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Abstract

Decision makers, such as doctors, judges, and managers, make consequential choices based
on predictions of unknown outcomes. Do these decision makers make systematic prediction
mistakes based on the available information? If so, in what ways are their predictions system-
atically biased? Uncovering systematic prediction mistakes is difficult as the preferences and
information sets of decision makers are unknown to researchers. In this paper, I characterize
behavioral and econometric assumptions under which systematic prediction mistakes can be
identified in observational empirical settings such as hiring, medical testing, and pretrial re-
lease. I derive a statistical test for whether the decision maker makes systematic prediction
mistakes under these assumptions, and provide methods for conducting inference on the ways
in which the decision maker’s predictions are systematically biased. As an empirical illustra-
tion, I analyze the pretrial release decisions of judges in New York City, estimating that at least
20% of judges make systematic prediction mistakes about failure to appear risk given defen-
dant characteristics. Motivated by this behavioral analysis, I estimate the effects of replacing
judges with algorithmic decision rules, and find that automating decisions where systematic
prediction mistakes occur weakly dominates the status quo.
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1 Introduction
Decision makers, such as doctors, judges, and managers, must often make consequential decisions
based on predictions of unknown outcomes. For example, in deciding whether to detain a defen-
dant awaiting trial, a judge predicts what the defendant will do if released based on information
such as the defendant’s current criminal charge and prior arrest record. Are these decision makers
making systematic prediction mistakes based on this available information? If so, which decision
makers? On which decisions? And in what ways are their predictions systematically biased?

These foundational questions (e.g., Meehl, 1954; Tversky and Kahneman, 1974) have renewed
policy relevance and empirical life as machine learning based models increasingly replace or in-
form decision makers in criminal justice, health care, labor markets, and consumer finance.1 In
assessing whether such machine learning based models can improve decision-making, empirical
researchers attempt to evaluate decision makers’ implicit predictions through comparisons of their
choices against those made by predictive models.2

Yet uncovering systematic prediction mistakes from decisions is challenging as both the de-
cision maker’s preferences and information set are unknown to us. For example, we do not know
how judges assess the cost of pretrial detention. Judges may uncover useful information through
their courtroom interactions with defendants, but we do not observe these interactions. The deci-
sion maker’s choices may therefore diverge from the model not because she is making systematic
prediction mistakes, but rather she has preferences that differ from the model’s objective func-
tion or observes information that is unavailable to the model. While existing empirical research
recognizes these challenges (e.g., Kleinberg et al., 2018a; Mullainathan and Obermeyer, 2022),
it lacks a unifying econometric framework for analyzing a decision maker’s choices under weak
assumptions about their preferences and information sets.

This paper develops such an econometric framework for analyzing whether a decision maker
makes systematic prediction mistakes and to characterize how their predictions are systematically
biased. This clarifies what can (and cannot) be identified about systematic prediction mistakes
from data and empirically relevant assumptions about behavior, and maps those assumptions into

1Risk assessment tools are used in criminal justice systems throughout the United States (Stevenson, 2018; Al-
bright, 2019; Dobbie and Yang, 2019; Stevenson and Doleac, 2019; Yang and Dobbie, 2020). Clinical risk assess-
ments aid doctors in diagnostic and treatment decisions (Obermeyer and Emanuel, 2016; Beaulieu-Jones et al., 2019;
Abaluck et al., 2020; Chen et al., 2020). For applications in consumer finance, see for example Einav, Jenkins and
Levin (2013), Fuster et al. (2022), Gillis (2019), Dobbie et al. (2021), and Blattner and Nelson (2021). For discussions
of workforce analytics and resume screening software, see Autor and Scarborough (2008), Hoffman, Kahn and Li
(2018), Li, Raymond and Bergman (2020), Raghavan et al. (2020), and Frankel (2021).

2See, for example, Kleinberg et al. (2015), Chalfin et al. (2016), Chouldechova et al. (2018), Hoffman, Kahn and Li
(2018), Kleinberg et al. (2018a), Erel et al. (2019), Ribers and Ullrich (2019), Li, Raymond and Bergman (2020), Jung
et al. (2020), and Mullainathan and Obermeyer (2022). Comparing a decision maker’s choices against a predictive
model has a long tradition in psychology (e.g., Dawes, 1971, 1979; Dawes, Faust and Meehl, 1989; Camerer and
Johnson, 1997; Grove et al., 2000; Kuncel et al., 2013). See Camerer (2019) for a recent review of this literature.
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statistical inferences about systematic prediction mistakes.
I consider empirical settings, such as pretrial release, medical diagnosis, and hiring, in which a

decision maker must make decisions for many individuals based on a prediction of some unknown
outcome using each individual’s characteristics. These characteristics are observable to both the
decision maker and the researcher. The available data on the decision maker’s choices and asso-
ciated outcomes suffer from a missing data problem: the researcher only observes the outcome
conditional on the decision maker’s choices (e.g., we only observe a defendant’s behavior upon
release if a judge released them).

This paper then makes four main contributions. First, I characterize behavioral and economet-
ric assumptions under which systematic prediction mistakes can be identified in these empirical
settings. Second, under these assumptions, I provide a complete empirical characterization of
whether the decision maker’s choices reflect systematic prediction mistakes, and show how re-
searchers can statistically test whether these conditions are satisfied. Third, I provide methods
for conducting inference on the ways in which the decision maker’s predictions are systematically
biased. These contributions enable empirical researchers to answer a wide array of behavioral
questions under weak assumptions. Finally, I apply this econometric framework to analyze the
pretrial release decisions of judges in New York City as an empirical illustration.

I explore the restrictions imposed on the decision maker’s choices by expected utility maxi-
mization, which models the decision maker as maximizing some (unknown to us) utility function
at beliefs about the outcome given the characteristics as well as some private information. Due
to the missing data problem, the true conditional distribution of the outcome given the character-
istics is partially identified. The expected utility maximization model therefore only restricts the
decision maker’s beliefs given the characteristics to lie in this identified set, what I call “accurate
beliefs.” If there exists no utility function in a researcher-specified class nor any distribution of
private information that rationalizes their observed choices, I say the decision maker is making
systematic prediction mistakes based on the characteristics of individuals.

I provide a sharp empirical characterization of expected utility maximization at accurate be-
liefs over an economically rich, benchmark class of utility functions. Using this characterization,
I show that systematic prediction mistakes are untestable without further assumptions. If either
all characteristics of individuals directly affect the decision maker’s utility function or the missing
data can take any value, then any variation in the decision maker’s conditional choice probabili-
ties can be rationalized. However, placing an exclusion restriction on which characteristics may
directly affect the decision maker’s utility function and constructing informative bounds on the
missing data restores the testability of expected utility maximization behavior. Under such an
exclusion restriction, variation in the decision maker’s choices across characteristics that do not
directly affect the utility function must only arise due to variation in beliefs. The decision maker’s
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beliefs given the characteristics and her private information must further be Bayes-plausible with
respect to some distribution of the outcome given the characteristics that lies in the identified set.
Together this implies testable restrictions on the decision maker’s choices across characteristics
that do not directly affect utility. Behavioral assumptions about the decision maker’s utility func-
tion and econometric assumptions to address the missing data problem are therefore sufficient to
identify systematic prediction mistakes. Testable restrictions arise from the joint null hypothesis
that the decision maker maximizes expected utility at accurate beliefs and that their utility function
satisfies the conjectured exclusion restriction.

With this framework in place, I further establish that the data are informative about the magni-
tudes of the decision maker’s systematic prediction mistakes. I extend the behavioral model to only
require that the decision maker’s approximately maximize expected utility, meaning that they are
only within some expected utility cost of being optimal. This is a computational device to summa-
rize the extent to which the decision maker’s choices deviate from expected utility maximization at
accurate beliefs, but takes no stand on what drives the decision maker’s misoptimizations. I sharply
characterize the identified set of expected utility costs implied by the decision maker’s choices. Us-
ing this characterization, I then show the total expected utility cost to the decision maker of their
systematic prediction mistakes is the optimal value of a linear program, and the share of systematic
prediction mistakes in their decisions is the optimal value of a mixed-integer linear program.

Finally, I explore one particular mechanism for the decision maker’s misoptimization by ana-
lyzing whether the data are informative about the ways in which the decision maker’s beliefs are
systematically biased. To do so, I allow the decision maker to have possibly inaccurate beliefs
about the unknown outcome and sharply characterize the identified set of utility functions at which
the decision maker’s choices are consistent with “inaccurate” expected utility maximization.3 This
takes no stand on the behavioral foundations for the decision maker’s inaccurate beliefs, and so
it encompasses various frictions or mental gaps such as inattention to characteristics or represen-
tativeness heuristics (e.g., Sims, 2003; Handel and Schwartzstein, 2018; Gabaix, 2019). I derive
bounds on an interpretable parameter that summarizes the extent to which the decision maker’s
beliefs overreact or underreact to the characteristics of individuals. For a fixed pair of charac-
teristic values, these bounds summarize whether the decision maker’s beliefs about the outcome
vary more (“overreact”) or less than (“underreact”) the true conditional distribution of the outcome
across these values.

As an empirical illustration, I analyze the pretrial release system in New York City, in which
judges decide whether to release defendants awaiting trial based on a prediction of whether they
will fail to appear in court.4 For each judge, I observe the conditional probability that she releases

3The decision maker’s beliefs about the outcome conditional on the characteristics are no longer required to lie in
the identified set for the conditional distribution of the outcome given the characteristics.

4Several empirical papers also study the NYC pretrial release system. Leslie and Pope (2017) estimates the effects
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a defendant given a rich set of characteristics (e.g., race, age, current charge, prior criminal record,
etc.) as well as the conditional probability that a released defendant fails to appear in court. The
conditional failure to appear rate among detained defendants is unobserved due to the missing data
problem.

If all defendant characteristics may directly affect the judge’s utility function or the conditional
failure to appear rate among detained defendants may take any value, then my identification results
establish that the judge’s release decisions are always consistent with expected utility maximiza-
tion behavior at accurate beliefs. We cannot logically rule out that the judge’s release decisions
reflect either a utility function that varies richly based on defendant characteristics or sufficiently
predictive private information absent further assumptions.

However, empirical researchers often assume that while judges may engage in taste-based dis-
crimination on a defendant’s race, other defendant characteristics such as prior pretrial misconduct
history only affects judges’ beliefs about failure to appear risk. Judges in New York City are quasi-
randomly assigned to defendants, which implies bounds on the conditional failure to appear rate
among detained defendants. Given such exclusion restrictions and quasi-experimental bounds on
the missing data, my identification results establish that expected utility maximization behavior is
falsified by misrankings in the judge’s release decisions. Holding fixed defendant characteristics
that may directly affect utility (e.g., among defendants of the same race), do all released defendants
have a lower failure to appear rate than the upper bound on the failure to appear rate of all detained
defendants? If not, there is no combination of a utility function that satisfies the conjectured ex-
clusion restriction nor private information such that the judge’s choices maximize expected utility
at accurate beliefs about failure to appear risk given defendant characteristics.

By testing for such misrankings in the pretrial release decisions of individual judges, I es-
timate, as a lower bound, that at least 20% of judges in New York City from 2008-2013 make
systematic prediction mistakes about failure to appear risk based on defendant characteristics. Un-
der a range of exclusion restrictions and quasi-experimental bounds on the failure to appear rate
among detained defendants, there exists no utility function nor distribution of private information
such that the release decisions of these judges would maximize expected utility at accurate beliefs
about failure to appear risk. I further find that these systematic prediction mistakes arise because
judges’ beliefs underreact to variation in failure to appear risk based on defendant characteristics
between predictably low risk and predictably high risk defendants. Rejections of expected utility
maximization behavior at accurate beliefs are therefore driven by release decisions on defendants
at the tails of the predicted risk distribution.

of pretrial detention on criminal case outcomes. Arnold, Dobbie and Hull (2022) and Arnold, Dobbie and Hull (2020)
estimate whether judges and pretrial risk assessments respectively discriminate against black defendants. Kleinberg
et al. (2018a) studies whether a machine learning-based risk assessment could improve pretrial outcomes in New York
City.
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Finally, to highlight policy lessons from this behavioral analysis, I explore the implications of
replacing decision makers with algorithmic decision rules in the New York City pretrial release
setting. Since supervised machine learning methods are tailored to deliver accurate predictions
(Mullainathan and Spiess, 2017; Athey, 2017), such algorithmic decision rules may improve out-
comes by correcting systematic prediction mistakes. I estimate the effects of replacing judges who
were found to make systematic prediction mistakes with an algorithmic decision rule. Automating
decisions only where systematic prediction mistakes occur at the tails of the predicted risk distri-
bution weakly dominates the status quo, and can lead to up to 20% improvements in worst-case
expected social welfare, which is measured as a weighted average of the failure to appear rate
among released defendants and the pretrial detention rate. Automating decisions whenever the
human decision maker makes systematic prediction mistakes can therefore be a free lunch. Fully
replacing judges with the algorithmic decision rule, however, has ambiguous effects that depend
on the parametrization of social welfare. In fact, for some parametrizations of social welfare, I
find that fully automating decisions can lead to up to 25% reductions in worst-case expected social
welfare relative to the judges’ observed decisions.

This paper relates to a growing empirical literature that evaluates decision makers’ predictions
through either comparisons of their choices against those made by machine learning based models
(e.g., Kleinberg et al., 2018a; Mullainathan and Obermeyer, 2022) or estimating parametric, struc-
tural models of decision making behavior (e.g., Abaluck et al., 2016; Arnold, Dobbie and Hull,
2022; Chan, Gentzkow and Yu, 2022). The econometric framework in this paper only requires the
researcher to specify an exclusion restriction on which characteristics affect the decision maker’s
utility function. I otherwise flexibly model the decision maker’s utility function, allowing it to
vary arbitrarily across non-excluded characteristics. I also model the decision maker’s information
environment fully nonparametrically. This enables researchers to both identify and characterize
systematic prediction mistakes in many empirical settings under weaker assumptions than existing
research.

Most closely related is Kleinberg et al. (2018a) which directly compares the pretrial release
decisions of all judges in New York City against an estimated, machine learning based decision
rule. Viewed through the lens of my identification analysis, by comparing the pooled choices of
judges against an estimated machine learning based decision rule, Kleinberg et al. (2018a) is lim-
ited to making statements about decision making under several assumptions: first, that judges’
utility functions do not vary based on defendant characteristics; second, utility functions do not
vary across judges; and third, that private information does not vary across judges. In contrast, I
conduct my analysis judge-by-judge, allow each judge’s utility function to flexibly vary based on
defendant characteristics, allow for unrestricted heterogeneity in utility functions across judges,
and allow private information to vary arbitrarily across judges. I further characterize the magni-
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tudes of judges’ systematic prediction mistakes, and the ways in which their beliefs about failure
to appear risk are systematically biased.

The econometric framework in this paper builds on a growing literature in microeconomic the-
ory that derives the testable implications of behavioral models in state-dependent stochastic choice
(SDSC) data (e.g., Caplin and Martin, 2015; Caplin and Dean, 2015; Caplin et al., 2020). While
useful in analyzing lab-based experiments, such results have had limited applicability so far due
to the difficulty of collecting SDSC data (Gabaix, 2019; Rehbeck, 2020). I focus on common em-
pirical settings in which the data suffer from a missing data problem, and show that these settings
can approximate ideal SDSC data by using quasi-experimental variation to address the missing
data problem. Martin and Marx (2021) study the identification of taste-based discrimination by a
decision maker in a binary choice experiment, providing bounds on the decision maker’s group-
dependent threshold rule. The setting I consider nests theirs by allowing for several key features
of observational data such as missing data, multi-valued outcomes, and multiple choices.

My identification analysis follows in the spirit of the information design literature (e.g., Ka-
menica and Gentzkow, 2011; Bergemann and Morris, 2016, 2019) by asking whether there exists
any private information such that the decision maker’s choices are consistent with expected utility
maximization behavior. Several recent papers take this approach in different settings or to an-
swer different questions. Syrgkanis, Tamer and Ziani (2018) studies auctions, and Magnolfi and
Roncoroni (2021) studies entry games. Bergemann, Brooks and Morris (2019) bound the welfare
changes of counterfactuals that alter unknown information structures in both both single-agent and
multiplayer settings. Gualdani and Sinha (2020) also analyzes single-agent, discrete-choice set-
tings under weak assumptions on the decision maker’s information environment, whereas I focus
on directly testing whether choices are consistent with expected utility maximization behavior and
characterizing the uncovered violations.

2 Expected utility maximization at accurate beliefs
A decision maker makes choices for many individuals based on the prediction of an unknown
outcome using each individual’s characteristics. Under what conditions do the decision maker’s
choices maximize expected utility at some utility function, accurate beliefs given the characteris-
tics, and additional private information?

2.1 Setting and observable data
The decision maker selects a binary choice c 2 {0, 1} for each individual. Each individual is
summarized by characteristics x 2 X and an unknown outcome y

⇤ := (y⇤1, . . . , y
⇤
K) 2 Y ✓

[0, 1]K . The random vector (X,C, Y
⇤) ⇠ P (·) defined over X ⇥ {0, 1}⇥ Y summarizes the joint

distribution of the characteristics, the decision maker’s choices, and outcomes over all individuals.
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I assume throughout that the characteristics and outcome have finite support, and there exists � > 0

such that P (x) := P (X = x) � � for all x 2 X .
We observe the characteristics of each individual as well as the decision maker’s choice. There

is, however, a missing data or selective labels problem: we only observe Y
⇤ if the decision maker

selected C = 1 (Rubin, 1976; Kleinberg et al., 2018a). Defining Y := C · Y
⇤, the observable data

is the joint distribution (X,C, Y ) ⇠ P ( ·). I assume this joint distribution is known to focus on the
identification challenges in this setting. The decision maker’s conditional choice probabilities are

⇡c(x) := P (C = c | X = x) for all c 2 {0, 1} and x 2 X , (1)

and the observable conditional outcome probabilities are

P1(y
⇤
| x) := P (Y ⇤ = y

⇤
| C = 1, X = x) for all x 2 X . (2)

The conditional outcome probabilities P0(y⇤ | x) := P (Y ⇤ = y
⇤
| C = 0, X = x) is not identified

due to the missing data problem.5 The true outcome probabilities P (y⇤ | x) := P (Y ⇤ = y
⇤
| X =

x) is also not identified as a consequence.
To make this concrete, I illustrate how a large class of empirical applications, known as screen-

ing decisions, map into this setting.6

Example (Pretrial Release). A judge decides whether to detain or release defendants C 2 {0, 1}

awaiting trial (e.g., Arnold, Dobbie and Yang, 2018; Kleinberg et al., 2018a; Arnold, Dobbie and
Hull, 2022). The outcome Y

⇤ = Y
⇤
1 2 {0, 1} is whether a defendant would fail to appear in

court if released. The characteristics X summarize recorded information about the defendant
such as demographics, the current charges filed against the defendant, and the defendant’s prior
arrest/conviction record. We observe the characteristics of each defendant, whether the judge re-
leased them, and whether the defendant failed to appear in court if the judge released them. The
judge’s conditional release rate ⇡1(x) and the conditional failure to appear rate among released de-
fendants P1(y⇤ | x) are observed. The conditional failure to appear rate among detained defendants
P0(y⇤ | x) is unobserved. N

Example (Medical Testing and Diagnosis). A doctor decides whether to conduct a costly medical
test or make a particular diagnosis (e.g., Abaluck et al., 2016; Ribers and Ullrich, 2019; Chan,
Gentzkow and Yu, 2022). For example, shortly after an emergency room visit, a doctor decides

5I adopt the convention that P (Y ⇤ = y⇤ | C = c,X = x) = 0 if ⇡c(x) = 0.
6Screening decisions are a leading class of “prediction policy problems” (Kleinberg et al., 2015). Other examples

include loan approvals (e.g., Fuster et al., 2022; Dobbie et al., 2021), academic admissions (Dawes, 1979; Kleinberg
et al., 2018b), child welfare screenings (Chouldechova et al., 2018), and disability insurance screenings (e.g., Benitez-
Silva, Buchinsky and Rust, 2004; Low and Pistaferri, 2015, 2019).
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whether to conduct a stress test on patients C 2 {0, 1} to determine whether they had a heart attack
(Mullainathan and Obermeyer, 2022). The outcome Y

⇤ = Y
⇤
1 2 {0, 1} is whether the patient had

a heart attack. The characteristics X summarize recorded information about the patient such as
demographics, reported symptoms, and prior medical history. We observe the characteristics of
each patient, whether the doctor conducted a stress test, and whether the patient had a heart attack
if the doctor conducted a stress test. The doctor’s conditional stress testing rate ⇡1(x) and the
conditional heart attack rate among stress tested patients P1(y⇤ | x) are observed. The conditional
heart attack rate among untested patients P0(y⇤ | x) is unobserved. N

Example (Hiring). A hiring manager decides whether to hire job applicants C 2 {0, 1} (Autor
and Scarborough, 2008; Chalfin et al., 2016; Hoffman, Kahn and Li, 2018; Frankel, 2021).7 The
outcome Y ⇤ is a vector of on-the-job productivity measures, such as length of tenure since turnover
may be costly. The characteristics X are recorded information about the applicant such as demo-
graphics, education level, and prior work history. We observe the characteristics of each applicant,
whether the manager hired the applicant, and their on-the-job productivity if hired. The manager’s
conditional hiring rate ⇡1(x) and the conditional distribution of tenure lengths among hired ap-
plicants P1(y⇤ | x) are observed. The distribution of tenure lengths among rejected applicants
P0(y⇤ | x) is unobserved. N

The main text makes two simplifying assumptions for exposition: (i) the decision maker only
faces two choices; and (ii) the decision maker’s choice does not have a direct causal effect on
the outcome. Appendix C analyzes a more general setting in which the decision maker faces a
treatment assignment problem with multiple choices, which nests the main text as a special case.

Finally, for a finite set A, let �(A) denote the set of all probability distributions on A. For
c 2 {0, 1}, let Pc( · | x) 2 �(Y) denote the vector of conditional outcome probabilities given
choice C = c and characteristics X = x, and let P ( · | x) 2 �(Y) denote the vector of true
outcome probabilities given characteristics X = x.

2.2 Bounds on the missing data
I model assumptions about the missing data problem in the form of bounds on the unknown con-
ditional outcome probabilities.

Assumption 1. For each x 2 X , there exists a known subset Bx ✓ �(Y) satisfying P0( · | x) 2
Bx. The collection of all bounds is B = {Bx : x 2 X}.

7The setting also applies to job interview decisions (Cowgill, 2018; Li, Raymond and Bergman, 2020), where the
choice C 2 {0, 1} is whether to interview an applicant, and Y ⇤ = Y ⇤

1 2 {0, 1} is whether the applicant is hired by
the firm.
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In some cases, we may analyze the decision maker’s choices without placing any further assump-
tions on the missing data, which corresponds to setting Bx equal to the set of all conditional out-
come probabilities. In other cases, researchers may use quasi-experimental variation or introduce
additional structural assumptions to provide informative bounds on the unknown conditional out-
come probabilities, as I discuss in Section 3.

Under Assumption 1, the joint distribution (X,C, Y
⇤) ⇠ P ( ·) is partially identified. The

sharp identified set for the true outcome probabilities given x 2 X , denoted HP (P ( · | x);Bx),
equals the set of eP ( · | x) 2 �(Y) satisfying

eP (y⇤ | x) = eP0(y
⇤
| x)⇡0(x) + P1(y

⇤
| x)⇡1(x) (3)

for all y⇤ 2 Y and some eP0( · | x) 2 Bx.

2.3 Behavioral model
In this setting, I examine the restrictions placed on the decision maker’s choices by expected utility
maximization at accurate beliefs. Under this model, the decision maker’s information set for each
individual consists of their characteristics and some additional private information. For example,
doctors may learn useful information about the patient’s current health in an exam, and judges
may interact with defendants during the pretrial release hearing; but these interactions are often
not recorded. I place no distributional assumptions on the decision maker’s private information.8

The decision maker forms beliefs about the unknown outcome based on this information set and
selects a choice to maximize expected utility.

Suppose the researcher partitions the characteristics x := (x0, x1) with X = X0 ⇥ X1. The
expected utility maximization model is summarized by a utility function and a joint distribution
over the characteristics, private information, choices and outcomes, denoted (X,C, V, Y

⇤) ⇠ Q,
that satisfies three conditions.

Definition 1. A utility function u : {0, 1}⇥Y ⇥X0 ! specifies the payoff associated with each
choice-outcome pair at characteristics x0 2 X0. Let U denote the feasible set of utility functions
specified by the researcher.

Definition 2. The decision maker’s choices are consistent with expected utility maximization if
there exists a utility function u 2 U and joint distribution (X, V, C, Y

⇤) ⇠ Q satisfying

i. Expected Utility Maximization: For all c 2 {0, 1}, c0 6= c, (x, v) 2 X ⇥ V such that
8This contrasts with structural models of decision-making behavior that assume the decision maker’s information

set is summarized by some known parametric distribution. See, for example, Abaluck et al. (2016); Chan, Gentzkow
and Yu (2022) in medical diagnosis and Arnold, Dobbie and Hull (2022) in pretrial release.
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Q(c | x, v) > 0,

EQ [u(c, Y ⇤;X0) | X = x, V = v] � EQ [u(c0, Y ⇤;X0) | X = x, V = v] .

ii. Information Set: C ?? Y
⇤
| X, V under Q.

iii. Data Consistency: For all x 2 X , there exists eP0( · | x) 2 B0,x satisfying

Q(x, c, y⇤) =

8
<

:
P1(y⇤ | x)⇡1(x)P (x) if c = 1

eP0(y⇤ | x)⇡0(x)P (x) if c = 0

for all y⇤ 2 Y .

The identified set of utility functions, denoted HP (u;B) ✓ U , is the set of utility functions u 2 U

such that there exists (X, V, C, Y
⇤) ⇠ Q satisfying (i)-(iii).

The decision maker’s choices are consistent with expected utility maximization if three con-
ditions are satisfied. First, if choice c is selected with positive probability given (X, V ) under the
model Q, then it must have been optimal to do so in an expected utility sense ("Expected Utility
Maximization"). The decision maker may flexibly randomize across choices whenever they are
indifferent. Second, the decision maker’s choices must be independent of the outcome given the
characteristics and private information under the model Q ("Information Set"), formalizing the
sense in which the decision maker’s information set consists of only (X, V ). Finally, the joint
distribution of characteristics, choices and outcomes under the model Q must be consistent with
the observable joint distribution P (“Data Consistency”).9

2.3.1 Interpreting the utility exclusion restriction

The key behavioral assumption is an exclusion restriction on the decision maker’s utility func-
tion – only the characteristics X0 directly affect the decision maker’s utility function. In medical
testing and diagnosis, researchers assume that a doctor’s payoffs are constant across patients, and
patient characteristics affect beliefs about the probability of an underlying medical condition (e.g.,
Abaluck et al., 2016; Chan, Gentzkow and Yu, 2022; Mullainathan and Obermeyer, 2022). In

9The expected utility maximization model relates to recent developments on Roy-style selection (Mourifie, Henry
and Meango, 2019; Henry, Meango and Mourifie, 2020) and marginal outcome tests for taste-based discrimina-
tion (Canay, Mogstad and Mountjoy, 2020; Hull, 2021). Defining the expected benefit functions ⇤c(x, v) =
EQ [U(c, Y ⇤;X0) | X = x, V = v] for c 2 {0, 1}, the expected utility maximization model is a generalized Roy
model that assume X0 2 X0 affects both the utility function and beliefs, whereas X1 2 X and private information
V 2 V only affect beliefs. The expected utility maximization model is an “incomplete” model since it makes no
assumptions on how indifferences are resolved (e.g., Tamer, 2003).
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pretrial release, the utility function specifies a judge’s relative payoffs from detaining a defendant
that would not fail to appear in court and releasing a defendant that would fail to appear in court.
Researchers often assume these payoffs may vary based on only some defendant characteristics.
For example, judges may engage in tasted-based discrimination against black defendants (Becker,
1957; Arnold, Dobbie and Yang, 2018; Arnold, Dobbie and Hull, 2022), be more lenient towards
younger defendants (Stevenson and Doleac, 2019), or be more harsh towards defendants charged
with violent crimes (Kleinberg et al., 2018a).

Since this is a substantive economic assumption, I discuss three ways to specify such exclusion
restrictions on the decision maker’s utility function. First, as mentioned, such utility exclusion
restrictions are common in empirical research. The researcher may therefore appeal to established
modelling choices to guide this assumption. Second, the exclusion restriction may be normatively
motivated, summarizing social or legal restrictions on what characteristics ought not to directly
enter the decision maker’s utility function. Third, the researcher may conduct a sensitivity analysis,
reporting how their conclusions vary as the choice of utility exclusion restriction varies. Such a
sensitivity analysis summarizes how flexible the decision maker’s utility function must be across
characteristics to rationalize choices.

2.3.2 Accurate beliefs and systematic prediction mistakes

If Definition 2 is satisfied, then the decision maker’s implied beliefs about the outcome given the
characteristics, denoted Q( · | x) 2 �(Y), lie in the identified set for the true outcome probability
P ( · | x) as a consequence of Data Consistency.

Lemma 2.1. If the decision maker’s choices are consistent with expected utility maximization, then
Q( · | x) 2 HP (P ( · | x);Bx) for all x 2 X .

The decision maker’s implied beliefs Q( · | x) are therefore accurate in this sense if their choices
are consistent with expected utility maximization. Conversely, if the decision maker’s choices are
inconsistent with expected utility maximization, then there exists no utility function nor private
information such that their choices would maximize expected utility at any accurate beliefs in the
identified set for the true outcome probability. The decision maker in this case is acting as-if their
implied beliefs given the characteristics are systematically mistaken.

Definition 3. The decision maker is making systematic prediction mistakes based on the character-
istics if their choices are inconsistent with expected utility maximization, meaning HP (u;B) = ;.

The interpretation of a systematic prediction mistake is tied to both the researcher-specified bounds
on the missing data B (Assumption 1) and the feasible set of utility functions U (Definition 1). Less
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informative bounds on the missing data imply there are more candidate values of the missing con-
ditional outcome probabilities and, in turn, more candidate values of the true outcome probabilities
that may rationalize choices.10 A larger feasible set of utility functions U analogously implies that
expected utility maximization places fewer restrictions on behavior as the researcher is entertaining
a larger set of utility functions that may rationalize choices. Definition 3 must therefore be inter-
preted as a systematic prediction mistake that can be identified given the researcher’s assumptions
on both the missing data and the decision maker’s utility function.

3 Identifying systematic prediction mistakes in screening deci-
sions

I characterize the testable implications of expected utility maximization at accurate beliefs under
various assumptions on the decision maker’s utility function and the missing data. Over a bench-
mark class of utility functions, identifying systematic prediction mistakes requires both behavioral
assumptions on which characteristics may directly affect the decision maker’s utility function and
econometric assumptions that generate informative bounds on the unobservable conditional out-
come probabilities. Under these conditions, testing whether the decision maker’s choices are con-
sistent with expected utility maximization at accurate beliefs is equivalent to testing many moment
inequalities.

3.1 Characterization result
I derive conditions under which the decision maker’s choices are consistent with expected utility
maximization over the class of linear utility functions.

Definition 4. The class of linear utility functions is the set of utility functions satisfying u(c, y⇤; x0) =PK
k=1 u1,k(x0)y⇤kc+u0,k(x0)(1�y

⇤
k)(1�c), where u1,k(x0), u0,k(x0)  0, |u1,k(x0)+u0,k(x0)| = 1

for all x0 2 X0.

This is an economically rich class that captures many common empirical intuitions. The parameters
u1,k(x0), u0,k(x0)  0 summarize the cost of ex-post errors for each outcome – selecting C = 1

when Y
⇤
k is large and selecting C = 0 when Y

⇤
K is small respectively. It places no restrictions

on how costs vary across characteristics X0 and outcomes Y
⇤
k . In the pretrial release example,

defining Y
⇤ = Y

⇤
1 2 {0, 1} to be whether a defendant would fail to appear in court, this assumes

it is costly for the judge to detain a defendant that would not fail to appear or release a defendant
10Consider an extreme case in which P ( · | x) is partially identified under bounds Bx but point identified under

alternative bounds eBx. Under Definitions 2-3, systematic prediction mistakes at bounds eBx means that the decision
maker’s implied beliefs Q( · | x) do not equal the point identified quantity P ( · | x), yet systematic prediction mistakes
at bounds Bx means that the decision maker’s implied beliefs Q( · | x) do not lie in the identified set HP (P ( · | x);Bx).
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that would fail to appear, but places no restrictions on how these costs vary across defendant
characteristics X0, such as defendant race, age, or charge severity. If instead Y

⇤ = (Y ⇤
1 , Y

⇤
2 ) is

whether a defendant would fail to appear in court Y ⇤
1 2 {0, 1} and be re-arrested Y

⇤
2 2 {0, 1},

the class of linear utility functions also places no restriction on the relative cost of releasing a
defendant that would fail to appear versus be re-arrested u1,1(x0)/u2,1(x0). The class of linear
utility functions is therefore a useful benchmark to understand the testable implications of expected
utility maximization at accurate beliefs.

For x0 2 X0, define ⇧1(x0) := {x1 2 X1 : ⇡1(x0, x1) > 0} and ⇧0(x0) := {x1 2 X1 : ⇡0(x0, x1) > 0}.
Let Ȳ ⇤ :=

PK
k=1 Y

⇤
k , µc(x) := E[Ȳ ⇤

| C = c,X = x] for c 2 {0, 1}, and µ̄0(x) := max eP ( ·|x)2Bx
µ0(x).

Theorem 3.1. The decision maker’s choices are consistent with expected utility maximization at
some linear utility function if and only if, for all x0 2 X0,

max
x12⇧1(x0)

µ1(x0, x1)  min
x12⇧0(x0)

µ̄0(x0, x1) (4)

Otherwise, HP (u;B) = ;, and the decision maker is making systematic prediction mistakes.

Corollary 3.1. The identified set of linear utility functions HP (u;B) equals the set of all utility
functions satisfying Definition 4 and, for all x0 2 X0,

max
x12⇧1(x0)

µ1(x0, x1) 
KX

k=1

|u0,k(x0)|  min
x12⇧0(x0)

µ̄0(x0, x1). (5)

Over the class of linear utility functions, expected utility maximization requires the decision maker
to make choices according to an incomplete threshold rule based on their posterior expectation for
Ȳ

⇤. The threshold may vary across characteristics X0, and it is incomplete since it takes no stand
on how possible indifferences are resolved. The main step in the proof of Theorem 3.1 shows that
the conditional outcome probabilities summarize all possible posterior beliefs that could arise by
applying Bayes rule to any distribution of private information and accurate beliefs. A threshold
rule on their posterior beliefs is therefore observationally equivalent to a threshold rule on these
conditional outcome probabilities. The researcher’s assumptions about the missing data therefore
restrict the decision maker’s private information and implied beliefs. The inequalities (4) then
check whether any value of the conditional outcome probabilities consistent with the researcher’s
bounds (Assumption 1) could reproduce the decision maker’s choices under such a threshold rule.11

11Theorem 3.1 builds on the “no-improving action switches” inequalities, which were originally derived by Caplin
and Martin (2015) to analyze choice behavior in state-dependent stochastic choice data from experiments. The un-
known outcome and characteristics can be interpreted as a payoff-relevant state-of-the-world, and each choice is a
state-dependent lottery over payoffs u(c, y⇤;x0). Due to the missing data problem and because the decision maker’s
true payoffs are unknown, Theorem 3.1 searches over all possible beliefs and payoffs.
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In Appendix C.2, I provide a complete empirical characterization of expected utility maxi-
mization behavior for more general treatment assignment problems. Theorem 3.1 then applies this
general characterization over the class of linear utility functions in screening decisions. The key
insight underlying this general characterization is that the decision maker’s choices are consistent
with expected utility maximization if and only if a hypothetical information designer could induce
a decision maker with accurate beliefs to take the observed choices by providing additional in-
formation to them via some information structure (e.g., Bergemann and Morris, 2019; Kamenica,
2019). The information structure is the decision maker’s private information under the expected
utility maximization model. I must simultaneously check whether the information designer could
induce the observed choices at any accurate beliefs P̃ ( · | x) 2 H(P ( · | x);Bx) due to the
missing data problem, and any utility function u 2 U since the decision maker’s true payoffs are
unknown.12

3.2 When are systematic prediction mistakes identifiable?
If the inequalities in Theorem 3.1 are violated, there exists no linear utility function, private in-
formation, nor accurate beliefs at which the decision maker’s choices are consistent with expected
utility maximization. By examining cases in which these inequalities are always satisfied, I char-
acterize leading cases in which we cannot identify systematic prediction mistakes in the decision
maker’s choices under our stated assumptions.

Corollary 3.2. The decision maker’s choices are always consistent with expected utility maximiza-
tion at accurate beliefs and some linear utility function if either:

(i) all characteristics directly affect utility (i.e, X = X0) and µ1(x0)  µ̄0(x0) for all x0 2 X0;

(ii) µ̄0(x) = K for all x 2 X .

Corollary 3.2(i) highlights the necessity of placing an exclusion restriction on which charac-
teristics directly affect the decision maker’s utility function. If all characteristics directly affect
the decision maker’s utility function (i.e., X = X0), then the decision maker’s choices are con-
sistent with expected utility maximization whenever our missing data assumptions are compatible
with the decision maker observing useful private information. More precisely, if the conditional
expectation of Ȳ ⇤ given C = 0 can always be at least as large as the observed conditional expec-
tation of Ȳ ⇤ given C = 1 under the researcher’s assumptions, then a threshold rule in which the
threshold richly varies across the characteristics X0 can always be constructed that rationalizes the

12The identification problem underlying expected utility maximization therefore relates to a recent literature on
robust information design with unknown prior beliefs (e.g., Kosterina, 2022) and unknown utility functions (e.g.,
Babichenko et al., 2021). The decision maker’s initial prior beliefs and payoffs are both unknown in my identification
analysis, whereas this literature studies optimal persuasion mechanisms when only one is unknown at a time.
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decision maker’s choices. If our missing data assumptions allow for the decision maker to observe
useful private information in this weak sense, then an exclusion restriction on the decision maker’s
utility function is necessary. Unfortunately, Corollary 3.2(ii) also establishes that imposing such
an exclusion restriction alone may be insufficient to restore the identifiability of expected utility
maximization. Absent informative bounds on the unobservable conditional outcome probabilities,
the decision maker’s choices may always be rationalized by the extreme case in which the decision
maker’s private information is perfectly predictive of the unknown outcome. Identifying system-
atic prediction mistakes over the class of linear utility functions therefore requires both behavioral
assumptions that place an exclusion restriction on the decision maker’s utility function and econo-
metric assumptions that generate informative bounds on the unobservable conditional outcome
probabilities.13

Under such assumptions Theorem 3.1 provides interpretable conditions for identifying sys-
tematic prediction mistakes. At any fixed x0 2 X0, does there exist some x1 2 X1 such that the
largest possible expected value of Ȳ given C = 0 is strictly lower than the observed expected value
of Ȳ given C = 1 at some other x0

1 2 X1? If so, the decision maker could do strictly better by
raising their probability of selecting choice C = 0 at x0

1 and lowering their probability of selecting
choice C = 1 at x1 no matter her linear utility function, implied beliefs given the characteristics,
and private information. In the pretrial release example, we may suspect the judge engages in
taste-based discrimination based on defendant race. Checking whether the judge’s release deci-
sions are consistent with expected utility maximization at accurate beliefs about failure to appear
risk requires checking, among defendants of the same race, whether there exists some group of
released defendants with a higher failure to appear rate than the worst-case failure to appear rate of
some group of detained defendants among defendants. If so, the judge must be misranking defen-
dants based on failure to appear risk given their characteristics, and their choices are inconsistent
with expected utility maximization at any accurate beliefs, private information, and linear utility
function that depends arbitrarily on defendant race. Theorem 3.1 shows that these misrankings
completely characterize the joint null hypothesis that the decision maker’s choices are consistent
with expected utility maximization at accurate beliefs and some linear utility function satisfying
the conjectured exclusion restriction.

13In comparing an algorithmic decision rule against a decision maker, Kleinberg et al. (2018a) introduce “omitted
payoffs bias” to refer to the concern that the algorithm may predict an outcome different than the outcome the decision
maker bases their choices on. Corollary 3.2 highlights that even if we correctly specify the outcome Y ⇤, we still cannot
identify systematic prediction mistakes over the class of linear utility functions without utility exclusion restrictions
and informative bounds on the unobservable conditional outcome probabilities.
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3.3 Constructing bounds on the missing data
Suppose there is a randomly assigned instrument that generates variation in the decision maker’s
choice probabilities. Such instruments commonly arise, for example, through the random assign-
ment of decision makers – judges may be randomly assigned to defendants in pretrial release (e.g.,
Kling, 2006; Dobbie, Goldin and Yang, 2018; Arnold, Dobbie and Yang, 2018; Kleinberg et al.,
2018a; Arnold, Dobbie and Hull, 2022), and doctors may be randomly assigned to patients in
medical testing (Abaluck et al., 2016; Chan, Gentzkow and Yu, 2022).14

Assumption 2 (Random Instrument). Let Z 2 Z be a finite support instrument. The joint dis-
tribution (X,Z,C, Y

⇤) ⇠ P ( ·) satisfies (X, Y
⇤) ?? Z, and there exists some � > 0 such that

P (x, z) := P (X = x, Z = z) � � for all (x, z) 2 X ⇥ Z .

The conditional expectation µ0(x, z) := E[Ȳ ⇤
| C = 0, X = x, Z = z] is partially identified

under Assumption 2, denoting its sharp identified set as HP (µ0(x, z)). In the case where the
instrument arises through the random assignment of decision makers, HP (µ0(x, z)) corresponds
to sharp bounds on the conditional outcome probabilities for for a single decision maker.

Proposition 3.1. Suppose Assumption 2 holds. For any (x, z) 2 X ⇥ Z with ⇡0(x, z) > 0,
HP (µ0(x, z)) = [µ

0
(x, z), µ1(x, z)], where

µ
0
(x, z) = max

⇢
µ(x)� µ1(x, z)⇡1(x, z)

⇡0(x, z)
, 0

�
, and µ0(x, z) = min

⇢
µ(x)� µ1(x, z)⇡1(x, z)

⇡0(x, z)
, 1

�
,

where µ(x) = maxz̃2Z{µ1(x, z̃)⇡1(x, z̃)}, µ0(x) = minz̃2Z{K⇡0(x, z̃) + µ1(x, z̃)⇡1(x, z̃)}.

Proposition 3.1 follows from worst-case bounds on µ(x, z) := E[Ȳ ⇤
| X = x] (e.g., Manski, 1989,

1994) and point identification of µ1(x, z), ⇡0(x, z). Appendix E.1 extends these bounds to allow
for the instrument to be quasi-randomly assigned, which will be used in the empirical application
to pretrial release decisions in New York City.

Furthermore, under the expected utility maximization model, Assumption 2 only requires that
the decision maker’s initial beliefs given the characteristics do not depend on the instrument but
places no other behavioral restrictions.

Proposition 3.2. Suppose Assumption 2 holds. If the decision maker’s choices are consistent with
expected utility maximization at some utility function u and joint distribution (X,Z, V, C, Y

⇤) ⇠

Q, then Y
⇤
?? Z | X under Q.

14Other examples of instruments appear in empirical research. Mullainathan and Obermeyer (2022) argue that there
is quasi-random, day-of-week variation in the likelihood doctors conduct stress tests for a heart attack due to staffing
constraints. The introduction of or changes to recommended decision-making guidelines may also affect decision
makers’ choices (e.g., Albright, 2019; Abaluck et al., 2020).
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This is an immediate consequence of Definition 2. Requiring that the decision maker’s implied
beliefs be accurate imposes that the randomly assigned instrument cannot affect their beliefs about
the outcome given the characteristics. Both utility functions and private information can richly
vary with the instrument. In the pretrial release example, if all judges make choices as-if they
maximize expected utility at accurate beliefs and judges are randomly assigned to defendants, then
all judges must have the same beliefs about failure to appear risk given defendant characteristics.
Judges may still richly differ from one another in their utility functions and private information.
In this sense, these bounds do not require monotonicity.15,16 These bounds also require no form
of parametric extrapolation across decision makers (e.g., Arnold, Dobbie and Hull, 2022), which
may be sensitive to functional form assumptions when there is no “extremely lenient” value of the
instrument (i.e., ⇡0(x, z) ⇡ 0).

Using the instrumental variable bounds HP (µ0(x, z̃)), we apply Theorem 3.1 to test whether
the decision maker’s choices are consistent with expected utility maximization at accurate beliefs
and some linear utility function. The characterization reduces to a system of many moment in-
equalities.

Proposition 3.3. Suppose Assumption 2 holds, and 0 < ⇡1(x, z) < 1 for all (x, z) 2 X ⇥ Z . The
decision maker’s choices at z 2 Z are consistent with expected utility maximization at some linear
utility function if and only if, for all x0 2 X0, pairs x1, x̃1 2 X1 and z̃ 2 Z ,

µ1(x0, x1, z)� µ0,z̃(x0, x̃1, z)  0, (6)

where µ0,z̃(x, z) =
K⇡0(x,z̃)+µ1(x,z̃)⇡1(x,z̃)

⇡0(x,z)
�

µ1(x,z)⇡1(x,z)
⇡0(x,z)

.

The number of moment inequalities (6) equals |X0| · |X1|
2
· (|Z|� 1), and grows rapidly with the

support of the characteristics and instruments. In empirical applications, the number of moment
inequalities will typically be extremely large, posing a practical challenge as the number of obser-
vations in each cell of characteristics x 2 X can be extremely small.17 I return to this problem and
discuss my practical solution below in the empirical application to the NYC pretrial system.

15de Chaisemartin (2017); Frandsen, Lefgren and Leslie (2019) analyze violations of monotonicity in settings where
decision makers are randomly assigned to individuals. Allowing private information to vary across decision makers
allows for rich variation in “skill” (Chan, Gentzkow and Yu, 2022).

16Lakkaraju et al. (2017) and Kleinberg et al. (2018a) use the random assignment of decision makers to evaluate
an algorithmic decision rule C̃ by imputing P (Y ⇤ = 1 | C̃ = 1). In contrast, Proposition 3.1 constructs bounds on a
decision maker’s conditional expectation µ0(x, z).

17While there are high-dimensional moment inequality procedures such as Chernozhukov, Chetverikov and Kato
(2019) and Bai, Santos and Shaikh (2021), these require the sample analogues of the moments to be expressed as
averages of i.i.d observations and so are not directly applicable.
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4 Characterizing systematic prediction mistakes in screening
decisions

Researchers can identify systematic prediction mistakes over the class of linear utility functions
by searching for misrankings in the decision maker’s choices. By extending the expected utility
maximization model, I next show that researchers can further investigate the magnitudes of the de-
cision maker’s systematic prediction mistakes and the ways in which the decision maker’s beliefs
are systematically biased. First, I show that misrankings in the decision maker’s choices charac-
terize the expected utility cost and the share of systematic prediction mistakes in their decisions.
Second, I derive bounds on the extent to which the decision maker’s beliefs overreact or underreact
to variation in the characteristics.

4.1 Identifying the costs and share of systematic prediction mistakes
To characterize the expected utility cost and share of systematic prediction mistakes in the decision
maker’s choices, I weaken Definition 2 to only require that the decision maker’s choices approxi-
mately maximize expected utility, meaning they are within some ✏(x) � 0 of being optimal.

Definition 5. The decision maker’s choices approximately maximize expected utility at accurate
beliefs if there exists a utility function u 2 U , expected utility costs ✏(x) � 0 for all x 2 X , and
joint distribution (X, V, C, Y

⇤) ⇠ Q satisfying:

i. Approximate Expected Utility Maximization: For all c 2 {0, 1}, c0 6= c, (x, v) 2 X ⇥ V

such that Q(c | x, v) > 0,

EQ [u(c, Y ⇤;X0) | X = x, V = v] � EQ [u(c0, Y ⇤;X0) | X = x, V = v]� ✏(x).

and (ii) Information Set, (iii) Data Consistency as in Definition 2. The identified set of expected
utility costs, denoted HP (✏;B), is the set of ✏ := {✏(x) � 0: x 2 X} such that there exists u 2 U

and (X, V, C, Y
⇤) ⇠ Q satisfying (i)-(iii).

I use approximate expected utility maximization as a computational device to characterize the
extent to which the decision maker’s choices deviate from expected utility maximization at ac-
curate beliefs.18 First, notice the decision maker’s choices are always trivially consistent with
approximate expected utility maximization for large enough expected utility costs ✏(x) � 0 (i.e.,
HP (✏;B) = ;). Second, if the decision maker’s choices are consistent with expected utility max-
imization at accurate beliefs (Definition 2), then the decision maker’s choices are consistent with

18My approach therefore relates to recent work measuring violations of utility maximization behavior in consumer
demand settings (e.g., Apesteguia and Ballester, 2015; Allen and Rehbeck, 2020; Echenique, Saito and Imai, 2021).
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approximate expected utility maximization at ✏(x) = 0 for all x 2 X . Therefore, at each charac-
teristic x 2 X , the smallest ✏(x) satisfying Definition 5 summarizes how large are the violations
of expected utility maximization at accurate beliefs implied by the decision maker’s choices.

The identified set of expected utility costs ✏(x) � 0 over the class of linear utility functions is
sharply characterized by misrankings in the decision maker’s choices.

Theorem 4.1. Assume 0 < ⇡1(x) < 1 for all x 2 X . The decision maker’s choices approximately
maximize expected utility at some linear utility function and expected utility costs ✏(x) � 0 for all
x 2 X if and only if, for all pairs x = (x0, x1), x0 = (x0, x

0
1),

µ1(x)� µ0(x
0)� ✏(x)� ✏(x0)  0. (7)

The sharp identified set of expected utility costs HP (✏;B) equals the set of all ✏ = {✏(x) � 0: x 2

X} satisfying (7).

Appendix C.3 provides a complete empirical characterization of approximate expected utility max-
imization behavior for more general treatment assignment problems, and Theorem 4.1 applies
this general characterization over the class of linear utility functions in screening decisions. This
misrankings characterization of expected utility costs implies tractable characterizations of the to-
tal expected utility cost and the share of systematic prediction mistakes in the decision maker’s
choices.

4.1.1 Bounding the expected utility costs of systematic prediction mistakes

The lower bound on the expected utility cost of systematic prediction mistakes to the decision
maker is

E := min
✏

X

x2X

P (x)✏(x) s.t. ✏ 2 HP (✏;B). (8)

E summarizes how worse off is the decision maker in an expected utility sense relative to hypo-
thetical choices that correctly optimized expected utility given her information set. Notice E = 0

if and only if the decision maker’s choices are consistent with expected utility maximization at
accurate beliefs by construction. Theorem 4.1 implies E can be equivalently characterized as the
optimal value of the linear program

E =min
✏

X

x2X

P (x)✏(x) (9)

s.t. ✏(x) � 0 for all x 2 X ,

µ1(x)� µ0(x
0)� ✏(x)� ✏(x0)  0 for all pairs x = (x0, x1), x

0 = (x0, x
0
1).
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This linear program is feasible since the constraints are always satisfied, and so the optimal value
of its sample analogue bE converges to the population value by Theorem 3.5 of Shapiro (1991).
Misrankings therefore recover the sharp lower bound on the expected utility cost of systematic
prediction mistakes to the decision maker. This lower bound applies to any linear utility function,
accurate beliefs, and distribution of private information.

Since E is expressed in expected utility units, its magnitude may nonetheless be difficult to
interpret directly. In Appendix E.2, I show, for a scalar outcome Y ⇤ = Y

⇤
1 , E can be translated into

an equivalent fraction of ex-post errors that arose from the decision maker’s systematic prediction
mistakes. Given an optimal solution to (9), we can recover the decision maker’s implied linear
utility function u0,1(x0), u1,1(x0), and calculate an equivalent reduction in ex-post errors E[Y ⇤

·C]

that would produce the same expected utility cost E . In the pretrial release example, E is the
judge’s total expected utility cost of their systematic prediction mistakes about failure to appear
risk. Using the judge’s implied costs of releasing a defendant that would fail to appear in court,
E can be translated into an equivalent reduction in the fraction of defendants that are released and
fail to appear that would produce the same expected utility cost.

4.1.2 Bounding the share of systematic prediction mistakes

The identified set of expected utility costs further characterizes the share of systematic prediction
mistakes in the decision maker’s choices. I define a subset of characteristics XR ✓ X to be
rationalizable at accurate beliefs if there exists a utility function u 2 U and joint distribution
(X, V, C, Y

⇤) ⇠ Q satisfying Definition 2 only over x 2 XR. The largest rationalizable subset XR

of characteristics is defined as

XR := arg max
XR✓X

X

x2XR

P (x) s.t. XR is rationalizable at accurate beliefs, (10)

and the share of rationalizable decisions is P (XR) :=
P

x2XR
P (x). That is, XR is the largest sub-

set of decisions for which there exists some utility function, accurate beliefs, and private informa-
tion that could rationalize the decision maker’s choices. Notice if the decision maker’s choices are
consistent with expected utility maximization at accurate beliefs, then XR = X and P (XR) = 1.
Furthermore, by definition, the decision maker’s choices are not rationalizable at accurate beliefs
for any XR [ X̃ with X̃ ✓ X � XR. The share of systematic prediction mistakes in the decision
maker’s choices is therefore given by 1� P (XR).

Theorem 4.1 implies that the share of systematic prediction mistakes can be equivalently char-
acterized by the optimal value of the following optimization program.

Theorem 4.2. The share of systematic prediction mistakes in the decision maker’s choices satisfies
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1� P (XR) = �, where

� :=min
✏

X

x2X

P (x)1{✏(x) > 0} (11)

s.t. ✏(x) � 0 for all x 2 X ,

µ1(x)� µ0(x
0)� ✏(x)� ✏(x0)  0 for all pairs x = (x0, x1), x

0 = (x0, x
0
1).

Appendix E.3 further shows that (11) is equivalent to a mixed-integer linear program, which can be
solved accurately using modern optimization solvers. The decision maker’s misrankings therefore
additionally recover the share of systematic prediction mistakes in the decision maker’s choices.

4.2 Bounding inaccurate beliefs based on characteristics
Not only can we summarize the magnitudes of the decision maker’s systematic prediction mis-
takes, I next show that we can further investigate the ways in which the decision maker’s beliefs
are systematically biased. Since the definition of expected utility maximization required that the
decision maker act as-if their beliefs were accurate (Lemma 2.1), misrankings may indicate that the
decision maker’s beliefs are inaccurate – that is, their implied beliefs do not lie in the identified set
HP (P ( · | x);Bx). This is a common behavioral hypothesis in empirical applications. Empirical
researchers conjecture that judges may systematically mis-predict failure to appear risk based on
defendant characteristics, and the same concern arises in analyses of medical decisions.19

To investigate whether the decision maker’s choices maximize expected utility at inaccurate
beliefs, I modify “Data Consistency” in Definition 2.

Definition 6. The decision maker’s choices are consistent with expected utility maximization at
inaccurate beliefs if there exists some utility function u 2 U and joint distribution (X, V, C, Y

⇤) ⇠

Q satisfying (i) Expected Utility Maximization, (ii) Information Set as in Definition 2, and

iii. Data Consistency with Inaccurate Beliefs: For all x 2 X , there exists eP0( · | x) 2 Bx such
that, for all y⇤ 2 Y ,

Q(c | y⇤, x) eP (y⇤ | x)Q(x) =

8
<

:
P1(y⇤ | x)⇡1(x)P (x) if c = 1

eP0(y⇤ | x)⇡0(x)P (x) if c = 0,

where eP (y⇤ | x) = P1(y⇤ | x)⇡1(x) + eP0(y⇤ | x)⇡0(x).
19Kleinberg et al. (2018a) write, “a primary source of error is that all quintiles of judges misuse the signal available

in defendant characteristics available in our data” (pg. 282-283). In the medical treatment setting, Currie and Macleod
(2017) write, “we are concerned with doctors, who for a variety of possible reasons, do not make the best use of the
publicly available information at their disposal to make good decisions” (pg. 5).
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Definition 6 drops the restriction that the decision maker’s implied beliefs must lie in the identified
set for the true outcome probabilities. It only requires that the joint distribution (X, V, C, Y

⇤) ⇠ Q

under the model matches the joint distribution of the observable data (X,C, Y ) ⇠ P if the decision
maker’s model-implied beliefs, Q( · | x), are replaced with some true outcome probabilities in the
identified set, eP ( · | x) 2 HP (P ( · | x);Bx). Since it places no direct restrictions on the decision
maker’s implied prior beliefs Q( · | x), behavior consistent with expected utility maximization at
inaccurate beliefs could arise from various behavioral mechanisms.20

The next result characterizes whether the decision maker’s observed choices are consistent
with expected utility maximization at inaccurate beliefs and some linear utility function.

Theorem 4.3. Assume eP ( · | x) > 0 for all eP ( · | x) 2 HP (P ( · | x);Bx), x 2 X and 0 < ⇡1(x) <

1 for all x 2 X . The decision maker’s choices are consistent with expected utility maximization at
inaccurate beliefs and some linear utility function if and only if there exists eP0( · | x) 2 B0,x and
non-negative weights !(y⇤; x) satisfying, for all x0 2 X0,

max
x̃12⇧1(x0)

E eP [!1(Y
⇤;X)Ȳ ⇤

| C = 1, X = (x0, x̃1)]  min
x̃12P0(x0)

E eP [!0(Y
⇤;X)Ȳ ⇤

| C = 0, X = (x0, x̃1)]

and, for all x 2 X , E eP [!(Y
⇤;X) | X = x] = 1, where !1(y⇤; x) = !(y⇤; x)/E eP [!(Y

⇤;X) |

C = 1, X = x], !0(y⇤; x) = !(y⇤; x)/E eP [!(Y
⇤;X) | C = 0, X = x] and E eP [·] is the expectation

under the joint distribution under (X,C, Y
⇤) ⇠ eP ( ·) defined as

eP (x, c, y⇤) =

8
<

:
P1(y⇤ | x)⇡1(x)P (x) if c = 1,

eP0(y⇤ | x)⇡1(x)P (x) if c = 0.

The weights !(y⇤; x) are the likelihood ratio of the decision maker’s implied beliefs relative to
some conditional distribution of the outcomes given the characteristics in the identified set. Since
the decision maker’s prediction mistakes only arise from misspecification of beliefs QY ⇤( · | x),
her posterior beliefs under the model are proportional to the likelihood ratio between her beliefs
and the underlying outcome distribution. Since expected utility maximization over the class of
linear utility functions is equivalent to a threshold rule on the decision maker’s posterior expecta-
tion for Ȳ ⇤, expected utility maximization at inaccurate beliefs and some linear utility function is
therefore equivalent to a threshold rule on this reweighed conditional expectation. Theorem 4.3
shows that these misrankings at the reweighed conditional expectations completely characterize
expected utility maximization at inaccurate beliefs and some linear utility function.

20For example, Definition 6 is consistent with decision maker’s implied beliefs being inaccurate due to inattention
to the characteristics (e.g., Sims, 2003; Gabaix, 2014; Caplin and Dean, 2015) or use of representativeness heuristics
(e.g., Gennaioli and Shleifer, 2010; Bordalo et al., 2016; Bordalo, Gennaioli and Shleifer, 2021). Developing formal
tests for these specific behavioral mechanisms in observational settings is beyond the scope of this paper.

22



4.2.1 Bounding inaccurate beliefs for a binary outcome

For a screening decision with a binary outcome Y
⇤ = Y

⇤
1 2 {0, 1}, Theorem 4.3 implies a bound

on the extent to which the decision maker’s beliefs given the characteristics overreact or underreact
to variation in the characteristics. As a first step, the same intuition underlying Theorem 4.3 can be
used to bound the decision maker’s reweighted utility function !(y⇤; x)u(c, y⇤; x0) in a screening
decision with a binary outcome.

Theorem 4.4. Consider a binary outcome Y
⇤ = Y

⇤
1 2 {0, 1}, and assume 0 < ⇡1(x) < 1 for all

x 2 X . Suppose the decision maker’s choices are consistent with expected utility maximization
at inaccurate beliefs and some linear utility function at eP ( · | x) 2 HP (P ( · | x);Bx) satisfying
0 < eP (1 | x) < 1 for all x 2 X . Then, there exists non-negative weights !(y⇤; x) � 0 satisfying,
for all x 2 X ,

P1(1 | x) 
!(0; x)u0,1(x0)

!(0; x)u0,1(x0) + !(1; x)u1,1(x0)
 P 0(1 | x), (12)

where !(y⇤; x) = Q(y⇤ | x, )/ eP (y⇤ | x) and Q(y⇤ | x), eP (y⇤ | x) are given in Definition 6.

Define �(x) := Q(1|x)/Q(0|x)
eP (1|x)/ eP (0|x) to be the relative odds ratio of the outcome under the decision

maker’s beliefs relative to the true conditional distribution, and ⌧(x) := !(0;x)u0,0(x0)
!(0;x)u0,0(x0)+!(1;x)u1,1(x0)

to be the decision maker’s reweighed utility threshold. If the reweighed utility threshold were
known, then the decision maker’s implied prediction mistake �(x) could be backed out.

Corollary 4.1. Under the same conditions as Theorem 4.4, for any x0 2 X0 and x1, x
0
1 2 X1,

(1� ⌧(x0, x1))/⌧(x0, x1)

(1� ⌧(x0, x
0
1))/⌧(x0, x

0
1)

=
�(x0, x1)

�(x0, x
0
1)
. (13)

The ratio �(x0, x1)/�(x0, x
0
1) summarizes the extent to which the decision maker’s beliefs over-

react or underreact to variation in the characteristics relative to the true conditional distribution. By
definition, if �(x0, x1)/�(x0, x

0
1) is less than one, then the decision maker’s beliefs about the rel-

ative probability of Y
⇤
1 = 1 versus Y

⇤
1 = 0 (i.e., Q(1 | x)/Q(0 | x)) varies less across the

characteristics (x0, x1) and (x0, x
0
1) than the true outcome probabilities. The decision maker’s im-

plied beliefs therefore underreact across these characteristics. Analogously if �(x0, x1)/�(x0, x
0
1)

is strictly greater than one, then the decision maker’s implied beliefs overreact across the charac-
teristics in this relative sense.21 Since Theorem 4.4 provides an identified set for the reweighted

21The parameter �(x0,x1)
�(x0,x0

1)
summarizes how relative changes in the decision maker’s beliefs compare to relative

changes in the true outcome probabilities. As an example, suppose eP (1 | x0, x1) = 4/5, eP (1 | x0, x0
1) = 1/5 and
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utility thresholds, an identified set for the implied prediction mistake �(x0, x1)/�(x0, x
0
1) can in

turn be constructed by computing the ratio (13) for each pair ⌧(x0, x1), ⌧(x0, x
0
1) satisfying (12).

These bounds on the extent to which the decision maker’s beliefs overreact or underreact are
obtained only by assuming that the decision maker’s linear utility function satisfy the conjectured
exclusion restriction. Under such an exclusion restriction, variation in the decision maker’s choices
across excluded characteristics must only arise due to variation in beliefs. Examining how condi-
tional outcome probabilities vary across characteristics relative to the decision maker’s choices is
therefore informative about the decision maker’s systematic prediction mistakes. For this reason,
utility exclusion restrictions are sufficient to partially identify the extent to which variation in the
decision maker’s beliefs are biased.22

5 Do pretrial release judges make systematic prediction mis-
takes?

As an empirical illustration, I apply this econometric framework to analyze the pretrial release
decisions of judges in New York City. I find that at least 20% of judges in New York City make
systematic prediction mistakes in their pretrial release decisions. Under various exclusion restric-
tions on their utility functions, their pretrial release decisions are inconsistent with expected utility
maximization at accurate beliefs about failure to appear risk given defendant characteristics. Rejec-
tions of expected utility maximization at accurate beliefs are driven primarily by release decisions
on defendants at the tails of the predicted risk distribution, and arise because their implied beliefs
systematically underreact to defendant characteristics.

5.1 Pretrial release decisions in New York City
I analyze the pretrial release system in New York City, which has been previously studied in Leslie
and Pope (2017), Kleinberg et al. (2018a) and Arnold, Dobbie and Hull (2022). The NYC pretrial
system is an ideal setting to apply this econometric framework for three reasons. First, as discussed
in Kleinberg et al. (2018a), the NYC pretrial system narrowly asks judges to only consider failure
to appear risk in deciding whether to release a defendant. I initially define the outcome Y

⇤ =

the decision maker’s beliefs are Q(1 | x0, x1) = 2/3, Q(1 | x,x0
1) = 1/3. The true odds ratios are

eP (1|x0,x1)
eP (0|x0,x1)

= 4,
eP (1|x0,x

0
1)

eP (0|x0,x0
1)

= 1/4. The decision maker’s perceived odds ratio are Q(1|x0,x1)
Q(0|x0,x1)

= 2, Q(1|x0,x
0
1)

Q(0|x0,x0) = 1/2. The implied

prediction mistake �(x0,x1)
�(x0,x0

1)
equals 1/4. If instead Q(1 | x0, x1) = 3/4, Q(1 | x0, x0

1) = 3/7, then the decision

maker’s perceived odds ratios would equal 3, 3/4 at characteristics (x0, x1), (x0, x0
1) respectively, but �(x0,x1)

�(x0,x0
1)

again
equals 1/4 even though the decision maker’s beliefs differ.

22This result relates to Proposition 1 in Martin and Marx (2021), which shows that utilities and prior beliefs are not
separately identified in state-dependent stochastic choice environments (see also Bohren et al. (2020)). These negative
results arise because previous authors exclusively focused on settings in which there are no additional characteristics
of decisions beyond those which affect both utility and beliefs.

24



Y
⇤
1 2 {0, 1} to be whether the defendant would fail to appear in court if released, and explore the

robustness of my empirical findings to alternative outcomes.23 Second, the NYC pretrial release
system is one of the largest in the country, and consequently I observe many judges making a large
number of pretrial release decisions. Finally, judges in New York City are quasi-randomly assigned
to cases within court-by-time cells, which implies bounds on the conditional failure to appear rate
among detained defendants.

I observe all arrests made in New York City between November 1, 2008 and November 1,
2013. This contains information on 1,460,462 cases, of which 758,027 cases were subject to a
pretrial release decision.24 I apply additional sample restrictions to construct the main estimation
sample, which consists of 569,256 cases heard by 265 unique judges.25 I test whether each of
the top 25 judges that heard the most cases make systematic prediction mistakes about failure to
appear risk in their pretrial release decisions. These top 25 judges altogether heard 243,118 cases
in the main estimation sample, and each judge heard at least 5,000 cases.

For each case, I observe demographic information about the defendant such as their race, gen-
der, and age, the current charges filed, their criminal record, and their record of pretrial misconduct.
I observe a unique identifier for the judge assigned to each defendant, and whether the assigned
judge released or detained the defendant.26 If the defendant was released, I observe whether the
defendant either failed to appear in court or was re-arrested for a new crime.

Online Supplement Table S1 provides descriptive statistics about the main estimation sample
and the cases heard by the top 25 judges. Overall, 72.0% of defendants are released in the main
estimation sample, whereas 73.6% of defendants assigned to the top 25 judges were released. De-
fendants in the main estimation sample are similar on demographic information and current charge
information to defendants assigned to the top 25 judges. However, defendants assigned to the top
25 judges have less extensive prior criminal records. Online Supplement Table S2 reports the same
descriptive statistics broken out by whether the defendant was released or detained, revealing that
judges appear to respond to defendant characteristics in their release decisions. Among defendants

23In Online Supplement H.3, I instead define the binary outcome to be whether the defendant would either fail to
appear in court or be re-arrested, finding similar results.

24I construct the set of arrests subject to a pretrial release decision as in Kleinberg et al. (2018a), removing (i) desk
appearance tickets, (ii) cases disposed at arraignment, and (iii) cases adjourned in contemplation of dismissal, and (iv)
duplicate cases.

25I exclude: (i) cases involving non-white and non-black defendants; (ii) cases assigned to judges with fewer than
100 cases; and (iii) cases heard in a court-by-time cell in which there were fewer than 100 cases or only one unique
judge, where a court-by-time cell is defined at the assigned courtroom by shift by day of week by month by year level.

26Judges in New York City decide whether to release a defendant without conditions (“release on recognizance”),
require the defendant to post a chosen amount of bail, or deny bail altogether. Following Kleinberg et al. (2018a);
Arnold, Dobbie and Hull (2022), I collapse these choices into the binary decision of whether to release or detain. In
Online Supplement H.4 extends the empirical analysis and finds that at least 32% of judges make decisions that are
inconsistent with expected utility maximization at accurate beliefs about the ability of defendants to post a specified
bail amount and failure to appear risk.
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assigned to the top 25 judges, released and detained defendants differ demographically: 50.8% of
released defendants are white and 19.7% are female, whereas only 40.7% of detained defendants
are white and only 10.6% are female. Released and detained defendants also differ on their current
charge and criminal record. For example, only 28.8% of defendants released by the top 25 judges
face a felony charge, yet 58.6% of detained defendants face a felony charge.

I test whether the release decisions of judges in New York City maximize expected utility at
accurate beliefs about failure to appear risk given defendant characteristics at some linear utility
function and private information. I test whether there exists misrankings in their decisions as-
suming that either (i) no defendant characteristics, (ii) the defendant’s race, (iii) the defendant’s
race and age, or (iv) the defendant’s race and charge severity (felony vs. misdemeanor) directly
affect the judges’ utility function. I discretize age into young and older defendants, where older
defendants are those older than 25 years.

5.2 Dimension reduction using out-of-sample prediction
As mentioned earlier, a key practical challenge in testing whether judges’ release decisions sat-
isfy Proposition 3.3 is that the number of moment inequalities is large, and as a consequence the
number of observations per characteristic cell is extremely small. For example, discretizing all
demographic information (e.g., race, age, gender), all current charge information, the prior crim-
inal record, and prior history of pretrial misconduct into binary values produces 134,062 unique
characteristic cells with on average 4.24 cases per characteristic cell in the main estimation sample.
Focusing only on the judge that heard the most cases over the sample period, there are on average
only 1.87 cells per characteristic cell .

To deal with this practical challenge, I instead test whether there are implied misrankings in
the judges’ decisions over a coarsened partition of the characteristics. Formally, define D : X !

{1, . . . , Nd} to be some partition of the characteristics into level sets {x : D(x) = d}. By iterated
expectations, if a judge’s choices are consistent with expected utility maximization at accurate
beliefs and some linear utility function, then there must be no misrankings in their decisions over
the partition D( ·). Now let µc(x0, d) := E[Ȳ ⇤

| C = c,X0 = x0, D(X) = d] and ⇡c(x0, d) :=

P (C = c | X0 = x0, D(X) = d) for c 2 {0, 1}.

Proposition 5.1. If the decision maker’s choices are consistent with expected utility maximization
at accurate beliefs and some linear utility function, then, for all x0 2 X0

max
d2D1(x0)

µ1(x0, d)  min
x2D0(x0)

µ0(x0, d), (14)

where D1(x0) := {d : ⇡1(x0, d) > 0} and D0(x0) := {d : ⇡0(x0, d) > 0}.

Provided Nd ⌧ |X1|, the number of moment inequalities implied (14) is drastically reduced,
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and can be tested using standard moment inequality methods that rely on an asymptotic normal
approximation to the sample moments (Canay and Shaikh, 2017; Molinari, 2020). WSearching
for misrankings over the coarsened characteristics provides a valid falsification test of whether the
decision maker’s choices are consistent with expected utility maximization at accurate beliefs.

The choice of D( ·) is clearly crucial for the power of this falsification test to detect violations
of expected utility maximization at accurate beliefs. I argue that a natural choice is to construct
D( ·) using supervised machine learning methods that predict the outcome Ȳ

⇤ on the pretrial re-
lease decisions of other judges. Given an estimated prediction function f̂ : X ! [0, K], D( ·) can
be defined by binning the characteristics X into percentiles of predicted risk within each x0 2 X0.27

Provided the prediction function f̂( ·) performs well out-of-sample in the sense that it equals the
true conditional expectation µ(x) := E[Ȳ ⇤

| X = x] and the excluded characteristics X1 only
enter the decision maker’s information set through their initial beliefs, then the inequalities in
Proposition 5.1 continue to sharply characterize expected utility maximization at accurate beliefs.

Proposition 5.2. Assume f̂(x) = µ(x) := E[Ȳ ⇤
| X = x], D(x) is defined as the level sets of

f̂(x), and that µ(X) is sufficient for the decision maker’s private information and tie-breaking rule,
meaning V | {Y

⇤
, X0, X1} ⇠ V | {Y

⇤
, X0, µ(X)} and C | {V,X0, X1} ⇠ C | {V,X0, µ(X)}

under Q. Then the decision maker’s choices are consistent with expected utility maximization at
some linear utility function if and only if, for all x0 2 X0, (14) is satisfied.

Proposition 5.2 provides a novel connection between out-of-sample prediction and identification
in analyzing systematic prediction mistakes under the additional behavioral assumption that the
excluded characteristics X1 only enter the decision maker’s information set through their initial
beliefs. Under this behavioral assumption, the excluded characteristics X1 only affect the decision
maker’s beliefs through the true conditional expectation µ

⇤(x), and so the extent to which the
inequalities in (14) are non-sharp is therefore driven by how well the estimated prediction function
recovers µ⇤(x).

In Appendix D, I show that the earlier characterizations of the expected utility cost of sys-
tematic prediction mistakes, the share of systematic prediction mistakes, and bounds on the deci-
sion maker’s inaccurate beliefs retain intuitive interpretations after this coarsening step. Over the
coarsening, we can recover a lower bound on the worst-case expected utility cost and worst-case
share of systematic prediction mistakes respectively. The implied prediction mistake across values
D(X) = d,D(X) = d

0, denoted by �(x0, d)/�(x0, d
0), measures how the decision maker’s implied

beliefs of their own ex-post mistakes vary relative to the true probability of ex-post mistakes across
27There may already exist a benchmark risk score. In pretrial release systems, the widely-used Public Safety As-

sessment summarizes observable defendant characteristics into an integer-valued risk score (e.g., Stevenson, 2018;
Albright, 2019). In medicine, commonly used risk assessments summarize observable patient characteristics into an
integer-valued risk score (e.g., Obermeyer and Emanuel, 2016; Lakkaraju and Rudin, 2017).
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values D(X) = d,D(X) = d
0.

In my empirical analysis of the NYC pretrial system, I apply these results by constructing a
partition of the characteristics X 2 X . I predict failure to appear risk among defendants released
by all other judges within each value of the payoff-relevant characteristics x0 2 X0, defined as
either race-by-age cells or race-by-felony charge cells, and partition the characteristics into deciles
of predicted risk within each value x0 2 X0. The prediction function is an ensemble that averages
the predictions of an elastic net model and a random forest.28 Over defendants released by the top
25 judges, the ensemble model achieves an area under the receiver operating characteristic (ROC)
curve, or AUC, of 0.693 when the payoff-relevant characteristics are defined as race-by-age cells
and an AUC of 0.694 when the payoff relevant characteristics are defined as race-by-felony charge
cells. Both achieve similar performance on released black and white defendants.

5.3 Constructing bounds through the quasi-random assignment of judges
Judges in New York City are quasi-randomly assigned to cases within court-by-time cells defined at
the assigned courtroom by shift by day of week by month by year level.29 To verify quasi-random
assignment, I conduct balance checks that regress a measure of judge leniency on a rich set of
defendant characteristics as well as court-by-time fixed effects that control for the level at which
judges are as-if randomly assigned to cases. I measure judge leniency using the leave-one-out
release rate among all other defendants assigned to a particular judge (Dobbie, Goldin and Yang,
2018; Arnold, Dobbie and Yang, 2018; Arnold, Dobbie and Hull, 2022). I conduct these balance
checks separately within each payoff-relevant characteristic cell (defined by race-by-age cells or
race-by-felony-charge cells), reporting the coefficient estimates in Online Supplement Tables S3-
S4. In each subsample, the estimated coefficients are economically small in magnitude. A joint
F-test fails to reject the null hypothesis of quasi-random assignment for the pooled main estimation
sample and for all subsamples, except for young black defendants.

I use the quasi-random assignment of judges to construct bounds on the failure to appear rate
among defendants detained by each judge in the top 25.30 I group judges into quintiles of leniency
based on the constructed leniency measure, and define the instrument Z 2 Z to be the leniency
quintile of the assigned judge. Applying the results in Appendix E.1, the bound on the failure to
appear rate among defendants with X0 = x0, D(X) = d for a particular judge using leniency

28I use three-fold cross-validation to tune the penalties for the elastic net model. The random forest is constructed
using the R package ranger at the default hyperparameter values (Wright and Ziegler, 2017).

29There are two relevant features that suggest judges are as-if randomly assigned to cases in NYC. First, bail judges
are assigned to shifts in each of the five county courthouses in NYC based on a rotation calendar system. Second,
there is limited scope for public defenders or prosecutors to influence which judge will decide any particular case. See
Kleinberg et al. (2018a); Arnold, Dobbie and Hull (2022) for further discussion.

30Online Supplement H.2 alternatively assumes that the failure to appear rate among detained defendants can be
no greater than some chosen constant times the observed failure to appear rate among released defendants. I find
qualitatively similar results using this alternative bounding strategy.
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quintile z̃ 2 Z depends on quantities E[P (C = 1, Y ⇤
1 = 1 | X0 = x0, D(X) = d, Z = z̃, T ) |

X0 = x0, D(X) = d] and E[P (C = 0 | X0 = x0, D(X) = d, Z = z̃, T ) | X0 = x0, D(X) = d],
where T 2 T denotes the court-by-time cells and the expectation averages over all cases assigned
to this particular judge. I model the conditional probabilities as

1{C = 1, Y ⇤
1 = 1} =

X

x0,d,z

�
c,y⇤1
x0,d,z

1{X0 = x0, D(X) = d, Z = z}+ �t + ✏ (15)

1{C = 0} =
X

x0,d,z

�
c
x0,d,z1{X0 = x0, D(X) = d, Z = z}+ �t + ⌫, (16)

over all cases in the main estimation sample, where �t are court-by-time fixed effects. I estimate
the relevant quantities by adding the estimated coefficients �̂

c
x0,d,z̃, �̂

c,y⇤

x0,d,z̃
to the average of the

respective fixed effects associated with cases heard by the judge within each (x0, d)-cell.

Figure 1: Failure to appear rate among released defendants and bound on the failure to appear rate among
detained defendants by race-and-age cells for one judge in New York City.

Notes: This figure plots the failure to appear rate among released defendants (orange, circles) and the bounds on the
failure to appear rate among detained defendants based on the judge leniency instrument (blue, triangles) at each decile
of predicted failure to appear risk and race-by-age cell for the judge that heard the most cases in the main estimation
sample. See Section 5.3 for further estimation details on these bounds.

Figure 1 plots the failure to appear rate among defendants released by the judge that heard the
most cases and the upper bound on the failure to appear rate among detained defendants associated
with the most lenient quintile of judges at each decile of predicted risk for each race-by-age cell.
Testing whether this judge’s pretrial release decisions are consistent with expected utility maxi-
mization at accurate beliefs about failure to appear risk involves checking whether, holding fixed
characteristics that directly affect the utility function, all released defendants have a lower proba-
bility of failing to appear in court (orange, circles) than the upper bound on the failure to appear
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rate of all detained defendants (blue, triangles). Figure A1 plots for each race-by-felony cell.31

5.4 What fraction of judges make systematic prediction mistakes?
By constructing the failure to appear rate among released defendants and the upper bound on the
failure to appear rate among detained defendants as in Figure 1 for each judge in the top 25, I
test whether there exist misrankings in their release decisions across deciles of predicted failure to
appear risk (Proposition 5.1). The number of true rejections of these inequalities provides a lower
bound on the number of judges whose choices are inconsistent with the joint null hypothesis that
they are maximizing expected utility at accurate beliefs about failure to appear risk and some linear
utility functions satisfying the conjectured exclusion restriction.

I test the moment inequalities that compare the failure to appear rate among released defen-
dants in the top half of the predicted failure to appear risk distribution against the bounds on the
failure to appear rate among detained defendants in the bottom half of the predicted failure to
appear risk distribution. I estimate the variance-covariance matrix of the failure to appear rates
among released defendants and upper bounds on the failure to appear rate among detained de-
fendants using the bootstrap conditional on the payoff-relevant characteristics X0, predicted risk
decile D(X) and leniency instrument Z. I use the conditional least-favorable hybrid test developed
in Andrews, Roth and Pakes (2019) since it is computationally fast given the estimated moments
and the variance-covariance matrix, and has desirable power properties (Rambachan and Roth,
2020).

Table 1: Estimated fraction of judges whose release decisions are inconsistent with expected utility maxi-
mization at accurate beliefs about failure to appear risk given defendant characteristics.

Utility Functions u(c, y⇤; x0)
No Characteristics Race Race + Age Race + Felony Charge

Unadjusted Rejection Rate 48% 48% 48% 56%
Adjusted Rejection Rate 24% 24% 20% 32%

Notes: This table summarizes the results for testing whether there exists misrankings in the release decisions of each
judge in the top 25 at linear utility functions u(c, y⇤;x0) that (i) do not depend on any defendant characteristics,
(ii) depend on the defendant’s race, (iii) depend on both the defendant’s race and age, and (iv) depend on both the
defendant’s race and whether the defendant was charged with a felony offense. The unadjusted rejection rate reports
the fraction of judges in the top 25 whose pretrial release decisions violate the inequalities in Proposition 5.1 at the 5%
level. The adjusted rejection rate reports the fraction of rejections after a multiple hypothesis testing correction that
controls the family-wise error rate at the 5% level.

Table 1 summarizes the results from testing whether there exists misrankings in the release
decisions of each judge in the top 25 under various exclusion restrictions. After a multiple hy-

31Online Supplement H.2 reports findings using an alternative empirical strategy that bounds the conditional failure
to appear rate among detained defendants using the observed failure to appear rate among released defendants.
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pothesis testing correction that controls the family-wise error rate at the 5% level, the inequalities
in Proposition 5.1 are rejected for at least 20% of judges. This is interpreted as a 95% lower
bound on the number of true rejections of the misranking inequalities among the top 25 judges.32

When both race and age are allowed to directly affect judges’ preferences, violations imply that
the judge’s release decisions could not have been generated by any possible discrimination based
on the defendant’s race and age, any accurate beliefs about failure to appear risk nor variation in
private information across defendants. This test allows each judge’s utility function to flexibly vary
based on defendant characteristics, allows for unrestricted heterogeneity in utility functions across
judges, and allows for private information to vary arbitrarily across judges.

5.5 Bounding prediction mistakes based on defendant characteristics
Given that a large fraction of judges make pretrial release decisions that are inconsistent with
expected utility maximization at accurate beliefs about failure to appear risk, I next investigate the
ways in which their beliefs are systematically biased. I apply the identification results in Section
4.2 to bound the extent to which these judges’ implied beliefs overreact or underreact to predictable
variation in failure to appear risk based on defendant characteristics.

For each judge whose choices exhibit misrankings, I construct a 95% confidence interval for
their implied prediction mistakes �(x0, d)/�(x0, d

0) between the top decile d and bottom decile d0 of
the predicted failure to appear risk distribution. To do so, I first construct a 95% joint confidence set
for the reweighted utility thresholds ⌧(x0, d), ⌧(x0, d

0) at the bottom and top deciles of the predicted
failure to appear risk distribution using test inversion based on Theorem 4.4, and then calculate
(1�⌧(x0,d))/⌧(x0,d)
(1�⌧(x0,d0))/⌧(x0,d0)

for each pair ⌧(x0, d), ⌧(x0, d
0) in the joint confidence set as in Corollary 4.1.

Figure 2 plots the constructed confidence intervals for the implied prediction mistakes �(x0, d)/�(x0, d
0)

for each judge over the race-and-age cells. Figure A2 reports for race-and-felony charge cells.33

Whenever informative, the confidence intervals highlighted in orange lie everywhere below one,
indicating that these judges’ are acting as-if their implied beliefs about failure to appear risk under-
react to predictable variation in failure to appear risk. These judges are acting as-if they perceive
the change in failure to appear risk between defendants in the top decile and bottom decile of
predicted risk to be lass then true change in failure to appear risk across these defendants. This
could be consistent with judges “regularizing” how their implicit predictions of failure to appear
risk respond to variation in the characteristics across these extreme defendants, and may therefore
be suggestive of some form inattention (Handel and Schwartzstein, 2018; Gabaix, 2019). While

32For m null hypotheses, let k be the number of false null hypotheses and let k̂ be the number of rejections of
a procedure controlling the family-wise error rate at the ↵-level. Observe P (k̂  k) = 1 � P (k̂ > k). Since
{k̂ > k} ✓ {at least one false rejection}, P (k̂ > k)  P (at least one false rejection), implying P (k̂  k) � 1 �

P (at least one false rejection) � 1� ↵.
33Online Supplement H shows that judges’ implied beliefs underreact to variation in the latent outcome using

alternative bounds on the missing data and alternatively defining the latent outcome to be any pretrial misconduct.
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Figure 2: Estimated bounds on implied prediction mistakes between lowest and highest predicted failure to
appear risk deciles made by judges within each race-by-age cell.

Notes: This figure plots the 95% confidence interval on the implied prediction mistake �(x0, d)/�(x0, d0) between the
top decile d and bottom decile d0 of the predicted failure to appear risk distribution for each judge in the top 25 whose
pretrial release decisions violated the implied revealed preference inequalities (Table 1) and each race-by-age cell.
When informative, the confidence intervals highlighted in orange show that judges under-react to predictable variation
in failure to appear risk from the highest to the lowest decile of predicted failure to appear risk (i.e., the estimated
bounds lie below one). See Section 4.2.1 for theoretical details on the implied prediction mistake and Section 5.5 for
the estimation details.

suggestive, developing formal tests for these specific behavioral mechanisms is beyond this paper’s
scope.

5.6 Which decisions violate expected utility maximization?
As a final step to investigate why the release decisions of judges in New York City are inconsistent
with expected utility maximization at accurate beliefs, I report the cells of defendants on which the
largest misranking in Proposition 5.1 occurs. This shows which defendants are associated with the
largest misrankings in the judges’ choices.

Among judges whose choices are inconsistent with expected utility maximization at accurate
beliefs, Table 2 reports the fraction of judges for whom the maximal studentized misranking occurs
over the tails (deciles 1-2, 9-10) or the middle of the predicted failure to appear risk distribution
(deciles 3-8) for black and white defendants respectively. All of the largest misrankings in the
judges’ choices occur over defendants that lie in the tails of the predicted risk distribution. Fur-
thermore, the majority occur over decisions involving black defendants as well. These empirical
findings together highlight that systematic prediction mistakes primarily occur on defendants at
the tails of the predicted risk distribution.
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Table 2: Location of the largest misranking among judges whose release decisions are inconsistent with
expected utility maximization at accurate beliefs about failure to appear risk given defendant characteristics.

Utility Functions u(c, y; x0)
Race and Age Race and Felony Charge

Unadjusted Rejection Rate 48% 56%

White Defendants
Middle Deciles 0% 0%

Tail Deciles 25% 7.14%
Black Defendants

Middle Deciles 0% 0%
Tail Deciles 75% 92.85%

Notes: This table summarizes the location of the largest (studentized) misranking in Proposition 5.1 among judges
whose release decisions are inconsistent with expected utility maximization at accurate beliefs and utility functions
that depend on both the defendant’s race and age as well as the defendant’s race and whether the defendant was charged
with a felony. Among judge’s whose release decision violate the revealed preference inequalities at the 5% level, I
report the fraction of judges for whom the largest studentized misranking occurs among white and black defendants
on tail deciles (deciles 1-2, 9-10) and middle deciles (3-8) of predicted failure to appear risk.

6 The welfare effects of algorithmic decision-making
I finally illustrate that this econometric analysis of systematic prediction mistakes has policy im-
plications for the design of algorithmic decision systems by analyzing policy counterfactuals that
replace judges with algorithmic decision rules in the NYC pretrial system.

For a binary outcome Y
⇤ = Y

⇤
1 2 {0, 1}, consider a policymaker whose payoffs are summa-

rized by the linear social welfare function u
⇤
1,1y

⇤
1c+u

⇤
0,1(1�y

⇤
1)(1�c). The policymaker evaluates

a candidate decision rule ⇡
⇤
1(x) 2 [0, 1], which denotes the probability C = 1 is chosen given

X = x (e.g., an algorithmic release rule in the pretrial release setting). Expected social welfare of
the decision rule at x 2 X is

P (1 | x)⇡⇤
1(x)u

⇤
1,1 + P (0 | x)⇡⇤

0(x)u
⇤
0,0, (17)

and total expected social welfare further averages according to the marginal distribution of charac-
teristics.34 Due to the missing data problem, expected welfare under any candidate decision rule is
partially identified. Appendix E.4 characterizes its sharp identified set as an interval with bounds

34Expected social welfare does not incorporate additional fairness considerations that have received much attention
in an influential computer science literature (e.g., see Barocas and Selbst, 2016; Barocas, Hardt and Narayanan, 2019).
My analysis could be directly extended to allow payoffs to vary across groups defined by the characteristics (Ram-
bachan et al., 2021) or a penalty depending on the composition of individuals that receive C = 1 (Kleinberg et al.,
2018b).
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computed by linear programs, as well as the sharp identified set of expected welfare under the
decision maker’s observed choices.

I compare expected social welfare under the status quo decisions of judges in NYC against
expected social welfare under counterfactual algorithmic decision rules. Consistent with the stated
objectives of the NYC pretrial system, I define the binary outcome to be whether a defendant would
fail to appear in court. The cost of detaining an individual that would not fail to appear in court
is u

⇤
0,1 = �ũ/|1 + ũ| and the cost of releasing a defendant that would fail to appear in court is

u
⇤
1,1 = �1/|1 + ũ|. I report results as the relative cost of detaining an individual that would not

fail to appear in court |ũ| varies (i.e., an “unnecessary detention”). For a particular value |ũ|, I
construct an algorithmic decision rule that decides whether to release individuals by thresholding
a prediction of the probability they would fail to appear at each possible cell of payoff relevant
characteristics X0 and each decile of predicted failure to appear risk D(X). The threshold varies
based on the parametrization of the social welfare function. See Appendix E.5 for further details.

I construct 95% confidence intervals for expected social welfare under the algorithmic deci-
sion rule and the judge’s observed released decisions, and report the ratio of worst-case expected
social welfare under the algorithmic decision rule against the judge’s observed release decisions.
I conduct this exercise for each judge over the race-by-age cells, reporting the median, minimum
and maximum gain across judges. Online Supplement H.1 reports results over the race-by-felony
charge cells with similar findings.

6.1 Automating judges who make systematic prediction mistakes
I first compare the the release decisions of judges who were found to make systematic prediction
mistakes about failure to appear risk against an algorithmic decision rule that fully replaces ("au-
tomates") them over all defendants in Figure 3a. For most values of the social welfare function,
worst-case expected social welfare under the full automation algorithmic decision rule is strictly
larger than worst-case expected social welfare under these judges’ decisions. Recall these judges
primarily made systematic prediction mistakes over defendants in the tails of the predicted failure
to appear risk distribution. Over the remaining defendants, however, their choices were found to be
consistent with expected utility maximization at accurate beliefs about failure to appear risk. Con-
sequently, the change in worst-case expected social welfare under the algorithmic decision rule is
driven by three forces: first, the algorithmic decision rule may correct systematic prediction mis-
takes over the tails of the predicted risk distribution; second, the algorithmic decision rule corrects
possible misalignment between the policymaker’s objective and these judges’ utility function over
the remaining defendants; and third, these judges may observe useful private information over the
remaining defendants that is unavailable to the algorithmic decision rule.

For social welfare costs of unnecessary detentions ranging over |ũ| 2 [0.3, 0.8], the algorithmic
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Figure 3: Comparison of algorithmic decision rule relative to release decisions of judges that make system-
atic prediction mistakes about failure to appear risk.

(a) Full automation algorithmic decision rule

(b) Algorithmic decision rule that corrects prediction mistakes

Notes: This figure reports the change in worst-case expected social welfare under two algorithmic decisions rules
against the release decisions of judges that make systematic prediction mistakes about failure to appear risk. Panel
(a) reports the comparison for an algorithmic decison rule that fully replaces judges over all decisions. Panel (b)
reports the comparison for an algorithmic decision rule that only replaces judges over the tails of the predicted risk
distribution. The x-axis plots the relative social welfare cost of detaining a defendant that would not fail to appear in
court |ũ| (i.e., an unnecessary detention), where u⇤

0,1 = �ũ/|1 + ũ|. The solid line plots the median change and the
dashed lines report the minimum and maximum change across judges that make systematic prediction mistakes. See
Section 6 for further details.

decision rule either leads to no improvement or strictly lowers worst-case expected total social wel-
fare relative to these judges’ decisions. Figure A3 plots the improvement in worst-case expected
social welfare by the race of the defendant, highlighting that these costs are particularly large over
white defendants. At these values, these judges may be sufficiently well-aligned with the policy-
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maker and observe sufficiently predictive private information over the remaining defendants that
it is costly to fully automate their decisions. To further investigate this, Figure A4 compares the
release rates of the algorithmic decision rule against the observed release rates of these judges.
The release rate of the algorithmic decision rule is most similar to the observed release rate of
these judges precisely over the values of social welfare function where the status quo dominates
the algorithmic decision rule.

The preceding behavioral analysis suggests that it would most valuable to automate these
judges’ decisions over defendants that lie in the tails of the predicted failure to appear risk dis-
tribution where they make systematic prediction mistakes. I next compare these judges’ observed
release decisions against an algorithmic decision rule that only automates decisions over defen-
dants in the tails of the predicted failure to appear risk distribution and otherwise defers to the
judges’ observed decisions. This algorithmic decision rule therefore only corrects systematic pre-
diction mistakes, and its welfare effects are plotted in Figure 3b. I find that the algorithmic decision
rule that corrects systematic prediction mistakes weakly dominates the observed release decisions
of judges, no matter the value of the social welfare function. For some parametrizations, the al-
gorithmic decision rule leads to 20% improvements in worst-case social welfare relative to the
observed release decisions of these judges. This suggest that the identification of systematic pre-
diction mistakes in a decision maker’s choices provides a behavioral mechanism for recent machine
learning methods that attempt to estimate whether a decision should be made by an algorithm or
deferred to a decision maker (e.g., Madras, Pitassi and Zemel, 2018; Raghu et al., 2019; Wilder,
Horvitz and Kamar, 2020). Deciding whether to automate or defer to an existing decision maker
requires understanding whether the decision maker makes systematic prediction mistakes, and if
so on what decisions.

6.2 Automating judges who do not make systematic prediction mistakes
Figure A5 reports the welfare effects of automating the release decisions of judges whose choices
were found to be consistent with expected utility maximization at accurate beliefs. I find that au-
tomating these judges’ release decisions may strictly lower worst-case expected social welfare for
a range of social welfare costs of unnecessary detentions. It appears that these judges make pretrial
release decisions as-if their utility functions were sufficiently aligned with the policymaker over
these parametrizations of the social welfare function such that their private information leads to
better decisions than the algorithmic decision rule. Figure A6 compares the release rates of the
algorithmic decision rule against the observed release rates of these judges. Understanding the
welfare effects of automating a decision maker whose decisions are consistent with expected max-
imization requires fully characterizing the tradeoff between the value of their private information
against the degree to which they are misaligned with the policymaker, which is beyond the scope
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of this paper.35

7 Conclusion
This paper develops an econometric framework for testing whether a decision maker makes sys-
tematic prediction mistakes in high stakes settings such as hiring, medical diagnosis and treatment,
pretrial release, and many others. I characterized expected utility maximization behavior, where
the decision maker maximizes some utility function at accurate beliefs about the outcome given
the observable characteristics of each decision as well as some private information. I developed
tractable statistical tests for whether the decision maker makes systematic prediction mistakes and
methods for conducting inference on the ways in which their predictions are systematically biased.
Analyzing the NYC pretrial release system, I found that a substantial fraction of judges make sys-
tematic prediction mistakes about failure to appear risk given defendant characteristics. Finally,
I showed how this behavior analysis may inform the design of algorithmic decision systems by
comparing expected social welfare under alternative algorithmic release rules against the observed
release decisions of judges.

Empirical settings, such as pretrial release, medical diagnosis, and hiring, can serve as rich
laboratories for behavioral analysis. My analysis provides a first step by exploring the empirical
content of expected utility maximization, a canonical model of decision making under uncertainty,
in these settings. An exciting direction is to explore the sharp, testable implications of alternative
behavioral models such as rational inattention (e.g., Sims, 2003; Gabaix, 2014; Caplin and Dean,
2015) as well as forms of salience (e.g., Gennaioli and Shleifer, 2010; Bordalo et al., 2016; Bor-
dalo, Gennaioli and Shleifer, 2021). Exploiting the full potential of these empirical settings is an
important, policy-relevant agenda at the intersection of economic theory, applications of machine
learning, and microeconometrics.

35See Frankel (2021) for a principal-agent analysis of delegating decisions to a misaligned decision maker who
observes additional private information.
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A Additional figures and tables

Figure A1: Observed failure to appear rate among released defendants and bound on the failure to appear
rate among detained defendants by race-and-felony charge cells for one judge in New York City.

Notes: This figure plots the observed failure to appear rate among released defendants (orange, circles) and the bounds
based on the judge leniency for the failure to appear rate among detained defendants (blue, triangles) at each decile
of predicted failure to appear risk and race-by-felony charge cell for the judge that heard the most cases in the main
estimation sample. The bounds on the failure to appear rate among detained defendants (blue, triangles) are constructed
using the most lenient quintile of judges. See Section 5.3 for further estimation details on these bounds.
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Figure A2: Estimated bounds on implied prediction mistakes between top and bottom predicted failure to
appear risk deciles made by judges within each race-by-felony charge cell.

Notes: This figure plots the 95% confidence interval on the implied prediction mistake �(x0, d)/�(x0, d0) between
the top decile d and bottom decile d0 of the predicted failure to appear risk distribution for each judge in the top 25
whose pretrial release decisions violated the implied revealed preference inequalities (Table 1) and each race-by-felony
charge cell. The confidence intervals highlighted in orange show that judges under-react to predictable variation in
failure to appear risk from the highest to the lowest decile of predicted failure to appear risk (i.e., the estimated bounds
lie below one). See Section 4.2.1 for theoretical details on the implied prediction mistake and Section 5.5 for the
estimation details.

Figure A3: Comparison of full automation algorithmic decision rule relative to decisions of judges that
made systematic prediction mistakes, separately by defendant race.

Notes: This figure reports the change in worst-case expected social welfare under the algorithmic decision rule that
fully automates decisions against the observed release decisions of judges who made systematic prediction mistakes,
separately by defendant race. The x-axis plots the relative social welfare cost of detaining a defendant that would
not fail to appear in court |ũ| (i.e., an unnecessary detention), where u⇤

0,1 = �ũ/|1 + ũ|. The solid line plots the
median change across judges that make mistakes, and the dashed lines report the minimum and maximum change
across judges. See Section 6 for further details.
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Figure A4: Release rates under full automation algorithmic decision rule relative to the release rates of
judges that made systematic prediction mistakes.

Notes: This figure reports the overall release rate of the algorithmic decision rule that fully automates decisions
against the release rates of judges that made systematic prediction mistakes. These decisions rules are constructed
and evaluated over race-by-age cells and deciles of predicted risk. The x-axis plots the relative social welfare cost
of detaining a defendant that would not fail to appear in court |ũ| (i.e., an unnecessary detention), where u⇤

0,1 =
�ũ/|1 + ũ|. The solid line plots the median release rate across judges that make systematic prediction mistakes, and
the dashed lines report the minimum and maximum release rates across judges. See Section 6 for further details.

Figure A5: Comparison of full automation algorithmic decision rule relative to release decisions of judges
that do not make systematic prediction mistakes.

Notes: This figure reports the change in worst-case expected social welfare under the algorithmic decision rule that
fully automates decision-making against the observed release decisions of judges whose choices were consistent with
expected utility maximization at accurate beliefs about failure to appear risk. The x-axis plots the relative social
welfare cost of detaining a defendant that would not fail to appear in court |ũ| (i.e., an unnecessary detention), where
u⇤
0,1 = �ũ/|1 + ũ|. The solid line plots the median change across judges, and the dashed lines report the minimum

and maximum change across judges. See Section 6 for further details.
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Figure A6: Release rates under algorithmic decision rule relative to the release rates of judges that did not
make systematic prediction mistakes.

Notes: This figure reports the release rate of the algorithmic decision rule that fully automates decisions against the
observed release rates among judges whose choices were consistent with expected utility maximization behavior at
accurate beliefs. The algorithmic decision rules are constructed and evaluated over race-by-age cells and deciles of
predicted failure to appear risk. The x-axis plots the relative social welfare cost of detaining a defendant that would not
fail to appear in court |ũ| (i.e., an unnecessary detention), where u⇤

0,1 = �ũ/|1 + ũ|. The solid line plots the median
release rate across judges that do not make systematic prediction mistakes, and the dashed lines report the minimum
and maximum release rates across judges. See Section 6 for further details.
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B Omitted proofs
B.1 Section 3: identifying systematic prediction mistakes in screening deci-

sions
B.1.1 Proof of Theorem 3.1

Proof. To prove this result, I first establish the following lemma.

Lemma B.1. The decision maker’s choices are consistent with expected utility maximization at
some linear utility function if and only if there exists some linear utility function satisfying

i. µ1(x0, x1) 
PK

k=1 |u0,k(x0)| for all (x0, x1) 2 X0 ⇥ X1 with ⇡1(x0, x1) > 0,

ii.
PK

k=1 |u0,k(x0)|  µ0(x0, x1) for all (x0, x1) 2 X0 ⇥ X1 with ⇡0(x0, x1) > 0.

Proof. This is an immediate consequence of applying Theorem C.1 to a screening decision with
a binary choice. For all (x0, x1) 2 X0⇥X1 with ⇡1(x0, x1) > 0, Theorem C.1 requires µ1(x0, x1) PK

k=1 |u0,k(x0)|. For all (x0, x1) 2 X0⇥X1 with ⇡0(x0, x1) > 0, Theorem C.1 requires
PK

k=1 |u0,k(x0)| 
µ0(x0, x1). Applying the sharp bound µ0(x)  max eP ( ·|x)2Bx

µ0(x) := µ0(x) then delivers the re-
sult.

By Lemma B.1, the decision maker’s choices are consistent with expected utility maximization
behavior if and only if there exists a linear utility function u(c, y⇤; x0) satisfying, for all x0 2 X0,

max
x12⇧1(x0)

µ1(x0, x1) 
KX

k=1

|u0,k(x0)|  min
x12⇧0(x0)

µ0(x0, x1)

The inequalities in Theorem 3.1 and the characterization of the identified set of linear utility func-
tions in Corollary 3.1 are immediate.

B.1.2 Proof of Proposition 3.1

Proof. Recall Ȳ ⇤ :=
PK

k=1 Y
⇤
k , µ(x, z) := E[Ȳ ⇤

| X = x, Z = z] and µc(x, z) := E[Ȳ ⇤
| C =

c,X = x, Z = z] for c 2 {0, 1} Under Assumption 2, µ(x, z) = µ(x, z̃) = µ(x) for all x 2 X

and z, z̃ 2 Z . Furthermore, using the fact that Y ⇤
k 2 [0, 1] for all k = 1, . . . , K and applying

worst-case bounds (Manski, 1994), µ(x, z) is sharply bounded by

µ1(x, z̃)⇡1(x, z̃)  µ(x, z)  K⇡0(x, z̃) + µ1(x, z̃)⇡1(x, z̃).

The result then follows by (i) writing µ(x, z) = µ0(x, z)⇡0(x, z) + µ1(x, z)⇡1(x, z) via iterated
expectations, (ii) taking the maximum, minimum of the lower, upper bounds respectively over
z̃ 2 Z , and (iii) re-arranging.
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B.2 Section 4: characterizing systematic prediction mistakes in screening
decisions

B.2.1 Proof of Theorem 4.1

Proof. This follows from applying Theorem C.2 to a screening decision with a binary choice over
the class of linear utility functions. For all (x0, x1) 2 X0 ⇥ X1 with ⇡1(x0, x1) > 0, Theorem C.2
requires µ1(x0, x1)� ✏(x0, x1) 

PK
k=1 |u0,k(x0)|. For all (x0, x1) 2 X0⇥X1 with ⇡0(x0, x1) > 0,

Theorem C.2 requires
PK

k=1 |u0,k(x0)|  µ0(x0, x1) + ✏(x0, x1). Putting these together, it follows
that the decision maker’s choices approximately maximize expected utility at ✏ = {✏(x) � 0: x 2

X} if and only if, for all x0 2 X0,

max
x12X1

{µ1(x0, x1)� ✏(x0, x1)}  min
x0
12X1

{µ0(x0, x
0
1) + ✏(x0, x

0
1)} .

This is equivalent to, for all x0 2 X0,

µ1(x0, x1)� µ0(x0, x
0
1)� ✏(x0, x1)� ✏(x0, x

0
1)  0 for all x1, x

0
1 2 X1.

B.2.2 Proof of Theorem 4.2

Proof. To prove this result, I will show that 1 � � = P (XR). First, let ✏⇤(x) denote an optimal
solution to the program defining �, meaning � =

P
x2X P (x)1{✏⇤(x) > 0}. Define XR = {x 2

X : ✏⇤(x) = 0}, and observe that XR is a rationalizable subset at accurate beliefs, since, for all
pairs (x0, x1), (x0, x

0
1) 2 XR, µ1(x0, x1) � µ0(x0, x

0
1)  0 by construction. As a consequence,

P (XR) � P (XR) =
P

x2X P (x)1{✏⇤(x) = 0} = 1� �.
Next, for each x 2 XR, define ✏(x) = 0. For each x = (x0, x1)��2XR, define

✏1(x) = max
x0
1

{µ1(x)� µ0(x0, x
0
1)}, and ✏2(x) = max

x0
1

{µ1(x0, x
0
1)� µ0(x)},

and set ✏(x) = max{✏1(x), ✏2(x)}. By construction, µ1(x0, x1)�µ0(x0, x
0
1)�✏(x0, x1)�✏(x0, x

0
1) 

0 for all pairs (x0, x1), (x0, x
0
1) 2 X . ✏ = {✏(x) : x 2 X} is therefore feasible in the program defin-

ing �, and so
� 

X

x2X

P (x)1{✏(x) > 0}.

This implies 1� � � 1�
P

x2X P (x)1{✏(x) > 0} =
P

x2X P (x)1{✏(x) = 0} = P (XR).

B.2.3 Proof of Theorem 4.3

Proof. This is an immediate consequence of applying Theorem C.3 to a binary choice, screening
decision over the class of linear utility functions. For all x 2 X with ⇡1(x) > 0, Theorem C.3
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requires

E eP [!(Y
⇤;X)Ȳ ⇤

| C = 1, X = x]  E eP [!(Y
⇤;X) | C = 1, X = x]

 
KX

k=1

|u0,k(x0)|

!
.

Defining !1(Y ⇤;X) = !(Y ⇤;X)/E eP [!(Y
⇤;X) | C = 1, X = x], this can be equivalently written

as

E eP [!1(Y
⇤;X)Ȳ ⇤

| C = 1, X = x] 
KX

k=1

|u0,k(x0)|.

Similarly, for all x 2 X with ⇡0(x) > 0, Theorem C.3 requires that

KX

k=1

|u0,k(x0)|  E eP [!0(Y
⇤;X)Ȳ ⇤

| C = 0, X = x],

where !0(Y ⇤;X) = !(Y ⇤;X)/E eP [!(Y
⇤;X) | C = 0, X = x]. It therefore follows that the

decision maker’s choices are consistent with expected utility maximization at inaccurate beliefs if
and only if there exists a linear utility function, eP ( · | x) 2 B0,x for all x 2 X and non-negative
weights !(y⇤; x) satisfying, for all x0 2 X0,

max
x̃12⇧1(x0)

E eP [!1(Y
⇤;X)Ȳ ⇤

| C = 1, X = x] 
KX

k=1

|u0,k(x0)|,

KX

k=1

|u0,k(x0)|  min
x̃12⇧0(x0)

E eP [!0(Y
⇤;X)Ȳ ⇤

| C = 0, X = x]

and, for all x 2 X , E eP [!(Y
⇤;X) | X = x] = 1.

B.2.4 Proof of Theorem 4.4

Under the stated conditions, the necessity statement in Theorem C.3 implies that, for all x 2 X ,

!(1; x)u1,1(x0)P1(1 | x) � !(0; x)u0,1(x0)P1(0 | x),

!(0; x)u0,1(x0) eP0(0 | x) � !(1; x)u1,1(x0) eP0(1 | x),

where !(y⇤; x) =
eQ(y⇤|x)
eP (y⇤|x) . Re-arranging these inequalities, we observe that

P1(1 | x) 
!(0; x)u0,1(x0)

!(0; x)u0,1(x0) + !(1; x)u1,1(x0)
 eP0(1 | x).

The result follows by applying the bounds on eP0(1 | x) in a screening decision with a binary
outcome. ⇤
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B.3 Section 5: do pretrial release judges make prediction mistakes?
B.3.1 Proof of Proposition 5.1

Proof. This is an immediate consequence of applying Lemma C.1 to a binary choice, screening
decision and iterated expectations. Since the decision maker’s choices are consistent with expected
utility maximization, by Lemma C.1, there exists some linear utility function u and eP0( · | x) 2 Bx

such that her choices satisfy, for all x 2 X ,
X

y⇤2Y

P (Y ⇤ = y
⇤
, C = 1 | X = x)u(1, y⇤; x0) �

X

y⇤2Y

P (Y ⇤ = y
⇤
, C = 1 | X = x)u(0, y⇤; x0)

X

y⇤2Y

eP (Y ⇤ = y
⇤
, C = 0 | X = x)u(0, y⇤; x0) �

X

y⇤2Y

eP (Y ⇤ = y
⇤
, C = 0 | X = x)u(1, y⇤; x0),

where eP (Y ⇤ = y
⇤
, C = 0 | X = x) = eP0(y⇤ | x)⇡0(x). Therefore, her choices satisfy, for all

d 2 {1, . . . , Nd},

X

x1 : D(x0,x1)=d

X

y⇤2Y

P (Y ⇤ = y
⇤
, C = 1 | X = (x0, x1))

P (X1 = x1 | X0 = x0)

P (D(X0, X1) = d | X0 = x0)
u(1, y⇤; x0) �

X

x1 : D(x0,x1)=d

X

y⇤2Y

P (Y ⇤ = y
⇤
, C = 1 | X = (x0, x1))

P (X1 = x1 | X0 = x0)

P (D(X0, X1) = d | X0 = x0)
u(0, y⇤; x0)

and
X

x1 : D(x0,x1)=d

X

y⇤2Y

eP (Y ⇤ = y
⇤
, C = 0 | X = (x0, x1))

P (X1 = x1 | X0 = x0)

P (D(X0, X1) = d | X0 = x0)
u(0, y⇤; x0) �

X

x1 : D(x0,x1)=d

X

y⇤2Y

eP (Y ⇤ = y
⇤
, C = 0 | X = (x0, x1))

P (X1 = x1 | X0 = x0)

P (D(X0, X1) = d | X0 = x0)
u(1, y⇤; x0).

These can equivalently be written as
X

y⇤2Y

P (Y ⇤ = y
⇤
, C = 1 | X0 = x0, D(X) = d)u(1, y⇤; x0) �

X

y⇤2Y

P (Y ⇤ = y
⇤
, C = 1 | X0 = x0, D(X) = d)u(0, y⇤; x0)

and X

y⇤2Y

eP (Y ⇤ = y
⇤
, C = 0 | X0 = x0, D(X) = d)u(0, y⇤; x0) �

X

y⇤2Y

eP (Y ⇤ = y
⇤
, C = 0 | X0 = x0, D(X) = d)u(1, y⇤; x0).

The result then follows by the same argument as the proof of Theorem 3.1.
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B.3.2 Proof of Proposition 5.2

Proof. Under the behavioral restriction V | {Y
⇤
, X} ⇠ V | {Y

⇤
, X0, µ(X)} and C | {V,X} ⇠

C | {V,X0, µ(X)}, the expected utility maximization model (X, V, C, Y
⇤) ⇠ Q is equivalent to

a joint distribution (X, V, C, Y
⇤) ⇠ Q̃ for any utility function u 2 U that factorizes according to

Q̃(X)Q̃(Y ⇤
| X)Q̃(V | Y

⇤
, µ(X), X0)Q̃(C | V, µ(X), X0). The result then follows by the same

argument as the proof of Theorem 3.1.

C Expected utility maximization in treatment assignment prob-
lems

In the main text, I made two simplifying assumptions for exposition: (i) the decision maker only
faced two choices; and (ii) the decision maker’s choice did not have a direct causal effect on the
outcome. I now relax both of these assumptions, and analyze treatment assignment problems in
which the decision maker selects one of many treatments for each individual. This nests the main
text characterization of expected utility maximization in screening decisions as a special case.

C.1 Setting and behavioral model
The decision maker selects a choice c 2 {c1, . . . , cJ} for each individual. Each individual is
summarized by characteristics x 2 X and a vector of potential outcomes. The potential outcome
yj := y(cj) = (y1(cj), . . . , yK(cj)) 2 Y ✓ [0, 1]K is the outcome that would occur if the decision
maker selects choice cj . Let ~y = (y1, . . . , yJ) 2 Y

J denote the vector of potential outcomes
associated with each choice, and ~y�j is the vector of all potential outcomes except for the potential
outcome associated with choice cj . The random vector (W,X,C, ~Y ) ⇠ P ( ·) summarizes the joint
distribution of the characteristics, the decision maker’s choices and potential outcomes across all
individuals. I assume the characteristics and outcome have finite support, and there exists � > 0
such that P (x) := P (X = x) � � for all x 2 X . This nests the main text as a special case if we
further assume (i) choice is binary c 2 {0, 1}; and (ii) choices do not have a causal effect on the
outcome with y1 = y

⇤, y0 = 0.
We observe the potential outcome associated with the decision maker’s choice, where Y :=PJ

j=1 Yj1{C = cj}. We observe the conditional potential outcome probabilities P (Yj = y |

C = cj, X = x) for j = 1, . . . , J , but not the counterfactual potential outcome probabilities
P (Yk = y | C = cj, X = x) for j 6= k. As notation, let Pj(~y | x) := P (~Y = ~y | C = cj, X = x),
and Pj( · | x) 2 �(YJ) denote the conditional distribution ~Y | C = cj, X = x. Let ⇡j(x) :=
P (C = cj | X = x) denote the generalized propensity score for each cj 2 {c1, . . . , cJ}.

For each choice cj and characteristic x 2 X , I assume there exists a known subset Bj,x ✓

�(YJ) such that Pj( · | x) 2 Bj,x and
P

~y�j
ePj ((~y�j, yj) | x) = P (Yj = yj | C = cj, X = x)

for all ePj( · | x) 2 Bj,x and yj 2 Y . Denote the identified set for P ( · | x) := P (~Y | X = x) as
HP (P ( · | x);Bx), where Bx := {Bj,x : j = 1, . . . , J}.

Definition 7. The utility function u : {c1, . . . , cJ} ⇥ Y
J
⇥ X0 specifies the payoff associated with

each choice, vector of potential outcomes, and characteristics x0 2 X0. Let U denote the feasible
set of utility functions specified by the researcher.

Definition 8. The decision maker’s choices are consistent with expected utility maximization in a
treatment assignment problem if there exists u 2 U and (X, V, C, ~Y ) ⇠ Q satisfying
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i. Expected Utility Maximization: For all cj 2 {c1, . . . , cJ}, (x, v) 2 X ⇥ V such that Q(cj |
x, v) > 0,

EQ

h
u(cj, ~Y ;X0) | X = x, V = v

i
� EQ

h
u(c0, ~Y ;X0) | X = x, V = v

i

for all c0 6= cj , where EQ[ ·] denotes the expectation under Q.

ii. Information Set: C ?? ~Y | X, V under Q.

iii. Data Consistency: For all cj 2 {c1, . . . , cJ}, x 2 X , there exists ePj( · | x) 2 Bj,x satisfying,
for all ~y 2 Y

J ,
Q(x, cj, ~y) = ePj(~y | x)⇡j(x)P (x).

The identified set of utility functions, denoted HP (u;B) ✓ U , is the set of u 2 U such that there
exists (X, V, C, ~Y ) ⇠ Q satisfying (i)-(iii).

C.2 Characterization results
The decision maker’s choices in a treatment assignment problem are consistent with expected
utility maximization behavior if and only if there exists a utility function that satisfies a set of
stochastic revealed preference inequalities.

Theorem C.1. The decision maker’s choices in a treatment assignment problem are consistent
with expected utility maximization behavior if and only if there exists u 2 U and ePj( · | x) 2 Bj,x

for all cj 2 {c1, . . . , cJ}, x 2 X such that

EQ

h
u(cj, ~Y ;X0) | C = cj, X = x

i
� EQ

h
u(c0, ~Y ;X0) | C = cj, X = x

i
(18)

for all c0 6= cj whenever ⇡j(x) > 0, where (X,C, ~Y ) ⇠ Q is given by Q(x, cj, ~y) = ePj(~y |

x)⇡j(x)P (x).

Corollary C.1. The identified set of utility functions HP (u;B) is the set of all utility functions
u 2 U such that there exists ePj( · | x) 2 Bj,x for all cj 2 {c1, . . . , cJ}, x 2 X satisfying (18).

Theorem C.1 provides a necessary and sufficient characterization of expected utility maximization
that only involves the data and the bounds on the conditional potential outcome probabilities. As
discussed in the main text, the key insight in proving Theorem C.1 is that checking whether be-
havior is equivalent with EU maximization is equivalent to an information design problem (Berge-
mann and Morris, 2019; Kamenica, 2019). I must simultaneously check whether the information
designer could induce the observed choices at any accurate beliefs in the identified set due to the
missing data problem, and any utility function in the researcher-specified feasible set of utility
function U since the decision maker’s true payoffs are unknown.

As in Section 3, I next analyze the testable implications of expected utility maximization
behavior for a binary choice c 2 {0, 1} over linear utility functions of the form u(c, ~y; x0) =PK

k=1 yk � u0,k(x0)c, where u0,k(x0) � 0 for all x0 2 X0.36 As in the main text, define ⇧1(x0) :=

36Over the class of linear utility functions, the expected utility maximization model in a treatment assignment
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{x1 : ⇡1(x0, x1) > 0}, ⇧0(x0) := {x1 : ⇡0(x0, x1) > 0}. Let Ȳ (c) :=
PK

k=1 Yk(c), µc(x) :=
E[Ȳ (1) � Ȳ (0) | C = c,X = x] for each c 2 {0, 1}, and µ

0
(x) := min eP0( ·|x)2B0,x

µ0(x),
µ1(x) := max eP1( ·|x)2B1,x

µ1(x).

Corollary C.2. The decision maker’s choices are consistent with expected utility maximization at
some linear utility function if and only if, for all x0 2 X0,

max
x12⇧0(x0)

µ
0
(x0, x1)  min

x12⇧1(x0)
µ1(x0, x1). (19)

The identified set of linear utility functions HP (u;B) equals the set of all utility functions satisfying,
for all x0 2 X0, u(c, ~y; x0) =

PK
k=1 yk � u0,k(x0)c with u0,k(x0) � 0 and

max
x12⇧0(x0)

µ
0
(x0, x1) 

KX

k=1

|u0,k(x0)|  min
x12⇧1(x0)

µ1(x0, x1). (20)

Corollary C.2 immediately implies two negative results about the identification of systematic pre-
diction mistakes in treatment assignment problems that parallel Corollary 3.2 in the main text for
screening decisions.

Corollary C.3. The decision maker’s choices are consistent with expected utility maximization
behavior at some linear utility function u(c, ~y; x0) =

PK
k=1 yk + u0,k(x0)c if either:

(i) All characteristics affect utility (i.e., X = X0) and µ
0
(x0)  µ1(x0) for all x0 2 X0.

(ii) The researcher’s bounds on the conditional potential outcome probabilities are uninforma-
tive, meaning, for both c 2 {0, 1} and all x 2 X , Bc,x equals the set of all ePc( · | x) satisfyingP

yc̃2Y
ePc(yc, yc̃ | x) = Pc(yc | x) for all yc 2 Y .

C.3 Approximate expected utility maximization in treatment assignment
problems

I now characterize conditions under which the decision maker’s choices approximately maximize
expected utility at accurate beliefs in a treatment assignment problem. The definition of approx-
imate expected utility maximization behavior in the main text (Definition 5) again generalizes
naturally to treatment assignment problems.

Definition 9. The decision maker’s choices are consistent with approximate expected utility max-
imization in a treatment assignment problem if there exists u 2 U , expected utility costs ✏(x) � 0
for all x 2 X , and (X, V, C, ~Y ) ⇠ Q satisfying:

i. Approximate Expected Utility Maximization: For all c 2 {0, 1}, c0 6= c, (x, v) 2 X ⇥ V

such that Q(c | x, v) > 0,

EQ

h
u(c, ~Y ;X0) | X = x, V = v

i
� EQ

h
u(c0, ~Y ;X0) | X = x, V = v

i
� ✏(x),

problem is an extended Roy model in which the expected benefit function only depends on the realized outcome and
the cost function only depends on the choice. Henry, Meango and Mourifie (2020) also studies extended Roy model
behavior under the additional assumption that the utility function satisfies u(0, ~y;x0) = y0, u(1, ~y;x0) = Y1 � �(Y1)
for some function �(·).
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and (ii) Information Set, (iii) Data Consistency as defined in Definition 8. The identified set of
expected utility costs, denoted HP (✏;B) ✓ U , is the set of ✏ = {✏(x) � 0: x 2 X} such that there
exists u 2 U and (X, V, C, ~Y ) ⇠ Q satisfying (i)-(iii).

I provide a necessary and sufficient characterization of approximate expected utility maximiza-
tion at accurate beliefs in treatment assignment problems.

Theorem C.2. The decision maker’s choices are consistent with approximate expected utility max-
imization if and only if there exists u 2 U , ✏(x) � 0 for all x 2 X , and ePj( · | x) 2 Bj,x for all
cj 2 {c1, . . . , cJ}, x 2 X satisfying

EQ

h
u(cj, ~Y ;X0) | C = c,X = x

i
� EQ

h
u(c0, ~Y ;X0) | C = c,X = x

i
� ✏(x) (21)

for all c0 6= cj whenever ⇡j(x) > 0, where (X,C, ~Y ) ⇠ Q is given by Q(x, c, ~y) = ePj(~y |

x)⇡j(x)P (x).

Corollary C.4. Consider treatment assignment problem with binary choice, and suppose 0 <

⇡1(x) < 1 for all x 2 X . The decision maker’s choices approximately maximize expected utility at
some linear utility function and expected utility costs ✏(x) � 0 for all x 2 X if and only if, for all
pairs x = (x0, x1), x0 = (x0, x

0
1),

µ
0
(x)� µ1(x

0)� ✏(x)� ✏(x0)  0. (22)

HP (✏;B) equals the set of all ✏ = {✏(x) � 0: x 2 X} satisfying (22).

C.4 Expected utility maximization at inaccurate beliefs in treatment assign-
ment problems

I now characterize conditions under which the decision maker’s choices are consistent with ex-
pected utility maximization at inaccurate beliefs in a treatment assignment problem. The defini-
tion of expected utility maximization behavior at inaccurate beliefs in the main text (Definition 6)
again generalizes naturally to treatment assignment problems by modifying the Data Consistency
condition.

Definition 10. The decision maker’s choices are consistent with expected utility maximization at
inaccurate beliefs in a treatment assignment if there exists u 2 U and (X, V, C, ~Y ) ⇠ Q satisfying
(i) Expected Utility Maximization, (ii) Information Set as in Definition 8, and

iii. Data Consistency with Inaccurate Beliefs: For all x 2 X , there exists ePj( · | x) 2 Bj,x for
each j = 1, . . . , J such that, for all ~y 2 Y

J and cj 2 {c1, . . . , cJ},

Q(cj | ~y, x) eP (~y | x)Q(x) = ePj(~y | x)⇡j(x)P (x),

where eP (~y | x) =
PJ

j=1
ePj(~y | x)⇡j(x).

Theorem C.3. Assume eP ( · | x) > 0 for all eP ( · | x) 2 HP (P ( · | x);Bx) and x 2 X . The
decision maker’s choices are consistent with expected utility maximization at inaccurate beliefs
in a treatment assignment problem if and only if there exists u 2 U , ePj( · | x) 2 Bj,x for all
j = 1, . . . , J and x 2 X , and non-negative weights !(~y; x) satisfying
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i. For all cj 2 {c1, . . . , cJ}, x 2 X with ⇡j(x) > 0, c0 6= cj

E eP

h
!(~Y ;X)u(cj, ~Y ;X0) | C = cj, X = x

i
� E eP

h
!(~Y ;X)u(c0, ~Y ;X0) | C = cj, X = x

i

ii. For all x 2 X , E eP [!(
~Y ;X) | X = x] = 1

where E eP [·] is the expectation under (X,C, ~Y ) ⇠ eP defined as eP (x, cj, ~y) = ePj(~y | x)⇡j(x)P (x).

C.5 Proofs of characterization results for treatment assignment problems
C.5.1 Proof of Theorem C.1

Proof. I prove the following Lemma, and then show it implies Theorem C.1.

Lemma C.1. The decision maker’s choices are consistent with expected utility maximization be-
havior if and only if there exists a utility function u 2 U , ePj( · | x) 2 Bj,x for each cj 2 {c1, . . . , cJ}

and x 2 X satisfying
X

~y2YJ

ePj(~y | x)⇡j(x)u(cj, ~y; x0) �
X

~y2YJ

ePj(~y | x)⇡j(x)u(c
0
, ~y; x0)

for all x 2 X , c 2 {c1, . . . , cJ}, c0 6= cj ,

Proof of Lemma C.1: Necessity Suppose that the decision maker’s choices are consistent with
expected utility maximization at some utility function U and joint distribution (X, V, C, ~Y ) ⇠ Q.

First, I show that if the decision maker’s choices are consistent with expected utility maxi-
mization behavior at some utility function u, joint distribution (X, V, C, ~Y ) ⇠ Q in which private
information has support V , then her choices are also consistent with expected utility maximization
behavior at some finite support private information. I show this for the case where J = 2, and the
argument generalizes to J > 2 at the expense of more cumbersome notation.

Partition the original signal space V into the subsets V{1},V{2},V{1,2}, which collect together
the signals v 2 V at which the decision maker strictly prefers C = c1, strictly prefers C = c2

and is indifferent between C = c1, C = c2 respectively. Define the coarsened signal space eV =
{v{1}, v{2}, v{1,2}} and coarsened private information eV 2 eV as

eQ(eV = v{1} | ~Y = ~y,X = x) = Q(V 2 V{1} | ~Y = ~y,X = x)

eQ(eV = v{2} | ~Y = ~y,X = x) = Q(V 2 V{2} | ~Y = ~y,X = x)

eQ(eV = v{1,2} | ~Y = ~y,X = x) = Q(V 2 V{1,2} | ~Y = ~y,X = x).

Define eQ(C = c1 |
eV = v{1}, X = x) = 1, eQ(C = c2 |

eV = v{2}, X = x) = 1 and

eQ(C = c2 |
eV = v{1,2}, X = x) =

Q(C = c2, V 2 V{1,2} | X = x)

Q(V 2 V{1,2} | W = w,X = x)
.

Define the coarsened expected utility representation by the utility function u and the random vector
(X, eV ,C, ~Y ) ⇠ eQ, where eQ(x, v, c, ~y) = Q(x, ~y) eQ(ev | x, ~y) eQ(c | x, ev). The information set
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and expected utility maximization conditions are satisfied by construction. Data consistency is
satisfied since it is satisfied at the original private information V 2 V . To see this, notice that for
all (x, ~y) 2 W ⇥ X ⇥ Y

2

P (C = c2,
~Y = ~y | X = x) =

Q(C = c2, V = V , ~Y = ~y | X = x) =

Q(C = c2, V 2 V{2}, ~Y = ~y | X = x) +Q(C = 1, V 2 V{1,2}, ~Y = ~y | X = x) =

eQ(C = c2,
eV = v2,

~Y = ~y | X = x) + eQ(C = 1, eV = v1,2,
~Y = ~y | X = x) =

X

ev2eV

eQ(C = c2,
eV = ev, ~Y = ~y | X = x) = eQ(C = c2,

~Y = ~y | X = x).

The same argument applies to P (C = c1,
~Y = ~y | X = x). For the remainder of the necessity

proof, it is therefore without loss to assume private information V 2 V has finite support.
I next show that if there exists an expected utility representation for the decision maker’s

choices, then the stated inequalities in Lemma C.1 are satisfied by adapting the necessity argument
given the “no-improving action switches inequalities” in Caplin and Martin (2015). Suppose that
the decision maker’s choices are consistent with expected utility maximization at utility function
u 2 U and joint distribution (X, V, C, ~Y ) ⇠ Q. Then, for each cj 2 {c1, . . . , cJ} and (x, v) 2

X ⇥ V ,

Q(cj | x, v)

0

@
X

~y2YJ

Q(~y | x, v)u(cj, ~y; x0)

1

A � Q(cj | x, v)

0

@
X

~y2YJ

Q(~y | x, v)u(c0, ~y; x0)

1

A

holds for all cj 6= c
0. If Q(cj | x, v) = 0, this holds trivially. If Q(cj | x, v) > 0, this holds through

the expected utility maximization condition. Multiply both sides by Q(v | x) to arrive at

Q(cj | x, v)Q(v | x)

0

@
X

~y2YJ

Q(~y | x, v)u(cj, ~y; x0)

1

A � Q(cj | x, v)Q(v | x)

0

@
X

~y2YJ

Q(~y | x, v)u(c0, ~y; x0)

1

A .

Next, use information set to write Q(cj, ~y | x, v) = Q(~y | x, v)Q(cj | x, v) and arrive at

Q(v | x)

0

@
X

~y2YJ

Q(cj, ~y | x, v)u(cj, ~y; x0)

1

A � Q(v | x)

0

@
X

~y2YJ

Q(cj, ~y | x, v)u(c0, ~y; x0)

1

A .

Finally, we use Q(cj, ~y, v | x) = Q(cj, ~y | x, v)Q(v | x) and then further sum over v 2 V to arrive
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at

X

~y2YJ

 
X

v2V

Q(v, cj, ~y | x)

!
u(cj, ~y; x0) �

X

~y2YJ

 
X

v2V

Q(v, cj, ~y | x)

!
u(c0, ~y; x0)

X

~y2YJ

Q(cj, ~y | x)u(cj, ~y; x0) �
X

~y2YJ

Q(cj, ~y | x)u(c0, ~y;w).

The inequalities in Lemma C.1 follow from an application of data consistency.

Proof of Lemma C.1: Sufficiency As notation, let C := {c1, . . . , cJ}. To establish sufficiency, I
show that if the conditions in Lemma C.1 hold, then private information v 2 V can be constructed
that recommends choices c 2 C and an expected utility maximizer would find it optimal to follow
these recommendations as in the sufficiency argument in Caplin and Martin (2015) for the “no-
improving action switches” inequalities.

Towards this, suppose that the conditions in Lemma C.1 are satisfied at some ePj( · | x) 2 Bj,x

for all j = 1, . . . , J , x 2 X . As notation, let v 2 V :=
�
1, . . . , 2J

 
index all possible subsets in

the power set 2C .
For each x 2 X , define Cx := {cj : ⇡j(x) > 0} ✓ C to be the set of choices selected with posi-

tive probability, and partition Cx into subsets that have identical conditional outcome probabilities.
There are V̄x  |Cx| such subsets. Each subset of this partition of Cx is a subset in the power set 2C ,
and so I may associate each subset in this partition with its index v 2 V . Denote the conditional
outcome probability associated with the subset labelled v by P ( · | v, x) 2 �(YJ). Finally, define
Q(~y | x) =

PJ
j=1

ePj(~y | x)⇡j(x).
Define V 2 V according to

QV (v | x) =
X

cj : Pj( ·|x)=P ( ·|v,x)
⇡j(x) if v 2 Vx,

QV (v | ~y, x) =

(
P (~y|v,x)Q(v|x)

Q(~y|x) if v 2 Vx and Q(~y | x) > 0,

0 otherwise.

Next, define C 2 C according to

Q(cj | v, x) =

8
>><

>>:

⇡j(x)
�
0

@
X

cj̃ : Pj̃( ·|x)=P ( ·|v,x)
⇡j̃(x)

1

A if v 2 Vx and Pj( · | c, x) = P ( · | v, x)

0 otherwise.

Together, this defines the random vector (X, Y
⇤
, V, C) ⇠ Q, whose joint distribution is defined as

Q(x, ~y, v, c) = P (x)Q(~y | x)Q(v | ~y, x)Q(c | v, x).

We now check that this construction satisfies information set, expected utility maximization
and data consistency. First, information set is satisfied since Q(c, ~y | x, v) = Q(~y | x, v)Q(c | x, v)
by construction. Next, for any x 2 X and cj 2 Cx, define vj,x 2 Vx to be the label satisfying
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Pj( · | x) = P ( · | v, x). For P (cj, ~y | w, x) > 0, observe that

P (cj, ~y | x) = ePj(~y | x)⇡j(x) =

Q(~y | x)

Q(~y | vj,x, x)
P

j̃ : Pj̃( ·|x)=
P ( ·|vj,x,x)

⇡j̃(x)

Q(~y | x)

⇡j(x)P
j̃ : Pj̃( ·|x)=
P ( ·|vj,x,x)

⇡j̃(x)
=

Q(~y | x)Q(vj,x | ~y, x)Q(c | vj,x, x) =X

v2V

Q(~y | x)Q(v | ~y, x)Q(c | v, x) =
X

v2V

QV,C,~Y (v, c, ~y | x) = QC,~Y (c, ~y | w, x).

Moreover, whenever PC,~Y (c, ~y | x) = 0, Q(y⇤ | vj,x, x)Q(c | vj,x, x) = 0. Therefore, data
consistency holds. Finally, by construction, for Q(C = cj | V = vj,x, X = x) > 0,

Q(~Y = ~y | V = vj,x, X = x) =
Q(V = vj,x | ~Y = ~y,X = x)Q(~Y = ~y | X = x)

Q(V = vj,x | X = x)
= ePj(~y | x).

Expected utility maximization is therefore satisfied since the inequalities in Lemma C.1 were as-
sumed to hold and data consistency holds.

Lemma C.1 implies Theorem C.1: Define the joint distribution Q as Q(x, cj, ~y) = ePj(~y |

x)⇡j(x)P (x). Rewrite the condition in Lemma C.1 as: for all cj 2 {c1, . . . , cJ} and c
0
6= cj ,

X

~y2YJ

Q(cj, ~y | x)u(cj, ~y; x0) �
X

~y2YJ

Q(cj, ~y | x0)u(c
0
, ~y; x0).

Notice that if ⇡j(x) = 0, then Q(cj, ~y | x) = 0. The inequalities involving c 2 C with ⇡c(x) = 0
are therefore satisfied. Next, inequalities involving cj 2 {c1, . . . , cJ} with ⇡j(x) > 0 can be
equivalently rewritten as

X

~y2YJ

Qj(~y | x)u(cj, ~y; x0) �
X

~y2YJ

Qj(~y | x0)U(c0, ~y;w).

The statement of Theorem C.1 follows by noticing that
X

~y2YJ

Qj(~y | x)u(cj, ~y; x0) = EQ

h
U(cj, ~Y ; x0) | C = cj, X = x

i
,

X

~y2YJ

Qj(~y | x)U(c0, ~y; x0) = EQ

h
U(c0, ~Y ; x0) | C = cj, X = x

i
.
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C.5.2 Proof of Corollary C.2

Proof. This follows from Theorem C.1. For all x 2 X with ⇡1(x) > 0, the stochastic revealed
preference inequalities require

PK
k=1 E[Yk(1) | C = 1, X = x]� u0,k(x0) �

PK
k=1 E[Yk(0) | C =

1, X = x]. For all x 2 X with ⇡0(x) > 0, the stochastic revealed preference inequalities requirePK
k=1 E[Yk(0) | C = 0, X = x] �

PK
k=1 E[Yk(1) | C = 0, X = x] � u0,k(x0). Re-arranging

delivers that the decision maker’s choices are consistent with expected utility maximization at a
linear utility function if and only if there exists eP1( · | x) 2 B1,x and eP0( · | x) 2 B0,x satisfying

µ0(x0, x1) 
KX

k=1

|u0,k(x0)| whenever ⇡0(x) > 0

KX

k=1

|u0,k(x0)|  µ1(x0, x1) whenever ⇡1(x) > 0.

Taking the maximum of the upper bound over eP1( · | x) 2 B1,x and the minimum of the lower
bound over eP0( · | x) 2 B1,x then yields the result.

C.5.3 Proof of Theorem C.2

Proof. The proof follows the same strategy as Theorem C.1. I prove the following Lemma, and
then show that it implies Theorem C.2.

Lemma C.2. The decision maker’s choices are consistent with expected utility maximization be-
havior if and only if there exists a utility function u 2 U , ePj( · | x) 2 Bj,x for each cj 2 {c1, . . . , cJ}

and x 2 X satisfying
X

~y2YJ

ePj(~y | x)⇡j(x)u(cj, ~y; x0) �
X

~y2YJ

ePj(~y | x)⇡j(x)u(c
0
, ~y; x0)� ⇡j(x)✏(x)

for all x 2 X , c 2 {c1, . . . , cJ}, c0 6= cj .

Proof of Lemma C.2: Necessity Suppose the decision maker’s choices are consistent with
approximate expected utility maximization behavior at some u 2 U , (X, V, C, ~Y ) ⇠ Q, and
✏ = {✏(x) � 0: x 2 X}. By the same argument in the necessity direction for Lemma C.1, it
is without loss of generality to assume V 2 V has finite support.

For each cj 2 {c1, . . . , cJ}, (x, v) 2 X ⇥ V

Q(cj | x, v)

0

@
X

~y2YJ

Q(~y | x, v)u(cj, ~y; x0)

1

A � Q(cj | x, v)

0

@
X

~y2YJ

Q(~y | x, v)u(c0, ~y; x0)

1

A�Q(cj | x, v)✏(x)

holds for all cj 6= c
0. If Q(cj | x, v) = 0, this holds trivially. If Q(cj | x, v) > 0, this holds through

the approximate expected utility maximization condition. Multiply both sides by Q(v | x) to arrive
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at

Q(cj | x, v)Q(v | x)

0

@
X

~y2YJ

Q(~y | x, v)u(cj, ~y; x0)

1

A �

Q(cj | x, v)Q(v | x)

0

@
X

~y2YJ

Q(~y | x, v)u(c0, ~y; x0)

1

A�Q(cj | x, v)Q(v | x)✏(x).

Next, use information set to write Q(cj, ~y | x, v) = Q(~y | x, v)Q(cj | x, v) and arrive at

Q(v | x)

0

@
X

~y2YJ

Q(cj, ~y | x, v)u(cj, ~y; x0)

1

A � Q(v | x)

0

@
X

~y2YJ

Q(cj, ~y | x, v)u(c0, ~y; x0)

1

A�Q(cj, v | x)✏(x)

Finally, we use Q(cj, ~y, v | x) = Q(cj, ~y | x, v)Q(v | x) and further sum over v 2 V to arrive at

X

~y2YJ

 
X

v2V

Q(v, cj, ~y | x)

!
u(cj, ~y; x0) �

X

~y2YJ

 
X

v2V

Q(v, cj, ~y | x)

!
u(c0, ~y; x0)�

X

v2V

Q(cj, v | x)✏(x),

X

~y2YJ

Q(cj, ~y | x)u(cj, ~y; x0) �
X

~y2YJ

Q(cj, ~y | x)u(c0, ~y; x0)�Q(cj | x)✏(x)

The inequalities in Lemma C.1 then follow from an application of data consistency.

Proof of Lemma C.2: Sufficiency Sufficiency follows by the same construction of the joint
distribution (X, V, Y

⇤
, C) ⇠ Q as given in the sufficiency direction for Lemma C.1.

Lemma C.2 implies Theorem C.2 Define Q as Q(x, cj, ~y) = ePj(~y | x)⇡j(x)P (x). Rewrite the
condition in Lemma C.2 as: for all cj 2 {c1, . . . , cJ} and c

0
6= cj ,

X

~y2YJ

Q(cj, ~y | x)u(cj, ~y; x0) �
X

~y2YJ

Q(cj, ~y | x0)u(c
0
, ~y;w)�Q(cj | x)✏(x).

Notice that if ⇡j(x) = 0, then Q(cj, ~y | w, x) = 0 and Q(cj | x) = 0. The inequalities involving
c 2 C with ⇡c(x) = 0 are therefore satisfied. The inequalities involving cj 2 {c1, . . . , cJ} with
⇡j(x) > 0 can be equivalently rewritten as

X

~y2YJ

Qj(~y | x)u(cj, ~y; x0) �
X

~y2YJ

Qj(~y | x0)u(c
0
, ~y; x0)� ✏(x).
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The statement of Theorem C.2 follows by noticing that
X

~y2YJ

Qj(~y | x)u(cj, ~y; x0) = EQ

h
u(cj, ~Y ; x0) | C = cj, X = x

i
,

X

~y2YJ

Qj(~y | x)u(c0, ~y; x0) = EQ

h
u(c0, ~Y ; x0) | C = cj, X = x

i
.

C.5.4 Proof of Corollary C.4

Proof. This follows from applying Theorem C.2 to a binary choice, treatment assignment problem
over the class of linear utility functions. For all (x0, x1) 2 X0 ⇥ X1 with ⇡0(x0, x1) > 0, Theorem
C.2 requires µ

0
(x0, x1)�✏(x0, x1) 

PK
k=1 |u0,k(x0)|. For all (x0, x1) 2 X0⇥X1 with ⇡1(x0, x1) >

0, Theorem C.2 requires
PK

k=1 |u0,k(x0)|  µ1(x0, x1)+✏(x0, x1). Putting these together, it follows
that the decision maker’s choices approximately maximize expected utility at ✏ = {✏(x) � 0: x 2

X} if and only if, for all x0 2 X0,

max
x12X1

n
µ
0
(x0, x1)� ✏(x0, x1)

o
 min

x0
12X1

{µ1(x0, x1) + ✏(x0, x1)} .

This is equivalent to, for all x0 2 X0,

µ
0
(x0, x1)� µ1(x0, x

0
1)� ✏(x0, x1)� ✏(x0, x

0
1)  0 for all x1, x

0
1 2 X1.

C.5.5 Proof of Theorem C.3

Proof. To prove this result, I first establish the following lemma, and then show Theorem C.3
follows as a consequence.

Lemma C.3. Assume eP ( · | x) > 0 for all eP ( · | x) 2 HP (P ( · | x);Bx) and all x 2 X . The
decision maker’s choices are consistent with expected utility maximization behavior at inaccurate
beliefs if and only if there exists a utility function u 2 U , prior beliefs Q( · | x) 2 �(YJ) for all
x 2 X , ePj( · | x) for j = 1, . . . , J and all x 2 X satisfying, for all cj 2 {c1, . . . , cJ} and c

0
6= cj ,

X

~y2YJ

Q(~y | x) eP (cj | ~y, x)u(cj, ~y; x0) �
X

~y2YJ

Q(~y | x) eP (cj | ~y, x)u(c
0
, ~y; x0),

where eP (cj | ~y, x) =
ePj(~y|x)⇡j(x)

eP (~y|x) and eP (~y | x) =
PJ

j=1
ePj(~y | x)⇡j(x).

Proof of Lemma C.3: Necessity First, by an analogous argument as given in the proof of neces-
sity for Lemma C.1, it is without loss to assume V 2 V has finite support. Second, following the
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same steps as the proof of necessity for Lemma C.1, I arrive at
X

~y2YJ

Q(cj, ~y | x)u(c, ~y; x0) �
X

~y2YJ

Q(cj, ~y | x)u(c0, ~y; x0).

We then observe Q(c, ~y | x) = Q(c | ~y, x)Q(~y | x) = eP (c | ~y, x)Q(~y | x), where the last equality
follows via Data Consistency with Inaccurate Beliefs.

Proof of Lemma C.3: Sufficiency To show sufficiency, suppose that the conditions in Lemma
C.3 are satisfied at some ePj( · | x) 2 Bj,x for c 2 {c1, . . . , cJ}, x 2 X and some Q( · | x) 2 �(YJ)
for all x 2 X .

Define the joint distribution (X,C, ~Y ) ⇠ eP according to eP (x, c, ~y) = eP (c | ~y, x)Q(~y |

x)P (X = x), where eP (c | ~y, w, x) is defined in the statement of the Lemma. Given the inequal-
ities in the Lemma, we construct a joint distribution (X, V, C, ~Y ) ⇠ Q to satisfy information set,
expected utility maximization behavior and data consistency with inaccurate beliefs for the con-
structed joint distribution (X,C, ~Y ) ⇠ eP following the same sufficiency argument as given in
Lemma C.1.

Let C = {c1, . . . , cJ} and v 2 V :=
�
1, . . . , 2J

 
index all possible subsets in the power set

2C Define e⇡j(x) to be the probability of C = cj given X = x and ePj(~y | x) to be the condi-
tional potential outcome probability given C = cj, X = x under the constructed joint distribution
(X,C, ~Y ) ⇠ eP in the statement of the Lemma.

For each x 2 X , define Cx := {cj : e⇡j(x) > 0} ✓ C to be the set of choices selected with pos-
itive probability, and partition Cx into subsets that have identical constructed conditional potential
outcome probabilities. There are V̄x  |Cx| such subsets. Associate each subset in this partition
with its associated index v 2 V and denote the possible values as Vx. Denote the choice-dependent
outcome probability associated with the subset labelled v by eP ( · | v, x) 2 �(YJ).

Define V 2 V according to

Q(V = v | x) =
X

cj : ePj( ·|x)= eP ( ·|v,x)

e⇡j(x) if v 2 Vx,

Q(V = v | ~y, x) =

( eP (~y|v,x)Q(V=v|x)
Q(~y|x) if v 2 Vx and Q(~y | x) > 0,

0 otherwise.

Next, define the random variable C 2 C according to

Q(C = cj | v, x) =

8
<

:

e⇡j(x)P
j̃ : eP

j̃
( ·|x)= eP ( ·|v,x) e⇡j̃(x)

if v 2 Vx and ePj( · | x) = eP ( · | v, x)

0 otherwise.

Together, this defines the random vector (X, ~Y , V, C) ⇠ Q, whose joint distribution is defined as

Q(x, ~y, v, c) = P (x)Q(~y | x)Q(v | ~y, x)Q(c | v, x).

We check that this construction satisfies information set, expected utility maximization and
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data consistency. First, information set is satisfied since Q(c, ~y | x, v) = Q(~y | x, v)Q(c | x, v)
by construction. Next, for any x 2 X and cj 2 Cx, define vj,x 2 Vx to be the label satisfying
ePj( · | x) = eP ( · | v, x). For eP (cj, ~y | x) > 0, observe that

eP (cj, ~y | x) = ePj(~y | x)e⇡j(x) =

Q(~y | x)

Q(~y | vj,x, x)
P(

j̃ : ePj̃( ·|x)=
eP ( ·|v,x)

) e⇡j̃(x)

Q~Y (~y | x)

e⇡j(x)P(
j̃ : ePj̃( ·|x)=
eP ( ·|v,x)

) e⇡j̃(x)
=

Q(~y | x)Q(vj,x | ~y, x)Q(c | vj,x, x) =X

v2V

Q(~y | x)Q(v | ~y, x)Q(c | v, x) =
X

v2V

Q(v, c, ~y | x).

Moreover, whenever eP (c, ~y | x) = 0, Q(~y | vj,x, x)Q(c | vj,x, x) = 0. Since eP (c, ~y | x) = e⇡(c |

~y, x)Q(~y | x) by construction, (X, V, C, ~Y ) ⇠ Q satisfies data consistency at inaccurate beliefs
(Definition 10). Finally, for Q(cj | V = vj,x, X = x) > 0,

Q(~Y = ~y | V = vj,x, X = x) =
Q(V = vj,x | ~Y = ~y,X = x)Q(~Y = ~y | X = x)

Q(V = vj,x | X = x)
= ePj(~y | X = x)

and e⇡j(x) > 0. Therefore, using data consistency at inaccurate beliefs and the inequalities in
Lemma C.3, we have that

X

~y2YJ

Q(~y | v, x)u(cj, ~y; x0) �
X

~y2YJ

Q(~y | v, x)u(c0, ~y; x0),

which follows from the fact that Q~Y (~y | x) eP (cj | ~y, x) = Q(cj, ~y | x) and the construction of
eP , and Q(~Y = ~y | V = vj,x, X = x) = ePj(~y | x) as just shown. Therefore, expected utility
maximization is also satisfied.

Rewrite inequalities in Lemma C.3 in terms of weights: Define eP as in the statement of the
Theorem. Rewrite the condition in Lemma C.3 as: for all cj 2 {c1, . . . , cJ} and c̃ 6= cj ,

X

~y2YJ

Q(~y | x)
eP (~y | x)

eP (c, ~y | x)u(c, ~y; x0) �
X

~y2YJ

Q(~y | x)
eP (~y | x)

eP (c, ~y | x)U(c0, ~y; x0).

Notice that if ⇡j(w, x) = 0, then eP (cj, ~y | x) = 0. Therefore, the inequalities involving cj 2

{c1, . . . , cJ} with ⇡j(x) = 0 are trivially satisfied. The inequalities involving c 2 {c1, . . . , cJ}

with ⇡j(x) > 0 can be equivalently rewritten as

X

~y2YJ

Q(~y | x)
eP (~y | x)

ePj(~y | x)u(c, ~y; x0) �
X

~y2YJ

Q(~y | x)
eP (~y | x)

ePj(~y | x)u(c0, ~y; x0).
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The result follows by noticing
P

~y2YJ
ePj(~y | x)Q(~y|x)

eP (~y|x)u(c, ~y; x0) = E eP

h
Q(~y|x)
eP (~y|x)u(c, ~y; x0)

i
and

defining the weights as !(~y; x) = Q(~y|x)
eP (~y|x) .

D Additional results for expected utility maximization after di-
mension reduction

In this section, I show how the characterization results for the magnitudes of systematic prediction
mistakes and ways in which the decision maker’s beliefs are systematically biased are suitably
modified to account for the dimension reduction discussed in Section 5.2. As in the main text, let
D : X ! {1, . . . , Nd} be a function that partitions the observable characteristics X into level sets
{x 2 X : D(x) = d}.

D.1 Approximate expected utility maximization after dimension reduction
The identification result for expected utility maximization behavior with inaccurate beliefs extends
to coarsening the excluded characteristics. First, for a treatment assignment problem, Theorem
C.2 implies that if the decision maker’s choices are consistent with approximate expected utility
maximization, then their choices satisfy a system of implied revealed preference inequalities. This
follows from Lemma C.2 and the same iterated expectations argument as in the proof of Proposi-
tion C.2. I omit the proof for brevity.

Proposition D.1. Assume 0 < ⇡j(x) < 1 for all cj 2 {c1, . . . , cJ} and x 2 X . Suppose the
decision maker’s choices are consistent with approximate expected utility maximization at u 2 U

and ✏ = {✏(x) � 0: x 2 X}. Then, for each x0 2 X0, d 2 {1, . . . , Nd}, cj 2 {c1, . . . , cJ} and
c
0
6= cj ,

X

~y2YJ

ePj(~y | (x0, d))u(cj, ~y; x0) �
X

~y2YJ

ePj(~y | (x0, d))u(c
0
, ~y; x0)� ✏̄(x0, d),

where

eP (cj, ~y | (x0, d)) =
X

x1 : D(x0,x1)=d

eP (cj, ~y | (x0, x1))
P (X1 = x1 | X0 = x0)

P (D(X0, X1) = d | X0 = x0)
,

⇡j(x0, d) =
X

x1 : D(x0,x1)=d

⇡j(x0, x1)
P (X1 = x1 | X0 = x0)

P (D(X0, X1) = d | X0 = x0)
,

ePj(~y | (x0, d)) = eP (cj, ~y | (x0, d))/⇡j(x0, d),

✏̄(x0, d) = ⇡j(x0, d)
�1

X

x1 : D(x0,x1)=d

✏(x0, x1)⇡j(x0, x1)
P (X1 = x1 | X0 = x0)

P (D(X0, X1) = d | X0 = x0)
.

Corollary D.1. Suppose 0 < ⇡1(x) < 1 for all x 2 X . If the decision maker’s choices approxi-
mately maximize expected utility at some linear utility function and ✏ = {✏(x) � 0: x 2 X}, then
there exists ✏̄(x0, d) � 0 such that, for all pairs (x0, d), (x0, d

0),

µ1(x, d)� µ0(x, d
0)� ✏̄(x, d)� ✏̄(x, d0)  0.
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I next show how the coarsening affects the interpretation of the lower bound on the expected
utility cost of systematic prediction mistakes. Define the worst-case cost of systematic prediction
mistakes over D( ·) as E⇤(D) =

P
x0,d

P (x0, d)✏⇤(x0, d), where ✏⇤(x) is an optimal solution to the
linear program defined in (9) of the main text, and ✏

⇤(x0, d) = maxx1 : D(x0,x1)=d ✏
⇤(x0, x1). That

is, E(D) is the worst-case cost of systematic prediction mistakes to the decision maker over the
partition D( ·) since it applies the largest misranking within each cell of the partition over the entire
partition. By construction, E(D) � E . Consider the optimal value of the linear program

E(D) := min
✏(x0,d)

X

x0,d

P (x0, d)✏(x0, D(x))

s.t. ✏(x0, d) � 0 for all x 2 X ,

µ1(x0, d)� µ0(x0, d
0)� ✏(x0, d)� ✏(x0, d

0)  0 for all pairs (x0, d), (x0, d
0).

It is immediate that E(D)  E
⇤(D) since ✏

⇤(x0, d) is feasible in the program, and so E(D) pro-
vides a valid lower bound on the worst-case expected utility cost to the decision maker over D( ·).
Furthermore, E(D) = 0 if E = 0 by construction.

Analogously, define �
⇤(D) =

P
x0,d

P (x0, d)1{✏⇤(x0, d) > 0} to be the worst-case share of
systematic prediction mistakes over D( ·). By construction, �  �

⇤(D). Consider the optimal
value of the program

�(D) := min
✏(x0,d)

X

x0,d

P (x0, d)1{✏(x0, D(x)) > 0}

s.t. ✏(x0, d) � 0 for all x 2 X ,

µ1(x0, d)� µ0(x0, d
0)� ✏(x0, d)� ✏(x0, d

0)  0 for all pairs (x0, d), (x0, d
0).

Since ✏
⇤(x0, d) is feasible, it follows that �(D)  �

⇤(D), and so, �(D) provides a valid lower
bound on the worst-case share of systematic prediction mistakes over D( ·).

D.2 Expected utility maximization at inaccurate beliefs after dimension re-
duction

The identification result for expected utility maximization behavior with inaccurate beliefs extends
to coarsening the excluded characteristics. I first show that, for a treatment assignment problem,
Theorem C.3 implies that if the decision maker’s choices are consistent with expected utility max-
imization at inaccurate beliefs, then their choices satisfy a system of implied revealed preference
inequalities. This follows directly from Lemma C.3 and the same iterated expectations argument
as in the proof of Proposition 5.1.

Proposition D.2. Suppose the decision maker’s choices are consistent with expected utility maxi-
mization behavior at inaccurate beliefs and some utility function u 2 U . Then, for each x0 2 X0,
d 2 {1, . . . , Nd}, cj 2 {c1, . . . , cJ} and c

0
6= cj ,

X

~y2YJ

Q(cj, ~y | x0, d)u(c, ~y; x0) �
X

~y2YJ

Q(cj, ~y | x0, d)u(c
0
, ~y; x0),
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where

Q(c, ~y | x0, d) =

0

@
X

x1 : D(x0,x1)=d

eP (c | ~y, (x0, x1))Q(~y | (x0, x1))P (x1 | x0)

1

A /P (D(X0, X1) = d | X0 = x0),

eP (c | ~y, x) =
eP (~y | c, x)⇡c(x)P

c02C
eP (~y | c0, x)⇡c0(x)

.

Provided that P (c, ~y | x) > 0 for all (c, ~y) 2 C ⇥ Y
J and x 2 X , Proposition D.2 can be

recast as checking whether there exists non-negative weights !(c, ~y; x0, d) � 0 satisfying, for all
cj 2 {c1, . . . , cJ} with c

0
6= cj and x 2 X ,

X

~y2YJ

!(cj, ~y; x0, d) eP (cj, ~y | x0, D(x) = d)u(cj, ~y; x0) �

X

~y2YJ

!(cj, ~y; x0, d) eP (cj, ~y | x0, D(x) = d)u(c0, ~y; x0)

and E eP

h
!(C, ~Y ;X0, D(X)) | X0 = x0, D(X) = d

i
= 1.

I next apply this result in a screening decision with a binary choice and binary outcome. In this
special case, following the same argument as the proof of Theorem 4.4, this result may be applied
to derive bounds on the decision maker’s reweighed utility threshold through

P1(1 | x0, d) 
!(0, 0; x0, d)u0,1(x0)

!(0, 0; x0, d)u0,1(x0) + !(1, 1; x0, d)u1,1(x0)
 P 0(1 | x0, d), (23)

where Pc(y⇤ | x0, d) := P (Y ⇤ = y
⇤
| C = c,X0 = x0, D(X) = d). Next, define M = 1{C =

0, Y ⇤ = 0}+1{C = 1, Y ⇤ = 1}, ⌧(x0, d) =
!(0,0;x0,d)u0,1(x0)

!(0,0;x0,d)u0,1(x0)+!(1,1;x0,d)u1,1(x0)
. Examining x0 2 X0,

d, d
0
2 {1, . . . , Nd}, we arrive at

(1� ⌧(x0, d))/⌧(x0, d)

(1� ⌧(x0, d
0))/⌧(x0, d

0)
=

Q(C=1,Y ⇤=1|M=1,x0,d)/Q(C=0,Y ⇤=0|M=1,x0,d)
Q(C=1,Y ⇤=1|M=1,x0,d0)/Q(C=0,Y ⇤=0|M=1,x0,d0)

P (C=1,Y ⇤=1|M=1,x0,d)/P (C=0,Y ⇤=0|M=1,x0,d)
P (C=1,Y ⇤=1|M=1,x0,d0)/P (C=0,Y ⇤=0|M=1,x0,d0)

. (24)

By examining values in the identified set of reweighted utility thresholds defined on the coars-
ened characteristic space, bounds may be constructed on a parameter that summarizes the decision
maker’s beliefs about their own “ex-post errors.” That is, how does the decision maker’s belief
about the relative probability of choosing C = 0 and outcome Y

⇤ = 0 occurring vs. choosing
C = 1 and outcome Y

⇤ = 1 occurring compare to the true probability? If these bounds lie every-
where below one, then the decision maker’s beliefs about their own ex-post errors are underreacting
to variation in risk across the cells (x0, d) and (x0, d

0). If these bounds lie everywhere above one,
then the decision maker’s beliefs about their own ex-post errors are overreacting.
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E Additional results for the econometric framework
E.1 Quasi-randomly assigned instrumental variable
I modify Assumption 2 to only impose that the instrument be quasi-randomly assigned con-
ditional on some additional characteristics t 2 T with finite support. The joint distribution
(X, T, Z, C, Y

⇤) ⇠ P satisfies
(X, Y

⇤) ?? Z | T (25)

and P (x, t, z) > 0 for all (x, t, z) 2 X ⇥ T ⇥ Z . In the empirical application to the New York
City pretrial system, judges are quasi-randomly assigned to cases within a court-by-time cell.

Under (25), researchers can derive bounds on the unobservable conditional outcome probabil-
ities. Let µ(x, z) := E[Y ⇤

| X = x, Z = z] and µ(x, z, t) := E[Y ⇤
| X = x, Z = z, T = t]. Then,

by iterated expectations,

µ(x, z) =
X

t2T

µ(x, z, t)P (t | x, z) =
X

t2T

µ(x, z̃, t)P (t | x, z),

where the last equality follows by quasi-random assignment. Furthermore, for each value of t 2 T

and z 2 Z , µ(x, z, t) is bounded by

µ1(x, z, t)⇡1(x, z, t)  µ(x, z, t)  K⇡0(x, z, t) + µ1(x, z, t)⇡1(x, z, t).

Therefore, for a given z 2 Z , the sharp lower and upper bounds on µ(x, z, t) are

E [µ1(X, z̃, T )⇡1(X, z̃, T ) | X = x, Z = z]  µ(x, z),

µ(x, z)  E [µ1(X, z̃, T )⇡1(X, z̃, T ) +K⇡0(X, z̃, T ) | X = x, Z = z]

for any z̃ 2 Z . Since µ1(x, z)⇡1(x, z) is observed, this implies bounds on µ0(x, z)⇡0(x, z). As-
suming ⇡0(x, z) > 0, this implies a bound on µ0(x, z) since ⇡0(x, z) is also observed.

E.2 Translating expected utility costs into ex-post errors
Section 4.1.1 of the main text showed that the total expected utility cost E of systematic prediction
mistakes to the decision maker can be characterized as the optimal value of a linear program. I now
show how E can be translated into an equivalent reduction in ex-post errors P (C = 1, Y ⇤ = 1)
that would produce the same expected utility cost E to the decision maker.

Assume Y
⇤ = Y

⇤
1 , and let ✏(x) denote an optimal solution to (8). By the definition of approx-

imate expected utility maximization, E is an upper bound on

E[u(C⇤(X, V ), Y ⇤;X0)�u(C, Y ⇤;X0)] =
X

x02X0

{|u0,1(x0)|�0,0(x0) + |u1,1(x0)|�1,1(x0)}P (x0),

(26)
where C

⇤(X, V ) is expected utility maximization choice at (X, V ), �0,0(x0) = E[(1 � C)(1 �

Y
⇤
1 ) � (1 � C

⇤(X, V ))(1 � Y
⇤
1 ) | X0 = x0] is the reduction of ex-post errors that select C = 0

when Y
⇤
1 is small, and �1,1(x0) = E[CY

⇤
1 � C

⇤(X, V )Y ⇤
1 | X0 = x0] is the reduction of ex-post

errors that select C = 1 when Y
⇤
1 is large. From the proof of Theorem 4.1, the identified set of
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linear utility functions at expected utility costs ✏(x) is satisfies, for all x0 2 X0,

max
x̃12X1

{µ1(x0, x̃1)� ✏(x0, x̃1)}  |u0,1(x0)|  min
x̃12X1

max
x̃12X

{µ0(x0, x̃1)� ✏(x0, x̃1)} , (27)

and define |u0,1(x0)| = maxx̃12X1 {µ1(x0, x̃1)� ✏(x0, x̃1)}, |u1,1(x0)| = 1 � |u0,1(x0)|. At this
linear utility function in the identified set for expected utility costs ✏(x), we can calculate the
implied reduction in ex-post errors �1,1(x0) that are equivalent to E in an expected utility sense by
calculating

max
�0,0(x0),�1,1(x0)

X

x0

�1,1(x0)P (x0) (28)

s.t. 0  �1,1(x0)  E[CY
⇤
| X0 = x0] for all x0 2 X0,

0  �0,0(x0)  ⇡0(x0) for all x0 2 X0,X

x02X0

{|u0,1(x0)|�0,0(x0) + |u1,1(x0)|�1,1(x0)}P (x0)  E .

The first constraint imposes that the reduction in ex-post errors �1,1(x0) must be weakly positive,
and can be no greater than the observed ex-post errors E[CY

⇤
| X0 = x0] at the decision maker’s

choices. The second constraint imposes that the reduction in ex-post errors �0,0(x0) must also be
weakly positive, and can be no greater than the observed probability the decision maker selected
C = 0. This is an upper bound on E[(1�C)(1�Y

⇤) | X0 = x0]. The final constraint imposes that
the implied expected utility of the change in ex-post errors must be consistent with the expected
utility cost E .

E.3 Mixed-integer linear program for the share of systematic prediction
mistakes

I now show that the share of systematic prediction mistakes in the decision maker’s choices �

defined in (11) can be equivalently written as the optimal value of a mixed-integer linear program.
This uses the standard “Big-M” method. Defining M � 2K to be some large known constant, it
follows that

� := min
!(x),✏(x)

X

x

P (x)!(x) s.t.

µ1(x)� µ0(x
0)✏(x)� ✏(x0)  0 for all pairs x = (x0, x1), x

0 = (x0, x
0
1),

0  ✏(x)  M · !(x), !(x) 2 {0, 1}

since maxx,x02X{µ1(x)� µ0(x
0)}  2K because Y

⇤
k 2 [0, 1] for all k = 1, . . . , K. Mixed-integer

linear programs also appear in several, unrelated econometric problems such as the computation of
the maximum score estimator (Florios and Skouras, 2008), and the calculation of empirical welfare
maximizing policy rules (Kitagawa and Tetenov, 2018; Viviano, 2020).
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E.4 Expected social welfare: identification and inference
E.4.1 Expected social welfare under candidate decision rules

For a binary outcome Y
⇤ = Y

⇤
1 2 {0, 1}, consider a policymaker whose payoffs are summarized

by the linear social welfare function u
⇤
1,1y

⇤
1c + u

⇤
0,1(1 � y

⇤
1)(1 � c) as in Section 6 of the main

text. As notation, let ✓(x) denote expected social welfare at x 2 X under a candidate decision rule
⇡
⇤
1(x) as given in (17), which can be rewritten as

✓(x) = `(x; ⇡⇤
1, u

⇤)P (1 | x) + �(x; ⇡⇤
1, u

⇤) (29)

for `(x; ⇡⇤
1, u

⇤) := u
⇤
1,1⇡

⇤
1(x)�u

⇤
0,1(1�⇡

⇤
1(x)) and �(x; ⇡⇤

1, u
⇤) := u

⇤
0,1(1�⇡

⇤
1(x)). Total expected

social welfare then equals

✓(⇡⇤
1, u

⇤) = �(⇡⇤
1, u

⇤) +
X

x2X

P (x)`(x; ⇡⇤
1, u

⇤)P (1 | x), (30)

where �(⇡⇤
1, u

⇤) :=
P

x2X P (x)�(x; ⇡⇤
1, u

⇤). Since P (1 | x) is partially identified, total expected
social welfare is also partially identified and its sharp identified set of total expected welfare is an
interval.
Proposition E.1. Assume a binary outcome Y ⇤ = Y

⇤
1 2 {0, 1}. Consider a policymaker with a lin-

ear social welfare function u
⇤
0,1, u

⇤
1,1 < 0 and a candidate decision rule ⇡⇤

1(x). The sharp identified
set of total expected social welfare, denoted HP (✓(⇡⇤

1, u
⇤);B), is an interval with HP (✓(⇡⇤

1, u
⇤);B) =⇥

✓(⇡⇤
1, u

⇤), ✓(⇡⇤
1, u

⇤)
⇤
, where

✓(⇡⇤
1, u

⇤) = �(⇡⇤
1, u

⇤) +

8
><

>:
min⇢

P̃ ( ·|x) :
x2X

�

X

x2X

P (x)`(x; ⇡⇤
1, u

⇤) eP (1 | x) s.t. eP ( · | x) 2 HP (P ( · | x);B0,x) 8x 2 X

9
>=

>;
,

✓(⇡⇤
1, u

⇤) = �(⇡⇤
1, u

⇤) +

8
><

>:
max⇢
eP ( ·|x) :
x2X

�

X

x2X

P (x)`(x; ⇡⇤
1, u

⇤) eP (1 | x) s.t. eP ( · | x) 2 HP (P ( · | x);B0,x) 8x 2 X

9
>=

>;
.

For a binary outcome, the bounds Bx can be expressed as an interval with [P (1 | x), P (1 | x)]. For
example, this is true if the bounds are constructed using an instrumental variable as discussed in the
main text. In this case, Proposition E.1 implies that the sharp identified set of total expected social
welfare under a candidate decision rule is characterized by the solution to two linear programs.
Furthermore, provided the candidate decision rule and joint distribution of the characteristics X

are known, testing the null hypothesis that total expected social welfare is equal to some candidate
value is equivalent to testing a system of moment inequalities with nuisance parameters that enter
linearly.
Proposition E.2. Under the same set-up as Proposition E.1, conditional on the characteristics X ,
testing the null hypothesis H0 : ✓(⇡⇤

1, u
⇤) = ✓0 is equivalent to testing whether

9� 2
dx�1 s.t. eA(·,1)

�
✓0 � `

|(⇡⇤
1, u

⇤)P c=1,y⇤1=1
� �(⇡⇤

1, u
⇤)
�
+ eA(·,�1)� 

 
�P

c=0,y⇤1=1

P
c=0,y⇤1=1

!
,
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where dx := |X |, `(⇡⇤
1, u

⇤) is the dx-dimensional vector with elements P (x)`(x; ⇡⇤
1, u

⇤), P c=1,y⇤1=1

is the dx-dimensional vector of moments P (C = 1, Y ⇤
1 = 1 | X = x), P c=0,y⇤1=1

, P
c=0,y⇤1=1 are the

dx-dimensional vectors of lower and upper bounds on P (C = 0, Y ⇤
1 = 1 | X = x) respectively,

and eA is a known matrix.37

A confidence interval for total expected social welfare can then be constructed through test in-
version. Testing procedures for moment inequalities with nuisance parameters are available for
high-dimensional settings in Belloni, Bugni and Chernozhukov (2018). Andrews, Roth and Pakes
(2019) and Cox and Shi (2020) develop inference procedures that exploit the additional linear
structure and are valid in low-dimensional settings.

E.4.2 Expected social welfare under decision maker’s observed choices

Consider again a policymaker with linear social welfare function u
⇤
0,1 < 0, u⇤

1,1 < 0. Total expected
social welfare under the decision maker’s observed choices is given by

✓
DM(u⇤) =u

⇤
1,1P (C = 1, Y ⇤

1 = 1) + u
⇤
0,1P (C = 0)

� u
⇤
0,1

X

x2X

P (C = 0, Y ⇤
1 = 1 | X = x)P (x).

Since P (C = 0, Y ⇤
1 = 1 | X = x) is partially identified, total expected social welfare under the

decision maker’s observed choices is also partially identified and the sharp identified set is again
an interval.

Proposition E.3. Under the same set-up as Proposition E.1, the sharp identified set of total ex-
pected social welfare under the decision maker’s observed choices, denoted HP (✓DM(u⇤);B), is
an interval with HP (✓DM(u⇤);B) =

h
✓
DM(u⇤), ✓

DM
(u⇤)

i
, where

✓
DM(u⇤) = u

⇤
1,1P (C = 1, Y ⇤

1 = 1) + u
⇤
0,1P (C = 0)� u

⇤
0,1P (C = 0, Y ⇤

1 = 1)

✓
DM

(u⇤) = u
⇤
1,1P (C = 1, Y ⇤

1 = 1) + u
⇤
0,1P (C = 0)� u

⇤
0,1P (C = 0, Y ⇤

1 = 1),

where

P (C = 0, Y ⇤
1 = 1) = max⇢

eP (C=0,Y ⇤
1 =1|X=x) :
x2X

�

X

x2X

P (x) eP (C = 0, Y ⇤
1 = 1 | X = x)

s.t. eP (C = 0, Y ⇤
1 = 1 | X = x) 2 HP (P (C = 0, Y ⇤

1 = 1 | X = x);B0,x) 8x 2 X

and P (C = 0, Y ⇤
1 = 1) is the optimal value of the analogous minimization problem.

As in Appendix ??, the bounds Bx for a binary outcome are an interval, and so Proposition E.1
implies that the sharp identified set of total expected social welfare under a candidate decision rule
is characterized by the solution to two linear programs.

Provided the joint distribution of the characteristics X are known, then testing the null hypoth-
esis that total expected social welfare is equal to some candidate value is equivalent to testing a

37For a matrix B, B(·,1) refers to its first column and B(·,�1) refers to all columns except its first column.
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system of moment inequalities with a large number of nuisance parameters that enter the moments
linearly.

Proposition E.4. Under the same set-up as Proposition E.1, conditional on the characteristics X ,
testing the null hypothesis H0 : ✓DM(u⇤) = ✓0 is equivalent to testing whether

9� 2
dx s.t. eADM

(·,1)
�
✓0 � u

⇤
1,1P (C = 1, Y ⇤

1 = 1) + u
⇤
0,1P (C = 0)

�
+ eADM

(·,�1)� 

✓
�PC,Y ⇤

1
(0, 1)

PC,Y ⇤
1
(0, 1)

◆
,

where PC,Y ⇤
1
(0, 1), PC,Y ⇤

1
(0, 1) are the dx-dimensional vectors of lower and upper bounds on

PC,Y ⇤(C = 0, Y ⇤
1 = 1 | X = x) respectively, and eADM is a known matrix.

E.5 The policymaker’s first-best decision rule
For a binary outcome Y

⇤ = Y
⇤
1 2 {0, 1}, consider a policymaker with a linear social welfare

function u
⇤
1,1y

⇤
1c + u

⇤
0,1(1 � y

⇤
1)(1 � c) with u

⇤
0,1 < 0, u⇤

1,1 < 0 as in Section 6 of the main text.
I construct an algorithmic decision rule based on analyzing how the policymaker would make
choices herself in the binary screening decision.38

Due to the missing data problem, the conditional probability of Y ⇤
1 = 1 given the characteris-

tics is partially identified and I assume the policymaker adopts a max-min evaluation criterion to
evaluate decision rules. Let ⇡⇤

1(x) 2 [0, 1] denote the probability the policymaker selects C = 1
given X = x. At each x 2 X , the policymaker then chooses ⇡⇤

1(x) to maximize

min
eP (1|x)

⇡
⇤
1(x) eP (1 | x)u⇤

1,1 + (1� ⇡
⇤
1(x))(1� eP (1 | x))u⇤

0,1

s.t. P (1 | x)  eP (1 | x)  P (1 | x).

Proposition E.5. Assume a binary outcome Y
⇤ = Y

⇤
1 2 {0, 1}. Consider a policymaker with

linear social welfare function u
⇤
0,1 < 0, u⇤

1,1 < 0, who chooses ⇡⇤
1(x) 2 [0, 1] to maximize worst-

case expected social welfare. Defining ⌧
⇤(u⇤) :=

u⇤
0,1

u⇤
0,1+u⇤

1,1
= |u

⇤
0,1|, her max-min decision rule

is

⇡
⇤
1(x) =

8
><

>:

1 if P Y ⇤(1 | x)  ⌧
⇤
,

0 if P Y ⇤(1 | x) � ⌧
⇤
,

⌧
⇤ if P Y ⇤(1 | x) < ⌧

⇤
< P Y ⇤(1 | x).

The policymaker makes choices based on a threshold rule, where the threshold ⌧
⇤ depends on

the relative costs of ex-post errors under the social welfare function. If the upper bound on the
probability of Y ⇤

1 = 1 conditional on the characteristics is sufficiently low, then the policymaker
chooses C = 1 with probability one. If the lower bound on the probability of Y ⇤ = 1 is sufficiently
high, then the policymaker chooses C = 0 with probability one. Otherwise, if the identified set
for P (Y ⇤

1 = 1 | X = x) contains the threshold ⌧
⇤, the policymaker randomizes and selects C = 1

with probability exactly equal to ⌧
⇤.

In my empirical analysis in Section 6, I evaluate the choices of judges against this first-best
decision rule applied to each cell of payoff relevant characteristics X0 and each decile of predicted

38Rambachan et al. (2021) refer to this as the “first-best problem” in their analysis of algorithmic decision rules.
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risk D(X). The bounds on the probability defendants would fail to appear in court (Y ⇤
1 = 1)

conditional on the characteristics is constructed using the quasi-random assignment of judges as
discussed in Section 5.3, and the threshold ⌧

⇤ varies as the social welfare function u
⇤
0,1, u

⇤
1,1 varies.

I construct the decision rule using only data from the held-out judges, and treat it as fixed.

E.6 Proofs of additional results for the econometric framework
E.6.1 Proof of Proposition E.1

Proof. The researcher’s bounds on the unobserved conditional outcome probabilities implies bounds
on eP (1 | x) 2 HP (P (1 | x);Bx) as discussed in Section 2.2 of the main text. The result then im-
mediately follows from (30), taking the maximum and minimum over P (1 | x) that are consistent
with the researcher’s bounds.

E.6.2 Proof of Proposition E.2

Proof. First, rewrite ✓(⇡⇤
1, u

⇤) as

�(⇡⇤
1, u

⇤) + `
|(⇡⇤

1, u
⇤)PC,Y ⇤

1
(1, 1) + `

|(⇡⇤
1, u

⇤)PC,Y ⇤
1
(0, 1),

where `
|(⇡⇤

1, u
⇤) is defined in the statement of the proposition and PC,Y ⇤

1
(1, 1), PC,Y ⇤

1
(0, 1) are the

dx vectors whose elements are P (C = 1, Y ⇤
1 | X = x), P (C = 0, Y ⇤

1 = 1 | X = x) respectively.
The null hypothesis H0 : ✓(⇡⇤

1, u
⇤) = ✓0 is equivalent to the null hypothesis that there exists

ePC,Y ⇤
1
(0, 1) satisfying

`
|(⇡⇤

1, u
⇤) ePC,Y ⇤

1
(0, 1) = ✓(⇡⇤

1, u
⇤)� �(⇡⇤

1, u
⇤)� `

|(⇡⇤
1, u

⇤)PC,Y ⇤
1
(1, 1)

P (C = 0, Y ⇤
1 = 1 | X = x)  eP (C = 0, Y ⇤

1 = 1 | X = x)  P (C = 0, Y ⇤
1 = 1 | X = x) for all x 2 X .

We can express the bounds as A ePC,Y ⇤
1
(0, 1) 

✓
�PC,Y ⇤

1
(0, 1)

PC,Y ⇤
1
(0, 1)

◆
, where A =

✓
�I

I

◆
is a known

matrix and PC,Y ⇤
1
(0, 1), PC,Y ⇤

1
(0, 1) are the dx vectors of lower and upper bounds respectively.

Therefore, the null hypothesis H0 : ✓(⇡⇤
1, u

⇤) = ✓0 is equivalent to the null hypothesis

9 ePC,Y ⇤
1
(0, 1) satisfying `

|(⇡⇤
1, u

⇤) ePC,Y ⇤
1
(0, 1) = ✓0 � �(⇡⇤

1, u
⇤)� `

|(⇡⇤
1, u

⇤)PC,Y ⇤
1
(1, 1) and

A ePC,Y ⇤
1
(0, 1) 

✓
�PC,Y ⇤

1
(0, 1)

PC,Y ⇤
1
(0, 1)

◆
.

Next, we apply a change of basis argument. Define the full rank matrix �, whose first row is equal
to `

|(⇡⇤
1, u

⇤). The null hypothesis H0 : ✓(⇡⇤
1, u

⇤) = ✓0 can be further rewritten as

9 ePC,Y ⇤
1
(0, 1) satisfying A��1� ePC,Y ⇤

1
(0, 1) 

✓
�PC,Y ⇤

1
(0, 1)

PC,Y ⇤
1
(0, 1)

◆
,

where � ePC,Y ⇤
1
(0, 1) =

 
�(1,·) ePC,Y ⇤

1
(0, 1)

�(�1,·) ePC,Y ⇤
1
(0, 1)

!
=

✓
✓0 � �(⇡⇤

1, u
⇤)� `

|(⇡⇤
1, u

⇤)PC,Y ⇤
1
(1, 1)

�

◆
defin-

ing � = �(�1,·) ePC,Y ⇤
1
(0, 1) and eA = A��1. The result then follows immediately with some alge-
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bra.

E.6.3 Proof of Proposition E.3

Proof. The proof follows the same argument as the proof of Proposition E.1.

E.6.4 Proof of Proposition E.4

Proof. As notation, let ePC,Y ⇤
1
(0, 1 | x) := eP (C = 0, Y ⇤

1 = 1 | X = x) and let ePC,Y ⇤
1
(0, 1) denote

the dx-dimensional vector with entries equal to eP (C = 0, Y ⇤
1 | X = xx). From the definition of

✓
DM(u⇤), the null hypothesis H0 : ✓DM(u⇤) = ✓0 is equivalent to the null hypothesis that there

exists ePC,Y ⇤
1
(0, 1) satisfying

� u
⇤
0,1

X

x2X

ePC,Y ⇤
1
(0, 1 | x)P (X = x) = ✓0 � u

⇤
1,1P (C = 1, Y ⇤

1 = 1)� u
⇤
0,1P (C = 0)

P (C = 0, Y ⇤
1 = 1 | X = x)  ePC,Y ⇤(0, 1 | x)  P (C = 0, Y ⇤

1 = 1 | X = x) for all x 2 X .

We can express these bounds in the form A ePC,Y ⇤
1
(0, 1) 

✓
�PC,Y ⇤

1
(0, 1)

PC,Y ⇤
1
(0, 1)

◆
, A =

✓
�I

I

◆
is a

known matrix. Therefore, defining `(u⇤) to be the dx dimensional vector with entries �u
⇤
0,1P (X =

x), the null hypothesis H0 : ✓DM(u⇤) = ✓0 is therefore equivalent to the null hypothesis

9 ePC,Y ⇤
1
(0, 1) satisfying `

|(u⇤) ePC,Y ⇤
1
(0, 1) = ✓0 � u

⇤
1,1P (C = 1, Y ⇤

1 = 1)� u
⇤
0,1P (C = 0) and

A ePC,Y ⇤
1
(0, 1) 

✓
�PC,Y ⇤

1
(0, 1)

PC,Y ⇤
1
(0, 1)

◆
.

Next, we apply a change of basis argument. Define the full rank matrix �, whose first row is equal
to `

|(u⇤). The null hypothesis H0 : ✓DM(u⇤) = ✓0 can be further rewritten as

9 ePC,Y ⇤
1
(0, 1) satisfying A��1� eP (0, 1) 

✓
�PC,Y ⇤

1
(0, 1)

PC,Y ⇤
1
(0, 1)

◆
,

where � ePC,Y ⇤
1
(0, 1) =

 
�(1,·) ePC,Y ⇤

1
(0, 1)

�(�1,·) ePC,Y ⇤
1
(0, 1)

!
=

✓
✓0 � u

⇤
1,1P (C = 1, Y ⇤

1 = 1)� u
⇤
0,1P (C = 0)

�

◆

defining � = �(�1,·) ePC,Y ⇤
1
(0, 1) and eA = A��1. The result then follows immediately with some

algebra.

E.6.5 Proof of Proposition E.5

Proof. To show this result, I consider cases for each x 2 X .
Case 1: Suppose P (Y ⇤

1 = 1 | X = x)  ⌧
⇤. In this case,

P (Y ⇤
1 = 1 | X = x)u⇤

1,1 � P (Y ⇤ = 0 | X = x)u⇤
0,1

for all P (Y ⇤
1 = 1 | X = x) satisfying P (Y ⇤

1 = 1 | X = x)  P (Y ⇤ = 1 | X = x)  P (Y ⇤
1 = 1 |
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X = x). Therefore, it is optimal to set ⇡⇤
1(x) = 1.

Case 2: Suppose P (Y ⇤
1 = 1 | X = x) � ⌧

⇤. In this case,

P (Y ⇤
1 = 1 | X = x)u⇤

1,1  P (Y ⇤
1 = 0 | X = x)u⇤

0,1

for all P (Y ⇤
1 = 1 | X = x) satisfying P (Y ⇤

1 = 1 | X = x)  P (Y ⇤
1 = 1 | X = x)  P (Y ⇤

1 = 1 |

X = x). Therefore, it is optimal to set ⇡⇤
1(x) = 0.

Case 3: Suppose P (Y ⇤
1 = 1 | X = x) < ⌧

⇤
< P (Y ⇤

1 = 1 | X = x). First, notice ⇡
⇤
1(x) = ⌧

⇤

delivers constant expected payoffs for all P (Y ⇤
1 = 1 | X = x) satisfying P (Y ⇤

1 = 1 | X = x) 
P (Y ⇤

1 = 1 | X = x)  P (Y ⇤
1 = 1 | X = x). As a function of P (Y ⇤

1 = 1 | X = x) and ⇡
⇤
1(x),

expected social welfare equals

⇡
⇤
1(x)P (Y ⇤

1 = 1 | X = x)u⇤
1,1 + (1� ⇡

⇤
1(x))P (Y ⇤

1 = 0 | X = x)u⇤
0,1.

The derivative with respect to P (Y ⇤
1 = 1 | X = x) equals ⇡

⇤
1(x)u

⇤
1,1 � (1 � ⇡

⇤
1(x))u

⇤
0,1, which

equals zero if ⇡⇤
1(x) = ⌧

⇤. Moreover, worst case expected social welfare at ⇡⇤
1(x) = ⌧

⇤ is equal
to the constant u⇤

0,1u
⇤
1,1

u⇤
0,1+u⇤

1,1
. I show that any other choice of ⇡⇤

1(x) delivers strictly lower worst-case
expected social welfare in this case.

Consider any ⇡
⇤
1(x) < ⌧

⇤. At this choice, expected social welfare is minimized at P (Y ⇤
1 = 1 |

X = x). But, at P (Y ⇤
1 = 1 | X = x), the derivative of expected social welfare with respect to

⇡
⇤
1(x) equals P (Y ⇤

1 = 1 | X = x)u⇤
1,1 � (1 � P (Y ⇤

1 = 1 | X = x))u⇤
0,1, which is strictly positive

since P (Y ⇤
1 = 1 | X = x) < ⌧

⇤. This implies that

⇡
⇤
1(x)P (Y ⇤

1 = 1 | X = x)u⇤
1,1 + (1� ⇡

⇤
1(x))(1� P (Y ⇤

1 = 1 | X = x))u⇤
0,1 <

⌧
⇤
P (Y ⇤

1 = 1 | X = x)u⇤
1,1 + (1� ⌧

⇤)(1� P (Y ⇤ = 1 | X = x))u⇤
0,1 =

u
⇤
0,1u

⇤
1,1

u
⇤
0,1 + u

⇤
1,1

.

Therefore, worst-case expected social welfare for any ⇡
⇤
1(x) < ⌧

⇤ is strictly less than worst-case
expected social welfare at ⇡⇤

1(x) = ⌧
⇤.

Consider any ⇡
⇤
1(x) > ⌧

⇤. At this choice, expected social welfare is minimized at P (Y ⇤
1 =

1 | X = x). But, at P (Y ⇤
1 = 1 | X = x), the derivative of expected social welfare with respect

to ⇡
⇤
1(w, x) equals P (Y ⇤

1 = 1 | X = x)u⇤
1,1 � (1 � P (Y ⇤ = 1 | X = x))u⇤

0,1, which is strictly
negative since P (Y ⇤

1 = 1 | X = x) > ⌧
⇤. This implies that

⇡
⇤
1(x)P (Y ⇤

1 = 1 | X = x)u⇤
1,1 + (1� ⇡

⇤
1(x))(1� P (Y ⇤

1 = 1 | X = x))u⇤
0,1 <

⌧
⇤
P (Y ⇤

1 = 1 | X = x)u⇤
1,1 + (1� ⌧

⇤)(1� P (Y ⇤
1 = 1 | X = x))u⇤

0,1 =
u
⇤
0,1u

⇤
1,1

u
⇤
0,1 + u

⇤
1,1

.

Therefore, worst-case expected social welfare for any ⇡
⇤
1(x) > ⌧

⇤ is strictly less than worst-case
expected social welfare at ⇡⇤

1(x) = ⌧
⇤.
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