both for a RANK

version of the model (dashed red lines) and our baseline HANK version (solid blue). In the

RANK version, all households behave identically, so the figures simply show flat lines. To

increase readability, the left panel focuses on households in the bottom one percent of the

wealth distribution; the right panel shows impact responses for households for the rest of

the wealth distribution.

Focus first on the left panel. Households near the bottom of the wealth distribution

behave very differently compared to the RANK counterpart. RANK households slightly

reduce their consumption on impact, mildly increase savings in the form of deposits, and

work more. In the HANK setup, households near the borrowing constraint significantly

increase their consumption on impact. They also initially reduce their labor input and

save significantly more. What drives these results? Households located near the borrowing

constraint are working more and consuming less than they would find optimal absent a

borrowing constraint. The extra income from the QE shock allows them to move towards

the unconstrained optimal allocation by increasing consumption and reducing labor input.

They also take advantage of the income windfall by significantly increasing deposits, which
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Figure 3: First period individual responses to a QE shock: RANK vs. HANK
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Notes: This figure plots the impulse responses of (employed) individual decision variables (consumption,
deposits, and labor supply) in the period when a 4% positive QE shock hits. The blue solid lines and red
dotted lines are for the baseline HANK and RANK models, respectively. X-axis is the wealth fraction from
poor to rich, and Y-axis is the percentage change from steady state.

moves them further from the borrowing constraint.

Importantly, the behavior of individual households is only substantially different from the

RANK model for the very poorest. Once we move away from the borrowing constraint, the

individual-level decisions are quite similar to what a RANK household would do. For house-

holds initially far away from the borrowing constraint (right sides of the right panel), they

actually decrease their consumption more, and increase their labor supply more, compared

to the RANK household, but these differences are qualitatively small.

We conclude from the analysis in this section that the aggregate responses to an expan-

sionary QE shock are quite similar in the HANK and RANK specifications, at least for the

particular equal dividend distribution rule that we have assumed. Though there are micro-

level differences in behavior for the poorest households, overall the aggregate responses are
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similar. This suggests that there may be little to gain from incorporating household het-

erogeneity into a DSGE model if one is only interested in understanding aggregate effects

of a QE shock. In the next section, we investigate whether this conclusion holds up when

dividends are distributed differently across households.

5 Implications of the Micro-Distribution of Wealth

In Section 4, we showed that impulse responses of aggregate variables to a central bank asset

purchase are qualitatively and quantitatively similar in both HANK and RANK specifications

of our model. These results were generated under a particular distribution rule for dividends,

which in turn influences the distribution of wealth across households. In this section, we

explore further the implications of the wealth distribution for our results. First, we specify

several alternative distribution rules for dividends in Subsection 5.1. Next, we show the role

of different rules for popular metrics of wealth inequality, such as the Lorenz Curve or the

Gini Coefficient in Subsection 5.2. Finally, in Subsection 5.3, we circle back to the main

question of interest of the paper and examine how wealth distribution influences the macro

responses to a QE shock.

5.1 Distribution Rules

In Section 4, we assumed that dividends from production firms are equally distributed among

households. We now assume the following more general dividend distribution rule:

divj,t
divt

=
(
at + btd

ϑ
j,t−1

)
. (5.1)

In (5.1), dj,t−1 corresponds to household j’s wealth level (in the form of deposits). at and

bt are time-varying parameters that govern how household j’s share of dividends vary with

initial wealth. ϑ ≥ 1 allows for a household’s dividends to vary non-linearly with its own

wealth. Taking ϑ as given, the parameters at and bt are chosen so that the following two
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equations hold each period:

∫ 1

0

(
at + btd

ϑ
j,t−1

)
dj = 1, (5.2)

at + btd̄
ϑ

at + btd
ϑ

= n. (5.3)

(5.2) simply says that the sum of dividends received by individual households must equal

aggregate dividends each period. (5.3) says that the ratio of the dividends received by the

richest household (i.e. the household on the largest point on our deposit grid, d̄) to the

dividends received by the poorest household (i.e. the household on the lowest point on our

deposit grid, d = 0) is equal to n.7 In Section 4, we implicitly imposed n = 1.8 In this

section, we experiment with different values of n and ϑ.

To get a better sense of how different values of n and ϑ impact households in the model,

Figure 4 plots the relative weight of dividends received by individuals with different wealth

levels in the model’s stationary distribution. We take the poorest household, with d = 0, as

the reference point. In the stationary distribution, the weight of household j to the poorest

household is
a+bdϑj
a

=
(
1 + b

a
dϑj
)
. By construction, the poorest household always has a relative

weight of unity, and the richest household always has a relative weight of n. The notation

we use is that the letter standards for ϑ; we consider three values, L for linear (ϑ = 1), S

for squared (ϑ = 2), and C for cubic (ϑ = 3). The number after the letter corresponds to

the assumed value of n. We consider values of n = 10 and n = 100; our baseline case, which

we label “HANK,” can also be labeled L1 (linear, so ϑ = 1, with n = 1). The left panel

considers linear redistribution schemes (ϑ = 1), while the right panel compares the linear

redistribution scheme to the squared and cubic schemes by fixing n = 100.

7Note that we solve the model with fixed grid points for deposits, so d̄ is always the same. In other words,
the wealth gap between the richest and poorest household is always fixed. What varies is how dividends are
distributed to households away from those end points.

8Focusing on (5.3), when n = 1, given that d 6= d̄ it must be the case that bt = 0. But then from (5.2),
it follows that at = 1. When n 6= 1, then bt 6= 0 and will be time-varying. This also means that at 6= 1 and
will also be time-varying.
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Figure 4: Relative redistribution weight
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Notes: This figure plots the relative weight of dividend obtained by people at different wealth level at the
stationary distribution (1 + b

ad
ϑ
j ). The blue solid lines, red dotted lines, and the yellow dashed lines on

the left(right) column are for the baseline HANK(L100), L10(S100), and L100(C100) models, respectively.
X-axis is the wealth level, and Y-axis is the weight.

In our baseline HANK specification (blue line, left panel) all households receive the same

dividends, and the relative weights are therefore constant at unity. When we increase n but

remain in the linear specification, all other households receive a higher share of dividends

relative to the poorest household. The relative weight of a household at a fixed percentile in

the wealth distribution is bigger the larger is n.

Interestingly, higher values of n in the linear scheme will have the effect of reducing

overall inequality. This implication is illustrated in the left panel of Figure 5, which plots

the stationary wealth distribution from our model under the same dividend redistribution

rules as the left panel of Figure 4. From Figure 5, we can see that higher values of n shift more

mass in the stationary distribution to the right, although this mass remains concentrated

away from the far-right tail.

In the right panel of Figure 4, we compare a linear redistribution scheme (solid blue

line) to squared and cubic schemes (dotted-red and dashed-orange, respectively). While the

endpoints are the same in all cases, more curvature will increase inequality. We show this

result with the right panel of Figure 5. Relative to a linear redistribution scheme, more cur-

vature has the effect of concentrating much more mass near the borrowing constraint, which

has the effect of increasing overall wealth inequality. For example, in both the squared and

cubic specifications, there are about twice as many households at the peak of the stationary
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Figure 5: Stationary distribution
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Notes: This figure plots the stationary distribution generated by different models. The blue solid lines, red
dotted lines, and the yellow dashed lines on the left(right) are for the baseline HANK(L100), L10(S100), and
L100(C100) models, respectively. X-axis is the wealth level, and Y-axis is the density.

distribution relative to the linear scheme.

5.2 Inequality Measures

The exact form of the dividend distribution rule has important implications for the model’s

Lorenz curve as well as its Gini coefficient, both of which are important measures of inequality

on which the extant literature has often focused. A Lorenz curve plots the cumulative fraction

of overall wealth against the population percentile. In our model, household wealth takes

the form of deposits. So, points along the 45-degree line represent perfect equality; points

below the 45-degree line indicate that wealth is unequally distributed, with more wealth held

by a small fraction of households. For example, a point of (40, 10) says that the bottom 40

percent of the population holds 10 percent of aggregate wealth. The Gini coefficient is the

ratio of the area between the 45-degree line and the Lorenz curve to the total area under the

45-degree line. A larger Gini coefficient indicates higher inequality.

Figure 6 plots Lorenz curves for different dividend distribution schemes. The purple

squares represent the Lorenz Curve measured with US data The left panel plots the Lorenz

curves for linear redistribution rules. The blue line corresponds to our baseline specification

(labeled HANK, with equal dividend distribution). Qualitatively, our model generates a

distribution of wealth that is similar to what is observed in the data, but the distribution is
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Figure 6: Lorenz curve
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Notes: This figure plots the Lorenz curve of stationary wealth distribution when the dividends are distributed
according to different functions. The blue solid lines, red dotted lines, and the yellow dashed lines on the
left(right) column are for the baseline HANK(L100), L10(S100), and L100(C100) models, respectively, the
thin black solid lines are the 45 degree line, and the purple squares are moments in data. X-axis is the
fraction of population, and Y-axis is the fraction of wealth.

not sufficiently unequal. The dotted red curve and the dashed orange curve show, respec-

tively, the Lorenz curves associated with linear redistribution schemes with larger values of

n (10 and 100). Consistent with the shapes of the stationary distributions, a larger value

of n (meaning a bigger gap between the dividends received by the wealthiest and poorest

households) reduces observed inequality. In the right panel, we plot Lorenz Curves condi-

tioning on n = 100, but for different values of ϑ. Here we observe that larger values of ϑ

shift the Lorenz curve down (meaning more inequality), as well as result in more overall

curvature. For the cubic specification, the model’s Lorenz Curve becomes much closer to the

data compared to our baseline HANK case.

Table 2 corroborates the results depicted graphically in Figure 6 by showing Gini coef-

ficients for different dividend distribution rules. The observed Gini coefficient in the data

is 0.79. Our baseline HANK specification falls well short of this, with a Gini coefficient of

0.53. Focusing on a linear redistribution scheme with higher values of n, the model’s Gini

coefficient falls further below what is observed in the data. A squared or cubic specification,

in contrast, results in the model better fitting the data. The cubic rule with n = 100, for
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Table 2: Gini coefficient

This table reports the Gini coefficients in the data and generated in different models.

data HANK L10 L100 S100 C100

Gini coeff. 0.79 0.53 0.46 0.40 0.57 0.64

example, results in a Gini coefficient of 0.64.

5.3 Macro Aggregates

Our analysis above suggests that our model is capable of generating significant wealth in-

equality in a way that is similar to what is observed in the data. However, the question

we are interested in is not whether the model can match moments of the wealth distribu-

tion. Rather, we are interested in whether a model’s ability to match inequality moments

matters for the transmission of QE shocks into aggregate variables like output. We show

in this section that there is little economically meaningful connection between the dividend

distribution rule, inequality moments, and aggregate effects of QE shocks.

Figure 7 plots impulse responses to a QE shock under different dividend distribution

specifications. The picture is divided into two panels, with responses in the HANK, L10,

and L100 specifications in the left panel, and responses for the L100, S100, and C100 speci-

fications in the right panel. We focus only on responses of output, consumption, investment,

and inflation here, but the responses are otherwise generated in the same manner as in

Figure 2.

The responses of aggregate variables to a QE shock are remarkably similar under all

specifications; this means they are all, in turn, quite similar to the RANK specification

as well. There are some small differences for the response of aggregate consumption, but

the inflation, output, and investment responses are almost identical across all specifications.

These results suggest that the exact form of the dividend distribution rule – though highly

relevant for inequality statistics – is unimportant for the aggregate transmission of a QE

shock. This, in turn, suggests that the literature’s heavy focus on these inequality statistics
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Figure 7: Impulse responses to a QE shock: HANK with different redistribution
rules
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Notes: This figure plots the impulse responses of aggregate variables with linear redistribution under a
positive QE shock. The blue solid lines, red dotted lines, and the yellow dashed lines on the left(right)
column are for the baseline HANK(L100), L10(S100), and L100(C100) models, respectively. X-axis is time,
and Y-axis is the percentage change from steady state.

may be misplaced, at least to the extent to which one focuses on dynamics of aggregate

variables.

6 Implications of the Macro-Distribution of Wealth

Section 5 provides robustness checks when we vary the dividend distribution rule, which

impacts the micro-distribution of wealth. In this section, we investigate how some parameters

related to the macro-distribution of wealth impact our results. In particular, we are interested

in how parameters such as the unemployment rate and the unemployment benefit affect

the stationary wealth distribution, and in turn how these parameters impact the aggregate
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Figure 8: Stationary Distribution: HANK vs. U = 10% and U = 20%
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Notes:This figure plots the stationary distribution of the population. The blue solid lines are for the HANK
model, the red dotted lines are for the model with 10% unemployment rate, and the yellow dashed lines are
for the model with 20% unemployment rate.

transmission of QE shocks.

In our baseline calibration, we set the unemployment rate to five percent. While consis-

tent with the data, this relatively low unemployment rate means that households face a small

probability of job loss. In this section, we allow a higher unemployment rate, which means

households face more uninsurable income risk, and study its implications for the behavior of

aggregate consumption, and hence other aggregate variables, in response to a QE shock.

Figure 8 plots the stationary wealth distribution in our model with three different tar-

gets for the unemployment rate – our baseline specification of five percent (labeled HANK),

10 percent (dotted red lines), and 20 percent (dashed orange lines). Increasing the unem-

ployment rates shifts mass in the stationary distribution towards the borrowing constraint.

Table 3 shows the percentage of the population located at the borrowing constraint for dif-

ferent version of the model. In our baseline HANK specification, only 0.025 percent of the

population is constrained. This number doubles with an unemployment rate of 10 percent,

and increases to 0.16 percent when the unemployment rate is 20 percent.

Figure 9 plots impulse responses to a QE shock. The left panel considers our model with
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Table 3: People with binding constraint

This table reports the fraction of people with binding constraint in different models.

HANK U = 10% U = 20% µ = 69.6%

people with binding constraint (%) 0.025 0.055 0.159 28.13

Figure 9: Impulse responses to a QE shock: HANK vs. RANK for U = 10% and
U = 20%
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Notes: This figure plots the impulse responses of aggregate variables under a 4% QE shock. The blue solid
lines and red dotted lines on the left(right) column are for the HANK and RANK models with 10%(20%)
unemployment rate, respectively. X-axis is time, and Y-axis is the percentage change from steady state.

a 10 percent unemployment rate and the right panel with 20 percent. For each panel, we

compare the HANK model to RANK version that is re-parameterized to produce comparable

average labor input. First, compare the left panel with Figure 2. Consumption, and hence

aggregate output, responds more to a QE shock when unemployment is larger, but these

differences are quantitatively small. In the right panel, we observe some more noticeable

differences between the responses in the HANK and RANK models for the first several

periods, but, again, these differences are not quantitatively large. The direction of effects is
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intuitive – the higher is unemployment, the bigger is the fraction of the population facing

the borrowing constraint, and consumption (and hence output) increases more (or decreases

less) after a QE shock. Overall, however, the differences between the HANK and RANK

models are not economically meaningful whether U = 10 or 20 percent.

To provide some intuition, Figure 10 plots the first-period individual choice variable re-

sponses to a QE shock as a function of wealth. The figure is analogous to Figure 3, but

compares HANK responses with different unemployment rates. The main differences are for

the poorest households, who increase their consumption by more, and increase their labor

by less, the higher is the unemployment rate. For households away from the borrowing con-

straint, labor input actually increases more after a QE shock the higher is the unemployment

rate. The intuition is as follows: these households try to accumulate more wealth in response

to an expansionary shock to insure against a higher probability of potential future job loss.

We next consider the role played by the unemployment benefit, µ in our model. We focus

on the case of µ = 0.698, which is substantially higher than our baseline parameterization

of 0.4. In the benchmark HANK model, the average steady state individual labor supply

is 0.9744. With a tax rate of 30 percent, an average worker would earn 68.2 percent of the

market real wage after-tax. Our parameterization of µ = 0.696 implies that unemployed

workers make 69.6 percent of the market real wage. This means that unemployment is

a benefit rather than a risk. We present the case of µ = 0.696 not because we consider

it a reasonable parameterization (in fact, we consider it to be quite extreme), but rather,

a parameterization in this range is what is needed to generate a substantial fraction of

households at the borrowing constraint.

Figure 11 plots the stationary distribution with µ = 0.696. Most of the population is

concentrated around the borrowing constraint. As noted in Table 3, with this parameteri-

zation, 28.1 percent of households are located at the borrowing constraint in the stationary

distribution. In the HANK literature, the fraction of agents at the constraint is an important

metric to generate household heterogeneity and might matter for macro dynamics. However,
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Figure 10: First period individual responses to a QE shock: HANK vs. U = 10%
and U = 20%
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Notes: This figure plots the impulse responses of (employed) individual decision variables (consumption,
deposits, and labor supply) in the period when a 4% positive QE shock hits. The blue solid lines and red
dotted lines are for the baseline HANK model and the models with U = 10% and U = 20%, respectively.
X-axis is the wealth fraction from poor to rich, and Y-axis is the percentage change from steady state.

in our model, even with 28.1 percent of households at the constraint, the macro implications

are similar to our baseline HANK model; see, Figure 12. The only noticeable difference

is that consumption increases, instead of decreasing, in response to a QE shock, with this

difference lasting for the first several periods. But this difference does not transmits into

other aggregate variables.

To conclude, we find that for the aggregate unemployment rate as well as the unem-

ployment benefit, both of which can increase the fraction of constrained households, the

transmission of QE shocks into macro aggregates is not very different from a RANK model.
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Figure 11: Stationary Distribution: HANK vs µ = 69.6%
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Notes:This figure plots the stationary distribution of the population. The blue solid lines are for the HANK
model, the red dotted lines are for the model with 10% unemployment rate, and the yellow dashed lines are
for the model with 20% unemployment rate.

7 Conclusion

In this paper, we developed a quantitative DSGE model to study the aggregate implications

of central bank asset purchases when there is substantial household wealth heterogeneity.

The financial and production sides of the model are similar to Sims and Wu (2021a), which

features constrained financial intermediaries and scope for QE to matter. We model house-

holds similarly to Krusell and Smith (1998): they are heterogeneous with respect to wealth,

face uninsurable unemployment risk, and are subject to a borrowing constraint. We devel-

oped a solution method that is compatible with Dynare and uses perturbation methods to

solve and simulate the model.

We find that the aggregate responses to a central bank asset purchases are very similar in

a HANK specification compared to a RANK version of the model. We consider alternative

assumptions about the micro- and macro-distributions of wealth. For the former, we vary

how dividends are distributed across households. While different dividend distribution rules

can generate different amounts of wealth inequality based on popular metrics, they have
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Figure 12: Impulse responses to a QE shock: HANK vs. µ = 69.6%
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Notes: This figure plots the impulse responses of aggregate variables under a 4% QE shock. The blue solid
lines are for the HANK model, the red dotted lines are for the model with 10% unemployment rate, and the
yellow dashed lines are for the model with 20% unemployment rate. X-axis is time in quarters, and Y-axis
is the percentage change from steady state.

little discernible impact on how aggregate variables like output react to a QE shock. For

the latter, we examine how the aggregate unemployment rate and the unemployment benefit

impact the aggregate transmission of QE shocks. While these parameters influence how

many households are at or near the borrowing constraint, they do not have much discernible

effect on the aggregate effects of a QE shock. We conclude that a RANK specification may

provide an adequate approximation for understanding the aggregate implications of QE.
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Appendix A Model Details

This appendix contains details from the model discussed in Section 2.

Appendix A.1 Labor Market

Labor unions, indexed by h ∈ [0, 1] purchase labor from households at price MRSt, repackage it into Ld,t(h),
and sell it to a representative labor contractor. A representative labor contractor combines differentiated
labor into final labor used in production, via CES technology with elasticity εw. The demand curve each
labor union faces is

Ld,t(h) =

(
Wt(h)

Wt

)−εw
Ld,t (A.1)

Wt(h) is the wage paid for union h’s labor and Wt is the aggregate wage, which satisfies

W 1−εw
t =

∫ 1

0

Wt(h)1−εwdh (A.2)

Labor unions are subject to a Calvo-type nominal rigidity. Each period, a union may re-optimize its
wage with probability 1 − φw with φw ∈ [0, 1]. Non-reoptimized wages are indexed to lagged inflation at
γw ∈ [0, 1]. A labor union chooses a wage to maximize the present discounted value of real profits:

max
Wt(h)

Et
∞∑
j=0

φjwΛt,t+j

[(
Pt+j−1

Pt−1

)(1−εw)γw

Wt(h)1−εwP
εt−1

t+j w
εw
t+jLd,t+j−

mrst+j

(
Pt+j−1

Pt−1

)−εwγw
Wt(h)−εwP εwt+jw

εw
t+jLd,t+j (A.3)

where Λt,t+j = Λt,t+1 · · ·Λt+j−1,t+j .
The first order condition is

(εw − 1)Wt(h)−εwEt

∞∑
j=0

φjwΛt,t+j

(
Pt+j−1

Pt−1

)(1−εw)γw

P εw−1
t+j wεwt+jLd,t+j =

εwWt(h)−εw−1Et

∞∑
j=0

φjwΛt,t+jmrst+j

(
Pt+j−1

Pt−1

)−εwγw
P εwt+jw

εw
t+jLd,t+j

The reset wage is the same across all labor unions. Hence, drop the h index, and the optimal price W ∗t can
be written as:

W ∗t =
εw

εw − 1

F1,t

F2,t

where F1,t and F2,t are recursive representations of the infinite sums above:

F1,t = mrstP
εw
t wεwt Ld,t + φwΛt,t+1Π−εwγwt F1,t+1

F2,t = P εw−1
t wεwt Ld,t + φwΛt,t+1Π

(1−εw)γw
t F2,t+1

Written in real terms, w∗t = W ∗t /Pt, it satisfies:
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w∗t =
εw

εw − 1

f1,t

f2,t
(A.4)

f1,t = mrstw
εw
t Ld,t + φwEtΛt,t+1

(
Πt+1

Πγw
t

)εw
f1,t+1 (A.5)

f2,t = wεwt Ld,t + φwEtΛt,t+1

(
Πt+1

Πγw
t

)εw−1

f2,t+1 (A.6)

where wt = Wt/Pt is the aggregate real wage from (A.2), and f1,t = F1,t/P
εw
t and f2,t = F2,t/P

εw−1
t .

Aggregation Integrate (A.1) across h, noting that
∫ 1

0
Ld,t(h)dh = Lt. Using the demand function for

a union’s labor, (A.1), yields
Lt = Ld,tv

w
t (A.7)

where vwt is a measure of wage dispersion:

vwt =

∫ 1

0

(
wt(h)

wt

)−εw
dh

Note that this can be written in terms of real wages since it is a ratio. Because of properties of Calvo
wage-setting, we can write this as

vwt = (1− φw)

(
w∗t
wt

)−εw
+

∫ 1

1−φw

(
Πγw
t−1Wt−1(h)

Wt

)−εw
dh

= (1− φw)

(
w∗t
wt

)−εw
+ Π−γwεwt−1 W εw

t W−εwt−1

∫ 1

1−φw

(
Wt−1(h)

Wt−1

)−εw
dh

which may be written as

vwt = (1− φw)

(
w∗t
wt

)−εw
+ φwΠ−γwεwt−1 W εw

t W−εwt−1 v
w
t−1

Expressing this in real terms gives

vwt = (1− φw)

(
w∗t
wt

)−εw
+ φw

(
Πt

Πγw
t−1

)εw ( wt
wt−1

)εw
vwt−1 (A.8)

From (A.2), we have

W 1−εw
t = (1− φw) (W ∗t )

1−εw +

∫ 1

1−φw

(
Πγw
t−1Wt−1(h)

)1−εw
dh

Via a law of large numbers, this is

W 1−εw
t = (1− φw) (W ∗t )

1−εw + Π
γw(1−εw)
t−1 φwW

1−εw
t−1

Dividing both sides by P 1−εw
t gives

w1−εw
t = (1− φw) (w∗t )

1−εw + φwΠ
γw(1−εw)
t−1 Πεw−1

t w1−εw
t−1 (A.9)
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Appendix A.2 Capital Producers

A representative capital producer transfers raw investment goods It into new capital Ît via:

Ît =

[
1− S

(
It
It−1

)]
It (A.10)

where S (It/It−1) = κI
2 (It/It−1 − 1)

2
is the investment adjustment cost.

The capital producer sells new capital to wholesale firms, and earns real profit in period t:

divk,t = pkt

[
1− S

(
It
It−1

)]
It − It (A.11)

where pkt is the real price of new capital. The object of a capital producer is to maximize the present value
of profit:

max
It

Et
∞∑
j=0

Λt,t+j

{
pkt

[
1− S

(
It+j
It+j−1

)]
It+j − It+j

}
The first order condition is

1 = pkt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ EtΛt,t+1p

k
t+1S

′
(
It+1

It

)(
It+1

It

)2

(A.12)

Appendix A.3 Output

The final output good, Yt, is a CES aggregate of retail outputs with elasticity of substitution εp > 1. Profit
maximization by the final good producer generates a demand curve for each retail output and an expression
for the aggregate price index:

Yt(f) =

(
Pt(f)

Pt

)−εp
Yt. (A.13)

The price of the final goods, Pt, satisfies:

P
1−εp
t =

∫ 1

0

Pt(f)1−εpdf. (A.14)

Each period, a retailer faces a constant probability, 1 − φp, of being able to adjust its price. Consider
the problem of a retailer given the opportunity to adjust in period t. When it sets a price, it must take into
account that the price chosen in t will still be in effect in period t + j with probability φjp. Indexation to

lagged inflation means that an unupdated price in period t+ j will be: Pt(f)
(
Pt+j−1

Pt−1

)γp
. When choosing a

price, the retailer maximizes the present discounted value of real profits returned to the household, where
discounting is by the household’s stochastic discount factor augmented by the probability of non-adjustment:

max
Pt(f)

Et

∞∑
j=0

φjpΛt,t+j

[
Pt(f)1−εp

(
Pt+j−1

Pt−1

)(1−εp)γp

P
εp−1
t+j Yt+j − Pm,t+jPt(f)−εp

(
Pt+j−1

Pt−1

)−εpγp
P
εp−1
t+j Yt+j

]
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The first order condition is

(εp − 1)Pt(f)−εpEt

∞∑
j=0

φjpΛt,t+j

(
Pt+j−1

Pt−1

)(1−εp)γp

P
εp−1
t+j Yt+j =

εpPt(f)−εp−1Et

∞∑
j=0

φjpΛt,t+jPm,t+j

(
Pt+j−1

Pt−1

)−εpγp
P
εp
t+jYt+j

Define variables:

X1,t =

∞∑
j=0

(φpβ)j
µt+j
µt

Pm,t+j

(
Pt+j−1

Pt−1

)−εpγp
P
εp
t+jYt+j

X2,t =

∞∑
j=0

(φpβ)j
µt+j
µt

(
Pt+j−1

Pt−1

)(1−εp)γp

P
εp−1
t+j Yt+j

These can be written recursively as:

X1,t = pm,tP
εp
t Yt + φpΛt,t+1Π

−εpγp
t X1,t+1

X2,t = P
εp−1
t Yt + φpΛt,t+1Π

(1−εp)γp
t X2,t+1

Note, all retailers set the same price. We call this reset price P ∗t . Hence, the first order condition can be
written as

P ∗t =
εp

εp − 1

X1,t

X2,t

Defining x1,t = X1,t/P
εp
t , x2,t = X2,t/P

εp−1
t , and p∗t = P ∗t /Pt gives

p∗t =
εp

εp − 1

x1,t

x2,t
(A.15)

x1,t = pm,tYt + φpEtΛt,t+1

(
Πt+1

Π
γp
t

)εp
x1,t+1 (A.16)

x2,t = Yt + φpEtΛt,t+1

(
Πt+1

Π
γp
t

)εp−1

x2,t+1 (A.17)

where pm,t =
Pm,t
Pt

.

Aggregation Integrate the demand for retail output, (A.13), across retailers, noting that Yt(f) =

Ym,t(f),
∫ 1

0
Ym,t(f)df = Ym,t, where Ym,t is wholesale output. This yields

Ytv
p
t = Ym,t (A.18)

where

vpt =

∫ 1

0

(
Pt(f)

Pt

)−εp
df

This is a measure of price dispersion. Using properties of Calvo pricing with indexation to lagged inflation
yields:

vpt = (1− φp) (p∗t )
−εp +

∫ 1

1−φp

(
Π
γp
t−1Pt−1(f)

Pt

)−εp
df

= (1− φp) (p∗t )
−εp + Π

−γpεp
t−1 P

εp
t P

−εp
t−1

∫ 1

1−φp

(
Pt−1(f)

Pt−1

)−εp
df
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Via a law of large numbers, this reduces to

vpt = (1− φp) (p∗t )
−εp + φp

(
Πt

Π
γp
t−1

)εp
vpt−1 (A.19)

Similarly, the aggregate price index, (A.14), may be written as:

P
1−εp
t = (1− φp) (P ∗t )

1−εp +

∫ 1

1−φp
Π
γp(1−εp)
t−1 Pt−1(f)1−εpdf

= (1− φp) (P ∗t )
1−εp + φpΠ

γp(1−εp)
t−1 P

1−εp
t−1

Divide both sides by P
1−εp
t to obtain

1 = (1− φp) (p∗t )
1−εp + φpΠ

γp(1−εp)
t−1 Π

εp−1
t (A.20)

The representative wholesale firm produces output according to a Cobb-Douglas technology:

Ym,t = Zt(utKt)
αL1−α

d,t (A.21)

Ym,t is flow output, ut is the capital utilization rate, and Ld,t is labor input. 0 < α < 1 is the exponent on
capital services in the production function. Zt is an exogenous productivity variable that obeys an exogenous
stochastic process. Kt is the stock of physical capital, which the firm owns. Physical capital accumulates
according to a standard law of motion:

Kt+1 = Ît + (1− δ(ut))Kt (A.22)

where δ (ut) = δ0+δ1 (ut − 1)+ δ2
2 (ut − 1)

2
is the capital depreciation rate and depends on capital utilization.

The wholesale firm must issue perpetual bonds to finance the purchase of new physical capital, Ît.
Different than them, we only require the firm to finance a constant fraction, ψ ∈ [0, 1], of investment, not
the entirety. This gives rise to a “loan in advance constraint” of the form:

ψP kt It ≤ QtCFm,t = Qt (Fm,t − κFm,t−1) , (A.23)

where P kt is the price at which the wholesale firm purchases new physical capital.
The wholesale firm hires labor in a competitive spot market at nominal wage Wt. Its nominal dividend

is
DIVm,t = Pm,tZtK

α
t L

1−α
d,t −WtLd,t − P kt It − Fm,t−1 +Qt (Fm,t − κFm,t−1) (A.24)

The firm maximizes the present discounted value of real dividends, where discounting is by the stochastic
discount factor of households. The first order conditions are

wt = (1− α)pm,tZtK
α
t L
−α
d,t (A.25)

pktM1,tδ
′(ut) = αpm,t(utKt)

α−1L1−α
d,t (A.26)

pktM1,t = EtΛt,t+1

[
αpm,t+1Zt+1K

α−1
t+1 L

1−α
d,t+1 + (1− δ(ut))pkt+1M1,t+1

]
(A.27)

QtM2,t = EtΛt,t+1Π−1
t+1 [1 + κQt+1M2,t+1] (A.28)

M1,t − 1

M2,t − 1
= ψ (A.29)

wt = Wt/Pt is the real wage, pm,t = Pm,t/Pt is the relative price of wholesale output, and pkt = P kt /Pt is the
relative price of new capital. (A.25) is the standard static first order condition for labor demand. M1,t is one
plus the product of ψ with the multiplier on the constraint that firms must issue bonds to finance investment,
(A.23), while M2,t is simply one plus the multiplier on the constraint. (A.26) is the first-order condition for
capital utilization. (A.27) and (A.28) are optimality conditions for capital and bonds, respectively. If the
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constraint did not bind, then M1,t = M2,t = 1 and (A.27)-(A.28) would reduce to standard asset pricing
conditions. M1,t serves as an endogenous “investment wedge” and M2,t can be thought of as a “financial
wedge.” These wedges distort the standard asset pricing decisions and fluctuations in these wedges are the
mechanism through which QE type policies transmit to the real economy.

Appendix A.4 Exogenous Processes and Aggregation

Aggregate productivity, At; government spending, Gt; and the credit shock follow AR(1) processes in the
log:

lnAt = ρA lnAt−1 + sAεA,t, (A.30)

lnGt = (1− ρG) lnG+ ρG lnGt−1 + sGεG,t, (A.31)

ln θt = (1− ρθ ln θ + ρθ ln θt−1 + sθεθ,t. (A.32)

Autoregressive parameters are restricted to lie between zero and one, and shocks are drawn from standard
normal distributions, with sA, sG, and sθ denoting standard deviations. G and θ are non-stochastic steady
state values of government spending and the credits shock, respectively. The non-stochastic steady state
value of labor productivity is normalized to unity.

The exogenous process for central bank holdings of private bonds is given in (2.25). There is a similar
law of motion for central bank holdings of government bonds:

ln bcb,t = (1− ρb)bcb + ρb ln bcb,t−1 + σbεb,t. (A.33)

There are therefore six exogenous shocks in the model: productivity (εA,t), government spending (εG,t),
credit (εθ,t), monetary policy (εr,t), private QE (εf,t), and public QE (εb,t).

Privately-issued and government-issued bonds must be held by either financial intermediaries or the
central bank. In real terms, the bond market-clearing conditions are:

fm,t = ft + fcb,t (A.34)

b̄G = bt + bcb,t, (A.35)

where ft =
∑
i fi,t and bt =

∑
i bi,t.

Aggregated across intermediaries, and written in real terms, the aggregate financial intermediary balance
sheet condition is:

Qtft +QB,tbt + ret = dt + nt. (A.36)

The aggregate dynamics of intermediary net worth are given by:

nt = σΠ−1
t

[
(RFt −Rdt−1)Qt−1ft−1 + (RBt −Rdt−1)QB,t−1bt−1

+(Rret−1 −Rdt−1)ret−1 +Rdt−1nt−1

]
+X (A.37)

Similarly, aggregating the endogenous leverage constraint across intermediaries yields:

Qtft + ∆QB,tbt ≤ φtnt (A.38)

The aggregate resource constraint is standard:

Yt = Ct + It +Gt (A.39)
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Appendix B Approximating Individual Policy Functions

Define conditional expectation9

T(dt−1, εt) ≡ βRdtEt

[
c−1
t+1

Πt+1

]
(B.1)

Approximate the conditional expectation function T(.) using Chebyshev polynomials:

T(εt, dt−1) ≈ exp

{
N∑
n=0

θn,t(εt)Tn(ξ(dt−1))

}
(B.2)

where ξ(d) = 2d−d
d̄−d − 1 transforms the interval d ∈ (d, d̄) to (−1, 1), and the Chebyshev polynomials are

defined as following:

Tn(x) = cos(n arccosx) (B.3)

The algorithm aims to fit a set of nodes {dm}Mm=1 with an N order polynomial, where M = N + 1. The
Chebyshev nodes defined on (−1, 1) are

xm = − cos

(
2m− 1

2M
π

)
. (B.4)

Adjust nodes to (d, d̄) interval:

dm = (xm + 1)

(
d̄− d

2

)
+ d. (B.5)

The policy functions can be solved jointly using the following system:

dt = max

{
Rdt−1

Πt
dt−1 +mrst[(1− τ)ltεt + µ(1− εt)]−T(dt−1, εt)

−1 − Tt + divt −X, d
}

(B.6)

lt = min

{[
(1− τ)mrst

χct

] 1
η

, l̄

}
(B.7)

ct =
Rdt−1

Πt
dt−1 +mrst[(1− τ)ltεt + µ(1− εt)]− dt − Tt + divt −X (B.8)

For the individual dt−1 = dm, the right hand side of (B.1) can be expressed as

Et

[
β
Rdt

Πt+1
c−1
t+1

]
= Et

β Rdt
Πt+1

∑
εt+1

p(εt+1|εt)ct+1(dt(dt−1 = dm, εt), εt+1)−1

 (B.9)

The next step is to compute the right hand side of (B.9), which requires ct+1. With dt(dt−1, εt) solved using
(B.6) - (B.8), we can compute conditional expectation next period T(εt+1, dt) by shifting (B.2) one period
forward. Then, we can solve ct+1 by shifting the system in (B.6) - (B.8) one period forward. Combining
(B.1), (B.2), and (B.9), we have M × 2 equations for M × 2 variables θn,t(εt):

N∑
n=0

θn,t(εt)Tn(ξ(dm)) = logEt

β Rdt
Πt+1

∑
εt+1

p(εt+1|εt)ct+1(εt+1, εt, dt−1 = dm)−1

 (B.10)

9For brevity, we drop j subscript in the appendices.
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Note, θn,t(εt) and θn,t+1(εt+1) also enter the right hand side via ct+1.

Appendix C Equilibrium conditions

Our algorithm uses Dynare to solve the system of equations listed below.

Appendix C.1 Individual Households and Their Distribution

� Chebyshev coefficients: M × 2 equations in (B.10) for M × 2 variables θn,t(εt) for m = 1, ...,M .

� Individual decisions: (B.6) - (B.8) for dt(dm, εt), lt(dm, εt), ct(dm, εt) for m = 0, ...,M .. These are
(M + 1)× 2× 3 equations.

� Dynamics of the cross sectional distribution: (3.1) for p(dt = dm, εt+1) for m = 0, ...,M , (M + 1)× 2
equations for (M + 1)× 2 probabilities.

Appendix C.2 Aggregate Variables

Aggregate deposit and labor (2 equations)

Dt−1 =
∑
εt

M∑
m=0

dmp(dt−1 = dm, εt) (C.1)

Lt =
∑
εt

M∑
m=0

lt(εt, dt−1 = dm)p(dt−1 = dm, εt) (C.2)

Equations for aggregate variables in different sectors (29 equations)

� Labor market (3 equations): (A.4) - (A.6)

� Production (14 equations): capital producers (A.10) and (A.12), wholesale firms (A.21) - (A.23) and
(A.25) - (A.29), retailers (A.15) - (A.17)

� Financial intermediaries (7 equations): (2.10),(2.11), (2.14) - (2.18)

� Monetary policy (1 equation): (2.23)

� Fiscal authority (1 equation): (2.22)

� Central bank (1 equation): Tcb,t = (1 + κQt) Π−1
t fcb,t−1 + (1 + κQB,t) Π−1

t bcb,t−1 −Rret−1Π−1
t ret−1.

Aggregation (21 equations)

� Exogenous process

lnZt = ρz lnZt−1 + σzεzt (C.3)

ln θt = ρθ ln θt−1 + σθεθ,t (C.4)

lnGt = ρG lnGt−1 + σGεG,t (C.5)

bcb,t = (1− ρb)bcb + ρbbcb,t−1 + σbεb,t (C.6)

fcb,t = (1− ρf )fcb + ρffcb,t−1 + σf εf,t (C.7)

� Bond market clearing condition

fm,t = ft + fcb,t (C.8)

bG,t = bt + bcb,t (C.9)
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� Aggregation for retailers (A.18) - (A.20)

� Aggregation for labor market (A.7) - (A.9)

� Aggregate the balance sheet condition of financial intermediaries (2.8)

Qtft +QB,tbt + ret = dt + nt (C.10)

� Aggregate net worth dynamics of the financial intermediaries (2.9)

nt = σΠ−1
t [(RFt −Rdt−1)Qt−1ft−1 + (RBt −Rdt−1)QB,t−1bt−1 + (Rret−1 −Rdt−1)ret−1 +Rdt−1nt−1] +X(C.11)

� Aggregating (2.20) across intermediaries yields:

Qtft + ∆QB,tbt ≤ φtnt (C.12)

where (C.12) holds with equality when (2.13) binds.

� Central bank’s balance sheet condition

Qtfcb,t +QB,tbcb,t = ret (C.13)

� The aggregate resource constraint is standard:

Yt = Ct + It +Gt (C.14)

� Dividend:

divt = Yt − wtLt − It +Qt

(
ft − κ

ft−1

Πt

)
− ft−1

Πt
+ (1− σ)nt. (C.15)

� Stochastic discount factor:

Λt−1,t =
Πt

Rdt−1

(C.16)

These are 49 equations for 49 variables
{
Kt, Lt, R

F
t , R

re
t , R

d
t , Qt,Ωt,Πt, λt, φt, ret, nt, Ct, wt, p

∗
t , x1,t, x2,t, pm,t, Yt, Ym,t,

It, p
k
t , fm,t,M1,t,M2,t, It, fcb,t, Zt, θt, ft, dt, v

p
t , R

B
t , QB,t, Gt, Tcb,t, bt, bcb,t, Ît, Tt, divt, Λt−1,t, mrst, Ld,t, w

∗
t , f1,t, f2,t, v

w
t , ut

}
.

Appendix D Solving for the Stationary Equilibrium

(Step 1) Given aggregate deposit and labor supply D,L, we compute steady states for all aggregate vari-
ables.

(Step 2) Solve for the steady state of the Chebyshev coefficients ϑ(ε) = [θ0(ε), ..., θNT (ε)] that approximate
the conditional expectation function. We use the Chebyshev grid dm for m = 1, ...,M , where dm is
computed using (B.5).

(Step 2.1) Compute the Chebyshev polynomial Tn(ξ(dm)) using (B.3).

(Step 2.2) Initialization

(Step 2.2.1) Initialize by assuming dt = dt−1 = dm, and l = l̄, then we can solve consumption
c(0)(ε, dm) using (B.8).

(Step 2.2.2) Compute the right hand side of (B.10) using c(0)(ε, dm) from the previous step.

(Step 2.2.3) For each ε, we have a system of M linear equations in (B.10). We can use them
to solve M unknowns in ϑ(ε), and call it ϑ(0)(ε). The value of the equation computed
in the previous step is T(dm, ϑ

(0)(ε)).

46



(Step 2.3) This step outlines how we update from ϑ(j)(ε) to ϑ(j+1)(ε). Repeat this step until
ϑ(j+1)(ε)− ϑ(j)(ε) is within a specified tolerance, and call it ϑ(ε) = ϑ(j+1)(ε).

(Step 2.3.1) With ϑ
(j)
t (εt) = ϑ(j)(ε), we have computed the conditional expectation T(dt−1 =

dm, ϑ
(j)
t (εt)) from the previous iteration.

(Step 2.3.2) Compute current period deposit dt(εt, dt−1 = dm), consumption ct(εt, dt−1 =

dm), and labor supply lt(εt, dt−1 = dm) using (B.6) - (B.8) with T(dt−1 = dm, ϑ
(j)
t (εt)).

Instead of solving a system of equations with kinks, we implement this step as follows:

� Assume the borrowing constraint is not binding, in this case

ct = T(dt−1 = dm, ϑ
(j)
t (εt))

−1 (D.1)

Then we can compute lt and dt subsequently.

� Check dt against its bound d

– If dt ≥ d, then we are done with (Step 2.3.2).

– If dt < d, then dt = d, and we can solve ct and lt jointly.

(Step 2.3.3) Compute conditional expectation next period T(dt(εt, dt−1 = dm), ϑ
(j)
t+1(εt+1)) by

shifting (B.2) one period forward, where ϑ
(j)
t+1(εt+1) = ϑ(j)(ε), and dt(εt, dt−1 = dm) is

from the previous step.

(Step 2.3.4) Compute next period’s consumption ct+1(εt+1, dt(εt, dt−1 = dm)) by shifting

(Step 2.3.2) one period forward and using T(dt(εt, dt−1 = dm), ϑ
(j)
t+1(εt+1)) from the

previous step.

(Step 2.3.5) Compute the right hand side of (B.10) using ct+1(εt+1, dt(εt, dt−1 = dm)) from
the previous step.

(Step 2.3.6) For each εt, we have a system of M linear equations in (B.10). We can use them
to solve M unknowns in ϑt(εt) on the left hand side, and call it ϑ(j+1)(ε). The value of

the equation computed in the previous step is T(dt−1 = dm, ϑ
(j+1)
t (εt)).

(Step 3) Use the histogram approximation of of Young (2010) to approximate the distribution. We approx-
imate over the grid {dm}Mm=0, which is the same as the Chebyshev grid in (B.5) with one additional
point at the borrowing constraint d0 = d.

(Step 3.1) Compute conditional expectation and policy functions at the borrowing constraint d0 = d.
Compute the conditional expectation T(dt−1 = d0, ϑt(εt)) with ϑt(εt) = ϑ(ε) from (Step 2.3).
Then compute policy function dt(εt, dt−1 = d0), ct(εt, dt−1 = d0), lt(εt, dt−1 = d0) following
(Step 2.3.2).

(Step 3.2) Iterate the transition dynamics in (3.1) forward on the {dm, ε} grid:

(Step 3.3.1) Start with an initial guess for p(d0 = dm, ε1)

(Step 3.3.2) Use the transition probabilities in (3.2) and (2.1) to move one period forward
from p(dτ−1 = dm, ετ ) to p(dτ = dm, ετ+1). Iterate until it converges to the stationary
distribution, and call it p(dt−1 = dm, εt).

(Step 3.3) Compute the aggregate deposit D̃ and labor L̃ using (C.1) and (C.2) where p(dt−1 = dm, εt)
is from the previous step, and lt(εt, dt−1 = dm) is from (Step 2.3.2).

The above steps compute D̃, L̃ given D,L. This amounts to a fixed point problem. We solve this fixed point
problem by iterating over these steps.
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Appendix E Calibration

Table E.1: Additional Calibration

Parameters Value Target Description

SW parameters
κ 1− 40−1 bond duration = 40 Coupon decay parameter
ψ 0.81 Fraction of investment from debt
σ 0.95 Intermediary survival probability
θ 400(RF −Rd) = 3 Recoverability parameter
X Leverage = 4 Transfer to new intermediaries
∆ 1/3 Government bond recoverability

bcb
bcbQB

4Y = 0.06 Steady state central bank Treasury holdings
fcb 0 Steady state central private bond holdings
ρθ 0.98 AR credit
ρb 0.8 AR central bank Treasury
ρf 0.8 AR central bank private bonds

b̄G
BGQB

4Y = 0.41 Steady state government debt

G G
Y = 0.2 Steady state government spending

Standard parameters
β 0.995 Discount factor
η 1 Inverse Frisch elasticity
α 0.33 Production function exponent on capital
δ0 0.025 Steady state depreciation
δ1 u = 1 Utilization linear term
δ2 0.01 Utilization squared term
κI 2 Investment adjustment cost
Π 1 Steady state (gross) inflation
εp 11 Elasticity of substitution goods
εw 11 Elasticity of substitution labor
φp 0.75 Price rigidity
φw 0.75 Wage rigidity
γp 0 Price indexation
γw 0 Wage indexation
ρr 0.8 Taylor rule smoothing
φπ 1.5 Taylor rule inflation
φy 0.25 Taylor rule output growth
ρA 0.95 AR productivity
ρG 0.95 AR government spending

Shock sizes
sA 0.0065 SD productivity
sG 0.01 SD government spending
sθ 0.04 SD credit
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Appendix F RANK Household

In the representative agent model, the lifetime utility of the household is

E0

∞∑
t=0

βt

(
logCt − χ

L1+η
t

1 + η

)
,

The flow budget constraint is

Dt =
Rdt−1

Πt
Dt−1 +mrst(1− τ)Lt − Ct − Tt + divt −X, (F.1)

The first order conditions are

C−1
t = βRdtEt

C−1
t+1

Πt+1
(F.2)

Lηt =
(1− τ)mrst

χCt
. (F.3)

Appendix G Conventional Monetary Policy

Figure G.1: Impulse responses under a monetary policy shock

5 10 15 20

0

0.2

0.4

0.6

output

RANK

HANK

5 10 15 20

0

0.5

1
consumption

5 10 15 20

0

0.5

1

1.5

2
investment

5 10 15 20

0

0.5

1
labor

5 10 15 20

-0.2

-0.15

-0.1

-0.05

0

policy rate

5 10 15 20

0

0.05

0.1

0.15

0.2
inflation

5 10 15 20

-0.3

-0.2

-0.1

0

deposit

5 10 15 20

0

0.05

0.1

0.15
gov. bond spread

5 10 15 20

-0.05

0

0.05

0.1

0.15
corp. bond spread

Notes: This figure plots the impulse responses of aggregate variables under a 0.25% monetary policy shock.
The blue solid lines are for the RANK model, and the red dashed lines are for the HANK model. X-axis is
time in quarters, and Y-axis is the percentage change from steady state.
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