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Abstract

We study how talent discovery within organizations distorts employee task choices.

These choices are generally suboptimal when employees seek to earn promotions which

are awarded based on perceived talent. They can be improved through incentive

schemes which pay bonuses and/or reallocate promotions between employees. We show

that the optimal incentive tool depends on the desired power of incentives, with low-

powered incentives provisioned through bonuses and high-powered incentives achieved

by reallocating promotions. Organizations can sometimes further benefit by dividing

employees into groups with different promotion rates and bonuses, which we show elim-

inates the need to promote inefficiently within groups.
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1 Introduction

A major personnel challenge faced by many organizations is the identification of talented

employees for promotion to senior positions. In practice, talent is typically inferred from on-
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the-job performance, linking performance and promotion in a way which generates important

incentives for employees.1 Existing theoretical work, for instance on tournaments (Green and

Stokey 1983; Lazear and Rosen 1981; Nalebuff and Stiglitz 1983; Rosen 1986), has focused

on the positive implications of these incentives as a spur for effort. However, in roles with

significant autonomy, these incentives can generate an agency problem: Employees may

spend their time on tasks or projects which optimize their perceived talent rather than their

productivity.

Autonomous roles are prevalent in, for example, management, software engineering, and

research positions. They are an increasingly important in the modern economy due to to

rising research and development spending (Bloom et al. 2020) and a labor market transition

toward non-routine jobs requiring creative problem-solving and interpersonal skills (Autor,

Levy, and Murnane 2003; Levy and Murnane 2004). In this paper we study how the prospect

of promotion distorts employee task choices, and we show how incentive schemes can be used

to correct these distortions.

We focus on a natural benchmark environment in which, absent the prospect of pro-

motion or monetary incentives, employees are indifferent between alternative uses of their

time.2 Their preferences become misaligned when the organization attempts to solve a basic

selection problem: It needs to fill a set of vacant senior positions by promoting a subset of its

employees, and it relies on job performance as a signal of suitability for these positions. In-

ferring talent from performance distorts incentives because employees can trade off short-run

productivity against the informativeness of their performance through their task choice.

To model this distortion parsimoniously, we suppose that employees spend their time

either on a routine “safe” task or an experimental “risky” task. These tasks could represent,

for instance, mutually exclusive projects or alternative approaches to completing an objec-

tive. The risky task produces more information about talent than does the safe task, but it

is not necessarily more productive in expectation. Rather, relative productivity varies across

employees and is privately observed, so that the organization cannot achieve efficiency by

1The seminal review of organizational incentives by Baker, Jensen, and Murphy (1988) observes that

“Promotions are used as the primary incentive device in most organizations, including corporations, part-

nerships, and universities” (emphasis added).
2Employees in autonomous roles tend to possess strong intrinsic motivation to work hard (Hackman and

Oldham 1980), suggesting that what they choose to work on may be of greater concern than how hard they

work.
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simply assigning employees to tasks.

As a preliminary result, we show that the “natural” incentives generated by promoting

high-performing employees distort task choices. Depending on the scarcity of promotions,

some employees either take undesirable risks in order to achieve an impressive outcome (if

promotions are scarce); or else stick to unprofitable safe tasks in order to hedge against a

poor outcome (if promotions are plentiful).

To mitigate these distortions, the organization can commit to an incentive scheme which

promotes underperforming employees, pays outcome-contingent monetary bonuses, or some

combination.3 While promotions and bonuses are interchangeable as rewards to employees,

they impose distinctive costs on the organization—reallocating promotions reduces surplus

by hampering selection, while paying bonuses cedes rents to employees. The organization

therefore faces a nontrivial tradeoff between the two tools.

We first analyze symmetric incentive schemes, a class of mechanisms which allow employ-

ees to freely choose their task and treat employees who choose the same task and achieve

the same outcome equivalently. These schemes are an important benchmark class because

they decentralize task choices, a key feature of autonomous roles; and because they respect

fairness and equity concerns which are salient in many real-world organizations. Symmetric

schemes also serve as a key building block for constructing more general asymmetric schemes.

Our first main result characterizes the optimal symmetric incentive scheme implementing

a given risk-taking rate across the workforce. The optimal scheme either pays bonuses to un-

derperforming employees or reallocates promotions from outperforming to underperforming

ones, but not both. The choice between the two tools hinges on the scheme’s desired incen-

tive power, i.e., how far the target risk-taking rate is from the natural rate. Bonuses turn out

to be optimal for providing low-powered incentives, while promotion reallocations are better

for providing high-powered incentives. One feature of note is that when the organization

stimulates increased risk-taking through bonuses, payments are made specifically for failure

on risky tasks, a result reminiscent of the finding in Manso (2011) that experimentation may

3We assume that the organization cannot directly reduce the value of a promotion below some baseline

level by shrinking the position’s salary or eliminating perks. This assumption is consistent with the market-

signaling theory of promotions developed by Waldman (1984) and Bernhardt (1995), in which promotions

signal talent to an external market and unavoidably increase the employee’s wage through competition. It

also captures social status or empire-building rewards associated with promotion which cannot be controlled

by the organization.
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be optimally motivated through failure bonuses.4

This result suggests distinctive lessons for incentivizing employees in fast- and slow-

growing organizations. In a fast-growing organization, opportunities for promotion are

plentiful and employees will shy away from risk-taking to maximize their chance of be-

ing promoted. In these environments, organizations should reward failure. Meanwhile in a

slow-growing organization, promotions are scarce and employees will take excessive risks in

order to earn a promotion. In these environments, organizations should reward employees

who take on routine or unglamorous tasks.

Our second main result connects the optimal power of incentives to structural features of

the internal labor market. We show that when the organization’s selection concern is large or

the value of promotion to employees is small, incentives are optimally low-powered and the

organization incentivizes with bonuses. Conversely, when selection is relatively unimportant

or employees place a high premium on promotion, incentives are optimally high-powered

and the organization incentivizes by reallocating promotions. These comparative statics link

the structure of optimal incentives to potentially measurable quantities. For instance, the

correlation between performance in lower- and higher-level roles in order could be measured

to quantify the importance of selection to the organization,5 while measures of labor market

mobility could proxy for the reward associated with promotion.6

Our final results concern asymmetric incentive schemes which can discriminate between

observably identical employees. While fairness concerns often limit such discrimination,

organizations can sometimes circumvent them by erecting social barriers between firm di-

visions, for instance through geographic separation between offices housing different teams.

We show that when such barriers are possible, the organization may benefit from splitting

employees into (at most) two groups and offering different incentive schemes to each group.

A key property of optimal asymmetric schemes is that they do not reallocate promotions

from high- to low-performers within any group. Instead, any inefficiency in the allocation of

promotions arises due to the allotment of promotions between groups.

4In Manso (2011), experimentation must be incentivized because it incurs an effort cost. In our setting,

employees’ cost of risk-taking is a reduced chance of receiving a valuable promotion.
5Mean-reversion of performance following promotion has been widely recognized in the literature on the

Peter principle, both theoretically (Lazear 2004) and empirically (Benson, Li, and Shue 2019).
6As suggested by the model of Waldman (1984) and Bernhardt (1995), promotions may serve as a public

signal of talent and therefore boost an employee’s wage through competition between potential employers.
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This analysis implies that, when discrimination between equivalent employees is possible,

it is preferable to reallocate promotions “ex ante” rather than “ex post”. That is, employees

should be informed about whether they will be favored or disfavored for promotion before

rather than after they have chosen a task. In practice, our results suggest that organizations

seeking to incentivize diverse task choices may benefit from siloing groups of employees into

culturally distinctive divisions, accommodating distinct incentive schemes and patterns of

task choice.

The remainder of the paper is organized as follows. In Section 1.1, we discuss related

literature. In Section 2 we set up the model. In Section 3 we describe the basic incentive

problem faced by the organization. In Section 4 we describe the class of symmetric incentive

schemes, and in Section 5 we characterize the optimal symmetric scheme. Section 6 extends

our analysis to asymmetric schemes. In Section 7 we discuss a number of generalizations

and extensions of our model, and in Section 8 we offer concluding remarks. All proofs are

collected in the Appendix.

1.1 Related literature

Our paper contributes to a literature studying how reputational concerns distort an em-

ployee’s willingness to take risks. Holmström (1999) (section 3) analyzes this distortion in

a career concerns setting where the employee’s compensation is determined entirely by an

external market’s perception of their quality. Holmstrom and Ricart I Costa (1986), Zwiebel

(1995), Hvide and Kaplan (2005), and Siemsen (2008) have built on the career-concerns

framework to model incentive contracting for risk-taking in the shadow of career concerns.7

In all of these papers, returns to reputation are exogenous and must be offset through incen-

tive pay or restrictions on the employee’s freedom to take risks. In our model, by contrast,

the employer can directly control the employee’s reputational concerns by committing to a

promotion policy.

7A related strand of the literature studies incentives for effort under career concerns; see, e.g., Holmström

(1999) (section 2), Dewatripont, Jewitt, and Tirole (1999b), and Gibbons and Murphy (1992). Most closely

related is Kaarbøe and Olsen (2006), which studies incentive contracts in a multitask setting. Multitasking

generates a tension between the productivity and reputational impact of a given effort allocation, as in

models of risk-taking. However, this tradeoff exists alongside additional distortions caused by the potential

for shirking and non-contractability of performance signals. Studies of risk-taking, including ours, abstract

from these issues to focus on the productivity-reputation tradeoff.
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Several papers study environments in which an employee is concerned with the percep-

tions of their employer rather than the broader market. In Kuvalekar and Lipnowski (2020)

and Kostadinov and Kuvalekar (2022), the employer prefers to separate from low-quality

employees and cannot commit to a termination policy, generating distortionary returns to

reputation similar to career concerns. In Aghion and Jackson (2016) the employer can com-

mit to a replacement policy, allowing it to control the employee’s returns to reputation;

however, no incentive payments are allowed. In both settings, the employer faces no con-

straints on how many employees it can retain, abstracting from any linkage of incentive

problems across employees. In our model, this linkage plays a central role in the comparison

between bonuses and promotions as incentive tools.

Bar-Isaac and Lévy (2022) study a related risk-taking environment in which an employer

motivates hidden effort by committing to make employees visible on an external labor market

which can bid up their wage. Thus unlike in our model, career concerns are the solution

to an incentive problem rather than the source of one.8 However, career concerns are also

distortionary because the employer cannot commit to assigning employees a particular task,

leading it to distort risk-taking in an attempt to hold down future wages. A common theme

of our analysis and theirs is that when an organization can design the reputational concerns

of its employees, its choice has important consequences for employee risk-taking.

Our paper also contributes to a discussion regarding the relative merits of promotions and

money as incentive tools. Baker, Jensen, and Murphy (1988) pose a now-classic empirical

puzzle: Rewarding employees with promotions degrades selection and so is less efficient than

incentivizing with money, and yet performance pay is rarely observed in practice.9 Lemieux,

MacLeod, and Parent (2009) have more recently found an uptick in the use of performance

pay, but they still estimate that around 60% of private-sector employees do not receive any

variable pay.10 Standard solutions to this puzzle are psychological: Performance pay could

crowd out intrinsic incentives, or organizational morale might be degraded in the presence of

8Their model shares this feature with Dewatripont, Jewitt, and Tirole (1999a) and Hörner and Lambert

(2021), who analyze how the set of performance signals available to the market affects incentives for hidden

effort under career concerns.
9This puzzle is also posed in the classic management textbook of Milgrom and Roberts (1992) (pg.

366-367).
10This figure is likely an underestimate of the infrequency of true performance pay, since their measure of

variable pay includes bonuses tied to factors other than individual achievement, such as team, division, or

firmwide performance.
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steep pay differentials across employees with comparable responsibilities. (See Baker, Jensen,

and Murphy (1988), section I.A for an overview of these solutions.)

More recently, several economic explanations have been proposed. One theory highlights

influence activities in the sense of Milgrom and Roberts (1988). Fairburn and Malcomson

(2001) demonstrate this mechanism in a model in which employees can bribe managers to

distort subjective performance reviews. In their setting, incentivizing through promotions

reduces the susceptibility of managers to influence due to their stake in the firm’s future

performance.11 Another theory emphasizes talent signaling. Schöttner and Thiele (2010)

illustrate this possibility in a model in which higher-quality employees value promotion more.

In their model, incentive pay compresses effort differentials between high- and low-quality

employees, degrading the informativeness of performance as a signal of talent.

Our results provide an alternative rationale for incentivizing with promotions in orga-

nizational settings. When an organization wishes to incentivize employees to switch tasks,

comparable incentive power is generated by paying bonuses or allocating extra promotions

toward incentivized tasks to raise their payoff. However, in an organization with a fixed

budget of promotions, reallocating promotions must also decrease the payoff of disincen-

tivized tasks. This extra incentive power makes promotions a superior incentive tool when

the organization prefers most employees avoid those tasks.

2 The model

We build a stylized model of organizational task choice in which employees’ risk-taking

decisions are distorted by the prospect of promotion. In our model, an organization oversees

a unit mass of employees with whom it interacts over two stages. In the first stage, each

employee chooses between two tasks which differ in their expected productivity, risk level, and

informativeness about talent. In the second stage, the organization observes task choices and

outcomes, selects a set of employees to promote, and (potentially) pays monetary bonuses.

Employees have heterogeneous but initially unknown talent, and the organization wishes

to allocate promotions to the most-talented employees, as revealed by their task performance.

At the same time, employees possess private information about their optimal task, which

the organization wishes to incentivize them to use optimally. The tension between selecting

11This mechanism is also proposed informally in Milgrom and Roberts (1992) (pg. 370).
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talented employees and incentivizing efficient task choice lies at the heart of our model. We

now discuss each of these model elements in more detail.

Types. Employees are indexed by n ∈ [0, 1] and are heterogeneous across two dimensions,

summarized by a type (θ(n),Γ(n)). The two dimensions of an employee’s type capture two

distinct sources of uncertainty. The employee’s quality θ summarizes the employee’s general

competence, which affects both his performance in his current position and his suitability

for promotion. Meanwhile, his match type Γ summarizes information determining his most

productive task.

Quality is symmetrically unobserved by the organization and the employee and must be

inferred by observing employee performance. We assume that quality takes one of two real

values: θ(n) ∈ {θ, θ}, where 0 ≤ θ < θ. We will refer to employees of types θ and θ as

“high-quality” and “low-quality,” respectively. Employee qualities are independently and

identically distributed, with Pr(θ(n) = θ) = π0 ∈ (0, 1). Without loss, we normalize quality

levels so that π0θ + (1− π0)θ = 1.

Match types are privately observed by each employee. We assume that they are indepen-

dently and identically distributed across employees and that qualities and match types are

independent: θ(n) ⊥⊥ Γ(n′) for all employees n, n′. Independence of quality and match type

and unobservability of quality implies that employees cannot directly signal their quality

through their task choice.

Without loss of generality, we assume that employees are indexed in decreasing order

of match type, allowing us to summarize the distribution of match types by a function

γ(n) indicating the match type of the nth employee.12 For simplicity, we impose the mild

regularity conditions that the distribution of match types has a strictly positive density on

its support, and in particular has no gaps or atoms:

Assumption 1. γ is C1 and γ′(n) < 0 for all n ∈ [0, 1].

First Stage. In the first stage, each employee chooses to complete either a safe task or a

risky task. These tasks are specific to a particular employee and may capture distinct activi-

ties for employees with different assignments (so that the outcomes of tasks are independent

across employees). To focus on a novel set of agency frictions, we assume that the employee

12Under this convention, an employee’s index is privately observed.
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has the same private cost/benefit of performing either task and normalize that cost/benefit

to zero. Absent incentives from bonuses or promotions, the employees are indifferent between

the two tasks.

The two tasks differ in their expected productivity and the variability of their outcome.

The safe task produces a sure payoff of K ∈ (0, 1) to the organization. We refer to this

outcome as “neutral”.13 By contrast, the risky task produces a payoff of either 1 or 0 for the

organization, outcomes which we refer to as “success” and “failure”. The risky task succeeds

with probability

q(θ,Γ) = θ · Γ.

That is, the probability of success is increasing in both an employee’s quality and the match

type, so that the results of the risky task are informative about the employee’s quality. Fur-

ther, since θ and Γ are independent and θ has mean 1, Γ is the employee’s perceived prob-

ability of success on the risky task.14 To ensure non-trivial incentive problems, we assume

that the task which maximizes the organization’s expected payoff varies across employees:

Assumption 2. γ(0) > K > γ(1).

This assumption implies that the organization’s first-stage payoff is maximized when

employees with index n ≤ N0 choose the risky task, where N0 ∈ (0, 1) is the unique solution

to γ(N0) = K.

Second Stage. The organization has a mass of unfilled positions of measure β ∈ (0, 1)

into which employees can be promoted in the second stage. All positions are identical, and

a position can be assigned to at most one employee. Promoting an employee of quality θ

generates a payoff of r(θ) to the organization, with r(θ) > r(θ). Meanwhile, a promoted em-

ployee enjoys a private benefit of V > 0 regardless of quality. An unfilled position generates

a payoff to the organization, which we normalize to 0, and an employee who is not promoted

receives a private benefit of 0.

13Nothing would change if the safe task generated a stochastic output, so long as the outcome was unin-

formative about the employee’s quality.
14To ensure that q(θ,Γ) ∈ [0, 1] for all θ and Γ, we must have γ(0) ≤ 1/θ. This upper bound is simply a

normalization allowing Γ to be interpreted as an expected success probability.
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We assume that r(θ) > 0, so that the organization benefits from promoting high-quality

employees. We further focus on settings in which r(θ) is not too negative, so that the

organization prefers to allocate all available positions, even when that means promoting

some underperforming employees.15 When the organization optimally allocates all positions,

the only payoff variable which matters for designing an incentive scheme is the difference

r(θ) − r(θ). To economize on notation, we set r(θ) = R > 0 and r(θ) = 0 going forward.

The single parameter R captures the magnitude of the organization’s selection concern.

In addition to allocating promotions, the organization can pay monetary bonuses to

employees. We assume that employees enjoy limited liability, so that bonuses cannot be

negative.16 The organization and all employees have utility functions that are quasilinear

in money, and we assume that V , R, and all task payoffs are normalized so that they are

denominated in dollars.

3 The incentive problem

We begin our analysis by showing that, in the absence of an incentive scheme, the amount

of risk-taking by employees is generally suboptimal. Section 3.1 characterizes the risk-taking

rate which prevails when the organization promotes employees in order of perceived quality.

Section 3.2 establishes that this rate is too high when promotions are scarce and too low

when they are plentiful, relative to the rate the organization would implement if it were not

constrained by employees’ desire for promotion. Section 5.2 proves that an optimal incentive

scheme shifts risk-taking toward the unconstrained optimal rate, setting the stage for our

characterization of an optimal scheme.

15More concretely, the organization should be willing to promote employees who failed at a risky task.

The lowest possible posterior belief the organization could hold about such an employee’s quality is πB =

(1 − θγ(0))π0/γ(0), and so a sufficient condition ensuring that all positions are allocated is πBr(θ) + (1 −
πB)r(θ) > 0.

16If promoted employees could be charged for the privilege, the organization could costlessly resolve the

underlying incentive problem by extracting all rents from promotion. Limited liability therefore reflects

unpledgeability of the employee’s promotion payoff.
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3.1 The no-commitment outcome

Absent commitment to an incentive scheme, the organization pays no bonuses and promotes

employees in descending order of perceived quality. Since successful risk-taking is good

news about quality while failure is bad news, the organization first promotes successful risk-

takers, followed by risk-avoiders, and finally resorts to promoting failed risk-takers until all

promotions are allocated. (Because promoting a low-quality employee yields a payoff at least

as high as leaving a spot unfilled, no promotions are withheld.)

This informal prioritization rule leaves two degrees of freedom for an optimal promotion

policy. First, the organization could break ties between observationally equivalent employees

in different ways. Second, the organization could deviate from the rule by promoting a

measure-zero subset of employees “out-of-order” without reducing total profits. We focus on

the unique optimal policy which 1) treats all observationally equivalent employees equally,

i.e., promotes uniformly at random from among employees of equal perceived quality in case

promotions need to be rationed; and 2) promotes employees strictly in order of perceived

quality.17 We refer to this allocation rule as the natural promotion policy.

The symmetry property of the natural policy is substantive, but constitutes a natural

benchmark which would be selected in organizations for which fairness is an important

constraint. We will relax it when we consider asymmetric incentive schemes in Section 6.

The strict prioritization property rules out spurious outcomes which would not arise in a

model with a finite set of employees.18

We now characterize the risk-taking behavior which prevails under the natural promotion

policy.

Proposition 1. Fix all model parameters except for β. For every β ∈ (0, 1), there exists

an essentially unique19 set of employees N nc who select the risky task under the natural

promotion policy. There exist cutoffs β and β, satisfying 0 < β < β < 1, such that:

17This policy is unique given a set of posterior beliefs, which are pinned down by Bayes’ rule whenever a

positive measure of employees choose the risky task. If Bayes’ rule does not apply, we assume the organization

views success as a positive signal about θ and failure as a negative signal. Such posteriors would result, for

instance, if the organization assumed that the best-matched employee(s) chose the risky task.
18For instance, there always exists an outcome with no risk-taking supported by a policy of declining

to promote successful risk-takers whenever the set of such employees has measure zero. If employees were

discrete, it would never be optimal for the organization to avoid promoting a lone successful risk-taker.
19This set is unique except possibly up to a single marginal employee.
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Figure 1: The natural risk-taking rate Nnc as a function of the measure of promotions β.

• If β < β, then N nc = [0, 1],

• If β ∈ [β, β], then N nc = [0, Nnc], where Nnc is continuous and decreasing in β and

satisfies Nnc = 1 when β = β and Nnc = 0 when β = β.

• If β > β, then N nc = ∅.

To unify notation, we extend Nnc to all β ∈ (0, 1) by defining Nnc = 1 for β < β and

Nnc = 0 for β > β. This threshold has the property that N nc = [0, Nnc] for all β ≤ β and

N nc = (0, Nnc) for β > β. We refer to Nnc as the natural or no-commitment risk-taking rate,

and illustrate it in Figure 1. Recall that lower-indexed employees are those who are best-

matched to the risky task. Proposition 1 therefore establishes that only the best-matched

employees select the risky-task, and that the natural risk-taking rate declines as the number

of promotions increases.

A threshold risk-taking structure arises because an employee’s probability of successful

risk-taking rises with their match type, and success is rewarded while failure is penalized

under the natural promotion policy. As a result, employees with the best match types face

the largest upsides and smallest downsides from risk-taking. The drop in risk-taking as β

rises stems from the fact that each employee’s incentive to take risks weakens as the number
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of promotions grows, holding fixed the task choices of all other employees. Intuitively, the

bar for promotion drops as more employees are promoted, and so a given employee gains less

from successful risk-taking and loses more from failure. This force pushes fewer employees

to take risks as β increases.

3.2 Suboptimality of the natural risk-taking rate

We next establish that the natural risk-taking rate is generally suboptimal from the orga-

nization’s perspective. That is, it deviates from the rate the organization would choose if

employees did not value promotion (i.e., if V = 0) and would choose any task recommended

by the organization.20 Let N fb be the first-best risk-taking rate the organization would

choose in the absence of incentive constraints.21 Note that N fb need not equal N0, the risk-

taking rate maximizing the organization’s first-stage payoff, since an optimal risk-taking rate

balances task payoffs and talent discovery.

We now show that the natural risk-taking rate is higher than the first-best rate when β

is small and lower when β is large.

Proposition 2. There exists a βfb ∈ [β, β) such that

Nnc(β)


> N fb(β), β < βfb

= N fb(β), β = βfb

< N fb(β), β > βfb

One force driving this result is the simple fact that first stage payoffs are maximized

by an interior amount of risk-taking (see Assumption 2). Since Nnc is declining in β, this

force points in the direction of too much risk-taking for small β and too little for large β.

A second force related to talent discovery reinforces this trend. Roughly, for small β only

a small number of high-quality employees are needed to maximize promotion payoffs, and

so the organization does not benefit from raising N to learn more about employees. As β

increases, it becomes important to distinguish high- from low-quality employees on a large

scale, and so N fb is boosted by a talent discovery motive. This force also leads to too much

risk-taking for small β and too little for large β.

20Lemma 1, proven below, implies that the organization optimally recommends a threshold risk-taking

rule in this scenario.
21Nfb is not guaranteed to be unique. In case of non-uniqueness, Proposition 2 holds for every maximizer.
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4 Incentive schemes

Our main results concern how the distortions identified in Section 3 can be mitigated through

commitment to an incentive scheme that specifies bonuses and promotion probabilities as

a function of task choice and outcome and recommends how employees should use their

private information about Γ to choose a task. Incentive schemes represent a natural class of

decentralized mechanisms in which employees are free to choose their own task. We defer

discussion of centralized mechanisms, in which employees report their private information to

employers and receive a task assignment, until Section 7.2.

We impose the following requirements on an incentive scheme:

• Feasibility : At most β employees are promoted.

• Limited liability : Every employee receives a non-negative bonus.

• Determinism: Aggregate promotions and transfers are non-random.

• Symmetry : All employees are given the same recommendation (as a function of Γ),

and employees with identical task choices and outcomes are treated equally.

Feasibility and limited liability impose the constraints discussed in the model setup.

Determinism focuses on schemes which are non-random “in aggregate”, so that within each

group of observationally identical employees, the total number of employees promoted and

total transfers are deterministic. Finally, symmetry rules out schemes in which employees

are split into groups and incentivized to make different task choices through different rewards

for particular outcomes. We view symmetry as a realistic and important constraint in light

of fairness concerns that limit unequal treatment of similar employees in many contexts.

Symmetric schemes will also serve as a key building block for our analysis of more general

asymmetric schemes in Section 6.

In line with the requirements above, we formally define an incentive scheme as follows:

Definition 1. An incentive scheme is a triple S = (N ,T ,σ), where:

• N ⊂ [0, 1] is the set of employees to whom the organization recommends the risky

task.

• T = (TG, T0, TB) ≥ 0 are the bonuses received by an employee who, respectively,

achieves a successful, neutral, or failure outcome.
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• σ = (σG, σ0, σB) ∈ [0, 1]3 are the probabilities of promotion for an employee who,

respectively, achieves a successful, neutral, or failure outcome.

We interpret an incentive scheme as promoting employees uniformly at random from

within each group of observationally identical employees. More precisely, suppose that

NG,N0,NB are the sets of employees who, respectively, achieve a successful, neutral, or

failure outcome. Then for each i ∈ {G, 0, B}, a fraction σi of employees from group Ni
is promoted. Under such a scheme, the measure of employees promoted from each group

is non-random, respecting determinism. Of course, from the perspective of any individual

employee in group Ni, promotion is random whenever σi ∈ (0, 1), even conditioning on the

outcome of their chosen task.

An incentive scheme is feasible if it promotes at most β employees, supposing employees

choose the task recommended to them.22 This requirement is summarized by the inequality

β ≥
∫
N

(γ(n)σG + (1− γ(n))σB) dn+ (1− |N |)σ0.

It is incentive-compatible if all employees find it optimal to follow the scheme’s risk-taking

recommendation. That is,

γ(n)(TG + V σG) + (1− γ(n))(TB + V σB)

≥ T0 + V σ0, ∀n ∈ N ,

≤ T0 + V σ0, ∀n ∈ [0, 1] \ N .
(1)

We call an incentive scheme admissible if it is both feasible and incentive-compatible. Under

any admissible incentive scheme S, the organization achieves total profits equal to

Π(S) ≡
∫
N
γ(n) dn+ (1− |N |)K

+Rπ0

(∫
N

(θγ(n)σG + (1− θγ(n))σB) dn+ (1− |N |)σ0

)
−
(∫
N

(γ(n)TG + (1− γ(n))TB) dn+ (1− |N |)T0

)
.

22As employees are atomistic, any feasible incentive scheme remains feasible following a deviation by a

single employee. Further, such deviations do not affect bonuses or promotion probabilities under a symmetric

incentive scheme, which can condition only on the measure of outcomes of each type. The organization’s

choice of bonuses and promotion probabilities off-path therefore do not impact employee incentives, and we

do not explicitly specify them.
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In this expression, the first line accounts for task payoffs, the second for promotion payoffs,

and the third for bonus payments.23

In general an admissible incentive scheme may recommend that an arbitrary subset of

employees choose the risky task. The following lemma shows that attention may be restricted

to incentive schemes with a cutoff risk-taking structure, under which only employees with

the best match types choose the risky task.

Lemma 1. Fix any admissible incentive scheme S = (N ,T ,σ) satisfying |N | = N . If

|N \ [0, N ]| > 0, then there exists an admissible incentive scheme S ′ = ([0, N ],T ′,σ′) such

that Π(S ′) > Π(S).

In light of this result, going forward we will describe an incentive scheme via a triple

S = (N,T ,σ) for N ∈ [0, 1], with the understanding that such a scheme recommends

employees n ∈ [0, N ] choose the risky task.

5 Optimal incentive schemes

We now characterize the organization’s optimal incentive scheme. Our analysis proceeds

in two steps. In Section 5.1, we hold fixed a target risk-taking rate and characterize the

optimal incentive scheme implementing the target. We then endogenize the risk-taking rate

and identify the optimal direction of incentives in Section 5.2 and the optimal incentive tool

in Section 5.3.

Our characterization reveals several key features of an optimal scheme. First, the tradeoff

between money and promotions as incentive tools exhibits a bang-bang structure: An optimal

scheme reallocates promotions or pays bonuses, but not both. Second, the optimal incentive

tool depends on the desired power of incentives, as measured by the distance of the risk-

taking rate from the natural rate. Third, the optimal power of incentives depends critically

on structural features of the internal labor market, in particular employees’ private value of

promotion and the importance of selection to the organization.

Our analysis uncovers a key economic force linking the relative incentive power of bonuses

and promotions to the risk-taking rate. While bonuses affect only the payoff of the incen-

tivized group (i.e., the employees who switch tasks in response to the incentive scheme), a

23Recall that we have normalized the value of promoting a low-quality employee to zero.
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reallocation of promotions additionally reduces the payoff of the disincentivized group (those

employees who don’t switch tasks). The relative impact of the two tools on the incentivized

group is independent of the risk-taking rate. By contrast, the impact of a reallocated pro-

motion on the disincentivized group is controlled by the relative sizes of the two groups,

which varies with the risk-taking rate. In particular, when the incentivized group is large

relative to the disincentivized group, the extra incentive power of promotions is large and

promotions are an optimal incentive tool.

5.1 Targeting a risk-taking rate

We now derive the optimal incentive scheme implementing an exogenous target risk-taking

rate N 6= Nnc. Our main result is a linkage between the optimal incentive tool and the

extremity of the target risk-taking rate. We prove that if N < Nnc is sufficiently close to zero,

or N > Nnc is sufficiently close to 1, an optimal scheme reallocates promotions from high-

to low-performers; otherwise, it promotes according to the natural policy and incentivizes

by paying bonuses. In other words, promotions are better at providing “high-powered”

incentives, while bonuses are superior when incentives need to be “low-powered”.24 We

additionally show that when the organization wishes to increase risk-taking using bonuses,

it optimally pays bonuses for failure rather than for success.

5.1.1 Decreasing risk-taking

We first consider target rates below the natural rate, i.e., 0 ≤ N < Nnc. (Of course, such

targets are relevant only if the natural risk-taking rate is nonzero, or equivalently if β < β.)

To increase the fraction of employees choosing the safe task, the organization must increase

its relative payoff by either reallocating promotions toward neutral outcomes, paying bonuses

for neutral outcomes, or both.

In principle, reallocated promotions might be drawn from either successful or failed risk-

takers. However, in the absence of an incentive scheme the promotion probability following

failure must be zero. For if failed risk-takers were promoted with positive probability under

24Depending on parameters, the low-powered regime may be degenerate, in which case promotions are the

optimal incentive tool for all N . Formally, we prove a single-crossing result whereby any change in incentive

tool as N moves away from the natural rate is always from bonuses toward promotions. We also derive

conditions under which the low-powered regime is non-degenerate.
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the natural promotion policy, then employees choosing the safe task would be promoted with

probability 1, and no employees would choose the risky task. Since we assume that 0 < Nnc,

reallocated promotions must therefore be drawn from successes.

The following result characterizes an optimal incentive scheme as a function of the risk-

taking target.

Theorem 1. Suppose that the organization implements a risk-taking rate N < Nnc. Then

there exists a threshold N− ∈ (0, 1] such that:

1. If N ≤ N−, there exists an optimal scheme which pays no bonuses and reallocates

promotions from successes toward neutral outcomes.

2. If N ≥ N−, there exists an optimal scheme which pays a positive bonus following

failure outcomes and does not reallocate promotions.

Further, the optimal scheme is unique whenever N 6= 0, N−. Holding all other model pa-

rameters fixed, if R/V is sufficiently large, then N− < Nnc.

This result establishes several key properties of an optimal scheme. First, only one incen-

tive tool is used at a time: The organization either pays bonuses or reallocates promotions,

but never both in conjunction.25 In the former case, we will say that the organization “incen-

tivizes with bonuses”, while in the latter we will say that it “incentivizes with promotions”.

Second, the optimal tool depends on the size of N , with the optimal tool switching from

bonuses to promotions as N decreases. Third, there always exist risk-taking rates for which

incentivizing with promotions is optimal; and if R/V is sufficiently large, there additionally

exist risk-taking rates for which incentivizing with bonuses is optimal.26

The comparison between promotions and bonuses as incentive tools hinges on the incen-

tive power-per-dollar (or IPD) of each tool. Each tool’s IPD varies with N in a way which

increasingly favors promotions as N drops, a result we now demonstrate heuristically. Sup-

pose that the organization reallocates a measure m of promotions from successes to neutral

outcomes. The corresponding shifts in the promotion rates for success and neutral outcomes

are

∆σG(m) = − m

µ(N)
, ∆σ0(m) =

m

1−N
,

25The one exception is the edge case N = N−, in which case any combination of the two tools is optimal.
26The proof of the theorem additionally establishes that N− is strictly decreasing in R/V for sufficiently

large values of the ratio, and that limR/V→∞N− = 0.
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where µ(N) =
∫ N

0
γ(n) dn is the measure of employees achieving the success outcome. Define

the incentive power of this scheme to be the amount by which it increases the marginal

employee’s utility from choosing the safe task relative to the risky task. Then the total

incentive power of a promotion reallocation is

V (∆σ0(m)− γ(N)∆σG(m)) =

(
1

1−N
+
γ(N)

µ(N)

)
V m.

The cost to the organization of this promotion reallocation is R(πG − π0)m, where πG is

the organization’s posterior belief about the quality of an employee who succeeded on the

risky task. This cost reflects diminished talent discovery when the organization deprioritizes

successful risk-takers for promotion. The IPD of promotions is therefore

IPDPr(N) =

(
1

1−N
+
γ(N)

µ(N)

)
V/R

πG − π0

.

Meanwhile, a scheme offering a bonus t ≥ 0 for safe outcomes has total incentive power t

and incurs a cost to the organization of (1−N)t. The IPD of bonuses is therefore

IPDB(N) =
1

1−N
.

Note that the IPD for promotions does not depend on the number of promotions reallo-

cated, and similarly the IPD for bonuses does not depend on the size of the bonus payment.

Hence the optimal scheme will exhibit a bang-bang structure, using only the tool with the

larger IPD.

The ratio of the two IPDs is

IPDPr(N)

IPDB(N)
=

V/R

πG − π0

(
1 +

γ(N)(1−N)

µ(N)

)
.

Since γ′(N) < 0 while µ′(N) = γ(N) > 0, the IPD of promotions relative to bonuses declines

in N, demonstrating why bonuses perform better for large N while promotions are preferrable

for small N. In particular, in the limit N → 0, µ(N)→ 0 and the IPD of promotions relative

to bonuses grows unboundedly. Thus for sufficiently small N, promotions are used in an

optimal scheme. Meanwhile as N → Nnc, the ratio of IPDs approaches a finite limit whose

size is controlled by V/R. For V/R sufficiently small, the IPD of bonuses exceeds that of

promotions for N close to Nnc, and bonuses are used in an optimal scheme.

They key distinction between bonuses and promotions as incentive tools is that bonuses

impact the payoff only of employees who choose the incentivized task, while reallocated
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promotions additionally impact the payoff of employees who choose the disincentivized task.

To see this, suppose that instead of reallocating a fixed set of promotions between the two

tasks, the organization could increase the payoff of the safe task by generating additional

promotions at a constant marginal cost R̄ = RπG. The IPD of promotions generated this

way is

ÎPD
Pr

(N) =
V/(R̄−Rπ0)

1−N
,

resulting in a relative IPD of promotions versus bonuses equal to

ÎPD
Pr

(N)

IPDB(N)
=

V/R

πG − π0

,

which is independent of N.

Compared to this benchmark, a reallocated promotion generates extra incentive power

by additionally reducing the payoff of employees choosing the risky task. The (relative) IPD

generated by this force depends on the relative sizes of the pools of successful risk-takers and

risk-avoiders. As N increases, the pool of successful risk-takers grows larger, diminishing the

IPD from withholding promotions; meanwhile the pool of risk-avoiders shrinks, boosting the

IPD from paying bonuses. These two trends combine to make promotions less favorable for

large N.

5.1.2 Increasing risk-taking

We now turn to environments in which the organization wishes to encourage risk-taking

beyond the natural rate, i.e., 1 ≥ N > Nnc.27 To boost risk-taking, the organization must

increase the relative payoff of taking risks by either reallocating promotions toward risk-

takers, paying them bonuses, or both.

Both reallocated promotions and bonuses could in principle be targeted at either success

or failure. However, in the absence of an incentive scheme the promotion probability following

a success outcome must be 1. For if successful risk-taking did not lead to sure promotion,

then under the natural policy safe tasks would yield no chance of promotion. In that case

no employees would choose the safe task, a contradiction of our assumption that the natural

rate of risk-taking is less than 1. Any reallocated promotions must therefore be allotted to

failure.

27Recall that Nnc < 1 when β > β.
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The question of when to pay bonuses is less straightforward, since bonus payments are

feasible following both success and failure. It turns out that the cost-minimizing bonus

scheme pays bonuses only for failure. This is because the incentive power of a bonus is

determined by its probability of being earned by the marginal agent, while its cost to the

organization is measured by the total number of employees who earn it. Since inframarginal

employees fail less often than does the marginal one, success bonuses get paid more often in

expectation than to the marginal employee, while failure bonuses get paid less often. The

incentive power-per-dollar of bonuses is therefore maximized by paying for failure.

We now formally characterize an optimal incentive scheme as a function of the risk-

taking target. Unlike in the case of decreasing the risk-taking rate, a single-crossing result

is no longer ensured in general. We first prove a result which holds without any regularity

conditions.

Proposition 3. Suppose that the organization implements a risk-taking rate N > Nnc.

Then one of the following schemes is optimal:

(B) The organization pays a positive bonus following failure outcomes and does not real-

locate promotions.

(Pr) The organization pays no bonuses and reallocates promotions from neutral outcomes

toward failure outcomes.

If N < 1 is sufficiently close to 1, then scheme (Pr) is uniquely optimal. Holding all other

model parameters fixed, if R/V is sufficiently large and N is sufficiently close to Nnc, then

scheme (B) is uniquely optimal.

Under a mild regularity condition, a stronger single-crossing result can be proven. Define

Λ(N) ≡ N − µ(N)

(1− γ(N))(1−N)
,

where recall that µ(N) =
∫ N

0
γ(n) dn is the number of successful risk-takers when the risk-

taking rate is N.

Theorem 2. Suppose that the organization implements a risk-taking rate N > Nnc. If Λ is

non-decreasing, there exists a threshold N+ ∈ [0, 1) such that:

1. If N < N+, there exists an optimal scheme which pays a positive bonus following

failure outcomes and does not reallocate promotions.
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2. If N > N+, there exists an optimal scheme which pays no bonuses and reallocates

promotions from neutral outcomes toward failure outcomes.

Further, the optimal scheme is unique whenever N 6= 1, N+. Holding all other model pa-

rameters fixed, if R/V is sufficiently large, then N+ > Nnc.

The main features of this result are very similar to the properties of an optimal scheme

which decreases N , as characterized in Theorem 1. The forces shaping the two results are

closely analogous, except that in the current setting the relative incentive power-per-dollar

(IPD) of promotions and bonuses exhibits a more complex dependence on N.

Heuristically, reallocating m promotions changes the probability of promotion by

∆σ0(m) = − m

1−N
, ∆σB(m) =

m

N − µ(N)
,

yielding total incentive power

V ((1− γ(N))∆σB(m)−∆σ0(m)) =

(
1− γ(N)

N − µ(N)
+

1

1−N

)
V m

Since the selection cost to the organization of this reallocation is R(π0 − πB(N))m, where

πB(N) is the posterior belief that an employee is high-quality following failure, the IPD of

promotions is

IPDPr(N) =

(
1− γ(N)

N − µ(N)
+

1

1−N

)
V/R

π0 − πB(N)
.

Meanwhile, the incentive power of a failure bonus of size t is (1− γ(N))t and its cost to the

organization is (N − µ(N))t, yielding IPD

IPDB(N) =
1− γ(N)

N − µ(N)
.

As in the case of decreasing risk-taking, the IPD for promotions does not depend on the

number of reallocated promotions. Similarly, the IPD for bonuses does not depend on the

size of the bonus payments. Hence an optimal scheme exhibits a bang-bang structure in

which only the tool with a higher IPD is used.

The ratio of these IPDs is

IPDPr(N)

IPDB(N)
=

V/R

π0 − πB(N)
(1 + Λ(N)) .

In general the organization’s inference from failure becomes weaker as more employees

choose the risky task, due to the increased expected probability of failure. (See Appendix A
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for a proof.) In other words, πB(N) is increasing in N. Then so long as Λ(N) is nondecreas-

ing, the IPD of promotions relative to bonuses increases in N, making promotions a more

attractive incentive tool relative to bonuses as the scheme becomes higher-powered.

Similar to the case of decreasing risk-taking, the key distinction between the two incentive

tools is that bonuses impact only the payoff of the incentivized group, while promotions

additionally affect the payoff of the disincentivized group. In a benchmark model in which

the organization can manufacture promotions at cost R = Rπ0 to reward failure, the resulting

IPD would be

ÎPD
Pr

(N)

IPDB(N)
=

V/R

π0 − πB(N)
,

which depends on N only due to the weakened inference regarding failure as N increases.

So long as the cost of promoting for failure does not vary significantly with N, the optimal

incentive tool does not vary with N in this benchmark. Compared to this benchmark,

reallocating a promotion generates extra incentive power due to its impact on the payoff of

risk-avoiders, and this extra power varies significantly with N.

In general the expression Λ capturing this extra incentive power is not guaranteed to be

monotone. In particular, while the ratio (N −µ(N))/(1−N) is guaranteed to be increasing

in N, the factor 1 − γ(N) in the denominator of Λ is also increasing, possibly leading to

non-monotonicity and failure of single-crossing. Despite this complexity, Λ(N) is guaranteed

to grow without bound as N approaches 1, so that for N sufficiently large promotions are

the optimal incentive tool. Additionally, so long as V/R is sufficiently small, the IPD of

promotions relative to bonuses is guaranteed to be less than 1 for N close to Nnc, yielding

bonuses as the optimal incentive tool.

The regularity condition that Λ be monotone is not particularly stringent. We conclude

our analysis by demonstrating that the regularity condition is satisfied by a wide class of

match type distributions. Let γ̄(N) ≡ 1
N

∫ N
0
γ(n) dn be the average match type of all risk-

takers. Since γ is decreasing, so is γ̄. The following lemma shows that Λ is monotone so long

as γ̄ drops more slowly as N increases.

Lemma 2. If γ̄ is convex, then Λ is nondecreasing. In particular, γ̄ is convex if γ(N) =

A−BNk for some constants A,B > 0 and k ∈ (0, 1].
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5.2 The optimal direction of incentives

We next identify the direction of optimal incentives, that is, whether an optimal scheme

increases or decreases the risk-taking rate from the natural rate. We show that the answer

depends on the direction of the risk-taking distortion identified in Proposition 2. An optimal

scheme counteracts this distortion by moving risk-taking in the direction of the first-best rate.

Let N∗ be the risk-taking rate induced by an optimal scheme.28 Recall that Nnc is

the natural risk-taking rate, while N fb is the first-best risk-taking rate, as characterized in

Section 3.

Lemma 3 (The optimal direction of incentives). The organization optimally shifts the risk-

taking rate toward the first-best rate:

• If N fb > Nnc, then N∗ ≥ Nnc.

• If N fb < Nnc, then N∗ ≤ Nnc.

• If N fb = Nnc, then N∗ = Nnc.

This result is most easily demonstrated by supposing that in the absence of incentive

constraints, the organization’s profit function Πfb(N) is single-peaked in N . In that case,

choosing a risk-taking rate N which is further from N fb than Nnc must decrease profits:

Πfb(N) < Πfb(Nnc). Since the profits Π∗(N) that can be achieved while respecting incentive

constraints must fall below Πfb(N) for all N 6= Nnc, we therefore have Π∗(N) < Πfb(Nnc).

Meanwhile at the natural rate, incentive constraints are non-binding, implying Πfb(Nnc) =

Π∗(Nnc) and therefore Π∗(N) < Π∗(Nnc). Thus any incentive scheme implementing the

risk-taking rate N must reduce profits compared to the natural rate, meaning N cannot be

an optimal risk-taking rate. In general the unconstrained profit function is not guaranteed

to be single-peaked, but it has enough structure that similar reasoning can be used to prove

Lemma 3.

5.3 Determining the optimal incentive tool

Given the direction of optimal incentives, the remaining qualitative feature of an optimal

incentive scheme to be determined is the optimal incentive tool. Section 5.1 established that

28N∗ is not guaranteed to be unique. In case of non-uniqueness of N∗ or Nfb, Lemma 3 holds for every

selection from each set of maximizers.
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the answer depends on the desired power of incentives, that is, how far the organization’s

target level of risk-taking deviates from the natural rate. Of course, the risk-taking target

is itself a choice variable for the organization. The optimal incentive tool must therefore be

jointly determined along with the level of risk-taking to fully characterize an optimal scheme.

Directly characterizing the optimal risk-taking rate requires an optimization of the orga-

nization’s optimal profit function Π∗(N), calculated based on the optimal scheme identified

in Section 5.1, across all N. Unfortunately, Π∗(N) is a nonlinear function of N which is

typically not quasiconcave. Its maximum is therefore not uniquely characterized by a first-

order condition. Indeed, under many parameterizations the profit function exhibits local

maxima in both the low-powered incentive and high-powered incentive regimes. Calculating

the optimal risk-taking rate therefore requires a comparison of the maximal profits achieved

using each incentive tool, which cannot be accomplished analytically.

Despite these difficulties, we can derive conditions under which the optimal risk-taking

rate is guaranteed to lie in the low- or high-powered regime, yielding a characterization of

the optimal incentive tool. We show that the optimal tool, accounting for endogeneity of the

risk-taking target, depends critically on features of the internal labor market as measured

by R and V .

In general, the incentive costs of reallocating promotions and paying bonuses increase

as R and V increase, respectively. Hence when both R and V are large, it is possible that

no incentive scheme can profitably affect risk-taking. As one component of our results, we

establish conditions under which the optimal incentive scheme implements a risk-taking rate

different from the no-commitment level Nnc. We call such an incentive scheme nontrivial.

We first establish that when an employee’s value of promotion V is sufficiently small, the

organization optimally incentivizes with bonuses.

Proposition 4. Hold all model parameters fixed except for V . Suppose that β 6= βfb. Then

for V sufficiently small, there exists a nontrivial optimal incentive scheme, and every optimal

scheme incentivizes with bonuses.

Recall from Proposition 2 that when β 6= βfb, the natural incentives lead to suboptimal

risk-taking. In that case, Proposition 4 establishes that when V is small, there exists an

incentive scheme which improves on the natural incentives, and further an optimal scheme

incentivizes employees to change their risk-taking behavior using bonuses. Intuitively, when

V is small it becomes cheap to influence risk-taking by paying bonuses, while the cost of
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incentivizing with promotions remains bounded away from 0 when R is held fixed.

We next establish that when the value of selection R is sufficiently small, the organi-

zation optimally incentivizes with promotions. Let β0 be the unique β ∈ (β, β) such that

γ(Nnc(β)) = K.

Proposition 5. Hold all model parameters fixed except for R. Suppose that β 6= β0. Then

for R sufficiently small, there exists a nontrivial optimal incentive scheme, and every optimal

scheme incentivizes with promotions.

This proposition compares the promotion rate β to the reference level β0 rather than

βfb. This is because βfb varies with R, and so the hypothesis β 6= βfb cannot be maintained

independently of the value of R. It can be shown that as R goes to zero, βfb approaches β0.

Hence whenever β 6= β0, the risk-taking rate induced by the natural incentives is bounded

away from the optimal level for small R. In that case, Proposition 5 establishes that for

sufficiently small R, there exists an incentive scheme which improves on the natural incen-

tives, and an optimal scheme incentivizes employees to change their behavior by reallocating

promotions. Intuitively, when R is small it becomes cheap to influence risk-taking by reallo-

cating promotions, while the cost of paying bonuses remains bounded away from 0 when V

is held fixed.

6 Asymmetric incentive schemes

Our analysis so far has assumed that the organization uses schemes which are symmetric:

All employees are recommended the same task (as a function of their match type), and

all employees who choose the same task and achieve the same outcome are rewarded in

the same way. We now examine whether and how an organization can benefit from more

general asymmetric schemes. Such schemes may be relevant in large organizations which can

introduce social barriers between divisions, for instance by maintaining offices in multiple

locations, facilitating separate corporate cultures and incentive schemes across divisions.

We show that the organization can sometimes benefit from dividing employees into mul-

tiple groups and offering distinct incentive schemes to each one. While organizations might

create such divisions for a number of reasons, such as observable heterogeneity between em-

ployees or a desire to induce self-sorting on the basis of private information, our analysis

reveals an economic benefit of such divisions even in the absence of any inherent asymmetry.
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6.1 Setup

We relax symmetry by allowing the organization to partition employees into multiple groups,

each of which is allocated a (potentially unequal) subset of the available promotions. Within

each group, the organization commits to a symmetric incentive scheme using the promo-

tions allotted to that group, with the freedom to offer distinct schemes to different groups.

Employees observe their assigned group and incentive scheme prior to choosing a task. The

following definition formalizes this setup:

Definition 2. An asymmetric incentive scheme consists of a countable set G of employee

groups and a set of triples A = {(kg, βg,Sg)}g∈G, where

• kg ∈ (0, 1] is the measure of employees in group g,

• βg ∈ [0, 1] is the promotion rate within group g,

• Sg = (N g,σg,T g) is the (symmetric) incentive scheme offered to group g.

We interpret an asymmetric scheme as dividing employees into groups through uniform

random assignment. The distribution of qualities and match types within a group is therefore

identical to the aggregate population, implying a natural correspondence between each group

g and the full organization with promotion rate βg.

An asymmetric scheme is feasible if 1) each scheme Sg is feasible in the sense defined in

Section 4; and 2) the number of employees and promotions within each group sum to the

aggregate population size and promotion rate:∑
g∈G

kg = 1,
∑
g∈G

kgβg = β. (2)

It is incentive-compatible if each scheme Sg is incentive-compatible in the sense defined in

Section 4. It is admissible if it is both feasible and incentive-compatible.

Under any admissible asymmetric scheme, the organization’s profit from each group g is

simply Π(Sg), as defined in Section 4, scaled by the number of employees kg in the group.

The total profit from an admissible asymmetric scheme is therefore∑
g∈G

kgΠ(Sg).
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6.2 Properties of optimal asymmetric schemes

Holding fixed a group structure G = (G, {kg, βg}g∈G), the organization optimally offers

each group the (symmetric) incentive scheme characterized in Section 5. Let Π∗(β) denote

the profits derived from such a scheme, as a function of the promotion rate β. Then the

organization’s optimal profits under a given group structure G are∑
g∈G

kgΠ∗(βg).

Choosing a group structure to optimize this objective is mathematically equivalent to con-

cavifying the symmetric profit function Π∗. Viewed as a concavification problem, the group

structure functions as a randomization over β, with probability kg assigned to promotion

rate βg. The aggregate feasibility constraints (2) ensure that the probabilities sum to 1 and

that the average promotion rate is equal to the ex ante promotion rate β. The equivalence

with concavification immediately implies that there exists an optimal scheme involving at

most two distinct groups.

We next establish that there always exists an optimal asymmetric scheme in which promo-

tions within each group are allocated according to the natural policy.29 When asymmetric

schemes are possible, any reallocation of promotions should therefore be done “ex ante”

rather than “ex post”; that is, employees should be informed about whether they will be

favored or disfavored for promotion before they choose tasks. One advantage of this form of

reallocation is that it relaxes the commitment power required by the organization, since an

allocation of promotions between divisions is likely easier to enforce than a commitment to

promote subpar candidates within a division.

Theorem 3. There exists an optimal asymmetric incentive scheme involving at most two

groups in which promotions are allocated according to the natural policy within each group.

Roughly, this result is proven by establishing that the organization’s profits Π∗(β) under

an optimal symmetric scheme are convex in β whenever the scheme is non-trivial (i.e., induces

a risk-taking rate different from Nnc(β)) and incentivizes with promotions. As a result, any

mixture over β achieving the concave envelope of profits places no weight on promotion rates

29It can additionally be shown that all optimal schemes exhibit this property under the regularity condition

that the optimal incentive scheme is nontrivial when β = β0, where β0 is the unique β satisfying γ(Nnc(β)) =

K.

28

Electronic copy available at: https://ssrn.com/abstract=3705627



in this region.30 An optimal group structure must therefore involve only promotion rates β

at which an optimal symmetric incentive scheme is either trivial or incentivizes with bonuses.

In either case, promotions are allocated according to the natural policy.

Convexity of Π∗ can be understood intuitively as follows. Suppose that the organization

maintains a fixed risk-taking target N over a range of β. Then as β increases within that

range, the organization reallocates proportionally more promotions to maintain indifference

of the marginal employee. As a result, promotion payoffs, and therefore total profits Π(N, β),

are linear in β under a fixed target N . The optimal profit function Π∗ departs from this

benchmark because the organization can flexibly adjust N as β varies. Since the maximum

over a set of linear functions is convex, this optionality introduces convexity to Π∗(β) =

maxN Π(N, β).

If Π∗ were globally convex, an optimal scheme would involve only extremal groups in

which employees are never promoted or are promoted with certainty. However, two factors

introduce concavity to Π∗. First, reallocated promotions are proportional to β only so long

as Nnc does not cross the target rate N . (Recall that Nnc varies with β, as demonstrated

in Section 3.) At this crossing point, the required reallocation scheme changes qualitatively,

yielding a concave kink in the organization’s profits as β varies while N is held fixed. Second,

when an optimal scheme incentivizes using bonuses rather than promotions, total bonus

payments (hence also profits) are in general not globally linear in β. Linearity fails both

when Nnc crosses N , as when incentives are provisioned through promotions, as well as when

the marginal group of employees who face rationing under the natural policy changes. At

both of these crossing points, the organization’s profit function also exhibits concave kinks.

Given these points of concavity in the underlying profit function for fixedN , the optimized

profit function Π∗ generally exhibits regions of concavity. (See the examples in Section 6.3

for an illustration.) As a result, an optimal asymmetric scheme could involve group(s) with

a promotion rate strictly between 0 and 1 who either face only the natural incentives or who

are incentivized with bonuses. In fact, this outcome is not just possible but necessary under

any optimal scheme. The following proposition establishes this fact formally.

Proposition 6. Under any optimal asymmetric incentive scheme, at least one group g

30Technically, this conclusion requires that Π∗ be strictly convex somewhere in the region, since if Π∗

were linear throughout, the concave envelope could coincide with Π∗. In the proof we show that Π∗ exhibits

sufficient strict convexity to ensure that the concave envelope lies above Π∗.
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satisfies βg ∈ (0, 1).

6.3 Examples

We conclude our analysis with a pair of examples illustrating the process of constructing

an optimal asymmetric scheme. In our first example, summarized in Figure 2, promotions

are the only relevant incentive tool, corresponding to an environment where R is small.

The top panel of the figure plots a possible symmetric profit function Π∗ and corresponding

concavified profit function ΠA∗ as a function of β, with the associated optimal risk-taking

rate N∗ plotted in the bottom panel. Π∗ is convex wherever the optimal risk-taking rate

differs from the natural rate. By contrast, for values of β at which N∗(β) = Nnc(β), optimal

symmetric profits are concave in β.

Given the convex-concave-convex structure of Π∗, the concavified profit function ΠA∗

is linear for low and high values of β, and concave over the interior interval (β∗, β
∗). If

β ∈ (β∗, β
∗), then the organization does not benefit by splitting employees into multiple

groups. Otherwise, an optimal asymmetric scheme splits employees into two groups. If

β < β∗, one of these groups is promoted at rate β∗ while the remaining group receives no

promotions; and if β > β∗, one group is promoted at rate β∗ while the remaining group is

promoted with certainty. In each of these groups, employees face only the natural incentives

associated with their promotion rate.

In our next example, summarized in Figure 3, bonuses also play a role in an optimal

scheme. The panels of this figure are analogous to the panels of Figure 2. The grey region

in the lower panel corresponds to (N, β) pairs for which bonuses are the optimal tool in

a symmetric incentive scheme. The green dashed line N ‡ identifies where the group of

agents who face rationing under the natural promotion policy changes with N . Π∗ is convex

whenever N∗ differs from Nnc and N ‡. By contrast, Π∗ has a concave kink when N∗ crosses

Nnc (at β = β) and is concave when N∗(β) = N ‡(β). As a result, the concave envelope ΠA∗

is concave at the kink β and on the interval (β∗, β
∗) and linear elsewhere.

Whenever β /∈ {β} ∪ [β∗, β
∗], the organization benefits from splitting employees into two

groups. In contrast to the previous example, some groups may face a nontrivial incentive

scheme that awards them bonuses. In particular, if β ∈ (β, β∗), one group is promoted at

rate β∗ and awarded bonuses to incentivize a risk-taking rate N ‡(β∗) > Nnc(β∗), and the

other group is promoted at rate β and is offered a trivial incentive scheme, resulting in a
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risk-taking rate Nnc(β). Similarly, if β ∈ (β∗, 1), one group is promoted at rate β∗ and

awarded bonuses to incentivize a risk-taking rate N ‡(β∗), and the other group is promoted

with certainty, requiring no bonuses. Although bonuses are paid in some of these groups,

employees in all groups are promoted according to the natural policy within their group.

7 Discussion

7.1 Alternative model specifications

We have formally established our results in a model with a number of stylized features.

Nonetheless, several of our main findings are driven by economic mechanisms which are

robust to alternative specifications. Most notably:

• The prospect of promotion will distort task choices whenever employees can privately

sacrifice expected productivity in order to manipulate organizational learning about

their talent.

• The aggregate informativeness of tasks chosen by employees will affect the tradeoff

between promotions and bonuses whenever it correlates with the fraction of employees

choosing incentivized versus disincentivized tasks.

• Asymmetric schemes will improve overall performance whenever the number of real-

located promotions needed to maintain a fixed risk-taking rate scales approximately

linearly in the total number of available promotions.

The forces underpinning each of these findings are present in a wide range of models

accommodating alternative specifications of quality types and available tasks. In particular,

binary type, task, and outcome sets are not essential, nor is the assumption that the safe

task yields no learning. We therefore expect that each of the qualitative features listed above

would survive in a richer model, at the cost of increased complexity in the characterization

of an optimal incentive scheme.

One qualitative result which we expect not to survive in all alternative specifications of

our model is the bang-bang property of an optimal incentive scheme. This property hinges

on the linearity of the cost of reallocating promotions. If the outcome space were richer,

for instance outcomes on the risky task were continuously distributed, the marginal cost of
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Figure 2: An example of an optimal asymmetric incentive scheme. The top panel plots

an optimal symmetric profit Π∗ as a function of β. The optimal asymmetric profit ΠA∗

is the concavification of Π∗(·). The bottom panel plots an optimal risk-taking rate N∗

corresponding to Π∗(·). In this example, an optimal symmetric scheme incentivizes with

promotions for all (N, β).
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Figure 3: An example of an optimal asymmetric incentive scheme involving bonuses. The

panels of this figure are as in Figure 2. The gray shading in the lower panel identifies (N, β)

pairs for which an optimal symmetric incentive scheme uses bonuses. The line N ‡ indicates

when the group of rationed employees under the natural promotion policy changes with N.
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reallocating promotions would rise as promotions are reallocated from increasingly successful

risk-takers or toward increasingly unsuccessful ones. Thus an optimal scheme may involve

simultaneous use of both promotion reallocation and bonuses in models with richer outcome

spaces.

7.2 Centralized mechanisms

Our main results focus on decentralized mechanisms in which employees are free to choose

their own task. In principle, an organization with the power to design a general mechanism

could do more: They might elicit reports from employees about their task match via a

menu of incentive schemes and then directly assign tasks. Such sophisticated mechanisms

are rarely observed in practice, and they rely on a strong informational assumption that

employees observe their task match at the time of contracting. In practice, employees may

choose jobs and sign incentive contracts before they can learn the details of their assignment

and accurately assess their task match.

Nonetheless, the fully optimal mechanism could serve as a useful theoretical benchmark

to assess how outcomes are shaped by the timing of employee learning. Our model can be

extended to accommodate centralized mechanisms, but a full characterization of the optimal

mechanism is beyond the scope of this paper due to the complexity of the design problem.

The problem is nonstandard in several ways. First, allocations are multidimensional, since

the principal must choose the probability of assignment to each task as well as the proba-

bility of promotion. Second, promotions and payments can be conditioned not just on an

employee’s report, but additionally on the outcome in case the employee is assigned to the

risky task. Third, there are complex constraints: a limited liability constraint not present in

standard transferable utility models, as well as an aggregate resource constraint that caps

the total number of promotions.

Despite these difficulties, we can can solve this problem under some simplifying assump-

tions. In the Online Appendix we characterize the optimal centralized mechanism when β is

sufficiently small and no bonuses are allowed, and we show that it is outcome-equivalent to

a (possibly asymmetric) decentralized scheme. In other words, under these conditions a cen-

tralized mechanism cannot improve on a decentralized one. We believe that our techniques

can be extended to general β, and that outcome-equivalence to a decentralized mechanism

would continue to hold. We also conjecture that the optimal mechanism would not change
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when bonuses are allowed so long as V (the agent’s value of promotion) is sufficiently large.

It is an open question whether centralized mechanisms could improve profits when bonuses

are available and V is small.31

7.3 Moral hazard

Our analysis abstracts from issues of moral hazard to focus on how the prospect of promotion

distorts task choices. This abstraction is a reasonable approximation of reality when an

employer can directly monitor how hard employees work, or when employees are intrinsically

motivated to work hard (as (Hackman and Oldham 1980) document is correlated with worker

autonomy). However, in other settings employees might find shirking attractive, in particular

when engaged on risky tasks where shirking cannot be distinguished from bad luck.

The presence of such an incentive to shirk would not substantively impact our results so

long as the degree of moral hazard is small, because all employees strictly prefer to succeed

rather than fail at the risky task. Formally, V σG + TG > V σB + TB under any optimal

scheme. This inequality holds even when failure bonuses are awarded to boost risk-taking,

since these bonuses are optimally calibrated to ensure that better-matched employees self-

sort into the risky task. As a result, if the marginal cost of effort is sufficiently small, all

employees engaged in the risky task prefer not to shirk. (Similarly, employees are never

incentivized to sabotage their own work in order to achieve worse outcomes.)

The one exception to this reasoning involves asymmetric incentive schemes which assign

some employees to groups in which the promotion rate is 0 or 1. In such groups, employees

receive no benefit from success and prefer to shirk in the presence of moral hazard unless

additional bonuses are paid. As a result, even a small amount of moral hazard reduces the

profitability of asymmetric schemes involving extreme inequality. (Note that in the limit

of vanishing effort costs, approximate optimality can be ensured by adding small bonus

payments to the optimal scheme characterized in Section 6, or by slightly adjusting group

sizes.)

Designing an optimal asymmetric incentive scheme under moral hazard, or an optimal

symmetric scheme when shirking incentives are strong, would require incorporating a lower

bound on the permitted gap in payoffs following success versus failure on the risky task.

31Some of the techniques developed in the Online Appendix should help resolve this question, but new

allocation tradeoffs would arise and the limited liability constraint would need to be incorporated.
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This constraint does not affect the marginal tradeoff between bonuses and promotions, and

therefore preserves the basic connection between the risk-taking rate and the optimal incen-

tive tool. However, it could overturn the result that bonuses are optimally paid for failure

rather than success, and would affect the quantitative details of an optimal scheme. We

leave a detailed exploration of these issues to future work.

8 Conclusion

In this paper we have analyzed how talent selection in organizations incentivizes employees

to distort task choices in order to earn promotions. In general, these incentives lead some

employees to choose unproductive tasks which either increase the chance of a favorable

talent inference or minimize the chance of an unfavorable inference. We show how these

distortions can be corrected via decentralized incentive schemes which reallocate promotions

between groups of employees or pay bonuses as rewards for choosing particular tasks. In the

process, we uncover a novel tradeoff between the two incentive tools, with bonuses emerging

as the optimal tool for providing low-powered incentives, while promotions are preferable for

provisioning high-powered incentives. Finally, we show that when the organization can divide

employees into multiple groups with different promotion rates and incentive schemes, such

divisions can improve overall performance and eliminate the need to promote inefficiently

within groups.

Appendix

A Notation for proofs

Given a risk-taking set N , define

µ(N ) ≡
∫
N
γ(n) dn, Q(N ) ≡

∫
N
q(θ, γ(n)) dn.

The quantity µ(N ) is the measure of successful risk-takers, while Q(N ) is the measure of

successful risk-takers conditioning on their quality being high. Let πG(N ) and πB(N ) be

the organization’s posterior belief about the quality of an agent who succeeds and fails at
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risk-taking, respectively. By Bayes’ rule,

πG(N ) =
Q(N )

µ(N )
π0, πB(N ) =

|N | −Q(N )

|N | − µ(N )
π0

whenever |N | > 0. Since q(θ,Γ) = θΓ, we have Q(N ) = θµ(N ), and so πG is independent of

N and will be written without an argument going forward.

For N ∈ [0, 1], let

µ(N) ≡ µ([0, N ]), Q(N) ≡ Q([0, N ]), ρ(N) ≡ µ(N) + γ(N)(1−N).

For N ∈ (0, 1], define πB(N) ≡ πB([0, N ]). The following lemma establishes that πB is

monotone in N , so that we may extend πB to N = 0 by defining πB(0) ≡ limN↓0 πB(N).

Lemma A.1. π′B(N) > 0 for every N ∈ (0, 1].

Proof. By Bayes’ rule,

πB(N) =

∫ N
0

(1− q(θ, γ(n))) dn∫ N
0

(1− γ(n)) dn
π0.

Differentiating this expression yields

π′B(N) = πB(N)

(
1− q(θ, γ(N))∫ N

0
(1− q(θ, γ(n))) dn

− 1− γ(N)∫ N
0

(1− γ(n)) dn

)
.

Since q(θ,Γ) = θΓ, we have

1− q(θ,Γ)

1− Γ
= 1− q(θ,Γ)− Γ

1− Γ
= 1− θ − 1

Γ−1 − 1
,

which is strictly decreasing in Γ given that θ > 1. We may therefore write∫ N

0

(1− q(θ, γ(n))) dn =

∫ N

0

1− q(θ, γ(n))

1− γ(n)
(1− γ(n)) dn

<
1− q(θ, γ(N))

1− γ(N)

∫ N

0

(1− γ(n)) dn.

Combining this bound with the previous expression for π′B(N) yields π′B(N) > 0.

Given any incentive scheme S = (N ,T ,σ), the principal’s total profits under S can be

written

Π(S) = f(N ) + ΠPr(S) + ΠB(S),
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where

f(N ) ≡
∫
N
γ(n) dn+K(1− |N |)

are total expected task payoffs,

ΠPr(S) ≡ R (µ(N )πGσG + (|N | − µ(N ))πB(N )σB + (1− |N |)π0σ0)

are total expected promotion payoffs, and

ΠB(S) ≡ −µ(N )TG − (|N | − µ(N ))TB − (1− |N |)T0

are total profits from bonus payments (which are always non-positive given limited liability).

Using Bayes’ rule, promotion profits can also be written

ΠPr(S) = Rπ0 (Q(N )σG + (|N | −Q(N ))σB + (1− |N |)σ0) .

Let

M(S) ≡ µ(N )σG + (|N | − µ(N ))σB + (1− |N |)σ0

denote the total number of employees promoted under S.

B Natural promotion policy

In this appendix we characterize the no-commitment promotion rates σnci (N, β) associated

with the natural promotion policy for each group i ∈ {G,B, 0} given any risk-taking rate N

and promotion rate β.

For any N ∈ [0, 1], let

ν(N) ≡ µ(N) + (1−N)

be the measure of successful risk-takers plus risk-avoiders. Note that µ′(N) = γ(N) > 0

while ν ′(N) = γ(N)− 1 < 0 for all N ∈ (0, 1). Let

N †(β) ≡ sup{N : µ(N) ≤ β}

be the largest risk-taking rate such that the measure of successful risk-takers does not exceed

β, and let

N ‡(β) ≡ sup{N : ν(N) ≥ β}
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be the largest risk-taking rate such that the measure of successful risk-takers plus risk-

avoiders exceeds β. Note that N † and N ‡ are both positive for all β ∈ (0, 1), N † is nonde-

creasing in β while N ‡ is nonincreasing in β, and each is strictly monotone whenever it is

less than 1. Further N †(β) < 1 iff β < β ≡ µ(1), while N ‡(β) < 1 iff β > β.

These properties of N † and N ‡ imply that if β ≤ β, then σncB (N, β) = 0 for all N, while

σncG (N, β) =

1, N ≤ N †(β)

β/µ(N), N > N †(β)

σnc0 (N, β) =

0, N ≤ N †(β)

(β − µ(N))/(1−N), N > N †(β)

Meanwhile if β > β, then σncG (N, β) = 1 for all N, while

σnc0 (N, β) =

(β − µ(N))/(1−N), N ≤ N ‡(β)

1, N > N ‡(β)

σncB (N, β) =

0, N ≤ N ‡(β)

(β − ν(N))/(N − µ(N)), N > N ‡(β)

(When N ∈ {0, 1}, we have used the tie-breaking rule that employees are promoted in order

of perceived quality even up to measure-zero sets. When N = 0, we have additionally used

the posterior belief specification discussed in fn 17, under which successful risk-takers are

perceived to be of higher quality than other employees while failed risk-takers are believed

to be of lower quality.)

Let

Πfb(N, β) ≡ f(N) +Rπ0 (Q(N)σncG (N, β) + (N −Q(N))σncB (N, β) + (1−N)σnc0 (N, β))

be the firm’s profits under the natural promotion policy supposing that the risk-taking

rate is exogenously set at N. That is, this profit function ignores incentive constraints on

how much risk-taking can be implemented through efficient promotion. Then N fb(β) =

arg maxN∈[0,1] Πfb(N, β), where throughout this appendix we make the dependence of N fb

on β explicit.

Lemma B.1. If β ≤ β, then Πfb(N, β) is strictly concave in N and N fb(β) is single-valued.
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If β > β, then Πfb(N, β) is strictly concave in N on [0, N ‡(β)], and one of the following

holds:

• N fb(β) is single-valued, N fb(β) < N ‡(β), and Πfb(N, β) is decreasing inN on [N ‡(β), 1],

• minN fb(β) ≥ N ‡(β) and Πfb(N, β) is increasing in N on [0, N ‡(β)].

Proof. Suppose first that N ≤ min{N †(β), N ‡(β)}. Then

Πfb(N, β) = f(N) +Rπ0(Q(N) + β − µ(N)).

Differentiating wrt N yields

∂Πfb

∂N
(N, β) = γ(N)−K +Rπ0(q(θ, γ(N))− γ(N)).

Recall that q(θ,Γ) = θΓ, and so this expression may be simplified to read

∂Πfb

∂N
(N, β) = γ(N)−K +Rπ0(θ − 1)γ(N).

Since γ′(N) < 0 for all N, this derivative is strictly decreasing in N, and so Πfb(N, β) is

strictly concave in N on [0,min{N †(β), N ‡(β)}]. When β = β, we have N †(β) = N ‡(β) = 1,

establishing strict concavity on [0, 1].

Next suppose that β < β, so that N ‡(β) = 1 > N †(β). For N ≥ N †(β), we have

Πfb(N, β) = f(N) +Rβ
Q(N)

µ(N)
π0 = f(N) +RβπG.

Differentiating this expression wrt N yields

∂Πfb

∂N
(N, β) = γ(N)−K,

which is strictly decreasing in N. So Πfb(N, β) is strictly concave in N on [N †(β), 1]. Further,

∂Πfb

∂N
(N †(β)−, β) = γ(N †(β))−K +Rπ0(θ − 1)γ(N †(β))

> γ(N †(β))−K =
∂Πfb

∂N
(N †(β)+, β),

so Πfb(N, β) has a concave kink at N = N †(β). Concavity on either side of the kink therefore

implies strict concavity over the entire domain [0, 1]. Since any strictly concave function has

a unique maximizer, N fb(β) is single-valued.
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Finally, suppose that β > β, so that N †(β) = 1 > N ‡(β). For N ≥ N ‡(β), we have

Πfb(N, β) = f(N) +Rπ0

(
Q(N) + 1−N +

β − ν(N)

N − µ(N)
(N −Q(N))

)
.

Using the definition of ν(N), this is equivalently

Πfb(N, β) = f(N) +R (π0 − (1− β)πB(N)) .

So
∂Πfb

∂N
(N, β) = γ(N)−K −R(1− β)π′B(N).

Lemma A.1 established that π′B(N) > 0 for all N > 0, so that

∂Πfb

∂N
(N, β) < γ(N)−K < γ(N ‡(β))−K <

∂Πfb

∂N
(N ‡(β)−, β)

for all N > N ‡(β). Let ∆ ≡ ∂Πfb

∂N
(N ‡(β)−, β). If ∆ < 0, then Πfb(N, β) is decreasing for

N ≥ N ‡(β) as well as for N < N ‡(β) sufficiently large, and it must be that all maximizers

of Πfb are strictly smaller than N ‡(β). Since these maximizers are therefore also maximizers

of the strictly concave function Πfb(·, β) on the domain [0, N ‡(β)], there must be a unique

maximizer. On the other hand, if ∆ ≥ 0, then by strict concavity Πfb(N, β) must be

increasing for N ≤ N ‡(β), so that all maximizers of Πfb(·, β) are no smaller than N ‡(β).

C Proof of Lemma 1

If N ∈ {0, 1}, then trivially |N \ [0, N ]| = 0 and there is nothing to prove. For the remainder

of the proof, we assume that N ∈ (0, 1). The proof proceeds in two parts. In the first

part, we fix a scheme S = (N ,T ,σ) satisfying V σB + TB = V σG + TG and construct an

admissible scheme S ′ = ([0, N ],T ′,σ′) such that Π(S ′) > Π(S). In the second part, we show

that among all admissible schemes S = ([1−N, 1],T ,σ) satisfying V σB + TB ≥ V σG + TG,

a profit-maximizing scheme exists, and any such scheme satisfies V σB + TB = V σG + TG.

The two results establish the lemma by the following logic. If V σG + TG > V σB + TB,

then incentive-compatibility combined with N ∈ (0, 1) imply that N = [0, N ]. Thus the

hypothesis of the lemma requires V σB + TB ≥ V σG + TB. In case the inequality binds, the

first result produces the desired scheme. In case it is slack, incentive-compatibility requires

that N = [1−N, 1], since the payoff to risk-taking is strictly increasing in n. But then the
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second result implies that S is dominated by a scheme S ′ = ([1 − N, 1],T ′,σ′) satisfying

V σ′B + T ′B = V σ′G + T ′G. And by the first result, S ′ is in turn dominated by a scheme

S ′′ = ([0, N ],T ′′,σ′′).

C.1 Part 1

Fix a scheme S = (N ,T ,σ) satisfying V σB + TB = V σG + TG, which may be equivalently

written as the identity TB−TG = V (σG−σB). In this case the expected payoff to risk-taking

is the same for all employees. Then since N ∈ (0, 1), incentive-compatibility requires that

all employees must be indifferent between risk-taking and not, implying

V σG + TG = V σ0 + T0 = V σB + TB.

Suppose first that σG = σB = σ̄ for some σ̄. Then TG = TB = T̄ for some T̄ , and the

bonus and promotion payoffs under S may be written

ΠPr(S) = Rπ0(Nσ̄ + (1−N)σ0), ΠB(S) = −NT̄ − (1−N)T0.

Meanwhile the total number of employees promoted is

M(S) = Nσ̄ + (1−N)σ0

Promotion and bonus payoffs are independent of N , holding fixed |N | = N, as is the total

number of employees promoted. In particular, they are unchanged under the modified scheme

S ′ = ([0, N ],T ,σ), which is therefore admissible. Meanwhile f(N) > f(N ) given that

productivity increases as risk-taking shifts toward employees with higher-promise projects.

Hence Π(S ′) > Π(S).

Next suppose that σG > σB. Define a family of schemes S ′(∆) = ([0, N ],T ′(∆),σ′(∆)) for

∆ ∈ [0, σG−σB], where σ′G(∆) = σG−∆, T ′G(∆) = TG +V∆, and all remaining components

of σ′(∆) and T ′(∆) agree with σ and T . Note that S ′(∆) is incentive-compatible for any

choice of ∆. Meanwhile M(S ′(∆)) is strictly decreasing in ∆, and σG > σB along with

µ(N) > µ(N ) imply that

M(S ′(0)) = µ(N)(σG − σB) +NσB + (1−N)σ0

> µ(N )(σG − σB) +NσB + (1−N)σ0 = M(S)
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while

M(S ′(σG − σB)) = NσB + (1−N)σ0 < µ(N )σG + (N − µ(N ))σB + (1−N)σ0 = M(S).

Let ∆∗ ∈ (0, σG − σB) be the unique ∆ such that M(S ′(∆)) = M(S). Then S ′(∆∗) is

admissible, and we will further show that Π(S ′(∆∗)) > Π(S). Since f(N) > f(N ), it is

sufficient to show that neither bonus nor promotion profits decrease under the modified

scheme.

Solving the equation M(S ′(∆∗)) = M(S) for ∆ yields

∆∗ = (σG − σB)

(
1− µ(N )

µ(N)

)
.

Calculating the difference in bonus profits between S and S ′(∆∗) yields

ΠB(S ′(∆∗))− ΠB(S) = −(µ(N)− µ(N ))(TG − TB)− V µ(N)∆∗.

Inserting the explicit form of ∆∗ and using the identity TB − TG = V (σG − σB) yields

ΠB(S ′(∆∗))−ΠB(S) = 0. So the modified scheme generates the same total bonus profits as

does the original scheme.

Meanwhile, calculating the difference in promotion payoffs between the two schemes yields

ΠPr(S ′(∆∗))− ΠPr(S) = Rπ0Q(N)

(
(σG − σB)

(
1− Q(N )

Q(N)

)
−∆∗

)
.

Inserting the explicit form of ∆∗ reduces this expression to

ΠPr(S ′(∆∗))− ΠPr(S) = Rπ0Q(N)(σG − σB)

(
µ(N )

µ(N)
− Q(N )

Q(N)

)
.

Since πG = Q(N )/µ(N ) = Q(N)/µ(N), it follows that ΠPr(S ′(∆∗)) = ΠPr(S), and so the

modified scheme yields identical promotion profits.

Finally, suppose that σG < σB. Define a family of schemes S ′(∆) = ([0, N ],T ′(∆),σ′(∆))

for ∆ ∈ [0, σB−σG], where σ′G(∆) = σG+∆, T ′G(∆) = TG−V∆, and all remaining components

of σ′(∆) and T ′(∆) agree with σ and T . Using work nearly identical to the σG > σB case,

it can be established that M(S ′(∆)) is strictly increasing in ∆, and there exists a unique

∆∗ ∈ (0, σB − σG) such that M(S ′(∆∗)) = M(S). In addition,

T ′G(∆∗)− TB = TG − TB − V∆∗ = V (σB − σG −∆∗) > 0,

so T ′G(∆∗) > 0. The resulting scheme S ′(∆∗) is therefore admissible, and under it task payoffs

strictly rise while promotion and bonus profits are unchanged as compared to S.
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C.2 Part 2

We now study the problem of maximizing Π(S) among all admissible schemes S = ([1 −
N, 1],T ,σ). Incentive-compatibility for this class of schemes is equivalent toV σB + TB ≥ V σG + TG,

γ(1−N)(V σG + TG) + (1− γ(1−N))(V σB + TB) = V σ0 + T0

The first condition ensures that that the payoff to risk-taking is larger for higher-indexed

employees, while the second condition ensures that the marginal employee N is indifferent

between risk-taking or not.

We first argue that the optimal achievable profits are unchanged if the problem is modified

to impose the bonus cap TG, T0, TB ≤ T for sufficiently large T . For if not, then there would

exist a sequence of admissible schemes Sn = ([1 − N, 1],T n,σn) for n = 1, 2, ... such that

Π(Sn+1) > Π(Sn) for each n and max{T nG, T n0 , T nB} → ∞. But also the profit under each Sn

can be bounded above by

Π(Sn) ≤ f(N ) +Rβ − µ([1−N, 1])T nG − (N − µ([1−N, 1]))T nB − (1−N)T n0

≤ f(N ) +Rβ −min{µ([1−N, 1]), N − µ([1−N, 1]), 1−N}max{T nG, T n0 , T nB},

and this upper bound approaches −∞ as n → ∞ given that min{µ([1−N, 1]), N − µ([1−
N, 1]), 1−N} > 0. This contradicts the hypothesis that profits are increasing in n, and so a

sufficiently large upper bound on bonuses must not impact achievable profits.

Once a cap on bonuses is imposed, the resulting optimization problem involves a con-

tinuous objective function and a compact constraint set. Then by the maximum theorem,

an optimal scheme must exist. By the argument of the previous paragraph, this scheme

must also maximize the principal’s profits absent a cap on bonuses, supposing the cap is set

sufficiently large. Thus an optimal scheme exists in the original problem with no bonus cap.

In the remainder of the proof, we argue that any optimal scheme in the class of interest

must satisfy V σB + TB = V σG + TG. It is sufficient to show that any scheme satisfying

V σB + TB > V σG + TG can be modified to obtain another admissible scheme in the class

of interest yielding strictly higher profits. To that end, fix a scheme S = ([1 − N, 1],T ,σ)

satisfying V σB + TB > V σG + TG.

We begin by showing that unless min{TG, T0} = 0 and TB = 0, we can modify bonuses to

increase profits. Suppose first that min{TG, T0} > 0. Then there exists a ∆ > 0 sufficiently
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small such that the new bonus scheme T ′ = (TG − ∆/γ(1 − N), T0 − ∆, TB) satisfies the

non-negativity constraints on bonuses. By construction, this new set of bonuses is fully

incentive-compatible for every ∆ > 0. Further, this change strictly decreases total bonus

payments. So the modified scheme increases total profits.

A similar argument yields profitable improvements if min{TB, T0} > 0. Thus in particular

if TB > 0 and T0 > 0, there exists a profitable improvement. Suppose instead that TB > 0

and T0 = 0. Consider a modified bonus scheme T ′(∆) which sets

T ′G(∆) = TG + ∆
1− γ(1−N)

γ(1−N)
, T ′0(∆) = T0, T ′B(∆) = TB −∆.

This new bonus scheme preserves incentive-compatibility for the marginal employee for all ∆.

Further, for ∆ > 0 sufficiently small, T ′B(∆) > 0 and V σG + T ′G(∆) < V σB + T ′B(∆), so that

the scheme satisfies the non-negativity constraints on bonuses and is incentive-compatible.

Letting S ′(∆) = ([1−N, 1],T ′(∆),σ), we have

ΠB(S ′(∆)) = −T0(1−N)− T ′G(∆)µ([1−N, 1])− T ′B(∆)(N − µ([1−N, 1])).

Differentiating wrt ∆ yields

d

d∆
ΠB(S ′(∆)) = −µ([1−N, 1])

γ(1−N)
+N.

Since γ is strictly decreasing, µ([1 − N, 1]) < γ(1 − N)N, so that this derivative is strictly

positive. Thus total profits from bonuses (i.e., the negative of total bonus payments) increases

in ∆, meaning that for sufficiently small ∆ > 0 the modified scheme S ′(∆) is admissible and

strictly increases profits.

We have so far found a profitable modification of any scheme satisfying min{TG, T0} > 0

or TB > 0. It remains only to find a profitable modification in case min{TG, T0} = 0 and

TB = 0. Incentive-compatibility for the marginal employee, combined with V σB + TB >

V σG + TG and TB = 0, implies that

V σB > V σ0 + T0 > V σG + TG.

In particular, σB > σG, σ0, and so σG, σ0 < 1.

Consider a family of modified schemes S ′(∆, α) = ([1−N, 1],T ,σ′(∆, α)) for α ∈ (0, 1)

and ∆ > 0 with

σ′G(∆, α) = (1− α)σG + ασ + ∆, σ′B(∆, α) = (1− α)σB + ασ + ∆, σ′0(∆, α) = σ0 + ∆,
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where σ ≡ γ(1 − N)σG + (1 − γ(1 − N))σB. All schemes in this family satisfy incentive-

compatibility for the marginal employee. Full incentive-compatibility then requires

V σ′B(∆, α) + TB ≥ V σ′G(∆, α) + TG

or

(1− α)V (σB − σG) ≥ TG − TB.

Since V σB +TB > V σG +TG, this inequality is slack when α = 0, and so holds for α ∈ (0, 1)

sufficiently small.

Under S ′(0, α), the total number of promoted employees is

M(S ′(0, α)) = µ([1−N, 1])σ′G(0, α) + (N − µ([1−N, 1]))σ′B(0, α) + (1−N)σ′0(0, α)

= (1− α)M(S) + α (Nσ + (1−N)σ0)

Since γ(1−N) > µ([1−N, 1])/N and σG < σB, we have

σ = γ(1−N)σG + (1− γ(1−N))σB <
µ([1−N, 1])

N
σG +

N − µ([1−N, 1])

N
σB,

and therefore M(S ′(0, α)) < M(S). Since M(S ′(∆, α)) is increasing and unbounded in ∆,

there exists a unique ∆∗ > 0 such that M(S ′(∆∗, α)) = M(S).

We next show that the promotion probabilities under S ′(∆∗, α) are feasible for sufficiently

small α ∈ (0, 1). Since each component of σ′(∆, α) is a sum of non-negative and positive

terms, it must be that σ′(∆, α) > 0 for any ∆ > 0 and α ∈ (0, 1). It remains to check the

upper bound σ′(∆∗, α) ≤ 1. Note that ∆∗ satisfies

M(S) = (1− α)M(S) + α(Nσ + (1−N)σ0) + ∆∗,

or ∆∗ = α∆0, where ∆0 ≡ M(S) − Nσ − (1 − N)σ0. Since ∆∗ > 0, also ∆0 > 0. The

promotion probabilities σ′G(∆∗, α) and σ′0(∆∗, α) may be written in terms of ∆0 as

σ′G(∆∗, α) = (1− α)σG + α(σ + ∆0), σ′0(∆∗, α) = (1− α)σ0 + α(σ0 + ∆0).

Then as σG, σ0 < 1 and σ,∆0 are independent of α, it must be that σ′G(∆∗, α), σ′0(∆∗, α) < 1

for α sufficiently small. Additionally, σ′0(∆∗, α) > σ0 for any α(0, 1), given that ∆0 > 0.

Meanwhile, σ is a weighted average of σG and σB, and so σ > min{σG, σB}. Since σB > σG,

this implies σ > σG, so that σ′G(∆∗, α) > σG for all α ∈ (0, 1). Then since M(S ′(∆∗, α)) =

M(S), it must be that σ′B(∆∗, α) < σB ≤ 1 for all α ∈ (0, 1).
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We have shown that for α ∈ (0, 1) sufficiently small, the scheme S ′(∆∗, α) is admissible.

The final step is to show that this modified scheme raises profits. Since risk-taking and

bonuses are unchanged, we need only check that promotion payoffs rise. This follows from

the fact that the modified scheme preserves the total number of promoted employees, while

reallocating promotions from failed risk-takers to successful risk-takers and risk-avoiders

Since πG > π0 > πB(N ), this reallocation must therefore raise promotion payoffs.

D Proof of Proposition 1

Given a risk-taking set N ⊂ [0, 1] and promotion rate β, let σnci (N , β) be the probability

of promotion for employees in group i ∈ {G, 0, B} under the natural promotion policy. In

general

σncG (N , β) ≥ σnc0 (N , β) ≥ σncB (N , β),

since employees are promoted strictly in order of perceived quality and πG(N ) > π0 > πB(N )

given any risk-taking set N .32 Additionally, feasibility implies that σncB (N , β) < 1, while

σncB (N , β) > 0 only if σncG (N , β) = 1. Hence σncG (N , β) > σncB (N , β). It follows that the payoff

to risk-taking is strictly increasing in an employee’s match type. Hence any equilibrium

risk-taking set must satisfy N = ∅, N = [0, N ], or N = [0, N) for some risk-taking rate

N ∈ [0, 1].

We first characterize all β for which N = ∅ is an equilibrium. Note that σncG (∅, β) = 1,

σnc0 (∅, β) = β, and σncB (∅, β) = 0. It is an equilibrium outcome for all employees to avoid

risk-taking iff this is true for the best-matched agent, who succeeds on the risky task with

probability γ(0). Given the promotion probabilities just reported, N = ∅ is an equilibrium iff

β ≥ β ≡ γ(0). Note that when β = β, this logic implies that N = {0} is also an equilibrium.

We next characterize all β for which N = [0, 1] is an equilibrium. Suppose first that

µ(1) < β, where µ is as defined in Appendix A. Then σncG ([0, 1], β) = 1, σnc0 ([0, 1], β) = 1,

and σncB ([0, 1], β) = (β − µ(1))/(1− µ(1)). Since σnc0 ([0, 1], β) = σncG ([0, 1], β) > σncB ([0, 1], β),

it cannot be optimal for any employee to choose the risky task, and so N = [0, 1] cannot

be an equilibrium. If instead µ(1) ≥ β, then σncG ([0, 1], β) = β/µ(1), σnc0 ([0, 1], β) = 0, and

σncB ([0, 1], β) = 0. In this case it is optimal for all employees to choose the risky task. Thus

32If |N | > 0 then this ranking of posteriors is implied by Bayes’ rule. If |N | = 0, in which case πG(N )

and πB(N ) cannot be computed by Bayes’ rule, this ranking is directly imposed, as discussed in fn 17.
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N = [0, 1] is an equilibrium iff β ≤ β ≡ µ(1). Note that

µ(1) =

∫ 1

0

γ(n) dn < γ(0),

so that β < β. Additionally, this logic implies that N = [0, 1) is an equilibrium when β = β;

and if γ(1) = 0 then N = [0, 1) is an equilibrium for all β < β.

We now characterize all β for which N = [0, N ] is an equilibrium for N ∈ (0, 1). Suppose

first that β ≥ β. Then

µ(N) < µ(1) =

∫ 1

0

γ(n) dn < γ(0) ≤ β,

and so σncG ([0, N ], β) = 1. Additionally,

β − µ(N)

1−N
≥ γ(0)− µ(N)

1−N
.

Then since

µ(N) =

∫ N

0

γ(n) dn <

∫ N

0

γ(0) dn = Nγ(0),

we have (β−µ(N))/(1−N) > 1. Hence σnc0 ([0, N ], β) = 1. Since σncB ([0, N ], β) < 1, it cannot

be optimal for any employee to choose the risky task, meaning N = [0, N ] cannot be an

equilibrium.

Suppose next that β ≤ β. If µ(N) ≥ β, then σnc0 ([0, N ], β) = 0 and it cannot be optimal

for any (except possibly the worst-matched, in case γ(1) = 0) employee to choose the safe

task, meaning N = [0, N ] cannot be an equilibrium. If on the other hand µ(N) < β then

σncG ([0, N ], β) = 1. Additionally,

β − µ(N)

1−N
≤ µ(1)− µ(N)

1−N
=

1

1−N

∫ 1

1−N
γ(n) dn < γ(N).

Since γ(N) < 1, we therefore have σnc0 ([0, N ], β) = (β−µ(N))/(1−N) and σncB ([0, N ], β) = 0.

The marginal employee’s payoff gain from switching from the safe to the risky task is therefore

γ(N)− β − µ(N)

1−N
> 0,

meaning that employees slightly less well-matched than N would also strictly gain from

switching to the risky task, and so N = [0, N ] cannot be an equilibrium.

Finally, suppose that β ∈ (β, β). Since µ(N) < µ(1) < β, it must be that σncG ([0, N ], β) =

1. N = [0, N ] is an equilibrium iff the marginal employee is indifferent between the two tasks.
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That is, we must have (β−µ(N))/(1−N) < 1, so that σnc0 ([0, N ], β) = (β−µ(N))/(1−N)

while σncB ([0, N ], β) = 0, and additionally

γ(N) =
β − µ(N)

1−N
.

Since γ(N) < 1, the former condition is satisfied if the latter is. And the latter condition

may be equivalently written ρ(N) = β, where ρ(N) ≡ µ(N) + γ(N)(1 − N). Note that

ρ′(N) = γ′(N)(1 − N) < 0, and ρ(0) = β while ρ(1) = β. Hence there exists a unique

Nnc ∈ (0, 1) such that N = [0, Nnc] is an equilibrium. Additionally, N = [0, N) is also an

equilibrium whenever N = [0, Nnc] is.

The work above establishes that for each β ∈ (0, 1), there exists an (essentially) unique

equilibrium risk-taking set. When β < β we have N = [0, 1], when β > β we have N = ∅,
and when β ∈ (β, β) we have N = [0, Nnc], where ρ(Nnc) = β. The risk-taking rate Nnc

satisfies the comparative static

dNnc

dβ
=

1

ρ′(Nnc)
< 0,

so that Nnc is decreasing in β. Additionally, ρ(1) = β and ρ(0) = β, so that Nnc → 1 when

β → β and Nnc → 0 when β → β. Defining Nnc = 1 in the former case and Nnc = 0 in the

latter case, we may write N = [0, Nnc] for β ∈ [β, β].

E Proof of Proposition 2

Throughout this proof, we assume for simplicity that N fb is single-valued. If it isn’t, the

proof holds for any selection from the set of maximizers of Πfb(N, β). We will also write

N fb(β) and Nnc(β) to make explicit the dependence of each of these quantities on β.

In the absence of incentive constraints, the organization’s profits under risk-taking rate

N are Πfb(N, β), as characterized in Appendix B. We will make free use of expressions for

∂Πfb/∂N calculated in the proof of Lemma B.1. We will also make use of the following basic

fact about Nnc(β).

Lemma E.1. Nnc(β) ≤ N ‡(β) for all β ∈ (0, 1), with the inequality strict if and only if

β > β.
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Proof. For β ≤ β we have Nnc(β) = N ‡(β) = 1. Meanwhile for β ≥ β we have Nnc(β) =

0 < N ‡(β). Finally, for β ∈ (β, β), Nnc(β) satisfies ρ(Nnc(β)) = β while N ‡(β) satisfies

ν(N ‡(β)) = β. Note that for all N < 1,

ρ(N) = µ(N) + γ(N)(1−N) < µ(N) + (1−N) = ν(N).

Then since Nnc(β) < 1 for β ∈ (β, β), we have ν(Nnc(β)) > β = ν(N ‡(β)). Now, ν ′(N) =

γ(N)− 1 < 0 for all N ∈ (0, 1), so ν is decreasing in N. It follows that Nnc(β) < N ‡(β).

Suppose first that β < β. Then N †(β) < 1 = Nnc(β), and so for N close to Nnc(β) we

have
∂Πfb

∂N
(N, β) = γ(N)−K,

which under Assumption 2 is strictly negative for N sufficiently close to 1. Hence N fb(β) <

Nnc(β).

Now suppose that β ≥ β. Then N ‡(β) > 0 = Nnc(β), and for N close to Nnc(β) we have

∂Πfb

∂N
(N, β) = γ(N)−K +Rπ0(θ − 1)γ(N).

Since γ(N) > K for N close to zero, this expression is positive for N sufficiently small.

Hence N fb(β) > Nnc(β).

Finally, suppose that β ∈ [β, β). Lemma E.1 established that Nnc(β) ≤ N ‡(β). Over the

range [0, N ‡(β)),
∂Πfb

∂N
(N, β) = γ(N)−K +Rπ0(θ − 1)γ(N),

which is continuous and decreasing in N and independent of β. Going forward, we’ll suppress

β from the argument of Πfb when evaluating it at N ≤ N ‡(β). Proposition 1 additionally

established that Nnc(β) is continuous and decreasing in β on the interval [β, β]. It follows

that ∂Πfb

∂N
(Nnc(β)) is continuous and increasing in β on [β, β]. At the upper limit of this

interval,
∂Πfb

∂N
(Nnc(β)) = (1 +Rπ0(θ − 1))γ(0)−K > 0.

Meanwhile at the lower end of the interval,

∂Πfb

∂N
(Nnc(β)) = ∆,

where ∆ ≡ (1 +Rπ0(θ − 1))γ(1)−K.

50

Electronic copy available at: https://ssrn.com/abstract=3705627



Suppose first that ∆ ≥ 0. Then ∂Πfb

∂N
(Nnc(β)) > 0 for all β ∈ (β, β). In that case

strict concavity of Πfb(N) on the interval [0, N ‡(β)], established in Lemma B.1, ensures

that N fb(β) > Nnc(β) for all β ∈ (β, β). Meanwhile when β = β, we have Nnc(β) = 1

and ∂Πfb

∂N
(Nnc(β)) = ∆ ≥ 0, in which case strict concavity along with the identity N ‡(β) =

1 implies that N fb(β) = 1 = Nnc(β). Then letting βfb = β, the claimed properties of

N fb(β)−Nnc(β) hold.

Suppose instead that ∆ < 0. Then by continuity and strict monotonicity, there exists a

unique β0 ∈ (β, β) such that ∂Πfb

∂N
(Nnc(β0)) = 0. For β > β0 we have ∂

∂N
Πfb(Nnc(β), β) > 0,

in which case strict concavity of Πfb(N, β) in N over [0, N ‡(β)] ensures that N fb(β) >

Nnc(β). Meanwhile for β < β0 we have ∂Πfb

∂N
(Nnc(β)) < 0, ensuring that also ∂Πfb

∂N
(N) < 0

for all N ∈ (Nnc(β), N ‡(β)). Then either N fb(β) ≤ N ‡(β) and Nnc(β) > N ‡(β), or else

N fb(β) > N ‡(β). But Lemma B.1 established that in the latter case, Πfb is increasing in N

on [0, N ‡(β)], a contradiction. So must be that N fb(β) > N ‡(β). Then letting βfb = β0, the

claimed properties of N fb(β)−Nnc(β) hold.

F Proof of Lemma 3

Throughout this proof, we assume for simplicity that N∗ and N fb are single-valued. If they

aren’t, the proof holds for any selection from each set of maximizers. We will also write

N∗(β) and N fb(β) to make explicit the dependence of each of these quantities on β.

Let Π∗(N, β) be the organization’s profits under an optimal incentive scheme inducing

risk-taking rate β, while (as defined in Appendix B) Πfb(N, β) are its profits in an environ-

ment without incentive constraints. In general Π∗(N, β) ≤ Πfb(N, β), and the inequality is

strict for any N 6= Nnc(β), since to induce any such N the organization must either promote

inefficiently, pay bonuses, or both. It follows immediately that N∗(β) = N fb(β) in case

N fb(β) = Nnc(β).

Suppose that N fb(β) > Nnc(β). This hypothesis implies that Nnc(β) < 1, so that β > β.

Lemma B.1 established that for β ≥ β, Πfb(N, β) is strictly concave on [0, N ‡(β)], and

if N fb(β) ≥ N ‡(β) then Πfb(N, β) is increasing in N on [0, N ‡(β)]. Meanwhile, Lemma

E.1 established that Nnc(β) ≤ N ‡(β). The hypothesis N fb(β) > Nnc(β) therefore im-

plies that Πfb(N, β) is increasing on [0, Nnc(β)], so that Πfb(N, β) < Πfb(Nnc(β), β) for

all N < Nnc(β). It follows that Π∗(N, β) < Πfb(Nnc(β), β) = Π∗(Nnc(β), β) for all such N,
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establishing N∗(β) ≥ Nnc(β).

Finally, suppose that N fb(β) < Nnc(β). This hypothesis implies in particular that

N fb(β) < N ‡(β). If β ≥ β, then Lemma B.1 implies that Πfb(N, β) is decreasing in N

on [Nnc(β), 1], so that Πfb(N, β) < Πfb(Nnc(β), β) for all N > Nnc(β). It follows that

Π∗(N, β) < Πfb(Nnc(β), β) = Π∗(Nnc(β), β) for all such N, establishing N∗(β) ≤ Nnc(β). If

on the other hand β < β, then Lemma B.1 established that Πfb(N, β) is strictly concave in N

on [0, 1]. The hypothesisN fb(β) < Nnc(β) therefore implies that Πfb(N, β) < Πfb(Nnc(β), β)

for all N > Nnc(β). Hence Π∗(N, β) < Πfb(Nnc(β), β) = Π∗(Nnc(β), β) for all such N, es-

tablishing N∗(β) ≤ Nnc(β).

G Proof of Theorem 1

We first characterize an optimal policy for N ∈ (0, Nnc), and return to the extremal case

N = 0 at the end of the proof. When N is interior, the risk-taking set [0, N ] is incentive-

compatible if and only if 1) the marginal employee is indifferent between tasks, and 2) the

payoff from successful risk-taking exceeds the payoff from failed risk-taking. Formally, these

constraints are

γ(N)(V σG + TG) + (1− γ(N))(V σB + TB) = V σ0 + T0, (IC-N)

V σG + TG ≥ V σB + TB. (IC-∆)

We solve the relaxed problem enforcing only (IC-N), and verify that the resulting optimal

scheme satisfies IC-∆. We begin by proving a useful auxiliary lemma.

Lemma G.1. If the promotion scheme σ is feasible and σG = 1, then

γ(N)σG + (1− γ(N))σB − σ0 > 0.

Proof. N < Nnc(β) ≤ N ‡(β) implies that σncB (N, β) = 0, so σB ≥ σncB (N, β). If σG = 1, then

feasibility additionally requires that N ≤ N †(β), in which case σG = σncG (N, β). This identity

combined with σB ≥ σncB (N, β) then implies σ0 ≤ σnc0 (N, β) if feasibility is to be satisfied.

Thus

γ(N)σG + (1− γ(N))σB − σ0 ≥ γ(N)σncG (N, β) + (1− γ(N))σncB (N, β)− σnc0 (N, β).

Meanwhile N < Nnc(β) implies that the rhs of the previous inequality is positive, yielding

the desired bound.
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G.1 TG = 0

We first show that any scheme satisfying TG > 0 is suboptimal. Fix such a scheme. Define a

new bonus scheme T ′ by T ′G = 0, T ′B = TB + γ(N)
1−γ(N)

TG, and T ′0 = T0. This modification does

not disturb (IC-N) and pays out total bonuses

B′ = (N − µ(N))
γ(N)

1− γ(N)
TG + (N − µ(N))TB + (1−N)T0.

Now, for any n > 0 we have γ(n) < µ(n)/n given that µ(n)/n is the average of γ over [0, n],

and γ is strictly decreasing. Hence

γ(N)

1− γ(N)
<

µ(N)/N

1− µ(N)/N
=

µ(N)

N − µ(N)
,

and so

B′ < µ(N)TG + (N − µ(N))TB + (1−N)T0 = B,

where B are total bonus payments under the original scheme. This modification to the bonus

scheme therefore reduces total bonus payments and increases profits.

G.2 TB = 0

Going forward, we restrict attention to schemes satisfying TG = 0. We next show that any

scheme satisfying TB > 0 is suboptimal. Fix such a scheme.

First suppose that T0 > 0. Pass to the modified bonus scheme T ′ satisfying T ′B = TB−(1−
γ(N))∆ and T ′0 = T0 −∆, which satisfies (IC-N) for any ∆, and for ∆ > 0 sufficiently small

also satisfies the non-negativity constraint on bonuses. This modification strictly reduces

bonuses payments and therefore increases profits.

Suppose instead that T0 = 0. In this case,

γ(N)σG + (1− γ(N))σB − σ0 = −(1− γ(N))TB/V < 0.

This inequality immediately implies σ0 > 0, given that σG, σB ≥ 0. It also implies that

σG < 1 by Lemma G.1. Pass to the modified bonus and promotion scheme (T ′,σ′) which

sets σ′0 = σ0 −∆, σ′G = σG + ∆(1−N)/µ(N), and

T ′B = TB − V
∆

1− γ(N)

(
1 + (1−N)

γ(N)

µ(N)

)
,
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with all other promotion probabilities and bonuses unchanged. By construction, this mod-

ified scheme preserves (IC-N) and the number of promoted employees. Therefore for any

∆ > 0, it reallocates promotions from risk-avoiders to successful risk-takers, strictly increas-

ing promotion payoffs given that πG > π0. Finally, for ∆ > 0 sufficiently small the modified

scheme respects the non-negativity constraint on bonuses given that TB > 0, as well as the

boundary constraints on promotion probabilities given that σ0 > 0 and σG < 1. So this

modification is feasible and increases profits.

G.3 σB = 0

Going forward, we restrict attention to schemes satisfying TB = 0. We now show that any

scheme satisfying σB > 0 is suboptimal. Fix such a scheme. Then (IC-N) may be rearranged

to read

γ(N)σG + (1− γ(N))σB − σ0 = T0/V ≥ 0,

implying that σ0 < 1 given that σG, σB ≤ 1 and σG = σB = σ0 = 1 violates feasibility.

First suppose that T0 > 0. Pass to the modified bonus and promotion schemes (T ′,σ′),

where σ′0 = σ0 + ∆, σ′B = σB −∆(1−N)/(N − µ(N)), σ′G = σG, and

T ′0 = T0 − V∆

(
1 + (1−N)

1− γ(N)

N − µ(N)

)
.

By construction, this modified scheme preserves (IC-N) and the number of promoted em-

ployees for any ∆. Therefore for ∆ > 0 it shifts promotions from failed risk-takers toward

risk-avoiders, increasing total promotion payoffs given that π0 > πB(N). It additionally re-

duces total bonus payments. Finally, for ∆ > 0 sufficiently small it respects the bonus

non-negativity constraint and the boundary constraints on promotion probabilities given

that σ0 < 1 and σB > 0. So this modification is feasible and increases profits.

Suppose instead that T0 = 0 and σ0 = 0. In this case (IC-N) requires that σG = σB = 0

as well. But then the modified promotion scheme σ′ = σ+∆ preserves (IC-N) for any ∆ and

remains feasible for sufficiently small ∆ > 0. Since all promoted employees yield a positive

payoff for the organization, this modification raises profits.

Finally, suppose that T0 and σ0 > 0. In this case Lemma G.1 additionally implies that

σG < 1. Consider the modified promotion scheme σ′, where

σ′B = σB −∆, σ′0 = σ0 −
ρ(N)− γ(N)

ρ(N)
∆, σ′G = σG +

1− ρ(N)

ρ(N)
∆.
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By construction, this modification preserves both (IC-N) and the number of promoted em-

ployees. Further, ρ(N) = γ(N)+µ(N)−Nγ(N), and as noted earlier µ(N) > Nγ(N). Hence

ρ(N) > γ(N). So for all ∆ > 0 this modification reallocates promotions from failed risk-

takers and risk-avoiders to successful risk-takers, increasing total promotion payoffs given

that πG > π0, πB(N). Finally, for ∆ > 0 sufficiently small this modification respects the

boundary constraints on promotion probabilities given that σB, σ0 > 0 while σG < 1. So this

modification is feasible and increases profits.

G.4 M(S) = β

Going forward, we will restrict attention to schemes satisfying σB = 0. We next show that

any scheme which does not promote β employees is suboptimal. Fix such a scheme. Then

(IC-N) reads γ(N)σG = σ0 + T0/V, which combined with γ(N) > 0 implies that either

max{σG, σ0} < 1 or else 1 = σG > σ0.

First suppose that max{σG, σ0} < 1. Pass to the modified scheme (σ′G, σ
′
0) = (σG+∆, σ0+

γ(N)∆), which preserves (IC-N) and, for sufficiently small ∆ > 0, remains feasible. Since

this modification increases the number of promoted employees, and since every promoted

employee yields a positive payoff to the organization, this modification must increase profits.

Suppose instead that 1 = σG > σ0. In this case Lemma G.1 implies that T0 > 0. Then

a modified scheme setting σ′0 = σ0 + ∆ and T ′0 = T0 − V∆ preserves (IC-N), and for

sufficiently small ∆ > 0 it increases the number of employees while remaining feasible. Since

every promoted employee yields a positive payoff to the organization, and since the modified

scheme additionally reduces bonus payments, this modification must increase profits. Going

forward we restrict attention to schemes which saturate the feasibility constraint.

G.5 The optimal scheme

To complete the characterization of an optimal scheme, we enforce TG = TB = σB = 0 and

solve the optimization problem

max
σG,σ0,T0

R(µ(N)πGσG + (1−N)π0σ0)− (1−N)T0

subject to the boundary constraints σG, σ0 ∈ [0, 1] and T0 ≥ 0, the IC constraint (IC-N),

which reduces to

γ(N)σG = σ0 + T0/V,
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and the binding feasibility constraint

β = µ(N)σG + (1−N)σ0.

Notice that any solution to this problem trivially satisfies (IC-∆) given that σB = TB = 0.

Solving the feasibility and IC constraints for σ0 and T0 yields

σ0(σG) =
β − µ(N)σG

1−N
, T0(σG) = V

ρ(N)σG − β
1−N

.

Using these expressions to eliminate σ0 and T0 from the maximization problem yields

max
σG

β(V +Rπ0) + (Rµ(N)(πG − π0)− V ρ(N))σG

subject to the boundary constraints that σG, σ0 ∈ [0, 1] and T0 ≥ 0.

Note that the boundary constraints on σ0 and T0 implicitly place additional constraints

on σG, given that each is a function of σG. They collectively imply that σG ∈ [σG, σG], where

σG ≡ min

{
β

µ(N)
, 1

}
, σG ≡ max

{
β − (1−N)

µ(N)
,

β

ρ(N)

}
.

Since the reduced objective is affine in σG with slope

ξ−(N) ≡ Rµ(N)(πG − π0)− V ρ(N),

the optimal value of σG is therefore

σ∗G =

σG if ξ−(N) > 0

σG if ξ−(N) < 0.

(If ξ−(N) = 0, then there exist a continuum of optimal schemes.)

We now characterize the sign of ξ− as a function of N. Since ρ is strictly decreasing while

µ is strictly increasing, ξ− is strictly increasing. Further, ξ−(0) = −V ρ(0) = −V γ(0) < 0,

while ξ−(1) = µ(1)(R(πG − π0)− V ). Let

N−(R, V ) ≡ sup{N ∈ [0, 1] : ξ−(N) < 0}.

Given that ξ− is strictly increasing in N, N < N−(R, V ) implies that ξ−(N) < 0 while

N > N−(R, V ) implies that ξ−(N) > 0.

To establish the claimed comparative statics of N−(R, V ) in R and V, first note that

N−(R, V ) depends on R, V only through the ratio V/R. If V/R ≥ πG−π0, then ξ−(N) ≤ 0 for
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all N and N−(R, V ) = 1. Meanwhile if V/R < πG−π0, then ξ−(1) > 0 and N−(R, V ) ∈ (0, 1).

Further, ξ−(N) is increasing in R and decreasing in V for all N > 0, implying that N−(R, V )

is increasing in V/R whenever it is interior. Finally, for every N > 0, ξ−(N) > 0 for V/R

sufficiently small. Thus limV/R→0N−(R, V ) = 0. The comparative statics with respect to R

and V follow immediately from this analysis.

We next show that the scheme satisfying σ∗G = σG corresponds to efficient promotion

and a positive bonus for safe approaches. Recall the efficient promotion probabilities σnci

characterized in Appendix B. For all N we have σG = σncG (N, β). Meanwhile N < Nnc ≤
N ‡(β) implies that σnc0 (N, β) = (β−µ(N)σncG (N, β))/(1−N) = σ0(σG) and σncB (N, β) = 0 =

σB. So this scheme promotes efficiently.

Meanwhile T0(σG) > 0 iff σG > β/ρ(N). If N ≥ N †(β), then σG = β/µ(N). Since

ρ(N) > µ(N) for all N < 1, the desired inequality holds in this case. If instead N < N †(β),

then σG = 1. In this case the desired inequality amounts to ρ(N) > β. Suppose first that

β ≤ β. Then Nnc = 1, and since ρ is strictly decreasing in N, the desired inequality holds

for N < Nnc if ρ(1) ≥ β. Since ρ(1) = µ(1) = β, the result follows. Next suppose that

β ∈ (β, β). Then Nnc satisfies ρ(Nnc) = β, and so ρ(N) > β for all N < Nnc. Finally, if

β ≥ β then Nnc = 0 and there are no risk-taking rates strictly below Nnc. So the bonus is

strictly positive in all cases.

We now show that the scheme satisfying σ∗G = σG reallocates promotions from successful

risk-takers to risk-avoiders and pays no bonuses. Since σG > σG, σ0(σG) is decreasing in σG,

and σG induces efficient promotion, the results about promotion follow immediately. The

zero bonus result follows from the following lemma, which ensures that σG = β/ρ(N).

Lemma G.2. β−(1−n)
µ(n)

< β
ρ(n)

for all n ∈ (0, 1].

Proof. Some algebra shows that this inequality is equivalent to ζ(n) > 0, where ζ(n) ≡
µ(n) + γ(n)(1−n−β). Differentiating this expression yields ζ ′(n) = γ′(n)(1−n−β), which

crosses zero from exactly once at n = 1−β, from below. Hence ζ is minimized at n = 1−β.
Evaluating ζ at this point yields ζ(1− β) = µ(1− β) > 0, so ζ is positive everywhere.

We complete the proof by returning to the extremal case N = 0. We analyze this case

by taking the limit of the optimal scheme for N > 0 and invoking the maximum theorem.

The organization’s objective function is continuous in (N,T ,σ), and the set of feasible, IC

incentive schemes is characterized by a set of equalities and weak inequalities which are each
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continuous in N. Thus the constraint correspondence is continuous in N. It is not formally

compact-valued, as transfers are unbounded. However, it is easy to show that placing a

sufficiently large bound on transfers, uniformly for all N, does not change the optimal scheme

for any N. (See the proof of Lemma 1 for a detailed argument.) Thus it is without loss to

pass to the modified problem with a sufficiently large bound on transfers. The maximum

theorem may then be invoked to conclude that our characterized optimal incentive scheme

for N > 0 remains optimal (though not uniquely so) in the limit N = 0.

H Proof of Proposition 3 and Theorem 2

We first characterize an optimal policy for N ∈ (Nnc, 1), and return to the extremal case

N = 1 at the end of the proof. When N is interior, the risk-taking set [0, N ] is incentive-

compatible if and only the constraints (IC-N) and (IC-∆) defined in the proof of Theorem

1 hold. We solve the relaxed problem enforcing only (IC-N), and verify that the resulting

optimal scheme satisfies (IC-∆).

H.1 TG = 0

We first observe that any scheme satisfying TG > 0 is suboptimal. This result follows from

an argument identical to the one used in the proof of Theorem 1. Going forward, we restrict

attention to schemes satisfying TG = 0. We begin by proving a useful auxiliary lemma.

Lemma H.1. If the promotion scheme σ promotes β employees and σB = 0, then

γ(N)σG + (1− γ(N))σB − σ0 < 0.

Proof. Since efficient promotion maximizes σG subject to feasibility, any feasible scheme

must satisfy σG ≤ σncG (N, β). If σB = 0 and the feasibility constraint is saturated, then it

must additionally be that σ0 ≥ σnc0 (N, β). Thus

γ(N)σG + (1− γ(N))σB − σ0 ≤ γ(N)σncG (N, β) + (1− γ(N))σncB (N, β)− σnc0 (N, β).

Meanwhile N > Nnc(β) implies that the rhs of the previous inequality is negative, yielding

the desired bound.
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H.2 T0 = 0

We next show that any scheme satisfying T0 > 0 is suboptimal. Fix any such scheme.

First suppose that TB > 0. Pass to the modified bonus scheme T ′ satisfying T ′0 = T0 −
(1− γ(N))∆ and T ′B = TB −∆, which satisfies (IC-N) for any ∆, and for ∆ > 0 sufficiently

small also satisfies the non-negativity constraint on bonuses. This modification therefore

strictly reduces bonuses payments and increases profits.

Suppose instead that TB = 0. In this case

γ(N)σG + (1− γ(N))σB − σ0 = T0/V > 0.

This inequality along with the bounds σG, σB ≤ 1 imply that σ0 < 1. If the feasibility

constraint is slack, then pass to the modified bonus and promotion schemes (T ′,σ′), where

σ′0 = σ0 + ∆, T ′0 = T0 − V∆, and all other promotion probabilities and bonuses unchanged.

This modified scheme preserves (IC-N), and for ∆ > 0 sufficiently small it remains feasible;

satisfies the non-negativity constraint on bonuses and the boundary constraints on promotion

probabilities; reduces bonus payments; and promotes weakly more employees in every group

than the original scheme. Since every employee promoted yields a positive profit to the

organization, this modification improves on the original scheme.

If instead the feasibility constraint is saturated, then (IC-N) and Lemma H.1 imply that

σB > 0. So pass to the modified bonus and promotion scheme (T ′,σ′) which sets σ′0 = σ0+∆,

σ′B = σB −∆(1−N)/(N − µ(N)), and

T ′0 = T0 − V∆

(
1 + (1−N)

1− γ(N)

N − µ(N)

)
,

with all other promotion probabilities and bonuses unchanged. By construction, this mod-

ified scheme preserves (IC-N) and the number of employees promoted. Therefore for any

∆ > 0, it reallocates promotions from failed risk-takers to risk-avoiders, strictly increasing

promotion payoffs given that π0 > πB(N). Finally, for ∆ > 0 sufficiently small the mod-

ified scheme respects the non-negativity constraint on bonuses given that T0 > 0 and the

boundary constraints on promotion probabilities given that σ0 > 0 and σG < 1. So this

modification is feasible and increases promotion payoffs while decreasing bonus payments,

increasing total profits.
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H.3 σG = 1

Going forward, we restrict attention to schemes satisfying T0 = 0. We now show that any

scheme satisfying σG < 1 is suboptimal. Fix any such scheme. Then (IC-N) may be rear-

ranged to read

γ(N)σG + (1− γ(N))σB − σ0 = −(1− γ(N))TB/V ≤ 0.

Suppose that σ0 = 0. In this case (IC-N) implies that σG = σB = 0 as well. So pass

to the modified promotion scheme σ′ = σ + ∆. This modified scheme preserves the relaxed

IC constraint for any ∆, and for ∆ > 0 sufficiently small it promotes more employees and

remains feasible. Since every promoted employee yields a positive payoff to the organization,

this modification improves payoffs.

Suppose instead that σ0 > 0 and TB > 0. Pass to the modified bonus and promotion

schemes (T ′,σ′), where σ′0 = σ0 −∆, σ′G = σG + ∆(1−N)/µ(N), σ′B = σB, and

T ′B = TB −
V∆

1− γ(N)

(
1 + (1−N)

γ(N)

µ(N)

)
.

By construction, this modified scheme preserves (IC-N) and the number of promoted employ-

ees for any ∆. Therefore for ∆ > 0 it shifts promotions from risk-avoiders toward successful

risk-takers, increasing total promotion payoffs given that πG > π0. It additionally reduces to-

tal bonus payments. Finally, for ∆ > 0 sufficiently small it respects the bonus non-negativity

constraint and the boundary constraints on promotion probabilities given that σG < 1 and

σ0 > 0. So this modification is feasible and increases profits.

Finally, suppose that σ0 > 0 and TB = 0. Then (IC-N) reads

γ(N)σG + (1− γ(N))σB − σ0 = 0.

Since σG < 1, this constraint implies that also σ0 < 1. If the feasibility constraint is not

saturated, then pass to the modified promotion scheme σ′ satisfying σ′G = σG + ∆, σ′0 =

σ0 + γ(N)∆, and σ′B = σB. This modification preserves the relaxed IC constraint, and for

sufficiently small ∆ > 0 it raises the number of employees promoted, preserves feasibility, and

satisfies the promotion probability boundary constraints given that σG, σ0 < 1. Since every

promoted employee yields positive profits for the organization, this modification increases

profits.
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If instead the feasibility constraint is saturated, then Lemma H.1 along with (IC-N) imply

that σB > 0. So pass to the modified promotion scheme σ′, where

σ′B = σB −∆, σ′0 = σ0 −
ρ(N)− γ(N)

ρ(N)
∆, σ′G = σG +

1− ρ(N)

ρ(N)
∆.

By construction, this modification preserves both (IC-N) and the number of promoted em-

ployees. Further, ρ(N) = γ(N) + µ(N)−Nγ(N), and since µ(N)/N is an average of γ over

the interval [0, N ], µ(N) > Nγ(N). Hence ρ(N) > γ(N). So for all ∆ > 0 this modifica-

tion reallocates promotions from failed risk-takers and risk-avoiders to successful risk-takers,

increasing total promotion payoffs given that πG > π0, πB(N). Finally, for ∆ > 0 suffi-

ciently small this modification respects the boundary constraints on promotion probabilities

given that σG < 1 and σ0 > 0 by hypothesis while σB > 0 as established above. So this

modification is feasible and increases profits.

H.4 M(S) = β

Going forward, we will restrict attention to schemes satisfying σG = 1. We next show that

any scheme which does not promote β employees is suboptimal. Fix such a scheme. The

constraint (IC-N) reads

γ(N) + (1− γ(N))(σB + TB/V ) = σ0,

which combined with γ(N) < 1 implies that either σB = σ0 = 1 or else σ0 > σB. The first

possibility violates feasibility, so assume the latter inequality.

If σ0 < 1, then pass to the modified scheme (σ′B, σ
′
0) = (σB +∆, σ0 +(1−γ(N))∆), which

preserves (IC-N) and, for sufficiently small ∆ > 0, remains feasible. Since this modification

increases the number of promoted employees, and since every promoted employee yields a

positive payoff to the organization, this modification must increase profits.

If instead σ0 = 1, then (IC-N) combined with σB < σ0 imply that TB > 0. Pass to a

modified scheme setting σ′B = σB + ∆ and T ′B = TB − V∆. For sufficiently small ∆ > 0

this modification preserves (IC-N) and weakly increases the number of employees promoted

in each group while remaining feasible and respecting the promotion probability boundary

constraints. Since every promoted employee yields a positive payoff to the organization,

and since the modified scheme additionally decreases bonuses, this modification must in-

crease profits. Going forward we restrict attention to schemes which saturate the feasibility

constraint.
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H.5 The optimal scheme

To complete the characterization of an optimal scheme, we enforce TG = T0 = 0 and σG = 1

and solve the optimization problem

max
σB ,σ0,TB

R(µ(N)πG + (N − µ(N))πB(N)σB + (1−N)π0σ0)− (N − µ(N))TB

subject to the boundary constraints σB, σ0 ∈ [0, 1] and TB ≥ 0, the IC constraint (IC-N),

which reads

γ(N) + (1− γ(N))(σB + TB/V ) = σ0,

and the binding feasibility constraint

β = µ(N) + (N − µ(N))σB + (1−N)σ0.

Note that (IC-N) combined with the upper bound σ0 ≤ 1 implies that σB + TB/V ≤ 1 =

σG + TG/V. Hence any solution to this problem automatically satisfies (IC-∆).

Solving the feasibility and IC constraints for σ0 and TB yields

σ0(σB) =
β − µ(N)− (N − µ(N))σB

1−N
, TB(σB) = V

β − ρ(N)− (1− ρ(N))σB
(1−N)(1− γ(N))

.

Using these expressions to eliminate σ0 and TB from the maximization problem yields, up

to additive and multiplicative constants which do not affect the solution,

max
σB

(V (1− ρ(N))−R(π0 − πB(N))(1−N)(1− γ(N)))σB

subject to the boundary constraints that σB, σ0 ∈ [0, 1] and TB ≥ 0.

The boundary constraints on σ0 and TB implicitly place additional constraints on σB,

given that each is a function of σB. They collectively imply that σB ∈ [σB, σB], where

σB ≡ min

{
β − µ(N)

N − µ(N)
,
β − ρ(N)

1− ρ(N)

}
, σB ≡ max

{
β − ν(N)

N − µ(N)
, 0

}
,

where ν(N) = µ(N) + (1 − N) is as defined in Appendix B. Since the reduced objective is

linear in σB with a slope of the same sign as

ξ+(N) ≡ V (1− ρ(N))−R(π0 − πB(N))(1−N)(1− γ(N)),

the optimal value of σB is therefore

σ∗B =

σB if ξ+(N) > 0

σB if ξ+(N) < 0.
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(If ξ+(N) = 0, then there exist a continuum of optimal schemes.)

We now characterize the sign of ξ+ as a function of N. Let ∆π(N) ≡ π0−πB(N). Lemma

A.1 established that πB(N) is increasing in N, and so ∆π(N) is decreasing in N. Note that ξ+

satisfies the boundary conditions ξ+(1) = 1−µ(1) > 0 and ξ+(0) = (1−γ(0))(V −R∆π(0)).

Suppose first that R ≤ V/∆π(0). Then for all N ∈ (0, 1),

ξ+(N) ≥ V (1− ρ(N))− V ∆π(N)

∆π(0)
(1−N)(1− γ(N))

> V (1− ρ(N)− (1−N)(1− γ(N)))

= V (N − µ(N)) > 0.

Suppose instead that R > V/∆π(0). Then ξ+(0) < 0 given that γ(0) < 1, meaning ξ+ is

negative for N sufficiently close to 0 and positive for N sufficiently close to 1. Note that

1− ρ(N)

(1−N)(1− γ(N))
= 1 + Λ(N),

so we may write

ξ+(N) = (1−N)(1− γ(N)) (V (1 + Λ(N))−R∆π(N)) .

If Λ(N) is nondecreasing, then the fact that ∆π(N) is decreasing implies that V (1+Λ(N))−
R∆π(N) is increasing in N. Given the boundary conditions ξ+(0) < 0 < ξ+(1), it follows

that ξ+ crosses zero exactly once.

Let

N+(R, V ) ≡ inf{N ∈ [0, 1] : ξ+(N) > 0}.

To establish the claimed comparative statics of N+(R, V ) in R and V, first note that

N+(R, V ) depends on R, V only through the ratio V/R. If V/R ≥ ∆π(0), then ξ+(N) ≥ 0 for

all N and N+(R, V ) = 0. Meanwhile if V/R < ∆π(0), then ξ+(0) < 0 and N+(R, V ) ∈ (0, 1).

Further, ξ+(N) is increasing in V and decreasing in R for all N < 1, implying that N+(R, V )

is decreasing in V/R whenever it is interior. Finally, for every N > 0, ξ+(N) < 0 for V/R

sufficiently small. Thus limV/R→0N+(R, V ) = 1. The comparative statics with respect to R

and V follow immediately from this analysis.

We next show that the scheme satisfying σ∗B = σB corresponds to efficient promotion

and a positive bonus for failed risk-takers. Recall the efficient promotion probabilities σnci

characterized in Appendix B. Given that N > Nnc, we must have Nnc < 1, implying β > β.
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For all such β, σncB (N, β) = σB and σncG (N, β) = 1 = σG. The fact that the optimal promotion

scheme and efficient promotion both saturate the feasibility constraint then ensures that

σ0(σB) = σnc0 (N, β). So this scheme promotes efficiently.

Meanwhile TB(σB) > 0 iff σB < (β− ρ(N))/(1− ρ(N)). We first establish that the rhs of

this bound is strictly positive for all N > Nnc. If β ≥ β, then Nnc = 0, and since ρ is strictly

decreasing, β− ρ(N) > β− ρ(0) = β− γ(0) = 0. If β ∈ (β, β), then ρ(Nnc) = β, and since ρ

is strictly decreasing we have β − ρ(N) > 0. Finally, if β ≤ β, then as observed above there

exist no N > Nnc. So β > ρ(N) in all cases, ensuring that the rhs of the bound is positive.

If N ≤ N ‡(β), then σB = 0, and so the desired bound holds given positivity of the rhs. On

the other hand, if N > N ‡(β), then σB = (β− ν(N))/(N −µ(N)), and the following lemma

establishes the desired result that the bonus is strictly positive.

Lemma H.2. (β − ν(n))/(n− µ(n)) < (β − ρ(n))/(1− ρ(n)) for all n ∈ (0, 1).

Proof. Fix n ∈ (0, 1], and define

∆(β) ≡ β − ρ(n)

1− ρ(n)
− β − ν(n)

n− µ(n)
.

Note that ∆(β) is affine in β. Additionally, ∆(1) = 0 while ∆(0) = (1− γ(n))(1− n)/((n−
µ(n))(1− ρ(n)) > 0. Hence ∆(β) > 0 for all β ∈ (0, 1).

We now show that the scheme satisfying σ∗B = σB reallocates promotions from risk-

avoiders to failed risk-takers and pays no bonuses. Since σB > σB, σ0(σB) is decreasing in σB,

and σB induces efficient promotion, the results about promotion follow immediately. The zero

bonus result follows from the following lemma, which ensures that σB = (β−ρ(N))/(1−ρ(N))

for β ≥ β. As observed above, when β < β there are no risk-taking rates greater than Nnc(β).

So it is without loss to restrict attention to β ≥ β.

Lemma H.3. (β − ρ(n))/(1− ρ(n)) ≤ (β − µ(n))/(n− µ(n)) for all n ∈ (0, 1] and β ≥ β.

Proof. Fixing n ∈ (0, 1], let

∆(β) ≡ β − µ(n)

n− µ(n)
− β − ρ(n)

1− ρ(n)
.

Note that ∆(β) is affine in β. We first show that ∆(β) ≥ 0. To see this, observe that

β = µ(1) ≥ µ(n), while ρ is a strictly decreasing function of n and so ρ(n) ≥ ρ(1) = µ(1) = β.
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Meanwhile some algebra reveals that

∆(1) =
1− n

n− µ(n)
≥ 0.

It follows that ∆(β) ≥ 0 for all β ∈ [β, 1), yielding the desired result.

The extremal case N = 1 follows by taking the limit of the optimal scheme for N < 1

and invoking the maximum theorem, in a manner analogous to the treatment of the N = 0

case in the proof of Theorem 1.

I Proof of Lemma 2

Note that Λ is nondecreasing so long as (N − µ(N))/(1− γ(N)) is nondecreasing, or equiv-

alently if log(N − µ(N)) is concave. Write

log(N − µ(N)) = logN + log(1− γ̄(N)).

The first term on the rhs is immediately concave, while when γ̄ is convex the second is a

composition of two concave functions, the outer of which is increasing. Hence the composition

is also concave. log(N − µ(N)) is therefore a sum of two concave functions and so concave.

If γ(N) = A−BNk, then

γ̄(N) = A− B

k + 1
Nk.

So long as k ∈ (0, 1], this expression is convex.

J Proof of Proposition 4

Let ΠPr(N) be the organization’s profits under an optimal promotion-reallocation scheme

implementing target rate N, with ΠB(N, V ) defined similarly for an optimal bonus scheme.

(ΠPr is independent of V , while ΠB in general depends on V , and our notation reflects this

fact.) These profit functions can be decomposed as

ΠPr(N) = Πfb(N)−∆Pr(N), ΠB(N, V ) = Πfb(N)−∆B(N)V,

where Πfb(N) is the organization’s profit under risk-taking rate N and the natural promotion

policy (as defined in Appendix B) and ∆Pr and ∆B are incentive costs which are continuous,

non-negative for all N , and strictly positive whenever N 6= Nnc.
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Define

Π∗,P r ≡ max
N

ΠPr(N), Π∗,B(V ) ≡ max
N

ΠB(N, V ), Π ≡ max
N

Πfb(N)

Note that ΠPr(N) < Πfb(N) ≤ Π for all N . Meanwhile the hypothesis β 6= βfb implies that

Nnc is not a maximizer of Πfb and therefore ΠPr(Nnc) = Πfb(Nnc) < Π. Then since ΠPr(N)

is continuous in N over the compact domain [0, 1], it must be that Π∗,P r < Π.

Meanwhile, ΠB(N, 0) = Πfb(N) for all N, so that Π∗,B(0) = Π. Further, the maximum

theorem implies that Π∗,B(V ) is continuous in V, so for V sufficiently close to 0 we must have

Π∗,B(V ) > Π∗,P r. For such values of V, an optimal bonus scheme outperforms an optimal

promotion scheme, and so is a globally optimal incentive scheme. Since Π∗,P r ≥ Πfb(Nnc),

this scheme must further satisfy Π∗,B(V ) > Πfb(Nnc). Hence there exists a nontrivial optimal

incentive scheme.

K Proof of Proposition 5

Let ΠPr(N,R) be the organization’s profits under an optimal promotion-reallocation scheme

implementing target rate N, with ΠB(N,R) defined similarly for an optimal bonus scheme.

(Both functions depend on R in general, and our notation reflects this dependence.) These

profit functions can be decomposed as

ΠPr(N,R) = Πfb(N,R)−∆Pr(N)R, ΠB(N,R) = Πfb(N,R)−∆B(N),

where Πfb(N,R) is the organization’s profit under risk-taking rate N and the natural pro-

motion policy (as defined in Appendix B) and ∆Pr and ∆B are incentive costs which are

continuous, non-negative for all N , and strictly positive whenever N 6= Nnc.

Define

Π∗,P r(R) ≡ max
N

ΠPr(N,R), Π∗,B(R) ≡ max
N

ΠB(N,R), Π(R) ≡ max
N

Πfb(N,R)

Note that Πfb(N, 0) = f([0, N ]), which is uniquely maximized by the risk-taking rate N0

which satisfies γ(N0) = K. Recall that β0 is characterized by γ(Nnc(β0)) = K. By hypothesis

β 6= β0, and therefore Πfb(Nnc, 0) < Π(0).

Since ΠPr(N, 0) = Πfb(N, 0) for all N, we must have Π∗,P r(0) = Π(0). Meanwhile, since

ΠB(N, 0) < Πfb(N, 0) ≤ Π(0) for all N 6= Nnc, while ΠB(Nnc, 0) = Πfb(Nnc, 0) < Π(0),
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continuity of ΠB in N over the compact set [0, 1] implies that Π∗,B(0) < Π(0). By the

maximum theorem, Π∗,P r,Π∗,B, and Π are each continuous in R. It follows that Π(R) −
Π∗,B(R) > Π(R) − Π∗,P r(R) for sufficiently small R. Equivalently, Π∗,P r(R) > Π∗,B(R)

for sufficiently small R. Thus an optimal promotion scheme outperforms an optimal bonus

scheme for small R, and so it must be a globally optimal incentive scheme. Further, since

Π∗,B(R) ≥ Πfb(Nnc, R), it must also be that Π∗,P r(R) > Πfb(Nnc, R). Hence there exists a

nontrivial optimal incentive scheme.

L Proof of Theorem 3

Given a risk-taking rate N ∈ [0, 1] and a promotion rate β, define ΠPr(N, β) to be the profits

under an optimal symmetric promotion reallocation scheme implementing risk-taking rate

N, with ΠB(N, β) defined analogously with respect to symmetric bonus schemes. Define

Π∗,P r(β) ≡ max
N

ΠPr(N, β), Π∗,B(β) ≡ max
N

ΠB(N, β), Π∗(β) ≡ max{ΠPr(β),ΠB(β)}.

In light of Theorem 1 and Proposition 3, Π∗(β) must be the firm’s optimal profits among

all symmetric incentive schemes. Also let Πnc(β) be the firm’s no-commitment profits, and

N∗,P r(β) ≡ arg maxN ΠPr(N, β) be the set of optimal risk-taking rates under promotion

reallocation schemes. Note that this set need not be a singleton.

Given an asymmetric incentive scheme, a group g, and promotion rates β1 and β2 such

that β2 > βg > β1, a new asymmetric incentive scheme can be created by splitting group g

into two groups g1 and g2 with promotion rates β1 and β2 and population sizes kg1 and kg2

uniquely defined by

kg = kg1 + kg2 , β = kg1β1 + kg2β2.

Going forward, we will refer to this splitting procedure as a (β1, β2)-split of a given group.

Given the promotion probabilities under an optimal promotion reallocation scheme de-

rived in the proofs of Theorem 1 and Proposition 3, ΠPr(N, β) may be written

ΠPr(N, β) ≡

ΠPr
− (N, β) if N ≤ Nnc(β)

ΠPr
+ (N, β) if N ≥ Nnc(β),
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where

ΠPr
− (N, β) ≡ f(N) +Rβ

(
π0 +

µ(N)

ρ(N)
(πG − π0)

)
,

ΠPr
+ (N, β) ≡ f(N) +R

(
βπ0 + (1− β)

µ(N)

1− ρ(N)
(πG − π0)

)
.

Note that both Π− and Π+ are affine in β for fixed N . This fact implies the following useful

auxiliary result.

Lemma L.1. Fix an asymmetric scheme and a group g such that Π∗,P r(βg) ≥ Π∗,B(βg)

and N g ∈ N∗,P r(βg). Suppose the promotion rates β1 and β2 satisfy β1 < βg < β2 and

sign(Nnc(β1)−N g) = sign(Nnc(β2)−N g). Then a (β1, β2)-split of group g weakly improves

the organization’s profits. If additionally N g /∈ N∗,P r(β1)∩N∗,P r(β2), then this split strictly

improves the organization’s profits.

Proof. Fix N1 ∈ N∗,P r(β1) and N2 ∈ N∗,P r(β2). Then ΠPr(N1, β1) ≥ ΠPr(N g, β1) and

ΠPr(N2, β2) ≥ ΠPr(N g, β2), and if N g /∈ N∗,P r(β1) ∩N∗,P r(β2), then at least one inequality

is strict. Let kg1 and kg2 be the corresponding group sizes under a (β1, β2)-split of group g.

Then

kg1Π∗(β1) + kg2Π∗(β2) ≥ kg1Π∗,P r(β1) + kg2Π∗,P r(β2)

= kg1ΠPr(N1, β1) + kg2ΠPr(N2, β2)

≥ kg1ΠPr(N g, β1) + kg2ΠPr(N g, β2),

with the final inequality strict if N g /∈ N∗,P r(β1) ∩ N∗,P r(β2). Now, the hypothesis that

sign(Nnc(β1) − N g) = sign(Nnc(β2) − N g) implies that ΠPr(N g, β) is affine wrt β on the

range [β1, β2]. Hence

kg1ΠPr(N g, β1) + kg2ΠPr(N g, β2) = ΠPr(N g, βg) = Π∗,P r(βg) = Π∗(βg).

So

kg1Π∗(β1) + kg2Π∗(β2) ≥ Π∗(βg),

and the inequality is strict if N g /∈ N∗,P r(β1) ∩ N∗,P r(β2). Since the lhs of this inequality

is the organization’s total profit from the two groups created by a (β1, β2)-split of group

g, while the rhs is its profit under group g in the original scheme, the result of the lemma

statement follows.
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By the maximum theorem, Π∗ is continuous in β and hence bounded over the compact

interval [0, 1]. Let ΠA∗ be the concave envelope of Π∗, which is guaranteed to exist given

boundedness of Π∗(β). Then for each β, either ΠA∗(β) = Π∗(β), in which case the opti-

mal symmetric scheme remains optimal in the wider class of asymmetric schemes; or else

ΠA∗(β) > Π∗(β). In the latter case, define

β∗ ≡ max{β′ < β : ΠA∗(β′) = Π∗(β′)}, β∗ ≡ min{β′ > β : ΠA∗(β′) = Π∗(β′)}.

Then the asymmetric scheme which splits the population into two groups with promotion

rates β1 = β∗ and β2 = β∗ and population sizes k1 = k and k2 = 1− k, where k satisfies

β = kβ∗ + (1− k)β∗,

is optimal. Hence in either case an optimal asymmetric scheme exists, involving no more

than two groups.

We first suppose that N0 /∈ N∗,P r(β0), where recall that N0 is defined by γ(N0) = K

and β0 is defined by Nnc(β0) = N0. We prove that under this condition, every group in

any optimal asymmetric scheme is promoted according to the natural policy. Given that

an optimal scheme with at most two groups exists, the theorem follows. At the end of the

proof, we return to the case of N0 ∈ N∗,P r(β0).

Fix an asymmetric scheme and a group g in which employees are not promoted according

to the natural policy. Then Π∗,P r(βg) ≥ Π∗,B(βg), N g ∈ N∗,P r(βg), and N g 6= Nnc(βg).

Suppose first that N g < Nnc(βg). Set β1 = 0 and β2 = βg + ε, where ε > 0 is small enough

that Nnc(β2) > N g. Since Nnc is nonincreasing, we have Nnc(β1) ≥ Nnc(βg). Therefore

sign(Nnc(β1) − N g) = sign(Nnc(β2) − N g) = 1. Further, ΠPr(N, β1) = f(N) is uniquely

maximized by N∗,P r(β1) = {N0}. Suppose that N g = N0. Then Nnc(βg) > N0, so that

ΠPr(N, βg) = ΠPr
− (N, βg) for N close to N0. But since µ is increasing while ρ is decreasing,

ΠPr
− (N, βg) is increasing in N at N = N0, meaning that N0 cannot optimize ΠPr(N, βg), a

contradiction. Hence N g 6= N0 and so N g /∈ N∗,P r(β1). Lemma L.1 therefore implies that a

(β1, β2)-split of group g strictly improves the organization’s profits. In other words, whenever

N g < Nnc(βg), the original scheme is suboptimal.

Suppose instead that N g > Nnc(βg). Set β2 = 1 and β1 = βg − ε, where ε > 0 is

small enough that Nnc(β1) < N g. Since Nnc is nonincreasing, we have Nnc(β2) ≤ Nnc(βg).

Therefore sign(Nnc(β1) − N g) = sign(Nnc(β2) − N g) = −1. Further, ΠPr(N, β2) = f(N)

is uniquely maximized by N∗,P r(β2) = {N0}. If N g 6= N0, then Lemma L.1 implies that
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a (β1, β2)-split of group g strictly improves the organization’s profits. On the other hand

if N g = N0, then Nnc(βg) < N0 and so βg > β0. Hence we may take β1 = β0. Then by

hypothesis N0 /∈ N∗,Pr(β1), so that by Lemma L.1 a (β1, β2)-split of group g strictly improves

the organization’s profits. In other words, whenever N g > Nnc(βg), the original scheme is

suboptimal.

We now consider the case N0 ∈ N∗,P r(β0). Under an optimal asymmetric incentive

scheme, the logic of the previous two paragraphs rules out a promotion scheme different from

the natural policy except in a group g satisfying βg > β0 and N g = N0 > Nnc(βg). If there

exists an optimal scheme involving two groups, neither of which satisfy these properties, then

the theorem is proven. Otherwise, there must exist an optimal schemeA involving two groups

and a group satisfying these properties, which without loss we will label g = 1. Since this

group is part of an optimal scheme, Π∗(β1) = ΠA∗(β1). The work of the previous paragraph

implies that a (β0, 1)-split of group 1 weakly improves the organization’s profits. But since by

hypothesis g is part of an optimal scheme, this split must exactly preserve the organization’s

profits, meaning the resulting scheme A′ is also optimal. Hence Π∗(β0) = ΠA∗(β0) and

Π∗(1) = ΠA∗(1). Additionally, since ΠA∗ is weakly concave, the fact that Π∗(β1) = ΠA∗(β1)

and a (β0, 1)-split of group g preserves total profits implies that ΠA∗ must be linear on [β0, 1].

Suppose first that β ∈ [β0, 1). Then since Π∗(β0) = ΠA∗(β0), Π∗(1) = ΠA∗(1), and ΠA∗ is

linear on [β0, 1], an asymmetric scheme involving at most two groups with promotion rates

β0 and 1 must be optimal. In the latter group the natural promotion policy is trivially

optimal. And in the former group, either bonuses are optimal or else the optimal incentive

scheme is trivial given the hypothesis that N0 = Nnc(β0) ∈ N∗,P r(β0). In either case, the

natural promotion policy is optimal. So this scheme satisfies the properties claimed by the

theorem. Suppose instead that β < β0. Then given Π∗(β0) = ΠA∗(β0), there must exist an

optimal scheme involving at most two groups in which promotion rates in each group are no

larger than β0. But as noted above, under any optimal scheme all groups satisfying βg ≤ β0

must involve only natural promotion incentives. So again the theorem holds.

M Proof of Proposition 6

All notation in this proof is as in the proof of Theorem 3. Suppose by way of contradiction

that there existed an optimal scheme involving only groups with extremal promotion rates.
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Then ΠA∗ must be linear on [0, 1]. Since Π∗(0) = f(N0) while Π∗(1) = f(N0) + Rπ0, we

must therefore have

ΠA∗(β) = f(N0) +Rπ0β.

To reach the desired contradiction, we need only show that Π∗(β) > f(N0) + Rπ0β for

sufficiently small β > 0. Note that for β ≤ β,

Π∗(β) ≥ Π∗,P r(β) = max
N

ΠPr
− (N, β).

Since arg maxN ΠPr
− (N, 0) = {N0}, the envelope theorem implies that

dΠ∗,P r

dβ
(0) = R

(
π0 +

µ(N0)

ρ(N0)
(πG − π0)

)
> Rπ0.

Then since Π∗,P r(0) = f(N0), we have Π∗,P r(β) > f(N0) + Rπ0β for sufficiently small β,

proving the result.
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Online Appendix to “Incentive Design for Talent

Discovery”
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In Section 6, we have characterized the optimal asymmetric scheme, and in Section

7 we have discussed the possibility that even more complex mechanisms could be used

in some organizations. For example, if the employees observe their Γ before they are

assigned to different groups, would it be valuable for the organization to sort them

between groups based on their reported Γ?

We now show that, at least in the case of small β and no bonuses, the optimal

asymmetric scheme we have found in Section 7 cannot be improved upon by more complex

mechanisms.

For this analysis, we introduce the following notation. A direct revelation mechanism

specifies xS(Γ), xR(Γ) - the probability the agent with type Γ is assigned to the safe and

risky task. It also specifies σ0(Γ), σG(Γ) - the probability of promotion conditional on

being assigned to the safe task and conditional on being assigned to the risky task and

getting a good outcome, respectively.1

Normalize V = 1. Define RG = πGR and R0 = π0R as the expected payoff of pro-

moting an employee after a success on the risky task or after taking the safe task. Let

∆R = RG−R0. Let F (Γ) be the distribution of Γ in the population of employees induced

by the γ(n) function. Let Γ = γ(0) be the highest type and Γ = γ(1) be the lowest type

∗Department of Economics, New York University. Email: emadsen@nyu.edu
†Department of Economics, New York University. Email: basil.williams@nyu.edu
‡Stanford Graduate School of Business, Stanford University. Email: skrz@stanford.edu
1To simplify notation, we ignore the possibility of promotion after failure since we are trying to solve

the problem of too many agents taking risky tasks. It can be shown that for small β it is indeed optimal

for the principal to not promote after failures.
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in the support of the distribution. Our assumptions about γ imply that F has positive

density f(Γ) in the range
[
Γ,Γ

]
and no atoms.

Let Γ̂ be the solution to (Γ −K) + Γ∆R = 0. That is, Γ̂ is the threshold such that

it would be efficient for the organization to have types above it take the risky task and

those below take the safe task.

We say that the direct revelation mechanism is incentive compatible if reporting truth-

fully is a best response for every type Γ. It is feasible if it (1) is incentive compatible, (2)

satisfies the resource constraint that at most β measure of promotions are allocated when

employees report truthfully, and (3) satisfies xS(Γ) + xR(Γ) = 1 (so that every employee

is assigned to one of the tasks).

Proposition 1. Suppose β < E [Γ] and that the organization does not use bonuses to

motivate task choice. Then the optimal direct revelation mechanism is equivalent to the

optimal asymmetric scheme characterized in Section 6.

Proof. The organization chooses a direct revelation mechanism to maximize

π =

∫ Γ

Γ

(xS(Γ)(K + σ0(Γ)R0) + xR(Γ)(Γ + ΓσG(Γ)RG))dF (Γ).

subject to the feasibility constraints, one of them being the resource constraint:∫ Γ

Γ

(xS(Γ)σ0(Γ) + xR(Γ)ΓσG(Γ))dF (Γ) ≤ β. (1)

The plan of proof is to relax the optimization problem by focusing only on a subset

of constraints, find the optimal mechanism in the relaxed problem and then show this

solution to the relaxed problem satisfies all the original constraints. Finally, we show that

the optimal direct revelation mechanism can be implemented as one of the asymmetric

schemes introduced in Section 6.

We begin by pointing out that β < E[Γ] implies that no feasible mechanism can

have xR(Γ)σG(Γ) = 1. Suppose that such a feasible mechanism existed. Then, every type

would be able to get utility Γ by reporting type Γ. So the total utility of the agents would

have to be at least E [Γ] , but that would violate the resource constraint (1). In other

words, when β is small, all feasible mechanisms have “distortion on the top.”

Step 1: Consequences of incentive-compatibility

Define y(Γ) ≡ xR(Γ)σG(Γ). An agent with type Γ chooses her report to maximize:

2
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U(Γ) = max
Γ̃

[
xS(Γ̃)σ0(Γ̃) + Γy(Γ̃)

]
The envelope formula implies:

U(Γ) = U(Γ) +

∫ Γ

Γ

y(Γ̃)dΓ̃ and

xS(Γ)σ0(Γ) = U(Γ) +

∫ Γ

Γ

y(Γ̃)dΓ̃− Γy(Γ) (2)

As is standard in mechanism design, a mechanism is incentive compatible if and only if

it satisfies (2) and y(Γ) is weakly increasing.

Step 2: Using incentive compatibility to re-state resource constraint

We now combine the envelope-based formula for incentive-compatibilty (2) with the

resource constraint (1) to get that any feasible contract must satisfy

U(Γ) +

∫ Γ

Γ

∫ Γ

Γ

y(Γ̃)dΓ̃dF (Γ) ≤ β.

After integrating by parts, the resource constraint becomes

U(Γ) +

∫ Γ

Γ

y(Γ)(1− F (Γ))d(Γ) ≤ β. (3)

Step 3: Non-negativity of the probabilities constraint

Another constraint a mechanism has to respect is that σ0(Γ)xS(Γ) ≥ 0 since proba-

bilities cannot be negative. Combining it with the envelope formula (2) we have that for

every type Γ a feasible mechanism must satisfy:

U(Γ) +

∫ Γ

Γ

y(Γ̃)dΓ̃− Γy(Γ) ≥ 0.

Note that the derivative of the LHS with respect to Γ is y(Γ) − y(Γ) − Γy′(Γ). For any

feasible mechanism y′(Γ) ≥ 0 so the LHS is decreasing in Γ. Hence if this condition holds

for the highest type Γ̄, it holds for all types. So in what follows we require

U(Γ) +

∫ Γ̄

Γ

y(Γ)dΓ− Γ̄y(Γ̄) ≥ 0. (4)

Step 4: Combining the resource and non-negativity constraints

3
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Combining constraints (3) and (4) we get that any feasible mechanism must satisfy:

β +

∫ Γ

Γ

y(Γ)F (Γ)d(Γ) ≥ U(Γ) +

∫ Γ̄

Γ

y(Γ)dΓ ≥ Γ̄y(Γ̄)

Looking to relax the problem, we will only require that the mechanism satisfies:

β +

∫ Γ

Γ

y(Γ)F (Γ)d(Γ) ≥ Γ̄y(Γ̄)

and monotonicity of y(Γ) (and that y(Γ) ∈ [0, 1]).

Step 5: Principal’s relaxed problem.

In the relaxed problem, the principal maximizes

π =

∫ Γ

Γ

xS(Γ)(K + σ0(Γ)R0) + xR(Γ)(Γ + ΓσG(Γ)RG)dF (Γ)

= K +

∫ Γ

Γ

[xR(Γ)(Γ−K) + xS(Γ)σ0(Γ)R0 + xR(Γ)ΓσG(Γ)RG] dF (Γ)

where we have used that xR + xS = 1.

Next, note that in any optimal mechanism the resource constraint must bind 2 so∫ Γ

Γ

xS(Γ)σ0(Γ)dF (Γ) = β −
∫ Γ

Γ

xR(Γ)ΓσG(Γ)dF (Γ). (5)

Substituting this to the the principal’s objective function we get that the principal equiv-

alently maximizes: ∫ Γ

Γ

[xR(Γ)(Γ−K) + y(Γ)Γ∆R] dF (Γ). (6)

Step 5B: Simplifying the principal objective function.

The next thing to notice is that xR(Γ)σG(Γ) enter the agent utility and incentives only

as a product y(Γ). They also enter the resource constraint only as a product and the non-

negativity constraint as a product. They only enter separately in the principal’s objective

(in the first term of (6).) Therefore, we relax the maximization problem by allowing

the principal choose xR(Γ), σG(Γ) and σ0(Γ) subject to keeping y(Γ) and xS(Γ)σ0(Γ)

2Suppose that the resource constraint did not bind. Then there would exist β̂ < β such that the

constraint would bind at β̂. After solving for the optimal mechanism with β̂ we can trivially check that

relaxing the resource constraint can be used to improve the principal payoff, a contradiction.

4
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unchanged (so that the feasibility constraints are unchanged). This optimization yields

a simple solution:

Consider any feasible mechanism xR, xS, σ0, σG. The following mechanism is also

feasible and it weakly improves principal payoff upon the original mechanism:

1) For Γ > K, x̂R(Γ) = 1 and σ̂G(Γ) = y(Γ) and x̂S(Γ) = 0

2) For Γ < K, σ̂G(Γ) = 1 and x̂R(Γ) = y(Γ), x̂S(Γ) = 1 − y(Γ) and x̂S(Γ)σ̂0(Γ) =

xS(Γ)σS(Γ)

In words, for high Γ > K the principal allocates the agent with probability 1 to the

risky task; and for Γ < K he minimizes xR(Γ) subject to achieving the same y(Γ). This

result follows simply by inspection of (6): keeping y(Γ) fixed, we get that the contribution

of xR(Γ) to the principal’s objective is positive if and only if Γ > K.

Step 6: Solving the relaxed problem.

The analysis so far allows us to state the relaxed problem as choosing y(Γ) ∈ [0, 1] to

maximize

max
y(Γ)

∫ K

Γ

[y(Γ)(Γ−K + ΓR)] dF (Γ) +

∫ Γ̄

K

[(Γ−K) + y(Γ)ΓR] dF (Γ) (7)

subject to the constraints that y(Γ) is weakly increasing and the constraint from Step 4:

β +

∫ Γ

Γ

y(Γ)F (Γ)d(Γ) ≥ Γ̄y(Γ̄). (8)

We claim that the solution to this problem is bang-bang: set y(Γ) = 0 below some

threshold Γ∗ and then set it equal to some constant y∗ above the threshold.

To show this, fix y(Γ̄) at any level y∗ that is smaller than the solution to:3

β + Y

∫ Γ

Γ

F (Γ)d(Γ) = Γ̄Y.

Next, recall that Γ̂ is the threshold such that (Γ−K+Γ∆R) = 0. Hence for all Γ > Γ̂

setting y(Γ) = y∗ increases the objective function (7) and relaxes the constraint (8). If

y(Γ) = 0 for Γ < Γ̂ and y(Γ) = y∗ for Γ ≥ Γ̂ satisfies the constraint (8) then this is the

solution of the relaxed problem for the given y∗.

3For any higher y∗ there is no monotone y(Γ) that would satisfy (8). Our assumption that E[Γ] > β

guarantees that this Y is less than 1.

5
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Note that if at this solution the constraint is slack, this y∗ is not optimal because

then by increasing y∗ to the point that the constraint binds would improve the objective

function. Hence, without loss of optimality, we can assume that this constraint binds in

the optimal mechanism.

Next, consider any y∗ such that the constraint is violated by y(Γ) = 0 for Γ < Γ̂. In

that case, clearly the optimal mechanism still has y(Γ) = y∗ for Γ ≥ Γ̂ since as we noted

above, this helps both the objective function and relaxes the constraint.

How about y(Γ) for smaller Γ? Since F (Γ) and (Γ−K + ΓR) are increasing in Γ, the

optimal solution is greedy. Namely, we need to find Γ∗ such that:

β + y∗
∫ Γ

Γ∗
y(Γ)F (Γ)d(Γ) ≥ Γ̄y∗, (9)

and then let:

y(Γ) =

{
y∗ : for Γ ≥ Γ∗

0 : otherwise.

The optimal mechanism can then be found by maximizing over Γ∗ ∈
[
0, Γ̂
]

(and

setting y∗ so that (9) binds).

Step 7: Full feasibility of the solution to the relaxed problem

In Step 6, we have found that the solution to the relaxed problem is

y(Γ) =

{
y∗ : for Γ ≥ Γ∗

0 : otherwise.

for some Γ∗ ≤ Γ̂ and where y∗ satisfies

β + y∗
∫ Γ

Γ∗
F (Γ)d(Γ) = Γ̄y∗. (10)

This allows us to construct the following mechanism:

xS(Γ) = 1, σ0(Γ) = Γ∗y∗, for Γ < Γ∗

xS(Γ) = 1− y∗, σ0(Γ) = 0, xR(Γ) = y∗, σG(Γ) = 1 for Γ ∈ [Γ∗, K]

xS(Γ) = 0, xR(Γ) = 1, σG(Γ) = y∗ for Γ > K.

To see that this mechanism is incentive compatible note that because y(Γ) takes only

two values, it is sufficient to check the incentives of the the cutoff type Γ∗. That type

6

Electronic copy available at: https://ssrn.com/abstract=3705627



is indifferent between getting the safe payoff Γ∗y∗ by reporting any lower type and re-

porting any higher type. So if that type is indifferent, all lower types strictly prefer to

report truthfully and so do all higher types. This mechanism clearly satisfies all the con-

straints that x′s and σ′s are probabilities. So we just need to check the overall feasibility

constraint: ∫ Γ

Γ

[xS(Γ)σ0(Γ) + xR(Γ)ΓσG(Γ)] dF (Γ) (11)

= y∗Γ− y∗
∫ Γ

Γ∗
F (Γ)d(Γ), (12)

where we used integration by parts∫ Γ

Γ∗
ΓdF (Γ) = Γ− Γ∗F (Γ∗)−

∫ Γ

Γ∗
F (Γ)d(Γ).

Using that (10) holds at the optimal solution (of the relaxed problem) we get∫ Γ

Γ

[xS(Γ)σ0(Γ) + xR(Γ)ΓσG(Γ)] dF (Γ) = β.

so indeed the solution to the relaxed problem satisfies all constraints, including the re-

source constraint.

Step 8: Optimality of the asymmetric incentive scheme

In Section 6 we have found an optimal asymmetric incentive scheme. We now claim

that it is equivalent to the optimal direct revelation mechanism. To prove it, we claim that

for any Γ∗ < Γ̂ there exists an asymmetric scheme that replicates our direct revelation

mechanism with that Γ∗. And since we have optimized over asymmetric schemes that

include a scheme that is equivalent to the optimal mechanism, the best asymmetric

scheme has to be equivalent to the optimal direct revelation mechanism.

To see that our set of asymmetric schemes includes any mechanism from our family,

fix any Γ∗ < Γ̂ and the corresponding y∗ that satisfies

β + y∗
∫ Γ

Γ∗
F (Γ)d(Γ) = Γ̄Γ∗.

Now, create two groups. A fraction y∗ is allocated to group 2 and the rest to group 1. In

group 1 there are no promotions and agents are recommended to take the risky task if

and only if Γ > K. In group 2 all agents choose on their own which task to take, and the

7
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threshold will be Γ∗. Those who succeed get promoted for sure. Those who fail do not

get promoted. Moreover, those that take the safe action get promoted with probability

that allocates the rest of the promotions. There are y∗ agents in that group and those

above Γ∗ receive in total
∫ Γ̄

Γ∗ ΓdF (Γ) promotions. So the probability of being promoted

in group 2 after taking the safe task is

β − y∗
∫ Γ̄

Γ∗ ΓdF (Γ)

y∗F (Γ∗)
= Γ∗

so indeed type Γ∗ in group 2 is indifferent between the two tasks (to show the equality

we used (10)). In summary, this subset of asymmetric schemes can replicate all direct

revelation mechanisms in the family that we have found solving for the optimal mecha-

nism. Hence the optimal asymmetric scheme cannot be improved upon by more complex

mechanisms.

This result shows optimality of our asymmetric schemes within a larger class of direct

revelation mechanisms. An important difference is that the asymmetric schemes we

proposed tell agents which task to take after they are informed to which group they

belong. In contrast, the direct revelation mechanism tells the agents to report their values

before they know in which group they are placed. In general, one should expect that

the direct revelation mechanism should do better since it requires that truthful reporting

constraints apply only on the interim stage - in other words, it allows for pooling some

IC constraints that have to be satisfied separately in the asymmetric schemes.

The reason this pooling of incentives does not help is that the optimal asymmetric

scheme for small β has two groups and in one of them there are no promotions and hence

no incentives to misreport. Hence, thinking about such asymmetric scheme through the

lens of the equivalent direct revelation mechanism, agent’s incentives to report truthfully

are solely driven by the chance that they will be allocated to the group with promotions.

As a result, the pooling of constraints does not help.

Finally, we have presented here the result for small β. Our preliminary analysis

makes us conjecture that the result can be extended to all β when there are no monetary

transfers. That is, even for large β, our optimal asymmetric scheme is equivalent to the

optimal direct revelation mechanism. The intuition is that for large β, our scheme calls

for two groups, and in one of them the employees are always promoted. As a result, in

that group agents are indifferent over all reports, so only the truth-telling constraints in

the other set matter.

8
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In fact, in the case without money we conjecture that the result can be extended to

all β. It is more of an open question what happens when the principal could use both

bonuses and promotions in the direct revelation mechanism. We conjecture that the

optimal mechanism will also either use bonuses and keep the promotion policy ex-post

efficient, or will use distortions in promotion and not use money at all. It is even possible

that our optimal asymmetric schemes in the case with money are still equivalent to the

optimal direct revelation mechanism, but that would require additional arguments to

deal with the multidimensionality of instruments available to the principal.

9
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