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1 Introduction

Productivity is one of the most important yet mysterious indicator in economic research.
In the past three decades, advancements in approaches for estimating producer-level pro-
ductivity have triggered a substantial literature on detecting productivity drivers from
various perspectives.1 Notably, productivity is not directly observed and has to be in-
ferred from data. To recover productivity, existing production function estimation ap-
proaches rely on structural assumptions on firm behavior and Markovian productivity
process (e.g., Olley and Pakes (1996); Levinsohn and Petrin (2003); Ackerberg et al. (2015);
Gandhi et al. (2020)). However, the empirical regressions of estimated productivity on hy-
pothetical productivity drivers are usually in conflict with these underlying assumptions.
This can destroy the identification of production functions, and more importantly, the
desired effects of internal and external drivers on productivity. While this internal incon-
sistency has drawn attention from empirical researchers, there is a lack of formal analysis
on this critical issue.2

In this paper, we provide an econometric framework for detecting treatment effects on
productivity. We build a dynamic firm model which includes treatment influencing firms’
productivity and/or production functions. The interested productivity driver is consid-
ered as a treatment that is either chosen by the firm (e.g., R&D investment, exporting,
importing, etc.) or externally given (e.g., trade liberalization, environmental regulation,
tax cuts, etc.), and can affect the productivity evolution and the production function. To
lay the foundation for making causal inferences, we embed potential outcomes of pro-
ductivity in the structural firm model. We call the productivity that are not realized after
receiving the treatment as the productivity’s potential outcomes.3 As a result, firms make
decisions based on the productivity’s potential outcome. This modeling framework gen-
eralizes most of the fundamental firm behavior models considered in production func-
tion estimation as special cases. More importantly, it invites applying the powerful tool
of causal inferences to detect the treatment effects on productivity. To the best of our
knowledge, this is the first paper in considering potential outcomes of productivity in the

1This strand of literature covers a wide range of fields including trade and development (e.g., Pavcnik
(2003), De Loecker (2007), Amiti and Konings (2007), De Loecker (2013), Yu (2015), Brandt et al. (2017)),
industrial organization (e.g., Doraszelski and Jaumandreu (2013), Braguinsky et al. (2015)), political eco-
nomics (e.g., He et al. (2020), Chen et al. (2021), Chen et al. (2021)), public economics (Liu and Mao, 2019),
etc.

2See Section 6.1 in the IO handbook chapter by De Loecker and Syverson (2021) for a short but insightful
discussion on this problem.

3We follow the statistical definition of potential outcomes. As pointed out by Donald B. Rubin in his R.
A. Fisher Memorial Lecture (Rubin, 2005), Neyman (1923) is the first writer to use the potential outcome
notation.
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structural estimation of productivity.
We focus on a binary treatment variable, which is the most widely used in the causal

inference literature. We consider a general non-parametric Markovian process for the po-
tential productivity outcomes. The treatment variable is assumed to be mean-independent
of the productivity shocks. We distinguish between two types of treatment effects on pro-
ductivity. The first is a trend effect that changes the evolution of productivity permanently,
the second is a switching effect that is active during the period of treatment status switch-
ing. While the trend effect is of the primary interest, the switching effect captures the
initial change in the productivity during the period of treatment activation. Generally,
the switching effect is non-zero and needs to be separated from the trend effect.4 Using
the proposed generic framework, we study the non-parametric identification and estima-
tion of the interested treatment effects on productivity.

The first step to gauge the treatment effect on productivity is to recover it correctly.
Our first identification result is on the production function’s parameters. We show that
if the treatment received time t is mean independent to the contemporary productivity
shocks, the production functions in different treatment regimes can be non-parametrically
identified up to a constant difference that depends on the treatment status. To acheive
identification, one needs at least two groups of units. One group is treated for two peri-
ods, the other is untreated for two periods. This means that we do not require a group
of never-treated units to identify the production functions. For example, a four-period
panel of firms in which all firms are untreated in the first two periods and treated in the
last two periods is sufficient. We also show that if we impose more restrictions on the
productivity’s evolution rule or on the heterogeneity in treatment effects, the productiv-
ity can be recovered even for cases when the treatment status are switching constantly
over periods.

In light of our identification strategy, we illustrate how the existing approaches may
fail to identify production function parameters in the presence of productivity drivers. We
examine two popular methods: the first is the ex-post regression approach which estimate
productivity by assuming an exogenous productivity process and then regressing the es-
timated productivity on an interested treatment variable (e.g., Pavcnik (2003), Amiti and
Konings (2007), Yu (2015)); the second is a structural method which adds the interested
treatment variable into the productivity evolution and relevant control functions for pro-
ductivity (e.g., De Loecker (2013), Doraszelski and Jaumandreu (2013), Chen et al. (2021)).

4A simple reason is that the treatment effects accumulates over time and the initial timing of receiving
treatment is somewhere in the middle of the treatment-switching period. Therefore, the treatment effects
in the period of treatment switching differ from other periods.
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We show that both methods suffer from a potential problem of model mis-specification
about the productivity evolution, which causes biases in evaluating treatment effects pro-
ductivity. The difference is that the ex-post method wrongly specify the productivity
process both during the regime-switching period and ex-post periods, but the structural
method is only subject to mis-specification in the regime-switching period. Crucially, the
correctness of the structural method hinges on assuming away the switching effect during
the treatment-switching period.

The identification of causal effects on productivity depends not only on the identi-
fication of production functions, but also the productivity process. Since the process is
Markovian, even for a temporary action, its treatment effects on productivity will be car-
ried on to following periods and become long-lasting. Under general treatment assign-
ment rule, the challenge of identifying the full dynamic treatment effects is well acknowl-
edged.5 We show, however, under a conditional parallel trend assumption, the dynamic
treatment effects on the treated units (ATTs) of absorbing treatment is point identified.
The identification requires the existence of a group of control units that are not treated
for at least two consecutive periods, which allows us to recover the productivity’s evolu-
tion rule absent any treatment. Given the productivity of treated units prior to receiving
the treatment, the non-treated productivity process can be used to infer the expected po-
tential outcome. Similar to the identification of production functions, we do not need a
group of never-treated units to identify the dynamic treatment effects. This implies that
we still can identify ATTs if the treatment is assigned exclusively based on some firm
characteristics such that no good comparison can be found in the never-treated group.
This identification strategy motivates us to propose a simulation-based strategy to esti-
mate ATTs. To compute the ATTs, one only needs to simulate the potential productivity
outcomes for each treated units and take the difference between the observed productiv-
ity and the simulated potential outcomes. This flexible estimator allows rich treatment
effect heterogeneity.

We provide a Monte Carlo study by considering an extended productivity process that
incorporates treatment variables. We illustrate that accounting for the regime-switching
is essential for correctly evaluating the treatment effects. Our identification strategy per-
forms well in detecting the full dynamic treatment effects.

This paper contributes to the literature in following ways. First, this study is closely
related to a large body of literature on evaluating certain macro policies or firm-level

5Vikström et al. (2018) point out that, because the treated units and control units drop out at different
rates, the randomization only guarantees the comparability of treatment and controls at the time of ran-
domization. This leads to the non-identification of long-run treatment effects.
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actions on producer-level productivity (e.g., Pavcnik (2003); Amiti and Konings (2007);
De Loecker (2007); Doraszelski and Jaumandreu (2013); Braguinsky et al. (2015); Brandt
et al. (2017); Chen et al. (2021)). Although the underlying structural assumptions for es-
timating productivity is recognized, there is no econometric framework for analyzing
the identification properties and estimation strategies for evaluating treatment effects on
productivity. By embedding potential outcomes for productivity into the structural firm
model, we provide an econometric framework and propose identification strategies for
detecting the treatment effects on productivity. Second, our study is also related to a
broad study on identifying the dynamic treatment effects (see Heckman and Navarro
(2007); Abbring and Heckman (2007); Vikström et al. (2018); Sun and Abraham (2021)).
In these studies, the realized outcome is assumed to be directly observed. However, in
the scenario of productivity estimation, the outcome variable, which is the productivity, is
estimated based on structural assumptions. Our study contributes an application of infer-
ring dynamic treatment effects using structurally estimated productivity. More broadly,
the analysis in this study can be generalized to a series of policy evaluation studies which
uses structurally estimated outcomes. The current study suggests that to correctly eval-
uate the treatment effects, the possible objective policy impacts should be considered in
the structural estimation of the outcomes.

The rest of this paper is organized as follows. Section 2 describes the econometric
framework for analyzing the treatment effects on productivity. We discuss the identifica-
tion of production function in Section 3, and treatment effects on productivity in Section
4. Section 6 is the Monte Carlo simulation. Section 7 concludes the paper.

2 The Econometric Framework

2.1 A Firm Model with Treatment and Potential Productivity

A firm produces with a Hicks-neutral production technology. Both production technol-
ogy and the productivity’s evolution are affected by some policy Dit. The treatment indi-
cator Dit ∈ {0, 1}, with Dit = 1 indicating the firm receives the treatment. The treatment
can be imposed externally (e.g., trade liberalization, environmental regulations, etc.) or
chosen by the firm (e.g, R&D investment, importing and exporting, etc.). In period t, firm
i has the following production function

Qit = eωitF (Kit, Lit,Mit, Dit;β), (1)
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where Qit is the output, ωit is the realized productivity known by the firm, Kit is the
capital, Lit is the labor, Mit is the material, Dit is the treatment, and β is the parameter
vector. The dimension of β is infinite when the production function is non-parametric. β
can also include a set of time dummies to account for a secular trend in the production
function (e.g., Doraszelski and Jaumandreu (2013)). Note that we allow the treatment
Dit as an input factor,6 which captures possible impacts on managerial efficiencies (Chen
et al., 2021).

The firm knows its productivity when making decisions, but the econometrician does
not. There are two potential productivity outcomes ω0

it and ω1
it. The binary treatment Dit

determines the realized productivity through the following equation

ωit = ω1
itDit + ω0

it(1−Dit). (2)

To facilitate our exposition, we define an indicator for treatment changes.

Definition 1. (Treatment switching indicator) We define a regime change indicatorGit ∈ {−1, 0, 1}:
(1) Positive regime change: Git = 1 if Dit − Dit−1 = 1; (2) Unchanged regime: Git = 0 if
Dit −Dit−1 = 0; (3) Negative regime change: Git = −1 if Dit −Dit−1 = −1.

Conventionally, the realized productivity is assumed to follow a first-order Markov
process (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015). We
follow this tradition to further assume a generalized Markov process for (ω1

it, ω
0
it):(

ω0
it

ω1
it

)
= 1(Git = 0)h̄

(
ω0
it−1

ω1
it−1

)
+ 1(Git = 1)h+

i

(
ω0
it−1

ω1
it−1

)
+ 1(Git = −1)h−

i

(
ω0
it−1

ω1
it−1

)
+

(
ε0it
ε1it

)
, (3)

where h+
i (resp. h−i ) is the transition function when the regime switch is positive (resp.

negative) for firm i. We allow the evolution at the transition process to possibly depend on
i but impose the same evolution process when the treatment variable is constant. Further-
more, the Markovian productivity process (3) is diagonal whenever there is no treatment
status change:

Assumption 2.1. (Diagonal Markov Process) The function h̄ satisfies

h̄

(
ω0
it−1

ω1
it−1

)
=

(
h̄0(ω0

it−1)

h̄1(ω1
it−1)

)
,

6Another equivalent formulation of the production function is Qit = eωitF (Kit, Lit,Mit;β(Dit)), which
treats the treatment more like a factor influencing the organization of production. One can also think about
some treatment only affects the optimal choices instead of affecting the production technology directly, e.g.
Shenoy (2021). This case is also incorporated in our formulation since we can include the input constraints
in the production function as the constraints in the Lagrangian function.
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where E[εdit|ω0
it−1, ω

1
it−1] = 0 for d = 0, 1.

Assumption 2.1 says that, the evolution of potential outcome ω0
it does not depend on

the ω1
it if there is no switching in the policy status. The assumed productivity evolution

rule generalizes the productivity process considered in the productivity estimation liter-
ature. To see this, consider that Git = 0 for all i and t, then the productivity evolution
can be captured by ωdit = h̄d(ω

d
it−1) + εdit, for d ∈ {0, 1}. Therefore, we can think of the

conventional productivity process as the case of no treatment, i.e. Dit = 0. The gener-
alized productivity evolution process (3) itself also has interpretable economic meaning
closely related to a wide range of empirical studies. We now give several examples for
the productivity process (3). In real empirical setting, the potential productivity process
can be thought as a mixture of the these examples.

Example 1. (Parallel Shifted Productivity) In many empirical contexts, a policy simply shifts
the productivity upwards. This context can be realized by imposing: (1) Initial period shift, i.e.
ω1
i1 = ω0

i1 + C almost surely for some constant C; (2) ε1it = ε0it almost surely for all t; (3) The
evolution functions satisfy h̄ = h+

i = h−i for all i, and h̄1(ω) = h̄0(ω + C). These conditions
lead to ω1

it = ω0
it + C almost surely for all t.

Example 2. (Divergence of Productivity when Policy Diverges.) Consider a case where the bi-
nary treatment represents whether a firm invests in R&D. If a firm chooses to switch from not
investing in R&D at t to investing in R&D at t + 1, then only ω0

it matters for the determination
of ω1

it+1. In this case, only the observed potential outcome before the regime switching matters for
the productivity process. Similarly, if a firm decides to shut down the R&D center at period t+ 1,
then only ω1

it matters for determining the value of ω0
it.

This model can be captured by imposing: (1) h+
i (ω0

it;ω
1
it) = (h+

i0(ω0
it), h

+
i1(ω0

it))
′, where h+

i0

and h+
i1 are scalar functions; and (2) h−i (ω0

it;ω
1
it) = (h−i0(ω1

it), h
−
i1(ω1

it))
′, where h−i0 and h−i1 are

scalar functions. The heterogeneity in transition functions h+
i and h−i across i can be induced by

heterogeneity in the timing of decision. For example, some firms may choose to start R&D in the
beginning of the year, while others may make the decision in the middle of the year.

Example 3. (Independent Productivity Evolution Process) In some cases, a firm needs to choose
between two types of technologies. Each technology evolves without being influenced by the other
technology. In each period, firm can choose which technology to use. In this case, the regime
switching is also diagonal and h̄ = h+

i = h−i , and there is no heterogeneity in the evolution
process during the transition period.

We follow Ackerberg et al. (2015) and Gandhi et al. (2020) to distinguish the static
inputs and the pre-determined inputs.
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Assumption 2.2. (Timing of Inputs) Capital Kit is determined at or before t − 1, labor can be
determined at or before t − 1 or a static input chosen some time in period t. Intermediate input
Mit is determined no sooner than other inputs after the realization of ωit.

The treatment variable can be either determined by the external environment or cho-
sen by the firm. We distinguish between these two cases and make the following assump-
tion on its timing.

Assumption 2.3. (Timing of Treatment) (1) When the treatment is externally imposed, Dit is
determined at or before t − 1; (2) When the treatment is a firm choice, Dit is chosen after the
realization of (ω0

it−1, ω
1
it−1) but before (ω0

it, ω
1
it).

Let Sit ≡ (Kit, Lit, Dit, ω
1
it, ω

0
it, ζit) be a vector of state variable, where ζit is some un-

observed heterogeneity variable and can be degenerate if no unobserved heterogeneity
exists. Define Π(Sit) as the per-period indirect profit function, the Bellman equation for
the firm’s dynamic programming problem is

V (Sit) = max
Iit, Lit+1, (Dit+1)

{
Π(Sit)− CI(Iit)− CL(Lit+1)− CD(Dit, ζit) (4)

+
1

1 + ρ
E[V (Sit+1)|Sit, Iit, Lit+1, Dit]

}
where the Iit is the physical capital investment, CI(·) , CL(·) , CD(·) are cost functions of
investment, labor and adopting the treatment, respectively. The discounting rate is 1/(1+

ρ). In problem (4), the notation (Dit+1) means that the treatment is not necessarily chosen
by the firm. IfDit+1 is endogenously chosen by the firm, CD(·) entails the costs of selecting
into the treatment.7 If policy variable is externally assigned,Dit disappears from the firm’s
choice set. In this case, we impose that CD(·) = 0.8 We summarize the timing assumption
by formally stating firm i’s information set IFit :

Definition 2. Firm i’s time-t information set is given by

IFit = {kit, lit, (ω0
is, ω

1
is, Dis−1, kis−1, lis−1,mis−1, ζis)s≤t}.

The firm model is a natural generalization of dynamic discrete choice models follow-
ing the seminal work by Rust (1987). Instead of focusing one dynamic discrete choice

7For example, when Dit+1 represents exporting choice, CD(·) is the search and communications costs
incurred when selling to foreign buyers. Also, when Dit is the R&D choice, CD(·) is the costs installing
research equipments and hiring research scientists.

8By assuming this, we exclude the complication of considering the problem of whether firms fully com-
ply with the policy. See Section 3 in Abbring and Heckman (2007) for a general discussion on this issue.
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(e.g., the replacement of GMC bus engines considered in Rust (1987)), our model in-
cludes choices of capital and labor, which are crucial firm decisions in identifying pro-
duction functions. This adds to the complication of solving the structural model and an-
alyze subjective treatment effects. However, the identification strategy does not depend
on the functional forms of cost functions CI(·) and CL(·). One can include cost shifters
into them to reflect the variations in capital and labor costs across firms and time. In the
case of externally assigned treatment, this model bears features similar to a large class
of firm models considered in productivity estimation (Olley and Pakes, 1996; Levinsohn
and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). However, in the case of
endogenously-chosen treatment, the structure of CD(·) does play an important role in in-
ferring the treatment effects on productivity. Our firm model allows for the existence of
unobserved heterogeneity ζit. This additional unobserved heterogeneity can bring addi-
tional difficulty of identifying the treatment effect on productivity. This is different from
the endogenous productivity literature (Aw et al. (2011); De Loecker (2013); Doraszelski
and Jaumandreu (2013); Peters et al. (2017)) who are interested in the productivity dif-
ferences between treatment takers and non-treatment takers. In their setting, the hidden
heterogeneity in costs of taking the treatment does not affect their estimation of the pro-
ductivity evolution equation. However, we emphasize that it requires additional efforts
to acheive causal interpretation for interested treatment effects.

2.2 Treatment-Effect Objects

The firm anticipates the effect of the treatment on productivity in period t+ 1 when mak-
ing decisions. Moreover, a firm also make expectation on the evolution of the treatment
when the policy is not controlled by the firm. A firm starts to receive the treatment when
Git=1. A switch of the regime, i.e. Git = 1, influences the production process through
three aspects. First, the level of productivity switches from ω0

it to ω1
it. This change is in-

stantaneous and may not be carried over time. Second, the productivity evolution process
is changed from h̄0 to h̄1. This switch has a long-term effect that accumulates over time.
Third, the production function can be different, i.e. the relative efficiency of inputs can be
influenced by the policy.

In addition to the traditional individual treatment effect at time t: ω1
it − ω0

it, we also
consider other two types of treatment effects originating from the dynamic productivity
process. We formally define these treatment effects as follows:

Definition 3. The individual policy effect for firm i at time t is ω1
it−ω0

it. The trend effect is given
by the function h̄1(·)− h̄0(·). The positive (resp. negative) switching effect is given by the function
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h+
i (resp. h−i ).

The trend effect and switching effects come from the structure of the productivity
process. Unlike the traditional dynamic treatment effect literature where the objective
outcome variable is usually observed, the productivity is unobserved, and the structural
evolution process (3) is the key assumption that allows us to identify the production func-
tion parameters. Our goal is to discuss whether the treatment effects in Definition 3 are
separately identified from each other and under what assumptions the treatment effects
can be identified.

2.3 No-anticipation and Sequential Randomization Condition

We now briefly connect our method to the dynamic treatment effect literature (Abbring
and Heckman, 2007). There are two key conditions in the dynamic treatment effect liter-
ature: No-anticipation condition (NA) and the Sequential randomization condition (SR).
Since our framework combines both the potential outcome model and the structural equa-
tion model, we can use the structural model to verify whether NA and SR conditions hold
or not. To simplify notation, we let Dt

i = (Di1, ..., Dit), and ωdti = (ωdi1, ..., ω
d
it) for d = 0, 1.

We state the NA condition in our framework.

Assumption 2.4. (NA) Let DT
i and D̃T

i be two treatment sequence such that Dt
i = D̃t

i for any
t ≤ T . The no-anticipation condition hold if the potential (ω0

it, ω
1
it) generated under DT

i coincides
with the potential (ω̃0

it, ω̃
1
it) generated under D̃T

i .

The no-anticipation condition says that if two sequences of treatment coincides up
to time t, then the potential productivity up to time t should also coincide. Given the
Markov evolution process (3), Assumption 2.4 holds as long as there is no anticipation
in the productivity shocks: The shock sequence (ε0is, ε

1
is)s≤t under Dt

i coincides with the
shock sequence (ε̃0is, ε̃

1
is)s≤t under D̃t

i . We view Assumption 2.4 as a weak requirement
since the shocks to productivity process are usually assumed to be unexpected by firms
in the productivity estimation literature.

Another condition is the sequential randomization condition (Robins, 1997; Gill and
Robins, 2001; Lok, 2008), which says that future potential outcomes are conditional in-
dependent of the current treatment status. Sequential randomization is crucial to the
identification of treatment effects. We state the firm’s SR condition in our framework.

Assumption 2.5. (SR-F) Dit ⊥ (ω1
is, ω

0
is)s≥t|IFit .

We call Assumption 2.5 the sequential randomization condition for firms since we
condition on the firms’ information set. This is slightly different from the traditional
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sequential randomization condition in Gill and Robins (2001), where they conditional on
the econometrician’s information set.

Our structural model implies that Assumption 2.5 holds when Dit is chosen by the
firm according to (4). Indeed, from the firm’s dynamic optimization problem, we know
Dit is a function of IFit , denoted by Dit = g(IFit ). Then given the information set IFit , Dit

is a degenerative variable and thus Assumption 2.5 holds. When the treatment variable
is externally imposed, and the assigner randomizes the treatment up to the firm’s knowl-
edge, i.e. Dit = g̃(IFit , ηit) for some ηit independent of (ω1

is, ω
0
is)s≥t, then SR-F also holds.

We will come back to the traditional SR condition after we consider the econometrician’s
problem of recovering the firm-level productivity.

3 Recovering the Unobserved Productivity

Econometric analysis of the productivity relies on the Markov property of the evolution of
productivity (3). However, the econometrician does not know the unobserved potential
productivity.

Assumption 3.1. The econometrician has access to the instrument setZit = IFit /{(ω1
is, ω

0
is, ζis)s≤t}.

The econometrician cannot observe the potential productivity and the hidden cost
heterogeneity ζis. We will maintain Assumption 3.1 throughout the rest of this paper.

3.1 Recovering the Productivity in the Absence of Treatment

We first review the case where Dit = 0 for all i and t, i.e. there is no treatment at all. As
a result, the productivity ωit = ω0

it plays the role of influencing final output quantities.
There are two strands of literature that use different moments to identify the produc-
tion function parameters. For the gross output production function, we follow the GNR
(Gandhi et al., 2020) method and use an additional material-to-revenue first order con-
dition . For the value-added production function, we follow the ACF (Ackerberg et al.,
2015) method and material proxy approach . In both cases, a conditional mean zero as-
sumption on the productivity shocks are imposed. We adopt the convention that lower
and upper case letters represent logs and levels, respectively.
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GNR First Order Condition Approach. The GNR first order condition approach uses
the following material-to-revenue share equation

E
[
sit −

∂f0(kit, lit,mit;β)

∂mit

|kit, lit,mit

]
= 0 ∀t = 1, ..., T, (5)

where sit is the logged material share and f0(kit, lit,mit;β) ≡ f(kit, lit,mit, Dit = 0;β). The
estimation of other production function parameters relies on the productivity evolution
process:

E[ωit(β)− h(ωit−1(β))|{kit, lit, kit−1, lit−1,mit−1}] = 0 ∀t = 1, ..., T, (6)

the productivity is recovered from ωit(β) = qit − f0(kit, lit,mit;β).

ACF Value-added Approach. Consider the value-added production function f0(kit, lit;β).
The material is mit is a strictly monotone function of ωit and hence the non-parametric in-
version ωit = g(kit, lit,mit) exists. They first identify the non-parametric object

Φit−1(kit−1, lit−1,mit−1) ≡ E[qit−1|kit−1, lit−1,mit−1], (7)

and use the moment condition

E [ωit(β)− h [Φit−1(kit−1, lit−1,mit−1)− f0(kit−1, lit−1; β)] | {kit, lit, kit−1, lit−1,mit−1}] = 0.

(8)
In the absence of a policy, both methods result in non-parametric identification of the
production function.

Lemma 3.1. If there is no treatment in the model, then: (1) The moment conditions (5) and (6)
identify the gross production function β non-parametrically up to a constant difference; (2) The
moment conditions (7) and (8) identify the value-added production function β non-parametrically
up to a constant difference. Moreover, then h is identified non-parametrically in both the GNR
and ACF cases.

Proof. The proof of statement (a) is given in GNR. We use the techniques in GNR to prove
statement (b). Let ωit−1(β) ≡ Φit−1(kit−1, lit−1,mit−1) − f(kit−1, lit−1;β). We first note that
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E[qit| {kit, lit, kit−1, lit−1,mit−1}] = f(kit, lit;β)− h(ωit−1(β)). Then we have:

∂E[qit| {kit, lit, kit−1, lit−1,mit−1}]
∂kit

=
∂f(kit, lit)

∂kit
∂E[qit| {kit, lit, kit−1, lit−1,mit−1}]

∂lit
=
∂f(kit, lit)

∂lit

Therefore, f is identified up to a additive constant by the existence of solution to partial
differential equations.

It is important to note that Lemma 3.1 says that the production function is identified
only up to a constant difference. Mathematically, if (F, h) is in the identified set, then
(ecF, h̃) where h̃(ω) = h(ω − c) is also in the identified set for all c ∈ R.

3.2 Recovering the Productivity with Variations in Treatment Status

We now extend the identification result to the case with policy intervention. While the
treatment can be chosen by the firm, we assume a conditional exogenous treatment, i.e.
the treatment is exogenous to productivity shocks (ε1it, ε

0
it).

Assumption 3.2. (Conditional Mean-Zero Shocks) The productivity shock (ε0it, ε
1
it) satisfies

E[(ε0it, ε
1
it)|Zit] = 0.

Assumption 3.2 allows the treatment decision to be dependent of the past potential
outcomes ω0

it−1 and ω1
it−1. Consider a case where Dit is selected by the firm. A firm may

observe its productivity (ω0
it−1, ω

1
it−1) when making the decision on whether to adopt the

treatment or not, and the productivity shocks (ε0it, ε
1
it) realize after the firm’s choice of Dit.

When the treatment is externally determined, this assumption implies that the assign-
ment rule of treatment is independent of productivity shocks.

Proposition 3.1. Suppose Assumptions 2.1-3.2 hold. Then the moment condition (5) (and re-
spectively (7)) and

E[ωit(β)− h̄0(ωit−1(β))|Zit, Dit = Dit−1 = 0] = 0 (9)

E[ωit(β)− h̄1(ωit−1(β))|Zit, Dit = Dit−1 = 1] = 0 (10)

identify the production function parameter β and the evolution process h̄d non-parametrically up
to a constant difference that depends on d.
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Proof. We first look at equation (9), and the expression (10) follows similarly. We can write

E[ωit(β)− h̄0(ωit−1(β))|Zit, Dit = Dit−1 = 0]

= E[ω0
it(β)− hd(ω0

it−1(β))|Zit, Dit = Dit−1 = 0]

= E[ε0it|Zit, Dit = Dit−1 = 0] = 0

(11)

where ω0
it(β) denotes the potential productivity without treatment, recovered under pa-

rameter value β and Dit = 0. The first equality of (11) holds by the potential outcome
equation and the last equality holds by Assumption 3.2. By Lemma 3.1, the result fol-
lows.

The scalar non-identification result can ruin the estimation of treatment effects. If
(F (·, 0;β), h̄0) and (F (·, 1;β), h̄1) satisfy the moment conditions in Proposition 3.1, then
(ec0F (·, 0;β), , h̃0) and (ec1F (·, 1;β), h̃1) also satisfy the moment conditions in Proposition
3.1 for h̃d(ω) = h̄d(ω − cd). This means that we cannot distinguish ω1

it recovered under
(F (·, 1;β), h̄1) from ω̃1

it recovered under (ec1F (·, 1;β), h̃1). In particular, we have ω̃1
it =

ω1
it − cd. Therefore, we recommend normalizing the production function constant c1 =

c0 = 0.

3.3 Alternative Procedures for Restricted Productivity Processes

Our moment conditions in Proposition 3.1 requires only Assumption 3.2 and impose no
additional assumptions on the productivity evolution process 3. While implementing
moment conditions in Proposition 3.1 requires minimal structural assumptions, we typ-
ically require a relatively large sample of two-year consecutive observations satisfying
Dit = Dit−1. Such data requirement can be satisfied when the panel satisfies a difference-
in-difference type design. However, if the policy variable is volatile over time, we cannot
implement Proposition 3.1 in practice.

We now consider several alternative assumptions on the evolution process that allow
us to derive more flexible moment conditions that identify the production functions.

3.3.1 Independent Evolution Process

Let’s consider the case where the two productivity processes evolves independently as
in Example 3. In this case, we may substitute the Markov process back several periods
to identify the production function. In this case, we can simplify the notation and use h1

and h0 to denote the transition functions for treated and non-treated units, respectively.
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Assumption 3.3. For d = 0, 1, the Markov process ωdit satisfies

ωdit = h
(s)
d (ωit−s) + r(εdit, ..., εit−s+1(d))

where h(s)
d is an s-period transition function and r(·) is linear in all arguments.

Assumption 3.3 is satisfied for the well-known AR(1) process. The linearity of r(·)
ensures that we can generalize moment conditions (9) and (10) to an s-period lagged
evolution process.

Proposition 3.2. Suppose Assumption 3.3 hold and the productivity process satisfies Example 3,
then the following two moment conditions hold:

E[ωit(β)− h(s)
0 (ωit−s(β))|Zit−s+1, Dit = Dit−s = 0] = 0, (12)

E[ωit(β)− h(s)
1 (ωit−s(β))|Zit−s+1, Dit = Dit−s = 1] = 0. (13)

Its unfortunate that we cannot show the non-parametric point identification of the
production function β. The reason is the following: the error terms εit−s is correlated
with kit and lit for all s ≥ 1. Without solving firms’ dynamic optimization problem, we
cannot directly show kit−s+1 and lit−s+1 can serve as good instruments for kit and lit. When
the production function is Cobb-Douglas, the log-linear form of the production function
along with the valid instrument kit−s+1 and lit−s+1 allow us to identify the production
function parameters and the evolution process.

3.3.2 Divergent Productivity Processes

Now we consider the productivity process in Example 2. For the sake of brevity, we only
consider homogeneous transition process, i.e. h+

i = h+, h−i = h−. To simplify nota-
tion, we remove the unit subscripts and write the transition functions as h+(ω0

it, ω
1
it) =

(h+
0 (ω0

it), h
+
1 (ω1

it)) and h−(ω0
it, ω

1
it) = (h−0 (ω0

it), h
−
1 (ω1

it)). Since only the observed productiv-
ity matters for the evolution process, we can further derive the moment conditions at the
transition periods.

Proposition 3.3. Suppose Assumptions 2.1-3.2 hold and the productivity evolution process sat-
isfies Example 2 with homogeneous transition process. Then the moment condition (5) (and re-
spectively (7)), (9), (10) and

E[ωit(β)− h+
1 (ωit−1(β))|Zit, Dit = 1, Dit−1 = 0] = 0 (14)
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E[ωit(β)− h−0 (ωit−1(β))|Zit, Dit = 0, Dit−1 = 1] = 0 (15)

identify the production function parameterβ, and the evolution process h̄d, h+, h− non-parametrically
up to a constant difference.

Compared to the moment conditions in Doraszelski and Jaumandreu (2013), Propo-
sition 3.3 requires the transition period to be treated separately. Moment condition (14)
and (15) are imposed to identify the positive transition process h+

1 and h−0 , separately.
Moreover, they are extra moments that identifies the production functions. When the
treatment variable is volatile, these two moment conditions allow us to make better use
of the limited data.

3.4 A Revisit to Existing Methods

In this section, we use a simple example to illustrate the limitations of two commonly
used methods in recovering the productivity in the presence of treatment: the ex-post
regression method (Pavcnik, 2003; Amiti and Konings, 2007; Yu, 2015; Chen et al., 2021;
He et al., 2020) and the endogenous productivity evolution method (De Loecker, 2007;
Doraszelski and Jaumandreu, 2013; Chen et al., 2021). Without loss of generality, we
assume that the production function is policy-invariant.

We consider a simple “difference-in-difference” policy context: An exogenous policy
shock happens at t = T0 + ∆ for ∆ ∈ (0, 1). A random subset of firms is influenced by
the policy while others are not, and firms are separated into treated and control groups.
For the firms in the controlled group, Dit = 0 for all t. In this context, the policy variable
Dit is fully exogenous to the productivity process. For the firms in the treated group,
Dit = 1(t ≤ T0).

We use this economic context to show that the ex-post regression method is invalid,
and the endogenous productivity method can only accommodate very restricted empiri-
cal scenarios. We also define an alternative instrument set Z ′it = {kit, lit, kit−1, lit−1,mit−1}.

The ex-post Regression

The ex-post regression method consists of two steps: First, it estimates the firm model
ignoring the existence of policy effect. To do so, we estimate the production function
parameter β and the evolution process h using (5) and (6). Second, given the estimated
parameter β̂ and ĥ, recover the pseudo firm-level productivity ω̂it = qit− f(kit, lit,mit; β̂).
They analyze the individual treatment effect based on ω̂it.
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There are two problems in this procedure. First, the trend difference h̄1 6= h̄0 is ignored
in this model. Second, if there is any trend effect in the potential outcome process, the
moment equality (6) fails.

We first note that for all t ≤ T0, the moment equation (6) becomes

E[ω0
it(β)− h̄0(ω0

it−1(β))|Zit] = 0 ∀t ≤ T0.

By Proposition 3.1, this moment condition identifies β and h̄0. We now derive the incon-
sistency of (6). For t ≥ T0 + 2, the moment condition the moment equation (6) becomes

(6) = E[ωit(β)− h̄0(ωit−1(β))|Zit]

=(1) E[ω0
it(β)− h̄0(ω0

it−1(β))|Zit, Dit = 0]Pr(Dit = 0)

+ E[ω1
it(β)− h̄0(ω1

it−1(β))|Zit, Dit = 1]Pr(Dit = 1)

=(2) E[ω0
it(β)− h̄0(ω0

it−1(β))|Zit]︸ ︷︷ ︸
Part A

Pr(Dit = 0) + E[ω1
it(β)− h̄0(ω1

it−1(β))|Zit]︸ ︷︷ ︸
Part B

Pr(Dit = 1)

(16)

where β and h̄0 are the quantities identified from moment conditions t ≤ T0, and we use
the exogenous policy assumption to derive the equality (2). Part A in equation (16) is zero
because it is consistent with the moment condition t ≤ T0. However, if h̄1 6= h̄0, then Part
B is not zero and the moment condition (6) fails for all t ≥ T0 + 2.

Under the mis-specified model, the estimator β̂ is not a consistent estimator of the true
β. As a consequence, ω̂it is not a consistent estimator of ωit, and the subsequent policy
evaluation is incorrect.

The Endogenous Productivity Method

The endogenous productivity method in De Loecker (2007) and Doraszelski and Jauman-
dreu (2013) includes the interested treatment variable in the productivity process as:

ωit = h̃(ωit−1, Dit) + εit.

This method solves the misspecification of the productivity process for treated and con-
trolled group. Indeed, by defining h̄d(·) = h̃(·, d) for d = 0, 1, we can show that moment
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condition (6) can be transforms to

E[ω0
it(β)− h̄0(ω0

it−1(β))|Zit] = 0 ∀t ≤ T0,

E[ω0
it(β)− h̄0(ω0

it−1(β))|Zit, Dit = Dit−1 = 0]Pr(Dit = Dit−1 = 0)

+E[ω1
it(β)− h̄1(ω1

it−1(β))|Zit, Dit = Dit−1 = 1]Pr(Dit = Dit−1 = 1) ∀t ≥ T0 + 2,

(17)

and the moment condition at the regime-switching period T0 + 1:

E[ω0
iT0+1(β)− h̄0(ω0

iT0
(β))|Z ′iT0+1, DiT0+1 = DiT0 = 0]︸ ︷︷ ︸

Part A

Pr(DiT0+1 = DiT0 = 0)

+ E[ω1
iT0+1(β)− h̄1(ω0

iT0
(β))|Z ′iT0+1, DiT0+1 = 1, DiT0 = 0]︸ ︷︷ ︸

Part B

Pr(DiT0+1 = 1, DiT0 = 0).
(18)

Moment condition (17) is correctly specified. In particular, by Proposition 3.1, β, h̄0 are
identified from the t ≤ T0 moment equality of (17), and h̄1 is identified from the t ≥ T0 + 2

moment equality of (17).
However, the moment condition at the regime switching period (18) is misspecified.

Let h̄0 be identified from (17). Part A in (18) equals zero. However, Part B may not equal
zero. Given the evolution process (3), the transition process at the positive regime switch-
ing period should be h+

i (ω1
it−1, ω

0
it−1), where in Part B of (18), the transition process is

h̄1(ω0
it−1). This will lead to a possible misspecification issue. We now show that for the

examples in Section 2, the structural evolution method only works with strong assump-
tions.

Let’s first consider Example 1. At time T0 + 1, the treated firm’s observed last period
productivity is the untreated potential outcome ω0

iT0
. In particular, consider the following

productivity process: (1) ω1
it = ω1

it−1; (2) ω0
it = ω0

it−1; (3) ω1
it = ω0

it + C. In this case,
productivity is constant over time, and both h̄1 and h̄0 are the identity map. The transition
functions also satisfy h+

i = h−i = h̄. Therefore, Part B of (18) becomes E[ω1
iT0+1(β) −

ω0
iT0

(β)|ZiT0+1, DiT0+1 = DiT0 = 1]. The moment value of Part B is C at the true production
parameter rather than 0, so the model is misspecified.

In Example 2, the evolution at the transition period only depends on the observed
outcome in the last period. If we impose h+

i = h+ = h̄, then Part B of (18) equals zero
and the model is not misspecified. However, this is a strong assumption and may not be
satisfied in some empirical contexts. Let’s consider the regime switch happens at T0 + ∆

for some ∆ < 1. In this case, ω0
iT0

first evolves to ω0
iT0+∆ under the controlled process h̄0,

and then the policy realizes and the productivity evolves from ω0
iT0+∆ to ω1

iT0+1. In other
words, the productivity only enjoys the benefit of the policy effects during the period [T0+
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∆, T0 + 1]. If the policy variable DiT0+1 affects the productivity process at the beginning of
the period, then it is likely that h̄ 6= h+

i .

4 Evaluating the Treatment Effect on Productivity

Recall that the treatment effect of interest are given in Definition 3. Since we only observe
a firm either in the treated or non-treated state, the individual treatment effect ω1

it − ω0
it is

not identified, and we instead focus on the average treatment effect (ATE) and the average
treatment effect on the treated (ATT).

Corollary 1. Under Assumption 2.1-3.2, if there exists a t such that Pr(Dit = Dit−1 = d) 6= 0,
we can recover the unobserved potential productivity ωdis for firms such that Dis = d.

Proof. Recall that from Proposition 3.1, β and the evolution process h̄d is identified. As
a result, if firm i’s treatment status is Dis = d, we can recover productivity ωis = (qis −
f(kis, lis,mis, Dis;β), which is ωdis since Dis = d.

Since the individual effective productivity is identified, the econometrician can view
ωit as ‘observed’. We define the econometrician’s information set as below.

Definition 4. The econometrician’s information set is IEit = Zit ∪ {ωis}s≤t−1 ⊂ IFit .

For the identification of ATE, we introduce a version of the sequential randomization
condition based on the econometrician’s information set. For ATT, we find it instruc-
tive to discuss the identification for absorbing treatment and non-absorbing treatment,
separately. We first show that the conditional distribution of potential productivity is
identified given our assumptions in previous sections.

4.1 ATE: The Sequential Randomization Condition

Given the econometrician’s information set IEit , we seek for conditions ensuring the iden-
tification of the average treatment effect for a particular group of firms. We use g to denote
the set of firm indicators for interested firms.

Assumption 4.1. (SR-E) Dit ⊥ (ω1
is, ω

0
is)s≥t|IEit , i ∈ g.

The econometrician’s sequential randomization assumption 4.1 is imposed on the po-
tential productivity and may or may not be satisfied in different empirical settings.

If Dit is externally imposed and absorbing, and the assigner randomize the treatment
up to the econometrician’s knowledge, i.e. Dit = ψ̆(IEit , ηit) for some ηit independent of
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(ω0
is, ω

1
is)s≥t, then SR-E holds, and we are able to estimate ATE using matching techniques.

This condition is not restrictive in many external policy settings, since the treatment as-
signer can only observe limited information as the econometrician does. For example,
a tax reduction policy can be assigned to firms with more capital stocks, up to a pure
randomization ηit. However, if the treatment assigner has more information than the
econometrician, for example the treatment assigner has some knowledge on the potential
productivity, sequential randomization still fails.

IfDit is chosen by the firm, the dynamic optimization problem impliesDit = ψ̆(IFit ) for
some unknown function ψ̆. The randomness of Dit after conditional on IEit comes from
the unobserved cost heterogeneity ζit, and the potential productivity ω0

it−1, ω
1
it−1. In our

general framework, SR-E fails and the ATE are in not identified.
However, we can show that the SR-E condition is satisfied when we consider the pro-

ductivity evolution process satisfies Example 2, and the firm needs to decide whether to
participate in an absorbing treatment9. Let ei be the firm i’s initial treatment time, i.e.
Dit = 1 for all t ≥ ei. We focus on the group g that is not yet treated at time g − 1, i.e.
ei ≥ g. For example, a firm needs to decide whether to build a R&D research center at
time g. For this group g, the productivity process in Example 2 implies that ω1

is = ω0
is

for all s < g. This is similar to the empirical setting in Doraszelski and Jaumandreu
(2013). For a firm at time g, based on the dynamic optimization problem (4), we can
write Dig = ψ(Kig, Lig, Dig−1, ωig−1, ζig) for some unknown function ψ, where we use
the condition ω1

ig−1 = ω0
ig−1 = ωig−1. On the other hand, the evolution process implies

ω1
ig = h+(ωig−1) + ε1ig and ω0

ig = h̄0(ωig−1) + ε0ig. As long as (ε0ig, ε
1
ig) is independent of ζig,

then the sequential randomization (ω1
ig, ω

0
ig) ⊥ Dig|IEig , ei ≥ g holds.

Proposition 4.1. Let κ(IEit ) = E[Dit|IEit , i ∈ g] be the propensity score that lies strictly between
0 and 1. Then the average treatment effect for group-g firms at time t, ATEg,t ≡ E[ω1

it−ω0
it|i ∈ g]

is identified as:

ATEg,t = E
[
ωitDit

κ(IEit )
− ωit(1−Dit)

1− κ(IEit )

∣∣∣i ∈ g]
Proposition 4.1 follows directly by the propensity score matching method. We now

discuss whether Assumption 4.1 holds or not in different empirical settings.
On the other hand,
Given the difficulty of justifying the sequential randomization condition SR-E, we turn

to the identification of ATT, which typically requires fewer assumptions on the structural
model. We start with a simple absorbing treatment environment and then generalize the
results to non-absorbing treatment.

9For illustration purpose, we only consider the absorbing treatment, i.e. Dit ≥ Dit−1 for all t.
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4.2 ATT: Absorbing Treatment

The absorbing treatment is at the core of literature on estimating dynamic treatment ef-
fects(Sun and Abraham, 2021; Athey and Imbens, 2022). As a benchmark for analyzing
ATT, we consider the absorbing policy for which the treatment indicator is non-decreasing
Dit−1 ≤ Dit. The absorbing treatment is more general than it appears. For any treatment
that is not absorbing, we can replace the treatment status Dit with an indicator for ever
having received the treatment to obtain a new treatment being absorbing.10

Let ei > 1 be the first period that firm i starts to receive treatment.11 Since the treatment
is absorbing, when firm i belongs to the treated group, we have Git = 1 for t = ei and
Dit = 1 for all t ≥ ei. We maintain Assumption 3.2 on the exogeneity of productivity
shocks. Let g be a set of indicators for any subset of firms in the treated group, and ` ≥ 0

be the time relative to the first treatment period. We are interested in the `-period-ahead
ATT at time t for group g is given by

ATTg,` = E[ω1
it − ω0

it|t = ei + `, i ∈ g]. (19)

Failure of the Simple Parallel Trend Assumption Even the treatment is not randomly
assigned, the Difference-in-Difference method allows us to identify the ATT if a parallel
trend assumption is satisfied. In the analysis here, we focus on the 0-period-head ATT.
The following parallel trend assumption is needed.

Assumption 4.2. (Simple Parallel Trend) The following condition holds:

E[ω0
it − ω0

it−1|ei = t] = E[ω0
it − ω0

it−1|ei > t]. (20)

If condition (20) holds, then the ATTg,0 is identified as E[ωit|ei = t] − E[ωit−1|ei =

t] − (E[ωit|ei > t] − E[ωit−1|ei > t]). However, Assumption 4.2 is a high-level condition
because it is imposed on the potential productivity before and after the treatment and can
be hard to justify. To see it, note that from the productivity process (3), we can derive that:

positive switchers: E[ω0
it − ω0

it−1|ei = t] = E[h+
i0(ω1

it−1, ω
0
it−1)− ω0

it−1|ei = t],

non switchers: E[ω0
it − ω0

it−1|ei > t] = E[h̄0(ω0
it−1)− ω0

it−1|ei > t],
(21)

where we use the condition (3.2) to derive (21). From (21) we see that the parallel trend

10For example, Deryugina (2017) defines the treatment to be “having had any hurricane” and investigates
its impact on the fiscal cost for a county.

11We exclude units who are always treated during the sample period due to a lack of an appropriate
comparison group.
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condition can fail due two reasons: (1) The transition processes at the regime switch pe-
riod can be different for the treated and controlled group; (2) Even when the two tran-
sition processes coincide, the treatment Dit can depend on the value of ω0

it−1 and hence
influence the initial treatment time ei. Consider Example 2 with a R&D decision, the firm
chooses to invest in R&D only when ω0

it−1 exceeds a certain level. In this case, Diei is a
function of ω0

it−1, and (20) does not hold.

The Conditional Parallel Trend Assumption Now, we propose an alternative proce-
dure that identifies the ATTg,` when the transition processes at the regime switch period
coincide for the treated and controlled group. First we note that, by further conditional
on the value of ω0

it−1 in equation (21), we have

E[ω0
it − ω0

it−1|ei = t, ω0
it−1] = h+

i0(ω1
it−1, ω

0
it−1)− ω0

it−1,

E[ω0
it − ω0

it−1|ei > t, ω0
it−1] = h̄0(ω0

it−1)− ω0
it−1.

(22)

The two equations in (22) coincide if h+
i0 = h̄0. We call this the conditional parallel trend

assumption.

Assumption 4.3. (Conditional Parallel Trend) h+
id(ω

d
it, ω

1−d
it ) = h̄d(ω

d
it) for d = 0, 1.

Assumption 4.3 is structural in the sense that it is imposed on the rule of productiv-
ity evolution rather than the cross-period potential outcome variables (ω0

it, ω
0
it−1). The

structural parallel trend assumption 4.3 has the following economic meaning: Transition
function for the untreated potential outcome is not influenced by the treatment status.

Proposition 4.2. Under Assumption 4.3, the 0-period-ahead ATT is identified as ATTg,0 =

E[E[ωit − h̄0(ωit−1)|ei = t, i ∈ g]|i ∈ g].

Proof. Note that by further conditional on the group ei = t,

(ATTg,0|ei = t) =(1) E[ωit|ei = t, i ∈ g]− E[h+
i0(ω0

it−1, ω
1
it−1) + ε0it|ei = t, i ∈ g]

=(2) E[ωit|ei = t, i ∈ g]− E[h̄0(ω0
it−1)|ei = t, i ∈ g]

=(3) E[ωit|ei = t, i ∈ g]− E[h̄0(ωit−1)|ei = t, i ∈ g]

where (1) by definition, (2) follows by Assumptions 3.2 and 4.3, (3) follows by the poten-
tial outcome (2). Further take the expectation with respect to the treatment time to get the
result.
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In general, the `-period-ahead ATT is not identified for ` ≥ 1, because we cannot
recover the untreated potential outcome ω0

iei+`−1. Moreover, the substitution of in Propo-
sition 4.2 does not work anymore. Let h̄`0 be the ` period productivity transition process,
we can write ω0

iei+`
= h̄

(`)
0 (ω0

iei
, (ε0is)

ei+l
s=ei

). We now state two sufficient conditions such that
the `-period-ahead ATT is identified.

Assumption 4.4. The Markov process ω0
it satisfies

ω0
it = h̄

(s)
0 (ω0

it−s) + r(εdit, ..., ε
d
it−s+1)

where h̄(s)
0 is an s-period transition function and r(·) is linear in all arguments. Moreover, there is

no mean-selection of (ε0is)s>ei on Diei , i.e. E[ε0is|Diei = 1] = 0 for all s ≥ ei.

Proposition 4.3. Under Assumption 3.2, 4.3, and 4.4, the `-period-ahead ATT is identified as
ATTg,` = E[ωit+`|ei = t, i ∈ g]− E[h̄

(`)
0 (ωit)|ei = t, i ∈ g].

Proof. Note that

ATTg,` =(1) E[ωit+`|ei = t, i ∈ g]− E[h̄
(`)
0 (ωit−1) + r(ε0it, ..., ε

0
it−s+1)|ei = t, i ∈ g]

=(2) E[ωit+`|ei = t, i ∈ g]− E[h̄
(l)
0 (ωit−1)|ei = t, i ∈ g],

where (1) by the conditional parallel trend assumption and Assumption 4.4, (2) follows
by Assumptions 3.2 and linearity of r(·).

Assumption 4.4 is satisfied for an AR(1) productivity process, but generally fails when
non-linearity appears in the transition function h̄0. Therefore, Assumption 4.4 can be
restrictive. We now consider a strong constraint on the productivity shocks but relax the
constraint on the shape of h̄0.

Assumption 4.5. The `-period-ahead shock independence (ε0iei , ..., ε
0
iei+l

) ⊥ ei|i ∈ g, ω0
iei−1.

We require more than the conditional mean-independence of the future productiv-
ity shocks with respect to the treatment time. Assumption 4.5 allows for nonlinearity
in h̄

(s)
0 (·). We first derive the average treatment effect for a cohort, i.e. g indicates the

treatment-cohort year of the firm, and i ∈ g if and only if ei = g. The overall ATT can
be derived by integrating out the cohort effect. We define the `-period-ahead treatment
effect for cohort g as

ATTg,` = E[ω1
it − ω0

it|t = ei + `, ei = g]. (23)

23



Proposition 4.4. Suppose Assumption 4.3 and 4.5 hold. Let ∆(`, g, ω) = E[ωig+`|ei = g, ωig−1 =

ω]− E[ωig+`|ei > g + `, ωig−1 = ω]. The `-period-ahead ATT for cohort g is identified as

ATTg,` = E[∆(`, g, ωig−1)|ei = g],

where the expectation is taken over the conditional distribution of ωig−1 given ei = g.

Proof. Note that the average treatment effect conditional on the ωig−1 is

ATTg,`|ωig−1=ω =(a) E[ωig+`|ei = g, ωig−1 = ω]− E[h̄
(`)
0 (ωig−1, ε

0
ig, ..., ε

0
ig+`)|ei = g, ωig−1 = ω]

=(b) E[ωig+`|ei = g, ωig−1]− E[h̄
(`)
0 (ωig−1, ε

0
ig, ..., ε

0
ig+`)|ei > g + l, ωig−1 = ω]

=(c) E[ωig+`|ei = g, ωig−1 = ω]− E[ωig+`|ei > g + `, ωit−1 = ω] = ∆(l, g, ω),

(24)

where (a) follows by the conditional parallel trend assumption and the potential outcome
equation, (b) follows by Assumptions 4.5, and (c) follows by the transition procedure (3)
for untreated firms. The result follows by further integrating out the ωig−1.

Proposition 4.4 requires us to match over the lagged productivity for each g-cohort
firms with g + `-not-yet-treated firms. This is because we cannot observe the untreated
shocks ε0it for treated firms and the higher moments of ε0it matters for the `-period evolu-
tion process h̄(`)

0 . On the other hand, Proposition 4.3 uses firm i’s own lagged productivity
as controls, because the linearity of the residual function r(·) in Assumption 4.4.

However, if treatment time is staggered, we may have only a fraction of firms that are
treated after g + l period, and g + 1 to g + ` cohort firms are ignored. This can lead to
inefficient use of information. We now propose a strong condition that allows us to use
the information from g + 1 to g + ` cohort firms.

Assumption 4.6. The productivity shocks (ε1is, ε
0
is)s≥ei ⊥ (ei,1(i ∈ g), ω0

iei−1) and εdit ∼i.i.d
Gd
ε (·) for d = 0, 1, where the i.i.d is both across firm index i and time index t.

Assumption 4.6 is stronger than 4.5. However, the strong condition in Assumption 4.6
allow us to identify ATTg,l using results similar to Proposition 4.6.

Proposition 4.5. Under Assumption 4.6, G0
ε is identified, and the `-period-ahead ATT for cohort-

g is identified as

ATTg,` = E[ωig+`|ei = g]− E(G0
ε )
` [h̄

(`)
0 (ωig−1, ε

0
ig, ..., ε

0
ig+`)|ei = g],

where the second expectation is taken over the joint distribution of (ε0ig, ..., ε
0
ig+`).
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Proof. Let g be the target cohort in Proposition 4.5, and let g′ be any cohort such that g′ > g.
With the identified h̄0 from Proposition 3.1, for any g′-cohort firm i at time t < g′,

we can recover its ε0it ≡ ωit − h̄0(ωit−1), so the distribution of ε0it conditional on (ei,1(i ∈
g), ω0

iei−1) is identified. However, the productivity shocks are independent of (ei,1(i ∈
g), ω0

iei−1), so G0
ε(·) is identified.

4.3 ATT: Non-absorbing Treatment

In some scenarios, the treatment is non-absorbing by nature. In reality, firms do partici-
pate in import, export, or R&D activities occasionally.12 We now discuss the identification
of effects of non-absorbing treatment. Since treatment can be volatile, the individual treat-
ment effect can be influenced by a sequence of past treatment status. Instead, we focus
on the treatment effect of firms that switch its treatment status at time g and maintain the
status for `-period. Formally, the ATT for the `-period persistent treatment at a time g
positive/negative treatment switcher:

ATTg,` = E[ω1
ig+` − ω0

ig+`|Dig−1 = 0, Dig = ... = Dig+` = 1]

ATT−g,` = E[ω1
ig+` − ω0

ig+`|Dig−1 = 1, Dig = ... = Dig+` = 0]
(25)

We first show that the 0-period ahead treatment effect is identified under the conditional
parallel trend assumption for both negative and positive switcher.

Proposition 4.6. Under Assumption 4.3, the 0-period-ahead positive/negative switching ATT
effects at time g are identified as ATT+

g,0 = E[ωig − h̄0(ωig−1)|Dig−1 = 0, Dig = 1], and ATT−g,0 =

E[ωig − h̄1(ωig−1)|Dig−1 = 1, Dig = 0].

Proof. We prove the result for the positive switching effectATT+
g,0, and the negative switch-

ing ATT follows similarly. Note that for ei = g,

ATT+
g,0 =(1) E[ω1

ig − ω0
ig|Dig−1 = 0, Dig = 1]

=(2) E[ω1
ig|Dig−1 = 0, Dig = 1]− E[h̄0(ω0

ig−1)|Dig−1 = 0, Dig = 1]

=(3) E[ωig|Dig−1 = 0, Dig = 1]− E[h̄0(ωit−1)|Dig−1 = 0, Dig = 1],

12In the data on Taiwanese electronics industry employed by Aw et al. (2011), the annual transition prob-
ability from only R&D performer in year t to R&D performer in year t+1 is around 0.57, and the probability
from only exporter in year t to exporter in year t+1 is around 0.78. In the Spanish data used by Doraszelski
and Jaumandreu (2013), slightly more than 20% of firms are occasional performers that undertake R&D
activities in some (but not all) years.
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where (1) by definition, (2) follows by Assumptions 3.2 and 4.3, (3) follows by the poten-
tial outcome (2).

Similar to the absorbing-treatment case, evaluating the `-period-ahead ATT requires
additional structural assumption on the exogeneity of shocks.

Assumption 4.7. The `-period-ahead shock independence holds for all t > 1:

(ε0it, ..., ε
0
it+`) ⊥ (Dit, ..., Dit+`)|ωit−1, Dit−1.

Assumption 4.7 generalizes Assumption 4.5 in the absorbing treatment case. Since
treatment is not absorbing, we need to further conditional on the lagged treatment Dit−1.

Proposition 4.7. Suppose Assumption 4.3 and 4.7 hold. Let

∆̃(`, g, ω) = E[ωig+`|Dig−1 = 0, Dig = ... = Dig+` = 1, ωig−1 = ω]

− E[ωig+`|Dig−1 = Dig = ... = Dig+` = 0, ωig−1 = ω].

The `-period-ahead ATT for time-g positive switcher is identified as

ATT+
g,` = E[∆̃(l, g, ωig−1)|Dig−1 = 0, Dig = ... = Dig+` = 1],

where the expectation is taken over the conditional distribution of ωig−1 given Dig−1 = 0, Dig =

... = Dig+` = 1.

Proof. Note that the average treatment effect conditional on the ωig−1 is

ATT+
g,`|ωig−1=ω =(a) E[ωig+`|Dig−1 = 0, Dig = ... = Dig+` = 1, ωig−1 = ω]

− E[h̄
(`)
0 (ωig−1, ε

0
ig, ..., ε

0
ig+`)|Dig−1 = 0, Dig = ... = Dig+` = 1, ωig−1 = ω]

=(b) E[ωig+`|Dig−1 = 0, Dig = ... = Dig+` = 1, ωig−1 = ω]

− E[h̄
(`)
0 (ωig−1, ε

0
ig, ..., ε

0
ig+`)|Dig−1 = Dig = ... = Dig+` = 0, ωig−1 = ω]

=(c) E[ωig+`|Dig−1 = 0, Dig = ... = Dig+` = 1, ωig−1 = ω]

− E[ωig+`|Dig−1 = Dig = ... = Dig+` = 0, ωig−1 = ω] = ∆̃(l, g, ω),

(26)

where (a) follows by the conditional parallel trend assumption, (b) follows by Assump-
tions 4.7, and (c) follows by the transition procedure (3) for untreated firms. The result
follows by further integrating out the ωig−1.

Remark 4.1. Assumption 4.7 rules out some empirical settings. In particular, if the treatment de-
cision is a per-period decision as in (4), then the value of ε0it will influences ω0

it and hence influence
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the value of Dis for s ≥ t + 1. However, if the treatment must be maintained for l periods due to
exogenous constraints (say contract or legal constraints), then Dit, Dit+1, ..., Dit+l is determined
based on the time-t information IFit , and Assumption 4.7 can be satisfied.

5 Estimation

6 Monte Carlo Simulations

We consider two scenarios: purely exogenous policy (See Assumption ??) and condi-
tional exogenous policy (See Assumption 3.2). The timing assumption on input choices
in the Monte-Carlo setup is similar to DGP1 in Ackerberg et al. (2015) to a large extent.
Critically, our setting differs from theirs by considering policy interventions that incur
regime-switching in the productivity’s evolution. We generate a balanced panel consist-
ing of 1000 firms spanning over 10 periods. During the fourth period, we introduce a
policy shock that is unanticipated by the firm, and keep track of firms for five more peri-
ods. We call the time between the triggering of policy shock and the beginning of the next
period as the transition period. And we naturally assume that the policy impact during
the transition period is different from subsequent periods. We repeat the experiments by
generating 1,000 datasets and analyze the estimation outcomes.

6.1 Strictly Exogenous Policy

In our first Monte Carlo experiment, we consider firms encounter a strictly exogenous
policy shock during the fourth period. Firms choose capital investment Iit at the begin-
ning of each period on observing productivity ωit−1, while hire labor Lit at t− bl (bl is set
to be 0.5) when observing ωit−b. We introduce a policy intervention at time t0 − b (we set
b = 0.2 < bl) after the choice of Lit0 . This policy shock is not anticipated by firms, therefore
firms’ choices of inputs are not affected by the policy before period t0. After the realiza-
tion of the policy shock, firms take it into account when making choices of investment,
labor, and capital. The policy shock generates a transitional path for the productivity un-
til it reaches a new steady state. Details of the DGP and estimation are explained in the
Appendix.

We use three methods to estimate the productivity. The first is the ex-post method,
which ignores the policy intervention in the productivity process when estimating the
production function, but accounts for the policy shock in the regression after obtaining
productivity estimates. The second approach is to consider the policy shock in the evolu-
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tion process, but the variable indicating the policy is imperfect. Specifically, the transition
right after policy shock is not separately controlled for. Lastly, we consider estimating
the production function with a perfect control for the possible timing varying effect of the
policy shock on productivity’s evolution. These three methods only differ by the produc-
tivity evolution process; We use the ACF approach to estimate the production function.13

Table 1 about here

Figure 1 displays the distribution of production function parameter estimates by us-
ing different methods. The true values for labor elasticity (βl) and capital elasticity (βk)
are 0.6 and 0.4, respectively. We find that estimates using the “ex-post" method results
concentrates on values that are very different from the true values, implying substantial
mistakes in productivity estimates. The reason is that the policy has altered firms’ labor
and capital choices since its initiation. However, in the ex-post method, the policy vari-
able is not controlled in the evolution process, and hence it is contained in the error term.
This causes a correlation between the productivity shocks and input choices. Given our
specific parameterization, the correlation is negative for labor and positive for capital,
which generates downward (resp.) biased estimate for labor (resp. capital). For a similar
reason, when the regime-switching is not controlled (See Panels titled “no-transition”),
we see same directions of bias in the labor and capital coefficients’ estimates. Lastly, for
the productivity process with perfect control of the transitioning effect of the policy, we
obtain the most accurate production function estimates that center around the true value
with a density function close to the normal distribution. These results indicate that de-
spite that the policy is exogenous, failing to control the policy impact in the production
function estimation would lead to biases in the production function estimation.

In Figure 2, we display the empirical distribution of the logged correlation coefficients
for different productivity estimates. The productivity estimates obtained without consid-
ering the regime-switching period is highly correlated with the true productivity, so as
the productivity estimates with transitional period included. The average simple corre-
lation coefficient for both of them is one for treated and non-treated units. We find that
the bias of the productivity estimates is more serious for the treated units for the ex-post
estimation method, with an average correlation coefficient to be 0.978 for both treated and
non-treated units.

Figure 2 about here

13We refer to Kim et al. (2019) to add lagged capital and constant in the instrument set to avoid “spurious"
minimization problem.
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As we have illustrated, the parameters of the productivity’s persistence in the absence
of policy, i.e., h0(·), is the key to understanding the policy’s treatment effects on produc-
tivity. In Table 1, we report the regression outcome of the productivity process using the
productivity estimates. Table 1 Column (1) reports the regression outcome using the true
productivity estimates, which serves as the baseline result. It shows that the coefficient
of current productivity ωt is 0.719 for the untreated observations, standing close to the
true value 0.7. We add dummies indicating the treated group and the periods post to
the happening of policy shock. Importantly, we also add a dummy Midt to capture the
difference of the productivity’s evolutionary dynamics during the transitioning period.
The estimation results show that the policy has increased the productivity’s persistence
by 0.081 (vs. true value 0.1), and the level by 0.200 (vs. true value 0.200). Column (2) in
Table 1 shows the estimation results for the productivity estimates obtained by assuming
exogenous productivity process. The estimate of the productivity’s persistence is 0.742.
Also, the estimate of the impact of the policy shock on the changes in the persistence is
0.103, which is higher than that in the baseline group. Moreover, the ex-post regression
tend to result in a larger positive impact of the policy shock on the level of productivity.
Table 1 Column (3) reports the estimation results without considering the possible tran-
sitioning dynamics of the productivity process triggered by the exogenous policy shock.
The productivity’s persistence parameter is 0.719, which is the same as that in the bench-
mark group. This means that despite the full structural change in the productivity process
is not accounted for, this method can still generate a reliable estimate for the productiv-
ity’s persistence. However, it does not deliver accurate estimates for the policy-induced
changes in levels and persistence of productivity. The last column in Table 1 show that
the estimates are quite close to the baseline results using the true productivity. Given the
high correlation between the productivity estimates, it is not a surprise to see that consid-
ering the structural changes in the productivity would generate more accurate estimates
for both the productivity and the productivity’s evolutionary process.

Table 1 about here

To evaluate how different methods could lead to different outcomes in estimating the
ATTs on productivity. We estimate ATT by period using our proposed method. That is,
we simulate the potential outcome productivity using the productivity’s persistence pa-
rameter and the recovered distribution of productivity shocks for the untreated units.14

Then the treatment effect of the policy on productivity for any period is calculated by take

14This is different from the traditional event studies in which the outcome variable usually does not
depend on the its past realizations.
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the difference between the observed productivity and the simulated potential productiv-
ity. In Figure 3 Panel (a), we show the estimates of ATTs using our proposed structural
estimates. We find that including the policy shock in the productivity process and consid-
ering the regime-switching period leads to estimates very close to the ATT estimates using
the true productivity. If the regime-switching period is not considered, the ATTs are un-
derestimated. This is because the productivity jumps during the transition period is not
taken into account when comparing between the treated firms and the non-treated firms.
Moreover, the ex-post method systematically lead to much smaller ATT estimates. In first
two periods after the policy shock, the ex-post method leads to negative estimates for the
positive ATTs. Figure 3 Panel (b) displays the estimation results using conventional event
study designs without including the lagged productivity as regressor. Ignoring the dy-
namic feature of the productivity’s evolution equation leads to quite different estimates
of ATTs. On average, the estimated treatment effects are larger and the growing trend is
more pronounced.

Figure 3 about here

6.2 Endogenous Firm-level Action

We continue to analyze the estimation results for the datasets generated by conditionally
exogenous policy.15

Figure 4 reports the histograms of the estimates for capital and labor coefficients in the
production function. The ex-post method still generates biased estimates for βl and βk.
To a large extent, the estimates are close to the case when the policy shock is purely ex-
ogenous. This is because the ex-post method does not take the policy shock into account
when incorporating the productivity process into the estimation procedure. The reason
for the directions in biases is similar to that for the purely exogenous policy shock. For the
approach without considering the transition, we now see more biases in the estimates of
labor coefficient compared to the case of purely exogenous policy. This is because the con-
ditionally endogenous policy may generate a correlation between the productivity shocks
and the lagged labor choice during the transitioning period, which bias the labor coeffi-
cient downward. The estimation approach which drop the transitioning period generate
reasonable production function estimates that center around the true value.

Figure 4 about here

15We find that when we consider a full control for the policy effect, the production function estimates
have two distinctive modes. We thus drop the transition period to estimate the productivity process with
fewer coefficients.
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Figure 5 shows the distribution of logged correlation coefficient for different pairs of
productivity. Both for the treated and untreated units, we find that the estimation ap-
proach which accounts for the full structural change in the productivity’s evolution per-
forms the best. Compared to the case of purely exogenous policy, the approach that does
not consider the structural change during the transitioning period leads to more biased
productivity estimates for untreated observations. Still, the ex-post method performs the
worst in recovering the productivity.

Figure 5 about here

We report the regression outcome for the productivity’s evolution process in Table
2. Table 2 Column (1) is the baseline result using true productivity. We find that the
coefficient for ωt and Treatt × Postt are close to the true values in DGP. In Column (4),
we see that the coefficient estimates obtained from controlling the full structural change
in the productivity evolution generates very similar estimates to the baseline result using
true productivity in the regression.

Table 2 about here

Figure 6 shows the estimated ATTs using different methods. It is clear that considering
the structural change in the productivity’s evolution process leads to the most accurate
estimates of the ATT for each period. And the ex-post method leads to the least accurate
estimates for ATTs. But in the case of conditional exogenous policy, failing to consider
the structural change in the productivity’s evolution process leads to an upward bias in
evaluating the treatment effects on productivity.

Figure 6 about here

7 Conclusion

In this paper, we studied the identification and estimation of treatment effects on produc-
tivity. We generalize the standard firm-level investment model by incorporating binary
treatment which affects the productivity evolution and/or production functions. The
treatment reflect either the change in the macro environment or individual action. The
treatment effects of productivity is the difference between the realized productivity and
the potential outcome of productivity. As the productivity is unobservable to the econo-
metrician, the detection the treatment effects on productivity requires recovering the pro-
ductivity and its evolution rule. We examine the underlying assumptions that lead to
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the identification of treatment effects on the structurally estimated productivity. Taking
advantage of the Markovian productivity process, we propose a new approach for esti-
mating the full dynamic treatment effects on productivity.

Tables and Figures

Figure 1: Production Function Parameter Estimates

Note: Vertical lines indicate the true values.
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Figure 2: Correlations between Productivity Estimates and the True Productivity: Purely
Exogenous Policy

(a) Endogenous Productivity (b) Exogenous Productivity

Note: Untreated units include never treated units and not-yet-treated units.

Table 1: Regression Outcome for the Productivity’s Evolution Process under Strictly Ex-
ogenous Policy Shock

(1) (2) (3) (4)
True Ex-post No Transition With Transition

ωt 0.699 0.723 0.700 0.701
(0.684, 0.715) (0.709, 0.738) (0.683, 0.717) (0.683, 0.718)

ωt × Treatt × Postt 0.100 0.120 0.101 0.098
(0.078, 0.122) (0.098, 0.142) (0.077,0.125) (0.074, 0.123)

ωt × Treatt ×Midt 0.021 0.026 0.021
(-0.040, 0.079) (-0.032, 0.085) (-0.039, 0.080)

Treatt × Postt 0.201 0.181 0.199 0.203
(0.192, 0.211) (0.171, 0.191) (0.180,0.218) (0.185, 0.220)

Treatt ×Midt 0.040 0.031 0.040
(0.024, 0.057) (0.005, 0.059) (0.024, 0.057)

Note: 5th percentile and 95th percentiles are in the brackets.
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Figure 3: Estimates of Dynamic ATTs

(a) Structural Estimates of ATTs

(b) Event-study Type Estimates of ATTs

Note: The capped vertical lines indicate the 5th and 95th percentiles of all 1000 experiments.
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Figure 4: Production Function Parameter Estimates for Conditionally Exogenous Policy

Note: Vertical lines indicate the true values.
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Figure 5: Correlations between Productivity Estimates and the True Productivity: Condi-
tionally Exogenous Policy

(a) Endogenous Productivity (b) Exogenous Productivity

Note: Untreated units include never treated units and not-yet-treated units.

Table 2: Regression Outcome for the Productivity’s Evolution Process under Condition-
ally Exogenous Policy Shock

Baseline Ex-post No With Dropping
transition transition transition

ωt .700 .724 .709 .701 .701
(.684, .715) (.709, .738) (.690, .727) (.681, .719) (.681, .719)

ωt × treati × postt .100 .117 .093 .099 .099
(.076, .123) (.094, .141) (.069, .118) (.075, .124) (.074, .126)

ωt × Treatt ×Midt 0.021 0.020 0.018
(-0.039, 0.080) (-0.069, 0.110) (-0.074, 0.112)

treati × postt .200 .164 .198 .202 .202
(.189, .212) (.153, .175) (.180, .217) (.183, .220) (.183, .220)

treati ×midt .040 .047 .041
(.013, .067) (.024, .071) (.014, .069)

Obs. 9,000 9,000 9,000 9,000 8,000
Note: 5th percentile and 95th percentiles are in the brackets.
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Figure 6: Estimates of Dynamic ATT for Conditionally Exogenous Shocks

Note: capped lines indicate the 5th and 95th percentile of the ATTs for all the treated units, and the white
diamond indicate the mean value of the ATT for treated units.
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Appendices

A Monte-Carlo Setup

The Monte-Carlo setup is similar to Ackerberg et al. (2015) to a large extend except that we
consider an extended productivity process with exogenous policy shocks. We consider a
panel of 1000 firms over T (T=3, 5, 10) periods to gauge the performance of our method
against alternative approaches. The parameters are chosen to match the key aspects of the
Chilean data. In the description, we focus on the productivity process and the implied
choice of inputs.

A.1 (Conditionally) Exogenous Productivity Process with Policy Inter-

ventions

A.1.1 Production Function and Potential Productivity Shocks

The production function is Leontief in the material input, i.e.

Yit = min
{
β0K

βk
it L

βl
it e

ωit , βmMit

}
(A.1)

We choose β0 = 1, βk = 0.4, βl = 0.6 and βm = 1. The variable for the binary pol-
icy shock is Dit ∈ {0, 1}. The potential productivity shocks ωdit, d ∈ {0, 1}, follow the
following AR(1) process:

ω0
it = ρ0ω

0
it−1 + ε0it, (A.2)

ω1
it = ρ1ω

1
it−1 + γ + ε1it, (A.3)

where d = 1 refers to the productivity process of treated units after they received the
treatment and d = 0 for the untreated units. We choose ρ0 = 0.7, ρ1 = 0.8, γ = 0.2, and the
exogenous shocks (ε0it, ε

1
it) ∼ N(0, 0.3I).

A.1.2 (Conditionally) Exogenous Policy Shocks

There is an exogenous policy shock that is captured by Dit ∈ {0, 1}. The policy shock can
be either purely exogenous or exogenous conditional on the firm’s current productivity
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process. The realized productivity is therefore:

ωit = ω1
itDit + ω0

it(1−Dit) (A.4)

The policy shock arrives at t0 − b, where 1 ≤ t0 < T and b ∈ [−1, 0]. The timing
of labor choice and the policy intervention is more intricate, and we will discuss them
later. We distinguish between the purely exogenous policy and conditionally exogenous
policy. For the purely exogenous policy shock, we randomly assign 50% firms to be treated
by the policy. While for the conditionally exogenous policy, we set a cutoff value of the
productivity ω̄ such that only firms whose productivity level ωit0−1 > ω̄ are exposed to
the policy shock. This simple selection criterion captures a large class of models in which
there is a strict sorting pattern for the considered firm decision and firm productivity.

Before the arrival of policy shock, the productivity evolution is just (A.2). Upon the
arrival of the policy, we follow Ackerberg et al. (2015) and think of decomposing the
productivity evolution into two sub-processes. First, ωit0−1 evolves to ωit0−b; the evolution
rule is about to be specified later. After the policy shock, ωit0−b evolves to ωit0. We use the
following model of the evolution of ω between sub-periods:

ωit0 = ρb1ωit0−b + b× γ +
√

1− ρ2b
1 ε

1
it (A.5)

Thus, when b = 0, firms receive the policy shocks at t0, which triggers the evolution of
productivity to switch to the regime of treated. When b ∈ (0, 1), the regime switching
is happening between t0 − 1 and t0, and the evolution of productivity from t0 to t1 is
a mixture of the above two productivity processes. The term b × γ reflects the treatment
effects on the level of productivity for a duration of b.16 After t0, the productivity evolution
is rendered to be (A.3).

A.1.3 Choice of Labor and Material Inputs

The choice of labor and material inputs are static. There are firm specific wage shocks.
The logged wage for firm i follows an AR(1) process:

ln(Wit) = 0.3 ln(Wit−1) + ξWit (A.6)

The variance of ξWit and ln(Wi0 is chosen such that the standard deviation of ln(Wit) is
equal to 0.1.

16The assumption that the treatment effects is cumulative is consistent with the evolution rule introduced
by (A.3)
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In all periods except between t0− 1 to t0, we follow DGP1 in Ackerberg et al. (2015) in
assuming the timing of choosing inputs, except that we additionally consider the timing
of policy intervention. That is, we assume that during this period, labor is chosen at time
t0 − bl. The productivity process is decomposed two sub-processes. First, productivity
evolves to ωit0−bl at which point the firm chooses labor input. Then, after Lit is chosen,
ωit0−bl evolves to ωit0 . In all periods but t0 − 1, the following model is to characterize the
evolution of ω0

it and ω1
it between sub-periods in time periods:

ωit−bl(d) = ρ1−bl
d ωit−1(d) +

1− bl
ρbld

× γ × d+

√
1− ρ2−2bl

d εdit−bl︸ ︷︷ ︸
εdit(B)

, for d ∈ {0, 1}, t 6= t0 (A.7)

ωdit = ρbld ωit−bl(d) + bl × γ × d+

√
1− ρ2bl

d εdit︸ ︷︷ ︸
εdit(A)

, for d ∈ {0, 1}, t 6= t0 (A.8)

Combining (A.7) with (A.8), we obtain the evolution rule of productivity:

ωdit = ρdωit−1(d) + γ × d+ ρbld

√
1− ρ2−2bl

d εdit−bl +

√
1− ρ2bl

d εdit, t 6= t0 (A.9)

Note that Equation (A.9) is consistent with the AR(1) coefficient in (A.2) and (A.3) because
ρ1−b
d ρbd = ρd. The variance of ωit−bl is constant over time if we impose that V ar(εdit−bl) =

V ar(εdit) so that V ar(ρbld
√

1− ρ2−2bl
d εdit−bl +

√
1− ρ2bl

d εdit) = V ar(εdit). If b = 0, then the above
evolution rule also applies to the period between t0 − 1 and t0. If b ∈ (0, 1), The timing
of labor choice during the arrival period of the policy shock is more subtle. We need to
consider two cases (See Figure A.1): first, bl ≥ b such that the labor is chosen no later than
the arrival of policy; second, bl < b so that labor is chosen later than the policy shock’s
arrival.

Figure A.1: Relative Timing of Labor Choice and Policy Intervention Between t0 − 1 and
t0

time

policy shocklabor choice

t0 − 1 t0t0 − bt0 − bl

Early Labor Choice:

time

policy shock labor choice

t0 − 1 t0t0 − b t0 − bl

Late Labor Choice:

Early labor choice: bl ≥ b. In this case, before the policy’s arrival, the evolution of
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productivity from t0 − 1 to t0 − b breaks into two stages:

ωit0−bl(0) = ρ1−bl
0 ωit0−1(0) +

√
1− ρ2−2bl

0 ε0it0−bl (A.10)

ωit0−b(0) = ρbl−b0 ωit0−bl(0) +

√
1− ρ2bl−2b

0 ε0it0−b (A.11)

This guarantees that the variance of productivity is constant. Then the productivity
evolves to t0 according to the following process:

Treated : ωit0(1) = ρb1ωit0−b(0) + b× γ +
√

1− ρ2b
1 ε

1
it (A.12)

Non− treated : ωit0(0) = ρb0ωit0−b(0) +
√

1− ρ2b
0 ε

0
it (A.13)

In this case, the firm’s labor choice will only be adjusted after t0.
Late labor choice: bl < b. At the time of policy’s arrival, the productivity has evolved to

ωit0−b according to the following process:

ωit0−b(0) = ρ1−b
0 ωit0−1(0) +

√
1− ρ2(1−b)

0 ε0it (A.14)

The evolution of productivity of the treated units from t0− b to t0 could further break into
two sub-processes:

ωit0−bl(1) = ρb−bl1 ωit0−b(0) +
b− bl
ρbl1

× γ +

√
1− ρ2b−2bl

1 ε1it (A.15)

ωit0(1) = ρbl1 ωit0−bl(1) + bl × γ +

√
1− ρ2bl

1 ε1it (A.16)

Firms do not anticipate the arrival of policy. For untreated units, the optimal labor
choice would always be

Lit = θitK
βk

1−βl
it e

(1−βl)−1

(
ρ
bl
0 ωit−bl+

1−ρ
2bl
0

2
σ2
ε0

)
. (A.17)

But after the arrival of the policy, treated firms commit its labor choice to the new produc-
tivity process. Therefore, the optimal labor choice for treated units are given by:
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Lit =



θitK
βk

1−βl
it e

(1−βl)−1

(
ρ
bl
0 ωit−bl+

1−ρ
2bl
0

2
σ2
ε0

)
, if t ≤ t0 − 1

θitK
βk

1−βl
it e

(1−βl)−1

(
ρ
bl
0 ωit−bl+

1−ρ
2bl
0

2
σ2
ε0

)
, if t = t0 and bl ≥ b

θ̂itK
βk

1−βl
it e

(1−βl)−1

(
ρ
bl
1 ω̂it−bl+

1−ρ
2bl
1

2
σ2
ε0

)
, otherwise

(A.18)

where θit ≡ β
1

1−βl
0 β

1
1−βl
l W

−1
1−βl
it , θ̂it ≡ (β0e

γbl

1−ρ
bl
1 )

1
1−βl β

1
1−βl
l W

−1
1−βl
it , and ω̂it−bl ≡ ωit−bl −

γbl

1−ρbl1
.17

A.1.4 Investment Choice and Steady State

Capital is a dynamic input, which is accumulated through investment according to

Kit = (1− δ)Kit−1 + Iit−1,

where the depreciation rate is δ = 0.2. Investment is chosen at the initial time of each
period. The adjustment costs in investment are given by

ci(Iit) =
φi
2
I2
it

where φi/2 is distributed lognormally across firms (but constant over time) with standard
deviation 0.6. In the presence of policy shock, the investment rule can be characterized
by two regimes: (1) ex-ante regime where the policy shock has not been introduced and
(2) ex-post regime where the policy has come to effect. Specifically, for treated firms, if
t ≤ t0 − 1, the investment rule is given by:

17This is because, after the policy shock, we can re-write the productivity’s evolution equation as:

ω̂it0(1) = ρbl1 ω̂it−bl +
√

1− ρ2bl1 ε1it.
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Iit(t ≤ t0 − 1) =
β

φi

(
βk

1− βl

)
β

1
1−βl
0 ×

(
β

βl
1−βl
l − β

1
1−βl
l

)
(A.19)

∞∑
τ=0

[β(1− δ)]τ × exp
{[ρτ+1

0 ωit
1− βl

− βlρ
τ+1
W ln(Wit)

1− βl

+
1

2

(
βl

1− βl

)2

σ2
ξW

τ∑
s=0

ρ
2(τ−s)
W +

1

2

(
1

1− βl

)2

ρ2bl

(
ρ2τ

0 σ
2
ε0A

+
τ∑
s=1

ρ
2(τ−s)σ2

ε0

0

)
+

σ2
ε0(B)

2(1− βl)

]}
.

The above investment rule applies to all periods for the untreated units. Note that
after the arrival of policy shock, there is a structural change in the productivity evolution.
The new productivity process is known by the firm. To obtain the investment rule, we
can rewrite the productivity process (A.3) as:

ω1
it −

γ

1− ρ1︸ ︷︷ ︸
ω̃it

= ρ1

(
ω1
it−1 −

γ

1− ρ1

)
︸ ︷︷ ︸

ω̃it−1

+ε1it (A.20)

We can also re-write the production function as:

Yit = min
{
β0e

γ
1−ρ1︸ ︷︷ ︸
β̃0

Kβk
it L

βl
it e

ω̃it , βmMit

}
(A.21)

As a result, we can obtain the investment rule for t ≥ t0 from (A.19) by replacing β0 ,
ωit, ρ0, and σ2

ε0 with β̃0, ω̃it, ρ1, and σ2
ε(1), respectively:

Iit(t ≥ t0) =
β

φi

∞∑
τ=0

[β(1− δ)]τ
(

βk
1− βl

)
β̃

1
1−βl
0 ×

(
β

βl
1−βl
l − β

1
1−βl
l

)
(A.22)

× exp
{[ρτ+1

1 ω̃it
1− βl

− βlρ
τ+1
W ln(Wit)

1− βl

+
1

2

(
βl

1− βl

)2

σ2
ξW

τ∑
s=0

ρ
2(τ−s)
W +

1

2

(
1

1− βl

)2

ρ2bl

(
ρ2τ

1

1− bl
ρ2bl

1

σ2
ε(1)

+
τ∑
s=1

ρ
2(τ−s)σ2

ε0

1

)
+

σ2
ε0

2(1− βl)

]}
.

To avoid the influence of initial distribution of capital stocks and other variables (ωi0,
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φi, ln(Wi0)), we simulate the firm model forward in the absence of policy intervention and
take t0 − 1 periods (t0 = 2, 3, 6 respectively for T = 3, 5, 10) of the data from the steady
state. We then introduce the policy shock and re-solve the input decisions using the new
productivity process to obtain the data for the rest of periods. The key difference be-
tween our simulation and that obtained from Ackerberg et al. (2015) is that our simulated
data contain the transition periods from the original steady state to the new steady state.
Therefore, our simulation reflects the pattern of data in the midst of policy change, which
is usually the case for empirical studies on policy evaluations. We display the parameter
values and targeted moments in the following table.

Table A.1: Summary of Parameter Values

Parameters Value Source Targeted Moments
β0 1 ACF (2016) n.a.
βk 0.4 ACF (2016) n.a.
βl 0.6 ACF (2016) n.a.
βm 1 ACF (2016) n.a.
β 0.95 ACF (2016) n.a.
ρ0 0.7 ACF (2016) n.a.
ρ1 0.8 Our Choice n.a.
γ 0.2 Our Choice n.a.
σε0 0.3 ACF (2016) std(ωit) = 0.3
σε(1) 0.3 ACF (2016) std(ωit) = 0.3
bl 0.5 ACF (2016) n.a.
b {0, 0.4, 0.6} Our Choice n.a.
σξW 0.1 ACF (2016) std(Wit) = 0.1
δ 0.2 ACF (2016) n.a.
φi ln(φi) ∼ N(0, 0.36) ACF (2016) n.a.
T/t0 10/5 Our choice n.a.

B Estimation

The key to the estimation strategy is to consider that the productivity evolves differently
during the transitioning period. Define Postt to be the indicator for periods after the
arrival of policy shock. Therefore, Postt = 1 if t ≥ t0. Define Midt to be the indicator
for whether the firm is during the first period of receiving treatment, i.e., Midt = 1 if
t = t0 − 1 and zero otherwise for all firms. Lastly, we define Treati as a firm indicator for
whether the firm is eventually treated in the sample: Treati = 1 means firm i belongs to
the treated group. According to our definition, we have Dit = Treati × Postt, which is
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a time-varying indicator for the firm’s treatment status. We use an extended Diff-in-Diff
equation to model the productivity process as follows:

ωit =h0(ωit−1) + h1(Treati × Postt × ωit−1) + h2(Treati ×Midt × ωit−1) (B.1)

+ γ1Treati × Postt + γ2Treati ×Midt + ηit,

where ηit is the error with a mean of zero. We approximate h0(ωit−1) using a linear equa-
tion of ωit−1:

ωit =ρ1ωit−1 + θ1(Treati × Postt × ωit−1) + θ2(Treati ×Midt × ωit−1) (B.2)

+ γ1Treati × Postt + γ2Treati ×Midt + ηit,

To estimate the treatment effects of productivity, the productivity process is incorpo-
rated into the standard production function estimation methods including Levinsohn and
Petrin (2003), Wooldridge (2009), and Ackerberg et al. (2015). For the choice of instru-
ments and algorithms, we refer to Kim et al. (2019) to choose instruments and conduct
the estimation using Stata. To compare our methods with the traditional methods, we
also perform estimation using the following productivity process without considering
the transitioning period:

ωit =ρ1ωit−1 + θ1(Treati × Postt × ωit−1) + γ1Treati × Postt + ηit, (B.3)

C Auxiliary Simulation Results

Figure C.1 and Figure C.2 plot the pattern of simulated data for strictly exogenous policy
and conditional exogenous policy, respectively.
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Figure C.1: Data Pattern for Strictly Exogenous Policy Shock

Note: We conduct an event study by regression the variables on a full set of time dummies and its
interaction with treatment group indicator.
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Figure C.2: Data Pattern for Conditionally Exogenous Policy Shock

Note: We conduct an event study by regression the variables on a full set of time dummies and its
interaction with treatment group indicator.
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