Econometrics prelim, Spring 2021

- 1. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables. Suppose that $\mathbb{P}(X_1 \leq 0) = 0$ and $\lim_{h \downarrow 0} \mathbb{P}(X_1 \leq x + h \mid X_1 > x)/h = 1$ for all x > 0. Further, let $X_{(j)}$ be the j^{th} smallest variable among X_1, X_2, \ldots, X_n .
 - (a) Please compute $\mathbb{E}(X_1)$ and $\mathbb{E}(X_{(1)})$.
 - (b) Let F be the cumulative distribution function of X_1 . Please derive the cumulative distribution function and the probability density function of $Y_{(j)} := F(X_{(j)})$ for j = 1, 2, ..., n.
- 2. Suppose that X and Y are random variables with $\mathbb{E}\{\exp(tX+sY)\}=\exp\{(t^2+s^2)/2\}$ for all $t,s\in\mathbb{R}$. Please compute $\mathbb{E}(2X+Y\mid X+2Y>0)$.
- 3. Suppose that (X, Y) has a joint probability density function $f_{XY}(x, y) = 8xy\mathbb{I}(0 \le x \le y \le 1)$.
 - (a) Obtain the function $g:(0,1)\to\mathbb{R}$ such that for any measurable function $h:(0,1)\to\mathbb{R}$, we have $\mathbb{E}\big[\big\{Y-g(X)\big\}^2\big]\leq\mathbb{E}\big[\big\{Y-h(X)\big\}^2\big]$.
 - (b) Let $Z = X^2$. Obtain the probability density function of Z.
 - (c) Compute the correlation coefficient between Y g(X) and Z, where g and Z are defined in parts (a) and (b), respectively.
- 4. Suppose that (Y_1, Y_0) and T are independent, where T is Bernoulli. Define $Y := Y_1T + Y_0(1-T)$.
 - (a) Can we identify the (marginal) distribution functions of Y_0 and Y_1 from the joint distribution of (Y, T)? Prove or disprove.
 - (b) Suppose that Y_1 and Y_0 are also Bernoulli and that they are dependent such that $Y_1 \ge Y_0$ with probability one. Can we identify $\mathbb{P}(Y_1 = 1 \mid Y_0 = 0)$ from the joint distribution of (Y, T)? Prove or disprove.
- 5. Suppose that X_1, X_2, \ldots, X_n are independent and identically distributed random variables with $\mathbb{E}(X_1^4) < \infty$. Let $\hat{\mu} = n^{-1} \sum_{i=1}^n X_i$ and $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n X_i^2 \hat{\mu}^2$. You may assume that $\sigma^2 > 0$ and $\mathbb{E}\{(X_1 \mu)^4\} > \sigma^4$, where $\mu = \mathbb{E}(X_1)$ and $\sigma^2 = \mathbb{V}(X_1)$.
 - (a) Please derive the (non-degenerate) limit distribution of $n^r(\hat{\sigma}^2 \sigma^2)$ for some appropriate number r > 0.
 - (b) Please derive the (non-degenerate) limit distribution of $n^r(\hat{\mu}^2 \mu^2)$ for some appropriate number r > 0.
- 6. Prove or disprove each of the following statements. You may assume that all the random variables are defined on the same probability space.
 - (a) If $\mathbb{E}(|X_n|^3) = O(n)$, then we must have $X_n = O_p(n^{1/3})$.
 - (b) If $X_n \stackrel{as}{\to} 0$, then we must have $\mathbb{E}(X_n) \to 0$.

10. Assume i.i.d. data and consider the model

$$\begin{cases} y_i^* = x_i^{\mathsf{T}} \beta_0 + q_i \gamma_0 + u_i, \\ q_i = w_i^{\mathsf{T}} \delta_0 + v_i, \end{cases}$$
 (2)

where y_i^* is latent, u_i , v_i are mean zero jointly normal and independent of $z_i = [x_i^T, w_i^T]^T$ and u_i has variance one. Assume that everything is well-behaved in terms of collinearity and the existence of moments and that w_i , x_i are vectors with multiple elements that have no elements in common. Instead of y_i^* you observe $y_i = \mathbb{I}(y_i^* \geq 0)$. It can be shown that

$$\mathbb{E}(y_i \mid z_i = z) = \Phi\left(\frac{x^{\mathsf{T}}\beta_0 + w^{\mathsf{T}}\delta_0\gamma_0}{\sqrt{1 + \gamma_0^2 \sigma_0^2 + 2\gamma_0 \sigma_0 \rho_0}}\right),\tag{3}$$

where σ_0^2 , ρ_0 are respectively the variance of v_i and the correlation of u_i , v_i . Now suppose that you form moment conditions

$$\begin{cases}
\mathbb{E} \left[z_{i} \left\{ y_{i} - \Phi \left(\frac{x_{i}^{\mathsf{T}} \beta_{0} + w_{i}^{\mathsf{T}} \delta_{0} \gamma_{0}}{\sqrt{1 + \gamma_{0}^{2} \sigma_{0}^{2} + 2 \gamma_{0} \sigma_{0} \rho_{0}}} \right) \right\} \right] = 0, \\
\mathbb{E} \left\{ z_{i} \left(q_{i} - w_{i}^{\mathsf{T}} \delta_{0} \right) \right\} = 0, \\
\mathbb{E} \left\{ \left(q_{i} - w_{i}^{\mathsf{T}} \delta_{0} \right)^{2} - \sigma_{0}^{2} \right\} = 0.
\end{cases} \tag{4}$$

- (a) Do the moment conditions provide underidentification, exact identification, or overidentification? Explain briefly.
- (b) Name one advantage of using GMM with an overidentified system compared to using an asymptotically equally efficient GMM estimator based on an exactly identified system.
- (c) Finish the sentence: "Exactly identified GMM using a given fixed vector of instruments z_i is to OLS what GMM with optimal instruments is to"
- 11. Suppose that $y_i = x_i^{\mathsf{T}} \beta_0 + u_i$, where

$$\begin{cases} x_i = \Pi_0^{\mathsf{T}} z_i + v_i, \\ u_i = \exp(z_i^{\mathsf{T}} \gamma_0) e_i, \end{cases}$$
 (5)

where e_i is mean zero unit variance and e_i , v_i are independent of z_i and all variables have finite fourth moments.

- (a) Write down some moment conditions that provide identification under reasonable additional conditions and state what those conditions are.
- (b) Derive the optimal instruments.
- 12. True or false? Please explain.
 - (a) This exam is hard.