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Abstract

Many events and policies (treatments), such as opening of businesses, building of hospitals, and sources
of pollution, occur at specific spatial locations, with researchers interested in their effects on nearby
individuals or businesses (outcome units). However, the existing treatment effects literature primarily
considers treatments that could experimentally be assigned directly at the level of the outcome units,
potentially with spillover effects. I approach the spatial treatment setting from a similar experimental
perspective: What ideal experiment would we design to estimate the causal effects of spatial treatments?
This perspective motivates a comparison between individuals near realized treatment locations and
individuals near counterfactual (unrealized) candidate locations, which is distinct from current empirical
practice. I derive standard errors based on this design-based perspective that are straightforward to
compute irrespective of spatial correlations in outcomes. Furthermore, I propose machine learning methods
to find counterfactual candidate locations and show how to apply the proposed methods on observational
data. I study the causal effects of grocery stores on foot traffic to nearby businesses during COVID-19
shelter-in-place policies. I find a substantial positive effect at a very short distance. Correctly accounting
for possible effect “interference” between grocery stores located close to one another is of first order
importance when calculating standard errors in this application.
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1 Introduction

How can we estimate the causal effects of spatial treatments? In the setting of this paper, a spatial treatment,
such as the opening of a “million dollar plant” (Greenstone and Moretti, 2003; Greenstone et al., 2010) occurs
at a spatial location, and the outcome of interest, such as earnings of workers, is measured for separate
individuals who are located nearby.1 I study an “ideal experiment” where causal effects are identified by
(quasi-) random variation in the location of the spatial treatment, formalizing informal discussions about
identifying variation in empirical work studying spatial treatments (for instance Linden and Rockoff, 2008).
This motivates a perspective on the potential outcomes framework where the roles played by outcome and
treatment units are more clearly distinct than in most existing theoretical work in causal inference. In the
absence of guidance from theoretical work, most recent empirical studies using highly-detailed location data
compare “treated” individuals at a given distance from treatment (on an “inner ring”) to “control” individuals
that are farther away but centered around the same treatment location (on an “outer ring”). However, I
show that the ideal experiment does not generally ensure the validity of this control group; identification
instead fundamentally relies on functional form assumptions.

In this paper, I propose (quasi-) experimental methods for spatial treatments that are motivated by an
ideal experiment where the spatial locations of treatments are random. These methods are based on a simple
insight: Suppose the ideal experiment randomly chooses some locations for treatment from a larger set of
candidate locations. Then quasi-experimental methods should compare individuals near locations that are
chosen for treatment to individuals near locations that could have been chosen but were not. For a formal
characterization of estimands and estimators, I extend the potential outcomes framework for individual-level
treatments to allow treatments to be randomized across space and to directly affect nearby individuals.
Within this framework, I derive finite sample design-based standard errors similar to those of Neyman (1923,
1990) for randomized experiments with individual-level treatment assignment for a fixed population.

The estimators I propose differ from the approach of most recent empirical work in the choice of the
control group. Suppose we want to estimate the average effect of a million dollar plant on individuals who
are, say, one mile away. The method employed by most recent empirical work compares individuals on an
inner ring around the million dollar plant with radius one mile to individuals on an outer ring, who are, say,
five miles away from the same million dollar plant. Since many observable and unobservable characteristics
correlate with distance from any one point in space (cf. Lee and Ogburn, 2021; Kelly, 2019), this comparison
of inner and outer ring can be controversial: If treatment always occurs in the city center, the inner ring, or
treated, individuals are urban individuals, while the outer ring, or control, individuals are suburban and rural
individuals, and thus potentially fundamentally different.2 In contrast, the estimators I propose use a control

1Spatial treatments are relevant for a diverse range of questions from many applied fields in economics and other social
sciences. Recent studies estimating the effects of spatial treatments using individual-level outcome and location data include
Stock (1989, 1991); Linden and Rockoff (2008); Currie et al. (2015); Aliprantis and Hartley (2015); Sandler (2017); Diamond
and McQuade (2019); Chalfin et al. (2022); Rossin-Slater et al. (2020). Notably, Dell and Olken (2020) explicitly consider
counterfactual treatment locations in a quasi-experimental setting, in an approach that is conceptually similar to the one taken
in this paper. Much more existing empirical work studying spatial treatments is limited to aggregated outcome data, for instance
Duflo (2001); Miguel and Kremer (2004); Cohen and Dupas (2010); Greenstone et al. (2010); Feyrer et al. (2017); Jia (2008);
Keiser and Shapiro (2019). Furthermore, a recent literature has documented large geographic variation in a diverse range of
outcomes (for instance Chetty et al., 2014; Chetty and Hendren, 2018; Finkelstein et al., 2016, 2021; Athey et al., 2019; Bilal,
2019), the causes and potential remedies of which, such as place-based polices, may involve spatial treatments.

2Researchers typically attempt to address this issue by adding a pre vs. post comparison in a difference-in-differences
approach, where outcomes for urban and suburban individuals are allowed to be on different levels, but must evolve along
parallel trends in the absence of treatment. Conceptually, the same issues remain. Parallel trends here is a functional form
assumption that is not guaranteed to hold by experimental design, and may be more difficult to make plausible visually in the
spatial treatment setting than in other settings, as discussed in Section 2.
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group of individuals who are one mile away from counterfactual candidate locations where treatment could
have occurred under the ideal experiment but did not, ensuring validity by experimental design. Greenstone
and Moretti (2003), using aggregate data, choose a similar control group for counties with million dollar
plants: They compare counties that “won” the bidding war for a million dollar plant to “runners-up” counties
that were also very seriously considered as locations for million dollar plants, but ultimately “lost.”

The “inner ring vs. outer ring” empirical strategy commonly used in current empirical research relies
on two partly conflicting assumptions: First, the treatment must not affect individuals on the outer ring
directly. This is most easily achieved by choosing an outer ring with large radius, such that these “control”
individuals are far away. Second, the individuals on inner and outer rings must be comparable. This is most
easily achieved by choosing an outer ring close to the inner ring, in conflict with the first assumption. Even
when the differences in levels between inner and outer ring are differenced out with individual fixed effects
in panel data, the parallel trends assumption can be particularly problematic in spatial treatment settings.
Researchers oftentimes estimate the effect not just at one distance but at multiple distances, typically using
the same outer ring control group. This effectively requires that individuals at all distances up to the outer
ring are on the same parallel trend, with additively separable time fixed effects.

A simple example illustrates that these two assumptions are fundamental to the inner ring vs. outer ring
empirical strategy, are not guaranteed to be satisfied even in a true randomized experiment, and cannot be
relaxed through more flexible functional form in larger samples. Suppose that treatment only occurs in city
centers. Then the assumptions may require individuals living in downtown areas to be on parallel trends (in
the absence of treatment) to those on the outskirts of the city. Clearly, randomization of which cities the
treatment occurs in cannot guarantee such parallel trends. Furthermore, data from additional cities does not
make trends of inner cities and outskirts more likely to be parallel. Even in larger samples, one cannot choose
an outer ring closer to the inner ring because such outer ring individuals continue to (potentially) be affected
by the treatment themselves. These assumptions are therefore not just approximations to make finite sample
analysis feasible where asymptotically an analogous nonparametric specification identifies treatment effects:
Identification in this approach fundamentally rests upon the functional form assumptions even asymptotically,
and even with experimental data.

Instead, I recommend estimators that are formally valid under the quasi-experimental variation in
treatment location sometimes used to informally justify the assumptions of the inner ring vs. outer ring
empirical strategy. The inner ring vs. outer ring empirical strategy generally yields the most credible estimates
if the treatment is known not to have an effect past a short, known, distance. Then individuals on an outer
ring with small radius are likely to be comparable. Sometimes, these comparisons are then argued to be
justified by the fact that the exact location of the treatment was as good as random. For instance, Linden
and Rockoff (2008, p. 1110), referencing Bayer et al. (2008), argue that for their treatment, sex offenders
moving into neighborhoods, “the nature of the search for housing is also a largely random process at the
local level. Individuals may choose neighborhoods with specific characteristics, but, within a fraction of a
mile, the exact locations available at the time individuals seek to move into a neighborhood are arguably
exogenous.” However, as I demonstrate in Section 2, even at short distances this quasi-randomization is not
sufficient for inner and outer ring comparisons: In addition to randomization, the potential outcome surface
needs to be flat. The estimators proposed in this paper instead allow researchers to directly make use of such
credible identifying variation in the spatial locations of treatments.

Furthermore, using this design-based perspective I derive standard errors that are both conceptually
attractive and straightforward to compute irrespective of the spatial correlations in outcomes, simplifying
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inference in spatial treatment settings. The interpretation of the design-based standard errors I propose is
simple: If treatment had been realized in some of the counterfactual locations instead of some of the realized
locations, the point estimates would be different. That is, design-based standard errors reflect the variation
in estimates that arises due to the identifying variation in treatment locations, holding the individuals in the
sample and their potential outcomes fixed. This is the same variation that is needed for internal validity of the
causal effect estimates (Abadie et al., 2020). The variance formulas I derive are weighted averages of squared
(aggregated) potential outcomes and are straightforward to compute with sample analogs using observed
outcomes. I see the simplicity of computation as a key advantage over alternative standard errors that require
correct specification and estimation of, for instance, spatial autoregressive models that are often unrelated
to the research question and expertise of the researcher. In a baseline setting, the variance estimators I
derive are similar to clustering at the level of treatment assignment (Abadie et al., 2017) or, after aggregating
data, to Neyman (1923, 1990) standard errors for randomized experiments with individual-level treatment
assignment for a fixed population. I also extend my results to settings where realized treatment locations
close to one another cause interference. I show how to define exposure mappings (Aronow and Samii, 2017)
based on restrictions on interference that are often plausible in spatial settings, such as a maximum distance
past which the treatment is assumed not to affect individuals. Here, the design-based perspective allows easy
computation of standard errors even when clustering based on non-overlapping, discrete, independent groups
is not feasible.

I demonstrate the quasi-experimental methods I propose in an application studying the causal effects of
grocery stores on foot-traffic to nearby restaurants during COVID-19 shelter-in-place policies in April of 2020.
During shelter-in-places policies, consumers made few trips outside the home. Grocery stores may bring
consumers to particular neighborhoods, benefiting nearby restaurants, akin to anchor stores in shopping
malls. My study is informative about the extent and reach of economic externalities that businesses generate
in their local neighborhoods.

I use data on the spatial locations of grocery stores and other businesses to show how to find counterfactual
locations for spatial treatments in settings where these are not known by the design of an actual experiment.
My approach to finding counterfactual locations borrows tools from the literature on image recognition,
specifically convolutional neural networks. With some adjustments, these neural networks can use the
locations of observations as well as other covariates that vary across space as inputs. Through specific choices
in training, they capture the economic idea that local neighborhoods and relative spatial locations, rather
than absolute latitude and longitude, matter. Intuitively, the false positive predictions of grocery store
locations are counterfactual locations that resemble (to the algorithm) real grocery store locations. These
counterfactual locations are good “control” neighborhoods that are similar to neighborhoods of actual grocery
stores except for the absence of one marginal grocery store. I demonstrate that the neighborhoods of these
counterfactual locations have a similar business composition as the neighborhoods of real grocery stores.

Using data from SafeGraph3 for the San Francisco Bay Area, I find that grocery stores cause a substantial
increase in visits to restaurants within a couple of minutes walking. The number of visits to restaurants
very close to real grocery store locations is two to three times the number of visits to restaurants very close
to counterfactual locations. I measure visits to a restaurant as the total number of visits that SafeGraph
assigns to the restaurant based on repeated smartphone location pings at the restaurant from applications
that share users’ locations. However, the estimated effects are close to 0 at distances larger than 0.05 miles

3SafeGraph is a data company that aggregates anonymized location data from numerous applications in order to provide
insights about physical places.
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(approximately 80 meters or 260 feet) from the front entrance of the grocery stores, suggesting the externalities
of grocery stores are specific to very local neighborhoods.

While I argue in favor of this design-based, quasi-experimental strategy in this paper, the inner ring vs.
outer ring empirical strategy has its own advantages, such that both are complementary. Specifically, the
comparison with an “outer ring” effectively removes time-specific noise that is shared within a larger region
but distinct across regions. In contrast, the methods proposed in this paper focus mostly on eliminating
confounding due to differences in the spatial neighborhoods, such as population density, of treated and control
individuals. Whether spatial variation in treatment locations, temporal variation in the timing of treatments,
or functional form assumptions yield the most credible estimates of causal effects depends on the particular
empirical setting. Estimators that are consistent for causal effects as long as either spatial or temporal
variation (or both) is as good as random, or functional form assumptions are correct, are a particularly
promising topic for future research. Researchers may find studies particularly credible if several distinct
identification strategies lead to similar conclusions. Doubly-robust estimators (e.g. Robins and Rotnitzky,
1995; Belloni et al., 2017), which model both the outcome (conditional expectation) and assignment process
(propensity score), may offer an attractive bridge between approaches.

The potential outcomes framework I develop for spatial treatments highlights nuances in interpretation of
estimated average treatment effects that have received little attention in the literature thus far. Most recent
empirical work estimates the effects of spatial treatments at multiple distances. However, the average effects
at different distances are not generally comparable. Since some individuals are often more likely – before
realization of treatment assignment – to be close to treatment locations, their treatment effects typically get
more weight in average effect estimands at shorter distances, and less weight in average effect estimands at
longer distances. In other words, we cannot generally interpret effect-by-distance curves or the change in
effect between distances as average within-individual effects. Even the aggregate weight placed on individuals
near any one treatment location varies with distance. Both of these effects can lead to estimates of average
treatment effects that increase in distance, even though individual-level treatment effects are decreasing
in distance for every individual. The framework in this paper allows me to characterize estimators with
alternative weights on individuals to mitigate such issues. In addition, in this framework I can show how to
aggregate individual-level treatment effects to estimate the aggregate effects of treatment at a location on all
nearby individuals. Such aggregate treatment effects may be relevant for cost-benefit or welfare analysis.

In recent independent work, other researchers also consider treatments that are separate from outcome
units. Zigler and Papadogeorgou (2021) and Aronow et al. (2020) specifically consider the spatial treatment
setting with interference. The work of Aronow et al. (2020) in particular complements the present paper
by proving asymptotic normality and suggesting sampling-based inference following Conley (1999) for an
estimator similar to those proposed here. Borusyak and Hull (2020) use a regression, rather than potential
outcomes, framework that simplifies analysis of non-binary treatments through recentering of the realized
exposure by expected (over the assignment distribution) exposure. They suggest randomization inference
to test sharp null hypotheses and report Conley (1999)-type standard errors for their regression estimates.
McIntosh (2008) also considers spatial treatments in a regression framework. In his setting, some individuals
at the same locations as the treated individuals are assumed not to be affected by the treatment, resolving
the key issue of finding the right control group and suggesting a matching (based on absolute coordinates)
framework for standard errors that is not applicable when such a natural control group is unavailable. The
formal results in the present paper go beyond Zigler and Papadogeorgou (2021), Aronow et al. (2020), and
Borusyak and Hull (2020) by proposing design-based inference instead, which is conceptually attractive and
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simplifies computation of standard errors. Compared to Borusyak and Hull (2020), the inverse probability
weighting estimators and analysis in the potential outcomes framework proposed here simplify achieving
desirable weighting of possibly heterogeneous treatment effects. Furthermore, I propose machine learning
methods that allow finding counterfactual treatment locations in the data, a crucial step when applying any
of these methods on most observational data, while Zigler and Papadogeorgou (2021), Aronow et al. (2020),
and Borusyak and Hull (2020) do not address settings where these are unknown in detail.

Within the larger causal inference literature, the spatial treatment setting of this paper most closely
relates to work on interference and networks. Some work in causal inference explicitly considers spatially
correlated treatments (Delgado and Florax, 2015; Druckenmiller and Hsiang, 2019), but is not directly
applicable when spatial treatments occur at discrete points. The literature on interference is primarily
concerned with spillover, or indirect, effects of treatments assigned to individuals in violation of the stable
unit treatment value assumption (Rosenbaum, 2007; Hudgens and Halloran, 2008; Tchetgen Tchetgen and
VanderWeele, 2012; Aronow and Samii, 2017; Vazquez-Bare, 2017; Sävje et al., 2021; Sävje, 2021; Basse
et al., 2019). In contrast, in the spatial treatment setting treatment units are separate from outcome units,
requiring a different definition of potential outcomes and the stable unit treatment value assumption. The key
ideas in the present paper of finding the correct control group and using design-based inference are relevant
irrespective of (properly defined) interference and spillovers. For settings where interference is present, I
build on the work on exposure mappings (Aronow and Samii, 2017) for inference that incorporates the
distinct restrictions that are typically plausible for spatial treatment settings. While networks (for instance
Athey et al., 2018; Basse et al., 2019, for direct applications to causal inference) and spatial distance both
suggest dependence between outcomes for “nearby” units,4 the settings where either approach is the most
appropriate differ: in the treated units (nodes of the network vs. separate spatial location, see also Zigler and
Papadogeorgou (2021)), in the data requirements (known network vs. observable relative locations), and in
the channels “transmitting,” or moderating, treatment effects (network links vs. spatial proximity). Hence,
also the randomization distributions typically considered for causal inference differ between these settings.

This paper contributes to the recent literature illustrating creative uses of modern machine learning
methods for economic analyses.5. I propose a method for finding counterfactual candidate treatment locations
based on an adversarial task: Finding locations that are indistinguishable (to the algorithm) from realized
treatment locations. Most closely related, Athey et al. (2021) use generative adversarial networks (Goodfellow
et al., 2014) to create samples for simulation studies. Kaji et al. (2020) similarly propose “adversarial
estimation” to estimate structural models using generative adversarial networks. In each of these applications,
the aim is to generate synthetic samples which look indistinguishable from the real data. In the application
of this paper, only the counterfactual candidate treatment locations are synthetic, while the outcome and
covariate data around it are real. In this paper, I argue in favor of convolutional neural networks in particular,
based on the similarity between spatial data and image data, which sparked more recent developments
in this method (Krizhevsky et al., 2012). Relative spatial positions are similar to relative positions of
pixels, and different covariates at each location correspond to the different color channels of images. For
economic applications using satellite data (see Donaldson and Storeygard, 2016, for a review), convolutional
neural networks have also shown promise (e.g. Jean et al., 2016; Engstrom et al., 2021). Convolutional
neural networks are particularly attractive for spatial settings because they build on relevant economic

4In some cases, one may think of both network structure and relative spatial locations as different representations of the
same underlying latent space (cf. Hoff et al., 2002) that would be used directly if it was observable.

5See Mullainathan and Spiess (2017); Glaeser et al. (2018); Athey (2018); Gentzkow et al. (2019); Athey and Imbens (2019)
for recent reviews

6



intuition for regularization: While the geographic space might be large and high-dimensional, the immediate
spatial neighborhood often matters the most, and relative distances matter similarly at different absolute
locations. Through careful design decisions, the methods I propose for the spatial treatment setting retain
some interpretability in addition to the good performance commonly associated with “black box” machine
learning algorithms.

The framework and methods discussed in this paper may also prove useful for causal inference questions
not directly related to spatial treatments. First, other non-spatial settings similarly feature “treatments”
that are not directly assigned to individuals but affect them based on some measure of distance. In this
paper, I briefly discuss Bartik (1991)-, or shift-share, instruments, where for instance industry-level shocks
affect all cities depending on industry composition, with exposure of a city to the shocked industries as the
distance measure.6 Second, I develop an approach to finding suitable counterfactual candidate locations in
observational data based on flexible machine learning methods. This approach may extend to other settings
with dependency between observations where it is sometimes challenging to find (good) control observations,
such as event studies and other time series settings. Third, separating treatment assignment and outcome
individuals in this framework further clarifies distinctions between design-based and sampling-based inference
(Abadie et al., 2020). While design-based inference captures variation in treatment locations, sampling-based
inference can reflect sampling of individuals at fixed locations, within fixed regions (infill asymptotics (Cressie,
1993) in the spatial statistics literature), of a growing contiguous space (expanding domain asymptotics
(Cressie, 1993)), or of independent regions (clustering). The present paper focuses on design-based inference
specifically; in-depth comparisons of different modes of inference are beyond its scope.

My current analysis is limited in at least three important ways. First, I assume that outcome individuals
have fixed locations. This is problematic if individuals move, or migrate, strategically in response to the
treatment. In such a case, researchers can use pre-treatment locations, if such data are available, and estimate
the reduced form effect of the treatment on those who were nearby before the treatment occurred. Second,
the framework is not directly applicable to settings where researchers are interested in the causal effects of
spatially correlated characteristics of places, such as in the literature on social mobility (e.g. Chetty et al.,
2014). Instead, the present paper focuses on treatments that occur at discrete locations in space, rather
than a general treatment intensity surface. The ideal experiment of randomizing treatment locations yields a
distinct and tractable randomization distribution for the estimators studied in this paper. Third, there are no
claims of efficiency in the current paper. While I attempt to offer theory and estimators for a variety of spatial
treatment settings, the primary focus of this paper lies in developing a coherent conceptual framework that
allows me to characterize, discuss, and exploit the ideal experiment with spatial treatments. In particular, the
present paper provides no formal justification for the use of methods from the literature on sample splitting
and double robustness (e.g. Chernozhukov et al., 2018). The need to consider many relative spatial locations
for finding suitable counterfactual candidate locations makes this a high-dimensional estimation problem in
observational settings, suggesting the importance of methods and insights from that literature.

The remainder of this paper is organized as follows. Section 2 discusses how the assumptions required for
the existing inner vs. outer ring strategy differ from a (quasi-) random treatment location assumption, which
can be justified by the ideal experiment underlying the estimators proposed in this paper. Section 3 develops
a potential outcomes framework for spatial treatments. Section 4 contains the main results on identification,
estimation, and inference under the ideal experiment. Section 5 discusses how to extend these results to

6Adao et al. (2019) and Borusyak et al. (2022) take a similar design-based view where the “shifts” are random. See
Goldsmith-Pinkham et al. (2020) for an alternative that considers the “shares” to be random.
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additional settings of empirical relevance. Section 6 shifts the focus from experimental to observational data,
proposing assumptions and methods that allow researchers to emulate the ideal experiment. Section 7 shows
how to apply these methods in practice. In the conclusion, I discuss fruitful directions for future research on
causal inference for spatial treatments.

2 Comparison To Inner vs. Outer Ring Empirical Strategies

I compare the “inner vs. outer ring” empirical strategy used by most existing empirical studies of spatial
treatment and the (quasi-) experimental strategy proposed in this paper.

To build intuition, consider a simplified setting of a spatial treatment occurring at a location 𝑠 ∈ R in
one-dimensional space. The researcher is interested in the effect the treatment at 𝑠 has on outcomes 𝑌𝑖 of
individuals 𝑖 who are also located in the same one-dimensional space. Specifically, the researcher wants to
estimate the effect of the treatment on individuals who are a short distance 𝑑short away from treatment; that
is, individuals at locations 𝑟𝑖 = 𝑠− 𝑑short and 𝑟𝑖 = 𝑠+ 𝑑short.

The “inner vs. outer ring” strategy and the experimental strategy differ in their choices for a control
group. When there is treatment at location 𝑠, the researcher observes the “treated” potential outcomes for
individuals at locations 𝑠 − 𝑑short and 𝑠 + 𝑑short. The question is which other individuals have outcomes
similar to the outcomes that “inner ring” individuals at 𝑠 ± 𝑑short would have had without treatment at
location 𝑠. To make any progress on this question, one needs to assume that there are some individuals,
typically individuals sufficiently far away from treatment, who are unaffected by it. Otherwise, one cannot,
in general, learn about the (potential) outcome in the absence of treatment. The “inner vs. outer ring”
strategy chooses “outer ring” individuals at locations 𝑠 − 𝑑long and 𝑠 + 𝑑long as the control group, where
𝑑long ≫ 𝑑short. Figure 1 illustrates the comparison underlying this empirical strategy in two-dimensional
space. The experimental strategy instead chooses individuals at locations 𝑠′ − 𝑑short and 𝑠′ + 𝑑short near a
counterfactual location 𝑠′ where treatment could plausibly have occurred, but (quasi-) randomly did not.
Intuitively, if the treatment occurs in a business district location 𝑠 such that individuals at 𝑠± 𝑑short are in
the business district, then a good control group may be individuals at 𝑠′ ± 𝑑short in other business districts
𝑠′ where treatment did not occur for exogenous reasons, while individuals at 𝑠+ 𝑑long may be outside any
business district. Formally, I justify such estimators with an ideal experiment where the locations of the
treatment are randomized between some plausible candidate treatment locations.

For simplicity, suppose that individuals are located uniformly across space and that outcomes in the
absence of treatment are quadratic in location. That is, 𝑌𝑖(0) = 𝑟2

𝑖 where 𝑌𝑖(0) is the potential outcome of
individual 𝑖 at location 𝑟𝑖 ∈ R if there is no spatial treatment nearby. Then the average outcome individuals
at 𝑠± 𝑑short would have had in the absence of treatment is 1

2 (𝑠− 𝑑short)2 + 1
2 (𝑠+ 𝑑short)2 = 𝑠2 + (𝑑short)2

where the equal weights 1/2 are due to the uniform distribution of individuals across space.
This example illustrates that the outer ring control group will not, in general, estimate the outcome in the

absence of treatment correctly, even if the treatment location was randomized and even if the researcher has
access to a large sample. Instead, the outer ring individuals have average outcomes 𝑠2+(𝑑long)2 > 𝑠2+(𝑑short)2.
That is, no matter how the location 𝑠 was chosen, whether endogenously or randomly in an experiment,
the outer ring control group over-estimates the outcome in the absence of treatment by (𝑑long)2 − (𝑑short)2.
Observing multiple separate one-dimensional spaces does not resolve this issue, irrespective of how the
treatment locations are chosen in each space. It may be tempting to consider the limit of (𝑑long)2 − (𝑑short)2

as 𝑑long → 𝑑short. However, when 𝑑long ≈ 𝑑short, the individuals at 𝑠± 𝑑long are themselves affected by the
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(a) 𝜏(𝑑short) for short distance 𝑑short
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(b) 𝜏(𝑑med) for medium distance 𝑑med

Figure 1: Existing estimators focus only on locations where the treatment did occur. In this figure, the
realized treatment location is shown as a filled-in triangle. The treatment group consists of individuals in an
“inner ring” at a given distance of interest from treatment, here displayed as small filled-in circles. The control
group consists of individuals in an “outer ring” who are farther away from realized treatment, here displayed
as hollow squares. With panel data, existing estimators use pre- and post-treatment data for both groups in
a difference-in-differences setup. Typically, when researchers estimate the effect at multiple distances, the
same control group is used for all distances. Panel a shows the estimator 𝜏(𝑑short) for a short distance 𝑑short.
Panel b shows the estimator 𝜏(𝑑med) for a medium distance 𝑑med.

treatment, and hence their outcomes may be uninformative about the outcome in the absence of treatment.
The (quasi-) experimental estimator instead uses individuals near counterfactual locations such that

treatment assignment is as-good-as-random between realized and counterfactual locations. In the example of
quadratic outcomes, if treatment is realized at a location 𝑠, then a counterfactual location is 𝑠′ = −𝑠. The
average control potential outcomes of individuals at 𝑠± 𝑑short are 𝑠2 + (𝑑short)2; but it is unobserved due to
treatment at location 𝑠 – instead, treated potential outcomes are observed. The average control potential
outcomes of individuals at 𝑠′ ± 𝑑short are (𝑠′)2 + (𝑑short)2, which is the same because (𝑠′)2 = (−𝑠)2 = 𝑠2.
Since individuals at 𝑠′ ± 𝑑short could, in general, also be affected by treatment at location 𝑠, the simplest
experimental estimators use multiple separate one-dimensional spaces, where treatment in one space does not
affect outcomes in other spaces. Then, by randomizing which of these spaces have any treatment, one can
use a control group comprised of individuals at 𝑠± 𝑑short and (−𝑠) ± 𝑑short from a space without treatment.
I propose a machine learning algorithm to find such counterfactual locations in real applications where a
(absolute or relative) location 𝑠 does not directly transfer to another space, and outcomes are not quadratic
so a location −𝑠 may not offer a suitable counterfactual either. Furthermore, I show that even if one has data
from only one space with several realized treatment locations, it is possible to estimate similar treatment
effect estimands and do inference along similar lines.

Some existing work explicitly argues that the location of the treatment is as-good-as-random within some
set of locations, justifying the estimators proposed in this paper. Linden and Rockoff (2008), as quoted
in the introduction, argue that “the exact locations available at the time individuals seek to move into a
neighborhood are arguably exogenous.” Diamond and McQuade (2019, p. 1065) similarly state that “the
exact geographic location of the development site within a broader neighborhood appears to be determined
by idiosyncratic characteristics, such as which exact plot of land was for sale at the time.” In general, the
ideal experiment for spatial treatments, in analogy to more familiar individual-level treatments, randomizes
the presence and absence of treatments. In this paper, I propose estimators and inference procedures for
this ideal experiment, as well as methods for observational data that allow researchers to emulate the ideal
experiment.
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The inner vs. outer ring strategy, as demonstrated in the example above, is not justified by the same
ideal experiment; instead it relies on two, partly conflicting assumptions: First, the outer ring individuals
must have control potential outcomes that are comparable to the control potential outcomes of inner ring
individuals. Second, the outer ring individuals must be unaffected by the treatment.

The outer ring individuals are most plausibly comparable to inner ring individuals if the outer ring has
small radius so inner and outer individuals are close to one another. In many applications with spatial data,
individuals who are close to one another in space tend to have similar outcomes. Especially when treatment
locations are chosen strategically, distance from treatment is likely to correlate with other characteristics
that affect outcomes. For instance, if treatments occur in city centers, inner ring individuals may be located
in inner cities while outer ring individuals, if the radius of the outer ring is too large, are located on the
outskirts of cities. Typically, researchers estimate the effect of the treatment at multiple distances, comparing
different inner ring individuals to the same outer ring individuals (for instance, distances 𝑑short and 𝑑med in
Figure 1). Hence, in practice they need to assume that the potential outcome surface is flat on average (or,
with panel data, on parallel trends as discussed below) for the entire areas around the treatment locations up
to and including the outer rings.

The outer ring individuals are most plausibly unaffected by the treatment if the outer ring has large radius
so outer ring individuals are far away from treatment. If individuals on the outer ring were directly affected
by treatment, their observed outcomes would not generally be informative about the potential outcomes in
the absence of treatment for the inner ring individuals, even if these individuals are comparable in the absence
of treatment. The effects of many spatial treatments plausibly decay with distance to treatment. Assuming
that the treatment has no effect after a certain distance (cf. Assumption 4) then provides a reasonable
approximation and may be necessary for any inference on causal effects.

The conflict between an outer ring with smaller or larger radius is inherent in this empirical strategy and
cannot be alleviate through more flexible functional form or additional data. The choice of radius for the
outer ring needs to carefully balance the two conflicting assumptions.

Using panel data rather than cross-sectional data does not necessarily resolve this conflict: Panel data
allows potential outcomes of inner and outer ring individuals to be at different levels, but requires parallel
trends. Potential outcomes may or may not follow parallel trends in the post-treatment period, even if
trends appear parallel in pre-treatment periods.7 Especially when treatment locations are chosen strategically,
the (approximate) timing of treatments may also be chosen strategically even if some other factors, such
as bureaucratic processes, also have some influence on the exact timing. When timing of treatment is
exogenous, empirical strategies exploiting it can complement the strategy based on exogenous variation in
treatment location proposed in this paper. In a difference-in-differences design, a control group based on
the counterfactual candidate treatment locations that are the focus of this paper may offer an attractive
alternative to outer ring control groups. In the earlier example, it would imply assuming parallel trends
of potential outcomes in inner of similar cities, some with treatment, some without, rather than assuming
parallel trends of potential outcomes of inner cities and outskirts of the cities with treatment. Which parallel
trends assumption is more credible depends on the particular application, but researchers should clearly

7Assessing if pre-trends are parallel at many different distances from treatment may be problematic by itself (for analysis
with a single treatment group, relevant for a single inner ring compared to a fixed outer ring, see for instance Manski and Pepper,
2018; Freyaldenhoven et al., 2019; Rambachan and Roth, 2019) and difficult to achieve visually in the familiar event study plots.
With multiple inner rings, event study plots become three-dimensional (time, distance from treatment, outcome) and include
plotting multiple planes if standard errors are to be included, where whichever plane is plotted “on top” in a two-dimensional
projection would presumable obscure the other two planes. See Diamond and McQuade (2019, Figures 3, 4, 5) for an example of
such a three-dimensional event study plot but without standard errors.
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articulate which individuals have potential outcomes following parallel trends and why such an assumption is
plausible. Exogenous variation in the locations of spatial treatments does not guarantee these parallel trends
of inner and outer rings.

Exogenous variation in the locations of spatial treatments, even if created by a true randomized experiment,
does not generally justify the assumptions of the inner vs. outer ring empirical strategies. In the earlier
example, no matter where treatment occurred, the outer ring strategy overestimates the control potential
outcomes of the inner ring individuals. Except for knife-edge cases involving a favorable combination of
outcome surface curvature and the distribution of individuals across space, the outer ring individuals are not
good control units for the inner ring individuals. The most plausible such edge case is one where the potential
outcome surface is flat. Yet a flat potential outcome surface cannot be guaranteed by experimental design; it
inherently depends on the setting and individuals and is outside an experimenter’s control. To justify the
comparison of inner and outer ring individuals, researchers should therefore argue that the outcome surface is
flat on average (or there are no systematic trends at any distance from treatment if using panel data), rather
than arguing that the location of the spatial treatments was exogenous. In such a case, researchers should
justify why in their settings the particular spatial treatment of interest may cause differences in outcomes
by distance from treatment, while all other features of geography, institutions, or types of individuals are
either distributed uniformly across space or have effects that do not affect outcomes at different distances
differently. Additionally, if one believes that the outcome surface is flat within some known area, there is no
rationale for relying on an outer ring. Researchers could use all individuals who are far enough away from
the treatment location to be unaffected by treatment but within the area where the outcome surface is flat.

The primary advantage of an outer ring control group under the ideal experiment is a reduction in
variance. If there are substantial differences between the larger neighborhoods of different treatment locations,
the variance of potential outcomes across treatment locations is large. Similar to standard randomized
experiments (cf. Imbens and Rubin, 2015), this marginal variance of potential outcomes also appears in the
variance of estimators of spatial treatments proposed in this paper. If individuals of an outer ring are in
the same larger neighborhoods as the inner ring individuals, and have similar levels of potential outcomes,
differencing outcomes of inner and outer ring individuals can reduce the variance that is due to “shocks” that
are shared within the larger neighborhoods. Importantly, however, the outer ring individuals still must not
be affected by the treatment themselves (otherwise one estimates an effect relative to the effect on the outer
ring), and only yield identification of causal effects under appropriate functional form assumptions.

If causal effects are identified because the locations of spatial treatments are plausibly exogenous, the
methods proposed in this paper allow researchers to align their empirical strategy with the source of
exogenous variation and to emulate the ideal experiment. The methods proposed here can be combined with
a differencing approach of inner and outer rings to reduce variance. The outer ring then plays a similar role to
a pre-treatment period in a difference in differences design with random treatment assignment: Identification
of causal effects is based on randomization, but the differencing with pre-treatment (outer ring) outcomes
can reduce variance.

3 Setup: Spatial Treatments

In this section, I propose an extension of the potential outcomes notation (cf. Neyman, 1923, 1990; Rubin,
1974; Imbens and Rubin, 2015) that treats the level of treatment assignment as conceptually distinct from
the level at which outcomes are measured. This distinction separates the intervention that is the cause of the
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Figure 2: Illustration of the setup. While typically only relative locations matter, locations are often given by
their “GPS coordinates” as latitude and longitude. In the figure, the candidate treatment locations where
the treatment may occur are given by triangles. The small circles indicate the locations of individuals. The
researcher typically estimates the treatment effects, caused by treatment at one of the candidate locations
and experienced by the individuals, conditional on distance from treatment. When the (weighted) Euclidean
distance function is used, individuals within a narrow distance bin from a candidate location are located on a
ring, here displayed as an area shaded gray. If driving time is used instead to measure distance, individuals
at a given distance need not be located on a circular ring. The figure shows data from a single region. In the
baseline setting of this paper, the researcher has data from multiple such regions, with treatment realized
only in some of them. If treatment is realized at multiple (both) candidate locations (triangles) within the
same region, there is potential interference between them, complicating estimation and inference. In the
baseline setting, the probability of treatment at locations and in regions describes a two-stage process. In the
first stage, a number of regions are chosen randomly for treatment somewhere in the region. In the second
stage, a single candidate location in each chosen region is chosen randomly to receive treatment.

effect from the individuals for whom the effect is measured. It allows me to formally characterize estimands
of interest, and to derive estimators and their properties in the following sections.

With spatial treatments, potential outcomes of individuals are functions not of an individual-level binary
or continuous treatment, but of a set of candidate treatment locations.

Treatment Locations We are interested in the effects of spatial treatments. Let S denote the set of
candidate treatment locations, shown as triangles in Figure 2. The set of candidate treatment locations is
finite; in the example of Figure 2 just two locations in the region shown. This reflects an inherent scarcity
that is common to most applications: Only a small number of locations are ultimately realized, and most
locations are infeasible, unsuitable, implausible, or exceedingly unlikely for the treatment.

In spatial settings, the candidate locations are typically given by latitude and longitude or other (potentially
relative) coordinates, such that S ⊂ R2. Throughout this paper, the set S is finite, as virtually any practical
application will be based on some discretized, or rounded, locations. One can, however, take S as defining a
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finely spaced grid over R2. This is convenient to conceptualize situations where treatment could be realized
anywhere with some positive probability. The random variable 𝜉 ⊂ S denotes the set of realized treatment
locations.

Individual Locations and Potential Outcomes We measure the outcome of interest for units indexed
by 𝑖. For the remainder of this paper, I will refer to these outcome units as individuals, but in some settings
𝑖 may be a business, census tract, or similar, typically small, unit with fixed geographic location. Denote
the set of all individuals by I. Individual 𝑖 has spatial location, or residence, 𝑟𝑖, shown as small circles in
Figure 2. Throughout this paper, I assume that the locations of individuals are fixed; there is no migration.
In some applications, 𝑟𝑖 corresponds to, for instance, the workplace of individual 𝑖 rather than their residence.
The location of 𝑖 is in the same space as the candidate treatment locations, such that typically 𝑟𝑖 ∈ R2 are
latitude and longitude. Define potential outcomes for each individual 𝑖 ∈ I

Potential Outcomes: 𝑌𝑖(𝑆) ∀𝑆 ⊂ S

as the outcome for individual 𝑖 if treatment is realized in locations 𝑆 ⊂ S. To simplify notation, and consistent
with standard potential outcomes notation, let the potential outcome of individual 𝑖 in the absence of any
realized treatment be 𝑌𝑖(0) ≡ 𝑌𝑖(∅).

Treatment Effects The treatment effects of primary interest contrast some treatment vector 𝑆 ⊂ S
with the absence of realized treatments, 𝑆′ = ∅. Specifically, I define the effect of 𝑆 on an individual 𝑖 ∈ I as

Treatment Effects: 𝜏𝑖(𝑆) ≡ 𝑌𝑖(𝑆) − 𝑌𝑖(0) ∀𝑆 ⊂ S

Oftentimes, the treatment vector of interest, 𝑆, is a singleton, 𝑆 = {𝑠} for a single candidate location 𝑠 ∈ S.
With slight abuse of notation,8 define

Treatment Effects: 𝜏𝑖(𝑠) ≡ 𝑌𝑖(𝑠) − 𝑌𝑖(0) ∀𝑠 ∈ S.

I define meaningful average treatment effects in Section 4. These average treatment effects average across
both individuals 𝑖 and treatment vectors 𝑆.

Distances Distances between treatment locations and individuals are central to defining interesting average
treatment effects in Section 4. For instance, the researcher may estimate the average effect of a treatment at
a distance of 1 mile. In Figure 2, the areas shaded gray highlight all locations approximately 1 mile away
from any candidate treatment location. The distance between treatment location 𝑠 ∈ S and individual 𝑖 ∈ I
is given by a distance function

Distance Function: 𝑑(𝑠, 𝑟𝑖) ≥ 0

Importantly, the distance between two locations must be observable (to the researcher) and must not be
affected by treatment assignment, ruling out migration in response to the treatment.9

8In this paper, I consistently use lower-case letters for individual locations and upper-case letters for sets of locations. The
random variable 𝜉 of realized locations is always a set of locations. The random variable 𝜉𝑗 of realized locations in region 𝑗 is a
particular location in the baseline setting of Section 4, and a set of locations in some of the extensions in Section 5.

9By fixing distances prior to treatment, one can estimate the “reduced form” effect of assigned distance to treatment even in
the presence of migration.
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The distance function is used for two purposes. First, to estimate heterogeneous average treatment
effects by distance from treatment. Second, to assume distances at which treatments have no effect to limit
interference and to thereby aid in estimation and inference.

When locations are given as Cartesian coordinates, we can use the Euclidean distance in R2:

Euclidean Distance: 𝑑(𝑠, 𝑟𝑖) =
√︁

(𝑠1 − 𝑟𝑖,1)2 + (𝑠2 − 𝑟𝑖,2)2

When locations are given by latitude and longitude, the Great Circle distance is more accurate than a
Euclidean distance with fixed weights on latitude and longitude.10

For some applications in social sciences, driving distances are arguably more relevant. Suppose the spatial
treatment corresponds to an employer opening a new location. Then an individual’s access to the treatment,
and hence treatment effect, likely depends on driving time rather than straight line distance. However,
computing driving times between many locations may be computationally and financially expensive. When
using straight line distances instead, some interpretability, but not validity, is lost.

We can also study the effects of state-wide policies and other clustered assignments in this framework. In
this setting, each candidate treatment location 𝑠 ∈ S corresponds to one cluster, or state. The appropriate
distance function for this setting is

Cluster Membership: 𝑑(𝑠, 𝑟𝑖) =

⎧⎨⎩0 if 𝑠 and 𝑟𝑖 are in the same cluster

1 otherwise

In the simplest case of state-wide policies, we use this distance function to estimate the treatment effect at a
distance of 0. This corresponds to estimating the treatment effect of the policy by comparing individuals in
treated states to individuals in untreated states where the policy could also have been implemented. We can
generalize the cluster membership function to be smooth in distance to a treated state: For individuals in
treated states, this distance is 0. For individuals in untreated states, the distance is smallest if they are most
exposed to treated states. Exposure may measure, for instance, distance to the state border, shared media
markets, number or cost of flights between airports, or the relevance of the industries of treated state 𝑠 to 𝑖’s
occupation.11

Regions In many applications, it is convenient to group individuals and treatment locations into regions.
For instance, in a sample of data from different cities, individuals and treatment locations of each city may
form a separate region. When regions are not directly coded in the data, one can sometimes define regions
based on geographic proximity such that treatment locations only have effects within their own regions. That
is, no individual is close enough to candidate treatment locations from two or more distinct regions to be
affected by both of them. Figure 2 shows data from one such region. In the baseline setting of this paper, the
researcher has access to data from multiple such regions with at most one candidate location realized in each
region, but this requirement is relaxed in Section 5.1.

Throughout, I denote regions by subscripts 𝑗 = 1, . . . , 𝐽 . Let S𝑗 ⊂ S be the set of candidate treatment
locations within region 𝑗. The set of realized treatment locations within region 𝑗 is 𝜉𝑗 . If treatment is realized

10For instance, moving 0.01 degrees west in New York City corresponds to a distance of about 0.52 miles. Moving 0.01 degrees
west in Miami corresponds to a distance of 0.62 miles. This occurs because the distance between degrees of longitude is largest
at the equator and converges to 0 at the poles, while the distance between degrees of latitude is (approximately) fixed.

11The example of industries is the original inspiration for Bartik (1991), or shift-share, instruments. See Adao et al. (2019);
Goldsmith-Pinkham et al. (2020); Borusyak et al. (2022) for recent treatments in econometrics, and Section 5.2 for how the
framework of this paper relates.
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within region 𝑗, 𝜉𝑗 ̸= ∅, let 𝑊𝑗 = 1, and otherwise, 𝜉𝑗 = ∅, let 𝑊𝑗 = 0. If 𝑊𝑗 = 1, I say that region 𝑗 “is
treated” or “is a treated region.” Analogously, if 𝑊𝑗 = 0, I say that region 𝑗 “is a control region.” Let I𝑗 ⊂ I
be the set of individuals 𝑖 with residence in region 𝑗. The region where individual 𝑖 resides is given by 𝑗(𝑖),
such that 𝑖 ∈ I𝑗(𝑖).

Interference The notation in this paper can be seen as an extension of the notation of the literature on
interference (cf. Aronow and Samii, 2017). Consider first a setting with individual-level treatments. Let 𝐴𝑖 be
the treatment assigned to an individual 𝑖 = 1, . . . , 𝑛, and 𝐴 ∈ {0, 1}𝑛 be the vector stacking all of the 𝐴𝑖. In
the absence of interference, that is, under the stable unit treatment value assumption (cf. Imbens and Rubin,
2015), the observed outcome of individual 𝑖 is 𝑌𝑖 = 𝑌𝑖(𝐴𝑖). With interference, the outcome of individual 𝑖 may
depend not only on her own treatment assignment, but also on the treatment assignment of other individuals.
That is, the potential outcomes of 𝑖 are functions of the entire vector 𝐴 rather than only her own 𝐴𝑖, and her
observed outcome is 𝑌𝑖 = 𝑌𝑖(𝐴). Notationally, spatial treatments generalize this setting by allowing 𝐴 to
have a dimension other than 𝑛, the number of individuals. For the closest analogy, enumerate the candidate
treatment locations by 𝑘 = 1, 2, . . . ,𝐾 where 𝐾 ≡ |S| is the finite number of candidate treatment locations.
The random variable of realized treatment locations takes on values 𝜉 ∈ {0, 1}𝐾 , such that 𝜉𝑘 ≡ 1 whenever
the k-𝑡ℎ candidate location is treated, and 𝜉𝑘 ≡ 0 otherwise. The realized outcome for individual 𝑖 is then
𝑌𝑖 = 𝑌𝑖(𝜉), where 𝜉 is 𝐾 rather than 𝑛 dimensional.

Consider the example given in Figure 2. Some individuals are at a distance of 1 mile from both treatment
locations. If the treatment has an effect at that distance, the treatment states of both candidate locations
jointly determine the observed outcome. The two candidate locations can interfere because conditional on
the treatment state of just one of them, the outcome for some individuals still varies with the treatment
assignment of the other candidate location.

The literature on interference is typically interested in answering (at least) one of two questions. First,
what is the effect of changing 𝑖’s treatment status, holding the treatment status of 𝑖’s neighbors fixed? Second,
what is the effect of changing the treatment status of 𝑖’s neighbors, holding the treatment status of 𝑖 fixed?

With spatial treatments, neither of these questions is of primary interest. If 𝑖 is 1 mile away from a
realized treatment location, then a neighbor of 𝑖, say 𝑖′, is also approximately 1 mile away from the same
realized treatment location. A counterfactual where 𝑖 is 1 mile away from a realized treatment location, while
her neighbor 𝑖′ is not, is typically neither feasible nor relevant in practice. The treatment does not spill over
from 𝑖 to 𝑖′, it affects both of them directly, such that decompositions into direct and indirect effects (cf.
Hudgens and Halloran, 2008) are not well defined.12

Interference in the spatial treatment setting refers to multiple treatment locations affecting the same
individual, rather than the treatment or effect of one individual spilling over to another individual. Formally,
a treatment location 𝑠 affects an individual 𝑖 if for some set of treatment locations 𝑆 ⊂ S, the outcome of 𝑖
changes when 𝑠 is included or excluded: 𝑌𝑖(𝑆 ∪ {𝑠}) ̸= 𝑌𝑖(𝑆 ∖ {𝑠}). Two treatment locations 𝑠, 𝑠′ ∈ S interfere
with one another if there is an individual 𝑖 affected by treatment at both locations, that is ∃𝑖 ∈ I, 𝑆, 𝑆′ ⊂ S
with 𝑌𝑖(𝑆 ∪ {𝑠}) ̸= 𝑌𝑖(𝑆 ∖ {𝑠}) and 𝑌𝑖(𝑆′ ∪ {𝑠′}) ̸= 𝑌𝑖(𝑆′ ∖ {𝑠′}).

In spatial treatment settings, it is often natural to assume that treatment locations that are far away
from an individual do not affect her. Formally, assume that whenever 𝑑(𝑠, 𝑟𝑖) > 𝑑max for some sufficiently

12If some individuals are optionally excluded from accessing a treatment location, we can think of them as two distinct
locations 𝑠 and 𝑠′ sharing the same geographic location. Suppose an individual 𝑖 has access to location 𝑠 but not to location
𝑠′. Then 𝜏𝑖(𝑠) is the effect of an accessible treatment at that geographic location. In contrast, 𝜏𝑖(𝑠′) is the effect of a spatial
treatment at that geographic location to which 𝑖 does not have access but some neighbors of 𝑖 may have access. Loosely speaking,
𝜏𝑖(𝑠′) is then the spillover, or indirect, effect on 𝑖.
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large distance 𝑑max, 𝑌𝑖(𝑆 ∪ {𝑠}) = 𝑌𝑖(𝑆 ∖ {𝑠}) for all 𝑆 ⊂ S. Assumption 1 formally states that there is no
interference across regions.

Assumption 1 (No Interference Across Regions). Individuals in region 𝑗 are unaffected by treatment
locations in regions 𝑗′ ̸= 𝑗. That is, for 𝑖 ∈ I𝑗 and 𝑆 ⊂ S,

𝑌𝑖(𝑆) = 𝑌𝑖(𝑆′)

whenever 𝑆 ∩ S𝑗 = 𝑆′ ∩ S𝑗 .

Regions are sufficiently far apart that individuals in one region are unaffected by treatment locations in
another region. The results under the baseline setting of this paper, however, fundamentally rely on the
absence of interference between treatment locations that are far apart, not on separate regions. Section 5.1
discusses a setting where all data available to the researcher comes from a single large contiguous region.
In that setting, identification of the simple estimands of Section 4 requires additional assumptions, but the
estimators I propose in Section 5.1 retain some interpretability and inference procedures are valid even if
those assumptions are violated. The separate region framework, however, helps clarify key concepts by
simplifying estimators, and it is applicable to a large number of empirical studies. The assumption that
treatment locations only affect individuals within the same region is similar in spirit to assumptions that
interference or spillovers are limited to family members, classrooms, or other subgroups in settings with
individual-level treatments (e.g. Vazquez-Bare, 2017).

Treatment Probabilities The assignment mechanism (Imbens and Rubin, 2015) determines the probabil-
ities with which treatment is realized at each of the candidate treatment locations. The marginal probability
that treatment is realized at a location 𝑠 ∈ S is given by Pr(𝑠 ∈ 𝜉). In the main part of the paper, I
consider a two-stage assignment mechanism that imposes structure on Pr(𝑠 ∈ 𝜉) as well as on the conditional
probabilities Pr(𝑠 ∈ 𝜉 | 𝑠′ ∈ 𝜉) and Pr(𝑠 ∈ 𝜉 | 𝑠′ ̸∈ 𝜉). In the first stage, either a fixed number of regions is
chosen to receive treatment, or assignment is through independent Bernoulli trials (coin flips). In the second
stage, a single location receives treatment in each treated region. I discuss methods for some observational
settings that deviate from this assignment mechanism in sections 5.1.

Suppose the randomization of treatments across regions takes the form of a completely randomized
experiment with a fixed number of treated regions. Assumption 2 formalizes this design together with an
assumption that each region is equally likely to be treated. Define 𝜋𝑗 ≡ Pr(𝑊𝑗 = 1) for 𝑗 = 1, . . . , 𝐽 to
be the probability that a region receives treatment. Note that the completely randomized design differs
from experiments that are paired or stratified at the region-level. Results for stratified experiments are
generally similar and can be obtained by substituting the appropriate covariances of treatment indicators in
the proofs. Estimating the variance of estimators under paired designs is often difficult (e.g. Bai et al., 2019,
for individual-level treatment assignment), but does not contribute conceptually to our understanding of the
spatial treatment setting.

Assumption 2 (Completely Randomized Experiment). Regions are chosen for treatment according to a
completely randomized design (e.g. Imbens and Rubin, 2015, ch. 4.4) where each region has equal marginal
probability of receiving treatment somewhere, 𝜋 = 𝜋𝑗 for all regions 𝑗. That is, all assignment vectors
𝑊 ∈ {0, 1}𝐽 with

∑︀
𝑗 𝑊𝑗 = 𝐽𝑡 ≡ 𝜋𝐽 are equally likely, and assignments with

∑︀
𝑗 𝑊𝑗 ̸= 𝜋𝐽 have zero
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probability:

Pr(𝑊 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝𝐽
𝐽𝑡

⎞⎠−1

if
∑︀𝐽

𝑗=1 𝑊𝑗 = 𝐽𝑡

0 otherwise

As an alternative to completely randomized designs with fixed probability of treatment, I also consider
designs where treatment is decided by independent coin flip for each region, potentially with different
probabilities. Assumption 3 below formalizes this assumption.

Assumption 3 (Bernoulli Trial). Regions are chosen for treatment according to a Bernoulli trial (e.g. Imbens
and Rubin, 2015, ch. 4.3) where region 𝑗 has marginal probability 𝜋𝑗 of receiving treatment somewhere and
assignment is independent across regions. That is, the probability of assignment 𝑊 ∈ {0, 1}𝐽 is

Pr(𝑊 ) =
𝐽∏︁

𝑗=1
𝜋

𝑊𝑗

𝑗 (1 − 𝜋𝑗)1−𝑊𝑗

such that the number of treated regions varies.

In the main part of the paper, I consider a setting with exactly one treated location in each treated region.
This restriction of the assignment mechanism rules out interference by design under the minimal assumption
that treatments have no effects across regions. For each candidate treatment location in a region, 𝑠 ∈ S𝑗 ,
define the probability of treatment conditional on the region receiving treatment as 𝑔𝑗(𝑠) ≡ Pr(𝑠 ∈ 𝜉 |𝑊𝑗 = 1).
Then, by the definition of conditional probabilities, Pr(𝑠 ∈ 𝜉) = Pr(𝑠 ∈ 𝜉 |𝑊𝑗 = 1) Pr(𝑊𝑗 = 1) = 𝑔𝑗(𝑠)𝜋𝑗 .
The notational distinction between treatment of regions and treatment of particular locations within regions is
motivated by an asymmetry in which potential outcomes are observed: In control regions, the control potential
outcomes are observed for all individuals near each (counterfactual) candidate treatment location. In treated
regions, in contrast, only the treated potential outcomes corresponding to one particular treatment location
are observed for all individuals. This asymmetry is apparent in the estimators and variances throughout
section 4.

4 Experimental Setting: Estimation and Inference

In the ideal experiment, treatment is randomized between candidate locations in a way that rules out
interference by design. In this baseline setting, locations are grouped into separate regions, and some regions
are randomly chosen for treatment assignment, followed by randomization of the location of treatment among
candidate locations within each treated region, as outlined in Section 3. I show how to use this random
variation for identification, estimation, and inference of individual-level and aggregate treatment effects.

4.1 Individual-Level Effects

Individual-level effects express the average effects of treatment locations on individuals.

4.1.1 Average Treatment Effect on the Treated

The most intuitive estimator of the average effect of a spatial treatment on nearby individuals takes the
simple average of individuals near realized treatment and subtracts from it the average outcome of properly
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chosen control individuals. In this section, I first show who the proper control individuals are under the
ideal experiment of random variation in treatment locations. Then I present properties of this estimator and
discuss its interpretation as the average treatment effect on the treated.

The average of individuals who are treated at a distance 𝑑± ℎ from a treated location is

𝑌𝑡(𝑑) = 1∑︀
𝑖∈I𝑊𝑗(𝑖)1{|𝑑(𝜉𝑗(𝑖), 𝑟𝑖) − 𝑑| ≤ ℎ}

∑︁
𝑖∈I

𝑊𝑗(𝑖)1{|𝑑(𝜉𝑗(𝑖), 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖

where 𝑊𝑗(𝑖) = 1 if and only if individual 𝑖 is in a region 𝑗(𝑖) that is treated. The indicator function equals 1
if and only if the distance between individual 𝑖 and the realized treatment location in her region, 𝜉𝑗(𝑖), is
within the distance bin of distances between 𝑑− ℎ and 𝑑+ ℎ. For instance, to estimate the average outcome
for individuals who are between 1 and 2 miles from treatment, calculate 𝑌𝑡(1.5) with ℎ = 0.5.

The choice of control individuals to compare this average of treated individuals to is less obvious. Recent
empirical studies compare the treated to controls on an outer ring; that is, to individuals 𝑖′ in treated regions
(𝑊𝑗(𝑖′) = 1) who are farther away from treatment. Effectively, this estimates the treatment effect at distance
𝑑 as 𝑌𝑡(𝑑) − 𝑌𝑡(𝑑′) where 𝑑′ ≫ 𝑑. In analogy to individual-level randomized experiments, one might also
consider taking the simple average of individuals in control regions,

∑︀
𝑖(1 −𝑊𝑗(𝑖))𝑌𝑖/

∑︀
𝑖(1 −𝑊𝑗(𝑖)). While

either of these strategies is valid under further assumptions or in particular settings, below I argue in favor of
a different strategy that is justified by the experimental design.

One particular choice of (weighted) control average is, however, justified by the experimental design of
the ideal experiment considered in this paper:

𝑌𝑐(𝑑) =

∑︀
𝑖∈I

1−𝑊𝑗(𝑖)
1−𝜋𝑗(𝑖)

𝜋𝑗(𝑖)
∑︀

𝑠∈S𝑗(𝑖)
𝑔𝑗(𝑖)(𝑠)1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀

𝑖∈I
1−𝑊𝑗(𝑖)
1−𝜋𝑗(𝑖)

𝜋𝑗(𝑖)
∑︀

𝑠∈S𝑗(𝑖)
𝑔𝑗(𝑖)(𝑠)1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

.

Most importantly, the estimator 𝑌𝑐(𝑑) only averages over individuals who are at approximately distance 𝑑
from a counterfactual candidate location 𝑠 ∈ S𝑗(𝑖). The remaining weighting is similar to inverse probability
weighting estimators of the average effect of the treatment on the treated (ATT) in settings with individual-level
treatments (cf. Imbens, 2004).

To see that this particular control average 𝑌𝑐(𝑑) provides the appropriate counterfactual for the simple
average of the treated 𝑌𝑡(𝑑), consider the expected value of the terms in the numerator of the latter. It is
straightforward to show that

𝐸
(︁
𝑊𝑗(𝑖)1{|𝑑(𝜉𝑗(𝑖), 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖

)︁
=𝜋𝑗(𝑖)

∑︁
𝑠∈S𝑗(𝑖)

𝑔𝑗(𝑖)(𝑠)1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑠)

see Appendix A.1 for the details. The difference between the expression above and the terms of the estimator
𝑌𝑐(𝑑) is that the latter can only average over individuals in control regions, with 𝑊𝑗(𝑖) = 0, requiring the
additional inverse probability weight 𝜋𝑗(𝑖)

1−𝜋𝑗(𝑖)
in 𝑌𝑐(𝑑). The estimator 𝑌𝑐(𝑑) therefore aligns, in expectation,

the weights placed on each control potential outcome 𝑌𝑖(0) with those placed on the corresponding treated
potential outcome 𝑌𝑖(𝑠) by 𝑌𝑡(𝑑).

Consequently, the estimator
𝜏(𝑑) = 𝑌𝑡(𝑑) − 𝑌𝑐(𝑑) (1)
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estimates a weighted average of the differences 𝑌𝑖(𝑠) − 𝑌𝑖(0), which are the individual-level treatment effects
𝜏𝑖(𝑠) defined in Section 3 above. The particular inverse probability weights make 𝜏(𝑑) an estimate of the
average treatment effect on the treated at a distance of 𝑑± ℎ. Theorem 1 states approximate finite sample
properties of this estimator.

Theorem 1. Under Assumptions 1 (no interference across regions) and 2 (completely randomized design with
equal treatment probabilities across regions), the estimator 𝜏(𝑑) has an approximate finite sample distribution
over the assignment distribution with

(i) unbiasedness for the ATT:

𝐸(𝜏(𝑑)) ≈
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑔𝑗(𝑠)

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 𝜏𝑖(𝑠)∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑔𝑗(𝑠)

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1

(2)

(ii) variance:

var
(︁
𝜏(𝑑)

)︁
≈ 𝐽 − 1

𝐽

𝑉 location
𝑡 (𝑑)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡 (𝑑)
𝐽𝑡

− 𝑉 region
𝑐𝑡 (𝑑)
𝐽

where

𝑉 location
𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︁∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑))
)︁2

�̄�(𝑑)2(𝐽 − 1)

𝑉 region
𝑐 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ(𝑌𝑖(0) − 𝜇𝑐(𝑑))
)︁2

�̄�(𝑑)2(𝐽 − 1)

𝑉 region
𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑))
)︁2

�̄�(𝑑)2(𝐽 − 1)

𝑉 region
𝑐𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑡(𝑑) − 𝜇𝑐(𝑑))

)︀)︁2

�̄�(𝑑)2(𝐽 − 1)

�̄�(𝑑) ≡ 1
𝐽

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁
𝑖∈I𝑗

1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

and 𝜇𝑡(𝑑) and 𝜇𝑐(𝑑) are the average treated and control potential outcomes with the same weights as the ATT
estimand given in (i). 𝐽𝑡 ≡

∑︀𝐽
𝑗=1 𝑊𝑗 and 𝐽𝑐 ≡ 𝐽 − 𝐽𝑡 are the numbers of treated and control regions, which

are fixed under Assumption 2.
Proof: The theorem is a special case of Theorem 3 below with weights

𝑤𝑖(𝑠) = 𝜋𝑗𝑔𝑗(𝑠)1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}.

Remark 1. The approximation in Theorem 1 arises because the denominators of the estimator 𝜏(𝑑) are
stochastic.13 The proof proceeds by deriving the finite sample properties of an infeasible demeaned estimator
𝜏(𝑑) with non-stochastic denominators that satisfies 𝜏(𝑑) − 𝜏(𝑑) = 𝑜(𝐽−1/2), where 𝐽 is the number of regions;
details are given in the appendix. Even with relatively few regions, the approximation is likely to perform well

13An alternative approach is to normalize the weights in expectation rather than in the sample to derive exact results (Aronow
et al., 2020). But such estimators are less attractive and rarely used in practice in the well-studied setting of individual-level
treatment assignment (Imbens, 2004; Busso et al., 2014).
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in practice. Similar issues arise with individual-level treatments if treatment is decided by successive coin flips,
rather than by fixing the number of treated. In spatial treatment settings, however, it is rarely feasible to
hold the number of individuals near treatment fixed when randomizing the assignment of treatment locations.
When all candidate locations have equal numbers of individuals in the distance bin, the approximations in
the theorem above hold with equality.

Remark 2. The expected value given by Theorem 1 is also relevant for other estimators using 𝑌𝑡(𝑑) as the
mean of the treated but relying on a different control comparison group and auxiliary assumptions to justify
the comparison. When researchers argue that randomization in the spatial locations for treatments allows
them to estimate the treatment effect using 𝑌𝑡(𝑑) (or close analogs), they therefore implicitly estimate the
average treatment effect on the treated. I believe there is value in making the estimation target explicit: As
I argue in Section 4.1.2 below, the ATT as defined above does not necessarily allow the most meaningful
comparisons of the effects at different distances. The estimation of the average treatment effect on the treated
appears in the weights 𝜋𝑔𝑗(𝑠) in the estimand, as well as the factors 𝑔𝑗(𝑠) in the variances. Since the region
treatment probabilities 𝜋𝑗 are constant under the assumptions of Theorem 1, they appear only through the
number of treated and control regions, 𝐽𝑡 and 𝐽𝑐.

Remark 3. The control average 𝑌𝑐(𝑑) used by the proposed estimator 𝜏(𝑑) simplifies to the simple average
over all individuals in control regions,

∑︀
𝑖(1 −𝑊𝑗(𝑖))𝑌𝑖/

∑︀
𝑖(1 −𝑊𝑗(𝑖)) if each individual is equally likely to

be distance 𝑑 from realized treatment. This typically requires that treatment can be realized at any location
within a region with equal probability (𝑔𝑗(𝑠) is constant within 𝑗), and the probability that a region is selected
for treatment (𝜋𝑗) must be proportional to its area. Then the unconditional treatment probability 𝜋𝑗𝑔𝑗(𝑠) is
constant for all locations 𝑠, not just for a small, finite, set of candidate locations. Figure 3 illustrates and
contrasts this with the more common setting where only a small number of candidate locations have positive
probability of receiving treatment.

Remark 4. The variance given in the theorem is the design-based variance (Abadie et al., 2020) of the
estimator. It expresses the variation in the estimate arising from assigning treatment randomly to one
candidate location in a fixed number of randomly chosen regions. The individuals whose outcomes are
measured are held fixed across these repeated samples; the only difference between samples lies in which
potential outcome is observed for each individual. The thought experiment behind the variance above is
therefore similar to performing a permutation, or placebo, test. Aronow et al. (2020) also suggest permutation
tests as an alternative basis for inference in the spatial treatment setting.

Remark 5. In the variance, the terms 𝑉 location
𝑡 (𝑑), 𝑉 region

𝑐 (𝑑), 𝑉 region
𝑡 (𝑑) can loosely be interpreted as

variances of potential outcomes across locations or regions, and 𝑉 region
𝑐𝑡 (𝑑) can be interpreted as the variance

of treatment effects across regions. �̄�(𝑑) is the average, across regions, expected number of treated individuals
conditional on treatment somewhere in the region. If there is only one candidate treatment location per region,
𝑉 region

𝑡 (𝑑) = 𝑉 location
𝑡 (𝑑), and combining these two terms cancels the factors involving 𝐽 . The remaining

three terms then resemble two marginal variances of potential outcomes and the variance of the treatment
effect, as in the formula for the design-based variance in individual-level randomized experiments (cf. Imbens
and Rubin, 2015, ch. 6).

Remark 6. When a region is treated, the researcher only observes the potential outcomes corresponding
to treatment at one of the candidate locations in the region. In contrast, when a region is in the control
group, the researcher can average over control potential outcomes for all candidate locations in the region.
This distinction affects the variance of the estimator: In general, averaging within region across candidate
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(c) candidate treatment locations everywhere, all
individuals at distance 1 from equally many locations

Figure 3: The figures show regions with individuals (small circles) and candidate treatment locations
(triangles), highlighting areas that are distance 1 away from a candidate treatment location in gray. Suppose
each candidate treatment location is equally likely to be realized. In panel a, all individuals who are distance
1 away from a candidate treatment location receive equal weight in the estimand 𝜏𝐴𝑇 𝑇 (𝑑). In estimation, if
the region is in the control group, we take the simple average of outcomes of the highlighted individuals. In
panel b, some individuals are distance 1 away from both candidate treatment locations, so these individuals
receive greater weight in the estimand 𝜏𝐴𝑇 𝑇 (𝑑). In estimation, if the region is in the control group, we
take the average of outcomes of the highlighted individuals, but individuals who are located in both gray
rings receive twice the weight. In panel c, candidate treatment locations are everywhere (for illustration,
only candidate treatment locations along a grid are displayed). If we assume that candidate treatment
locations extend past the boundaries of the region, then all individuals in the region receive equal weight in
the estimand 𝜏𝐴𝑇 𝑇 (𝑑). In estimation, if the region is in the control group, we take the simple average of
outcomes of all individuals.

locations decreases the variance. Formally, 𝑉 region
𝑡 (𝑑) ≤ 𝑉 location

𝑡 (𝑑) by Jensen’s inequality. That the variance
formula places most weight on 𝑉 location

𝑡 (𝑑) rather than on 𝑉 region
𝑡 (𝑑) is the price to pay for only observing

potential outcomes corresponding to a single candidate location in each treated region. However, if most
of the variance in treated potential outcomes is across regions rather than within, 𝑉 region

𝑡 (𝑑) ≈ 𝑉 location
𝑡 (𝑑).

Intuitively, if (individuals near) all candidate locations within a region are similar, little information is lost by
only observing outcomes for one candidate location under treatment.

Estimation of Variance The variance in Theorem 1 depends on four variances: 𝑉 location
𝑡 (𝑑), 𝑉 region

𝑐 (𝑑),
𝑉 region

𝑡 (𝑑), and 𝑉 region
𝑐𝑡 (𝑑). The first two variances are straightforward to estimate, as given below. The

third variance, 𝑉 region
𝑡 (𝑑) cannot be estimated directly, but is bounded by 𝑉 location

𝑡 (𝑑). Alternatively, it can
be approximated as discussed below. The fourth variance, the variance of treatment effects 𝑉 region

𝑐𝑡 (𝑑), is
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generally not identified,14 but since it appears negatively in the overall variance, it can be dropped resulting
in a conservative estimator of the variance (cf. Imbens and Rubin, 2015, ch. 6).

A natural estimator of 𝑉 location
𝑡 (𝑑) is

𝑉 location
𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑊𝑗1{𝜉𝑗 = 𝑠}
(︁∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ(𝑌𝑖 − 𝑌𝑡(𝑑))
)︁2

(𝐽𝑡 − 1)
(︁

1
𝐽𝑡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

(︀
𝑊𝑗1{𝜉𝑗 = 𝑠}(

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1)

)︀)︁2

which takes the average squared difference from the mean over those individuals who are treated at distance
𝑑. Note that while one can calculate �̄�(𝑑) exactly, it is likely preferable in practice to use the average number
of individuals near treated locations in the sample, which more accurately reflects the averaging in the
numerator.

Similarly, a natural estimator of 𝑉 region
𝑐 (𝑑) is

𝑉 region
𝑐 (𝑑) ≡

∑︀𝐽
𝑗=1(1 −𝑊𝑗)

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ(𝑌𝑖 − 𝑌𝑐(𝑑))
)︁2

(𝐽𝑐 − 1)
(︁

1
𝐽𝑐

∑︀𝐽
𝑗=1
(︀
(1 −𝑊𝑗)

∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1
)︀)︁2 .

Using 𝑉 location
𝑡 (𝑑) as a conservative estimator of 𝑉 region

𝑡 (𝑑), the conservative estimator for the variance of
the estimator 𝜏(𝑑) is

̂︁varconservative(𝜏(𝑑)) ≡ 𝑉 location
𝑡 (𝑑)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑)
𝐽𝑐

If there is reason to believe that there is substantial variance within regions (rather than across regions), it
may be preferable to approximate 𝑉 region

𝑡 (𝑑) directly rather than estimate it conservatively with 𝑉 location
𝑡 (𝑑).

Specifically, consider forming the estimator

𝑉 location
𝑐 (𝑑) ≡

∑︀𝐽
𝑗=1(1 −𝑊𝑗)

∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︁∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ(𝑌𝑖 − 𝑌𝑐(𝑑))
)︁2

(𝐽𝑐 − 1)
(︁

1
𝐽𝑐

∑︀𝐽
𝑗=1(1 −𝑊𝑗)

∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)(
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1)
)︁2

which is analogous to 𝑉 location
𝑡 (𝑑) but for control, rather than treated, regions. Under some assumptions, for

instance constant additive or constant multiplicative treatment effects,

𝑉 region
𝑡 (𝑑)

𝑉 location
𝑡 (𝑑)

= 𝑉 region
𝑐 (𝑑)

𝑉 location
𝑐 (𝑑)

where 𝑉 location
𝑐 (𝑑) is the appropriate population analogue, such that a plausible estimator for 𝑉 region

𝑡 (𝑑) is

𝑉 region
𝑡 (𝑑) = 𝑉 location

𝑡 (𝑑) 𝑉
region

𝑐 (𝑑)
𝑉 location

𝑐 (𝑑)

This estimator uses that the ratio of within-region and across-region variances of treated and control
potential outcomes are approximately similar in most settings where the effect of the treatment (and its

14For the variance of treatment effects to be zero (constant treatment effects), the distributions of treated and control must be
identical up to a location shift. More generally, the covariance of treated and control potential outcomes is partially identified
from the marginal variances. Heckman et al. (1997) use the Fréchet-Hoeffding inequality to form bounds on the variance of
treatment effects. Aronow et al. (2014) use the same bounds to improve the Neyman (1923, 1990, cf. Imbens and Rubin (2015))
variance estimator.
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heterogeneity) is small relative to other variance in outcomes. When the equality of ratios is not exact,
deviations can lead to an either conservative or anti-conservative estimate of 𝑉 region

𝑡 (𝑑). In practice, even if
the estimator 𝑉 region

𝑡 (𝑑) is not conservative, the variance estimator

̂︁varapprox(𝜏(𝑑)) ≡ 𝐽 − 1
𝐽

𝑉 location
𝑡 (𝑑)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡 (𝑑)
𝐽𝑡

likely is still conservative for var(𝜏(𝑑)) by omission of the variance of treatment effects term.
Comparison of the conservative variance estimate, ̂︁varconservative(𝜏(𝑑)), and the variance estimate using

the approximation, ̂︁varapprox(𝜏(𝑑)), can serve as a plausible benchmark for the benefits any refinements of
estimators of 𝑉 region

𝑡 (𝑑) can plausibly yield. In practice, since 𝑉 region
𝑡 (𝑑) receives weight 1

𝐽 relative to the
other variances, the difference is likely to be small.

4.1.2 Weighting Considerations for the ATT

The estimand 𝜏(𝑑) is not generally the most informative when the researcher is interested in how the
effect of the treatment changes with distance from treatment. As an alternative, I propose the estimand
𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) with a more attractive interpretation when comparing effects at different distances.15 The
estimand 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) can additionally be interpreted as the expected average effect at distance 𝑑 of a new
treatment location.

Figure 4 illustrates the problem of interpreting the difference between the estimands 𝜏(𝑑) and 𝜏(𝑑′) as
the pattern of treatment effects across distances from treatment. Suppose the researcher is interested in
comparing the average treatment effect at a short distance 𝑑 = 𝑑short and long distance 𝑑′ = 𝑑long. Suppose
further that there are two types of candidate treatment locations, each type equally likely to be realized.
The first type of candidate treatment locations has many individuals located at the short distance and few
individuals at the long distance. These first candidate locations all have relatively small treatment effect at
both distances, but decreasing in distance from treatment. The second type of candidate treatment locations
has few individuals located at the short distance, and many individuals at the long distance. These second
candidate locations all have relatively large treatment effect at both distances, but also decreasing in distance
from treatment.

In the example in Figure 4, the estimand 𝜏(𝑑) is increasing in distance 𝑑 even though the treatment effect
of any single treatment location is decreasing in distance from treatment. The estimand 𝜏(𝑑short) places most
weight on the first type of candidate locations because most individuals at the short distance from treatment
are near this type of location. In contrast, the estimand 𝜏(𝑑long) places most weight on the second type of
candidate locations. Hence, 𝜏(𝑑long) > 𝜏(𝑑short). This inequality states that the average treatment effect at a
long distance for the average individual at the long distance from a candidate treatment location is larger
than the average effect at a short distance for the average individual at the short distance from candidate
treatment locations. It does not imply that the average effect of any single treatment location is increasing in
distance from treatment. Instead, the average individual at a long distance may simply be both a different
type of individual (in terms of observables and unobservables) and also be exposed to a different treatment
location on average.

An alternative estimand, 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) defined below and also shown in Figure 4, avoids such issues in
interpretation by placing the same aggregate weight on each candidate treatment location irrespective of the

15Aronow et al. (2020) focus on the estimator 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑), but do not discuss its interpretation and differences from alternative
estimators in detail.
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Figure 4: The estimands 𝜏(𝑑) and 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) can be substantially different. Panel a shows the decay of
average treatment effects over distance for two regions with solid lines. The dashed line shows the estimand
𝜏(𝑑), which weights by the relative number of individuals at distance 𝑑, as given in panel b. The dot-dashed
line shows the estimand 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑), which weights the regions equally if both receive treatment with equal
probability. Existing empirical methods implicitly target 𝜏(𝑑).

distance 𝑑. The estimand 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) first separately averages the potential outcomes of nearby individuals
for each candidate treatment location. These averages are then averaged again, with weights proportional
only to the probability of treatment at the location. In contrast, the estimand 𝜏(𝑑) uses weights proportional
to the product of the treatment probability and the number of individuals near the treatment location.
Formally,

𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) =
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)𝜏(𝑠, 𝑑)∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

𝜏(𝑠, 𝑑) =
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 𝜏𝑖(𝑠)∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1

(3)

where 𝜏(𝑠, 𝑑) is the average effect of a given candidate location 𝑠 on individuals at distance 𝑑± ℎ from it.
These average effects are then averaged with weights 𝜋𝑗𝑔𝑗(𝑠), which do not depend on distance from treatment.
Hence, the weight placed on the average effect of a given location 𝑠 does not depend on the distance from
treatment. To also non-parametrically control for observable differences in pre-treatment variables 𝑋𝑖, one
can estimate 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) separately using only individuals with covariate values falling into groups defined
by 𝑋𝑖. The comparison of 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) and 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑′) then compares individuals with the same average
exposure to the candidate locations and similar individual (observable) characteristics.

Holding the aggregate weight per treatment location constant across distance from treatment is attractive
when the treatment effects are expected to be heterogeneous by region or location. Such heterogeneity
is particularly plausible in many spatial treatment settings: Oftentimes, the exact implementation of the
treatment differs substantially from location to location. For instance, the million dollar plants in the study
of Greenstone and Moretti (2003) are each operated by distinct companies which may differ in their labor
demand and wage setting. Hence, heterogeneous treatment effects arise not only due to differences between
individuals, but also due to differences in the implementation of the treatments. Since spatial treatments are
often larger, rarer, and more complex, their implementation tends to vary more than, say, the administration
of a drug in medical trials to different patients, or the content of a job training program across training sites
or cohorts.

Additionally, the estimand 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) has an attractive interpretation as the expected effect at distance
𝑑 of a new treatment location. Consider the following hierarchical model. First, when treatment is realized
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at location 𝑠, its average effect at distance 𝑑 is drawn as 𝜏𝑠(𝑑) ∼ 𝐹𝑑. Second, the individual-level effect of
location 𝑠 on individual 𝑖 is given by

𝜏𝑖(𝑠) = 𝜏𝑠(𝑑) + 𝜖𝑖(𝑠)

where 𝜖𝑖(𝑠) is a mean zero individual-specific component. Then, as the width of the distance bin, 2ℎ, goes to
0, the estimand 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) approaches the mean of the distribution 𝐹𝑑. Hence, one can interpret 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑)
as the expected average individual-level treatment effect of a new treatment location drawn in the same way
as existing realized treatment locations.

I propose the following estimator to estimate 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑):

𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) = 𝑌 𝐴𝑇 𝑇 −𝑒𝑞
𝑡 (𝑑) − 𝑌 𝐴𝑇 𝑇 −𝑒𝑞

𝑐 (𝑑)

𝑌 𝐴𝑇 𝑇 −𝑒𝑞
𝑡 (𝑑) =

∑︀𝐽
𝑗=1 𝑊𝑗

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

𝑌𝑖∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1∑︀𝐽
𝑗=1 𝑊𝑗

𝑌 𝐴𝑇 𝑇 −𝑒𝑞
𝑐 (𝑑) =

∑︀𝐽
𝑗=1(1 −𝑊𝑗)

∑︀
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)
1−𝜋𝑗

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

𝑌𝑖∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1∑︀𝐽
𝑗=1(1 −𝑊𝑗)

∑︀
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)
1−𝜋𝑗

(4)

Theorem 2 gives the exact properties of the finite sample distribution of 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑).

Theorem 2. Under assumptions 1 (no interference across regions) and 2 (completely randomized design),
the estimator 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) has an approximate finite sample distribution over the assignment distribution with

(i) unbiasedness: 𝐸(𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑)) = 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑)

(ii) variance:

var
(︁
𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑)

)︁
= 𝐽 − 1

𝐽

𝑉 𝐴𝑇 𝑇 −𝑒𝑞,location
𝑡 (𝑑)

𝐽𝑡
+ 𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region

𝑐 (𝑑)
𝐽𝑐

+ 1
𝐽

𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region
𝑡 (𝑑)

𝐽𝑡
− 𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region

𝑐𝑡 (𝑑)
𝐽

where

𝑉 𝐴𝑇 𝑇 −𝑒𝑞,location
𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︁∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ
(𝑌𝑖(𝑠)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑡 (𝑑))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1

)︁2

𝐽 − 1

𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region
𝑐 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ
(𝑌𝑖(0)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑐 (𝑑))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1

)︁2

𝐽 − 1

𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region
𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ
(𝑌𝑖(𝑠)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑡 (𝑑))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1

)︁2

𝐽 − 1

𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region
𝑐𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(︀
𝑌𝑖(𝑠)−𝑌𝑖(0)−𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑)

)︀∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1

)︁2

𝐽 − 1

and 𝜇𝐴𝑇 𝑇 −𝑒𝑞
𝑡 (𝑑) and 𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑐 (𝑑) are the average treated and control potential outcomes with the same
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weights as the ATT-eq estimand given in Equation 3; specifically potential outcome 𝑌𝑖(𝑠) receives weight

𝑤𝑖(𝑠, 𝑑) = 𝜋𝑗𝑔𝑗(𝑠)1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}∑︀
𝑖′: |𝑑(𝑠,𝑟𝑖′ )−𝑑|≤ℎ 1 .

𝐽𝑡 ≡
∑︀𝐽

𝑗=1 𝑊𝑗 and 𝐽𝑐 ≡ 𝐽 − 𝐽𝑡 are the numbers of treated and control regions, which are fixed under
Assumption 2.

Proof: The theorem is a special case of Theorem 3 below with weight as specified in (ii).

Remark 7. The estimator here is exactly unbiased because under a completely randomized design, the sum
of weights is constant (and equal to the number of treated regions) across assignment realizations. This is
different from Theorem 1 above, where the number of treated individuals varies. Here, treated individuals are
averaged by candidate treatment location, and the number of treated locations is constant across assignment
realizations by Assumption 2.

Remark 8. It is straightforward to estimate the variance in Theorem 2. Specifically, I propose

𝑉 𝐴𝑇 𝑇 −𝑒𝑞,location
𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑊𝑗1{𝜉𝑗 = 𝑠}
(︁∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ
(𝑌𝑖(𝑠)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑡 (𝑑))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1

)︁2

𝐽𝑡 − 1

𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region
𝑐 (𝑑) ≡

∑︀𝐽
𝑗=1(1 −𝑊𝑗)

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ
(𝑌𝑖(0)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑐 (𝑑))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1

)︁2

𝐽𝑐 − 1

as well as bounding 𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region
𝑡 (𝑑) by 𝑉 𝐴𝑇 𝑇 −𝑒𝑞,location

𝑡 (𝑑) (by Jensen’s inequality) and dropping the
variance of treatment effects term. The estimator of the variance is then

̂︁var(𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑)) = 𝑉 𝐴𝑇 𝑇 −𝑒𝑞,location
𝑡 (𝑑)

𝐽𝑡
+ 𝑉 𝐴𝑇 𝑇 −𝑒𝑞,location

𝑐 (𝑑)
𝐽𝑐

.

An alternative variance estimator that approximates rather than bounds 𝑉 𝐴𝑇 𝑇 −𝑒𝑞,region
𝑡 (𝑑) is also possible

along the lines of the discussion of the previous section.

While Theorem 2 gives moments of the exact finite-sample distribution of 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) at a given distance
𝑑, researchers sometimes wish to compare the estimated effects at different distances 𝑑 and 𝑑′. Lemma 1
provides the variance of 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) − 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑′). Alternative comparisons of effects at different distances
can also be based on part (iii) of Theorem 3 below.

Corollary 1. Suppose there is at least one individual at distance 𝑑 and at least one individual at distance 𝑑′

for every candidate treatment location. Then, under assumptions 1 (no interference across regions) and 2
(completely randomized design), the difference Δ𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑, 𝑑′) ≡ 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) − 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑′) has exact finite
sample variance across the assignment distribution

var
(︁

Δ𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑, 𝑑′)
)︁

= 𝐽 − 1
𝐽

𝑉 location
𝑡,diff (𝑑, 𝑑′)

𝐽𝑡
+
𝑉 region

𝑐,diff (𝑑, 𝑑′)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡,diff (𝑑, 𝑑′)

𝐽𝑡
−
𝑉 region

𝑐𝑡,diff (𝑑, 𝑑′)
𝐽
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where

𝑉 location
𝑡,diff (𝑑, 𝑑′) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︁∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ
(𝑌𝑖(𝑠)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑡 (𝑑))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1
−
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ
(𝑌𝑖(𝑠)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑡 (𝑑′))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

1

)︁2

𝐽 − 1

𝑉 region
𝑐,diff (𝑑, 𝑑′) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︀∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ
(𝑌𝑖(0)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑐 (𝑑))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1
−
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ
(𝑌𝑖(0)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑐 (𝑑′))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

1

)︀)︁2

𝐽 − 1

𝑉 region
𝑡,diff (𝑑, 𝑑′) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︀∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ
(𝑌𝑖(𝑠)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑡 (𝑑))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

1
−
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ
(𝑌𝑖(𝑠)−𝜇𝐴𝑇 𝑇 −𝑒𝑞

𝑡 (𝑑′))∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

1

)︀)︁2

𝐽 − 1

𝑉 region
𝑐𝑡,diff (𝑑, 𝑑′) ≡ 1

𝐽 − 1

𝐽∑︁
𝑗=1

(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︀∑︀𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑)

)︀∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1

−
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑′)

)︀∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ 1

)︀)︁2

Proof: For each candidate treatment location 𝑠, define an “individual” 𝑖(𝑠) with outcome

𝑌�̃�(𝑠) =
(︃∑︀

𝑖: |𝑑(𝑠,𝑟𝑖′ )−𝑑|≤ℎ 𝑌𝑖∑︀
𝑖: |𝑑(𝑠,𝑟𝑖′ )−𝑑|≤ℎ 1 −

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖′ )−𝑑′|≤ℎ 𝑌𝑖∑︀
𝑖: |𝑑(𝑠,𝑟𝑖′ )−𝑑′|≤ℎ 1

)︃
.

Then Δ𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑, 𝑑′) is the ATT with equally weighted regions of individuals 𝑖(𝑠) instead of 𝑖; that is, for
I𝑗 = {𝑖(𝑠) | 𝑠 ∈ S𝑗}. Hence Theorem 2 can be applied to obtain the variance.

Remark 9. Applying Theorem 2 with a redefined set of individuals is possible because the estimator 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑)
ensures that the aggregate weight on a location is constant across distances. This allows differencing distances
within candidate locations before averaging. For other estimators, the weight normalization differs by distance,
such that the difference of averages does not generally equal the average difference.

Remark 10. The condition that for each candidate treatment location and either distance there is at least
one individual is required both for the validity of the variance expression and for the interpretation of the
difference in effects. Without the condition, the weight normalization differs between distances, such that the
difference of averages does not equal the average of the difference. The condition also facilitates interpretation.
Suppose the average effect at distance 𝑑 averages over a treatment location 𝑠 that is not averaged over at
distance 𝑑′. Then a difference in estimates could either be due to an actual difference in effects at the two
distances, or due to effect heterogeneity, with the inclusion or omission of treatment location 𝑠 affecting the
average effect. I therefore recommend restricting attention to those candidate locations that have at least one
individual at both distances.

4.1.3 General Weighted Average Treatment Effects

More generally, the same ideas allow estimation of any weighted average of individual-level treatment effects
that places non-zero weights only on the effects of candidate treatment locations with positive probability of
realization. Write these estimands of individual-level average effects of the spatial treatment on individuals at
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a distance 𝑑 from treatment as:

𝜏𝑤(𝑑) = 1∑︀
𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
∑︁

𝑗

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝜏𝑖(𝑠) (5)

where 𝜏𝑖(𝑠) is the effect of treatment at location 𝑠 on individual 𝑖, and 𝑤𝑖(𝑠, 𝑑) are weights specified by the
researcher. The estimand here therefore can be any weighted average of the effect of single treatments on
individuals with weights 𝑤 as specified by the researcher. For the average effect of the treatment at distance
𝑑, weights 𝑤𝑖(𝑠, 𝑑) are non-zero only when location 𝑠 and individual 𝑖 are (approximately) distance 𝑑 apart.
While I define the ATT estimands 𝜏(𝑑) and 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) for distance bins 𝑑±ℎ above by using the rectangular,
or uniform, kernel function 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}, the weights 𝑤𝑖(𝑠, 𝑑) can generally use any kernel function
𝑘
(︁

𝑑(𝑠,𝑟𝑖)−𝑑
ℎ

)︁
in place of distance bins to estimate the effects at distance 𝑑.

The average effect of the treatment on the treated estimands in Equations 2 and 3 are special cases of the
estimand in Equation 5. For the estimand corresponding to 𝜏(𝑑), choose weights

𝑤𝑖(𝑠, 𝑑) = 𝜋𝑗(𝑖)𝑔𝑗(𝑖)(𝑠)1{|𝑑(𝑠, 𝑟𝑖 − 𝑑| ≤ ℎ}.

For the estimand corresponding to 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑), choose weights

𝑤𝑖(𝑠, 𝑑) = 𝜋𝑗(𝑖)𝑔𝑗(𝑖)(𝑠)
1{|𝑑(𝑠, 𝑟𝑖 − 𝑑| ≤ ℎ}∑︀

𝑖′∈I𝑗(𝑖)
1{|𝑑(𝑠, 𝑟𝑖′ − 𝑑| ≤ ℎ}

.

I propose an inverse probability weighting estimator (cf. Imbens, 2004) to estimate the weighted average
treatment effect in Equation 5 above. In short, the estimator is the difference between weighted average
outcomes of individuals near realized treatment locations and weighted average outcomes of individuals
in regions without treatments. The weights here need to account for two aspects: First, the researcher
specifies the desired weights 𝑤𝑖(𝑠, 𝑑) in the estimand. Second, individuals near locations with high treatment
probability are relatively more likely, across samples of repeated treatment assignment, to appear in the
sum of “treated” individuals than in the sum of “control” individuals due to the experimental design. The
estimator cancels out the probability weighting induced by averaging over individuals (not) near realized
treatment for the treated (control) average.

The proposed estimator for the weighted average treatment effect in 5 is

𝜏𝑤(𝑑) ≡
∑︀

𝑖

∑︀
𝑠∈S𝑗(𝑖)

𝜄𝑡𝑖(𝑠)𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀
𝑖

∑︀
𝑠∈S𝑗(𝑖)

𝜄𝑡𝑖(𝑠)𝑤𝑖(𝑠, 𝑑) −
∑︀

𝑖

∑︀
𝑠∈S𝑗(𝑖)

𝜄𝑐𝑖𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀
𝑖

∑︀
𝑠∈S𝑗(𝑖)

𝜄𝑐𝑖𝑤𝑖(𝑠, 𝑑)

𝜄𝑡𝑖(𝑠) ≡
𝑊𝑗(𝑖)1{𝜉𝑗(𝑖) = 𝑠}
𝜋𝑗(𝑖)𝑔𝑗(𝑖)(𝑠)

𝜄𝑐𝑖 ≡
1 −𝑊𝑗(𝑖)

1 − 𝜋𝑗(𝑖)

(6)

The weights 𝑤𝑖(𝑠, 𝑑) are fixed and specified by the researcher. The weights 𝜄𝑡𝑖(𝑠) and 𝜄𝑐𝑖 , in contrast, are
stochastic due to their dependence on the treatment assignment random variables 𝑊 and 𝜉. Specifically,
𝜄𝑡𝑖(𝑠) = 0 unless treatment is realized at location 𝑠, in which case it is equal to the inverse of the probability
of this event. Similarly, 𝜄𝑐𝑖 = 0 unless there is no treatment in the region of individual 𝑖, in which case it is
equal to the inverse of the probability of no treatment in the region. Consequently, the stochastic weights
are equal to 1 in expectation. The estimator divides each term by the sum of realized weights, 𝜄𝑡𝑖(𝑠)𝑤𝑖(𝑠, 𝑑)
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and 𝜄𝑐𝑖𝑤𝑖(𝑠, 𝑑), such that it is the difference between a convex combination of treated outcomes and a convex
combination of control outcomes as long as the weights 𝑤 are non-negative.

For stating the approximate finite sample distribution of the estimator 𝜏𝑤(𝑑) in Theorem 3 below, it is
helpful to define some variances and (effective) sample sizes:

𝑉 location
𝑤,𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

𝐽−1
𝐽

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

𝑉 region
𝑤,𝑐 (𝑑) ≡

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁2

𝐽−1
𝐽

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

𝑉 region
𝑤,𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

𝐽 − 1

𝑉 region
𝑤,𝑐𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤,𝑡(𝑑) − 𝜇𝑤,𝑐(𝑑))

)︀)︁2

𝐽 − 1

which closely resemble variances of marginal potential outcomes aggregated at the candidate location or
region level, and a treatment effect variance. The effective sample sizes are

𝑁𝑤(𝑑) ≡
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̄�𝑤(𝑑) ≡ 𝑁𝑤(𝑑)
𝐽 − 1

�̃�𝑤,𝑡(𝑑) ≡
(︁ 1∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

𝑁𝑤(𝑑)
)︁
�̄�𝑤(𝑑)

�̃�𝑤,𝑐(𝑑) ≡
(︁ 1∑︀𝐽

𝑗=1
1

1−𝜋𝑗

𝑁𝑤(𝑑)
)︁
�̄�𝑤(𝑑)

such that 𝑁𝑤(𝑑) is the total weighted number of individuals near any candidate location, and �̄�𝑤(𝑑) is
the average number of individuals near candidate locations per region. The expected effective number of
individuals near treated and control candidate locations (�̃�𝑤,𝑡(𝑑) and �̃�𝑤,𝑐(𝑑)) accounts for the non-linear
effects of heterogeneous treatment probabilities and numbers of individuals per candidate location. In
standard experiments, designs where some individuals are treated with high probability and others with
low probability typically have larger variance than designs with a constant treatment probability (and the
same average number of treated). The effective sample sizes here translate this loss in precision into the
variance-equivalent loss in sample size.

Theorem 3. Under Assumption 1 (no interference across regions) and either Assumption 2 (completely
randomized design) or Assumption 3 (Bernoulli trials), the estimator 𝜏𝑤(𝑑) has an approximate finite sample
distribution over the assignment distribution with

(i) unbiasedness: 𝐸(𝜏𝑤(𝑑)) ≈ 𝜏𝑤(𝑑)
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(ii) variance:

var
(︁
𝜏𝑤(𝑑)

)︁
≈
𝑉 location

𝑤,𝑡 (𝑑)
�̃�𝑤,𝑡(𝑑)𝐽 +

(︀
1 + 𝒞

𝐽 − 1
)︀𝑉 region

𝑤,𝑐 (𝑑)
�̃�𝑤,𝑐(𝑑)𝐽

+
(︀ 𝒞
𝐽 − 1

)︀ 𝑉 region
𝑤,𝑡 (𝑑)

�̄�𝑤(𝑑)(𝜋𝑁𝑤(𝑑)) −
(︀
1 + 𝒞

𝐽 − 1
)︀ 𝑉 region

𝑤,𝑐𝑡 (𝑑)
�̄�𝑤(𝑑)𝑁𝑤(𝑑)

where 𝒞 is an indicator for a completely randomized (rather than Bernoulli) design

𝒞 ≡

⎧⎨⎩1 under Assumption 2

0 under Assumption 3

and variances 𝑉 and sample sizes �̃�, �̄�, and 𝑁 are defined as above the theorem.

(iii) covariance:

cov
(︁
𝜏𝑤(𝑑), 𝜏𝑤′(𝑑′)

)︁
=

𝑉 location
𝑤,𝑤′,𝑡 (𝑑, 𝑑′)√︀

�̃�𝑤,𝑡(𝑑) ·
√︀
�̃�𝑤′,𝑡(𝑑′) · 𝐽

+ (1 + 𝒞
𝐽 − 1)

𝑉 region
𝑤,𝑤′,𝑐 (𝑑, 𝑑′)√︀

�̃�𝑤,𝑐(𝑑) ·
√︀
�̃�𝑤′,𝑐(𝑑′) · 𝐽

+ 𝒞
𝐽 − 1

𝑉 region
𝑤,𝑤′,𝑡 (𝑑, 𝑑′)

𝜋 ·
√︀
�̄�𝑤(𝑑) ·

√︀
�̄�𝑤′(𝑑′) ·

√︀
𝑁𝑤(𝑑) ·

√︀
𝑁𝑤′(𝑑′)

− (1 + 𝒞
𝐽 − 1)

𝑉 region
𝑤,𝑤′,𝑐𝑡(𝑑, 𝑑′)√︀

�̄�𝑤(𝑑) ·
√︀
�̄�𝑤′(𝑑′) ·

√︀
𝑁𝑤(𝑑) ·

√︀
𝑁𝑤′(𝑑′)

with 𝑉 location
𝑤,𝑤′,𝑡 (𝑑, 𝑑′), 𝑉 region

𝑤,𝑤′,𝑐 (𝑑, 𝑑′), 𝑉 region
𝑤,𝑤′,𝑡 (𝑑, 𝑑′), 𝑉 region

𝑤,𝑤′,𝑡 (𝑑, 𝑑′), and 𝑉 region
𝑤,𝑤′,𝑐𝑡(𝑑, 𝑑′) defined analogously

to the variances, with products of different distances (and weights) instead of squares of single distances;
see Appendix A.2.7 for explicit definitions.

Proof: See Appendix A.2.

Remark 11. In a completely randomized design (𝒞 = 1, Assumption 2) with only one candidate location
per region and only one individual at distance 𝑑 from each candidate location, the variance simplifies to the
well-known variance of the difference in means for randomized experiments (cf. Imbens and Rubin, 2015, ch. 6).
Specifically, 𝑉 location

𝑤,𝑡 (𝑑) and 𝑉 region
𝑤,𝑐 (𝑑) are the marginal variances of the treated and control, respectively;

𝑉 region
𝑤,𝑐𝑡 (𝑑) is the variance of treatment effects; 𝑉 region

𝑤,𝑡 (𝑑) = 𝑉 location
𝑤,𝑡 (𝑑) and combines with the first term.

The factors (1 + 𝒞
𝐽−1 ) cancel corresponding terms in for instance �̃�𝑤,𝑡(𝑑), such that (1 + 𝒞

𝐽−1 ) 1
�̃�𝑤,𝑡(𝑑)𝐽 exactly

yields the inverse of the number of treated observations.

Remark 12. Compared to the variances of Theorems 1 and 2, the formula for the variance in Theorem 3
appears more involved in part because Assumption 3 (Bernoulli trials) allows the region treatment probability
𝜋𝑗 to vary across regions. Similar to Theorems 1 and 2, a conservative estimator of the variance in Theorem 3
is possible that drops the variance of treatment effects term 𝑉 region

𝑤,𝑐𝑡 (𝑑) and bounds the variance of region-
aggregate treated potential outcomes, 𝑉 region

𝑤,𝑡 (𝑑). See Appendix A.2.6 for details on the variance estimator.

Remark 13. The approximate finite sample variance is smaller under Bernoulli trials than under a completely
randomized design (most easily seen in equation A.4 in the Appendix). This is an artifact of the approximation,
which does not penalize the variance as heavily when for instance few treated regions are available under an
imbalanced assignment. In practice, the difference between both designs is likely negligible due to the factor

30



𝐽 − 1 in the denominator of each 𝒞, such that
√
𝐽 𝒞

𝐽−1 → 0 and there is no difference between the two designs
under standard asymptotics in the number of regions.

Remark 14. In the covariance (part (iii) of Theorem 3) above, the covariance of treatment effects at distance 𝑑
and 𝑑′ appears negatively. In contrast to the case of the variance, dropping this term does not unambiguously
lead to a conservative estimate of the covariance. However, in a number of special cases of interest, the
covariance can be combined with variances of treatment effects into the variance of a sum (or difference) of
treatment effects; see Corollary 1 and Theorem 4 for examples. In other cases, the covariance can be bounded
on either side by ± the square root of the product of the variances. Alternatively, in many social science
applications, it may be reasonable to assume that if the (aggregated) effects of the treatment are large at
one distance from treatment in a given region, then (aggregated) effects are also large at another distance
from treatment in the same region. In other words, the covariance of treatment effects at different distances
may often be positive, such that dropping the inestimable term yields a conservative estimator under this
additional assumption.

4.2 Aggregate Effects

The aggregate effect of a single treatment on all affected individuals is of importance for cost-benefit and
welfare analyses. In this section, I propose estimators of aggregate effects that build on the estimators of
individual-level effects of the previous section.

In experiments with spatial treatments, there are two units of observation: outcome individuals and
spatial treatments. The individual-level treatment effects of the previous section are average effects per
outcome individual. The aggregate treatment effects of this section are average effects per spatial treatment.

Suppose the researcher is interested in the aggregate effect that a single treatment location has on all
affected individuals. Define the estimand

𝜏𝑎𝑔𝑔 ≡ 1∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑤𝑗(𝑠)

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑤𝑗(𝑠)
∑︁
𝑖∈I𝑗

𝜏𝑖(𝑠) (7)

where, as before, 𝜏𝑖(𝑠) = 𝑌𝑖(𝑠) − 𝑌𝑖(0) is the effect of treatment location 𝑠 on individual 𝑖. The aggregate
treatment effect sums the 𝜏𝑖(𝑠) across individuals 𝑖 and averages them across candidate treatment locations 𝑠,
with weights 𝑤𝑗(𝑠).

In this section, I focus on the average aggregate treatment effect on the treated, 𝜏𝐴𝐴𝑇 𝑇 , which uses
weights

𝑤𝐴𝐴𝑇 𝑇
𝑗 (𝑠) ≡ Pr(𝜉𝑗 = 𝑠|𝑊𝑗 = 1) Pr(𝑊𝑗 = 1).

The estimand places larger weight on the effects of treatment locations that are more likely to be realized.
The estimand 𝜏𝐴𝐴𝑇 𝑇 therefore answers the question: What is the expected aggregate effect of a treatment
location under the observed policy of assigning treatments to locations?

One can estimate the aggregate effect 𝜏𝐴𝐴𝑇 𝑇 by aggregating outcomes at the region-level:

𝜏𝐴𝐴𝑇 𝑇,1 ≡ 1∑︀𝐽
𝑗=1 𝑊𝑗

𝐽∑︁
𝑗=1

𝑊𝑗𝑌𝑗 − 1∑︀𝐽
𝑗=1

(1−𝑊𝑗) Pr(𝑊𝑗=1)
1−Pr(𝑊𝑗=1)

𝐽∑︁
𝑗=1

(1 −𝑊𝑗) Pr(𝑊𝑗 = 1)
1 − Pr(𝑊𝑗 = 1) 𝑌𝑗

where 𝑌𝑗 ≡
∑︀

𝑖∈I𝑗
𝑌𝑖. This is the inverse probability weighting estimator of an average treatment effect on

the treated, where the outcome variable of interest is the sum over the outcomes of all individuals in a
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region. When there is a single candidate treatment location per region, standard results from the literature
on experiments with individual-level treatments apply (cf. Imbens, 2004), with regions taking the role of
individuals.

Estimators based on region-aggregate outcomes are likely to have very large variance. Each region-
aggregate outcome is the sum of outcomes of individuals in the region. If there is substantial variance in the
number of individuals per region and outcomes are positive, the aggregate outcome of regions with many
individuals can be substantially larger than the aggregate outcome of smaller regions. For instance, suppose
that the number of individuals per region is Poisson distributed with mean 𝑛, and individual-level outcomes
are i.i.d. within and across regions, with mean 𝜇 and variance 𝜎2. Then region-aggregate outcomes have
variance 𝑛 · (𝜎2 + 𝜇2) by the law of total variance. Hence, aggregate potential outcomes have large variance,
which leads to large variance of the estimator (cf. Imbens, 2004).

Variation in region sizes generates a large variance of the region-aggregate estimator 𝜏𝐴𝐴𝑇 𝑇,1 in two ways.
First, if there is variance in the number of individuals per region, then in finite samples, some treatment
assignments will be such that there are more individuals in treated regions than in control regions.16 Suppose
outcomes are positive and constant, such that all individuals have the exact same (positive) value for the
outcome. Then the treatment effect estimate 𝜏𝐴𝐴𝑇 𝑇,1 in such a sample is positive and sensitive to the scale of
the outcome value. Hence, the estimator 𝜏𝐴𝐴𝑇 𝑇,1 can have large variance even when there is no variance in
potential outcomes. Second, variation in region sizes increases the variance in a sampling-of-regions thought
experiment. Even if the average individual-level treatment effect was known, needing to estimate the number
of times the effect is realized on average per region can create substantial variance. The design-based variances
considered in this paper condition on the individuals in the sample. With known number of individuals and
known individual-level average treatment effect, it is possible to form an estimator of aggregate treatment
effects with a design-based variance equal to zero, in contrast to the variance results for the estimator 𝜏𝐴𝐴𝑇 𝑇,1

above.
I therefore recommend an estimator of average aggregate effects that reduces the variance by building on

the estimators of average individual-level effects at a distance 𝑑. Let

𝜏𝐴𝐴𝑇 𝑇,2 ≡
∑︁
𝑑∈D

�̄�(𝑑)𝜏(𝑑) (8)

where �̄�(𝑑) is the average number of individuals at distance 𝑑 from candidate treatment locations:

�̄�(𝑑) =
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

using the same distance bins for both 𝜏(𝑑) and �̄�(𝑑). The set of distances D contains the midpoints of the bins
that partition the full space into distance bins. For instance, if one uses distance bins [0, 1], (1, 2], . . . , (9, 10]
for a treatment that is known not to have effects past a distance of 10 miles, then D = {0.5, 1.5, . . . , 9.5} and
ℎ = 0.5.

The theoretical properties of the estimator 𝜏𝐴𝐴𝑇 𝑇,2 follow from those of 𝜏(𝑑) in Theorem 1 above, and
the covariance across distances as given in part (iii) of Theorem 3.

Theorem 4. Under Assumptions 1 (no interference across regions) and 2 (completely randomized design
16Stratification in the experimental design or in analysis is an alternative solution to this problem. However, when the number

of regions is small or moderate, stratification may not be practical or sufficient to resolve this issue.
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with equal treatment probabilities across regions), the estimator 𝜏𝐴𝐴𝑇 𝑇,2 has an approximate finite sample
distribution over the assignment distribution with

(i) unbiasedness: 𝐸(𝜏𝐴𝐴𝑇 𝑇,2) ≈ 𝜏𝐴𝐴𝑇 𝑇

(ii) variance:

var
(︁
𝜏𝐴𝐴𝑇 𝑇,2

)︁
=
∑︁
𝑑∈D

�̄�(𝑑)2
(︁𝐽 − 1

𝐽

𝑉 location
𝑡 (𝑑)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡 (𝑑)
𝐽𝑡

− 𝑉 region
𝑐𝑡 (𝑑)
𝐽

)︁
+ 2

∑︁
𝑑∈D

∑︁
𝑑′∈D,𝑑′ ̸=𝑑

�̄�(𝑑)�̄�(𝑑′)
(︁𝐽 − 1

𝐽

𝑉 location
𝑡 (𝑑, 𝑑′)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑, 𝑑′)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡 (𝑑, 𝑑′)

𝐽𝑡
− 𝑉 region

𝑐𝑡 (𝑑, 𝑑′)
𝐽

)︁
where

𝑉 location
𝑡 (𝑑, 𝑑′) ≡ 1

�̄�(𝑑) · �̄�(𝑑′) · (𝐽 − 1)

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︃(︁ ∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑))
)︁

·
(︁ ∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑′))
)︁)︃

𝑉 region
𝑐 (𝑑, 𝑑′) ≡ 1

�̄�(𝑑) · �̄�(𝑑′) · (𝐽 − 1)

𝐽∑︁
𝑗=1

(︃(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(𝑌𝑖(0) − 𝜇𝑐(𝑑))
)︁

·
(︁∑︁

𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(𝑌𝑖(0) − 𝜇𝑐(𝑑′))
)︁)︃

𝑉 region
𝑡 (𝑑, 𝑑′) ≡ 1

�̄�(𝑑) · �̄�(𝑑′) · (𝐽 − 1)

𝐽∑︁
𝑗=1

(︃(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑))
)︁

·
(︁∑︁

𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑′))
)︁)︃

𝑉 region
𝑐𝑡 (𝑑, 𝑑′) ≡ 1

�̄�(𝑑) · �̄�(𝑑′) · (𝐽 − 1)

𝐽∑︁
𝑗=1

(︃(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑡(𝑑) − 𝜇𝑐(𝑑))

)︀)︁

·
(︁∑︁

𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑡(𝑑′) − 𝜇𝑐(𝑑′))

)︀)︁)︃

and �̄�(𝑑), 𝜇𝑡(𝑑), and 𝜇𝑐(𝑑) are defined as in Theorem 1.

Proof: See Appendix A.3.

Remark 15. For approximate unbiasedness, the estimator 𝜏𝐴𝐴𝑇 𝑇,2 must be based on 𝜏(𝑑), not 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑).
Intuitively, when “integrating” the effect 𝜏(𝑑) against the number of individuals at this distance, one needs to
ensure that 𝜏(𝑑) is an (approximately) unbiased estimate of the effect for these particular �̄�(𝑑) individuals,
while the estimator 𝜏𝐴𝑇 𝑇 −𝑒𝑞(𝑑) weights these individuals differently.

Remark 16. The variance follows from Theorems 1 and 3. Since 𝜏𝐴𝐴𝑇 𝑇,2 is a sum, its variance is a sum of
the covariances of the terms. In the design-based perspective, the analysis is conditional on the individuals in
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the sample. Hence, the (weighted) number of individuals in each bin, �̄�(𝑑), is fixed. The estimators 𝜏(𝑑) for
distances 𝑑 ∈ D are therefore the only stochastic components. Section 4.1.1 proposes estimators that can be
adapted straightforwardly for each of the (estimable) components in the variance of 𝜏𝐴𝐴𝑇 𝑇,2.

Remark 17. The (co-) variances of treatment effects, 𝑉 region
𝑐𝑡 (𝑑) and 𝑉 region

𝑐𝑡 (𝑑, 𝑑′) are generally not identified
without further assumptions, and 𝑉 region

𝑐𝑡 (𝑑, 𝑑′) may be negative, such that dropping this covariance does not
necessarily yield a conservative expression for the variance of 𝜏𝐴𝐴𝑇 𝑇,2. However, as I show in Appendix A.3,
dropping all the unidentified terms 𝑉 region

𝑐𝑡 (𝑑) and 𝑉 region
𝑐𝑡 (𝑑, 𝑑′) (∀𝑑, 𝑑′ ∈ D) jointly yields a conservative

estimator of the variance.

Remark 18. The optimal choice of distance bins (and bandwidths) remains an open question. If individuals
are spread uniformly across space, equal-width rings with larger radii have larger area and hence contain
more individuals. In practice, in densely populated areas, smaller bins may be preferable, and under suitable
sequences of populations (infill asymptotics or growing number of regions), it may be possible to allow ℎ → 0
and |D| → ∞. Generally, in the formula above, additional distance bins decrease the (squared) weights �̄�(𝑑)
at the cost of increasing variances var

(︀
𝜏(𝑑)

)︀
.

4.3 Parametric Estimation

I discuss issues in imposing parametric assumptions on the decay of treatment effects over distance from
treatment and estimation by least squares regression. First, I show how to impose a parametric model on the
individual-level effects at different distances. Second, I show how to estimate aggregate effects based on such
a model.

Linear parametric models for the decay of average treatment effects over distance from treatment take the
form

𝜏𝑤(𝑑) =
∑︁

𝑘

𝛽𝑘�̃�𝑘(𝑑)

where �̃�𝑘 are known functions of distance, and 𝛽𝑘 are coefficients to be estimated.
In many settings, one needs to impose a distance after which the treatment has no effect, even within region,

to obtain reasonable estimates from parametric models. Assumption 4 below formalizes this assumption.

Assumption 4. The treatment has no effect after a distance 𝑑max. That is, for any individual 𝑖 ∈ I, set of
treatment locations 𝑆 ⊂ S, and location 𝑠 ∈ 𝑆 such that 𝑑(𝑠, 𝑟𝑖) > 𝑑max,

𝜏𝑖(𝑆) = 𝜏𝑖(𝑆 ∖ {𝑠}).

Without such a restriction, any simple functional form for �̃� will typically offer a poor approximation for
at least some distances 𝑑 from treatment.

One can improve the approximation to the treatment effect at short distances by using functions that
only fit the treatment effect pattern up to the maximum distance 𝑑max:

𝜏𝑤(𝑑) =
∑︁

𝑘

𝛽𝑘𝜆𝑘(𝑑)1{𝑑 ≤ 𝑑max}.

Relatively simple functions 𝜆𝑘 may well approximate the average treatment effects at distances 𝑑 ∈ (0, 𝑑max).
This imposes contextual knowledge that average treatment effects are negligible at large distances from
treatment. It also resembles a “bet on sparsity” (Hastie et al., 2001): If treatment effects really are negligible
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at distances longer than 𝑑max, the estimators proposed below will likely perform well. If treatment effects are
not negligible even at long distances, then no (parametric) estimator will perform well.

For instance, one can impose a linear functional form on the treatment effect decay by choosing 𝜆1(𝑑) = 1,
𝜆2(𝑑) = 𝑑. The coefficient 𝛽2 then measures the rate of decay, while 𝛽1 measures the effect of the treatment on
individuals right by the treatment location. A quadratic functional form is imposed by 𝜆1(𝑑) = 1, 𝜆2(𝑑) = 𝑑,
𝜆3(𝑑) = 𝑑2. In principle, the analysis in this section can be extended also to functional forms that are
non-linear in the parameters, such as an exponential decay of treatment effects with unknown rate of decay,
𝜏(𝑑) = exp(𝛽(−𝑑)).

To estimate the parameters 𝛽, suppose initially that there is only a single candidate treatment location in
each region. This allows the definition of the distance of individual 𝑖 from the candidate treatment location
uniquely as 𝑑𝑖, irrespective of realized treatment. Then estimate the weighted linear regression

𝑌𝑖 =
∑︁

𝑘

𝛽𝑘

(︁
𝑊𝑗(𝑖)𝜆𝑘(𝑑𝑖, 𝑥𝑖)1{𝑑𝑖 ≤ 𝑑max}

)︁
+ ℎ(𝑑𝑖) + 𝜖𝑖

with weights reflecting those in Equation 6, depending on the estimand. The functions 𝜆𝑘(𝑑𝑖, 𝑥𝑖) can depend
on individual characteristics 𝑥𝑖 to allow for heterogeneity in effects, such as separate 𝜆𝑘 for distinct groups of
individuals.

The function ℎ models the average control potential outcomes at each distance from candidate treatment
locations. For semiparametric estimation, specify the treatment effect decay (𝜆) parametrically, and estimate
ℎ nonparametrically, as a partially linear model (e.g. Robinson, 1988). Here, I instead focus on parametric
linear estimation, which imposes known parametric functions 𝜆 and ℎ and estimates their coefficients:

𝑌𝑖 = 𝛼0 +
∑︁

𝑘

𝛽𝑘

(︁
𝑊𝑗(𝑖)𝜆𝑘(𝑑𝑖, 𝑥𝑖)1{𝑑𝑖 ≤ 𝑑max}

)︁
+
∑︁

ℓ

𝛾ℓ

(︁
ℎℓ(𝑑𝑖)1{𝑑𝑖 ≤ 𝑑max}

)︁
+ 𝜖𝑖

The same caveat about setting a maximum distance applies also to ℎ. Since there is no interest in effects
at distances larger than 𝑑max, the constant 𝛼0 captures the mean outcome for individuals at such larger
distances.

In practice, one typically not only wants to impose a zero treatment effect after distance 𝑑max (Assump-
tion 4), but a treatment effect that tends to zero continuously at 𝑑max.17 To this end, estimate the linear
regression with transformed covariates

𝑌𝑖 = 𝛼0 +
∑︁

𝑘

𝛽𝑘

(︁
𝑊𝑗(𝑖)(𝜆𝑘(𝑑𝑖, 𝑥𝑖) − 𝜆𝑘(𝑑max, 𝑥𝑖))1{𝑑𝑖 ≤ 𝑑max}

)︁
+
∑︁

ℓ

𝛾ℓ

(︁
ℎℓ(𝑑𝑖)1{𝑑𝑖 ≤ 𝑑max}

)︁
+ 𝜖𝑖 (9)

which imposes the restriction 𝜏(𝑑max) =
∑︀

𝑘 𝛽𝑘𝜆𝑘(𝑑max) = 0. Figure 5 illustrates what it means to impose this
restriction. In panel (a), without the restriction, the estimated treatment effect will jump to 0 discontinuously
at 𝑑max. Imposing the restriction in panel (b), the estimated treatment effect is continuous also at 𝑑max. The
restriction generally reduces the variance of the estimator, in particular for estimating aggregate effects, as
discussed below. In practice, most functional forms for 𝜆 imply not just a zero effect after distance 𝑑max, but
also a non-zero effect at distances slightly shorter than 𝑑max.

The same parametric functional form can be imposed to estimate the average aggregate effects of the
17In principle, one could additionally impose higher order smoothness such as differentiability at 𝑑max. However, this generally

requires more complicated functional forms 𝜆 to retain sufficient flexibility at shorter distances. In practice, this likely negates
any improvements in precision.
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Figure 5: This figure illustrates the difference between leaving the parametric treatment effect function
unrestricted (panel a) and restricting the treatment effect to be continuous at the maximum effect distance
𝑑max (panel b). The figure shows a scatter plot of outcomes against distance from treatment. Both regression
estimators use a quadratic in distance that is set to 0 at a distance of 𝑑max. The restricted estimator further
restricts the regression coefficients such that the function is continuous at 𝑑max.

treatment. Under the parametric model, the average aggregate treatment effect on the treated is

𝜏𝐴𝐴𝑇 𝑇 = 1
𝐽

∑︁
𝑖

∑︁
𝑘

𝛽𝑘(𝜆𝑘(𝑑𝑖, 𝑥𝑖) − 𝜆𝑘(𝑑max, 𝑥𝑖))1{𝑑𝑖 ≤ 𝑑max}

Solving for 𝛽1 and substituting the resulting expression in the regression specification above, one obtains the
one-step regression specification

𝑌𝑖 = 𝛼0 + 𝜏𝐴𝐴𝑇 𝑇
(︁
𝑊𝑗(𝑖)

(𝜆1(𝑑𝑖, 𝑥𝑖) − 𝜆1(𝑑max, 𝑥𝑖))1{𝑑𝑖 ≤ 𝑑max}
1
𝐽

∑︀
𝑖′(𝜆1(𝑑𝑖′ , 𝑥𝑖′) − 𝜆1(𝑑max, 𝑥𝑖′))1{𝑑𝑖′ ≤ 𝑑max}

)︁
+
∑︁

𝑘

𝛽𝑘

(︃(︁
𝑊𝑗(𝑖)(𝜆𝑘(𝑑𝑖, 𝑥𝑖) − 𝜆𝑘(𝑑max, 𝑥𝑖))1{𝑑𝑖 ≤ 𝑑max}

)︁
−
(︁
𝑊𝑗(𝑖)(𝜆𝑘(𝑑𝑖, 𝑥𝑖) − 𝜆𝑘(𝑑max, 𝑥𝑖))1{𝑑𝑖 ≤ 𝑑max}

·
1
𝐽

∑︀
𝑖′(𝜆𝑘(𝑑𝑖′ , 𝑥𝑖′) − 𝜆𝑘(𝑑max, 𝑥𝑖′))1{𝑑𝑖′ ≤ 𝑑max}

1
𝐽

∑︀
𝑖′(𝜆1(𝑑𝑖′ , 𝑥𝑖′) − 𝜆1(𝑑max, 𝑥𝑖′))1{𝑑𝑖′ ≤ 𝑑max}

)︁)︃
+
∑︁

ℓ

𝛾ℓ

(︁
ℎℓ(𝑑𝑖)1{𝑑𝑖 ≤ 𝑑max}

)︁
+ 𝜖𝑖

(10)

where the coefficient on the first (transformed) covariate is the estimate of the average aggregate treatment
effect. The transformed covariates are readily computed by realizing they are equal to the original covariates
multiplied or shifted by average covariates. The average here is taken across all regions, both treated
and untreated, such that this estimate has similarly attractive properties as the nonparametric estimator
𝜏𝐴𝐴𝑇 𝑇,2 above, in leveraging that the number of individuals near candidate treatment locations are available
irrespective of assignment.

When there is more than one candidate treatment location per region, augment the regression approach as
follows. The variable 𝑑𝑖 is not uniquely defined, since there are multiple “distances from candidate treatment
locations” for individuals. Suppose individual 𝑖 in a control region (𝑊𝑗(𝑖) = 0) is 1 mile away from one
candidate treatment location and 5 miles away from a different candidate treatment location. Then 𝑖 should
be used to estimate the control mean ℎ(𝑑) for the two distances 𝑑 = 1 and 𝑑 = 5. One can therefore duplicate
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observation 𝑖. Specifically, if individual 𝑖 is in a region with |S𝑗(𝑖)| candidate treatment locations, then include
𝑖 |S𝑗(𝑖)| times in the regression. Each version of 𝑖 uses the distance 𝑑𝑖 to a different candidate treatment
location. This ensures 𝐸(𝜖𝑖|𝑑𝑖 = 𝑑, 𝑥𝑖 = 𝑥) = 0 and hence results in consistent parameter estimates by linear
regression.

In simulations, standard errors clustered at the region level (cf. Liang and Zeger, 1986) provide a reasonable,
but perhaps conservative, estimate of the variance of these estimators. One can derive formal results along
the lines of Abadie et al. (2020, 2017). When there is a single candidate treatment location per region
and a single distance of interest, the spatial setting considered here coincides with the setting of clustered
assignment of Abadie et al. (2017), and hence their results and interpretation of Liang and Zeger (1986)
clustered standard errors follow immediately. Refinements of Liang and Zeger (1986) clustered standard
errors may be possible following Abadie et al. (2020) for the non-clustered setting using “attributes.” In
the spatial setting, such attributes are readily available in the form of the number of units near candidate
treatment locations. Effectively, such attributes allow forming a tighter bound on the variance of treatment
effects (see the discussion on variance estimation following Theorem 1 above) by exploiting heterogeneous
treatment effects and appealing to the law of total variance to maintain that the estimator is still conservative
for the true variance. For parametric models of the treatment effect by distance, one needs to extend the
analysis of Abadie et al. (2017) to include (multiple) continuous regressors that are deterministic functions
of the binary, randomly assigned, treatment. With multiple candidate treatment locations per region, one
further needs to extend the binary treatment to a multi-valued (but still discrete) treatment.

5 Extensions

5.1 Interference Between Treatment Locations

The setting discussed in Section 4 rules out interference between treatment locations by design. However,
in practice treatment is sometimes realized at locations close to one another such that the same individual
could be affected by more than one treatment location. The spatial treatment setting offers meaningful
structure enabling identification of interesting treatment effects based on application-dependent assumptions
despite this interference. I briefly outline two such assumptions, one familiar (additive separability of effects)
and one more unique to the spatial treatment setting (only nearest realized treatment matters), and discuss
what effects are identified under these assumptions and how to estimate them. I then turn to an even more
general setup, without any true control regions, and focus on design-based inference for marginal treatment
effects using exposure mappings (cf. Aronow and Samii, 2017) based on the idea that the effects of far-away
treatment locations are typically negligible.

5.1.1 Assumptions Giving Structure To Interference

Suppose that if a region is randomized into the treatment group, multiple locations within the region
are treated. The remaining regions remain in the control group without any treatment, such that it is
straightforward to estimate average outcomes in the absence of treatment. To give an example, suppose a
company operating chain stores (quasi-) randomly chooses which cities to enter, and opens multiple stores in
chosen cities. Then there are multiple realized treatment locations close to one another (in the same city),
but also control regions with (counterfactual) candidate treatment locations. The difficulty lies in separating
the effects of multiple treatment locations. I discuss two assumptions, which may be credible in different
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Figure 6: An example of a region with three candidate treatment locations (panel a): 𝑠1 (blue), 𝑠2 (red), 𝑠3
(yellow). Suppose exactly two of these treatment locations are realized whenever the region is treated, such
that there is interference. Under the assumption that only the nearest realized treatment location matters,
panel b illustrates the locations for which we can estimate effects for individuals in each area. For individuals
in the orange area, we can estimate the effects of the red and yellow locations. For individuals in the green
area, we can estimate the effects of the blue and yellow locations. For individuals in the purple area, we can
estimate the effects of the blue and read locations.

settings, as examples for how the spatial treatment setting can provide the necessary structure.
For a simple and concrete example, suppose there are three candidate treatment locations in each region,

and if treated, two of the three locations are chosen according in a completely randomized experiment.18

Figure 6a illustrates one such region. Suppose the researcher has data from multiple regions 𝑗. Each region 𝑗
has three candidate treatment locations; 𝑠𝑗,1, 𝑠𝑗,2, and 𝑠𝑗,3. If region 𝑗 receives treatment, the assignment
mechanism randomly chooses exactly two of the three candidate locations to be realized. Hence, each
candidate location has marginal conditional probability of 2/3 of being realized. The set of realized treatment
locations in region 𝑗, 𝜉𝑗 , satisfies 𝜉𝑗 ∈

{︀
∅, {𝑠𝑗,1, 𝑠𝑗,2}, {𝑠𝑗,1, 𝑠𝑗,3}, {𝑠𝑗,2, 𝑠𝑗,3}

}︀
, where 𝜉𝑗 = ∅ ⇐⇒ 𝑊𝑗 = 0.

The average effect of interest is that of implementing a single treatment location on individuals at distance 𝑑
from it. The estimators of this section generalize to arbitrary numbers of candidate and realized locations,
potentially differing by region.

I discuss two assumptions on interference and how to estimate effects under them in turn.

Additive Separability of Treatment Effects Assumption 5 states that the effects of all treatment
locations are additively separable. Intuitively, the assumption requires that returns to additional realized
treatment locations are neither diminishing nor increasing in the number of realized treatment locations
nearby. Additively separable treatment effects are an appropriate specification if the effect of each treatment
is independent of the realization of other treatments. For instance, the effects of toxic waste plants (cf. Currie
et al., 2015) or air-polluting power plants (cf. Zigler and Papadogeorgou, 2021) on exposure to pollution are
likely approximately additive.

Assumption 5. The effects of spatial treatments are additively separable. Let 𝑆 ⊂ S be an arbitrary subset
of the candidate treatment locations, and let 𝑠 ∈ 𝑆 be an arbitrary location in this subset. Then, for all

18In practice, it is sometimes more plausible to assume that the assignment mechanism guarantees some minimum distance
between realized treatment locations, requiring more complicated assignment mechanisms. For instance, sugar factories may be
spread out such that each factory has sufficient land nearby to grow crop (Dell and Olken, 2020). It may be possible to obtain
analogous results for such more complicated assignment mechanisms.
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individuals 𝑖 ∈ I,
𝜏𝑖(𝑆) = 𝜏𝑖(𝑆 ∖ 𝑠) + 𝜏𝑖(𝑠).

Additive separability as stated here neither requires different treatment locations to have the same effect,
nor does it require a treatment location to have the same effect on two distinct individuals, even if they are
at the same distance from the location.

Under Assumption 5, one can still identify the average treatment effects defined in Section 4. These
estimands are weighted averages of individual-level treatment effects 𝜏𝑖(𝑠) of individual 𝑖 and candidate
treatment location 𝑠 which are distance 𝑑 apart. Under additive separability, Assumption 5, one of the
following potential outcomes is observed

𝑌𝑖(∅) = 𝑌𝑖(0)

𝑌𝑖({𝑠𝑗,1, 𝑠𝑗,2}) = 𝑌𝑖(0) + 𝜏𝑖(𝑠𝑗,1) + 𝜏𝑖(𝑠𝑗,2)

𝑌𝑖({𝑠𝑗,1, 𝑠𝑗,3}) = 𝑌𝑖(0) + 𝜏𝑖(𝑠𝑗,1) + 𝜏𝑖(𝑠𝑗,3)

𝑌𝑖({𝑠𝑗,2, 𝑠𝑗,3}) = 𝑌𝑖(0) + 𝜏𝑖(𝑠𝑗,2) + 𝜏𝑖(𝑠𝑗,3)

Hence, one can write the individual-level treatment effect of interest as a sum of observable potential outcomes
as

𝜏𝑖(𝑠𝑗,1) = 1
2
(︀
𝑌𝑖({𝑠𝑗,1, 𝑠𝑗,2}) + 𝑌𝑖({𝑠𝑗,1, 𝑠𝑗,3}) − 𝑌𝑖({𝑠𝑗,2, 𝑠𝑗,3})

)︀
− 𝑌𝑖(∅).

where each of the potential outcomes has positive probability of realization. One can therefore estimate 𝜏𝑖(𝑠1)
as

𝜏additive
𝑖 (𝑠𝑗,1) = 1

2

(︂
1
{︀
𝜉𝑗 = {𝑠𝑗,1, 𝑠𝑗,2}

}︀
Pr
(︀
𝜉𝑗 = {𝑠𝑗,1, 𝑠𝑗,2}

)︀𝑌𝑖 +
1
{︀
𝜉𝑗 = {𝑠𝑗,1, 𝑠𝑗,3}

}︀
Pr
(︀
𝜉𝑗 = {𝑠𝑗,1, 𝑠𝑗,3}

)︀𝑌𝑖 −
1
{︀
𝜉𝑗 = {𝑠𝑗,2, 𝑠𝑗,3}

}︀
Pr
(︀
𝜉𝑗 = {𝑠𝑗,2, 𝑠𝑗,3}

)︀𝑌𝑖

)︂
− 1 −𝑊𝑗

1 − Pr(𝑊𝑗 = 1)𝑌𝑖.

Each term in the sum is an unbiased estimator of the corresponding potential outcome, such that 𝐸(𝜏additive
𝑖 (𝑠𝑗,1)) =

𝜏𝑖(𝑠𝑗,1). One can then average such estimators to estimate, for instance, the ATT estimand, 𝜏(𝑑). I present
the generalization of the formula above with an arbitrary number of candidate treatment locations and
realized treatment locations in Appendix A.4.1.

Only Nearest Realized Treatment Location Matters Assumption 6 states that if 𝑠′ ∈ 𝑆 is not the
nearest realized location to individual 𝑖, it does not affect her. Typically, only the nearest realized treatment
location matters if individuals only access, or visit, a single realized treatment location. For instance, if a
developing country quasi-randomly chooses locations to construct new schools (cf. Duflo, 2001), it may be
plausible to assume that only the nearest school matters to an individual. For the effects of infrastructure
projects, such as additional bus or subway stops, on commute times and real estate prices (cf. Gupta et al.,
2022), the appropriate assumption may depend on the type of stops that are added. An additive effects
specification for bus or subway stops may be a good approximation if each stop gives access to a different
transit line. A specification where only the nearest stop matters may be more appropriate for stops of the
same line.

Assumption 6. Only the nearest realized treatment location matters. Let 𝑆 ⊂ S be an arbitrary subset of the
candidate treatment locations, and 𝑖 ∈ I an arbitrary individual. Whenever 𝑠 ∈ 𝑆 satisfies 𝑑(𝑠, 𝑟𝑖) ≤ 𝑑(𝑠′, 𝑟𝑖)
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for all 𝑠′ ∈ 𝑆, then for 𝑠′ ∈ 𝑆 ∖ {𝑠}
𝜏𝑖(𝑆) = 𝜏𝑖(𝑆 ∖ 𝑠′).

The assumption also implies that if individual 𝑖 is at equal distance to two treatment locations 𝑠1 and 𝑠2,
then both have the same effect on her:

𝑑(𝑠1, 𝑟𝑖) = 𝑑(𝑠2, 𝑟𝑖) =⇒ 𝜏𝑖(𝑠1) = 𝜏𝑖(𝑠2).

Under Assumption 6, only some of the average treatment effects of Section 4 are nonparametrically
identified in general. Specifically, it is impossible to identify the effect of a candidate treatment location
on an individual if the location is never the nearest realized location for the individual. Consider again the
example of three candidate locations with two realized locations in Figure 6. The effect of location 𝑠𝑗,1 is
unidentified for individuals nearer to both locations 𝑠𝑗,2 and 𝑠𝑗,3. Panel b of Figure 6 highlights areas in
which each candidate treatment location is nearest with positive probability before realization of treatment
assignment. Generally, the estimand 𝜏𝑤(𝑑) from Section 4 is identified nonparametrically under Assumption 6
if it only places weight on individual level effects 𝜏𝑖(𝑠) if 𝑠 is the nearest realized location to individual 𝑖 with
positive probability. Formally, write this as

𝑤𝑖(𝑠, 𝑑) ̸= 0 =⇒ Pr
(︀
𝑠 ∈ 𝜉𝑗 ∧ (𝑑(𝑠, 𝑟𝑖) ≤ 𝑑(𝑠′, 𝑟𝑖) ∀𝑠′ ∈ 𝜉𝑗)

)︀
> 0

where the probability is taken over draws from the assignment distribution of 𝜉𝑗 for fixed 𝑖, 𝑠, 𝑑, and 𝑗.
In the example illustrated in Figure 6, one can estimate 𝜏𝑖(𝑠𝑗,1) for individuals 𝑖 in the purple and green

shaded areas. Under Assumption 6, the potential outcomes satisfy

𝑌𝑖({𝑠𝑗,1, 𝑠𝑗,2}) =

⎧⎨⎩𝑌𝑖(0) + 𝜏𝑖(𝑠𝑗,1) if 𝑑(𝑠𝑗,1, 𝑟𝑖) ≤ 𝑑(𝑠𝑗,2, 𝑟𝑖)

𝑌𝑖(0) + 𝜏𝑖(𝑠𝑗,2) otherwise

𝑌𝑖({𝑠𝑗,1, 𝑠𝑗,3}) =

⎧⎨⎩𝑌𝑖(0) + 𝜏𝑖(𝑠𝑗,1) if 𝑑(𝑠𝑗,1, 𝑟𝑖) ≤ 𝑑(𝑠𝑗,3, 𝑟𝑖)

𝑌𝑖(0) + 𝜏𝑖(𝑠𝑗,3) otherwise

An unbiased estimator of 𝜏𝑖(𝑠𝑗,1) is

𝜏nearest
𝑖 (𝑠𝑗,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

{︀
𝑆𝑗={𝑠𝑗,1,𝑠𝑗,2}

}︀
Pr
(︀

𝑆𝑗={𝑠𝑗,1,𝑠𝑗,2}
)︀𝑌𝑖 − 1−𝑊𝑗

1−Pr(𝑊𝑗=1)𝑌𝑖

if 𝑑(𝑠𝑗,1, 𝑟𝑖) ≤ 𝑑(𝑠𝑗,2, 𝑟𝑖) ∧ 𝑑(𝑠𝑗,1, 𝑟𝑖) > 𝑑(𝑠𝑗,3, 𝑟𝑖)
1

{︀
𝑆𝑗={𝑠𝑗,1,𝑠𝑗,3}

}︀
Pr
(︀

𝑆𝑗={𝑠𝑗,1,𝑠𝑗,3}
)︀𝑌𝑖 − 1−𝑊𝑗

1−Pr(𝑊𝑗=1)𝑌𝑖

if 𝑑(𝑠𝑗,1, 𝑟𝑖) > 𝑑(𝑠𝑗,2, 𝑟𝑖) ∧ 𝑑(𝑠𝑗,1, 𝑟𝑖) ≤ 𝑑(𝑠𝑗,3, 𝑟𝑖)
1{𝑠𝑗,1∈𝑆𝑗}
Pr(𝑠𝑗,1∈𝑆𝑗)𝑌𝑖 − 1−𝑊𝑗

1−Pr(𝑊𝑗=1)𝑌𝑖

if 𝑑(𝑠𝑗,1, 𝑟𝑖) ≤ 𝑑(𝑠𝑗,2, 𝑟𝑖) ∧ 𝑑(𝑠𝑗,1, 𝑟𝑖) ≤ 𝑑(𝑠𝑗,3, 𝑟𝑖)

undefined

otherwise

One can then average estimates 𝜏nearest
𝑖 (𝑠) across individuals 𝑖 and locations 𝑠 to estimate average treatment

effects similar to those in Section 4. However, the estimator 𝜏nearest
𝑖 (𝑠𝑗,1) is undefined for individuals in the
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orange shaded area (last line of the definition). Since location 𝑠𝑗,1 is never the nearest realized treatment
location for these individuals, it is impossible to estimate its effect on individuals in that area. That is, only
average treatment effects that place weight 𝑤𝑖(𝑠𝑗,1, 𝑑) = 0 on individuals 𝑖 in the orange area are identified
nonparametrically. See Appendix A.4.2 for the estimator with arbitrary number of treatment locations per
region.

5.1.2 Inference Without Control Regions

Suppose the researcher has data on a single contiguous region with individuals 𝑖, outcomes 𝑌𝑖 and candidate
treatment locations S.19 The realized treatment locations are 𝜉 ⊆ S, with assignment to locations 𝑠, 𝑠′ ∈ S
independent when 𝑠 ≠ 𝑠′. Assumption 7, which is a straightforward extension of Assumption 3 above,
formalizes this assignment mechanism.

Assumption 7 (Independent Treatment Assignment – Single Region). Assignment of treatment to locations
is independent: For 𝑠 ∈ S, 𝑆 ⊆ S with 𝑠 ̸∈ 𝑆,

Pr(𝑠 ∈ 𝜉 | 𝑆 ⊆ 𝜉) = Pr(𝑠 ∈ 𝜉) ≡ 𝜋𝑠.

As before, the researcher is interested in the weighted average treatment effect

𝜏𝑤(𝑑) =
∑︀

𝑠∈S
∑︀

𝑖∈I 𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝑌𝑖(0))∑︀
𝑠∈S
∑︀

𝑖∈I 𝑤𝑖(𝑠, 𝑑)

with known weights 𝑤𝑖(𝑠, 𝑑), for instance

𝑤𝑖(𝑠, 𝑑) = Pr(𝑠 ∈ 𝜉)1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

for a distance-bin estimator of the average effect of the treatment on the treated.
To estimate this average treatment effect on the treated, consider the estimator

𝜏(𝑑) =
∑︀

𝑠∈S 1{𝑠 ∈ 𝜉}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀
𝑠∈S 1{𝑠 ∈ 𝜉}

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

−
∑︀

𝑠∈S 1{𝑠 ̸∈ 𝜉} Pr(𝜉∪{𝑠})
Pr(𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀

𝑠∈S 1{𝑠 ̸∈ 𝜉} Pr(𝜉∪{𝑠})
Pr(𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

(11)

which is the difference in average outcomes for individuals near realized candidate locations, 1{𝑠 ∈ 𝜉} = 1,
and individuals near counterfactual candidate locations, 1{𝑠 ̸∈ 𝜉} = 1. Note that the individuals near
counterfactual candidate treatment locations may still be exposed to other realized treatment locations.

The estimator is distinct from common estimators for other treatment effect settings in that the same
individuals may appear in both the average of the treated and in the average of the control. In Figure 7,
there are three candidate treatment locations, two of which are realized (𝑠1 and 𝑠2), while the last (𝑠3) is
not realized. Individuals that are at intersections of rings of multiple treatment locations (𝑖2, 𝑖3, 𝑖4) appear
multiple times in the summations in Equation 11. Individual 𝑖2 appears twice in the sum of the treated (once
for 𝑠1 and 𝑠2). Individual 𝑖3 also appears twice in the sum of the treated, but additionally appears once in
the sum of the control (for 𝑠3). Individual 𝑖4 appears once in the sum of the treated and once in the sum

19One can treat data from separate regions as a single contiguous region with large distances between the locations corresponding
to the distinct regions.
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Figure 7: An example of a region with three candidate treatment locations (panel a): Treatment is realized
at the locations of the solid triangles (𝑠1 and 𝑠2) and not realized at the location of the hollow triangle (𝑠3).
There are 5 individuals (𝑖1, . . . , 𝑖5) each at the distance of interest away from at least one of the candidate
treatment locations. In the estimator given by Equation 11, individuals like 𝑖3 and 𝑖4 who are at the right
distance from both a realized and a counterfactual treatment location appear both in the average of the
treated and in the average of the control. Individuals who are at the right distance from multiple realized
treatment locations, like 𝑖2 and 𝑖3, appear multiple times in the average of the treated. Other individuals, who
are at the right distance from only one treatment location, like 𝑖1 and 𝑖5, may still be affected by treatments
that are at a different distance. The design-based variance given in Theorem 5 accounts for these multiple
occurrences of individuals and effects of treatments at other distances.

of the control. Individuals 𝑖1 and 𝑖5 appear only once each, in the sum of the treated and the sum of the
control, respectively.

While 𝑖1 and 𝑖5 in Figure 7 may on first sight appear like more conventional treated and control individuals,
their comparison does not necessarily yield an attractive estimate of the effect of the treatment at the distance
of interest. Individual 𝑖5 may, without other assumptions, still be affected by treatment at locations 𝑠1 and
𝑠2, such that 𝑖5 is not a proper control individual. Similarly, 𝑖1 could be affected by both 𝑠1 and 𝑠2 and may
therefore reflect the outcome of having not just one treatment at the distance of interest, but also another
treatment at a slightly longer distance. Hence, the difference between the outcome of 𝑖1 and 𝑖2 does not
necessarily reflect the effect of one treatment at the distance of interest.

Remarkably, the estimator defined in Equation 11 yields an estimate of the marginal effect of treatment
without parametric assumptions on how the effects of multiple treatments interact. The weighting of the
“control” individuals by Pr(𝜉∪{𝑠})

Pr(𝜉) results in “treated” individuals that are, on average (across individuals and
the assignment distribution) exposed to one additional realized treatment location at the distance of interest,
and the same number of realized treatment locations at other distances. The weights are a generalization of
ATT weights, and with independent treatment assignment simplify to the familiar 𝜋𝑠/(1−𝜋𝑠 weighting. If one
additionally assumes that treatment effects are additive (Assumption 5), the estimand simplifies to the ATT
defined in the previous section for settings without interference. Alternative assumptions on how the effects
of treatments interact, such as Assumption 6, may suggest different estimators. Results for such estimators
could be derived analogously. The paper focuses on the estimator in Equation 11 because additivity of effects
frequently is a reasonable benchmark and the estimator retains an attractive marginal effect interpretation
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even if the additivity assumption does not hold.

Theorem 5. Suppose Assumption 7 (independent treatment assignment in a single region) holds. Then the
estimator 𝜏(𝑑) has an approximate finite sample distribution over the assignment distribution with

(i) mean: 𝐸(𝜏(𝑑)) ≈
∑︀

𝑆∈2S

∑︀
𝑠∈𝑆

∑︀
𝑖∈I

Pr(𝜉=𝑆)1{|𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ}(𝑌𝑖(𝑆)−𝑌𝑖(𝑆∖{𝑠}))∑︀
𝑆∈2S

∑︀
𝑠∈𝑆

∑︀
𝑖∈I

Pr(𝜉=𝑆)1{|𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ}

(ii) variance:

var(𝜏(𝑑))

≈
∑︀

𝑠∈S
∑︀

𝑚∈M𝑠
𝜋𝑠(𝑚)(1 − 𝜋𝑠(𝑚))𝑌𝑠(𝑚, 𝑑)2

(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

−
∑︀

𝑠∈S
∑︀

𝑚∈M𝑠

∑︀
𝑚′∈M𝑠

1{𝑚 ̸= 𝑚′}𝜋𝑠(𝑚)𝜋𝑠(𝑚′)𝑌𝑠(𝑚, 𝑑)𝑌𝑠(𝑚′, 𝑑)
(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

+
∑︀

𝑠∈S
∑︀

𝑠′∈S 1{𝑠 ̸= 𝑠′}
∑︀

𝑚∈M𝑠

∑︀
𝑚′∈M𝑠′ (𝜋𝑠,𝑠′(𝑚,𝑚′) − 𝜋𝑠(𝑚)𝜋𝑠′(𝑚′))𝑌𝑠(𝑚, 𝑑)𝑌𝑠′(𝑚′, 𝑑)

(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

with sets M𝑠 and probabilities 𝜋𝑠(𝑚) and 𝜋𝑠,𝑠′(𝑚,𝑚′) defined based on the exposure mappings described
in Remark 20 below, and the exposure-specific, demeaned, potential outcomes

𝑌𝑠(𝑚, 𝑑) ≡ 𝑊𝑠(𝑚)
∑︁
𝑖∈I

1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖(𝑚) − 𝜇𝑡(𝑑))

− (1 −𝑊𝑠(𝑚)) 𝜋𝑠

1 − 𝜋𝑠

∑︁
𝑖∈I

1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖(𝑚) − 𝜇𝑐(𝑑))

when exposure 𝑚 determines the treatment status of candidate treatment location 𝑠, and 𝑌𝑠(𝑚, 𝑑) = 0
otherwise. 𝑊𝑠(𝑚) is an indicator for location 𝑠 being treated under exposure 𝑚 (if uniquely determined),
and 𝜇𝑡(𝑑) and 𝜇𝑐(𝑑) are the relevant means defined explicitly at the beginning of Appendix A.4.3.

If also Assumption 5 (additive separability) holds, the mean in part (i) simplifies to

(iii) mean: 𝐸(𝜏(𝑑)) ≈ 𝜏(𝑑) =
∑︀

𝑠∈S
Pr(𝑠∈𝜉)

∑︀
𝑖∈I

1{|𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ}𝜏𝑖(𝑠)∑︀
𝑠∈S

Pr(𝑠∈𝜉)
∑︀

𝑖∈I
1{|𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ}

Proof: See Appendix A.4.3.

Remark 19. While all treatment probabilities are known to the experimenter in experimental analyses, they
typically need to be estimated in observational studies. Yet researchers only observe one realization of the
random variable 𝜉, so direct estimation of Pr(𝜉) is not possible. However, under Assumption 7 of independent
treatment assignment, for 𝑆 ⊂ S and 𝑠 ̸∈ 𝑆

Pr(𝜉 = 𝑆 ∪ {𝑠})
Pr(𝜉 = 𝑆) = Pr(𝑠 ∈ 𝜉)

1 − Pr(𝑠 ∈ 𝜉) .

Hence, a practical solution is to estimate a propensity score model for Pr(𝑠 ∈ 𝜉) using 1{𝑠 ∈ 𝜉} as the
outcome and characteristics of the neighborhood of 𝑠, such as the number of nearby candidate treatment
locations or individuals, as covariates.

Remark 20. The variance in Theorem 5 is based on exposure mappings (cf. Aronow and Samii, 2017).
Exposure mappings allow defining fixed potential outcomes in settings with interference, such that each
potential outcome is observed under more than one realization of the treatment assignment. Under general
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interference, any candidate treatment location can affect any individual. In the spatial treatment setting, it
is instead often plausible to assume that far-away treatment locations do not affect individuals. This allows
breaking the full set of candidate treatment locations into (overlapping) sets of candidate treatment locations
that are geographically clustered.

For spatial treatments, a simple definition of exposure mappings is based on a distance after which
treatments are assumed not to have an effect. For a candidate treatment location 𝑠 ∈ S, the exposure mapping
𝑓𝑠 maps a treatment assignment 𝑆 ⊂ S to a member of a set M𝑠. Let S𝑠 ≡ {𝑠′ ∈ S : 𝑑(𝑠, 𝑠′) ≤ 2 · 𝑑max}
be the set of candidate treatment locations such that both 𝑠 and 𝑠′ ∈ S𝑠 may have an effect on the same
individual 𝑖 based on Assumption 4.20 Then M𝑠 = 2S𝑠 is the power set of S𝑠, and exposure mapping 𝑚 ∈ M𝑠

specifies which of the candidate locations that could affect individuals near 𝑠 are realized under 𝑚. That is,
𝑓𝑠(𝑆) = 𝑆 ∩ S𝑠. Then, under Assumption 4, 𝑓𝑠(𝑆) = 𝑓𝑠(𝑆′) =⇒ 𝑌𝑖(𝑆) = 𝑌𝑖(𝑆′) for all individuals 𝑖 with
𝑑(𝑠, 𝑟𝑖) ≤ 𝑑max. Hence, the exposure 𝑚 uniquely determines the outcome for individuals 𝑖 near location 𝑠.21

For these exposure mappings, the probabilities of exposure mappings 𝑚 and 𝑚′ being realized for candidate
treatment locations 𝑠 and 𝑠′ are

𝜋𝑠(𝑚) ≡ Pr(𝜉 ∩ S𝑠 = 𝑚) =
∏︁
𝑠∈𝑚

𝜋𝑠

∏︁
𝑠∈S𝑠∖𝑚

(1 − 𝜋𝑠)

𝜋𝑠,𝑠′(𝑚,𝑚′) ≡ Pr(𝜉 ∩ S𝑠 = 𝑚 ∧ 𝜉 ∩ S𝑠′ = 𝑚′))

=

⎧⎨⎩
∏︀

𝑠∈𝑚∪𝑚′ 𝜋𝑠

∏︀
𝑠∈(S𝑠∖𝑚)∪(S𝑠′ ∖𝑚′)(1 − 𝜋𝑠) if ∀𝑠 ∈ S𝑠 ∩ S𝑠′ either 𝑠 ∈ 𝑚 ∩𝑚′ or 𝑠 ̸∈ 𝑚 ∪𝑚′

0 otherwise

The condition in 𝜋𝑠,𝑠′(𝑚,𝑚′) says that exposures 𝑚 and 𝑚′ agree on the treatment status for any candidate
location that may affect individuals near both 𝑠 and 𝑠′. The expression for 𝜋𝑠,𝑠′(𝑚,𝑚′) in the first case
simplifies to 𝜋𝑠(𝑚) if 𝑠 = 𝑠′ and 𝑚 = 𝑚′. If 𝑠 = 𝑠′ and 𝑚 ̸= 𝑚′, then 𝜋𝑠,𝑠′(𝑚,𝑚′) = 0 according to the second
case. Generally, 𝜋𝑠,𝑠′(𝑚,𝑚′) = 0 whenever exposure mappings 𝑚 and 𝑚′ imply contradicting assignments
for treatment locations. When S𝑠 ∩ S𝑠′ = ∅ such that 𝑠 and 𝑠′ share no treatment location that can affect
individuals near both of them (typically because 𝑠 and 𝑠′ are sufficiently far apart), then 𝑚 ∈ M𝑠 and
𝑚′ ∈ M𝑠′ cannot contradict each other and 𝜋𝑠,𝑠′(𝑚,𝑚′) = 𝜋𝑠(𝑚)𝜋𝑠′(𝑚′). When exposure mappings 𝑚 and
𝑚′ do not contradict each other, their joint probability is equal to the probability of the candidate locations
𝑠 in S𝑠 ∪ S𝑠′ being assigned according to 𝑚 and 𝑚′ (to treatment if 𝑠 ∈ 𝑚 ∪𝑚′ and to control otherwise).

Estimation of the variance in Theorem 5 Analogous to the detailed discussion of variance estimation
following Theorem 1, some of the terms in the variance in Theorem 5 are marginal variances that can be
estimated, while others involve covariances, or variances of treatment effects, that cannot be estimated directly
and hence must be bounded. Specifically, the first term sums over the marginal variances of “treated” and
“control” potential outcomes and can be estimated from observed data as before. The second term involves
distinct exposures 𝑚 and 𝑚′ for the same candidate location 𝑠, such that 𝑌𝑠(𝑚, 𝑑) and 𝑌𝑠(𝑚′, 𝑑) can never

20Under the alternative Assumption 5, part (iii) of Theorem 5 allows estimating the average effect of the treatment by distance.
A plausible choice 𝑑max is therefore such that 𝜏(𝑑) ≈ 0 for 𝑑 ≥ 𝑑max.

21In principle, one can define slightly finer exposure mappings at the individual-level. For an individual 𝑖 who is distance
𝑑 away from treatment location 𝑠, the exposure mappings defined here are conservative in the sense that they allow different
exposures based on treatment at a location 𝑠′ that is within 2𝑑max from 𝑠, even if it is farther than 𝑑max from 𝑖. While the
variance expression is still correct, in estimation this leads to more conservative bounding of covariance terms corresponding to
treatment states that cannot be observed jointly. The advantage of the exposure mappings defined here is the substantially
reduced computational complexity achieved by aggregating data at the candidate treatment location-level, as well as simpler
analytical expressions for the variance. See also Aronow and Samii (2017) for feasible approximations when the number of
exposure mappings is too large for exact computation.
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be observed at the same time. Rewriting the product 𝑌𝑠(𝑚, 𝑑)𝑌𝑠(𝑚′, 𝑑) similarly to the variance of treatment
effects in Theorem 1 suggests bounding the second term using Young’s inequality for products:

−𝑌𝑠(𝑚, 𝑑)𝑌𝑠(𝑚′, 𝑑) ≤ |𝑌𝑠(𝑚, 𝑑)| · |𝑌𝑠(𝑚′, 𝑑)| ≤ 𝑌𝑠(𝑚, 𝑑)2

2 + 𝑌𝑠(𝑚′, 𝑑)2

2

which allows replacing the covariance (product) by marginal variances (squares) that can be estimated.
The third term includes both products of location-exposure pairs (𝑠,𝑚) and (𝑠,𝑚′) that can be observed
simultaneously (those with 𝜋𝑠,𝑠′(𝑚,𝑚′) > 0) and pairs that cannot (those with 𝜋𝑠,𝑠′(𝑚,𝑚′) = 0). The latter
needs to be bounded using Young’s inequality as well.

5.2 Non-Spatial Settings

The framework, estimators, and analysis of this paper are applicable more generally to settings where
treatment assignment is separate from the units of observation, and the effect of the treatment is moderated
by some observable, not necessarily geographic, distance from treatment. This setting is similar to that
of Borusyak and Hull (2020), with distance from candidate treatments playing the role of “non-random
exposure.” Their linear regression estimators with actual treatment demeaned by expected treatment are
straightforward to compute in many settings. However, in simple settings, one can show that they estimate
differently weighted average treatment effects.22 In contrast, the (inverse probability weighting) estimators
proposed in this paper are only immediately applicable to treatments that are inherently binary or categorical,
but their implied weighting of individual-level effects is straightforward to analyze and adjust. I give two
brief examples of non-spatial settings in this section: firm entry in markets with differentiated products, and
shift-share designs based on randomness of the shifts.

Firm Entry in Product Space For the first example, suppose the researcher is interested in the effects
of firm entry on competition in markets with differentiated products. She has data for several markets 𝑗 on
prices 𝑌𝑖 charged by firms 𝑖 ∈ I𝑗 for products with horizontal or vertical locations 𝑟𝑖 in characteristics space.
In some markets, a new firm enters with a product with characteristics 𝜉𝑗 . Here, the estimand 𝜏(𝑑) measures
the average effect an entrant has on the price of a product at distance 𝑑 in characteristics space. For short
distances 𝑑, it captures competitive effects or deterrence behavior by firms selling products very similar to
the product of the entrant. For longer distances 𝑑, it captures ripple effects that arise if in equilibrium firms
with more different products react to the price changes of firms with products similar to the entrant’s. These
estimands are therefore informative about the nature of competition.

Firm entry, however, is not generally random. In the framework of this paper, the entrant’s characteristics
𝜉𝑗 are not a random draw from a uniform distribution. Theoretical models of competition and profits may
therefore help to determine the probability of firm entry at any given point in characteristics space, conditional
on the locations of existing competitors in characteristic space. For instance, expected profits of the entrant
may come from a structural model based on distance to competitors in characteristics space (cf. Hotelling,
1929), perhaps calibrated to pre-treatment data. Intuitively, validity of the estimator then requires that
firm entry is random conditional on the expected profitability as given by the model. The structural model
provides a baseline to enhance the credibility of the quasi-experimental analysis, but does not directly restrict
the estimated pattern of competition.

22I thank Peter Hull for sharing his derivations with me.
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Quasi-Random Shifts in Shift-Share Designs For a second example, suppose the researcher is
interested in the causal effects of exogenous shocks to individual industries on employment outcomes in cities
based on their industry mixes (cf. Autor et al., 2013), with multiple shocks observed over time. The framework
of this paper is useful in this setting if the claims of causal identification are based on randomness in which
industries are shocked, rather than on randomness in industry composition. Importantly, the analysis in this
paper reflects that cities with similar industry mixes are shocked similarly, in a way that is difficult to capture
accurately with existing clustered standard errors. Adao et al. (2019) and Borusyak et al. (2022) develop
alternative approaches based on the same idea, and show how it relates to Bartik (1991) and shift-share
instruments more generally. A benefit of the framework of this paper is that its results are not specific to
linear (or other) functional form and that it allows for very transparent estimation of aggregate effects.

The setting fits into the framework of this paper as follows. Data are available for time periods 𝑗 = 1, . . . , 𝐽 .
In some time periods, a single industry 𝜉𝑗 ∈ S = {1, . . . ,𝐾} receives an exogenous shock, potentially with
different industries shocked in different time periods. Assume that the time periods are chosen such that
the shock only affects outcomes within the same time period. Define the indicator 𝑊𝑗 = 1 if an industry in
period 𝑗 is shocked, and 𝑊𝑗 = 0 otherwise. The researcher observes employment outcomes 𝑌𝑖 for cities 𝑖 ∈ I𝑗

in time period 𝑗. City 𝑖 has industry shares 𝑟𝑖 ∈ R𝐾 , satisfying 𝑟𝑖,𝑘 ∈ [0, 1] and
∑︀𝐾

𝑘=1 𝑟𝑖,𝑘 = 1. Here, the
distance function captures exposure to the shock. City 𝑖 is heavily exposed to shocks of sector 𝑘 if industry 𝑘
has large share 𝑟𝑖,𝑘, such that the “distance” 𝑑(𝑘, 𝑟𝑖) = 1 − 𝑟𝑖,𝑘 is small between industry 𝑘 and city 𝑖.

The estimands 𝜏(𝑑) and 𝜏𝑎𝑔𝑔 measure the effects of the exogenous industry shocks. For 𝑑 = 0, the
estimand 𝜏(𝑑) measures the average effect of shocking an industry on employment in cities with employment
only in the shocked industry. For 𝑑 = 0.75, the estimand measures the average effect of the exogenous shock
on cities with 25% of their employment in the shocked industry. The estimand 𝜏𝑎𝑔𝑔 measures the aggregate
effect of the exogenous shock across all cities. The estimators and inference procedures of Section 4 are valid
if it is random in which time periods and sectors an exogenous shock occurs. In principle, one can augment
the variance calculations to allow, for instance, dependence structure in the shocked industry across time
periods. The results in Section 5.1 are relevant for settings where shocks occur to multiple industries in the
same time period.

6 Analysis of Observational Data

While the previous sections presume that the researcher designs the experiment for assignment of the spatial
treatment, much empirical work relies on observational data. The primary challenge to observational studies
in this setting is that researchers typically do not observe the exact locations of counterfactual candidate
treatment locations. To emulate the analysis of the ideal experiment with observational data, researchers
need to estimate candidate treatment locations and their treatment probabilities. In this section, I discuss
how to address these challenges in practice with deliberate choice of machine learning methods well-suited for
the spatial treatment setting. Estimation is then based on an unconfoundedness assumption stating that
among individuals near candidate treatment locations, whether their treatment location is realized is as good
as random, conditional on characteristics of the individuals and the neighborhood of the candidate treatment
location.
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6.1 Unconfoundedness Assumptions for Spatial Treatments

I focus on an unconfoundedness assumption for spatial treatments emulating an experiment with independent
assignment to locations in a (possibly) single contiguous region. The setting with multiple regions is similar
conceptually but may require conditioning also on features of the region. When a fixed number of locations
are realized within a treated region, the setting resembles discrete choice modeling, discussed in more detail
in Section 6.3 below.

Define the location-specific treatment indicator 𝑊𝑠 to equal 1 if location 𝑠 is treated, and 0 otherwise:

𝑊𝑠 ≡ 1{𝑠 ∈ 𝜉}

where 𝜉 is the set of realized treatment locations.
In treatment effect settings with individual-level randomized experiments, unconfoundedness is often

written as
𝑊𝑖 ⊥⊥ 𝑌𝑖(0), 𝑌𝑖(1) | 𝑋𝑖 = 𝑥 ∀𝑥

which is equivalent to an assumption on densities

𝑓(𝑤, 𝑦0, 𝑦1|𝑋𝑖 = 𝑥) = 𝑓𝑤(𝑤|𝑋𝑖 = 𝑥)𝑓𝑦(𝑦0, 𝑦1|𝑋𝑖 = 𝑥) ∀𝑤, 𝑦0, 𝑦1

I similarly define unconfoundedness of spatial treatments at distance 𝑑 from location 𝑠 as

𝑊𝑠 ⊥⊥
(︀
𝑌𝑖(0), 𝑌𝑖(𝑠)

)︀
𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑

| 𝑍𝑠 = 𝑧,
(︀
𝑋𝑖

)︀
𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑

= 𝑥 ∀𝑧, 𝑥 (12)

where 𝑍𝑠 are (neighborhood) characteristics of the candidate treatment locations 𝑠 ∈ S, and 𝑋𝑖 are character-
istics of the individuals 𝑖 ∈ I. The notation above is meant as shorthand for

𝑓(𝑤, 𝑦1,0, 𝑦1,1, . . . , 𝑦𝑛𝑠(𝑑),0, 𝑦𝑛𝑠(𝑑),1|𝑍 = 𝑧,𝑋 = 𝑥)

= 𝑓𝑤(𝑤|𝑍 = 𝑧,𝑋 = 𝑥)𝑓𝑦(𝑦1,0, 𝑦1,1, . . . , 𝑦𝑛𝑠(𝑑),0, 𝑦𝑛𝑠(𝑑),1|𝑍 = 𝑧,𝑋 = 𝑥)

∀ 𝑦1,0, 𝑦1,1, . . . , 𝑦𝑛𝑠(𝑑),0, 𝑦𝑛𝑠(𝑑),1;𝑤

∧

exchangeability of individuals

where 𝑛𝑠(𝑑) is the number of individuals at distance 𝑑 from 𝑠, and argument 𝑦𝑗,𝑤 for 𝑗 = 1, . . . , 𝑛𝑠(𝑑) and
𝑤 ∈ {0, 1} is the potential outcome corresponding to treatment state 𝑤 of candidate location 𝑠 for the
𝑗-th individual at distance 𝑑 from location 𝑠. Exchangeability of individuals is defined as follows. Fix
𝑤, 𝑦1,0, 𝑦1,1, . . . , 𝑦𝑛𝑠(𝑑),0, 𝑦𝑛𝑠(𝑑),1. For any permutation 𝜋 of {1, . . . , 𝑛𝑠(𝑑)}, the joint density satisfies

𝑓(𝑤, 𝑦1,0, 𝑦1,1, . . . , 𝑦𝑛𝑠(𝑑),0, 𝑦𝑛𝑤(𝑑),1|𝑍 = 𝑧,𝑋 = 𝑥)

= 𝑓(𝑤, 𝑦𝜋1,0, 𝑦𝜋1,1, . . . , 𝑦𝜋𝑛𝑠(𝑑),0, 𝑦𝜋𝑛𝑠(𝑑),1|𝑍 = 𝑧,𝑋 = 𝑥𝜋)

where 𝑥𝜋 is the similar 𝜋-permutation of 𝑥.

Remark 21. Adjusting for the true propensity score

𝑒(𝑧, 𝑥) ≡ Pr
(︀
𝑊𝑠 = 1 | 𝑍𝑠 = 𝑧, (𝑋𝑖)𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑 = 𝑥

)︀
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rather than the full set of characteristics
(︀
𝑍𝑠, (𝑋𝑖)𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑

)︀
, is sufficient for unconfoundedness in Equation 12,

as in the setting with individual-level treatments (cf. Rosenbaum and Rubin, 1983). While the unconfounded-
ness assumption in Equation 12 is written for a specific distance 𝑑 from treatment, in practice a design-based,
quasi-experimental, analysis most credibly conditions the independence on (𝑋𝑖)𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑 for all 𝑑 of interest
simultaneously. The estimated propensity score, which uses characteristics of individuals at all distances of
interest, is then the same for all distances. While it may be easier to balance covariates by estimating separate
propensity scores for different distances, treatment probabilities that vary by distance for the same treatment
location are inconsistent with the ideal experiment underlying the quasi-experimental analysis. Furthermore,
estimands such as the average effect of the treatment on the treated, in Theorems 1 and 2, become even less
comparable across distances when not just the individuals, but also the probability weighting of treatment
locations, differs from distance to distance.

Remark 22. The conditioning of the unconfoundedness assumption draws a visual distinction between 𝑍𝑠 and
(𝑋𝑖)𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑. This is conceptually similar to the notion that one may try to correctly model the outcome,
the propensity score, or ideally both, in the literature on double robustness. Both 𝑍𝑠 and (𝑋𝑖)𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑

“vary” at the treatment location level, so in principle the latter can be included in the former for more succinct,
but less informative, notation.

Remark 23. Unconfoundedness of spatial treatments justifies comparisons of individuals near two locations
𝑠 and 𝑠′, one treated, the other untreated, for which 𝑍𝑠 = 𝑍𝑠′ and (𝑋𝑖)𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑 =𝜋 (𝑋𝑖)𝑖: 𝑑(𝑠′,𝑟𝑖)=𝑑. Here,
=𝜋 means that the sets of individual covariates are the same up to permutation. In practice, it is rarely
feasible to find two candidate locations with equal number of individuals and equal covariates. Instead, one
can assume that treatment is unconfounded conditional on, for instance, average characteristics of individuals
in the neighborhoods of candidate locations. Such an assumption greatly simplifies estimation in practice.

Alternatively, when candidate treatment locations are sufficiently far apart such that interference in not
an issue (based on Assumption 4),23 one can make an individual-level unconfoundedness-type assumption for
spatial treatments as a conditional mean equality,

𝐸
(︁
𝑌𝑖(0) | min

𝑠∈𝜉
{𝑑(𝑠, 𝑟𝑖)} = 𝑑,𝑋𝑖 = 𝑥

)︁
= 𝐸

(︁
𝑌𝑖(0) | min

𝑠∈𝜉
{𝑑(𝑠, 𝑟𝑖)} > 𝑑max, 𝑋𝑖 = 𝑥

)︁
which states that, as long as one focuses on individuals with the same characteristics 𝑋𝑖, control potential
outcomes for individuals near realized treatment are the same as control potential outcomes for individuals
far away from realized treatment. To make such an assumption more plausible in a spatial context, these
individual characteristics likely include characteristics of the neighborhood of 𝑖. For estimation, one then does
not need to find counterfactual treatment locations, but only needs to match on, or adjust for, the individual
characteristics 𝑋𝑖 (cf. Imbens and Rubin, 2015, Parts III and IV). Such an assumption simplifies estimation,
but is not justified by experimental design or arguments that the location of the treatment is as good as
random, such that the design-based inference proposed in this paper does not apply.

6.2 Finding Counterfactual Candidate Treatment Locations

In this section, I outline a general strategy for finding counterfactual candidate treatment locations with
observational data. These counterfactual locations for the treatment are necessary for the quasi-experimental
methods I propose in this paper.

23With interference, a similar assumption is possible but notationally more cumbersome.

48



Consider first the example of Linden and Rockoff (2008) given in the introduction, where the choice of
candidate locations is relatively straightforward. They argue that the exact houses where sex offenders move
in are as good as random due to random availability of houses within neighborhoods. Here, the candidate
treatment locations are houses in these neighborhoods. Hence, the candidate locations are known, but their
probabilities of treatment need to be estimated. See Section 6.3 for propensity score estimation.

When there are no (or insufficiently many) known counterfactual candidate locations, however, the problem
of choosing candidate locations from continuous space is hard. In principle, one could imagine estimating the
probability of treatment at any location in a region conditional on all the features of the region. This is akin
to estimating the spatial distribution of treatment locations 𝜉𝑗 ∼ 𝐺(𝑍𝑗), where 𝑍𝑗 are the characteristics of
region 𝑗, potentially relative locations of all individuals in the region as well as moments of their covariates.
One could then use the estimated �̂� to inform the treatment probabilities at each point in the region as
inputs in the estimators proposed in this paper.

In practice, it is typically sufficient to find a finite number of candidate treatment locations that offer a
plausible counterfactual to the realized treatment locations. Computationally, it is often impractical to use a
continuous distribution 𝐺, since the weight of individual 𝑖 when estimating effects at distance 𝑑 would depend
on the integral of the noisy �̂� along a ring with radius 𝑑 around her location, 𝑟𝑖, for each of the typically
many individuals 𝑖 ∈ I. Instead, I recommend finding a finite number of candidate locations. The average
across these finitely many candidate locations approximates the strategy based on the complete distribution
𝐺, setting �̂� to exactly zero for many of the implausible locations.

I propose taking draws 𝜉𝑗 ∼ 𝐺(𝑍𝑗) to obtain candidate treatment locations, where 𝐺(𝑍𝑗) is implicitly
estimated in the process of taking the draws as described below. Perhaps surprisingly, recent machine
learning methods achieve good results at this task, despite the difficulty of estimating 𝐺 itself. Specifically, I
recommend a formulation similar to generative adversarial networks (Goodfellow et al., 2014); see Liang (2018)
and Singh et al. (2018) on the relationship between generative adversarial networks and density estimation.
Most closely related to this paper, Athey et al. (2019) use generative adversarial networks to draw artificial
observations from the distribution that generated the (real) sample, for use in Monte Carlo simulations.

Generative adversarial methods for drawing 𝜉𝑗 ∼ 𝐺(𝑍𝑗) are based on iteration between two steps. First,
a generator generates draws 𝜉𝑗 ∼ �̃�(𝑍𝑗), where �̃� is an implicit estimate of the density maintained by the
generator in the current iteration. Second, a discriminator receives as input either counterfactual locations
proposed by the generator, 𝜉𝑗 |𝑍𝑗 , or real treatment locations, 𝜉𝑗 |𝑍𝑗 , and guesses whether its input is real.
Both the generator and the discriminator are highly flexible models (typically neural networks) designed for
their given tasks. The discriminator is trained by taking (stochastic) gradient descent steps in the direction
that improves discrimination between real and counterfactual locations. The generator is trained by taking
(stochastic) gradient descent steps in the direction that leads to fooling the discriminator into classifying
counterfactual locations as real.

Effectively, the output of such models are counterfactual candidate treatment locations 𝜉𝑗 |𝑍𝑗 that are
indistinguishable (to the discriminator) from real treatment locations 𝜉𝑗 |𝑍𝑗 . With a sufficiently flexible
discriminator, the process is therefore similar to matching.24 If a proposed candidate location 𝜉𝑗 is noticeably
different from all real treatment locations 𝜉, a flexible discriminator will learn to reject 𝜉𝑗 . In contrast,
synthetic control-type methods (Abadie et al., 2010) would average multiple candidate locations, for instance
𝜉𝑎 and 𝜉𝑏, to create a synthetic counterfactual for a real treatment location 𝜉𝑗 . If 𝜉𝑎 and 𝜉𝑏 individually differ

24Standard matching methods, however, are unlikely to perform well due to high dimensional covariates that describe spatial
data, such as relative spatial locations between many individuals as well as their characteristics.
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from all real treatment locations 𝜉, the discriminator will reject them despite their average resembling 𝜉𝑗 .
The goal therefore is to find “false positives:” Occasions when the discriminator fails to reject a counterfac-

tual location suggested by the generator. Discriminator networks do not necessarily make binary predictions,
but may give a continuous activation score that indicates how likely a location is to be real.25 In practice, I
recommend looking for locations with high activation scores, and performing an additional propensity score
matching (or matching based on the activation scores of the discriminator) to the real treatment locations to
select from the (potentially many) false positives one can generate. Such locations are likely to be decent
matches for the real treatment locations, since they must share features of realized locations in order to
achieve these high activation scores.

In the remainder of this section, I discuss how to tune generic machine learning methods to find suitable
candidate treatment locations in social science applications. I recommend four high-level implementation
decisions in adapting these methods. First, discretization of geographic space into a fine grid for tractability.
Second, convolutional neural networks capture the idea that spatial neighborhoods matter in a parsimonious
way. Third, incorporating the adversarial task of the discriminator into a classification task for the generator
greatly simplifies training. Fourth, data augmentation (rotation, mirroring, shifting) for settings where
absolute locations and orientation are irrelevant.

Discretization To tractably summarize the relative spatial locations of individuals and treatment locations,
I recommend discretizing geographic space into a fine grid. Discretization provides an approximation that
is particularly tractable for the convolutional neural networks recommended below. In principle, future
improvements to, for instance, Capsule Neural Networks (Hinton et al., 2011) or other novel methods, may
replace this as the preferred architecture and eliminate the need for discretization.

For each grid cell, one can include a count of individuals with residence in the cell, potentially separately for
individuals with different values of covariates, as well as average covariate values of the individuals in the cell
or other moments of their covariates. Based on the architecture of convolutional neural networks, suggested
below, it is typically not necessary to also pre-compute covariates describing the neighborhood of each cell.
The convolutional neural network can compute such neighborhood averages if they are helpful for predicting
the outcome (here, whether a location is likely to be treated). If the grid is very fine, this discretization
retains almost all meaningful information about relative locations. For instance, in the application of this
paper, each grid cell has size 0.025mi × 0.025mi (approximately 40m × 40m). The discretized grid creates
a three-dimensional array: The first two dimensions determine spatial location, and the third dimension
enumerates the different covariates that are summarized. Rather than taking the spatial dimensions to be
entire regions, I recommend using square cutouts of regions such that the probability of treatment in the
approximate center of the cutout is plausibly only affected by individuals and covariates within the cutout.

Convolutional neural networks Convolutional neural networks have been particularly successful at
image recognition tasks (cf. Krizhevsky et al., 2012). In image recognition tasks, the input is a 3D array: a
2D grid of pixels, with multiple layers corresponding to the RGB color channels. For spatial treatments, the
input also is a 3D array: the 2D spatial grid with layers corresponding to different covariates as described
above.

25Depending on the network architecture, the activation score can have an interpretation as the posterior (conditional)
probability of the location given the covariates in a Bayesian sense. However, in practice it appears preferable to separately
estimate propensity scores based on the real locations and the counterfactual locations actually chosen for the analysis. Estimating
the propensity score separately allows better balancing of relevant covariates in the sample that is actually used for estimation.
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Figure 8: Convolutions in a neural network allow the prediction of a candidate location in a grid cell to
depend on the characteristics of neighboring grid cells (up to a user-specified distance). These models remain
parsimonious by requiring the same “neighborhood scan” to be performed for each grid cell.

Convolutional steps in neural networks generally retain the shape of the 2D grid, but the value of each
neuron is a function of the covariates (or neurons) of the previous step not just at the same grid cell, but
also the covariates (or neurons) at neighboring grid cells. Figure 8 illustrates this aspect of the convolution
operation. However, the particular way in which the neighborhood of a grid cell is averaged is the same for
any point in the grid. This makes convolutional layers substantially more parsimonious than fully connected
layers, and allows the neural network to capture neighborhood patterns appearing in different parts of a
region in a unified way.

In particular, I recommend using at least two convolutions with reasonably large spatial reach. Consider
the application in this paper, where grocery stores are spatial treatments and restaurants are outcome units
with foot-traffic as the outcome variable. The first convolution allows each grid cell to see what other cells are
around it. In the example, the output of the first convolution for a particular grid cell may be: “There are 3
grocery stores nearby, 4 competing restaurants very close, and 10 restaurants within walking distance.” The
second convolution then uses the information on such neighborhoods to determine whether treatment is likely
in a grid cell: “If there are many grid cells nearby (in all directions) containing restaurants or grocery stores
facing much competition, this location is probably in the center of a shopping area and reasonably likely
to contain another grocery store.” Intuitively, the first convolution may measure what is important to the
restaurants, while the second convolution translates how that is important for the treatment location choice,
mirroring the two-part conditioning in the unconfoundedness assumption (Equation 12) of the previous
section.

Adversarial Classification Generative adversarial networks (Goodfellow et al., 2014) are oftentimes
difficult to train despite recent advances such as networks with Wasserstein-type criterion function (Arjovsky
and Bottou, 2017; Arjovsky et al., 2017). The difficulty arises because the training of generator and
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discriminator needs to be sufficiently balanced such that both improve. For instance, if the discriminator early
on becomes (close to) perfect at discriminating between the proposals of the generator and the real treatment
locations, the gradient for the generator is flat (no progress in any direction) and hence the generator fails to
improve. Similarly, if the discriminator is insufficiently flexible, even poor proposals by the generator may
pass, such that the false positives are not necessarily similar to the real treatment locations.

In contrast, convolutional neural networks for image classification are much easier to train, and in this
case can be adapted to the same task. I therefore recommend to set up the problem of finding candidate
treatment locations as a classification task. Specifically, the convolutional neural network takes a 3D input
array and “classifies” it into, say, 101 categories, where categories correspond either to the 10 × 10 = 100 grid
cells in the center of the region (cutout), or an additional “no missing treatment location” category. The
distinction from other generation tasks is that here the set of possible outputs is relatively small, for instance
the 101 categories described above. In contrast, in image generation there are practically infinitely many
possible images that could be generated.

To retain the adversarial nature of the task, I propose simultaneously training the classification on three
sets of data, and adding a final fully-connected layer. The three sets of data are as follows: First, regions with
at least one real treatment location, but with one treatment location removed. The correct classification of
such region data is into the category corresponding to the grid cell where the treatment location was removed.
Second, regions with at least one real treatment location, but without any treatment location removed. The
correct classification of such region data is into the no missing treatment location category. Third, regions
without treatment locations. These are also classified as not missing any treatment location. The output of
the convolutional layers is a prediction for each grid cell, of whether it is missing a treatment location. The
final fully-connected layer can then combine these location-specific predictions into the categories mentioned
above; one corresponding to each of the central grid cells, plus one corresponding not to a grid cell but for
cases where no treatment location is missing. The neural network then balances two tasks: a generative task of
picking the correct location if a treatment location is missing, predominantly performed by the convolutional
layers; and a discriminatory task of deciding whether a treatment location is missing at all, predominantly
performed by the final fully-connected layer. This structure retains the attractive interpretation of generative
adversarial networks, but is substantially easier to train. It also resembles denoising autoencoders (cf. Vincent
et al., 2008), where the removal of a real treatment location represents noise added to the input, with the
autoencoder trained to remove the noise, here meaning to add the removed real treatment location. The
second and third set of training examples also resemble adversarial examples and adversarial training (Biggio
et al., 2013; Szegedy et al., 2013).

The setup as an adversarial task, as well as prediction of categories, additionally is beneficial because
it generates draws near the local modes rather than the mean of the treatment location distribution (cf.
Goodfellow, 2016; Lotter et al., 2016). Suppose regions consist of three possible locations in one-dimensional
space: 1, 2, and 3. For instance, 2 may be the city center, while 1 and 3 are suburbs on either side of
the city. In the data, if a region is treated, treatment always occurs in the suburbs; either at location 1
or at location 3, each with probability 0.5. However, estimating the likely location of the treatment with
the familiar mean squared error loss function will estimate the mean of the treatment location distribution,
predicting treatment at location 2. In contrast, the adversarial loss function as well as loss functions used for
classification tasks, will predict either 1 or 3 because these are most likely to be the correct location, and
there is little or no difference between which incorrect location or category is chosen. In general adversarial
networks, one input to the network is white noise. This noise effectively chooses between the different local

52



modes of the distribution. In the setup as a classification task proposed here, data augmentation plays a
similar role.

Data Augmentation Data augmentation (e.g. Yaeger et al., 1996; Simard et al., 2003; Cireşan et al., 2012;
Krizhevsky et al., 2012) serves two closely related purposes. First, rotating, mirroring, and shifting regions,
while maintaining relative distances, produces additional, albeit dependent, observations. This is helpful
since training neural networks requires large numbers of training samples. Second, these transformations
effectively regularize the parameters of the estimated model. One can choose transformations that induce
equivariance to rotation, mirroring, and shifts as appropriate for the particular setting. For instance, in many
applications in the social sciences, North-South and East-West orientation is irrelevant on a small scale; only
the relative distances matter.26 In particular, suppose an individual who visits a business to the North of her
home because it is on the way to work in the North. If the whole space was rotated, the individual equally
visits the same business now to the West as it is still on the way to work, now also rotated to be to the West
of her home. In image classification, the use of similar data augmentation is common and often associated
with greater generalizability of the learned models.

Shifting the entire grid has two further desirable effects: First, if one imposes a continuous shift of relative
coordinates in combination with a fixed grid, the exact discretization becomes less relevant. The average
(across draws from the shift distribution) distance in grid cells between two observations becomes directly
proportional to their actual distance. Second, the location of an observation within a grid cell is no longer fixed.
This is attractive because the classification is not actually informative of whether the candidate treatment
location is at the center or towards the edge of a grid cell. With a continuous shift of the observations, the
center of the grid cell points to different absolute locations depending on the shift. One can then average over
several realizations of the shift to reduce the influence of the particular translation of grid cell to absolute
location.

There are at least two notable alternatives or complements to data augmentation in the machine learning
literature. First, spatial transformer networks (Jaderberg et al., 2015) attempt to estimate a rotation or other
transformation that makes the subsequent classification task as easy as possible. Second, some recent work
considers imposing the desired in- and equivariance properties on the convolution kernel or adding layers to
the network that effectively average the appropriate kernel coefficients (Cohen and Welling, 2016; Dieleman
et al., 2016; Gens and Domingos, 2014; Dudar and Semenov, 2018; Dzhezyan and Cecotti, 2019). However,
data augmentation and other regularization techniques may achieve the first order gains implied by these
properties (Srivastava et al., 2014; Kauderer-Abrams, 2017; Yang et al., 2019), and may hence suffice for
the purpose of finding appropriate counterfactual treatment locations. One can also inspect the models to
assess the implied degree of equi- and invariance (Goodfellow et al., 2009; Zeiler and Fergus, 2014; Lenc and
Vedaldi, 2015).

6.3 Estimating Propensity Scores

Suppose candidate treatment locations S are known (in all regions), for instance as output of the convolutional
neural network classification task described in the previous section. The remaining challenge in implementing
the methods proposed in this paper is the estimation of the “propensity score” Pr(𝑠 ∈ 𝜉). I briefly sketch

26Applications in environmental economics are a notable exceptions if, for instance, wind direction is relevant. In such cases,
rotation hinders the ability of the model to capture patterns due to e.g. wind consistently blowing from one direction, and may
require inclusion of wind direction in estimation. The choice of appropriate data augmentation is therefore application specific.
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propensity score estimation in two canonical settings: a fixed number of realized treatment locations per
treated region (often just one realized location), and independent Bernoulli trials determining realization
of treatment at candidate locations. When treatment probabilities are estimated rather than set by design,
doubly-robust and sample-splitting approaches may reduce the impact of estimation error.

Fixed Number of Realized Treatment Locations Suppose there are a fixed number of realized
treatment locations per treated region, as in Section 4. Then the problem of propensity score estimation
resembles discrete choice modeling: There are |S𝑗 | discrete alternatives in region 𝑗, a fixed number of which
is realized. Note that for this estimation, only regions with realized treatment, 𝑊𝑗 = 1, are used. Untreated
regions do not contain relevant information for this task. However, the estimated discrete choice model is
used to predict propensity scores for candidate locations in both treated and control regions. See, for instance,
Greene (2009) for an overview of estimation methods.

It is particularly important not to treat this setting as one with independent Bernoulli trials when regions
and candidate location characteristics are heterogeneous. Suppose there are two types of candidate locations
and two types of regions. The first type of candidate locations is in high income neighborhoods, while the
second type is in low income neighborhoods. Within a region, treatment is substantially more likely to occur
at a candidate location in high income neighborhoods. However, the first type of region has many high income
neighborhoods and very few low income neighborhoods, while the second type has a small number of each
type of neighborhoods. Then the marginal probability of realization (unconditional on region, but conditional
on neighborhood type) might be lower for candidate locations in high income neighborhoods because they, on
average, face more competition for the fixed number of realized treatment locations in their regions. Hence, a
researcher estimating propensity scores as if assignment was independent will systematically overestimate the
probability of treatment in low income neighborhoods, and underestimate the probability of treatment in
high income neighborhoods. Discrete choice modeling resolves this issue by specifically considering the choice
set; that is, the particular types of candidate locations available in each region.

When data from many regions are available and regions are heterogeneous in their characteristics, one
can additionally estimate the probability that a region is treated. Based on Assumption 3, one may estimate
the region propensity scores 𝜋𝑗 by (logistic) regression of the region treatment indicator 𝑊𝑗 on region
characteristics 𝑍𝑗 . When no separate covariate data is available, one can create region characteristics based
on the number of individuals in the region, |I𝑗 |, the number of candidate locations in the region, |S𝑗 |, the area
of the region (based on the locations 𝑟𝑖 of individuals), or population density. Even when these characteristics
did not directly feature in the experimental design, adjusting for such pre-treatment covariate may improve
estimates in finite samples (cf. Hahn, 1998; Hirano et al., 2003; Frölich, 2004b).

Independent Bernoulli Trials When treatment assignment is independent across locations, as in
Section 5.1.2 by Assumption 7, propensity score estimation for spatial treatments is similar to propensity
score estimation for individual-level treatments. Logistic regression is a simple option. Each candidate
treatment location 𝑠 ∈ S is a separate, independent, observation. With logistic regression, regress the
indicator 𝑊𝑠 ≡ 1{𝑠 ∈ 𝜉} on covariates 𝑍𝑠 that describe the neighborhood of candidate location 𝑠, as well as
on (moments of) the characteristics of individuals near location 𝑠, (𝑋𝑖)𝑖: 𝑑(𝑠,𝑟𝑖)=𝑑 for all distances of interest 𝑑.

Using Estimated Propensity Scores In observational studies, the propensity score is typically estimated
by the methods above rather than known. The design-based analysis proposed in this paper studies the
behavior of estimators in the thought experiment of an experiment based on these estimated locations and
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propensity scores, effectively conditioning the analysis on them. Even when the propensity score is known,
there may be benefits from using estimated propensity scores for parts of the analysis as in experiments with
individual-level treatments (cf. Hahn, 1998; Hirano et al., 2003; Frölich, 2004b).

To reduce the effect of estimation error from this first-stage propensity score estimation, I also report point
estimates based on sample splitting and a doubly-robust moment condition (e.g. Chernozhukov et al., 2018)
in the application in Section 7. When, for instance, estimated propensity scores are close to 0 or 1, the inverse
propensity score weighting estimators proposed in this paper may perform poorly (cf. Frölich, 2004a; Busso
et al., 2014) because small estimation errors in the propensity scores have large effects on the weights when
denominators are close to zero. Note, however, that currently available inference for doubly-robust estimators
is typically sampling-based and therefore does not have the same interpretation as the design-based inference
of this paper. Existing inference procedures may therefore not take the spatial correlations, in exposure
to treatment and in outcomes, into account correctly from a design-based perspective. Furthermore, while
existing inference procedures may take into account propensity score estimation, additional work is required
to also address uncertainty in the locations of the estimated counterfactual locations.27 In practice, empirical
researchers might be particularly concerned about the robustness of estimates to particular, conceptually
irrelevant, design choices and random seeds used in the generation of counterfactual treatment locations.
In the application, I therefore show that estimates from differently parameterized neural networks, and
counterfactual treatment locations generated from different random seeds, do not produce substantively
different point estimates, even though the exact counterfactual locations used may differ. Despite issues
of design-based inference, estimators based on doubly-robust moments and sample splitting likely still
substantively reduce the effect of error due to propensity score (and outcome model) estimation, and I report
point estimates from such estimators in the application.

7 Application: Foot Traffic in Times of COVID-19

Did grocery stores bring additional foot-traffic to nearby restaurants during COVID-19 shelter-in-place policies
in April of 2020? Grocery stores may have causal effects on the number of customers to nearby restaurants
if they draw customers into the shopping and business area. In particular during the first few weeks of
COVID-19 shelter-in-place policies, when individual mobility was greatly reduced, getting groceries may have
been one of the few trips still made. If grocery store customers are more likely to stop by coffee shops or
restaurants for pick-up orders right before or after getting groceries, restaurants and similar businesses may
receive more foot-traffic if there is a grocery store nearby. Large department stores serving as “anchor stores”
of shopping malls may play a similar role in normal times. Relatedly, Jia (2008) studies the effects of new
Wal-Mart stores on existing businesses. Athey et al. (2018) study the effect of restaurant closings on nearby
restaurants.

In the framework of this paper, grocery stores are the spatial treatments, restaurants are the (outcome)
individuals, and foot-traffic (the number of customers) is the outcome of interest. I argue that the inner
ring vs. outer ring empirical strategy used in recent studies is unattractive in this setting: Its identifying
assumptions are not credible, and it requires discarding the majority of the sample for practical reasons. I
show how to implement the methods proposed in this paper, and argue that the control groups these methods
are based on are preferable to outer ring control groups.

27The difficulty of taking into account which counterfactual locations are used resembles issues in inference for matching
estimators of treatment effects, where standard procedures condition on the matches and take a sampling based view of the
outcomes of individuals (cf. Abadie and Imbens, 2006, 2008, 2011, 2016).
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The average treatment effect of interest is identified by an ideal experiment where some grocery store
locations are randomly closed during COVID-19 shelter-in-place policies. Specifically, take a restaurant 𝑖
near a grocery store at location 𝑠. What is the difference between the number of customers of restaurant 𝑖
during the COVID-19 shelter-in-place policies when there is a grocery store at location 𝑠, and the number of
customers of the same restaurant 𝑖 if there was no grocery store at location 𝑠, holding fixed the locations of
all other businesses and grocery stores? In the notation of this paper, if 𝑆 are the locations of other grocery
stores, the treatment effect of interest is 𝜏𝑖(𝑠) = 𝑌𝑖(𝑆 ∪ {𝑠}) − 𝑌𝑖(𝑆). This effect is distinct from fixing a
spatial location near a grocery store, and considering the difference in the outcome (during COVID-19) of
the restaurants that exists at this point in space when there is a grocery store nearby, and the outcome (also
during COVID-19) of the, possibly different, restaurant that would have been at the same location, had there
never been a grocery store nearby.

The effects of grocery stores on nearby restaurants are informative about several questions. Do grocery
stores have (positive) externalities on other businesses? If so, should mall operators subsidize grocery stores
through lower rent such that they internalize these externalities, to support other businesses in the mall? In
the context of pandemics, are grocery stores likely choke points leading to bunching of customers at nearby
restaurants instead of spreading out across all restaurants, increasing the risk of infections? Alternatively,
grocery stores may resolve a coordination problem: Suppose that the overall reduced number of restaurant
customers is insufficient to operate restaurants profitably or with reduced loss when spread across all
restaurants. Grocery stores may then help to resolve a coordination problem between restaurants, by focusing
potential restaurant customers on the nearby restaurants.

I use SafeGraph data on the number of customers of each business in the week starting April 13, 2020.
SafeGraph (2019) describes the algorithm used for attributing visits to businesses. Generally, pick-up orders
as well as outside dining are likely picked up by the algorithm as long as a customer’s smartphone sends
location data at the point of interest for more than one minute. For errors in attribution to matter in the
application of this paper, they need to correlate with the presence or absence of nearby grocery stores. I
restrict the sample to businesses in the area between San Francisco and San Jose in the San Francisco Bay
Area, as highlighted in Figure 9. There are 167 grocery and convenience stores (triangles in the figure),
as well as 1627 distinct restaurants (black circles) within 0.5 miles from any of the grocery stores (real or
counterfactual). See Appendix B.1 for details on sample construction.

The outcome of interest is the inverse hyperbolic sine of visits to restaurants, with visits as measured
by SafeGraph. For external validity, that is to interpret the percentage point effect on the number of
SafeGraph-tracked customers as the overall effect, one needs to assume that SafeGraph’s sample selection is
orthogonal to the presence and absence of grocery stores. Otherwise, the estimates retain internal validity as
the effects on the number of SafeGraph-tracked customers to these restaurants, but may not be informative
about the total number of visits. The inverse hyperbolic sine allows for zero visits, and effects on it can
be transformed into elasticity estimates similar to log(𝑦) or log(𝑦 + 1) specifications (see Bellemare and
Wichman, 2020, for a discussion).28

7.1 Inner vs. Outer Ring

Figure 10 illustrates why comparisons between observations on an inner ring and observations on an outer
ring around a strategically chosen location are often not attractive. Here, businesses (blue circles) on the

28The inverse hyperbolic sine is defined as arcsinh(𝑦) ≡ ln(𝑦 +
√︀

𝑦2 + 1). Hence arcsinh(0) = 0, arcsinh(1) ≈ 0.9, arcsinh(2) ≈
1.4, and arcsinh(𝑦) ≈ ln(𝑦) + 0.7 if 𝑦 ≥ 3.
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Figure 9: The sample includes businesses in the San Francisco Bay Area between San Francisco and San
Jose. The locations of real grocery and convenience stores are marked by solid red triangles. Restaurants are
marked by black circles. The black triangles are grocery stores outside the main study area; their location is
considered fixed and restaurants near them are not part of the estimation procedure. In total, there are 167
grocery and convenience stores, as well as 1627 distinct restaurants that were open as of January 2020 within
0.5 miles from any of the grocery stores (real or counterfactual within the main study area).

inner ring are at a distance of 0.1 ± 0.025 miles from the grocery store (orange triangle), while businesses on
the outer ring are at a distance of 0.25 ± 0.025 miles from the same grocery store. While inner ring businesses
are part of the same strip mall, outer ring businesses are outside of the primary shopping areas. Interpreting
differences in outcomes for these two groups of businesses as causal effects requires assuming that outer ring
businesses are unaffected by treatment and have similar outcomes as inner ring businesses in the absence of
treatment. Generally, distance from treatment often correlates with many other variables (Kelly, 2019). With
small numbers of grocery stores (see below), the mode of average treatment effect estimates of an inner ring
vs. outer ring empirical strategy may not be close to the true average effect, even if the locations of grocery
stores were random. This arises due to spatial correlations in outcomes even in the absence of treatments (cf.
Lee and Ogburn, 2021, in a network setting). See Section 2 for a concrete example suggesting that except for
knife-edge cases, such estimators are only unbiased if the outcome surface is flat.

In this application, the absence of pre-trends in event study plots would not be particularly informative
about the validity of the underlying assumption. With panel data, restaurants on inner and outer rings are
allowed to have different average levels of customers, but trends (in the inverse hyperbolic sine) of the number
of customers must be parallel. However, even if panel data suggested that trends between inner and outer
ring restaurants were indeed parallel pre COVID-19, one may question whether this is informative about
trends in (potential) outcomes during COVID-19 shelter-in-place policies. Given the dramatic decrease in
customers for all restaurants, it is questionable that this decrease would have occurred in parallel with only a
shared additive shift (in the inverse hyperbolic sine) for inner and outer ring restaurants in the absence of
treatment.

Furthermore, the estimand of a difference in differences estimator in this setting is the additional effect of
grocery stores on nearby restaurants during COVID-19 on top of any effects that may have already existed
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Figure 10: The comparison of businesses on an inner vs. outer ring around a particular grocery store. The
grocery store is marked by an orange triangle in the center of the figure. Other businesses are small blue
circles. Businesses on the gray inner ring, at a distance of 0.1 ± 0.025 miles, are primarily in strip malls, while
businesses on the gray outer ring, at a distance of 0.25 ± 0.025 miles, are away from these main shopping
areas.

pre COVID-19. Even if the parallel trends assumption was credible, this estimand differs from the estimand
of interest described above. The difference in differences estimand can be negative even though the effect of
grocery stores on nearby restaurants is positive during COVID-19 if the effect of grocery stores pre COVID-19
was also positive but larger in magnitude, for instance due to differences in the scale of the number of
customers.

Finally, in most instances, restaurants on the outer ring around a grocery store are not actually far away
from grocery stores (“untreated”), as illustrated by panel (a) of Figure 11. Here, some of the businesses
on the outer ring centered around the grocery store in the center of the figure are very close to a second
grocery store to the North. Applying the inner vs. outer ring estimator in this setting therefore requires
restricting the sample to the neighborhoods of the few grocery stores that are sufficiently far away from other
grocery stores. Specifically, to guarantee the absence of interfering grocery stores for an outer ring “no effect”
distance of 0.250 miles, only grocery stores with no other grocery store within 2 × 0.250 miles can be used.
Panel (b) of Figure 11 shows the locations of the remaining 23 grocery stores. Compared to Figure 9, these
grocery stores are in more remote locations, with noticeably fewer nearby restaurants. While the average
treatment effect of grocery stores in such locations may continue to be of interest, it is plausibly distinct from
the treatment effect in areas with higher population or business density.

7.2 Quasi-Experimental Estimators for Spatial Treatments

This application follows the framework of Section 5.1 for a single contiguous region with independent treatment
assignment. The key idea behind identification for the proposed methods is that the location of a grocery store
is as good as random between candidate locations with similar numbers and industries of nearby businesses.
Figure 12 shows an example of an ideal comparison where the only difference between the (parts of the)
regions is the absence of the bottom-most grocery store, and all other relative locations are the same.
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(a) Example of Interference (b) Sample of Isolated Grocery Stores

Figure 11: Panel (a) shows an example of a grocery store (triangle in the center) with a second “interfering”
grocery store (triangle towards the top) nearby. Some businesses on the outer ring are close to (treated by)
this second grocery store and therefore not a valid control group. Panel (b) shows that restricting the sample
to the 23 (out of 167) grocery stores without interference leads to a sample selected heavily towards less
business-dense areas compared to the overall sample shown in Figure 9.
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Figure 12: To estimate the effect of the bottom treatment location (orange triangle) in the region of panel (a),
the task is to find another region with similar relative locations of businesses but missing the particular
grocery store, as in panel (b).
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The approach I propose for observational data proceeds in two steps: First, it finds good “matches” for
each grocery store; that is, locations without a grocery store that are similar in terms of the number, types,
and relative locations of other businesses and grocery stores. Second, estimate treatment effects assuming the
matched data resemble the ideal experiment of randomizing grocery stores between the real and counterfactual
candidate treatment locations. I recommend inverse propensity score weighting estimators based on the
results of sections 4 and 5.1. Conceptually similar combinations of matching or stratification and propensity
score weighting or regression adjustments have been advocated for by Abadie and Imbens (2011), Imbens
and Rubin (2015, ch. 17), and Kellogg et al. (2021), among others.

7.2.1 Predicting Grocery Store Locations

The grocery store location prediction following Section 6.2 discretizes the South Bay region into a fine grid
and aggregates characteristics of businesses in each grid cell. Figure 13 illustrates the discretization for the
surroundings of an example grocery store, see panel (a). For each grid cell, record the number of grocery
stores as in panel (b). Other characteristics of each grid cell, for instance the number of businesses by industry
are recorded in similar grids as in panel (c).

Based on this discretization, I use convolutional neural networks as described in Section 6.2 to find
counterfactual candidate grocery store locations that are indistinguishable from the real grocery store
locations. Details on the implementation are given in Appendix B.2. Since the method can find a very
large number of counterfactual grocery store locations, I use matching (based on node activation, implied
probability, and a propensity score estimate) to narrow the sample down to a smaller but more balanced
sample of real and counterfactual grocery store locations. To estimate propensity scores in this setting, I
assume that grocery store openings are independent decisions at each location, Assumption 7. In practice,
this assumption is primarily relevant at the margin of opening (or closing) additional grocery stores relative
to the existing grocery stores. Since there are neighborhoods similar in other businesses but differing in the
number of grocery stores, this assumption may offer a reasonable approximation.

The inverse probability weighted real and counterfactual grocery store locations are similar in everything
except their exposure to real grocery stores, which differs by one additional grocery store. Figure 14 shows
that the exposure to treatment is as intended: Suppose we estimate the treatment effect on restaurants at
a distance of 0.075 – 0.1 miles; top row, fourth panel from the left. Among these restaurants, those near
real grocery store locations are exposed to the same number of grocery stores on average at all distances
except at 0.075 – 0.1 miles as those near counterfactual locations. Hence, the estimator plausibly estimates
the effect of one additional grocery store at a particular distance, holding fixed the number of grocery
stores at other distances. Furthermore, the composition of nearby businesses is similar between real and
counterfactual grocery store locations at any distance. Figure 15 shows that, holding fixed distance from a real
or counterfactual grocery store location, the neighborhoods of “treated” restaurants (near real locations) have
a similar business composition as the neighborhoods of “control” restaurants (near counterfactual locations).
A comparison of restaurants on inner vs. outer rings around real grocery stores would lead to systematic
differences in the industry composition of the neighborhood of treated and control restaurants. Overall,
these figures lend credibility to the treatment effect estimators proposed in this paper. Treated and control
restaurants are alike, except for a single additional grocery at the intended distance.
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(a) fine grid overlay on map

0

1
value

(b) grocery stores in each cell

0
1
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3
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5

value

(c) other businesses in each cell

Figure 13: The neighborhoods of each grocery store are placed in a fine grid (0.025mi × 0.025mi) as shown
in panel (a). For each cell, the number of grocery stores is shown in panel (b), and the number of other
businesses in panel (c). In practice, I create multiple grids as in panel (c), each capturing the number of
businesses of a different industry. Additionally, one could add similar grids containing for instance average
age and 0.75 quantile of earnings of customers of businesses in each cell, or residents living in the census tract
covering the cell. The prediction of grocery store locations then uses augmented data, where one grocery
store is removed from the grid in panel (b), and the data from grids as in panel (c) is used together with the
augmented grid of panel (b) by a convolutional neural network to predict the location of the removed grocery
store.
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Figure 14: Each panel focuses on the restaurants used to estimate treatment effects at a specific distance.
The outcome (vertical axis) shown is the difference in the average number of grocery stores by distance from
the restaurant (horizontal axis) between restaurants near real and counterfactual grocery store locations.
In each panel, the difference in exposure is near 0 except at the distance at which “treated” and “control”
restaurants are meant to differ by one grocery store.
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Figure 15: The composition of businesses near real and counterfactual grocery store locations is similar.
The figure plots, by distance from real or counterfactual grocery store location, the fraction of businesses
that fall into one of four different industries. It is encouraging that counterfactual grocery store locations
mimic the business composition pattern across distance of real grocery store locations. Since the fraction
of businesses that are, for instance, restaurants decreases meaningfully across distances, the neighborhoods
and competition experienced by restaurants on inner vs. outer rings would differ systematically. In contrast,
focusing on restaurants at a fixed distance from real vs. counterfactual locations leads to a comparison of
restaurants in similar neighborhoods, as measured by business composition.
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7.2.2 Estimating Treatment Effects

Given candidate treatment locations and propensity scores, I estimate treatment effects with the estimator of
Section 5.1.

To interpret the estimated effect as the average effect of opening single grocery stores, rather than the
marginal effect of adding a grocery store to existing exposure, one can make the additivity Assumption 5.
Additivity may be plausible if each additional grocery store brings new customers into an area. During
COVID-19, customers may reduce the number of different grocery stores they shop at to limit their exposure.
Furthermore, there is differentiation in the grocery store market: The customers at discount grocery outlets
may be distinct from the customers at Whole Foods.

Table 1 reports the estimates and standard errors for distances up to 0.25 miles, as well as the percentage
effect relative to the mean number visits of the control restaurants at that distance. Figure 16 visualizes the
effect by distance under the inverse hyperbolic sine transformation. Estimates for alternative transformations
such as the logarithm of visits + 1 or the logarithm conditional on a strictly positive number of visits are very
similar and not reported. At very short distances, restaurants have almost three times the visits (+187%) if
they are near real grocery stores rather than near counterfactual grocery store locations. If the grocery store
is 0.05 or more miles away, it has no more effect on the businesses.

The treatment effect estimates are relatively noisily estimated because grocery stores close to one another
create (potential) interference that reduces the effective sample size. To define the exposure mappings
underlying the standard errors shown in Figure 16 and reported in Table 1, I assume that grocery stores have
no effect on visits to restaurants that are more than 0.15 miles away. The marginal treatment effect estimates
past this distance are economically small and (under the assumption that there indeed is no effect past 0.15
miles) statistically indistinguishable from zero, suggesting the data are consistent with this assumption. The
estimator uses 167 real grocery store locations as well as well as 308 counterfactual grocery store locations. If
each (real as well as counterfactual) grocery store location and its nearby restaurants were in a separate,
independent region such that there was no interference, standard errors would be less than half compared to
the standard errors that do take into account possible interference. This implies that interference here causes
the effective sample size to be only a quarter of the actual sample size. In settings with interference, there
hence is a trade-off when choosing counterfactual locations: use more counterfactual locations to have more
flexibility to generate (average) covariate balance and to reduce the variance of the estimate of the control
mean, or use fewer counterfactual locations to reduce the extent of interference.

I also estimate the effect of grocery stores on visits to restaurants using a doubly-robust moment (e.g.
Chernozhukov et al., 2018). The natural extension of the ATT-moment to the spatial treatment setting with
interference is

𝜓𝜏(𝑑) = 1{𝑠 ∈ 𝜉}
(︁
𝑌 − 𝜏(𝑑) − 𝜇

(︀
𝑋, 𝜉 ∖ {𝑠}

)︀)︁
−
𝑒(𝑠)

(︀
1 − 1{𝑠 ∈ 𝜉}

)︀(︀
𝑌 − 𝜇(𝑋, 𝜉)

)︀
(1 − 𝑒(𝑠))

where 𝐸(𝜓𝜏(𝑑)) averages over all combinations of candidate grocery store locations 𝑠 and restaurants 𝑖
satisfying 𝑑(𝑠, 𝑟𝑖) ≈ 𝑑. 1{𝑠 ∈ 𝜉} plays the role of the “treatment indicator.” The function 𝜇(𝑋,𝑆) gives the
expected outcome (inverse hyperbolic sine of number of visits) for a restaurant with covariates 𝑋, including
neighborhood characteristics, when there are grocery stores at locations 𝑆. For a restaurant near a real
grocery store, the conditional mean function is evaluated in the absence of the nearby grocery store 𝑠, 𝜉 ∖ {𝑠},
with the parameter of interest, 𝜏(𝑑), capturing the difference between actual outcome and expected outcome
in the absence of the nearby grocery store. For restaurants near a counterfactual candidate location 𝑠,
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Figure 16: Treatment effect estimates by distance. The vertical axis shows the difference in the inverse
probability weighted mean inverse hyperbolic sine (similar to log) of visits to restaurants near real grocery
stores and restaurants near counterfactual grocery store locations. There is a substantial estimated treatment
effect at very short distances of up to 0.025 miles, and no meaningful difference between treated and control
businesses at larger distances.

the conditional mean function is evaluated at the background treatment exposure level 𝑆. The propensity
score 𝑒(𝑠) gives the probability that there is a real grocery store at candidate location 𝑠, conditional on
characteristics of the neighborhood of 𝑠. This moment function satisfies the Neyman orthogonality condition
of Chernozhukov et al. (2018). Relative to the spatial experiment estimator, which treats the propensity
score as known, this estimator has the advantage of reducing the impact of small errors in the estimated
propensity score through orthogonalization.

Overall, the inverse propensity score weighting estimator and the doubly-robust estimator yield very
similar results as shown in Table 1 above. Grocery stores have an economically large positive effect during
COVID-19 shelter-in-place policies only at short distances of less than 0.025 miles. Intuitively, grocery store
customers do visit nearby restaurants and coffee shops, but are unlikely to walk for more than a couple of
minutes from the grocery store location.

8 Conclusion

The aim of this paper is to argue that leveraging quasi-random variation in the location of spatial treatments
is both conceptually attractive and feasible in many settings in practice.

I propose a framework and experimental approach for estimating the effects of spatial treatments. This
approach uses random variation in the realized locations of the spatial treatments for causal identification. I
argue that an alternative empirical strategy, which compares inner and outer rings around realized treatment
locations, commonly used in practice is not justified by the same random variation, but instead identifies
causal effects only under partly conflicting nonparametric, or functional form assumptions.

To operationalize the (quasi-) experimental approach with observational data, I propose a machine
learning method to find counterfactual locations where the treatment could have occurred but did not. The
proposed method specifically leverages that neighborhood characteristics are predictive of both the location of
treatments and the outcomes of individuals. Convolutional neural networks learn this rich spatial dependence
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structure encoding relevant institutional features from the data. I incorporate the appealing properties of
generative adversarial networks in a classification problem that leads to much simpler training in practice,
similar to denoising autoencoders.

I illustrate the proposed methods in an application studying the causal effects of grocery stores on foot-
traffic to nearby restaurants during COVID-19 shelter-in-place policies. I find substantial positive externalities
of grocery stores on nearby restaurants: Foot-traffic to restaurants within a couple of minutes walking from
real grocery stores is almost double the foot-traffic to restaurants that are in similar locations but without a
nearby grocery store. This effect is very local; there is no discernible effect at larger distances, suggesting
grocery stores may concentrate consumers into a relatively small number of restaurants at particularly
convenient locations.

Several key questions remain for future research. In some settings, the spatial treatment is endogenous,
but geographic characteristics which are continuous in space are available as plausibly exogenous instruments
(cf. Feyrer et al., 2017, 2020; James and Smith, 2020). It is unclear how to construct powerful instruments
from such geographic characteristics and incorporate them in the causal framework of this paper. In this
paper, I also assume that there is no migration response to the treatment. To allow for migration, one could
either focus on outcomes at fixed geographic locations instead of outcomes of fixed individuals or embrace a
local average treatment effect (Angrist et al., 1996) interpretation with a large number of compliance types if
individuals move to different distances from treatment. The analysis in this paper is focused on estimating
(potentially weighted) average treatment effects. In practice, decision makers may often be more interested in
the optimal location for the spatial treatment. What assumptions allow credible estimation, or prediction,
of the treatment effect for locations that were not candidate locations in the randomization of the (quasi-)
experiment?
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A Theoretical Results

A.1 Expected Value of The Average Outcome of Treated Individuals

The average of treated individuals at distance 𝑑± ℎ from realized treatment locations is

𝑌𝑡(𝑑) =
∑︀

𝑖∈I𝑊𝑗(𝑖)1{|𝑑(𝜉𝑗(𝑖), 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀
𝑖∈I𝑊𝑗(𝑖)1{|𝑑(𝜉𝑗(𝑖), 𝑟𝑖) − 𝑑| ≤ ℎ}

.

Here, consider the expectation of the term in the numerator corresponding to individual 𝑖, 𝑊𝑗(𝑖)1{|𝑑(𝜉𝑗(𝑖), 𝑟𝑖)−
𝑑| ≤ ℎ}𝑌𝑖. The expected value of the term is

𝐸
(︁
𝑊𝑗(𝑖)1{|𝑑(𝜉𝑗(𝑖), 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖

)︁
=𝐸

(︁
𝑊𝑗(𝑖)1{|𝑑(𝜉𝑗(𝑖), 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝜉𝑗(𝑖))

)︁
=𝐸

(︁
𝑊𝑗(𝑖)

∑︁
𝑠∈S𝑗(𝑖)

1{𝑠 = 𝜉𝑗(𝑖)}1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑠)
)︁

=
∑︁

𝑠∈S𝑗(𝑖)

𝐸
(︁
𝑊𝑗(𝑖)1{𝑠 = 𝜉𝑗(𝑖)}

)︁
1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑠)

=
∑︁

𝑠∈S𝑗(𝑖)

𝜋𝑗(𝑖)𝑔𝑗(𝑖)(𝑠)1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑠)
)︁

The first step uses that the realized outcome 𝑌𝑖 is the potential outcome corresponding to the realized
treatment. The second step rewrites the potential outcome and distance bin indicator function in terms
of non-stochastic candidate locations 𝑠 by summing over all possible treatment locations in the region,∑︀

𝑠∈S𝑗(𝑖)
1{𝑠 = 𝜉𝑗(𝑖)}. The third step moves the expectation into the summation, and the non-stochastic

distance bin indicator function and potential outcome out. The final step resolves the expectation in terms of
the probabilities determined by the experimental design, defined in Section 3.

A.2 Proof of Theorem 3

A.2.1 Estimator

The general estimator of interest in the setting without interference can be written as

𝜏𝑤(𝑑) ≡
∑︀𝐽

𝑗=1
𝑊𝑗

𝜋𝑗

∑︀
𝑠∈S𝑗

1{𝜉𝑗=𝑠}
𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀𝐽
𝑗=1

𝑊𝑗

𝜋𝑗

∑︀
𝑠∈S𝑗

1{𝜉𝑗=𝑠}
𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
−
∑︀𝐽

𝑗=1
1−𝑊𝑗

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀𝐽
𝑗=1

1−𝑊𝑗

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

where index 𝑗 denotes regions, 𝑊𝑗 = 1 if region 𝑗 is treated at some location, and 𝜉𝑗 is the single treatment
location chosen in region 𝑗 (if any). The weight function 𝑤𝑖(𝑠, 𝑑) is chosen by the user to weight individuals
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𝑖 and treatment locations 𝑠 as desired and primarily place weight on pairs that are distance 𝑑 apart. For
instance, for the ATT estimator with distance bin, choose 𝑤𝑖(𝑠, 𝑑) = 𝜋𝑗𝑔𝑗(𝑠)1{𝑑(𝑠, 𝑟𝑖) ≤ ℎ}. The probabilities
of treatment in regions and locations are given by 𝜋𝑗 ≡ Pr(𝑊𝑗 = 1) and 𝑔𝑗(𝑠) ≡ Pr(𝜉𝑗 = {𝑠}|𝑊𝑗 = 1).

The first term averages over individuals at distance 𝑑 from a realized treatment location. The second
term averages over individuals at distance 𝑑 from counterfactual (unrealized) candidate treatment locations.
The estimator estimates the weighted average treatment effect:

𝜏𝑤(𝑑) ≡
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝜏𝑖(𝑠)∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

with user-specified weights 𝑤.
The experiment considered here is a completely randomized experiment at the region level, where a fixed

number of regions receive treatment at exactly one location each, and treatment in a region is assumed to
have no effect on outcomes in other regions – regions are “far apart.”

A.2.2 Approximate Estimator

The estimator 𝜏𝑤(𝑑) is hard to analyze (in finite samples) because the denominators are random. This
arises because, depending on treatment assignment, there may be more or fewer individuals near realized /
counterfactual locations. The same problem exists in standard randomized experiments when the treatment
is randomized by an independent coin flip for each individual, such that the number of treated varies from
assignment to assignment. In that setting, we can instead analyze the experiment with number of treated
fixed at the value observed in the realized sample. Conditioning on the number of realized treatment locations
is not sufficient in the spatial setting because the number of individuals would still vary since some locations
have more individuals near them than other locations. Conditioning on the number of individuals restricts the
assignment distribution asymmetrically – inverting an assignment generally changes the number of individuals
near treatment – such that standard estimators are no longer unbiased by design.

The theoretical analysis of 𝜏𝑤(𝑑) therefore relies on an approximate estimator that fixes the denominators
(at their expected values), and centers the numerators in a way that minimizes the difference between 𝜏𝑤(𝑑)
and its approximation.

The approximate estimator is

𝜏𝑤(𝑑) ≡𝜏𝑤(𝑑) +
∑︀𝐽

𝑗=1
𝑊𝑗

𝜋𝑗

∑︀
𝑠∈S𝑗

1{𝜉𝑗=𝑠}
𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖 − 𝜇𝑡(𝑑))∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

−
∑︀𝐽

𝑗=1
1−𝑊𝑗

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖 − 𝜇𝑐(𝑑))∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

(A.1)

where 𝜇𝑡(𝑑) and 𝜇𝑐(𝑑) are average potential outcomes:

𝜇𝑤,𝑡(𝑑) ≡
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖(𝑠)∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

and

𝜇𝑤,𝑐(𝑑) ≡
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖(0)∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
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such that
𝜏𝑤(𝑑) = 𝜇𝑤,𝑡(𝑑) − 𝜇𝑤,𝑐(𝑑)

A.2.3 Quality of Approximation

Here, I show that the estimators 𝜏𝑤(𝑑) and 𝜏𝑤(𝑑) are very close in large enough samples. This motivates the
use of exact finite sample results for the mean and variance of the infeasible estimator 𝜏𝑤(𝑑) for inference with
the feasible estimator 𝜏𝑤(𝑑). The analysis uses the mean value theorem to derive the difference 𝜏𝑤(𝑑) − 𝜏𝑤(𝑑)
and argues that this difference is small in large enough samples.

As a practical matter, a sample is large enough if the number of individuals near treatment and control
are close to their expected values. The approximation of 𝜏𝑤(𝑑) by 𝜏𝑤(𝑑) is particular close when also the
average outcomes are close to their expected values.

To simplify notation, define the following shorthands:

�̂�𝑤,𝑡(𝑑) =
∑︀𝐽

𝑗=1
𝑊𝑗

𝜋𝑗

∑︀
𝑠∈S𝑗

1{𝜉𝑗=𝑠}
𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀𝐽
𝑗=1

𝑊𝑗

𝜋𝑗

∑︀
𝑠∈S𝑗

1{𝜉𝑗=𝑠}
𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̂�𝑤,𝑐(𝑑) =
∑︀𝐽

𝑗=1
1−𝑊𝑗

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀𝐽
𝑗=1

1−𝑊𝑗

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̃�𝑤,𝑡(𝑑) =
∑︀𝐽

𝑗=1
𝑊𝑗

𝜋𝑗

∑︀
𝑠∈S𝑗

1{𝜉𝑗=𝑠}
𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̃�𝑤,𝑐(𝑑) =
∑︀𝐽

𝑗=1
1−𝑊𝑗

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

and

𝑝𝑤,𝑡(𝑑) = 1
𝐽

𝐽∑︁
𝑗=1

𝑊𝑗

𝜋𝑗

∑︁
𝑠∈S𝑗

1{𝜉𝑗 = 𝑠}
𝑔𝑗(𝑠)

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

𝑝𝑤,𝑐(𝑑) = 1
𝐽

𝐽∑︁
𝑗=1

𝐽∑︁
𝑗=1

1 −𝑊𝑗

1 − 𝜋𝑗

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

𝑝𝑤(𝑑) = 1
𝐽

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

where �̃�𝑤,𝑡(𝑑) and �̃�𝑤,𝑐(𝑑) replicate �̂�𝑤,𝑡(𝑑) and �̂�𝑤,𝑐(𝑑) but with expected values rather than sample averages
in the denominators. The sample average denominators are 𝑝𝑤,𝑡(𝑑) and 𝑝𝑤,𝑐(𝑑) (scaled such that they
converge under suitable conditions when 𝐽 grows), and the expected value of the denominators is 𝑝𝑤(𝑑)
(similarly scaled).

Without loss of generality, I fix the distance 𝑑 and weighting 𝑤 of interest and suppress the dependence
on 𝑑 and 𝑤 in the following derivations for ease of presentation.

The feasible estimator written in terms of the shorthand notation is

𝜏 = �̂�𝑡 − �̂�𝑐 = 𝑝

𝑝𝑡
�̃�𝑡 − 𝑝

𝑝𝑐
�̃�𝑐
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while the infeasible estimator is

𝜏 = 𝜇𝑡 − 𝜇𝑐 + �̃�𝑡 − 𝑝𝑡

𝑝
𝜇𝑡 − �̃�𝑐 + 𝑝𝑐

𝑝
𝜇𝑐.

Next, define the function

Δ̃(𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐) ≡ 𝑝

𝑝𝑡
�̃�𝑡 − 𝑝

𝑝𝑐
�̃�𝑐 − (𝜇𝑡 − 𝜇𝑐 + �̃�𝑡 − 𝑝𝑡

𝑝
𝜇𝑡 − �̃�𝑐 + 𝑝𝑐

𝑝
𝜇𝑐)

= 𝜏 − 𝜏

Finally, apply the mean value theorem on Δ̃ on the interval with endpoints �̂� = (𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐) and
𝑥 = (𝑝, 𝑝, 𝜇𝑡, 𝜇𝑐). The mean value theorem states that

Δ̃(𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐) − Δ̃(𝑝, 𝑝, 𝜇𝑡, 𝜇𝑐)

=

⎡⎢⎢⎢⎢⎣
𝑝𝑡 − 𝑝𝑡

𝑝𝑐 − 𝑝𝑐

�̃�𝑡 − 𝜇𝑡

�̃�𝑐 − 𝜇𝑐

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
𝜕Δ̃
𝜕𝑝𝑡

(�̇�)
𝜕Δ̃
𝜕𝑝𝑐

(�̇�)
𝜕Δ̃
𝜕�̃�𝑡

(�̇�)
𝜕Δ̃
𝜕�̃�𝑐

(�̇�)

⎤⎥⎥⎥⎥⎦
where �̇� is some convex combination of �̂� and 𝑥.

It is straightforward to see that Δ̃(𝑝, 𝑝, 𝜇𝑡, 𝜇𝑐) = 0. Hence the left-hand-side of the equality above is just
Δ̃(𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐), such that the right-hand-side is an expression for 𝜏 − 𝜏 .

Hence

𝜏 − 𝜏 = (𝑝𝑡 − 𝑝)
(︁

− 𝑝

�̇�2
𝑡

�̇�𝑡 + 1
𝑝
𝜇𝑡

)︁
+ (𝑝𝑐 − 𝑝)

(︁ 𝑝
�̇�2

𝑐

�̇�𝑐 − 1
𝑝
𝜇𝑐

)︁
+ (�̃�𝑡 − 𝜇𝑡)

(︁ 𝑝
�̇�𝑡

− 1
)︁

+ (�̃�𝑐 − 𝜇𝑡)
(︁

− 𝑝

�̇�𝑐
+ 1
)︁

Each of the four terms is a product with each factor close to zero under appropriate asymptotics. For
instance, with independent regions and bounded outcomes and number of individuals per region, one can get√
𝐽(𝑝𝑡 − 𝑝) → 0. That is, the difference between the estimators 𝜏𝑤(𝑑) and 𝜏𝑤(𝑑) is negligible under standard

asymptotic frameworks. Since the difference between estimators is very small for large samples, exact finite
sample results for 𝜏𝑤(𝑑) likely provide decent approximations for 𝜏𝑤(𝑑) in smaller samples.

A.2.4 Unbiasedness of Approximate Estimator

Consider the expected value of the estimator 𝜏𝑤(𝑑). To show: 𝐸(𝜏𝑤(𝑑)) = 𝜏𝑤(𝑑). Since 𝜏𝑤(𝑑) is the first term
of 𝜏𝑤(𝑑), I proceed by showing that 𝐸(𝜏𝑤(𝑑) − 𝜏𝑤(𝑑)) = 0. Since the denominators are non-stochastic, it
suffices to show that the expectations of the numerators are equal to zero. The “first term” and “second
term” designations below therefore refer to the first and second term of 𝜏𝑤(𝑑) − 𝜏𝑤(𝑑).
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The expectation of the numerator of the first term is:

𝐸
(︁ 𝐽∑︁

𝑗=1

𝑊𝑗

𝜋𝑗

∑︁
𝑠∈S𝑗

1{𝜉𝑗 = 𝑠}
𝑔𝑗(𝑠)

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖 − 𝜇𝑤,𝑡(𝑑))
)︁

= 𝐸
(︁ 𝐽∑︁

𝑗=1

𝑊𝑗

𝜋𝑗

∑︁
𝑠∈S𝑗

1{𝜉𝑗 = 𝑠}
𝑔𝑗(𝑠)

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

𝐸
(︁𝑊𝑗1{𝜉𝑗 = 𝑠}

𝜋𝑗𝑔𝑗(𝑠)

)︁∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑠(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖(𝑠) −
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
∑︀𝐽

𝑗′=1
∑︀

𝑠′∈S𝑗′

∑︀
𝑖′∈I𝑗′ 𝑤𝑖′(𝑠′, 𝑑)𝑌𝑖′(𝑠′)∑︀𝐽

𝑗′=1
∑︀

𝑠′∈S𝑗′

∑︀
𝑖′∈I𝑗′ 𝑤𝑖′(𝑠′, 𝑑)

= 0

The first equality rewrites the observed outcome 𝑌𝑖 = 𝑌𝑖(𝜉𝑗(𝑖)) in terms of potential outcome 𝑌𝑖(𝑠) = 𝑌𝑖(𝜉𝑗) for
𝑠 = 𝜉𝑗 . The second equality moves all non-stochastic terms out of the expectation. The third equality rewrites
the expectation of indicators as probabilities. The fourth equality distributes the difference 𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑)
and replaces 𝜇𝑤,𝑡(𝑑) by its definition. For the second term, the factor multiplying the ratio cancels with the
denominator, and the numerator is equal to the first term, such that the difference is equal to zero.

Analogously, the expectation of the numerator of the second term is:

𝐸
(︁ 𝐽∑︁

𝑗=1

1 −𝑊𝑗

1 − 𝜋𝑗

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖 − 𝜇𝑤,𝑐(𝑑))
)︁

= 𝐸
(︁ 𝐽∑︁

𝑗=1

1 −𝑊𝑗

1 − 𝜋𝑗

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

=
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗=1

𝐸
(︁1 −𝑊𝑗

1 − 𝜋𝑗

)︁∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝑌𝑖(0) −
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
∑︀𝐽

𝑗′=1
∑︀

𝑠′∈S𝑗′

∑︀
𝑖′∈I𝑗′ 𝑤𝑖′(𝑠′, 𝑑)𝑌𝑖′(0)∑︀𝐽

𝑗′=1
∑︀

𝑠′∈S𝑗′

∑︀
𝑖′∈I𝑗′ 𝑤𝑖′(𝑠′, 𝑑)

= 0

Hence 𝐸(𝜏𝑤(𝑑)) = 𝜏𝑤(𝑑).

A.2.5 Variance of Approximate Estimator

The approximate estimator 𝜏𝑤(𝑑) in Equation A.1 is the sum of three terms. Since the first term, 𝜏𝑤(𝑑) is
fixed, the variance only depends on the last two terms.
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First, rewrite the variance more compactly:

var
(︁
𝜏𝑤(𝑑)

)︁
= var

(︃∑︀𝐽
𝑗=1

𝑊𝑗

𝜋𝑗

∑︀
𝑠∈S𝑗

1{𝜉𝑗=𝑠}
𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

−
∑︀𝐽

𝑗=1
1−𝑊𝑗

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

)︃

= var
(︃∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝑇𝑗(𝑠) 1

𝜋𝑗𝑔𝑗(𝑠)
∑︀

𝑖∈I𝑗
𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

−
∑︀𝐽

𝑗=1(1 −
∑︀

𝑠∈S𝑗
𝑇𝑗(𝑠)) 1

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑘( 𝑑(𝑠,𝑟𝑖)−𝑑
ℎ )(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

)︃

= var
(︃∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝑇𝑗(𝑠) 1

𝜋𝑗𝑔𝑗(𝑠)
∑︀

𝑖∈I𝑗
𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

+
∑︀𝐽

𝑗=1(
∑︀

𝑠∈S𝑗
𝑇𝑗(𝑠)) 1

1−𝜋𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

)︃

= var
(︃∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝑇𝑗(𝑠)

∑︀
𝑖∈I𝑗

(︁
𝑤𝑖(𝑠,𝑑)
𝜋𝑗𝑔𝑗(𝑠) (𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑)) +

∑︀
𝑠′∈S𝑗

𝑤𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

)︃

For the first equality, I replace the observed outcome 𝑌𝑖 by the potential outcome corresponding to the
realized treatment state, 𝑌𝑖(𝑠) if 𝑊𝑗 = 1 and 1{𝜉𝑗 = 𝑠} and 𝑌𝑖(0) if 𝑊𝑗 = 0. The second equality substitutes
a redefined “treatment indicator”

𝑇𝑗(𝑠) ≡ 𝑊𝑗1{𝜉𝑗 = 𝑠}

and
∑︀

𝑠∈S𝑗
𝑇𝑗(𝑠) = 𝑊𝑗 . For the third equality, distribute out the −1 term of −(1 − (

∑︀
𝑠 𝑇𝑗(𝑠))) . . ., which

is non-stochastic and hence does not contribute to the variance, such that only +(
∑︀

𝑠 𝑇𝑗(𝑠)) . . . remains of
the second term. The fourth and final equality above distributes out the 𝑇𝑗(𝑠) of the second term and then
combines the first and second term by factoring out 𝑇𝑗(𝑠).

For ease of notation, define

𝑌 +
𝑤,𝑗(𝑠, 𝑑) ≡

∑︀
𝑖∈I𝑗

(︁
𝑤𝑖(𝑠,𝑑)
𝜋𝑗𝑔𝑗(𝑠) (𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑)) +

∑︀
𝑠′∈S𝑗

𝑤𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

∑︀𝐽
𝑗′=1

∑︀
𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)

such that

var
(︁
𝜏𝑤(𝑑)

)︁
= var

(︁ 𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑇𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁
The only stochastic terms left are the 𝑇𝑗(𝑠); they represent the design-based variation that is due to

random treatment assignment. The average 𝑌 +
𝑤,𝑗(𝑠, 𝑑) consists only of a sum of potential outcomes, which are

non-stochastic in the design-based perspective, in the numerator and the expected number of individuals near
treatment, which is also non-stochastic, in the denominator.
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The variance of the sum is a sum of all possible covariances:

var
(︁
𝜏𝑤(𝑑)

)︁
= var

(︁ 𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑇𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

var
(︁
𝑇𝑗(𝑠)

)︁
𝑌 +

𝑤,𝑗(𝑠, 𝑑)2

+
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗

1{𝑠 ̸= 𝑠′} cov
(︁
𝑇𝑗(𝑠), 𝑇𝑗(𝑠′)

)︁
𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗(𝑠′, 𝑑)

+
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

1{𝑗 ̸= 𝑗′} cov
(︁
𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′)

)︁
𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗′(𝑠′, 𝑑)

The mean, variances and covariances of 𝑇𝑗(𝑠) are determined by the experimental design. The expected
value of the location-specific treatment indicator is

𝐸(𝑇𝑗(𝑠)) = 𝜋𝑗𝑔𝑗(𝑠).

Consider
cov(𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′)) = 𝐸(𝑇𝑗(𝑠)𝑇𝑗′(𝑠′)) − 𝐸(𝑇𝑗(𝑠))𝐸(𝑇𝑗′(𝑠′)).

𝑗 = 𝑗′ and 𝑠 = 𝑠′ Since 𝑇𝑗(𝑠) ∈ {0, 1}, 𝑇𝑗(𝑠)2 = 𝑇𝑗(𝑠). So

var(𝑇𝑗(𝑠)) = 𝜋𝑗𝑔𝑗(𝑠)(1 − 𝜋𝑗𝑔𝑗(𝑠))

𝑗 = 𝑗′ and 𝑠 ̸= 𝑠′ Since at most one location per region is treated, 𝑇𝑗(𝑠)𝑇𝑗(𝑠′) = 0 if 𝑠 ̸= 𝑠′. So

cov(𝑇𝑗(𝑠), 𝑇𝑗(𝑠′)) = −𝜋2
𝑗 𝑔𝑗(𝑠)𝑔𝑗(𝑠′)

𝑗 ̸= 𝑗′ When 𝑗 and 𝑗′ are distinct regions, under Assumption 2 (completely randomized experiment):

𝐸(𝑇𝑗(𝑠)𝑇𝑗′(𝑠′)) = 𝐸(𝑊𝑗𝑊𝑗′1{𝜉𝑗 = 𝑠}1{𝜉𝑗′ = 𝑠′})

= Pr(𝑊𝑗 = 1)𝐸(𝑊𝑗𝑊𝑗′1{𝜉𝑗 = 𝑠}1{𝜉𝑗′ = 𝑠′}|𝑊𝑗 = 1)

+ Pr(𝑊𝑗 = 0)𝐸(𝑊𝑗𝑊𝑗′1{𝜉𝑗 = 𝑠}1{𝜉𝑗′ = 𝑠′}|𝑊𝑗 = 0)

= 𝜋𝑗𝑔𝑗(𝑠)𝐸(𝑊𝑗′1{𝜉𝑗′ = 𝑠′}|𝑊𝑗 = 1)

= 𝜋𝑗𝑔𝑗(𝑠) Pr(𝑊𝑗′ = 1|𝑊𝑗 = 1)𝐸(𝑊𝑗′1{𝜉𝑗′ = 𝑠′}|𝑊𝑗 = 1,𝑊𝑗′ = 1)

+ 𝜋𝑗𝑔𝑗(𝑠) Pr(𝑊𝑗′ = 0|𝑊𝑗 = 1)𝐸(𝑊𝑗′1{𝜉𝑗′ = 𝑠′}|𝑊𝑗 = 1,𝑊𝑗′ = 0)

= 𝜋𝑗𝑔𝑗(𝑠) Pr(𝑊𝑗′ = 1|𝑊𝑗 = 1)𝑔𝑗′(𝑠′)

where Pr(𝑊𝑗′ = 1|𝑊𝑗 = 1) is determined by the completely randomized design. Let 𝐽𝑡 be the (fixed) number
of treated regions in a completely randomized design. Then

Pr(𝑊𝑗′ = 1|𝑊𝑗 = 1) = 𝐽𝑡 − 1
𝐽 − 1
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since, under Assumption 2, if region 𝑗 receives treatment, 𝐽𝑡 − 1 of the remaining 𝐽 − 1 regions receive
treatment, each with equal probability. So

𝐸(𝑇𝑗(𝑠)𝑇𝑗′(𝑠′)) − 𝐸(𝑇𝑗(𝑠))𝐸(𝑇𝑗′(𝑠′))

= 𝐽𝑡

𝐽

𝐽𝑡 − 1
𝐽 − 1 𝑔𝑗(𝑠)𝑔𝑗′(𝑠′) − 𝐽𝑡

𝐽

𝐽𝑡

𝐽
𝑔𝑗(𝑠)𝑔𝑗′(𝑠′)

= (𝐽𝑡 − 1
𝐽 − 1 − 𝐽𝑡

𝐽
)𝐽𝑡

𝐽
𝑔𝑗(𝑠)𝑔𝑗′(𝑠′)

= 𝐽(𝐽𝑡 − 1) − 𝐽𝑡(𝐽 − 1)
𝐽(𝐽 − 1)

𝐽𝑡

𝐽
𝑔𝑗(𝑠)𝑔𝑗′(𝑠′)

= − 𝐽 − 𝐽𝑡

𝐽(𝐽 − 1)
𝐽𝑡

𝐽
𝑔𝑗(𝑠)𝑔𝑗′(𝑠′)

= 𝜋(1 − 𝜋)
𝐽 − 1 𝑔𝑗(𝑠)𝑔𝑗′(𝑠′).

When 𝑗 and 𝑗′ are distinct regions, under Assumption 3 (Bernoulli trial):

cov(𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′)) = 0

To summarize, the covariances of the 𝑇𝑗(𝑠) are

cov(𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′)) = 𝐸(𝑇𝑗(𝑠)𝑇𝑗′(𝑠′)) − 𝐸(𝑇𝑗(𝑠))𝐸(𝑇𝑗′(𝑠′))

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − 𝜋𝑗𝑔𝑗(𝑠))𝜋𝑗𝑔𝑗(𝑠) if 𝑗 = 𝑗′ and 𝑠 = 𝑠′

−𝜋2
𝑗 𝑔𝑗(𝑠)𝑔𝑗(𝑠′) if 𝑗 = 𝑗′ and 𝑠 ̸= 𝑠′

− 𝜋(1−𝜋)
𝐽−1 𝑔𝑗(𝑠)𝑔𝑗′(𝑠′) if 𝑗 ̸= 𝑗′ under Assumption 2

0 if 𝑗 ̸= 𝑗′ under Assumption 3

Hence, under either of assumptions 2 and 3,

var
(︁
𝜏𝑤(𝑑)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

(1 − 𝜋𝑗𝑔𝑗(𝑠))𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)2

−
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗

1{𝑠 ̸= 𝑠′}𝜋2
𝑗 𝑔𝑗(𝑠)𝑔𝑗(𝑠′)𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗(𝑠′, 𝑑)

+
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

1{𝑗 ̸= 𝑗′} cov(𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′))𝑌 +
𝑤,𝑗(𝑠, 𝑑)𝑌 +

𝑤,𝑗′(𝑠′, 𝑑)

The second summation is “missing” the terms where 𝑠 = 𝑠′. Adding and subtracting

±
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗

1{𝑠 = 𝑠′}𝜋2
𝑗 𝑔𝑗(𝑠)𝑔𝑗(𝑠′)𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗(𝑠′, 𝑑)
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obtain

var
(︁
𝜏𝑤(𝑑)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

(︁
(1 − 𝜋𝑗𝑔𝑗(𝑠))𝜋𝑗𝑔𝑗(𝑠) + 𝜋2

𝑗 𝑔𝑗(𝑠)2
)︁
𝑌 +

𝑤,𝑗(𝑠, 𝑑)2

−
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗

𝜋2
𝑗 𝑔𝑗(𝑠)𝑔𝑗(𝑠′)𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗(𝑠′, 𝑑)

+
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

1{𝑗 ̸= 𝑗′} cov(𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′))𝑌 +
𝑤,𝑗(𝑠, 𝑑)𝑌 +

𝑤,𝑗′(𝑠′, 𝑑)

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)2 −

𝐽∑︁
𝑗=1

𝜋2
𝑗

(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁2

+
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

1{𝑗 ̸= 𝑗′} cov(𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′))𝑌 +
𝑤,𝑗(𝑠, 𝑑)𝑌 +

𝑤,𝑗′(𝑠′, 𝑑)

(A.2)

The first equality combines the added term with the first summation and the subtracted term with the second
summation. The second equality simplifies the factor of the first term, factors the second term into 𝑠 and 𝑠′,
and notices that both summations are the same, yielding the square in the second term.

Completely Randomized Experiment Under Assumption 2 (completely randomized experiment),
Equation A.2 becomes

var
(︁
𝜏𝑤(𝑑)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)2 −

𝐽∑︁
𝑗=1

𝜋2
𝑗

(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁2

−
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

1{𝑗 ̸= 𝑗′}𝜋(1 − 𝜋)
𝐽 − 1 𝑔𝑗(𝑠)𝑔𝑗′(𝑠′)𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗′(𝑠′, 𝑑)

Here, the third summation is “missing” the terms where 𝑗 = 𝑗′. Adding and subtracting

±
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

1{𝑗 = 𝑗′}𝜋(1 − 𝜋)
𝐽 − 1 𝑔𝑗(𝑠)𝑔𝑗′(𝑠′)𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗′(𝑠′, 𝑑)

obtain

var
(︁
𝜏𝑤(𝑑)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)2 −

𝐽∑︁
𝑗=1

(︀
𝜋2

𝑗 − 𝜋(1 − 𝜋)
𝐽 − 1

)︀(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁2

−
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

𝜋(1 − 𝜋)
𝐽 − 1 𝑔𝑗(𝑠)𝑔𝑗′(𝑠′)𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗′(𝑠′, 𝑑)

(A.3)

by combining the added 𝑗 = 𝑗′ term into the second term and the subtracted 𝑗 = 𝑗′ term into the third term.
Next, consider the third term in isolation.

𝐽∑︁
𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

𝜋(1 − 𝜋)
𝐽 − 1 𝑔𝑗(𝑠)𝑔𝑗′(𝑠′)𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤,𝑗′(𝑠′, 𝑑)

= 𝜋(1 − 𝜋)
𝐽 − 1

(︁ 𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁2

82



The term inside the square equals zero:

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

(︁
𝑤𝑖(𝑠,𝑑)
𝜋𝑗𝑔𝑗(𝑠) (𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑)) +

∑︀
𝑠′∈S𝑗

𝑤𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

∑︀𝐽
𝑗′=1

∑︀
𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖∈I𝑗

𝑤𝑖(𝑠,𝑑)
𝜋𝑗𝑔𝑗(𝑠) (𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))∑︀𝐽

𝑗′=1
∑︀

𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)

+
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑠′∈S𝑗

𝑤𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))∑︀𝐽
𝑗′=1

∑︀
𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)

= 1
𝜋

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))∑︀𝐽
𝑗′=1

∑︀
𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)⏟  ⏞  

=0

+ 1
1 − 𝜋

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))∑︀𝐽
𝑗′=1

∑︀
𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)⏟  ⏞  

=0

= 0

The first equality substitutes the definition of 𝑌 +
𝑤,𝑗(𝑠, 𝑑). The second equality splits the ratio into two separate

sums, one of treated, the other of control potential outcomes. For the first term, the third equality factors
out 1

𝜋𝑗
= 1

𝜋 , which is constant across regions by Assumption 2, and cancels 𝑔𝑗(𝑠) 1
𝑔𝑗(𝑠) . For the second term,

the third equality factors out 1
1−𝜋𝑗

= 1
1−𝜋 , which is constant across regions by Assumption 2, and notes that

the sum of conditional probabilities is equal to 1 in each region,
∑︀

𝑠 𝑔𝑗(𝑠) = 1. Both terms are equal to zero
by the definitions of 𝜇𝑤,𝑡(𝑑) and 𝜇𝑤,𝑐(𝑑).

Hence, under Assumption 2 (completely randomized experiment), Equation A.2 becomes

var
(︁
𝜏𝑤(𝑑)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)2 −

𝐽∑︁
𝑗=1

(︀
𝜋2

𝑗 − 𝜋(1 − 𝜋)
𝐽 − 1

)︀(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁2

where 𝜋𝑗 = 𝜋 = 𝐽𝑡

𝐽 by Assumption 2.

Bernoulli trial Under Assumption 3 (Bernoulli trial), Equation A.2 becomes

var
(︁
𝜏𝑤(𝑑)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)2 −

𝐽∑︁
𝑗=1

𝜋2
𝑗

(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁2

To treat the variances under assumptions 2 and 3 jointly, define

𝒞 ≡

⎧⎨⎩1 under Assumption 2

0 under Assumption 3

such that 𝒞 is an indicator for the completely randomized design.
Then

var
(︁
𝜏𝑤(𝑑)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)2 −

𝐽∑︁
𝑗=1

(︀
𝜋2

𝑗 − 𝒞 𝜋(1 − 𝜋)
𝐽 − 1

)︀(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁2
(A.4)
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Consider the first term,

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)2

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)
(︃∑︀

𝑖∈I𝑗

(︁
𝑤𝑖(𝑠,𝑑)
𝜋𝑗𝑔𝑗(𝑠) (𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑)) +

∑︀
𝑠′∈S𝑗

𝑤𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

∑︀𝐽
𝑗′=1

∑︀
𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)

)︃2

=

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+

∑︀𝐽
𝑗=1

𝜋𝑗

(1−𝜋𝑗)2

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+ 2

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2 .

The first equality uses the definition of 𝑌 +
𝑤,𝑗(𝑠, 𝑑), the second equality distributes the square and factors out

terms involving 𝜋𝑗 and 𝑔𝑗(𝑠). The results consists of three terms: a (weighted) variance of the weighted
sum of treated outcomes across candidate locations, a (weighted) variance of the weighted sum of control
outcomes across regions, and a cross-product of treated and control outcomes. I rewrite this cross-product in
terms of the variance of candidate-location aggregate treatment effects (and marginal variances of potential
outcomes) in a later step.

Similarly for the second term

𝐽∑︁
𝑗=1

(︀
𝜋2

𝑗 − 𝒞 𝜋(1 − 𝜋)
𝐽 − 1

)︀(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁2

=
𝐽∑︁

𝑗=1

(︀
𝜋2

𝑗 − 𝒞 𝜋(1 − 𝜋)
𝐽 − 1

)︀(︃∑︀𝑠∈S𝑗
𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

(︁
𝑤𝑖(𝑠,𝑑)
𝜋𝑗𝑔𝑗(𝑠) (𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑)) +

∑︀
𝑠′∈S𝑗

𝑤𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

∑︀𝐽
𝑗′=1

∑︀
𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)

)︃2

=
𝐽∑︁

𝑗=1

(︀
𝜋2

𝑗 − 𝒞 𝜋(1 − 𝜋)
𝐽 − 1

)︀(︃(︁∑︀𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠,𝑑)
𝜋𝑗

(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁

+
(︁∑︀

𝑠′∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

∑︀𝐽
𝑗′=1

∑︀
𝑠′∈S𝑗′

∑︀
𝑖∈I𝑗′ 𝑤𝑖(𝑠′, 𝑑)

)︃2

=

∑︀𝐽
𝑗=1

𝜋2
𝑗 −𝒞 𝜋(1−𝜋)

𝐽−1
𝜋2

𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+

∑︀𝐽
𝑗=1

𝜋2
𝑗 −𝒞 𝜋(1−𝜋)

𝐽−1
(1−𝜋𝑗)2

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+ 2

∑︀𝐽
𝑗=1

𝜋2
𝑗 −𝒞 𝜋(1−𝜋)

𝐽−1
𝜋𝑗(1−𝜋𝑗)

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

where now the variance of treated potential outcomes is also only across regions, summing over all candidate
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locations within each region.
Hence, the variance of the estimator is

var
(︁
𝜏𝑤(𝑑)

)︁
=

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+

∑︀𝐽
𝑗=1

𝜋𝑗

1−𝜋𝑗
(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+ 2

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

−

∑︀𝐽
𝑗=1(1 − 𝒞 1−𝜋𝑗

𝜋𝑗(𝐽−1) )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

To substitute for the cross-product term, note that

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤,𝑡(𝑑) − 𝜇𝑤,𝑐(𝑑))

)︀)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

=

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

− 2

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

where the last term is the same as the cross-product of treated and control potential outcomes in the variance
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of 𝜏𝑤(𝑑). Hence

var
(︁
𝜏𝑤(𝑑)

)︁
=

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+

∑︀𝐽
𝑗=1

1+ 𝒞
𝐽−1

1−𝜋𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

+

∑︀𝐽
𝑗=1

𝒞
𝜋𝑗(𝐽−1)

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

−

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤,𝑡(𝑑) − 𝜇𝑤,𝑐(𝑑))

)︀)︁2

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁2

To ease interpretation, define the (weighted) pseudo-variances

𝑉 location
𝑤,𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

𝐽−1
𝐽

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

𝑉 region
𝑤,𝑐 (𝑑) ≡

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁2

𝐽−1
𝐽

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

𝑉 region
𝑤,𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

𝐽 − 1

𝑉 region
𝑤,𝑐𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤,𝑡(𝑑) − 𝜇𝑤,𝑐(𝑑))

)︀)︁2

𝐽 − 1

which differ from actual variances in the demeaning, as well as the (approximate) sample sizes

𝑁𝑤(𝑑) ≡
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)

�̄�𝑤(𝑑) ≡ 𝑁𝑤(𝑑)
𝐽 − 1

�̃�𝑤,𝑡(𝑑) ≡
(︁ 1∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

𝑁𝑤(𝑑)
)︁
�̄�𝑤(𝑑)

�̃�𝑤,𝑐(𝑑) ≡
(︁ 1∑︀𝐽

𝑗=1
1

1−𝜋𝑗

𝑁𝑤(𝑑)
)︁
�̄�𝑤(𝑑)
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Then the variance can be written compactly as

var
(︁
𝜏𝑤(𝑑)

)︁
=
𝑉 location

𝑤,𝑡 (𝑑)
�̃�𝑤,𝑡(𝑑)𝐽 +

(︀
1 + 𝒞

𝐽 − 1
)︀𝑉 region

𝑤,𝑐 (𝑑)
�̃�𝑤,𝑐(𝑑)𝐽

+
(︀ 𝒞
𝐽 − 1

)︀ 𝑉 region
𝑤,𝑡 (𝑑)

�̄�𝑤(𝑑)(𝜋𝑁𝑤(𝑑)) −
(︀
1 + 𝒞

𝐽 − 1
)︀ 𝑉 region

𝑤,𝑐𝑡 (𝑑)
�̄�𝑤(𝑑)𝑁𝑤(𝑑) .

(A.5)

A.2.6 Variance Estimation

The variance in equation A.5 consists of four terms. The first and third terms resemble a variance of outcomes
of treated individuals. The second term resembles a variance of outcomes of control individuals. The fourth
term resembles a variance of treatment effects. Note that dropping the unidentified variance of treatment
effects (term four) unambiguously leads to a (weakly) conservative estimator of the variance.

Estimate 𝑉 location
𝑤,𝑡 (𝑑) by

𝑉 location
𝑤,𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑊𝑗1{𝜉𝑗=𝑠}
(𝜋𝑗𝑔𝑗(𝑠))2

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖 − 𝑌𝑤,𝑡(𝑑))
)︁2

𝐽−1
𝐽

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑊𝑗1{𝜉𝑗=𝑠}
(𝜋𝑗𝑔𝑗(𝑠))2

where 𝑌𝑤,𝑡(𝑑) is the weighted average outcome of the treated

𝑌𝑤,𝑡(𝑑) ≡
∑︀

𝑖

∑︀
𝑠∈S𝑗(𝑖)

𝜄𝑡𝑖(𝑠)𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀
𝑖

∑︀
𝑠∈S𝑗(𝑖)

𝜄𝑡𝑖(𝑠)𝑤𝑖(𝑠, 𝑑)

with
𝜄𝑡𝑖(𝑠) ≡

𝑊𝑗(𝑖)1{𝜉𝑗(𝑖) = 𝑠}
𝜋𝑗(𝑖)𝑔𝑗(𝑖)(𝑠)

as in Equation 6.
Similarly, estimate 𝑉 region

𝑤,𝑐 (𝑑) by

𝑉 region
𝑤,𝑐 (𝑑) ≡

∑︀𝐽
𝑗=1

1−𝑊𝑗

(1−𝜋𝑗)2

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖 − 𝜇𝑤,𝑐(𝑑))
)︁2

𝐽−1
𝐽

∑︀𝐽
𝑗=1

1−𝑊𝑗

(1−𝜋𝑗)2

where 𝑌𝑤,𝑡(𝑑) is the weighted average outcome of the treated

𝑌𝑤,𝑡(𝑑) ≡
∑︀

𝑖

∑︀
𝑠∈S𝑗(𝑖)

𝜄𝑐𝑖𝑤𝑖(𝑠, 𝑑)𝑌𝑖∑︀
𝑖

∑︀
𝑠∈S𝑗(𝑖)

𝜄𝑐𝑖𝑤𝑖(𝑠, 𝑑)

with
𝜄𝑐𝑖 (𝑠) ≡

1 −𝑊𝑗(𝑖)

1 − 𝜋𝑗(𝑖)

as in Equation 6.
The variance of treated outcomes aggregated at the region-level, 𝑉 region

𝑤,𝑡 (𝑑), cannot be estimated directly
because at most one candidate treatment location is realized per region, such that the covariance of treated
outcomes within region, across candidate locations, is not identified.
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However, 𝑉 region
𝑤,𝑡 (𝑑) can be bounded from above with an estimable bound. Observe that

(︁∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

≤ |S𝑗 |
∑︁
𝑠∈S𝑗

(︁∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

by the Cauchy-Schwarz inequality. This approximation is conservative if there is more than one candidate
location in a region and if the (location-aggregate) treated potential outcomes vary across candidate locations
within region. To see this, note that

|S𝑗 |
∑︁
𝑠∈S𝑗

(︁∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

−
(︁∑︁

𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁2

= 1
2
∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗

(︁(︀∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︀

−
(︀∑︁

𝑖′∈I𝑗

𝑤𝑖′(𝑠′, 𝑑)(𝑌𝑖′(𝑠′) − 𝜇𝑤,𝑡(𝑑))
)︀)︁2

which is immediate by expanding the square on the right-hand-side. If there is only a single candidate
treatment location, |S𝑗 | = 1 such that 𝑠 = 𝑠′ on the right-hand-side and the terms inside the square are equal.
Alternatively, if there is little variation in location-aggregate treated potential outcomes∑︁

𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))

across candidate locations 𝑠 within region 𝑗, the two terms inside the square are similar even when 𝑠 ̸= 𝑠′, so
the difference is close to zero again.

Hence a conservative estimator for 𝑉 region
𝑤,𝑡 (𝑑) is given by

𝑉 region
𝑤,𝑡 (𝑑) ≡

∑︀𝐽
𝑗=1 |S𝑗 |

∑︀
𝑠∈S𝑗

𝑊𝑗1{𝜉𝑗=𝑠}
(𝜋𝑗𝑔𝑗(𝑠))

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖 − 𝑌𝑤,𝑡(𝑑))
)︁2

𝐽 − 1 .

The (effective) sample sizes 𝑁𝑤(𝑑), �̄�𝑤(𝑑), �̃�𝑤,𝑡(𝑑), and �̃�𝑤,𝑐(𝑑) depend only on known weights and
treatment probabilities and can hence be calculated directly.

The estimator for the variance of 𝜏𝑤(𝑑) is then

𝑉𝑤(𝑑) ≡
𝑉 location

𝑤,𝑡 (𝑑)
�̃�𝑤,𝑡(𝑑)𝐽 +

(︀
1 + 𝒞

𝐽 − 1
)︀𝑉 region

𝑤,𝑐 (𝑑)
�̃�𝑤,𝑐(𝑑)𝐽 +

(︀ 𝒞
𝐽 − 1

)︀ 𝑉 region
𝑤,𝑡 (𝑑)

�̄�𝑤(𝑑)(𝜋𝑁𝑤(𝑑)) . (A.6)

A.2.7 Covariance Across Distances

The derivation of the covariance of the estimators 𝜏𝑤(𝑑) and 𝜏𝑤′(𝑑′) (allowing for different weight functions
and distance) is largely analogous to the variance of 𝜏𝑤(𝑑).
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First, write

cov
(︁
𝜏𝑤(𝑑), 𝜏𝑤′(𝑑′)

)︁
= cov

(︃∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑇𝑗(𝑠)
∑︀

𝑖∈I𝑗

(︁
𝑤𝑖(𝑠,𝑑)
𝜋𝑗𝑔𝑗(𝑠) (𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑)) +

∑︀
𝑠′∈S𝑗

𝑤𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
,

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝑇𝑗(𝑠)
∑︀

𝑖∈I𝑗

(︁
𝑤′

𝑖(𝑠,𝑑′)
𝜋𝑗𝑔𝑗(𝑠) (𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′)) +

∑︀
𝑠′∈S𝑗

𝑤′
𝑖(𝑠′,𝑑)
1−𝜋𝑗

(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))
)︁

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︃

using the definition of 𝑇𝑗(𝑠) from the derivation of the variance. At this point, note that the only stochastic
term, 𝑇𝑗(𝑠), is the same as in the variance. Hence, factor out the sums of potential outcomes, 𝑌 +

𝑤,𝑗(𝑠, 𝑑) and
𝑌 +

𝑤′,𝑗(𝑠, 𝑑′), to obtain

cov
(︁
𝜏𝑤(𝑑), 𝜏𝑤′(𝑑′)

)︁
= cov

(︁ 𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑇𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑),

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑇𝑗(𝑠)𝑌 +
𝑤′,𝑗(𝑠, 𝑑′)

)︁

=
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

var
(︁
𝑇𝑗(𝑠)

)︁
𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤′,𝑗(𝑠, 𝑑′)

+
𝐽∑︁

𝑗=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗

1{𝑠 ̸= 𝑠′} cov
(︁
𝑇𝑗(𝑠), 𝑇𝑗(𝑠′)

)︁
𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤′,𝑗(𝑠′, 𝑑′)

+
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

1{𝑗 ̸= 𝑗′} cov
(︁
𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′)

)︁
𝑌 +

𝑤,𝑗(𝑠, 𝑑)𝑌 +
𝑤′,𝑗′(𝑠′, 𝑑′)

Substituting the covariances of 𝑇𝑗(𝑠) and 𝑇𝑗(𝑠′), and adding and subtracting the terms missing from the
summation,

cov
(︁
𝜏𝑤(𝑑), 𝜏𝑤′(𝑑′)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)𝑌 +

𝑤′,𝑗(𝑠, 𝑑′)

−
𝐽∑︁

𝑗=1
𝜋2

𝑗

(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤′,𝑗(𝑠, 𝑑′)

)︁

+
𝐽∑︁

𝑗=1

𝐽∑︁
𝑗′=1

∑︁
𝑠∈S𝑗

∑︁
𝑠′∈S𝑗′

1{𝑗 ̸= 𝑗′} cov(𝑇𝑗(𝑠), 𝑇𝑗′(𝑠′))𝑌 +
𝑤,𝑗(𝑠, 𝑑)𝑌 +

𝑤′,𝑗′(𝑠′, 𝑑′)

Similarly substituting the covariances of 𝑇𝑗(𝑠) and 𝑇𝑗′(𝑠′) where 𝑗 ̸= 𝑗′, note again that this covari-
ance is 0 under Assumption 3. Then adding and subtracting the missing term, and noting that still∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝑌 +

𝑤,𝑗(𝑠, 𝑑) = 0, obtain the equivalent of Equation A.4

cov
(︁
𝜏𝑤(𝑑), 𝜏𝑤′(𝑑′)

)︁
=

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)𝑌 +

𝑤′,𝑗(𝑠, 𝑑′)

−
𝐽∑︁

𝑗=1

(︀
𝜋2

𝑗 − 𝒞 𝜋(1 − 𝜋)
𝐽 − 1

)︀(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤′,𝑗(𝑠, 𝑑′)

)︁
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Next, substituting the definition of 𝑌 +
𝑤,𝑗(𝑠, 𝑑) for the first term:

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)𝑌 +

𝑤′,𝑗(𝑠, 𝑑′)

=

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑖∈I𝑗
𝑤′

𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

𝜋𝑗

(1−𝜋𝑗)2

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁ .

Similarly for the second term

𝐽∑︁
𝑗=1

(︀
𝜋2

𝑗 − 𝒞 𝜋(1 − 𝜋)
𝐽 − 1

)︀(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤,𝑗(𝑠, 𝑑)

)︁(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)𝑌 +
𝑤′,𝑗(𝑠, 𝑑′)

)︁

=

∑︀𝐽
𝑗=1

𝜋2
𝑗 −𝒞 𝜋(1−𝜋)

𝐽−1
𝜋2

𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

𝜋2
𝑗 −𝒞 𝜋(1−𝜋)

𝐽−1
(1−𝜋𝑗)2

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

𝜋2
𝑗 −𝒞 𝜋(1−𝜋)

𝐽−1
𝜋𝑗(1−𝜋𝑗)

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

𝜋2
𝑗 −𝒞 𝜋(1−𝜋)

𝐽−1
𝜋𝑗(1−𝜋𝑗)

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
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The covariance of 𝜏𝑤(𝑑) and 𝜏𝑤′(𝑑′) is the difference between these two terms:

cov
(︁
𝜏𝑤(𝑑), 𝜏𝑤′(𝑑′)

)︁
=

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑖∈I𝑗
𝑤′

𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

𝜋𝑗

1−𝜋𝑗
(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
−

∑︀𝐽
𝑗=1(1 − 𝒞 1−𝜋𝑗

𝜋𝑗(𝐽−1) )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
There are two terms involving products of (demeaned) treated and control potential outcomes. To

substitute for these terms, note that To substitute for the cross-product term, note that

𝐽∑︁
𝑗=1

(1 + 𝒞
𝐽 − 1)

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤,𝑡(𝑑) − 𝜇𝑤,𝑐(𝑑))

)︀)︁(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁

·

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤′,𝑡(𝑑′) − 𝜇𝑤′,𝑐(𝑑′))

)︀)︁(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
=

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
−

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
−

∑︀𝐽
𝑗=1(1 + 𝒞

𝐽−1 )
(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
where the last two terms on the right-hand-side are the same products of treated and control potential
outcomes as in the variance (but of opposite sign).
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Substituting for these two product terms in the variance,

cov
(︁
𝜏𝑤(𝑑), 𝜏𝑤′(𝑑′)

)︁
=

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑖∈I𝑗
𝑤′

𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))
)︁

(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

1+ 𝒞
𝐽−1

1−𝜋𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
+

∑︀𝐽
𝑗=1

𝒞
𝜋𝑗(𝐽−1)

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁
(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁(︁∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁
− (1 + 𝒞

𝐽 − 1)
𝐽∑︁

𝑗=1

(︃(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤,𝑡(𝑑) − 𝜇𝑤,𝑐(𝑑))

)︀)︁(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
)︁

·

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤′,𝑡(𝑑′) − 𝜇𝑤′,𝑐(𝑑′))

)︀)︁(︁∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

)︁ )︃

To ease interpretation, define the (weighted) pseudo-covariances

𝑉 location
𝑤,𝑤′,𝑡 (𝑑, 𝑑′) ≡

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

(︁∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑖∈I𝑗
𝑤′

𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))
)︁

𝐽−1
𝐽

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

1
𝜋𝑗𝑔𝑗(𝑠)

𝑉 region
𝑤,𝑤′,𝑐(𝑑, 𝑑′) ≡

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(0) − 𝜇𝑤,𝑐(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(0) − 𝜇𝑤′,𝑐(𝑑′))

)︁
𝐽−1

𝐽

∑︀𝐽
𝑗=1

1
1−𝜋𝑗

𝑉 region
𝑤,𝑤′,𝑡 (𝑑, 𝑑′) ≡

∑︀𝐽
𝑗=1

(︁∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)(𝑌𝑖(𝑠) − 𝜇𝑤,𝑡(𝑑))
)︁(︁∑︀

𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)(𝑌𝑖(𝑠) − 𝜇𝑤′,𝑡(𝑑′))

)︁
𝐽 − 1

𝑉 region
𝑤,𝑤′,𝑐𝑡(𝑑, 𝑑

′) ≡ 1
𝐽 − 1

𝐽∑︁
𝑗=1

(︃(︁∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤,𝑡(𝑑) − 𝜇𝑤,𝑐(𝑑))

)︀)︁

·
(︁∑︁

𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤′
𝑖(𝑠, 𝑑′)

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑤′,𝑡(𝑑′) − 𝜇𝑤′,𝑐(𝑑′))

)︀)︁)︃

Then

cov
(︁
𝜏𝑤(𝑑), 𝜏𝑤′(𝑑′)

)︁
=

𝑉 location
𝑤,𝑤′,𝑡 (𝑑, 𝑑′)√︀

�̃�𝑤,𝑡(𝑑) ·
√︀
�̃�𝑤′,𝑡(𝑑′) · 𝐽

+ (1 + 𝒞
𝐽 − 1)

𝑉 region
𝑤,𝑤′,𝑐(𝑑, 𝑑′)√︀

�̃�𝑤,𝑐(𝑑) ·
√︀
�̃�𝑤′,𝑐(𝑑′) · 𝐽

+ 𝒞
𝐽 − 1

𝑉 region
𝑤,𝑤′,𝑡 (𝑑, 𝑑′)

𝜋 ·
√︀
�̄�𝑤(𝑑) ·

√︀
�̄�𝑤′(𝑑′) ·

√︀
𝑁𝑤(𝑑) ·

√︀
𝑁𝑤′(𝑑′)

− (1 + 𝒞
𝐽 − 1)

𝑉 region
𝑤,𝑤′,𝑐𝑡(𝑑, 𝑑′)√︀

�̄�𝑤(𝑑) ·
√︀
�̄�𝑤′(𝑑′) ·

√︀
𝑁𝑤(𝑑) ·

√︀
𝑁𝑤′(𝑑′)
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A.3 Proof of Theorem 4

The estimator is
𝜏𝐴𝐴𝑇 𝑇,2 ≡

∑︁
𝑑∈D

�̄�(𝑑)𝜏(𝑑)

where

�̄�(𝑑) =
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

.

Since �̄�(𝑑) is non-stochastic and by Theorem 1,

𝐸(𝜏𝐴𝐴𝑇 𝑇,2) =
∑︁
𝑑∈D

�̄�(𝑑)𝐸(𝜏(𝑑))

≈
∑︁
𝑑∈D

�̄�(𝑑)
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 𝜏𝑖(𝑠)∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 1

=
∑︁
𝑑∈D

∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 𝜏𝑖(𝑠)∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)

=
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

∑︀
𝑑∈D

∑︀
𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ 𝜏𝑖(𝑠)∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

=
∑︀𝐽

𝑗=1
∑︀

𝑠∈S𝑗
𝜋𝑗𝑔𝑗(𝑠)

∑︀
𝑖∈I𝑗

𝜏𝑖(𝑠)∑︀𝐽
𝑗=1

∑︀
𝑠∈S𝑗

𝜋𝑗𝑔𝑗(𝑠)

= 𝜏𝐴𝐴𝑇 𝑇

where the second-to-last equality holds because every individual is in exactly one distance bin from each
candidate treatment location.

Next, consider the variance of the estimator.

var
(︀
𝜏𝐴𝐴𝑇 𝑇,2)︀ =

∑︁
𝑑∈D

�̄�(𝑑)2 var
(︀
𝜏(𝑑)

)︀
+ 2

∑︁
𝑑∈D

∑︁
𝑑′∈D,𝑑′ ̸=𝑑

�̄�(𝑑)�̄�(𝑑′) cov
(︀
𝜏(𝑑), 𝜏(𝑑′)

)︀
≈
∑︁
𝑑∈D

�̄�(𝑑)2 var
(︀
𝜏(𝑑)

)︀
+ 2

∑︁
𝑑∈D

∑︁
𝑑′∈D,𝑑′ ̸=𝑑

�̄�(𝑑)�̄�(𝑑′) cov
(︀
𝜏(𝑑), 𝜏(𝑑′)

)︀
by Theorems 1 and 3.

For the covariances across distance, simplify the the result of Theorem 3 for the ATT weights

𝑤𝑖(𝑠, 𝑑) = 𝑤′
𝑖(𝑠, 𝑑) = 𝜋𝑗(𝑖)𝑔𝑗(𝑖)(𝑠)1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

to obtain

cov
(︁
𝜏(𝑑), 𝜏(𝑑′)

)︁
= 𝐽 − 1

𝐽

𝑉 location
𝑡 (𝑑, 𝑑′)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑, 𝑑′)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡 (𝑑, 𝑑′)

𝐽𝑡
− 𝑉 region

𝑐𝑡 (𝑑, 𝑑′)
𝐽
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where

𝑉 location
𝑡 (𝑑, 𝑑′) ≡ 1

�̄�(𝑑) · �̄�(𝑑′) · (𝐽 − 1)

𝐽∑︁
𝑗=1

∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
(︃(︁ ∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑))
)︁

·
(︁ ∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑′))
)︁)︃

𝑉 region
𝑐 (𝑑, 𝑑′) ≡ 1

�̄�(𝑑) · �̄�(𝑑′) · (𝐽 − 1)

𝐽∑︁
𝑗=1

(︃(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(𝑌𝑖(0) − 𝜇𝑐(𝑑))
)︁

·
(︁∑︁

𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(𝑌𝑖(0) − 𝜇𝑐(𝑑′))
)︁)︃

𝑉 region
𝑡 (𝑑, 𝑑′) ≡ 1

�̄�(𝑑) · �̄�(𝑑′) · (𝐽 − 1)

𝐽∑︁
𝑗=1

(︃(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑))
)︁

·
(︁∑︁

𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(𝑌𝑖(𝑠) − 𝜇𝑡(𝑑′))
)︁)︃

𝑉 region
𝑐𝑡 (𝑑, 𝑑′) ≡ 1

�̄�(𝑑) · �̄�(𝑑′) · (𝐽 − 1)

𝐽∑︁
𝑗=1

(︃(︁∑︁
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑡(𝑑) − 𝜇𝑐(𝑑))

)︀)︁

·
(︁∑︁

𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︁

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑′|≤ℎ

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑡(𝑑′) − 𝜇𝑐(𝑑′))

)︀)︁)︃

and �̄�(𝑑), 𝜇𝑡(𝑑), and 𝜇𝑐(𝑑) are defined as in Theorem 1.
Then

var
(︁
𝜏𝐴𝐴𝑇 𝑇,2

)︁
=
∑︁
𝑑∈D

�̄�(𝑑)2
(︁𝐽 − 1

𝐽

𝑉 location
𝑡 (𝑑)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡 (𝑑)
𝐽𝑡

− 𝑉 region
𝑐𝑡 (𝑑)
𝐽

)︁
+ 2

∑︁
𝑑∈D

∑︁
𝑑′∈D,𝑑′ ̸=𝑑

�̄�(𝑑)�̄�(𝑑′)
(︁𝐽 − 1

𝐽

𝑉 location
𝑡 (𝑑, 𝑑′)

𝐽𝑡
+ 𝑉 region

𝑐 (𝑑, 𝑑′)
𝐽𝑐

+ 1
𝐽

𝑉 region
𝑡 (𝑑, 𝑑′)

𝐽𝑡
− 𝑉 region

𝑐𝑡 (𝑑, 𝑑′)
𝐽

)︁
Consider the (co-) variance of treatment effect terms:

−
∑︁
𝑑∈D

�̄�(𝑑)2𝑉
region

𝑐𝑡 (𝑑)
𝐽

− 2
∑︁
𝑑∈D

∑︁
𝑑′∈D,𝑑′ ̸=𝑑

�̄�(𝑑)�̄�(𝑑′)𝑉
region

𝑐𝑡 (𝑑, 𝑑′)
𝐽

= − 1
𝐽

∑︀𝐽
𝑗=1

(︁∑︀
𝑑∈D

∑︀
𝑠∈S𝑗

𝑔𝑗(𝑠)
∑︀

𝑖: |𝑑(𝑠,𝑟𝑖)−𝑑|≤ℎ

(︀
𝑌𝑖(𝑠) − 𝑌𝑖(0) − (𝜇𝑡(𝑑) − 𝜇𝑐(𝑑))

)︀)︁2

𝐽 − 1

which follows immediately by expanding the square and substituting the definitions of 𝑉 region
𝑐𝑡 (𝑑) and

𝑉 region
𝑐𝑡 (𝑑, 𝑑′). Hence, dropping these terms leads to a conservative expression for the variance of the aggregate

treatment effect estimator.
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A.4 Nonparametric Estimators Under Assumptions on Interference

A.4.1 Additively Separable Treatment Effects

To estimate the average treatment effect on the treated, 𝜏(𝑑), under the assumption of additively separable
treatment effects, one can use the estimator

𝜏additive(𝑑) =
∑︀

𝑗

∑︀
𝑠𝑗∈S𝑗

∑︀
𝑖∈I𝑗

Pr(𝑠 ∈ 𝜉𝑗)1{|𝑑(𝑠, 𝑟𝑖 − 𝑑| ≤ ℎ}𝜏additive
𝑖 (𝑠)∑︀𝐽

𝑗=1
∑︀

𝑠𝑗∈S𝑗

∑︀
𝑖∈I𝑗

Pr(𝑠 ∈ 𝜉𝑗)1{|𝑑(𝑠, 𝑟𝑖 − 𝑑| ≤ ℎ}

where

𝜏additive
𝑖 (𝑠) = 1{𝑠 ∈ 𝜉𝑗}

Pr(𝑠 ∈ 𝜉𝑗)𝑌𝑖 −
(︂
�̃�𝑗 − 1
|S𝑗 | − 1 · 𝑊𝑗1{𝑠 ̸∈ 𝜉𝑗}

Pr(𝑊𝑗 = 1) Pr(𝑠 ̸∈ 𝜉𝑗 |𝑊𝑗 = 1)

)︂
𝑌𝑖 −

1 −𝑊𝑗(𝑖)

1 − Pr(𝑊𝑗(𝑖) = 1)𝑌𝑖

where the first term picks up all assignments with treatment at location 𝑠, the second term removes the
effects of all assignments with treatment in region 𝑗 but without treatment at 𝑠, and the third term estimates
the control potential outcome. The estimator 𝜏additive

𝑖 (𝑠) here generalizes the estimator in Section 5.1 of
the main text to allow for an arbitrary number of candidate locations in each region, |S𝑗 |. The formula is
specific to completely randomized designs within treated regions with fixed number �̃�𝑗 of realized locations,
and equal probability for each of the

(︀|S𝑗 |
�̃�𝑗

)︀
possible combinations of treated locations. Under this design and

Assumption 5 of additively separable treatment effects, 𝐸(𝜏additive
𝑖 (𝑠)) = 𝜏𝑖(𝑠). Consequently, 𝜏additive(𝑑) is

an unbiased estimator of the average treatment effect on the treated, 𝜏(𝑑).

A.4.2 Only Nearest Realized Treatment Location Matters

Under Assumption 6, it is only possible to identify the effect of a candidate treatment location 𝑠 on individual
𝑖, 𝜏𝑖(𝑠), if 𝑠 is the closest realized treatment location to 𝑖 with positive probability. One can take

𝜏nearest
𝑤 (𝑑) = 1∑︀

𝑗

∑︀
𝑠∈S𝑗

∑︀
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)
∑︁

𝑗

∑︁
𝑠∈S𝑗

∑︁
𝑖∈I𝑗

𝑤𝑖(𝑠, 𝑑)𝜏nearest
𝑖 (𝑠)

where

𝜏nearest
𝑖 (𝑠) = 1{𝑠 ∈ 𝑆𝑗}

Pr(𝑠 ∈ 𝑆𝑗)

∏︀
𝑠′∈𝑆𝑗

1{𝑑(𝑠, 𝑟𝑖) ≤ 𝑑(𝑠′, 𝑟𝑖)}
Pr
(︀∏︀

𝑠′∈𝑆𝑗
1{𝑑(𝑠, 𝑟𝑖) ≤ 𝑑(𝑠′, 𝑟𝑖)} = 1|𝑠 ∈ 𝑆𝑗

)︀𝑌𝑖

−
1 −𝑊𝑗(𝑖)

1 − Pr(𝑊𝑗(𝑖) = 1)𝑌𝑖.

The estimator 𝜏nearest
𝑖 (𝑠) is equal to 0 if the region of individual 𝑖 is treated but location 𝑠 is not the closest

realized treatment location to 𝑖. This happens both when 𝑠 is not realized itself, and when another realized
treatment location 𝑠′ is closer to 𝑖. If 𝑠 is the closest realized location to 𝑖, 𝜏nearest

𝑖 (𝑠) is equal to the outcome
of 𝑖 scaled by the inverse of the probability of this event. If the region 𝑗 is not treated, 𝜏nearest

𝑖 (𝑠) is equal to
the outcome of 𝑖 scaled by the inverse of the probability of region 𝑗 not being treated. Th estimator 𝜏nearest

𝑖 (𝑠)
is an unbiased inverse probability weighting estimator of 𝜏𝑖(𝑠) ≡ 𝑌𝑖(𝑠) −𝑌𝑖(0) under the assumption that only
the nearest realized treatment matters. Consequently, 𝜏nearest(𝑑) is an unbiased estimator of the weighted
average treatment effect 𝜏𝑤(𝑑), as long as 𝜏𝑤(𝑑) places no weight on individual and treatment location pairs
where the treatment location is never the nearest realized location to the individual.
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A.4.3 Proof of Theorem 5

Approximate Estimator

As in previous proofs, I derive exact results for an approximate estimator and show that the approximate
estimator is close to the estimator of interest. Define the approximate estimator for settings with interference
as

𝜏(𝑑) ≡ 𝜇𝑡(𝑑) − 𝜇𝑐(𝑑) +
∑︀

𝑠∈S 1{𝑠 ∈ 𝜉}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖 − 𝜇𝑡(𝑑))∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

−
∑︀

𝑠∈S 1{𝑠 ̸∈ 𝜉} Pr(𝜉∪{𝑠})
Pr(𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖 − 𝜇𝑐(𝑑))∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

where
𝜇𝑡(𝑑) ≡

∑︀
𝑆∈2S

∑︀
𝑠∈S Pr(𝜉 = 𝑆)1{𝑠 ∈ 𝑆}

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑆)∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

𝜇𝑐(𝑑) ≡
∑︀

𝑆∈2S
∑︀

𝑠∈S Pr(𝜉 = 𝑆 ∪ {𝑠})1{𝑠 ̸∈ 𝑆}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑆)∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

Quality of Approximation

Here, I show that the estimators 𝜏(𝑑) and 𝜏(𝑑) are very close in large enough samples. This motivates the
use of exact finite sample results for the mean and variance of the infeasible estimator 𝜏(𝑑) for inference with
the feasible estimator 𝜏(𝑑). The analysis uses the mean value theorem to derive the difference 𝜏(𝑑) − 𝜏(𝑑)
and argues that this difference is small in large enough samples.

As a practical matter, a sample is large enough if the number of individuals near treatment and control
are close to their expected values. The approximation of 𝜏(𝑑) by 𝜏(𝑑) is particular close when also the average
outcomes are close to their expected values.

To simplify notation, define the following shorthands:

�̂�𝑤,𝑡(𝑑) =
∑︀

𝑠∈S 1{𝑠 ∈ 𝜉}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀
𝑠∈S 1{𝑠 ∈ 𝜉}

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

�̂�𝑤,𝑐(𝑑) =
∑︀

𝑠∈S 1{𝑠 ̸∈ 𝜉} Pr(𝜉∪{𝑠})
Pr(𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀

𝑠∈S 1{𝑠 ̸∈ 𝜉} Pr(𝜉∪{𝑠})
Pr(𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

�̃�𝑤,𝑡(𝑑) =
∑︀

𝑠∈S 1{𝑠 ∈ 𝜉}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

�̃�𝑤,𝑐(𝑑) =
∑︀

𝑠∈S 1{𝑠 ̸∈ 𝜉} Pr(𝜉∪{𝑠})
Pr(𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

and
𝑝𝑤,𝑡(𝑑) = 1

|S|
∑︁
𝑠∈S

1{𝑠 ∈ 𝜉}
∑︁
𝑖∈I

1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

𝑝𝑤,𝑐(𝑑) = 1
|S|
∑︁
𝑠∈S

1{𝑠 ̸∈ 𝜉}Pr(𝜉 ∪ {𝑠})
Pr(𝜉)

∑︁
𝑖∈I

1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

𝑝𝑤(𝑑) = 1
|S|
∑︁
𝑠∈S

Pr(𝑠 ∈ 𝜉)
∑︁
𝑖∈I

1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

where �̃�𝑤,𝑡(𝑑) and �̃�𝑤,𝑐(𝑑) replicate �̂�𝑤,𝑡(𝑑) and �̂�𝑤,𝑐(𝑑) but with expected values rather than sample averages
in the denominators. The sample average denominators are 𝑝𝑤,𝑡(𝑑) and 𝑝𝑤,𝑐(𝑑) (scaled such that they
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converge under suitable conditions when 𝐽 grows), and the expected value of the denominators is 𝑝𝑤(𝑑)
(similarly scaled).

Without loss of generality, I fix the distance 𝑑 and weighting 𝑤 of interest and suppress the dependence
on 𝑑 and 𝑤 in the following derivations for ease of presentation.

The feasible estimator written in terms of the shorthand notation is

𝜏 = �̂�𝑡 − �̂�𝑐 = 𝑝

𝑝𝑡
�̃�𝑡 − 𝑝

𝑝𝑐
�̃�𝑐

while the infeasible estimator is

𝜏 = 𝜇𝑡 − 𝜇𝑐 + �̃�𝑡 − 𝑝𝑡

𝑝
𝜇𝑡 − �̃�𝑐 + 𝑝𝑐

𝑝
𝜇𝑐.

Next, define the function

Δ̃(𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐) ≡ 𝑝

𝑝𝑡
�̃�𝑡 − 𝑝

𝑝𝑐
�̃�𝑐 − (𝜇𝑡 − 𝜇𝑐 + �̃�𝑡 − 𝑝𝑡

𝑝
𝜇𝑡 − �̃�𝑐 + 𝑝𝑐

𝑝
𝜇𝑐)

= 𝜏 − 𝜏

Finally, apply the mean value theorem on Δ̃ on the interval with endpoints �̂� = (𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐) and
𝑥 = (𝑝, 𝑝, 𝜇𝑡, 𝜇𝑐). The mean value theorem states that

Δ̃(𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐) − Δ̃(𝑝, 𝑝, 𝜇𝑡, 𝜇𝑐)

=

⎡⎢⎢⎢⎢⎣
𝑝𝑡 − 𝑝𝑡

𝑝𝑐 − 𝑝𝑐

�̃�𝑡 − 𝜇𝑡

�̃�𝑐 − 𝜇𝑐

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
𝜕Δ̃
𝜕𝑝𝑡

(�̇�)
𝜕Δ̃
𝜕𝑝𝑐

(�̇�)
𝜕Δ̃
𝜕�̃�𝑡

(�̇�)
𝜕Δ̃
𝜕�̃�𝑐

(�̇�)

⎤⎥⎥⎥⎥⎦
where �̇� is some convex combination of �̂� and 𝑥.

It is straightforward to see that Δ̃(𝑝, 𝑝, 𝜇𝑡, 𝜇𝑐) = 0. Hence the left-hand-side of the equality above is just
Δ̃(𝑝𝑡, 𝑝𝑐, �̃�𝑡, �̃�𝑐), such that the right-hand-side is an expression for 𝜏 − 𝜏 .

Hence

𝜏 − 𝜏 = (𝑝𝑡 − 𝑝)
(︁

− 𝑝

�̇�2
𝑡

�̇�𝑡 + 1
𝑝
𝜇𝑡

)︁
+ (𝑝𝑐 − 𝑝)

(︁ 𝑝
�̇�2

𝑐

�̇�𝑐 − 1
𝑝
𝜇𝑐

)︁
+ (�̃�𝑡 − 𝜇𝑡)

(︁ 𝑝
�̇�𝑡

− 1
)︁

+ (�̃�𝑐 − 𝜇𝑡)
(︁

− 𝑝

�̇�𝑐
+ 1
)︁

Each of the four terms is a product with each factor close to zero under appropriate asymptotics. That is,
the difference between the estimators 𝜏𝑤(𝑑) and 𝜏𝑤(𝑑) is negligible under standard asymptotic frameworks.
Since the difference between estimators is very small for large samples, exact finite sample results for 𝜏𝑤(𝑑)
likely provide decent approximations for 𝜏𝑤(𝑑) in smaller samples.
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Expected Value

First, note that

𝐸

(︃∑︀
𝑠∈S 1{𝑠 ∈ 𝜉}

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

= 𝐸

(︃∑︀
𝑆∈2S

∑︀
𝑠∈S 1{𝜉 = 𝑆}1{𝑠 ∈ 𝑆}

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑆)∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

=
∑︀

𝑆∈2S
∑︀

𝑠∈S Pr{𝜉 = 𝑆}1{𝑠 ∈ 𝑆}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑆)∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

= 𝜇𝑡(𝑑)

and similarly

𝐸

(︃∑︀
𝑠∈S 1{𝑠 ̸∈ 𝜉} Pr(𝜉∪{𝑠})

Pr(𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

= 𝐸

(︃∑︀
𝑆∈2S

∑︀
𝑠∈S 1{𝜉 = 𝑆}1{𝑠 ̸∈ 𝑆} Pr(𝜉=𝑆∪{𝑠})

Pr(𝜉=𝑆)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑆)∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

=
∑︀

𝑆∈2S
∑︀

𝑠∈S Pr(𝜉 = 𝑆 ∪ {𝑠})1{𝑠 ̸∈ 𝑆}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑆)∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

= 𝜇𝑐(𝑑)

Hence 𝐸(𝜏(𝑑)) = 𝜇𝑡(𝑑) − 𝜇𝑐(𝑑).
Furthermore

𝜇𝑡(𝑑) − 𝜇𝑐(𝑑) =
∑︀

𝑆∈2S
∑︀

𝑠∈S Pr(𝜉 = 𝑆)1{𝑠 ∈ 𝑆}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑆)∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

−
∑︀

𝑆∈2S
∑︀

𝑠∈S Pr(𝜉 = 𝑆 ∪ {𝑠})1{𝑠 ̸∈ 𝑆}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝑌𝑖(𝑆)∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

=
∑︀

𝑆∈2S
∑︀

𝑠∈S Pr(𝜉 = 𝑆)1{𝑠 ∈ 𝑆}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖(𝑆) − 𝑌𝑖(𝑆 ∖ {𝑠}))∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

by aligning the summand 𝑆 of the first sum with the summand 𝑆 ∖ {𝑠} of the second sum. This proves part (i)
of Theorem 5.

Under additivity, 𝑌𝑖(𝑆) − 𝑌𝑖(𝑆 ∖ {𝑠}) = 𝜏𝑖(𝑠) for all 𝑆 ⊂ S with 𝑠 ∈ 𝑆, so

𝜇𝑡(𝑑) − 𝜇𝑐(𝑑) =
∑︀

𝑆∈2S
∑︀

𝑠∈S Pr(𝜉 = 𝑆)1{𝑠 ∈ 𝑆}
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝜏𝑖(𝑠)∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

=

∑︀
𝑠∈S
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝜏𝑖(𝑠)
(︁∑︀

𝑆∈2S Pr(𝜉 = 𝑆)1{𝑠 ∈ 𝑆}
)︁

∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

=
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}𝜏𝑖(𝑠)∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

proving part (iii) of Theorem 5.
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Variance

Using the exposure mappings as defined in Remark 20 in the main text,29 the variance of 𝜏(𝑑) is

var(𝜏(𝑑)) = var
(︃
𝜇𝑡(𝑑) − 𝜇𝑐(𝑑) +

∑︀
𝑠∈S 1{𝑠 ∈ 𝜉}

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖 − 𝜇𝑡(𝑑))∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

−
∑︀

𝑠∈S 1{𝑠 ̸∈ 𝜉} Pr(𝜉∪{𝑠})
Pr(𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖 − 𝜇𝑐(𝑑))∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

= var
(︃∑︀

𝑠∈S
∑︀

𝑚∈M𝑠
1{𝑓𝑠(𝜉) = 𝑚}𝑊𝑠(𝑚)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖(𝑚) − 𝜇𝑡(𝑑))∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

−
∑︀

𝑠∈S
∑︀

𝑚∈M𝑠
1{𝑓𝑠(𝜉) = 𝑚}(1 −𝑊𝑠(𝑚)) Pr(𝜉∪{𝑠})

Pr(𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖(𝑚) − 𝜇𝑐(𝑑))∑︀
𝑠∈S Pr(𝑠 ∈ 𝜉)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

Under Assumption 7 (independent treatment assignment), Pr(𝜉 = 𝑆) =
∏︀

𝑠∈𝑆 𝜋𝑠

∏︀
�̸�∈𝑆(1 − 𝜋𝑠), so

var(𝜏(𝑑)) = var
(︃∑︀

𝑠∈S
∑︀

𝑚∈M𝑠
1{𝑓𝑠(𝜉) = 𝑚}𝑊𝑠(𝑚)

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖(𝑚) − 𝜇𝑡(𝑑))∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

−
∑︀

𝑠∈S
∑︀

𝑚∈M𝑠
1{𝑓𝑠(𝜉) = 𝑚}(1 −𝑊𝑠(𝑚)) 𝜋𝑠

1−𝜋𝑠

∑︀
𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}(𝑌𝑖(𝑚) − 𝜇𝑐(𝑑))∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

Let 𝑌𝑠(𝑚, 𝑑), the non-stochastic signed sum of potential outcomes of individuals near candidate location
𝑠 under exposure 𝑚 be defined as in the statement of Theorem 5.

Then

var(𝜏(𝑑))

= var
(︃ ∑︀

𝑠∈S
∑︀

𝑚∈M𝑠
1{𝑓𝑠(𝜉) = 𝑚}𝑌𝑠(𝑚, 𝑑)∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

=
∑︁
𝑠∈S

var
(︃ ∑︀

𝑚∈M𝑠
1{𝑓𝑠(𝜉) = 𝑚}𝑌𝑠(𝑚, 𝑑)∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

+
∑︁
𝑠∈S

∑︁
𝑠′∈S

1{𝑠 ̸= 𝑠′} cov
(︃ ∑︀

𝑚∈M𝑠
1{𝑓𝑠(𝜉) = 𝑚}𝑌𝑠(𝑚, 𝑑)∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}
,

∑︀
𝑚′∈M𝑠′ 1{𝑓𝑠′(𝜉) = 𝑚′}𝑌𝑠(𝑚, 𝑑)∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ}

)︃

=

∑︀
𝑠∈S
∑︀

𝑚∈M𝑠
var
(︁
1{𝑓𝑠(𝜉) = 𝑚}

)︁
𝑌𝑠(𝑚, 𝑑)2

(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

+

∑︀
𝑠∈S
∑︀

𝑚∈M𝑠

∑︀
𝑚′∈M𝑠

1{𝑚 ̸= 𝑚′} cov
(︁
1{𝑓𝑠(𝜉) = 𝑚},1{𝑓𝑠(𝜉) = 𝑚′}

)︁
𝑌𝑠(𝑚, 𝑑)𝑌𝑠(𝑚′, 𝑑)

(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

+

∑︀
𝑠∈S
∑︀

𝑠′∈S 1{𝑠 ̸= 𝑠′}
∑︀

𝑚∈M𝑠

∑︀
𝑚′∈M𝑠′ cov

(︁
1{𝑓𝑠(𝜉) = 𝑚},1{𝑓𝑠′(𝜉) = 𝑚′}

)︁
𝑌𝑠(𝑚, 𝑑)𝑌𝑠′(𝑚′, 𝑑)

(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

29The derivations in the first part of this section assume that exposure mappings are correctly specified, in the sense that
outcomes are fixed conditional on exposure, but do not rely on any particular definition of exposure mappings.
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where the only remaining stochastic elements are indicators such as 1{𝑓𝑠(𝜉) = 𝑚}.
Let the marginal and joint probabilities of exposure be

𝜋𝑠(𝑚) = Pr(𝑓𝑠(𝜉) = 𝑚)

𝜋𝑠,𝑠′(𝑚,𝑚′) = Pr(𝑓𝑠(𝜉) = 𝑚 ∧ 𝑓𝑠′(𝜉) = 𝑚′)

as defined in Remark 20.
Then

var(𝜏(𝑑)) =
∑︀

𝑠∈S
∑︀

𝑚∈M𝑠
𝜋𝑠(𝑚)(1 − 𝜋𝑠(𝑚))𝑌𝑠(𝑚, 𝑑)2

(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

−
∑︀

𝑠∈S
∑︀

𝑚∈M𝑠

∑︀
𝑚′∈M𝑠

1{𝑚 ̸= 𝑚′}𝜋𝑠(𝑚)𝜋𝑠(𝑚′)𝑌𝑠(𝑚, 𝑑)𝑌𝑠(𝑚′, 𝑑)
(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

+
∑︀

𝑠∈S
∑︀

𝑠′∈S 1{𝑠 ̸= 𝑠′}
∑︀

𝑚∈M𝑠

∑︀
𝑚′∈M𝑠′ (𝜋𝑠,𝑠′(𝑚,𝑚′) − 𝜋𝑠(𝑚)𝜋𝑠′(𝑚′))𝑌𝑠(𝑚, 𝑑)𝑌𝑠′(𝑚′, 𝑑)

(
∑︀

𝑠∈S Pr(𝑠 ∈ 𝜉)
∑︀

𝑖∈I 1{|𝑑(𝑠, 𝑟𝑖) − 𝑑| ≤ ℎ})2

B Details on the Empirical Application

In this appendix, I outline choices made in the processing of the data and finding counterfactual treatment
locations. I also show robustness to alternative specifications and random seeds in the design and use of the
convolutional neural networks.

B.1 Data Processing

I use the July 2021 release of SafeGraph’s data for the year 2020. In this release of the data, SafeGraph
applies its current algorithm to the data it collected in 2020, and updates its data sets attributing smartphone
pings to businesses. In this paper, I focus on businesses in the San Francisco Bay Area, specifically in the
Peninsula and South Bay between South San Francisco and Sunnyvale, see Figure 9 in the main text. To
create the initial sample of all possibly relevant businesses for which SafeGraph has recorded data, I keep
all businesses that either lie within six miles from a number of points throughout the Bay Area or have a
SafeGraph determined ZIP code falling within a list of relevant ZIP codes, see Table B.1.

To define the units of interest and ensure high-quality data for this application, I take three additional
steps processing the data. First, I determine the grocery and convenience stores that I consider “treatments”
in this paper. Second, I manually set the location of each of these treatments to correspond to the main
entrance of the store. Third, I check and de-duplicate restaurant location data to restrict to real restaurants
that were likely to be open in early 2020.

Based on SafeGraph’s “point of interest” data, I find 167 unique grocery and convenience store (treatment)
locations that were open in 2020 in the interior of the study area. Starting from the sample defined above, I
define the possible businesses of interest as those within 3 miles of Burlingame, 5 miles of Belmont, 5.5 miles
of Menlo Park, or 2.95 miles of Mountain View, with the city locations as in Table B.1. Focusing on grocery
stores in the interior of the study area guarantees that the full sample includes data on all businesses that are
within different distances of interest from the grocery stores. To find locations consumers typically visit to
purchase groceries, I start with all businesses with 4-digit NAICS code 4451 (grocery and convenience stores)
assigned by SafeGraph, and then add all Costco, Target, and Walmart stores (which SafeGraph classifies
as general merchandise stores, 4523), for a total of 313 stores. Of these stores, I exclude 28 stores that
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Table B.1: The initial sample of all possibly relevant businesses consists of all businesses in the SafeGraph
“point of interest” data with location within six miles from one of the five cities or with a zip code given in
the table.

city latitude longitude
South San Francisco 37.653540 -122.416866
Burlingame 37.584103 -122.366083
Belmont 37.516493 -122.294191
Menlo Park 37.451967 -122.177993
Mountain View 37.389389 -122.083210
ZIP codes:

94002, 94005, 94010, 94014, 94015, 94016, 94019,
94020, 94022, 94024, 94025, 94027, 94028,
94030, 94032, 94035, 94037, 94040, 94041, 94042, 94043, 94044,
94061, 94062, 94063, 94064, 94065, 94066, 94070,
94080, 94083, 94085, 94086, 94087, 94089,
94101, 94102, 94104, 94105, 94110, 94112, 94114, 94117,
94121, 94124, 94127, 94128, 94129,
94130, 94131, 94132, 94133, 94134, 94169, 94192,
94301, 94303, 94304, 94305, 94306, 94309,
94401, 94402, 94403, 94404, 94497, 94530, 94538, 94555, 94603,
95014, 95015, 95051, 95054, 95101, 95112

SafeGraph determines to have closed permanently before the COVID-19 pandemic (in or before February
2020; there were no further grocery store closures until July as recorded by SafeGraph), as well as 1 store
that SafeGraph determines to have opened only in November 2020. For the remaining 284 stores, I verify
manually that these fit my definition of grocery or convenience store. This leads to the exclusion of 100 stores;
primarily excluding convenience stores that are part of gas stations, delis, and food producers and importers
/ exporters that are incorrectly classified as grocery stores by SafeGraph’s algorithm. I was able to confirm,
based on newspaper articles, Yelp entries, and Google Street View imagery, that another 17 grocery stores
were either not open in 2020 (closed before or opened after) or were duplicate entries in the data set. Hence,
overall I consider 167 treatment locations; 139 of these are labeled as grocery (or general merchandise) stores
by SafeGraph, with the remaining 28 labeled as convenience stores by SafeGraph.

For the 167 grocery and convenience stores in the sample, I manually determine the latitude and longitude
of the main entrance, which serves two related purposes. First, the main entrance and exit is the relevant
location to measure distances to or from for the purpose of trip sequencing: If a consumer considers visiting a
coffee shop before or after a grocery store, the additional distance she has to travel is based on the front door
of the grocery store, not a location in the interior. Second, placing the location of grocery stores at their main
entrances typically reduces the differences between taking straight-line distance (as in this paper) and walking
distance (likely the economically relevant distance metric) between grocery store and restaurant. When the
grocery store location is instead placed in the interior of the store, restaurants that are behind the grocery
store can appear closer than restaurants that are next door. Hence, placing the location of the grocery store
at its front entrance improves the interpretability of estimates by distance. The latitude and longitude given
in the SafeGraph data instead reflect “the general center of the business”30, typically in the interior of the

30SafeGraph documentation, https://docs.safegraph.com/docs/core-places#section-latitude-longitude accessed on
July 29, 2021.
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store. I use Google Maps satellite as well as Street View imagery to locate the main entrances of all grocery
stores. For about three quarters of the grocery and convenience stores, the difference in locations is less than
20 meters. The largest differences in locations (of around 70 meters) occur for a handful of particularly large
Costco, Safeway, Target, and Walmart stores.

I audit the data on restaurant (outcome unit) locations in three steps. First, I de-duplicate observations
by checking for similarity of business names between any two businesses with locations within 50 meters
of each other according to SafeGraph data. To detect duplicates that are plausibly noticeable based on
name similarity, I specifically focus my attention on businesses with high relative Levenshtein distance, which
measures the minimum numbers of character edits needed to make the names of the two businesses equal,
relative to the length of the longer business name. Most duplicates I detect are clear typos in the name of
one of the observations, and some are abbreviations of business names that I verify to indeed describe the
same business using Google Maps and Street View data. Second, I audit the SafeGraph location data by
comparing the latitude and longitude in the SafeGraph “point of interest” data to the latitude and longitude
obtained by running the business name and street address (also from the “point of interest” data) through
Google Maps. This analysis confirms the high quality of the SafeGraph location data. Randomly inspecting
the locations of a few dozen restaurant in more detail, I find that neither the SafeGraph nor the Google maps
locations are systematically closer to the entrance of the restaurants. Given the much smaller size (area)
of almost all restaurants compared to grocery stores, as well as the much greater number of restaurants, I
do not manually record the latitudes and longitudes of their entrances. Third, I focus on businesses that
were reliably being assigned visits by SafeGraph. I restrict the non-grocery store sample to businesses for
which SafeGraph reported at least 7 visits in each of the four weeks starting in January 2020. This excludes
businesses that were not open at the time, not properly assigned visits by SafeGraph’s algorithm, or are
too small to reliably measure visits for, but retains 95-97.5% of all visits (depending on the week) in the
SafeGraph data. Importantly, each of the three steps is taken without knowledge of which businesses are, in
the later analysis, considered treated or control.

B.2 Convolutional Neural Network

I use a convolutional neural network (CNN) to identify plausible counterfactual locations. First, I specify the
input into the training of the CNN. Second, I describe the architecture of the CNN. Third, I use the trained
CNN to predict many plausible counterfactual locations and additional matching steps to select the final
counterfactual locations used in the analysis.

I project latitude and longitude of all businesses into two-dimensional Cartesian space using the NAD83
(2011) projection, EPSG:6419 California zone 3. This projection gives the location in meters East and North
relative to a point near the San Francisco Bay Area. In applications where data come from different regions,
different projections may be needed for different regions such that the relative distances within each region
are accurate.

The CNN learns to predict treatment locations in the larger neighborhoods of prespecified locations: real
grocery store locations and semi-randomly chosen locations. The semi-randomly chosen locations, together
with the real grocery store locations, are meant to cover the larger neighborhoods that counterfactual locations
could plausibly occur in. I start with the locations of all businesses for which the nearest grocery store is
between 0.2 miles and 2 miles away. The neighborhoods of businesses even closer to a grocery store are
already included in the consideration set by including that grocery store. Next, I jitter these locations by
adding independent shocks from a normal distribution with mean ±0.0004 and standard deviation 0.0001
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Table B.2: Number of businesses by 4-digit NAICS code that are in the larger neighborhoods forming the
input into the convolutional neural network. The number of grocery stores exceeds 167 here because additional
grocery stores that are not in the interior of the main study area are included in these larger neighborhoods.

NAICS code description # unique businesses
7225 Restaurants and Other Eating Places 1975
7139 Other Amusement and Recreation Industries 606
7121 Museums, Historical Sites, and Similar Institutions 409
8131 Religious Organizations 324
6111 Elementary and Secondary Schools 265
6244 Child Day Care Services 264
4451 Grocery Stores 244
4471 Gasoline Stations 182
any – 7845

to their latitudes and longitudes, where the sign of the mean is independently drawn to be +1 or −1 for
each location and coordinate. This step ensures that the center of each larger neighborhood does not fall
exactly onto a business because real grocery store locations never exactly coincide with the locations of other
businesses. Finally, to avoid including the same neighborhoods multiple times, I detect all pairs of jittered
locations that are within 100 meters of one another. I drop locations that are listed “first” (in the arbitrary
order based on the row numbers of the businesses the location is based on) in any such pair. In total, this
results in 1, 900 semi-random locations, in addition to the 167 real grocery store locations, that form the
centers of the larger neighborhoods used by the CNN.

The CNN predictions are based on observable characteristics describing small 2D grid cells around the
prespecified locations. Each grid cell covers an area of 0.025mi × 0.025mi (approximately 40m × 40m).
The observable characteristics of each grid cell that I use in this application is the count of businesses by
4-digit NAICS code for the codes given in Table B.2. That is, a cell covering two gasoline stations, one car
dealership, and no other businesses, will have “covariate value” 2 for the covariate indicating industry group
4471 (gasoline stations) and 3 for the covariate indicating “any” industry, with the remaining covariates at 0
because there is no separate covariate for the relatively rare car dealerships (NAICS code 4411, less than 100
in the study area). One could similarly define covariates describing the average income or age of the census
tract covering the cell, or property values for properties in each grid cell.

The CNN receives as its input observations consisting of one larger neighborhood each. The covariates of
the 2D grid are separate “channels” constituting a 3D tensor for each such neighborhood-observation. Each
larger neighborhood consists of 50 × 50 grid cells. The entire neighborhood is randomly shifted, rotated, and
mirrored, with the constraint that the prespecified location is placed within one of the central 10 × 10 grid
cells (uniformly distributed), such that it has at least another 20 grid cells (0.5mi) of “padding” until the
edge of the larger neighborhood.

The CNN consists of 4 sequential 2D convolutions and a final linear (fully connected) layer yielding
10 × 10 + 1 = 101 outputs. I use 2D instance normalization and leaky rectified linear activation for all
neurons in the CNN, and replication padding to ensure the output of each convolution has the same spatial
dimension as the input. The first convolution takes the 9 input channels (eight specific industries and one
for any industry) and convolves it with a kernel size of 5 (considering the 5 × 5 grid cells centered around a
given grid cell) into 18 channels. This layer can “smooth” the input such that the hard borders between grid
cells due to discretization become less relevant. The increase in the number of channels allows the neural

103



network to learn a larger number of non-linearities. The second convolution takes the 18 channels of the
previous layer and convolves them with a kernel size of 21 with a stride of 2 into 36 channels, such that each
grid cell can view grid cells up to 20 cells away in any direction, but skipping every other cell for parsimony.
This layer allows each grid cell to learn about its own neighborhood up to even relatively large distances
(approximately 20 × 0.025mi = 0.5mi). The third convolution takes the 36 channels of the previous layer and
convolves them with a kernel size of 5 into 36 channels, again allowing some smoothing across grid cells to
counteract the skipping of every other grid cell of the previous layer. The fourth convolution takes the 36
channels of the previous layer and convolves them with a kernel size of 21 with a stride of 2 into a single
channel. Intuitively, this layer forces a single prediction for each grid cell based on the large neighborhood
(up to 20 cells away in any direction). The final layer linearly combines the 50 × 50 grid cells of the single
channel of the previous layer into 101 “categories” that constitute the predictions of whether and where an
additional grocery store may be located.

The 101 categories correspond to the central 10 × 10 grid as well as one category indicating a prediction
of no additional grocery store. I train the CNN on batches consisting of 64 large neighborhood observations.
Half (32) of the observations are large neighborhoods around a real grocery store, but with that grocery
store removed from the input channel count of grocery stores per grid cell. The random shift and rotation in
input is such that this removed grocery store could have been in any of the central 10 × 10 grid cells. For
these observations, the prediction maximizing the cross-entropy loss is the category corresponding to the
particular cell that the grocery store has been removed from. All other categories are equal to one another
in terms of loss, and worse than the correct category, which trains the CNN to identify the mode, rather
than average, location. A quarter (16) of the observations are large neighborhoods around a real grocery
store, with no grocery store removed. The correct classification of such observations is into the category
corresponding to “no missing grocery store” instead of any of the 10 × 10 grid cells. The last quarter (16) of
the observations of each batch are large neighborhoods around the semi-random prespecified locations. Their
correct classification is also the category corresponding to “no missing grocery store.”

After training, I evaluate the neighborhoods of the prespecified locations for possible grocery store locations
according to the CNN. In this step, I input batches consisting of 32 observation into the trained CNN. In
these batches, 4 observations are large neighborhoods around real grocery stores: 2 have the grocery store
removed from the input, while 2 do not have the grocery store removed. An additional 28 observations
are large neighborhoods around the semi-random prespecified locations. I make predictions for 5, 000 such
batches. The predictions for observations with removed grocery stores allow me to learn the prediction values
(activation) of real grocery store locations. The remaining observations yield possible counterfactual locations.

I find good matches for real grocery store locations among the possible counterfactual locations in two steps.
In the first step, I find separately for each real grocery store location possible counterfactual locations with
similar CNN activation. Specifically, I take each prediction for a removed real grocery store separately (there
are multiple such predictions for each real grocery store under different random shifts, rotation, and mirroring),
and match in descending order of activation, without replacement, within the possible counterfactual locations
(this excludes the prediction category for “no missing grocery store”). I repeat the same matching process
(matching without replacement using the complete set of possible counterfactual locations) using relative
activation within observation, corresponding to the cross-entropy loss function. Taking the union of these
matches, I obtain 19, 857 possible locations that the CNN evaluated as similar to a real grocery store location
under at least one shift, rotation, and mirroring. In the second step, I use propensity score matching to pick
the final counterfactual locations among these 19, 857 possible locations. I estimate a propensity score model
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using the real and possible counterfactual locations as observations in a logistic regression. There are three
sets of regressors: the numbers of restaurants in distance bins of width 0.025 miles from the location, up to
a distance of 0.25 miles; the average number of grocery stores near the restaurants in each bin broken out
for each bin into similar bins of distance from the restaurant; and the total number of businesses (of any
industry) in distance bins of width 0.25 miles, up to a distance of 1 mile. I match each grocery store location,
without replacement, to the nearest possible counterfactual location as well as the next higher and lower
counterfactual location based on the estimated propensity scores. I exclude from this list one location of any
pair of possible counterfactual locations that are closer to one another than the smallest distance between any
pair of real grocery store locations. I perform a final matching step (again on the estimated propensity scores)
excluding these “too close” locations and keeping for each real grocery store location its closest matches and
the location with the next larger propensity score to retain the most plausible counterfactual locations.

For the final sample of real grocery store and most plausible counterfactual locations, I estimate a propensity
score to analyze the sample as a quasi-experiment conditional on these locations and propensity scores. The
propensity score estimation uses the same regressors as the estimated propensity score for matching. This
propensity score is only used to weight the “control” observations (restaurants near counterfactual locations)
because the average treatment effect on the treated (ATT) estimator does not require reweighting of the
“treated” observations (restaurants near real grocery stores). The primary purpose is to balance exposure to
grocery stores appropriately between treated and control restaurants. When estimating the average effect of
one marginal grocery store on restaurants at a distance 𝑑, the treated and control restaurants at that distance
indeed differ on average by one grocery store at distance 𝑑, and have similar average exposure to grocery
stores at other distances as Figure 14 in the main text illustrates. By selecting the counterfactual locations
from the CNN predictions based on the relative locations of other businesses in the large neighborhoods,
these locations and propensity score weights also balance exposure to other businesses in the neighborhood
as shown in Figure 15 of the main text.
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