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Abstract

An influential explanation for global productivity differences is that frontier technologies are
adapted to the high-income countries that develop them and “inappropriate” elsewhere. We
study this inappropriate technology hypothesis in agriculture by using mismatch in the presence
of crop pests and pathogens (CPPs) as a shifter of technology’s inappropriateness and investi-
gating its effect on technology diffusion and productivity. CPP mismatch reduces plant-variety
transfer at the crop-by-country-pair level, particularly from innovation-intensive origins. CPP
mismatch with these innovation-intensive countries reduces crop production. Our estimates,
combined with a model, imply that inappropriateness reduces global productivity by 58% and
increases cross-country disparities by 15%.
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Research and development (R&D), which drives technological progress, is concentrated in a small
set of countries (Boroush, 2020). To what extent does this phenomenon underlie global productivity
disparities? One school of thought starts from the premise that the most transformative technological
knowledge is broadly applicable and easily transmittable. It concludes that technology diffusion
from an innovation-intensive frontier can erode global disparities in the long run, and disparities
in R&D are only a temporary obstacle to convergence.1 In this framework, removing barriers to
technology adoption is the key policy solution for low productivity. A second, contrasting school
of thought emphasizes that new technologies are attached to specific conditions and characteristics
of production (Griliches, 1957; Atkinson and Stiglitz, 1969). Variations of the inappropriate technology
hypothesis state that frontier innovators’ focus on developing technology that matches local conditions
and characteristics severely inhibits that technology’s diffusion to, and productivity benefit in, other
contexts (Stewart, 1978; Basu and Weil, 1998; Acemoglu and Zilibotti, 2001). Therefore, even with
frictionless technology adoption, the direction of innovation in the frontier causes productivity to
persistently differ across places and to cluster in those “similar” to R&D leaders. The quantitative
relevance and global incidence of these predictions, however, remain mostly unknown.

One sector in which the premises of the inappropriate technology hypothesis seem to loom
especially large is agriculture. This may be best illustrated via an example. The Corn Rootworm is
nicknamed the “Billion-Dollar Bug” in the United States for its impact on corn production (Nordhaus,
2017). Developing technology that confers resistance against this evolving foe is the focus of a far-
reaching innovation industry, an important achievement of which is the development of genetically
modified varieties designed to be toxic specifically to Corn Rootworms without damaging other
fauna (Bessin, 2019). But since these modern tools are necessarily not as effective against other pests,
global producers facing different, untargeted pests may be left without comparably productive
technology. For instance, genetically modified corn varieties are less effective at controlling the
Maize Stalk Borer, a pest endemic to sub-Saharan Africa that is estimated to destroy 10% of Kenyan
corn every year (Campagne et al., 2017; Ongamo et al., 2016). In this example, a difference in which
pests are locally present, combined with the uneven focus of innovation across ecological threats,
mediates how new technology affects global productivity.

Beyond such case-study evidence for a few crops and plant varieties, however, little is known
about the effects of inappropriate technology in global agriculture. In particular, does the endoge-
nous inappropriateness of technology systematically reduce the global diffusion of agricultural
innovation, most of which originates in a handful of countries?2 And does the same force explain
a meaningful amount of the immense cross-country disparities in agricultural productivity, which
are even larger than those in manufacturing (Caselli, 2005)?

This paper investigates each pillar of the inappropriate technology hypothesis in the context
of global agriculture and plant biotechnology. Motivated by evidence in agricultural science that

1Eaton and Kortum (1996) and Barro and Sala-i Martin (1997) model how free diffusion of ideas can sustain international
convergence in Neoclassical endogenous growth models.

2Over 50% of private R&D occurs in North America (Fuglie, 2016), and most countries in sub-Saharan Africa have no
private sector investment (Access to Seeds Foundation, 2019). Public-sector and other non-profit research also concentrate
in wealthy countries (see, e.g., Beintema et al., 2012; Vidal, 2014).
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crop pests and pathogens (CPPs) are both pre-eminent threats to agricultural productivity and
targets for biotechnological innovation, we compile systematic data on the global distribution and
host-plant specificity of all known CPPs and develop a measure of crop-by-country-pair-level CPP
mismatch. Using CPP-level distribution data, we verify that global R&D is heavily biased toward
CPP threats present in high-income countries. We then present two main results documenting
the consequences of inappropriate technology, using CPP mismatch as a predetermined shifter of
technologies’ potential inappropriateness across locations and crops. First, CPP mismatch reduces
the cross-country diffusion of novel crop varieties, especially from more to less innovative countries.
Second, CPP mismatch with those innovative countries reduces crop-specific production. We inter-
pret these results via a model which endogenizes global agricultural productivity as the product of
unevenly appropriate innovation. Combining our empirical estimates with the model, we quantify
the aggregate productivity effect of the inappropriate-technology mechanism and study the effects
of counterfactual changes to global research and ecology. Taken together, these results provide
strong evidence for the inappropriate technology hypothesis—linking its premises to its predictions
and productivity effects—and provide a framework to measure its incidence in a critical sector.

Model. We begin by developing a model of inappropriate technology in agriculture, to introduce
the key economic mechanisms of the inappropriate technology hypothesis and generate estimable
equations with model interpretations. Farmers around the world choose which crops to grow
and what international technologies to use. Innovators in each country invest in improving their
technology’s adaptation to location- and crop-level environmental features. This process has local
spillovers, which capture the fact that local knowledge and access to test fields or genetic material
make it easier to develop technology adapted to the immediate environment. These spillovers guide
innovators toward developing technology adapted to the local environment and hence endogenously
“inappropriate” for dissimilar environments. As a result, global production is distorted toward
crop-locations with environmental conditions resembling those in the most research-productive
countries. We show how the strength of these effects hinges on the extent of knowledge spillovers
and the relative importance of context-specific versus context-neutral components of technology.
We then write the model’s equilibrium conditions describing technology diffusion and production
as regression equations, which we estimate in the empirical analysis.

Measurement. We next introduce our data on the global distribution and host-plant species of all
known CPPs—including viruses, bacteria, parasitic plants, insects, and fungi—compiled from the
Centre for Agriculture and Bioscience International’s (CABI) Crop Protection Compendium (CPC).
These data are based on expert review of published literature in plant pathology and agronomy
(Pasiecznik et al., 2005), and they are used to comprehensively measure the global distribution of
plant ecosystem threats in ecological sciences (e.g., Savary et al., 2019). As alluded to in our earlier
example, CPPs are a dominant source of production losses, estimated to reduce annual global output
by 50-80% (Oerke and Dehne, 2004), and CPP resistance has been a key focus of both traditional
plant breeding (Collinge, 2016) and modern transgenic crop development (Dong and Ronald, 2019).
Methodologically, our focus on CPPs, rather than other environmental conditions, has two key
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benefits. First, CPPs can be directly linked to both specific locations and host plants, generating
precise variation across both locations and crops. Second, references to unique CPPs in innovation
data can be used to directly measure disparities in research across location-specific threats.3

Using these data, we construct our CPP mismatch measure of the potential inappropriateness of
context-specific technology across locations and crops based on the differential prevalence of CPPs.
CPP mismatch summarizes differences in CPP species composition at the level of crops and country
pairs using techniques from population ecology (Jost et al., 2011). We use CPP mismatch as our
main measure of “potential inappropriateness” of a crop-specific technology adapted to one CPP
environment and applied in another. This measure incorporates variation across both country pairs,
which have different local CPPs, and across crops, which are host plants to different CPPs.

As a prelude to our main analysis, we first use the CPP presence data to quantitatively validate
that agricultural technology is adapted toward CPP presence and, globally, skewed toward rich-
world CPP threats. We measure CPP-level innovation by the number of global agriculture patents,
in biological and chemical classifications, that mention a specific CPP by name. One-third of all
patents mention at least one CPP, consistent with their centrality for agricultural technology. Global
patenting activity is highly skewed toward CPPs that are present in rich, research-intensive countries.
We show that this finding is explained by the interaction of disproportionate focus on locally present
threats with the uneven global distribution of patenting, consistent with our model.

Main Results. Having validated the premise that agricultural technology is adapted to local en-
vironmental conditions, as we measure them, we now turn to our first main question: how does
inappropriateness shape global technology diffusion? To directly measure crop-specific technol-
ogy transfer, we construct a unique data set on all international instances of intellectual property
(IP) protection for agricultural biotechnology using proprietary data acquired from the International
Union for the Protection of New Varieties of Plants (UPOV), the non-governmental body tasked with
codifying and administering IP protection for plant varieties. We use the UPOV’s unique variety
identifiers to track individual seed varieties from their first introduction to all other countries where
they were subsequently transferred. We estimate the effect of CPP mismatch on technology transfer
at the crop-by-country-pair level, making it possible for fixed effects to fully absorb any forces vary-
ing at the origin-by-crop level (e.g., origin market size, technology, and income), destination-by-crop
level (e.g., destination market size, technology, and income), or the country-pair level (e.g., physical
or cultural distance).

We find that CPP mismatch substantially lowers cross-border transfer of technology. In our most
conservative specification, CPP dissimilarities reduce international technology transfer by 30% for
the median crop and country-pair. This mechanism operates on both the intensive and extensive
margin of variety transfer. We next study how these effects depend on the innovation intensity of
the origin country—in particular, is mismatch with particularly active innovators what drives gaps
in access to technology, consistent with the inappropriate technology narrative? We identify the

3Nevertheless, to account for the importance of other environmental differences, we also develop measures of non-
CPP, agro-climatic environmental differences (e.g., in temperature and soil characteristics) and study their effects on both
technology diffusion and production via the inappropriate technology mechanism in Appendix B.2.
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most active variety producers for each crop in the UPOV data and show that the marginal effect
of CPP mismatch on technology transfer is considerably higher when the origin country is one of
these frontier innovators. For example, the effect of mismatch with the top three variety producing
countries is more than 17 times our baseline effect, while the effect of mismatch with countries
outside the top three is statistically indistinguishable from zero.4

Our second main question is how inappropriateness shapes global production. The model
predicts that countries should specialize in crops for which ecological conditions most resemble
those in frontier, innovating locations. We measure “CPP mismatch with the frontier” as the
average crop-specific mismatch with the most technology-intensive countries, as identified in our
earlier analysis of variety transfer. We then estimate the effect of CPP mismatch with the frontier
at the crop-by-country level, net of fixed effects at the country and crop levels. The main potential
threat to identification, which is articulated by the model, is the possibility that innate environmental
suitability is correlated with CPP mismatch. We develop two strategies to directly address this issue:
(i) controlling for geographically-determined potential yield derived from the FAO GAEZ agronomic
model and (ii) controlling for a large set of ecological features, separately for each crop, and the
direct effect of each CPP, disciplining this high-dimensional variable set with LASSO.

We find that CPP mismatch with the frontier substantially reduces crop-specific production. Our
baseline estimate implies that a one-standard-deviation increase in CPP mismatch with the frontier
reduces crop-specific production by 0.43 standard deviations. The effect size is similar after flexibly
controlling for innate suitability, using the strategies described above. If we impose the United
States as the frontier innovator for all crops instead of relying on the data for this step, we estimate a
comparable effect of frontier mismatch on production. In a falsification exercise, we re-estimate the
baseline regression replacing our main independent variable with CPP mismatch to each country
in the world. The effect of CPP mismatch with non-frontier countries is centered around zero, and
our estimates are in the far tail of the effect size distribution, indicating that our findings capture the
causal effect of ecological mismatch with research-intensive countries. We also find quantitatively
similar effects of CPP mismatch on production within countries, using state-level production and
CPP distribution data from India and Brazil. In this specification, we also include crop-by-country
fixed effects, making it possible to fully rule out the possibility that our estimates are driven by
omitted characteristics that vary across country-crop pairs.

We next study a natural follow-up question to our main, static analysis: how do changes in
technological leadership, and hence the map of “mismatch with the frontier,” dynamically affect
production? To investigate this question, we exploit two natural experiments in which the global
distribution of research effort shifted and document how these shifts in research affected patterns
of production. Our hypothesis is that global production should shift toward locations for which

4One shortcoming of our variety-transfer analysis is that many countries in Africa are not in the data, because
intellectual property protection for plants does not exist. To supplement this, we conduct two additional analyses. In
Appendix B.4, we show how mismatch with the frontier reduces variety introduction in sub-Saharan Africa, measured
by the CGIAR’s Diffusion and Impact of Improved Varieties in Africa (DIIVA) project. In Appendix B.5, we show how
mismatch reduces farmers’ adoption of “Improved Seed Varieties” in eight African countries, measured by the World
Bank’s Living Standards Measurement Study Integrated Survey of Agriculture (LSMS-ISA).
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newly-developed technology is most appropriate. We first study the Green Revolution of the 1960s
and 1970s, an effort to shift agricultural innovation toward certain tropical regions. We document
that this change in the global focus of innovation led to an expansion of modern variety adoption
and crop-specific production in places with lower CPP mismatch with centers of Green Revolution
breeding. Second, we focus on the rise of US biotechnology in recent decades. We find that lower
CPP mismatch with the US is associated with expansions of production since 1990. These findings,
together, demonstrate that the impact of local ecology on productivity changes over time as the
focus of innovation shifts.

Quantification. We finally interpret our findings via the model to quantify their aggregate pro-
ductivity consequences, in a framework that accounts for relevant general-equilibrium forces while
remaining as transparently tied to the regression estimates as possible. Concretely, we calibrate
the model to match our estimates of the effect of CPP mismatch on production and external esti-
mates of the supply and demand elasticities, which discipline reallocation and price responses. To
benchmark the importance of the inappropriate technology mechanism for the observed productiv-
ity distribution, we calculate productivity in an (intentionally extreme) counterfactual scenario of
“removing inappropriateness” by eliminating the knowledge gap between frontier and non-frontier
CPP research. A possible story underlying this scenario is that a set of donors provide large enough
research subsidies to redirect frontier research and overcome the knowledge gap about non-frontier
CPP threats. We estimate that inappropriateness reduces average global agricultural productivity
by 58% and explains 15% of the distribution’s inter-quartile range, a measure of cross-country dis-
parities. These findings, while suggestive, are driven by the fact that the countries most ecologically
different from the frontier, especially in Africa and Asia, are also the least productive today.

We conclude by studying three counterfactual experiments that more directly speak to the po-
tential impacts of contemporary trends in research and ecology. First, we use the model to identify
the countries in which research investment could have the largest possible spillover effect on global
productivity after taking into account the global network of environmental mismatch. Our results
convey large gains from focusing a “Second Green Revolution” in India, China, and parts of sub-
Saharan Africa. Second, we measure the aggregate and distributional effects of the growing shift in
global R&D toward large emerging economies, in particular, Brazil, Russia, India, and China (BRIC).
This analysis shows that the growth of BRIC R&D is on net favorable for the world’s least productive
countries and could serve as a partial substitute for purely local R&D in low-income countries or
targeted investment by philanthropic or public sector organizations. Finally, we study the con-
sequences of an anticipated poleward shift in the habitable range of CPPs due to climate change
(Bebber et al., 2013). Our results suggest that climate change could coordinate international research
on a more common set of threats, and therefore that the inappropriate technology mechanism might
ameliorate some of the direct productivity losses from higher temperatures.

Related Literature. This paper builds on a historic body of work on how the “appropriateness”
of technology shapes productivity differences and technology diffusion (Griliches, 1957; Atkinson
and Stiglitz, 1969; Stewart, 1978). Some recent work in this area has modeled the productivity
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consequences of high income countries’ developing capital- or skill-complementing technology that
is less appropriate in poor countries (Basu and Weil, 1998; Acemoglu and Zilibotti, 2001; Caselli
and Wilson, 2004; Caselli and Coleman II, 2006; Rossi, 2022). We focus instead on ecological differ-
ences, which cause perhaps the most acute inappropriate technology problem since the underlying
differences in endowments are (essentially) immutable. We also study the innovation and technol-
ogy diffusion components of the inappropriate technology hypothesis. Our analysis parallels work
arguing that differences in human disease environments around the world shape the focus of med-
ical technology development (e.g., Kremer and Glennerster, 2004; Hotez et al., 2007, on “neglected
tropical diseases”). In this literature’s language, we document the relevance of neglected ecological
threats as an important determinant of global agricultural productivity.

At the center of our analysis are the determinants and impacts of technology diffusion (Keller,
2004; Comin and Mestieri, 2014). Related work includes macro-level studies of technology diffusion
in prior centuries (Comin and Hobĳn, 2004, 2010; Comin and Mestieri, 2018; Giorcelli, 2019) and
micro-level studies of technology upgrading in modern times (Bandiera and Rasul, 2006; Conley
and Udry, 2010; Atkin et al., 2017; Verhoogen, 2021, for a review). While most work in this area
focuses on the characteristics of producers, we suggest that the focus of innovators shapes patterns
of global technology use. Relatedly, Suri (2011) argues that differences in hybrid maize adoption in
Kenya reflect variation in returns—a feature of the technology itself—and not adoption frictions.5

Finally, we extend a large literature on the relationship between environmental conditions and
development (e.g., Montesquieu, 1748; Kamarck, 1976; Bloom and Sachs, 1998; Gallup et al., 1999).
This study’s focus on the confluence of ecology and technology diffusion is one mechanism in the
theory of Diamond (1997), who argues that the easier diffusion of technology across “horizontal”
landmasses explains the pre-modern development of Eurasia. However, departing from prior
work, our analysis emphasizes that the effect of geography is not fixed, but instead determined as
an evolving outcome of endogenous technology development and diffusion—as the direction of
innovation changes, so does the economic impact of specific geographies.

This paper is organized as follows. Section 1 describes our model. Section 2 provides background
information and describes our measurement strategy. Sections 3 and 4 report our main results
on international technology transfer and production. Section 5 presents our quantification and
counterfactual analysis and Section 6 concludes.

1. Model
This section develops a model of inappropriate technology in agriculture. We use the model

to introduce the key economic mechanisms of the inappropriate technology hypothesis and gen-
erate estimable equations with model interpretations. We estimate these equations in our main
empirical analysis of technology diffusion (Section 3) and production (Section 4). We use the model
interpretation of our estimates in order to study counterfactual scenarios in Section 5.

5Relatedly, Marenya and Barrett (2009a,b) find that heterogeneous potential returns affect fertilizer demand in Kenya.
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1.1 Set-up

Production. There is a set of countries indexed by ℓ ∈ {1, . . . , 𝐿} and a set of crops indexed by
𝑘 ∈ {1, . . . , 𝐾}. In each country, there is a continuum of farms indexed by 𝑖 ∈ [ℓ −1, ℓ ). Each farm can
produce any of the 𝐾 crops with one of 𝐿 production technologies, indexed by the country of origin
ℓ ′. Given a production technology, the farm purchases 𝑋𝑘,ℓ ′,𝑖 ∈ R+ of a technological input (e.g.,
seed varieties). The input has price 𝑞𝑘,ℓ ′,ℓ ∈ R+ and destination-specific quality 𝜃𝑘,ℓ ′,ℓ ∈ R+, both of
which we will endogenize. The output of farm 𝑖 producing crop 𝑘 with 𝑋𝑘,ℓ ′,𝑖 units of country-ℓ ′

technology is
𝜓𝑘,ℓ ′,𝑖 = (𝑋𝑘,ℓ ′,𝑖)1−𝛾 (𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖)𝛾 (1)

where 𝛾 ∈ (0, 1) measures the return to fixed factors versus technology; 𝜔𝑘,ℓ ∈ R+ is average natural
suitability for crop 𝑘 in country ℓ ; and 𝜀𝑘,ℓ ′,𝑖 ∈ R+ is an idiosyncratic perturbation with a Fréchet
distribution with mean one and shape parameter 𝜂 > 0. The random component is specific to and
independent across crops 𝑘 and production technologies ℓ ′. We abstract from other input choices
(e.g., fertilizer, mechanical harvesters, labor) or non-natural sources of productivity (e.g., human
capital) for simplicity. In Appendix A.5, we show how a production technology with these additional
inputs can be mapped to Equation 1 after enveloping over the other choices.

Farmers choose what crop to grow, from what country to source technology, and how much of
the input to buy, given crop prices 𝑝𝑘 and input prices 𝑞𝑘,ℓ ′,ℓ . In Lemma 1, stated and proven in
the Appendix, we solve for farmers’ optimal input choice and show that farmers choose a crop and
technology pair to maximize productivity via the following program:

max
𝑘,ℓ ′

{
𝑝

1
𝛾

𝑘
𝑞
− 1−𝛾

𝛾

𝑘,ℓ ′,ℓ𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖

}
(2)

Environmentally-Adapted Technology. There is a set of environmental characteristics indexed by
the natural numbers N = {1, 2, 3, . . .}. Each location-by-crop pair is associated with a set 𝒯𝑘,ℓ ⊂ N of
local environmental characteristics, normalized to size 𝑇 > 0. As a leading example, which we will
henceforth focus on, 𝒯𝑘,ℓ is the set of locally present crop pests and pathogens (CPPs). Note that any
direct productivity effects of these characteristics can be modeled in average natural suitability 𝜔𝑘,ℓ .

A given technology, identified by its quality𝜃𝑘,ℓ ′,ℓ , is described by a context-neutral characteristic,
𝐴𝑘,ℓ ′ ∈ R, and a collection of CPP-specific characteristics, (𝐵𝑡 ,𝑘,ℓ ′,ℓ )𝑡∈𝒯𝑘,ℓ ∈ R𝑇 . These characteristics
combine to determine the overall productivity of the technology in the following way:

𝜃𝑘,ℓ ′,ℓ = exp ©­«𝛼 log𝐴𝑘,ℓ ′ +
1 − 𝛼
𝑇

∑
𝑡∈𝒯𝑘,ℓ

log 𝐵𝑡 ,𝑘,ℓ ′,ℓ
ª®¬ (3)

where 𝛼 ∈ (0, 1) parameterizes the relative importance of the context-neutral characteristic. High
𝐴𝑘,ℓ ′, by definition, boosts the productivity of technology in all locations ℓ . Each characteristic
𝐵𝑡 ,𝑘,ℓ ′,𝑙 , by contrast, affects productivity only if the CPP 𝑡 is present. Finally, the two components are
complementary to one another: high general productivity increases the marginal value of resistance
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to CPP damage, and vice-versa.6 To intensify the focus on incentives for technology’s “appropriate-
ness,” we assume that the technology’s context-neutral characteristic 𝐴𝑘,ℓ ′ is inelastically fixed while
the context-specific characteristics 𝐵𝑡 ,𝑘,ℓ ′,ℓ are endogenously determined by innovators.

Endogenous Innovation. An innovator in country ℓ ′ can develop technology for each country ℓ
and crop 𝑘. To develop characteristic 𝐵𝑡 ,𝑘,ℓ ′,ℓ , specific to CPP 𝑡, innovators face convex research costs
with an uninternalized knowledge spillover from local research on the same CPP:

𝐶𝑘,ℓ ′,𝑡(𝐵) = 𝑒−𝜏(𝐵𝑡 ,𝑘,ℓ′ ,ℓ′)
(𝐵0,ℓ ′𝐵)1+𝜙
𝑇(1 + 𝜙) (4)

where 𝜙 > 0 is an elasticity of research supply, 𝐵0,ℓ ′ > 0 is a country-specific constant, and the
function 𝜏 : R+ → R+, which is increasing and satisfies 𝜏(0) = 0, controls the knowledge spillover.7
The spillover may capture both knowledge about local conditions and physical inputs with a public-
good property like local test fields and genetic material. This aspect of agricultural technology
development is well-documented in the context of private-sector, public-sector, and philanthropi-
cally supported research.8 We will discuss more examples in Section 2.1.

We assume that the innovator prices the technological good at markup 𝜇ℓ ′ over its marginal cost,
which is normalized to one. In Appendix A.4, we show how this nests the conventional assumption
of monopoly pricing while also allowing us to model less profit-motivated innovators, like public
sector research groups or non-governmental organizations. The monopoly pricing case may be
appropriate to model large biotechnology firms in the United States, while the less profit-motivated
case may be appropriate for modeling, for example, countries in Africa which have essentially
no private-sector breeders (Access to Seeds Foundation, 2019) but do have government-sponsored
research programs.9 Finally, we assume that ℓ ′-innovators receive fraction exp(−𝜌ℓ ,ℓ ′) ≤ 1 of potential
country-ℓ net revenue due to trade, licensing, and IP costs.

Innovators in each country ℓ ′ choose, for each (𝑘, ℓ ) destination market, the vector of CPP-specific
research effort, ®𝐵𝑘,ℓ ′,ℓ = (𝐵𝑡 ,𝑘,ℓ ′,ℓ )𝑡∈𝒯𝑘,ℓ , to maximize revenues net of costs, given the pricing policy
described above and conjectures for crop prices, the destination’s productivity, and local research

6One illustration of this “two-component” structure comes from Reynolds and Borlaug (2006)’s account of wheat
development at the CIMMYT. The authors write that a key challenge was to both improve yields by incorporating a
specific semi-dwarfism trait (“𝐴”), valuable in any environment, and to increase resilience to damaging fungal wheat
rusts (“𝐵”), specific to certain environments. Moreover, the value of better resisting wheat rust increased when the plant
had higher overall yield (complementarity).

7We assume that 𝜙 > (1 − 𝛼)𝜂 − 1, which is sufficient for the innovator’s problem to be concave.
8For example, Kantor and Whalley (2019) document local productivity spillovers of US-government research stations

and discuss the role of knowledge and input diffusion. Reynolds and Borlaug (2006) discuss the importance of local
germplasm and test fields at the non-profit CIMMYT. Duvick et al. (2004) highlights the importance of similar inputs for
maize breeding at the private breeder Pioneer Hi-Bred.

9Specifically, in that appendix, we micro-found 𝜇ℓ ∈ (1, (1 − 𝛾)−1] by assuming the innovator behaves with conduct
parameter 𝜎ℓ ′ ∈ [1,∞) (Bresnahan, 1989).
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on each CPP. In Lemma 3 in the Appendix, we re-write the innovator’s problem as

max
®𝐵𝑘,ℓ ,ℓ′

𝑒−𝜌ℓ′ ,ℓ𝑅( ®𝐵𝑘,ℓ ′,ℓ ; 𝑝̂𝑘 , Ξ̂ℓ , 𝜇ℓ ′) −
∑
𝑡∈𝒯𝑘,ℓ

𝑒−𝜏(𝐵̂𝑡 ,𝑘,ℓ′ ,ℓ′)
(𝐵0,ℓ ′𝐵𝑡 ,𝑘,ℓ ′,ℓ )1+𝜙

𝑇(1 + 𝜙)

 (5)

where 𝑅(·) gives the net revenue from technology sales, 𝑝̂𝑘 is the conjecture of prices, Ξ̂ℓ is the
conjecture of productivity, and 𝐵̂𝑡 ,𝑘,ℓ ′,ℓ ′ is, for each 𝑡, the conjecture of local CPP-specific research.

An important object, due to its centrality to the knowledge spillover, is local research in CPP-
specific technology. Intuitively, this can be especially high in certain countries ℓ ′ for three reasons
embedded in the set-up. First, these countries may have low iceberg costs 𝜌ℓ ′,ℓ ′—for instance,
due to effective IP protection (see, e.g., Diwan and Rodrik, 1991; Acemoglu and Zilibotti, 2001).
Second, innovators in these locations may have systematically lower costs of research, or lower
𝐵0,ℓ ′—for instance, due to easily accessible physical and human capital or high-quality government
institutions.10 Third, these countries may have a large endowment of productive land, or high 𝜔𝑘,ℓ ′.11
Our main analysis will be largely agnostic about the sources of R&D inequalities and focus instead
on their implications for technology diffusion and global productivity.

Equilibrium. To close the model, we assume that prices (𝑝𝑘)𝐾𝑘=1 lie on a global demand curve
(𝑝𝑘)𝐾𝑘=1 = 𝑑((𝑌𝑘)𝐾𝑘=1), where 𝑌𝑘 is total production of each crop. An equilibrium is a vector of produc-
tion (𝑌𝑘,ℓ ), total input demands (𝑋𝑘,ℓ ′,ℓ ), prices (𝑝𝑘), and CPP technology development (𝐵𝑡 ,𝑘,ℓ ′,ℓ ) such
that (i) farmers optimize given correct conjectures of prices, (ii) innovators optimize given correct
conjectures of prices, productivities, and local research, and (iii) markets clear for each crop.

1.2 Main Predictions

We now describe the model’s predictions for technology diffusion and global production. All
proofs are given in Appendix A.

Technology Diffusion. Let 𝛿𝑘,ℓ ′,ℓ be the fraction of 𝑘-CPPs that are not shared between locations ℓ
and ℓ ′, or 𝛿𝑘,ℓ ′,ℓ = 1 − 1

𝑇 |𝒯𝑘,ℓ ∩ 𝒯𝑘,ℓ ′ |. Our first result describes how the total quantity of technology
transferred for crop 𝑘 from location ℓ ′ to location ℓ , or 𝑋𝑘,ℓ ′,ℓ =

∫ ℓ

ℓ−1 𝑋𝑘,ℓ ′,𝑖 d𝑖, depends negatively on
CPP mismatch 𝛿𝑘,ℓ ′,ℓ :

Proposition 1. Equilibrium technology diffusion from country ℓ ′ to ℓ for crop 𝑘 can be written as

log𝑋𝑘,ℓ ′,ℓ = 𝛽𝑘,ℓ ′ · 𝛿𝑘,ℓ ′,ℓ + 𝜒𝑘,ℓ + 𝜒𝑘,ℓ ′ + 𝜒ℓ ,ℓ ′ (6)

where the 𝜒 are additive effects varying at the indicated level and

𝛽𝑘,ℓ ′ = − 𝜂(1 − 𝛼)𝜏(𝐵𝑘,ℓ ′)
1 + 𝜙 − (1 − 𝛼)𝜂 ≤ 0 (7)

10Cirera and Maloney (2017) survey how a lack of these factors can impede R&D in low-income countries. Gorod-
nichenko and Schnitzer (2013) study the role of financial frictions for the same.

11We document this “market size effect” for seed variety development in Appendix B.3.
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where 𝐵𝑘,ℓ ′ is the extent of (𝑘, ℓ ′) CPP research on CPPs present in ℓ ′.

Mismatch depresses technology transfer, or 𝛽𝑘,ℓ ′ < 0, if both of the following two conditions hold:
there is some context-specificity of technology (𝛼 < 1) and some knowledge spillover (𝜏 > 0). Absent
context-specific technology, innovation is biased toward the crops over-represented in large markets,
but not the large-market ecological conditions for growing those crops. Absent the knowledge
spillover, innovation would concentrate on large-market ecological conditions, but this would have
no external effects on the rest of the world. With both ingredients (𝛼 < 1 and 𝜏 > 0), innovators
in country ℓ ′ have a “knowledge gap” about local ecological characteristics relative to others and
therefore produce more technology for ecologically similar destinations.

The magnitude of the effect of mismatch on technology diffusion, or |𝛽𝑘,ℓ ′ |, increases in the send-
ing country’s CPP research intensity 𝐵𝑘,ℓ ′ if and only if 𝜏 is increasing. In this case, consistent with
the inappropriate-technology narrative, environmental mismatch with the most active innovating
countries is the most costly for technology diffusion.12 The model links this narrative to the idea that
the most “developed” technology, with high 𝐵, also has the highest potential knowledge spillover.

In our empirical analysis, we will estimate Equation 6 treating counts of uniquely identified
seed varieties transferred across borders as a proxy for 𝑋𝑘,ℓ ′,ℓ and using our measurement of CPP
mismatch as a proxy for 𝛿𝑘,ℓ ′,ℓ . We will also directly investigate whether the effect of environmental
differences on technology transfer is exaggerated when the origin country is on the “research
frontier,” measured via various empirical proxies.

Specialization and Productivity. We next study the impact of inappropriate technology on pro-
duction. We first define the crop technology index Θ𝑘,ℓ = (∑𝐿

ℓ ′=1 𝜃
𝜂
𝑘,ℓ ′,ℓ )

1/𝜂. The following result
summarizes the model predictions:

Proposition 2. Production of crop 𝑘 in country ℓ , 𝑌𝑘,ℓ > 0, is given by

log𝑌𝑘,ℓ = 𝜂 logΘ𝑘,ℓ + 𝜒̃𝑘 + 𝜒̃ℓ + 𝜂 log 𝜔𝑘,ℓ (8)

Production increases in the index of technology, and hence in the quality of each sending
country’s technology in the local environment. The elasticity 𝜂 with respect to physical productivity
relates to the extent of plot-level heterogeneity: when 𝜂 is higher, and this heterogeneity is lower,
then production more sharply re-allocates in response to small productivity changes (as in Eaton
and Kortum, 2002; Costinot et al., 2016). In Equation 8, crop and country fixed effects respectively
absorb prices and average local revenue productivity. The “residual,” net of technology and these
fixed effects, is a re-scaling of local innate productivity 𝜔𝑘,ℓ .

In the proof of this result in Appendix A.3, we derive also the model’s predictions for physical
yield and planted area. A key issue that our model handles precisely is selection along unobserved
dimensions of land quality. While secularly boosting the productivity of a given crop (e.g., by
improving available foreign technology) expands production possibilities, it does not necessarily
increase average productivity due to the expansion of land onto increasingly less suitable land.

12A lower elasticity of supply (𝜙) and higher elasticity of demand (𝜂) also amplify this effect for intuitive reasons.
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When these selection effects are disciplined by the Fréchet model, both production and area have
the same elasticity 𝜂 with respect to the productivity index Θ𝑘,ℓ .

In Section 4, we will estimate Equation 8 using CPP mismatch with an empirically identified
technological frontier to span logΘ𝑘,ℓ and a variety of empirical strategies to span innate productivity
𝜔𝑘,ℓ . This will allow us to directly measure the effect of inappropriateness on production choice
and specialization. We will also directly test the model’s predictions for area and yields to assess
the validity of the specific Fréchet model for unobserved heterogeneity. In Section 5, we will use the
estimates from this analysis plus the model structure to estimate effects on productivity.

1.3 Additional Results and Extensions

Before proceeding to the empirical analysis, we summarize two extensions in the Appendix.

Social vs. Private Incentives. Our main results were stated and proved as conditions for competi-
tive equilibrium. In Appendix A.6 we present and discuss the social planner’s equivalent first-order
conditions for research. A key difference is that the planner internalizes the knowledge spillover.
This creates incentives for researchers in all countries to research all pest and pathogen threats,
including those most neglected in equilibrium.

An Alternative Source of Inappropriateness. Our baseline model allows innovators to develop
technologies targeted at different parts of the world and generates local specificity via knowledge
spillovers. In Appendix A.7, we derive analogs to the model’s main predictions in an alternative
model in which, following Acemoglu and Zilibotti (2001), innovation is possible only in one “fron-
tier” country, and “copycat” innovators create equivalent, lower-cost technologies in all other coun-
tries. In practice, governments, universities, or local firms may fulfill this copycat role. The analog
to Proposition 1 shows that copycat technologies, which copy the 𝐵𝑡 ,𝑘 of the frontier’s technologies,
are more locally productive when local conditions match the frontier’s. Overall, we view the two
modeling approaches as broadly complementary for understanding productivity differences, but
argue that our baseline approach is more useful for studying technology diffusion.

2. Background and Measurement: Agricultural Pests and Pathogens
In this section, we provide background information about pest targeting in biotechnology and

provide a detailed description of our main data source. We then document CPP-level disparities in
international research and introduce our measure of inappropriateness based on the dissimilarity
of CPP environments across crops and locations.

2.1 Pathogen Threats and Plant Breeding

Crop pests and pathogens (CPPs), which include viruses, bacteria, fungi, insects, and parasitic
plants, are a dominant threat to agricultural productivity. Experts estimate that between 50-80% of
global output is lost each year to CPP damage (Oerke and Dehne, 2004), which represents “possibly
the greatest threat to productivity” across all environments (Reynolds and Borlaug, 2006, p. 3). As
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one example, the Western Corn Rootworm alone caused $1 billion in annual losses in the US and
substantially more around the world prior to the development of transgenic corn (Gray et al., 2009).
A critical focus of crop breeding, as a result, is developing resistance to damaging CPPs.

The most fundamental technique for breeding favorable plant traits, including CPP resistance,
is mass selection: saving the seeds of the “best” plants from a given crop cycle, re-planting them
the next year, and repeating the process (McMullen, 1987, p. 41). This process naturally selects
crop lineages with sufficient resistance to the local CPP environment. But resistance to non-present
CPP threats is neither selected for nor likely to arise by chance mutation. This context-specificity of
traditional breeding can severely inhibit the diffusion of agricultural technology (Moseman, 1970).
Historically, adapting mass-selected crop lines to new contexts has required substantial lineage-
specific investment, like “shuttle breeding” alternative generations in different locations (see, e.g.,
Reynolds and Borlaug, 2006, pp. 8-9).

More recently, genetic modification (GM) has been added to the crop development toolkit. The
vast majority of modern GM technology has directly related to conferring resistance to specific pests
and pathogens (Vanderplank, 2012; Van Esse et al., 2020). In principle, direct access to a plant’s
genetic code side-steps the slow process of natural selection in the field and consequent obstacles
to breeding for non-local environments. But, in practice, GM technology has been used almost
exclusively for solving the pathogen threats facing high-income countries (Herrera-Estrella and
Alvarez-Morales, 2001).

An illustrative case study of how modern plant varieties are “locally” targeted comes from Bt
varieties, a large and celebrated class of genetically modified plants. Bt varieties are engineered to
express crystalline proteins, cry-toxins, that are naturally produced by Bacillus thuringiensis bacteria
(“Bt”) and destructive toward specific insect species. Cry toxins are insecticidal because they bind
receptors on the epithelial lining of the intestine and prevent ion channel regulation. Due to the
specificity of intestinal binding activity, cry toxins are highly insect-specific. This feature, while
crucial for limiting the Bt varieties’ broader ecological impact, makes their development highly
targeted to specific pest threats. The main targets for early Bt corn varieties were the European
Maize Borer and Corn Rootworm (Munkvold and Hellmich, 1999), major threats in the US and
Western Europe. In other parts of the world, however, frontier Bt maize is neither commonly used
nor effective. For example, in South Africa there is widespread resistance to Bt maize and production
damage caused by the African Maize Stalk Borer, which does not exist in the US but is widespread in
sub-Saharan Africa (Campagne et al., 2017). Disparities in the appropriateness of GM technologies
therefore emerge as a result of a focus on “rich-world pests.”

We provide more examples and an extended discussion of the relationship between the global
distribution of CPP threats and plant breeding in Appendix C.

2.2 Plant Pest and Pathogen Data: The Crop Protection Compendium

While the aforementioned examples highlight specific and extreme instances of pest-specificity, it
is unclear whether they are representative of general biases in agricultural technology. Our analysis,
unlike existing field tests of specific varieties, has the advantage of being able to estimate the average
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Figure 1: Data on Example CPPs

Notes: Shading indicates country-level CPP presence according to the CABI Crop Pest Compendium (CPC).

effect of CPP mismatch across all crops and countries and connect it with an economic model to
determine its aggregate consequences.

Our key source of information on the global distribution of crop pests and pathogens is the
Centre for Agriculture and Bioscience International’s (CABI) Crop Protection Compendium (CPC).
This database is the “world’s most comprehensive site for information on crop pests,” and provides
detailed information on the geographic distribution and host species set for essentially all relevant
plant pests and pathogens. Construction of the database began in the 1990s as a collaboration
between CABI, the UN Food and Agriculture Organization, and the Technical Centre for Agricultural
and Rural Cooperation. The goal of the project is to develop comprehensive, global coverage of crop
diseases in order to better manage food production. The CPC was compiled through extensive
searches of existing crop research, including the 460,000 research abstracts in the CABI database, as
well as contributions from a range of governmental and international organizations, including the
World Bank, the FAO, the United States Department of Agriculture, and the Consultative Group on
International Agricultural Research (Pasiecznik et al., 2005).13 In total, we compile information on
4,951 plant pests and pathogens, including viruses, bacteria, insects, fungi, and weeds.

For each species, the CABI-CPC provides two key pieces of information. First, it reports the
CPP’s global geographic distribution. Figure 1 displays the distribution map for six pests, including
the Maize Stalk Borer and Western Corn Rootworm, which were referenced in previous examples.
For most countries, CABI reports whether the pest is present or not present in the country as a whole.
For a handful of large countries—including Brazil and India, which we return to later—CABI reports

13The CABI-CPC is commonly used for CPP measurement in population ecology and crop science (e.g., Bebber et al.,
2013, 2014; Savary et al., 2019).
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state-level data on the presence of each CPP.
Second, CABI reports all the host species that each pest or pathogen affects. For example, CABI

reports that the African Maize Stalk Borer harms maize, sorghum, rice, and sugarcane, while the
Western Corn Rootworm consumes maize, millet, pumpkins, sunflower, and soybeans, but not
sorghum or sugarcane (Figure 1, top panel). Our data contain information on 132 host species that
are major crops, cross-referenced against the crops used in our subsequent analyses of biotechnology
intellectual property and production.

2.3 Measuring Inappropriateness: CPP Mismatch

Using the CABI CPC data, we develop our main measure of inappropriateness: CPP mismatch.
In the model, the scalar summary of ecological difference was the measure of non-common CPP
threats, 𝛿𝑘,ℓ ,ℓ ′. In the data, using our lists of locally present CPPs affecting crop 𝑘 in each location ℓ
or ℓ ′, we compute the following measure of CPP mismatch at the location-pair-by-crop level:

CPP Mismatch𝑘,ℓ ,ℓ ′ = 1 − Number of Common CPPs𝑘,ℓ ,ℓ ′(
Number of CPPs𝑘,ℓ × Number of CPPs𝑘,ℓ ′

)1/2
(9)

The measure, which has the form of one minus a correlation or cosine similarity, equals zero when
ℓ and ℓ ′ have all the same CPPs for crop 𝑘 and equals one when ℓ and ℓ ′ have no CPPs in common
for crop 𝑘. In the language of ecology, as discussed in a review chapter on biological similarity by
Jost et al. (2011), our CPP mismatch formulation in (9) is one of several standard divergence (one-
minus-similarity) measures that satisfy basic properties of density invariance, replication invariance,
and monotonicity. This means that the divergence or similarity measures provide consistent results
regardless of the total number of species or population of any individual species in ℓ or ℓ ′.14

CPP mismatch varies at both the country-pair level, fixing crops, and the crop level, fixing country
pairs. The country-level variation is illustrated Figure 1: different countries are endowed with different
CPPs. The crop-level variation is due to the fact that each CPP only affects a particular set of crops.
Depending on the identity of each country’s locally present CPPs, a single pair of countries will
have different values of CPP mismatch for each crop. To illustrate this variation, Figure 2 shows the
histogram of all countries’ CPP mismatch with the US for wheat and sugarcane and identifies the
observations for Brazil, India, and Kenya. For wheat, Brazil is slightly more mismatched with the
US than India, and Kenya is slightly more mismatched than Brazil. For sugarcane, however, India
is substantially more mismatched than Brazil, and Kenya is substantially more mismatched than
India. These two sources of variation allow us to fully absorb any differences across countries or

14We will also, as a robustness check, supplement our main measure with the simplest and oldest measure of divergence
due to Jaccard (1900) which counts the fraction of non-shared species:

CPP Mismatch𝐽
𝑘,ℓ ,ℓ ′ = 1 −

Number of Common CPPs𝑘,ℓ ,ℓ ′
Number of Unique CPPs𝑘,ℓ∪ℓ ′

(10)

This metric has the same range (0 to 1) and interpretation of extreme values as our baseline, but different properties for
intermediate levels of similarity. Both this measure and our baseline correspond exactly to 𝛿𝑘,ℓ ,ℓ ′ in the model, in which
the total measure of CPP threats is normalized to one in each country.

14



Figure 2: Example of CPP Mismatch Variation
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Notes: Histogram (solid bars) and kernel density estimates (lines) for CPP Mismatchℓ ,ℓ ′ ,𝑘 , where ℓ is the United States and
𝑘 is the crop indicated in each graph. Values for India, Brazil, and Kenya are labeled.

crops in our analysis.
A natural question is what forces drive the international distribution of each CPP. The deter-

minants of the cross-sectional distribution of each CPP are not well understood by ecologists, and
depend on “numerous [and] sometimes idiosyncratic” factors (see Bebber et al., 2014; Shaw and
Osborne, 2011, for greater detail). While features of the environment, most prominently tempera-
ture, affect CPP presence, they often have limited predictive power and CPPs are often absent in
ecologically habitable areas; moreover, location fixed effects will make it possible to absorb any crop-
invariant effects of the local environment. By our own measurement, CPP mismatch is not strongly
correlated with measures of mismatch in a range of other geographic and ecological characteristics
(see Table A1 and Section B.2 for a discussion). Importantly also, Bebber et al. (2014) document that
CPP distributions measured from the CABI CPC appear unrelated to patterns of trade, travel, or
tourism, suggesting that human activity plays a limited role in shaping the cross-sectional distribu-
tion of CPPs on average.

Nevertheless, we use two additional strategies to fully purge our measure of inappropriateness
of any potential consequences of human activity, and reproduce all estimates using these alternative
measurement techniques. We describe these strategies here and reference them again when we
discuss the robustness of our main results.

Directly Removing Eradications and Invasive Species. While our baseline measure of CPP mis-
match is designed to capture the CPP differences around the world today, we use additional data
from CABI to study the role of eradications and species invasions, and ultimately develop a measure
of CPP mismatch purged of both sources of variation. First, CABI reports not only whether a CPP is
currently present in a country, but also whether it has ever been present. In each part of our analysis,
we reproduce our results using a broader definition of CPP mismatch that includes eradicated CPPs,
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and the results are similar.15 Second, to investigate the potential role of invasive species, which could
be an important mechanism but also potentially endogenous to human behavior, we use the CABI
Invasive Species Compendium (ISC) to identify all invasive and high-invasive-potential CPPs and
drop them from the measurement of CPP mismatch (see Appendix Section B.1).

Agro-Climatic Mismatch. We also investigate the importance of non-CPP differences in geography,
including temperature, precipitation, and soil characteristics, as alternative and predetermined
shifters of appropriateness. Appendix Section B.2 discusses our measurement of crop-by-country-
pair agro-climatic mismatch, and reports our main empirical results using agro-climatic mismatch
as an additional determinant of inappropriateness. We find that agro-climatic mismatch inhibits
technology transfer and reduces production, similar to our main results based on CPP mismatch
reported in Sections 3 and 4. Replicating our main findings using the mismatch of fixed geographic
characteristics builds confidence that our main results are not driven by idiosyncracies of CPPs or
their measurement. We moreover find the effects of agro-climatic mismatch are largely independent
from the effects of CPP mismatch for both outcomes. Agro-climatic mismatch, as we measure it, has
a quantitatively smaller effect on technology transfer and production than CPP mismatch.

2.4 Validation: Disparities in Global Innovation Related to CPPs

Earlier in this section, we provided qualitative evidence that biological innovation is adapted
to CPP environments and that global science and technology focuses predominately on rich-world
CPPs. Using the CABI CPC data, we can validate these premises systematically. We identify
all global biological or chemical agricultural patents in the PatSnap database by searching for the
scientific name of each CPP in all patent titles, abstracts, and descriptions.16 We also identify
the country of origin of each patent using PatSnap’s determination of the inventor’s location. We
document three facts about patenting at the country-by-CPP level, all consistent with the premise
of the inappropriate technology hypothesis.

First, a large share of global innovation is focused on CPPs; 33% of all global biological and
chemical agricultural patents mention at least one CPP in our sample.

Second, innovators focus substantially more on locally present CPPs. This pattern is apparent in
the raw patent data: on average, over 17 times more patented technologies are developed for locally
present CPPs compared to CPPs that are not present in the country of interest (panel (a) of Figure
3). We investigate this pattern more precisely by estimating the following regression:

𝑦ℓ ,𝑡 = 𝜉 · Local CPPℓ ,𝑡 + 𝜒ℓ + 𝜒𝑡 + 𝜀ℓ ,𝑡 (11)

where the unit of observation is a CPP-year and Local CPPℓ ,𝑡 is an indicator that equals one if CPP
𝑡 is present in country ℓ . 𝑦ℓ ,𝑡 is the number of patented technologies developed in country ℓ related
to CPP threat 𝑡, transformed by the inverse hyperbolic sine, and 𝜒ℓ and 𝜒𝑡 absorb country and CPP

15Such “eradication events” are rare. The number of CPP-country-crop triads increases by under 3% when using the
“broad” CPP presence classification.

16We define biological/chemical agricultural patents as those in Cooperative Patent Classes A01H or A01N.
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Figure 3: Global Patenting on CPPs
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Notes: Graph (a) reports the average number of patented technologies developed in countries ℓ related to CPP threats 𝑡 if
the CPP is present (not present). Graph (b) reports the average number of patented technologies developed about CPPs
that are not present in the US and CPPs that are present in the US. Graph (c) reports the number of patented technologies
developed about CPPs that are present only in (i.e., endemic to) the countries specified on the 𝑥-axis.

fixed effects. 𝜉 captures the extent to which innovation is disproportionately targeted toward local
CPP threats. Table A2 reports our estimates. We estimate that 𝜉 > 0 in Equation 11, and it remains
large and significant focusing on either the intensive or extensive margin separately (columns 2-3).

Third, in the aggregate, substantially more technology is developed to combat CPPs that exist
in high-income countries like the US. Panel (b) of Figure 3 demonstrates that CPPs present in the
US are mentioned by over five times as many patents as those not present in the US. Table A3
reports estimates from an augmented version of (11) in which Local CPPℓ ,𝑡 is interacted either with
an indicator that equals one if ℓ is the US (columns 1-3) or (log of) per-capita GDP of ℓ (columns 4-6).
The impact of a locally present CPP on innovation is substantially larger in high-income countries,
consistent with greater overall R&D intensity. Finally, panel (c) of Figure 3 shows one particularly
striking cut of the data: the number of patents about CPPs that are present only in the US dwarfs
the number of patents for CPPs that are present only in Brazil or India, two large but less research
intensive agricultural economies.

This analysis, taken together, documents that a large share of global agricultural innovation is
focused on CPPs and that much of this research is highly localized. The result is a far greater focus
on CPP threats present in high-income, research-intensive countries. These findings are consistent
with the set-up of our model of endogenous technology development focused on local conditions.

3. Results: Inappropriateness and Technology Diffusion
In this section, we investigate the relationship between inappropriateness, measured using CPP

mismatch, and technology diffusion, measured with a new database of the invention and inter-
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national transfer of plant varieties. We find that CPP mismatch substantially lowers cross-border
technology transfer, and that this effect is strongly driven by transfer from innovation-intensive
origin countries. We corroborate these findings in additional analyses of variety introduction and
adoption in Africa.

3.1 Data: The UPOV Plant Variety Database

We measure the development and international transfer of biotechnology using a novel dataset of
all global instances of intellectual property protection for crop varieties. We obtained these data from
The International Union for the Protection of New Varieties of Plants (UPOV), the inter-governmental
organization tasked with designing, promoting, and administering systems of intellectual property
protection for plant varieties around the world.17 The data provide comprehensive coverage of all
plant variety certificates, an internationally standardized form of intellectual property, across the
member countries identified in the map in Figure A1.18

To be recognized by UPOV, a variety must be new, distinct, uniform (identical across plants within
a generation), and stable (identical across generations). Since this set of variety characteristics is
relatively straightforward to document, barriers to obtaining protection—in terms of both legal fees
and the burden of documenting the inventive step—are limited. This helps ensure that the UPOV
database captures a large share of varieties in circulation.19 Finally, a breeder must protect a variety
separately in each country where they want legal enforcement, meaning that observing that a variety
is protected in a particular country is a strong indication that the variety was marketed and sold
there.

For each certificate, we observe the date of issuance, the country of issuance, the plant species,
and a unique “denomination” identifier associated with the variety. The UPOV Convention of
1991 stipulates that the denomination of a specific plant variety must be consistent across member
countries.20 That is, wherever in the world a denomination code is observed in the database, it
corresponds to a single, unique plant variety. This allows us to track the diffusion of individual
varieties across countries. The certificate data, when cross-linked to a list of crops and screened for
duplicate entries, consists of 458,034 total variety registrations, spanning 62 countries, 109 crops,
and 236,529 unique denominations.

Figure 4 displays a snapshot of the raw UPOV data. These five rows are from the section of
the database on cotton varieties registered between 1999 and 2003. This example consists of three
unique denominations (Sicot 41, Sicot 53, and Sicot 71) registered across three countries (Australia,
Argentina, and Brazil). Sicot 53 cotton was first registered in Australia in 1999 and later in Brazil in
2003. Sicot 41 cotton was also introduced in Australia in 1999 and transferred to Argentina in 2001.

17Our project required a formal application process and approval from the UPOV Council.
18This set includes most of North and South America, Europe, West Africa, and East Asia. Notably missing are several

large agricultural producers in South Asia, North Africa, and sub-Saharan Africa. We return to this topic in Section 3.4.
19This helps ameliorate concerns associated with measuring technology using patent data, which is often skewed

toward large, private sector firms due to the high financial barriers to obtaining protection.
20This stipulation is described in the most recent revision of the UPOV Convention (Union for the Protection of New

Varieties of Plants, 1991), and reaffirmed in the 2015 “explanatory notes” (Union for the Protection of New Varieties of
Plants, 2015).
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Figure 4: Example Rows from UPOV Data Set

UPOV	Code Country Denomination Botanical	Name Common	Name App.	Date
GOSSY_HIR AU Sicot	53 Gossypium	hirsutum Cotton 14-Sep-99
GOSSY_HIR AU Sicot	41 Gossypium	hirsutum Cotton 14-Sep-99
GOSSY_HIR AR Sicot	41 Gossypium	hirsutum	L.	 Algodonero 13-Aug-01
GOSSY_HIR AU Sicot	71 Gossypium	hirsutum Cotton 07-Aug-02
GOSSY_HIR BR Sicot	53 Gossypium	hirsutum	L.	 Algodao 11-Nov-03

Finally, Sicot 71 cotton was introduced in Australia in 2002, but was never introduced in any other
country.

More generally, for every unique denomination in the data, we identify a country of first appear-
ance and define the country of first appearance as the origin country since this is likely to be the
market for which the variety was first developed.21 We then count, in any given time period, the
number of varieties of each 𝑘, newly registered in country ℓ , and originating from country ℓ ′. This
is our primary measure of technology diffusion between country pairs at the crop level. For our
main analysis, we focus on a static cross-section and sum over all final registrations after 2000. From
our example above, Sicot 53 would count among the transferred cotton technologies from Australia
to Brazil and Sicot 41 would count among the transferred cotton technologies from Australia to
Argentina.

Appendix B.3 presents a more detailed analysis of the global direction of innovation in the UPOV
variety database, mirroring our analysis of CPP-level patents in Section 2.4. Echoing the previous
discussion about the concentration of innovation in richer countries, 67% of all recorded varieties
are first reported in the United States, Canada, or a European Union member state.

3.2 Results: Inappropriateness Reduces Technology Diffusion

In this section, we investigate how inappropriateness affects technology transfer in our full sample
of crops and country pairs. Our main estimating equation is the empirical analog of Equation 6 in
Proposition 1:

𝑦𝑘,ℓ ′,ℓ = 𝛽 · CPP Mismatch𝑘,ℓ ′,ℓ + 𝜒ℓ ,ℓ ′ + 𝜒𝑘,ℓ + 𝜒𝑘,ℓ ′ + 𝜀𝑘,ℓ ,ℓ ′ (12)

where 𝑘 indexes crops, ℓ indexes technology-receiving countries, and ℓ ′ indexes technology-sending
countries. 𝑦𝑘,ℓ ′,ℓ is a monotone transformation of the number of unique varieties of crop 𝑘 developed
in ℓ ′ and transferred to ℓ between 2000-2018. Since there are zeroes in the varieties data, we
report the effect separately for the intensive margin with log biotechnology transfers, the extensive
margin with an indicator for any transfer, and the inverse hyperbolic sine (asinh) transformation
which blends the two margins. Our baseline specification includes all possible two-way fixed
effects: origin-by-destination fixed effects, crop-by-origin fixed effects, and crop-by-destination fixed

21This avoids potential issues associated with using the country of the innovating firm or firm headquarters. For
example, while Monsanto was headquartered in the US during our sample period, it invested substantially in developing
soybean technology tailored to the Brazilian market. Our strategy would correctly identify the intended beneficiary of
this technology as Brazil, rather than the US.
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Table 1: CPP Mismatch Inhibits International Technology Transfer

(1) (2) (3)

Dependent	Variable:

Biotech	

Transfer	

(asinh)

Any	Biotech	

Transfer	

(0/1)

log	Biotech	

Transfer

CPP	Mismatch	(0-1) -0.0624** -0.0275** -1.202***

(0.0235) (0.0106) (0.386)

Crop-by-Origin	Fixed	Effects Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes

Origin-by-Destination	Fixed	Effects Yes Yes Yes

Observations 204,287 204,287 5,791

R-squared 0.439 0.383 0.797

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	All	possible	two-way	fixed	effects	are	included	in	
all	specifications.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors	are	double-

clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

effects.22 Standard errors are double-clustered by origin and destination.
The coefficient of interest is 𝛽 and the main hypothesis is that 𝛽 < 0, or that the local focus and

context specificity of innovation depresses technology diffusion. We may find no effect, however, if
the context-specific component of technological progress or local research spillovers are relatively
small, or if technology diffusion is sufficiently inelastic with respect to incentives. Due to the
included fixed effects, any confounding force that could bias our estimate of 𝛽 would have to vary
across crops and within country-pairs. For example, any differences in market size, income, or other
input use at the origin or destination, and any variation in distance or connectedness across country
pairs, are fully absorbed by the fixed effects. Nevertheless, we also document that our estimates of
𝛽 are stable after the inclusion of a broad range of non-parametric controls.

Estimates of Equation 12 are reported in Table 1. CPP mismatch significantly inhibits the inter-
national flow of technology, both when we combine the intensive and extensive margins (column
1) and when we estimate the extensive and intensive margins effects separately (columns 2-3) The
estimate from column 3 implies that CPP mismatch inhibits 30% of international technology transfer
for the median in-sample level of CPP mismatch. Even before restricting attention to frontier-origin
countries, inappropriateness is a major barrier to international technology diffusion.

Sensitivity: Measurement. We next probe the sensitivity of the baseline estimates; these estimates
are reported in Table A5. Column 1 reproduces our baseline estimates for reference. In column 2 ,
we show our results are stable using the Jaccard (1900) mismatch metric (Equation 10). In column
3, we show the same using the “broad” definition of CPP mismatch that includes eradications. In
Appendix B.1, we discuss how we can use the CABI data to identify possible species invasions in
recent history and show the stability of our results to excluding all invasive CPPs or CPPs with high
invasion potential.

22The exact interpretation of these effects is described in Proposition 1 and its proof.
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Table 2: CPP Mismatch with Frontier Countries and Technology Transfer

(1) (2) (3) (4)

Frontier	defined	as: United	States
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Mismatch	(0-1) -0.0571** -0.0453** -0.0330 -0.0207

(0.0216) (0.0215) (0.0199) (0.0196)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.392*** -1.237*** -1.076*** -1.076***

(0.0313) (0.290) (0.249) (0.249)

Observations 204,287 204,287 204,287 204,287

R-squared 0.439 0.442 0.444 0.444

CPP	Mismatch	(0-1) -0.0241** -0.0229** -0.0181* -0.0136

(0.00956) (0.00986) (0.00917) (0.00884)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.254*** -0.332*** -0.343*** -0.322***

(0.0142) (0.0699) (0.0623) (0.0535)

Observations 204,287 204,287 204,287 204,287

R-squared 0.383 0.384 0.385 0.385

CPP	Mismatch	(0-1) -1.161*** -1.084*** -1.154*** -0.852**

(0.364) (0.350) (0.322) (0.381)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.698 -0.694 -0.173 -0.892**

(1.248) (0.423) (0.503) (0.437)

Observations 5,791 5,791 5,791 5,791

R-squared 0.797 0.797 0.797 0.797

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes

(1) (2) (3) (4)

Frontier	defined	as: United	States
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Mismatch	(0-1) -0.0571** -0.0453** -0.0330 -0.0207

(0.0216) (0.0215) (0.0199) (0.0196)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.392*** -1.237*** -1.076*** -1.076***

(0.0313) (0.290) (0.249) (0.249)

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes

Observations 204,287 204,287 204,287 204,287

R-squared 0.439 0.443 0.444 0.444

(1) (2) (3)

Frontier	defined	as:
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Mismatch	(0-1) -0.0229** -0.0181* -0.0136

(0.00986) (0.00917) (0.00884)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.332*** -0.343*** -0.322***

(0.0699) (0.0623) (0.0535)

Crop-by-Origin	Fixed	Effects Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes

Observations 204,287 204,287 204,287

R-squared 0.384 0.385 0.385

(1) (2) (3) (4)

Frontier	defined	as: United	States
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Mismatch	(0-1) -0.0241** -0.0229** -0.0181* -0.0136

(0.00956) (0.00986) (0.00917) (0.00884)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.254*** -0.332*** -0.343*** -0.322***

(0.0142) (0.0699) (0.0623) (0.0535)

Observations 204,287 204,287 204,287 204,287

R-squared 0.383 0.384 0.385 0.385

CPP	Mismatch	(0-1) -1.161*** -1.084*** -1.154*** -0.852**

(0.364) (0.350) (0.322) (0.381)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.698 -0.694 -0.173 -0.892**

(1.248) (0.423) (0.503) (0.437)

Observations 5,791 5,791 5,791 5,791

R-squared 0.797 0.797 0.797 0.797

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes

Panel	B:	Dependent	Variable	is	Any	Biotech	Transfer	(0/1)

Panel	C:	Dependent	Variable	is	log	Biotech	Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	specification	is	noted	at	the	
top	of	each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-clustered	by	

origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	Dependent	Variable	is	(asinh)	Biotech	Transfers

Panel	B:	Dependent	Variable	is	Any	Biotech	Transfer	(0/1)

Panel	C:	Dependent	Variable	is	log	Biotech	Transfers

Dependent	Variable	is	(asinh)	Biotech	

Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	secification	
is	noted	at	the	to	of	each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	

errors	are	double-clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	

5%,	and	1%	levels.

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	secification	is	noted	at	the	
top	of	each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-clustered	by	

origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	(asinh)	Biotech	Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	specification	is	noted	at	the	
top	of	each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-clustered	by	

origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Sensitivity: Additional Controls. We then explore whether the results are sensitive to the inclu-
sion of a series of control variables. As a result of the included fixed effects, any control variable
must vary at the country-pair-by-crop level. Features like geographic or cultural distance between
countries are fully absorbed by the country pair fixed effects, as are any crop-level conditions at
either the origin or destination. One variable that varies across crops and country pairs is crop-
specific trade. In column 4 of Table A5, we control for an indicator that equals one if countries ℓ
and ℓ ′ engage in bilateral final good trade for crop 𝑘 and the estimate is similar. While distance
between country pairs is fully absorbed, another possibility is that the impact of distance differs
across crops in a way that is correlated with CPP mismatch. In column 5, we control for (log of)
the geographic distance between all country pairs interacted with a full set of crop fixed effects,
allowing the effect of distance to vary flexibly across crops. In columns 6 and 7, we exclude from
the sample origin-destination pairs within 1000km or 2000km of each other respectively. Again,
the estimates are very similar. A final relevant characteristic could be the difference in non-CPP
crop-level environmental characteristics between the origin and destination. To investigate this idea,
Appendix B.2 reports results after controlling for several non-CPP measures of ecological mismatch
across crops and country-pairs. In all cases, our estimates are quantitatively very similar.

3.3 Results: Inappropriateness of the Frontier Matters Most

While estimates from the previous section capture the average relationship between CPP mis-
match and technology transfer across all countries and crops, the next question we investigate is
whether inappropriateness of frontier countries has a disproportionate effect on technology transfer.
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Intuitively, having a high CPP mismatch with the US for corn, a crop in which it dominates global
R&D, could have a larger impact on technology diffusion than CPP mismatch with a country less
active in corn research. In the model, Proposition 1 formalizes that this prediction could be true if
there are scale effects in the local research spillover.

To empirically investigate this quesiton, we estimate versions of the following augmented version
of (12) that parameterizes heterogeneity in the effect of CPP mismatch:

𝑦𝑘,ℓ ′,ℓ = 𝛽𝑁𝐹 · CPPMismatch𝑘,ℓ ′,ℓ + 𝛽𝐹 · 𝐹𝑘,ℓ ′ · CPPMismatch𝑘,ℓ ′,ℓ + 𝜒ℓ ,ℓ ′ + 𝜒𝑘,ℓ + 𝜒𝑘,ℓ ′ + 𝜀𝑘,ℓ ,ℓ ′ (13)

where 𝐹𝑘,ℓ ′ is an indicator variable that equals one for the countries ℓ ′ that we identify as the frontier
countries for crop 𝑘. We have two strategies for defining 𝐹𝑘,ℓ ′. The first is to treat the US as the
frontier for all crops, or set 𝐹𝑘,ℓ ′ = I[ℓ ′ = US]. This method is motivated by the United States’ pre-
eminence in modern agricultural research.23 The second is to identify a set of crop-specific “leaders”
𝑇𝑁 (𝑘) in the UPOV data, based on being among the top 𝑁 countries in variety registrations for 𝑘.
This data-driven approach sets 𝐹𝑘,ℓ ′ = I[ℓ ′ ∈ 𝑇𝑁 (𝑘)], and is parameterized by the list length𝑁 . In this
specification, 𝛽𝐹 captures the difference in the marginal effect of inappropriateness on technology
diffusion when the origin country is a leader in biotechnology development.

Estimates of Equation 13 are reported in Table 2. The dependent variable is the inverse hyperbolic
sine transformation of the number of variety transfers; analogous estimates of the intensive and
extensive margin effects, reported separately, are presented in Table A7. Our definitions of the
frontier as the US, 𝑇1(𝑘), 𝑇2(𝑘), and 𝑇3(𝑘) are used in columns 1-4. We find strong, significant
evidence that 𝛽𝐹 < 0 across all specifications. For example, in columns 3-4, the marginal effect of
CPP distance on technology diffusion is roughly thirty times larger for frontier origin markets and
statistically indistinguishable from zero for non-frontier origin markets. These estimates imply that
high ecological mismatch with the frontier can leave a country with little or no appropriate modern
technology. Interpreted via the model, they are consistent with a large context-specific component
of modern technology and local research spillovers in frontier countries.

3.4 Additional Analysis: Technology Transfer and Adoption in Africa

One limitation of our analysis so far in this Section is that we lack data on technology transfer
when IP protection for varieties is absent. This has two consequences. First, the analysis has been
geographically limited to countries that enforce IP protection, notably excluding large parts of Africa.
Second, the analysis covers only IP-protected technologies, which may neither cover all circulated
varieties nor always reflect what is available to farmers. To directly investigate this set of issues, we
include two additional analyses of variety introduction and usage in Africa.

23The US alone produces 30% of citation-weighted global agricultural science publications and three times as many
patents as the next highest country (Japan). 52% of agricultural research and development companies are incorporated
in North America and US inventors generate roughly 1.5 thousand patents for plant modification and 1 thousand patents
for cultivar development per year (Fuglie, 2016).
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Variety Introduction. In Appendix B.4, we use alternative data to study how variety introduction
in sub-Saharan Africa depends on the inappropriateness of the frontier. We compile data from
the Consultative Group on International Agricultural Research (CGIAR) Diffusion and Impact of
Improved Varieties in Africa (DIIVA) project cataloging improved crop varieties for 28 countries in
sub-Saharan Africa and across 19 crops since 1960. Crucially, these data do not rely on IP protection.
We find that country-crop combinations more mismatched with the frontier (i.e., the highest variety-
producing countries in our main analysis) have fewer variety introductions, conditional on crop and
country fixed effects.

Variety Adoption. In Appendix B.5, we study how inappropriateness affects technology adoption
on smallholder farms in sub-Saharan Africa. Smallholder farms have received substantial attention
for the low penetration of agricultural technology despite ostensible benefits (see, e.g., Suri, 2011;
Duflo et al., 2011). We measure the use of improved technologies using data from the latest geo-
coded round of all Living Standard Measurement Survey (LSMS) Integrated Surveys of Agriculture
(ISA). These are detailed surveys on all facets of agricultural production, including technology use,
collected by the World Bank in collaboration with the statistical agencies of eight countries: Burkina
Faso, Ethiopia, Malawi, Mali, Niger, Nigeria, Tanzania, and Uganda.

Our outcome variable is a crop-by-farm indicator for the use of improved seeds (i.e., not locally
bred varieties), as reported in the LSMS-ISA survey. One shortcoming of this measure is that
self-reported data on improved seed use are not always accurate. For example, Kosmowski et al.
(2019) compare survey evidence to DNA re-analysis in Ethiopia and find that farmers are accurate
approximately 60% of the time. Wineman et al. (2020), in a similar analysis in Tanzania, find that
farmers are accurate approximately 70% of the time. Our assumption is that this measurement error
is not systematically correlated with CPP mismatch across cross-country pairs conditional on crop
and country fixed effects.

We find that, in country-crop pairs more mismatched with the frontier, individual smallholder
farmers are less likely to use improved seeds (Table A8). The baseline estimates imply that improved
seed use by the median farmer in our sample would be 14% more prevalent absent inappropriateness,
relative to an in-sample mean of 17.9%. The coefficient estimates are similar after including state
fixed effects or a quadratic polynomial in farm latitude and longitude to control more flexibly for
the local geography and after weighting by farm size.

These estimates indicate that inappropriateness contributes toward low improved input use
on some of the world’s least productive small farms. Through the lens of our model, in which
endogenous innovation responds to demand for inputs, they further suggest a reason why research
and marketing investment from global biotechnology firms has not materialized in sub-Saharan
Africa (Access to Seeds Foundation, 2019).

4. Results: Inappropriateness and Production
We now study how mismatch with frontier innovating countries affects global production. We

find that CPP mismatch with the frontier substantially reduces output at the country-by-crop level.
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We find similar effects in a sub-national analysis of Brazil and India. We finally use two events,
the Green Revolution and the recent rise of US biotechnology, to document how changes in the
geography of innovation translate into changing incidence and effects of inappropriateness.

4.1 Data and Measurement

Agricultural Production. We compile data on crop output, trade, and prices from the UN Food and
Agriculture Organization statistics database (FAOSTAT). We also compile sub-national agricultural
output data from the latest nationally representative agricultural census for both Brazil and India.
The Brazilian data are from the 2017 round of the Censo Agropecuário and cover 49 crops. The
Indian data are from the ICRSAT Database, constructed from the 2015 Agricultural census, and
cover 20 states and 20 crops.

Mismatch with the Frontier. Mapping our analysis to the predictions of Proposition 2 requires
taking a stand on “which inappropriateness matters” for determining a given country’s production,
or from where that country sources its technology. Since we lack detailed data on the country of
origin for the crop-specific inputs used in each market, we instead use the two feasible strategies
to measure each country’s ecological mismatch with the frontier technology producers introduced in
Section 3.2.

The main strategy is to define the technological frontier for each crop based on the frequency of
variety releases in the UPOV data. Given a set 𝑇𝑁 (𝑘) of the 𝑁 top countries for 𝑘-variety releases,
we calculate:

CPPMismatchFrontierEst
𝑘,ℓ =

∑
ℓ ′∈𝑇(𝑘)

(
Share VarietiesUPOV

𝑘ℓ ′

)
×

(
CPP Mismatch𝑘,ℓ ,ℓ ′

)
(14)

For our baseline results, we use 𝑁 = 2; however, the results are very similar for alternative values for
𝑁 . An advantage of this method is that it captures geographic variation in technological leadership
by using international data on technology development.24

The second strategy is to assume that the United States produces the frontier technology for
all crops and define CPPMismatchFrontierUS

𝑘,ℓ = CPPMismatch𝑘,ℓ ,US. In the model, this method is
exactly correct if the United States were the sole producer of technology. In reality, nearly fifty
percent of private research investment takes place in the US, representing a large share of global
innovation (Fuglie, 2016). While this strategy does not capture potential variation across crops in
technological leadership, it also does not rely on any cross-national comparisons of variety release
intensity, which might be biased if there are differences in reporting accuracy or inclusion criteria.

These strategies for defining frontier innovators are further motivated by the results in Table 2,
showing that CPP mismatch with the US or countries in 𝑇(𝑘) have a disproportionate negative effect
on biotechnology diffusion. In practice, the two measures of CPP mismatch are highly correlated;
in a univariate regression, the coefficient is 0.93 (0.047) and 𝑅2 is 0.91. The underlying reason is

24In the model, this can be mapped to a case in which only the countries ℓ ∈ 𝑇(𝑘) produce technology for 𝑘, productivity
Θ𝑘,ℓ is linearly approximated in 𝛿𝑘,ℓ ,ℓ ′ around a steady state with 𝛿𝑘,ℓ ,ℓ ′ ≡ 0 for all ℓ ′, and ShareVarieties𝑘,ℓ ′ equals the
fraction of farms that would use ℓ ′ technology if all technology were equally appropriate.
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that our identified technological leaders, in the majority of cases, are subsets of the US, Canada, and
countries in Western Europe. This foreshadows the fact that our main findings are similar using
either measure.

Direct Effects of the Local Environment. In the model, the relationship between ecological mis-
match and production was correctly specified conditional on measurements of the parameter 𝜔𝑘,ℓ ,
local innate suitability for growing crop 𝑘 in country ℓ (Proposition 2). To directly capture the
impact of local suitability on output in our analysis, we use two measurement strategies. First, we
directly measure crop-specific production as predicted by local geography from the FAO Global
Agro-Ecological Zones (GAEZ) model and database (see, e.g., Costinot et al., 2016). We compute to-
tal predicted production under GAEZ’s low-input, rain-fed scenario, which holds fixed background
differences in input use and technology, on the land area within a country on which a given crop was
grown according to a cross-section in 2000, as measured by the EarthStat database of Monfreda et al.
(2008). While this method parsimoniously summarizes agronomic predictions of innate suitability,
it is only available for 34 of our 132 crops.

Our second approach is to compile a larger set of environmental variables and then use post-
double LASSO (Belloni et al., 2014) to select an appropriate set of control variables, tantamount to
specifying our own crop-specific empirical models for suitability. We first construct fixed effects for
the 200 “most geographically prevalent” CPPs, as determined by the number of countries in which
they are present, and the 200 “most agriculturally prevalent” CPPs, as determined by the number
of host species that they infect. We also construct measures of average temperature, precipitation,
elevation, ruggedness, the growing season length, and soil characteristics (acidity, clay content, silt
content, coarse fragment content, and water capacity) for each country. Appendix B.2 describes
these data in detail. We then include all of these variables, interacted with crop fixed effects, in the
LASSO control set.

4.2 Results: Inappropriateness Reduces Agricultural Output

Estimation Framework. Our main estimating equation is the empirical analog of Equation 8 in
Proposition 2:

𝑦𝑘,ℓ = 𝛽 · CPPMismatchFrontier𝑘,ℓ + 𝜒ℓ + 𝜒𝑘 +Ω′
𝑘ℓΓ + 𝜀𝑘,ℓ (15)

The outcome 𝑦𝑘,ℓ is average production from 2000 to 2018 in log physical units. All specifications
include country and crop fixed effects (𝜒ℓ , 𝜒𝑘). The vector Ω𝑘,ℓ includes proxies for innate suitability.

The coefficient of interest is 𝛽, which captures the effect of CPP dissimilarity from technology-
producing countries on features of agricultural production. The included fixed effects capture any
aggregate differences across countries (e.g., income, productivity, technology) or crops (e.g., market
size, price, global innovation).25 We also account directly for the effect of crop-level innate suitability
by including various measures of crop-specific suitability, Ω𝑘,ℓ , described in the previous section.
In Section 4.3, we will estimate a within-country variant of this empirical model which makes it
possible to directly account for any crop-by-country confounders, and in Section 4.4 we will exploit

25A structural interpretation consistent with this is in the proof of Proposition 2.
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Table 3: CPP Mismatch Reduces Agricultural Output

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -7.136*** -5.721*** -7.202*** -6.288*** -9.285*** -10.60*** -9.325*** -8.454***
(0.959) (0.663) (0.461) (0.501) (1.199) (3.024) (0.617) (0.652)

log(FAO-GAEZ-Predicted	Output) 0.353*** 0.298***
(0.0499) (0.0814)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool 335 3935 - - 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,704 2,353 6,707 5,903 6,926 2,353 6,931 6,069
R-squared 0.600 0.609 0.599 0.617

CPP	Mismatch	(0-1) -9.285*** -10.60*** -9.325*** -8.454*** -7.136*** -5.721*** -7.202*** -6.288***
(1.199) (3.024) (0.617) (0.652) (0.959) (0.663) (0.461) (0.501)

log(FAO-GAEZ-Predicted	Output) 0.298*** 0.353***
(0.0814) (0.0499)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,926 2,353 6,931 6,069 6,704 2,353 6,707 5,903
R-squared 0.599 0.617 0.600 0.609

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -9.285*** -10.60*** -9.325*** -8.454*** -7.136*** -5.721*** -7.202*** -6.288***
(1.199) (3.024) (0.617) (0.652) (0.959) (0.663) (0.461) (0.501)

log(FAO-GAEZ-Predicted	Output) 0.298*** 0.353***
(0.0814) (0.0499)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,926 2,353 6,931 6,069 6,704 2,353 6,707 5,903
R-squared 0.599 0.617 0.600 0.609

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -9.285*** -10.60*** -9.325*** -8.454*** -7.136*** -5.721*** -7.202*** -6.288***
(1.199) (3.024) (0.617) (0.652) (0.959) (0.663) (0.461) (0.501)

log(FAO-GAEZ-Predicted	Output) 0.298*** 0.353***
(0.0814) (0.0499)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,926 2,353 6,931 6,069 6,704 2,353 6,707 5,903
R-squared 0.599 0.617 0.600 0.609

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -9.285*** -10.60*** -9.325*** -8.454*** -7.136*** -5.721*** -7.202*** -6.288***
(1.199) (3.024) (0.617) (0.652) (0.959) (0.663) (0.461) (0.501)

log(FAO-GAEZ-Predicted	Output) 0.298*** 0.353***
(0.0814) (0.0499)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,926 2,353 6,931 6,069 6,704 2,353 6,707 5,903
R-squared 0.599 0.617 0.600 0.609

CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP		mismatch	with	the	US	and	columns	5-8		use	CPP	mismatch	
with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	
double	LASSO	estimates.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	
and	1%	levels.

CPP	Distance	to	US CPP	Distance	to	Estimated	Frontier	Set

Dependent	Variable	is	log	Output

CPP	Distance	to	US CPP	Distance	to	Estimated	Frontier	Set

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	dstance	to	the	US	and	columns	5-8		use	CPP	dstance	to	the	
estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	double	
LASSO	estimates.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growng	season	days,	soil	
acidity,	soil	clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	
crop	and	country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	dstance	to	the	US	and	columns	5-8		use	CPP	dstance	to	the	
estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	double	
LASSO	estimates.	Country	and	crop	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	set	in	thet	post-
double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	countries	in	whch	they	are	
present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	335.	The	set	of	ecological	features	
includes:	temperature,	precipitation,	elevation,	ruggedness,	growng	season	days,	soil	acidity,	soil	clay	content,	soil	silt	content,	soil	coarse	
fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	state	and	*,	**,	and	***	indicate	significance	at	
the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output

CPP	Mismatch	with	the	USCPP	Mismatch	with	the	Estimated	Frontier

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP		mismatch	with	the	estimated	set	of	technological	leader	
countries	and	columns	5-8		use	CPP	mismatch	with	the	US.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	
post	double	LASSO	estimates.	Country	and	crop	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	set	in	the	
post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	countries	in	whch	they	are	
present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	335.	The	set	of	ecological	features	
includes:	temperature,	precipitation,	elevation,	ruggedness,	growing	season	days,	soil	acidity,	soil	clay	content,	soil	silt	content,	soil	coarse	
fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output
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CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP		mismatch	with	the	US	and	columns	5-8		use	CPP	mismatch	
with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	
double	LASSO	estimates.	Country	and	crop	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	set	in	the	post-
double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	countries	in	whch	they	are	
present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	335.	The	set	of	ecological	features	
includes:	temperature,	precipitation,	elevation,	ruggedness,	growing	season	days,	soil	acidity,	soil	clay	content,	soil	silt	content,	soil	coarse	
fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output

two natural experiments that shifted the research frontier to identify the impact of inappropriateness
on production in a dynamic framework.

Main Estimates. Our baseline estimates of Equation 15 are reported in Table 3. In columns 1-4,
CPP mismatch with the frontier is measured as mismatch with the frontier country set, 𝑇2(𝑘). To
make sure our findings are not driven by the data-driven frontier country selection, in columns
5-8 we report identical specifications in which CPP mismatch with the frontier is measured as CPP
mismatch with the US for all crops. In columns 1 and 5, which include crop and country fixed effects
but no additional controls, we estimate a large, negative effect of CPP mismatch with the frontier on
agricultural output. The coefficient from column 5 implies that a one standard deviation increase in
CPP mismatch with the research leader lowers output by 0.43 standard deviations.

The set of partial correlation plots in Figure 5 visually display the relationship between CPP
mismatch with the frontier and crop-specific output for a set of large crops: corn, wheat, rice,
and soybeans. For each crop, CPP mismatch substantially lowers output; the relationship does not
appear driven by outlier observations or any specific part of the output distribution. These figures
also show that the main result is visibly apparent in the world’s most economically important crops.26

The remaining columns of Table 3 show the stability of these estimates under each of our control
strategies for innate suitability. In columns 2 and 6, we report estimates that include the GAEZ

26Since the single-crop results do not include country fixed effects, an additional prediction is that there should be
a negative relationship between CPP mismatch with the frontier and output per area (i.e., crop yields). In Figure A4,
we present an analogous set of partial correlation plots with yield as the dependent variable, and estimate negative and
significant coefficients in for all crops. For comparison, we also include partial correlation plots with log of yield as the
dependent variable for the full sample of crops, both with and without country fixed effects.
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agronomic model-derived output estimate as a control. In columns 3 and 7, we show estimates
from the post-double LASSO control strategy using the top CPP fixed effects. In columns 4 and 8,
we expand the LASSO pool to include the full set of country-level geographic covariates, and their
square, interacted with crop-fixed effects, to allow for crop-specific effects of each characteristic. The
estimates are stable across specifications.

The stability of all findings after accounting for local suitability is consistent with the fact that,
ex ante, there is no reason to expect that the locations with most innovation for a particular crop are
also innately the best places for growing that crop. Thus, there is no reason to believe that being
ecologically “distant” from technology producing countries is equivalent to being ecologically “bad.”
Indeed, the US has a long history of science and technology development to confront crop disease and
the challenging pathogen environment (Olmstead and Rhode, 2008). Consistent with this history
of ecological challenges in what would become a highly agriculturally productive country, existing
empirical evidence suggests that variation in local land suitability plays a limited role in explaining
global productivity differences (Adamopoulos and Restuccia, 2022). Our results, on the other hand,
suggest that geography affects productivity, but in an indirect way. Technological progress in
the frontier increases relative productivity in places with similar ecological characteristics; thus,
“good geography” is determined endogenously and can change in response to shifting patterns of
innovation. We directly test this dynamic prediction in Section 4.4.

Falsification Test. If our main estimates capture the impact of inappropriateness on productivity,
then we would expect to find a limited or absent relationship between CPP mismatch with countries
that are not centers of biotechnology development and productivity. To test this prediction, we re-
estimate Equation 15, replacing CPPMismatchFrontier𝑘,ℓ with CPP mismatch with each country in
the world; this generates a series of coefficient estimates 𝛽̂ℓ , one for each country. Figure A5 reports
histograms of estimates of the 𝛽̂ℓ , both from specifications that do not include CPP mismatch with
frontier as a control (A5a) as well as from specifications that do (A5b). In both cases, the coefficient
on CPP mismatch with the frontier, marked with a dotted line, is in the far left part of the coefficient
distribution. Estimates of the effect of CPP distance to other countries are centered around zero.

Moreover, the 𝛽̂ℓ are significantly negatively correlated with country-level biotechnology devel-
opment measured in the UPOV database. Table A9 reports estimates of the relationship between 𝛽̂ℓ

and both the number of varieties development in ℓ in the UPOV data (column 1) and an indicator
that equals one of country ℓ enforces intellectual property protection for plant biotechnology at
all (column 2). The coefficient estimates are negative and significant, suggesting that CPP mis-
match has more bite on global production for precisely the countries that are more active in R&D.
These findings are consistent with our main estimates capturing the causal impact of technology’s
inappropriateness.

Sensitivity Analysis. While Table 3 showed that the estimates were very similar after accounting
for innate suitability, the key control according to the model, we also investigate the precision
of the estimates after including a broader range of additional controls. As a result of the fixed
effects in Equation 15, any control variable must vary at the country-by-crop level. Country-level
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Figure 5: CPP Mismatch and Agricultural Output: Large Crops
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(d) Soybeans
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Notes: Each sub-figure reports a partial correlation plot of an estimate of (15) in which we restrict the sample to a single
crop: corn, wheat, rice, and soybeans in A4a - A4d respectively. CPP mismatch is measured using the version in which
we allow technological leadership to vary across crops. The coefficient estimates and standard errors are noted at the
bottom of each sub-figure.

characteristics like income, the human capital, physical capital, or the political environment, are
absorbed by the country fixed effects. Crop-level characteristics like global demand conditions,
global research effort, and physiological characteristics, are absorbed by the crop fixed effects.

The first possibility that we explore is that country-level characteristics have heterogeneous
effects across crops—if these effects were correlated with CPP mismatch and production, it could
bias our estimates. This could be the case, for example, if being wealthier disproportionately boosts
productivity for a given crop because returns to input investment are higher, and wealthier countries
tend to have lower CPP mismatch with the frontier for that crop in the data. Certain crops could also
disproportionately benefit from overall specialization in agriculture or from the extent of local R&D.
As an initial test of whether the results are driven by differences in crop-specific characteristics across
broad regions of the world, Table A10 documents that the results are very similar including crop-

28



by-continent fixed effects, which allow us to focus on even more geographically precise variation.
Next, Table A11 shows that results are similar after controlling for a broad spectrum of country-level
characteristics, all interacted with crop fixed effects to allow their impact on production to vary
systematically across crops. The controls that we include are income, openness to trade, measures
of inequality, specialization in agriculture, agricultural productivity, and R&D investment.

Finally, we show that the results are not driven by non-CPP measures of geographic mismatch
with the frontier, which varies at the crop-by-country level. The results are very similar after
controlling directly for mismatch with the frontier in non-CPP ecological characteristics (Appendix
B.2). Inappropriateness measured using non-CPP ecological characteristics also reduces output;
however, this effect is independent from and smaller in magnitude than the effect of CPP distance
(Table A12). The results are also not driven by differences in the extent of species invasion; the
estimates are very similar after excluding all invasive species from the CPP mismatch measure
(Appendix B.1).

Additional Outcomes: Trade and Price Volatility. Table A13 reports an analogous set of estimates
to Table 3 with log of area harvested (instead of output) as the dependent variable. Consistent with
the predictions of the Fréchet model for selection effects, we find statistically indistinguishable
magnitudes compared to our main estimates for production.

Table A14 reports the impact of CPP mismatch on other features of agricultural production.
First, we document that CPP mismatch with the frontier is negatively correlated with crop-specific
exports (column 2), and positively (albeit insignificantly) correlated with crop-specific imports
(column 3). Second, we document that CPP mismatch is positively correlated with producer price
volatility. This finding indicates that the appropriateness of frontier technology might not only raise
average productivity but also increase producers’ ability to withstand periodic negative productivity
shocks.27 The negative relationship with producer price volatility is similar even after holding total
output fixed (columns 5 and 7).

4.3 Results: Inappropriateness Reduces Agricultural Output Within Countries

We next exploit state-level information on CPP presence for Brazil and India to estimate the
effects of inappropriateness at a sub-national level. Our estimating equation is:

𝑦𝑘,𝑠 = 𝛽 · CPPMismatchFrontier𝑘,𝑠 + 𝜒𝑠 + 𝜒𝑘,ℓ (𝑠) +Ω′
𝑘,𝑠Γ + 𝜀𝑘,𝑠 (16)

where now 𝑠 indexes states and ℓ (𝑠) ∈ {Brazil, India}. In all specifications, we include crop-by-
country fixed effects (𝜒𝑘.ℓ (𝑠)). By estimating the effect of inappropriateness on sub-national regions,
we hold fixed all country-by-crop characteristics, including crop-specific R&D, trade, market size,
demand, and pest composition.

Our estimates of Equation 16 are displayed in Table 4, which follows the same structure as the
baseline country-by-crop estimates in Table 3. We find negative and significant estimates that are

27For example, bad insect outbreaks; see Stone (2020) on recent locust outbreaks in East Africa.
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Table 4: CPP Mismatch Reduces Agricultural Output: Sub-national Estimates

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -11.89*** -10.10*** -11.85*** -10.37*** -8.925*** -10.20*** -8.695*** -9.355***
(1.937) (2.475) (1.538) (2.247) (2.386) (3.327) (1.752) (2.096)

log(FAO-GAEZ-Predicted	Output) 0.659*** 0.654***
(0.133) (0.138)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Crop	x	Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
State	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,370 696 1,371 1,036 1,436 696 1,437 1,093
R-squared 0.658 0.683 0.641 0.680

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -8.925*** -10.20*** -8.695*** -9.355*** -11.89*** -10.10*** -11.85*** -10.37***
(2.386) (3.327) (1.752) (2.096) (1.937) (2.475) (1.538) (2.247)

log(FAO-GAEZ-Predicted	Output) 0.654*** 0.659***
(0.138) (0.133)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Crop	x	Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
State	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,436 696 1,437 1,093 1,370 696 1,371 1,036
R-squared 0.641 0.680 0.658 0.683

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -8.925*** -10.20*** -8.695*** -9.355*** -11.89*** -10.10*** -11.85*** -10.37***
(2.386) (3.327) (1.752) (2.096) (1.937) (2.475) (1.538) (2.247)

log(FAO-GAEZ-Predicted	Output) 0.654*** 0.659***
(0.138) (0.133)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Crop	x	Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
State	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,436 696 1,437 1,093 1,370 696 1,371 1,036
R-squared 0.641 0.680 0.658 0.683

Dependent	Variable	is	log	Output

CPP	Mismatch	with	the	USCPP	Mismatch	with	the	Estimated	Frontier

Notes:	 The	unit	of	observation	is	a	state-country	pair.	Columns	1-4	use	CPP	mismatch	with	the	estimated	set	of	technological	leader	
countries	and	columns	5-8	use	CPP	mismatch	with	the	US.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	
post	double	LASSO	estimates.	State	and	crop-by-country	fixed	effects	are	included	in	all	specifications,	and	included	in	the	
amelioration	set	in	the	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	
countries	in	which	they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	
335.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growing	season	days,	soil	acidity,	soil	
clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	
state	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	 The	unit	of	observation	is	a	state-crop	pair.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	
double	LASSO	estimates.	State	and	crop-by-country	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	set	
in	thet	post-double	LASSO	specifications.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	
growng	season	days,	soil	acidity,	soil	clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	
are	double-clustered	by	crop	and	state.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier

Dependent	Variable	is	log	Output

Notes:	 The	unit	of	observation	is	a	state-country	pair.	Columns	1-4	use	CPP	mismatch	with	the	US	and	columns	5-8		use	CPP	mismatch	
with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	
post	double	LASSO	estimates.	State	and	crop-by-country	fixed	effects	are	included	in	all	specifications,	and	included	in	the	
amelioration	set	in	thet	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	
countries	in	which	they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	
335.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growing	season	days,	soil	acidity,	soil	
clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	
state	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output

CPP	Distance	to	US CPP	Distance	to	Estimated	Frontier	Set

similar in magnitude to our country-by-crop results. The coefficient estimates, if anything, increase
after accounting for local suitability, either controlling for state-by-crop level FAO GAEZ predicted
output (columns 2 and 6), or using the flexible post double LASSO approach (columns 3-4, 7-8). The
estimates are also similar if we focus on either India or Brazil separately (Figure A6).

Together, these estimates suggest that the inappropriateness of technology shapes productivity
differences not only across country-crop pairs, but across regions within countries for a given crop.
Moreover, while we show that the findings in Section 4.2 are robust to a range of strategies to account
for crop-by-country level observables, the inclusion of crop-by-country fixed effects in Table 4 fully
rules out the possibility that the results are driven by unobservable characteristics that vary across
country-crop pairs.

4.4 Dynamic Estimates: The Green Revolution and Rise of the US

So far we have studied the static effect of inappropriateness on production. We now investigate
how changes in technological leadership over time influence production, by shifting global patterns
of inappropriateness. To study this topic, we exploit two natural experiments that significantly
shifted the geography of agricultural innovation: the Green Revolution of the 1960s and 1970s and
the rise of US biotechnology since the 1990s. Methodologically, these strategies allow us to fully
absorb any unobservable crop-by-country level effects when estimating the dynamic impact of CPP
mismatch on production.

The Green Revolution. The Green Revolution was a coordinated international effort, backed by
philanthropic organizations, to develop high-yielding varieties (HYVs) of staple crops for countries
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with high risk of famine (Pingali, 2012). The engine at the heart of the Green Revolution was a
set of international agricultural research centers (IARCs), including the International Rice Research
Institute (IRRI) in the Philippines and the International Maize and Wheat Improvement Center
(CIMMYT) in Mexico. We identify from Evenson and Gollin (2003b) the IARC and hence country in
which the primary breeding center for each crop was located (Table A15). While HYV breeding in-
volved international collaboration, the focus of activity in certain hubs anecdotally led to technology
most appropriate for primary breeding locations.28

We exploit the shift of innovation toward the IARCs to identify how changes in the focus of
innovation affect global production. As an instrument for the induced changes in crop-by-country
inappropriateness, we compute CPP mismatch with centers of Green Revolution breeding at the
crop-by-country level as CPPMismatchGR𝑘,ℓ = CPP Mismatch𝑘,ℓ ,ℓ𝐺𝑅(𝑘), where ℓ𝐺𝑅(𝑘) is the index of
the country in which Green Revolution breeding of crop 𝑘 was located.

To validate this measure, we study its relationship with HYV adoption, as measured at the crop-
by-country level by Evenson and Gollin (2003a,b). We regress the percent of area devoted to HYVs in
1980-85, a representative cross-section after the bulk of Green Revolution research was conducted, on
CPPMismatchGR𝑘,ℓ , on a sample of eight staple crops intersected with the 85 low-income countries:

HYVAdoption𝑘,ℓ ,1985 = 𝛽 · CPPMismatchGR𝑘,ℓ + 𝜒ℓ + 𝜒𝑘,𝑐(ℓ ) + 𝜀𝑘,ℓ (17)

We find that CPP mismatch with centers of Green Revolution breeding substantially reduced the
adoption of HYVs (Figure 6a and Appendix Table A16)). In a falsification exercise, we estimate the
relationship between HYV adoption and CPP mismatch with all other countries, and we compile
these placebo coefficients. Our main estimate is in the far left tail of the coefficient distribution
(𝑝 = 0.013), suggesting that our findings are driven by features of IARC ecology.

We next estimate how CPP mismatch with Green Revolution centers affected output growth
from the 1960s to the 1980s. We estimate the following regression model:

Δ log 𝑦80−60
𝑘,ℓ

= 𝛽 · CPPMismatchGR𝑘,ℓ + 𝜏 · log 𝑦𝑘,ℓ ,1960𝑠 + 𝜒ℓ + 𝜒𝑘,𝑐(ℓ ) + 𝜀𝑘,ℓ (18)

where the dependent variable is the change in (log of) crop-level output between the 1960s and
the 1980s, and the sample includes all crop-country pairs from the HYV adoption model. This
estimating equation differences out a country-by-crop fixed effect in levels of production, or the
direct effects of time-invariant ecology and local suitability. To even more strongly account for
differences in innate productivity, we control for output in the 1960s (log 𝑦𝑘,ℓ ,1960𝑠), which directly
captures differential trends in initial output. Our hypothesis is that 𝛽 < 0, or that Green Revolution
technology disproportionately benefitted locations where it was most appropriate.

Figure 6b reports the partial correlation plot corresponding to Equation 18. Production substan-
tially shifted away, in relative terms, from crop-location pairs more ecologically mismatched with
the IARCs. Table A17 documents that the relationship between CPPMismatchGR and production

28Reynolds and Borlaug (2006), for example, extensively describe the challenges of coordinating breeding at the CIM-
MYT in Mexico with international collaborators.
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Figure 6: Inappropriateness and the Impact of the Green Revolution
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Notes: This figure displays binned partial correlation plots, after absorbing country and crop-by-continent fixed effects, in
which the independent variable is CPPMismatchGR𝑘,ℓ and the dependent variable is listed at the top of each sub-figure.
In Figure 6a, the dependent variable is the share of production using modern varieties in 1980 (𝑝 = 0.006) and in Figure
6b, it is the change in log output between the 1960s and the 1980s (𝑝 = 0.017). Standard errors are clustered by country
and continent-crop.

growth is restricted to the period 1960-1980, the height of the Green Revolution (columns 1-3). The
effect is apparent in Asia, Africa, and South America, but not in Europe, which was not an intended
recipient of Green Revolution technology (columns 4-7).

Taken together, our findings illustrate how ecological mismatch shaped the impact of the Green
Revolution. This finding is consistent with existing case-study evidence about how pest dissimilari-
ties shaped the efficacy of Green-Revolution technology (Lansing, 2009). The finding also illustrates
how the Green Revolution’s focus on developing a small set of HYVs and distributing them widely
may have limited the movement’s global reach, since new varieties were less productive in, and less
likely to be adopted in, environments ecologically different from HYV breeding centers.

The Rise of US Biotech. Since the 1990s, the US agricultural biotechnology sector has produced
a growing share of global innovation, driven in part by the advent and increased use of genetic
modification. Figure A7 displays the relative growth of US patenting since 1990. The same trend
for the EU is also reported, and does not show nearly as prominent an increase; while there were
more agricultural patents in Europe than in the US during the 1990s, the US far outpaced Europe
by the 2010s. During this period, patenting growth in US agricultural biotechnology far outpaced
patenting growth in the US economy at large, coinciding with rapid growth in private capital
investment (Fernandez-Cornejo and Caswell, 2006, p. 2).

We exploit this disproportionate growth of the US, relative to Europe, as a second strategy
to study how changes in innovation translate, via inappropriate technology, to changes in global
production. For each country-crop pair, we estimate:

Δ log 𝑦10−90
𝑘,ℓ

= 𝛽1 · CPP Mismatch𝑈𝑆𝑘,ℓ + 𝛽2 · CPP Mismatch𝐸𝑈𝑘,ℓ + 𝛾 · log 𝑦1990
𝑘,ℓ

+ 𝜒ℓ + 𝜒𝑘 + 𝜀𝑘,ℓ (19)
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Our first hypothesis is that 𝛽1 < 0, or that the rise in US biotech shifted production toward places
ecologically similar to the US. Our second hypothesis is that 𝛽1 < 𝛽2, or that this effect is associated
with the particular rise of the US and not with similarity to other high-income regions.

We find evidence of both hypotheses, across a range of regression specifications (Table A18).
The effect of the US, 𝛽1, is negative and statistically significant in all specifications. The effect of the
EU, 𝛽2, is by contrast close to zero and positive in all specifications. Moreover, when we conduct
a permutation analysis and compare the impact of CPP mismatch with the US on output changes
with the effect of CPP mismatch with all other countries on the globe, the effect of CPP mismatch
with the US is in the far left tail of the distribution (see Figure A8); the implied 𝑝-value from this
randomization test is 𝑝 = 0.004. Additionally, the effect is substantially larger for major US field
crops (corn, wheat, soybeans, and cotton), for which US seed market growth was “particularly
rapid” during the sample period and ultimately constituted over two-thirds of US market size
(Fernandez-Cornejo and Caswell, 2006) (see Table A19).

This set of results is consistent with the causal effect of R&D growth and inappropriateness
driving the negative relationship between CPP mismatch with the US and output growth. Together
with our analysis of the Green Revolution, these findings suggest that global productivity differences
are endogenous to the evolving landscape of technology development.

5. Inappropriate Technology and Productivity: Present and Future
We finally combine our empirical estimates with the model to explore how the inappropriateness

of technology shapes the distribution of global agricultural productivity. Our goal is to illustrate,
in a simple framework, the quantitative magnitudes at stake due to the inappropriateness of tech-
nology. We then use our framework to study a series of counterfactual scenarios that model how
inappropriateness mediates three ongoing changes in global biotechnology and the environment:
modern targeting of philanthropic research, the rise of new R&D hubs in emerging markets, and
the global movement of crop pests and pathogens due to climate change.

5.1 Methods

Set-up. Our empirical findings about technology transfer in Section 3 and production distortions
in Section 4 suggest there are crop-specific “leaders” driving the frontier of agricultural technology.
Building on this result, we introduce a special case of our model from Section 1 which embodies this
logic, maps transparently to the empirical findings, and allows us to formally define counterfactual
scenarios of interest.

Concretely, we specialize the model by assuming that for each crop 𝑘 there is a “Frontier tech-
nology producer” 𝐹𝑘 ∈ {1, . . . , 𝐿}. In the Frontier, general research is inelastically supplied at level
𝐴̄𝑘 > 0, own-CPP research at level 𝐵̄ > 0, and foreign-CPP research at level 𝐵̄𝑒−𝜏̂ for some 𝜏̂ > 0.29
These assumptions encode a fixed knowledge gap in productivity units for each crop, to match our

29Formally, in the frontier countries, we set 𝐵0 = 𝐵̄−1 and take a limit of 𝜙 → ∞ and 𝜏 → ∞ such that 𝜏(𝐵̄)
1+𝜙 → 𝜏̂ > 0. In

other countries, we set 𝐵0 → ∞ so no research is performed.

33



empirical strategy in Section 4. They abstract from the endogeneity of the magnitude of knowledge
gaps in response to incentives, a topic about which we have little information in the data.

We close the model by specifying the demand system. We assume that there is a representative
global consumer with payoffs 𝑢(𝑀, 𝐶) defined over the numeraire good 𝑀 (“money”) and a bundle
𝐶 of the agricultural goods.30 That bundle is a constant elasticity of substitution (CES) bundle of
crop-level consumption 𝐶𝑘 , or

𝐶 =

(
𝐾∑
𝑘=1

𝜅
1
𝜀

𝑘
𝐶

1− 1
𝜀

𝑘

) 𝜀
𝜀−1

(20)

for some normalization constants (𝜅𝑘)𝐾𝑘=1 and between-crop elasticity of substitution 𝜀 > 0.31 The
representative consumer can purchase each crop 𝑘 at a global price 𝑝𝑘 , in terms of the numeraire.
The induced demand curves are

log 𝑝𝑘 − log 𝑝 =
1
𝜀
(log𝜅𝑘 + log𝐶 − log𝐶𝑘) (21)

where 𝑝 is the (CES) price index for all crops. Our model with aggregate global demand abstracts
from trade and trade frictions, which may indirectly shape the consequences of inappropriate tech-
nology via prices. Given the large panel of crops and countries in our analysis, systematically
identifying a demand system for each country and full set of crop-by-country-pair trade frictions
is beyond the scope of our analysis. Accounting for these trade patterns would be important for
measuring the welfare consequences of inappropriateness. We instead focus on how inappropriate-
ness affects global agricultural productivity and productivity gaps. The extent of these gaps is an
ongoing puzzle and the focus of a large body of work (see, e.g., Gollin et al., 2014).

We finally allow each country to have amount 𝜁ℓ of agricultural land, which in Section 1 was
normalized to one. Introducing these differences in scale has no effect on the model interpretation
of our regression estimate from Section 4, as they would be absorbed by the country fixed effect.

From Theory to Regression. We now specialize the key model predictions about production and
productivity (Proposition 2) to this case of the model. Substituting the model-derived form for fixed
effects into Equation 8, we derive the regression equation32

log
𝑌𝑘,ℓ

𝜁ℓ
= −𝜂(1 − 𝛼)𝜏̂ 𝛿𝑘,ℓ ,𝐹𝑘 + 𝜂 log 𝜔𝑘,ℓ + (𝜂 − 1) log 𝑝̂𝑘 − (𝜂 − 1) log Ξ̂ℓ + 𝜂

(
𝛼𝐴̄𝑘 + (1 − 𝛼)𝐵̄)

)
(22)

where 𝛿𝑘,ℓ ,𝐹𝑘 is CPP mismatch with the crop-specific frontier, log 𝑝̂𝑘 = log 𝑝𝑘 − log 𝑝 is the price
deviation from the overall crop index, and log Ξ̂ℓ = logΞℓ − log 𝑝 is location-specific productivity
deflated by the same index. As derived in Appendix A, Ξℓ is the expected revenue per unit of
optimally allocated land in the model. Deflating by the price 𝑝 is natural because it keeps constant

30Formally, the consumer’s payoffs are represented by some concave 𝑢 : R × R+ → R. They have an initial endowment
of 𝑀, and are allowed to consume negative amounts.

31In the calibration, we set the constants 𝜅𝑘 so that, at the observed equilibrium, 𝑝𝑘 ≡ 1 for all crops 𝑘.
32We furthermore assume that 𝛾, landowners’ profit share, is close to one, so the elasticity of choices to prices is 𝜂/𝛾 ≈ 𝜂.
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the representative consumer’s overall demand for agricultural products.33 In this version of the
model with a single crop-specific frontier, the productivity index Ξ̂ℓ , up to irrelevant constants that
depend on fixed parameters 𝛾 and 𝜂, is:

logΞℓ = 𝛼 log 𝐴̄𝑘 + (1 − 𝛼) log 𝐵̄ + 1
𝜂

log

(
𝐾∑
𝑘=1

𝑝̂
𝜂
𝑘
𝜔

𝜂
𝑘,ℓ
𝑒−𝜂(1−𝛼)𝜏̂𝛿𝑘,ℓ ,𝐹𝑘

)
(23)

Improvements in frontier technology, or higher 𝐴̄𝑘 and 𝐵̄, benefit all crop-country pairs. But these
benefits are reduced if ecological distance to the frontier, 𝛿𝑘,ℓ ,𝐹𝑘 , is high.

Before turning to the calibration, we make three remarks about how we will map the model
equations (Equations 21, 22, and 23) to the data. The first concerns the model interpretation of our
estimated elasticity of production to CPP mismatch from Section 4 (𝛽). Comparing the empirical
regression model (Equation 15) to Equation 22, we observe that 𝛽 = −𝜂(1 − 𝛼)𝜏̂. In words, the
empirically estimated coefficient of CPP mismatch on production is the product of three terms: the
elasticity of output to productivity 𝜂, the relative importance of CPP-specific technology 1 − 𝛼, and
the extent of knowledge spillovers 𝜏̂. The second two forces need not be separately identified to
quantify productivity effects using Equation 23. However, separating the first force from the latter
two is important to identify the marginal effect of CPP mismatch on productivity.

The second concerns innate productivity𝜔𝑘,ℓ . When data on agricultural production are mapped
exactly to Equation 22, 𝜔𝑘,ℓ is a residual. Differences in 𝜔𝑘,ℓ absorb any differences in innate
suitability or in the availability of other inputs that affect productivity independently from ecological
mismatch. In this section’s quantitative analysis, when we vary the intensity or character of the
inappropriate-technology mechanism, we treat these other determinants of productivity as fixed.34

The third concerns price effects and the elasticity of demand 𝜀. Changing global prices create
an equilibrium interaction between different countries’ planting and therefore mediate the overall
effects of technology on productivity. For example, if a studied counterfactual scenario greatly
increases technological quality for one crop in excess of other crops, the price of that crop may go
down; this will mute the effect on revenue productivity.

Calibration. Our calibration is summarized in Table 5. First, following the first remark above,
we calibrate the supply elasticity as 𝜂 = 2.46 from Costinot et al. (2016), who study productivity
changes and re-allocation in global agricultural production using the Fréchet discrete choice model.35
Combining this estimate with our baseline estimate of 𝛽 = −7.14 (Table 3, column 1) yields an

33This demand for agricultural products is determined by the concavity of 𝑢. It is easy to verify that, if we were to
specify a functional form for 𝑢, we could solve for 𝑝 after solving for equilibrium normalized productivity Ξ̂ℓ in each
country, since the level of 𝑝 does not affect producers’ specialization decisions.

34The micro-foundation of our baseline model in an expanded environment with multiple input choices in Appendix
A.5 clarifies how holding fixed 𝜔𝑘,ℓ does accomodate changing utilization of such inputs across counterfactuals, but not
changes in their prices. In Section 4 we showed that the impact of CPP mismatch on production was similar after using
a set of strategies to control for innate suitability, indicating that differences in innate suitability do not seem to bias or
mediate the effect of inappropriateness on production.

35These authors estimate, in a nutshell, is the shock heterogeneity required to explain the relationship between agro-
nomically measured productivity (from the FAO-GAEZ model) and observed planting patterns at the plot level (about
50-square-kilometer-size) in the modern world.
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Table 5: Model Parameters and Data for Estimation

Name Estimate Specification/Source Definition

𝛽 -7.14 Equation 15 Effect of CPPMismatchFrontier on output
𝜂 2.46 Costinot et al. (2016) Elasticity of supply to productivity
𝜀 2.82 Costinot et al. (2016) Elasticity of substitution between crops

𝜋𝑘,ℓ — FAOSTAT Database Planted area for each crop in each country
Ξℓ , 𝜁ℓ — Fuglie (2012, 2015) Revenue productivity by country

estimate of (1 − 𝛼)𝜏̂ = 2.90, in units of percent productivity loss per basis point of CPP mismatch.
Second, conditional on 𝜂, the crop-by-location productivity 𝜔𝑘,ℓ is identified up to scale from

data on relative area by crop, 𝜋𝑘,ℓ .36 Mirroring our analysis in Section 4, we measure these areas
using the crop-by-country planting data from the FAOSTAT database, averaged from 2000-2018. We
use estimates of total agricultural revenue from Fuglie (2012, 2015), again averaged from 2000 to the
present, to calibrate all countries’ initial revenue productivity and extent of agricultural land. This
pins down the scale of local innate productivity.

Finally, to calibrate the crop-level demand curves, we use the elasticity of supply between crops
estimated by Costinot et al. (2016), 𝜀 = 2.82.

5.2 The Productivity Effects of Inappropriateness

We first define and study a counterfactual in which “inappropriateness is removed.” Specifically,
we consider a scenario in which non-local CPP research is subsidized to reach level 𝐵̄ > 𝐵̄ exp(−𝜏̂) in
all frontier countries. One possible story underlying this scenario is that an external donor provides
large enough agricultural research subsidies in frontier countries to massively redirect frontier
research and overcome the lack of knowledge about non-frontier-country CPP threats. One effect, in
the language of the Introduction’s motivating example, is that frontier research into the Maize Stalk
Borer catches up to frontier research on the “Billion Dollar Bug,” the Corn Rootworm. We interpret
this scenario as a benchmark for measuring the total effect of the “inappropriate technology bias”
on global productivity, and not as a clearly optimal intervention under a specific welfare metric.

Using the model, we estimate the general-equilibrium effects of this change after taking into
account endogenous planting patterns and price changes. We summarize our findings in two
statistics: the productivity change on the world’s average acre and the percent change in the 75-25
percentile gap (inter-quartile range) of the global log revenue productivity distribution. We report
both findings in terms of the change from the counterfactual world without inappropriateness to
the observed world with inappropriateness. We calculate standard errors for these statistics using
the delta method, accounting for uncertainty in our estimate of the regression coefficient 𝛽.

We find that inappropriateness reduces global productivity by 57.7% (SE: 4.85%) and explains
15.1% (SE: 0.42%) of global disparities, as captured by the IQR. Figure 7 visualizes the distributional

36More precisely, 𝜋𝑘,ℓ is the area devoted to crop 𝑘 in country ℓ divided by the total area devoted to all crops under
study in country ℓ . Thus, by construction, the fractions add to one.
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Figure 7: Causal Effects of Inappropriateness, by Country
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Notes: The left graph is a histogram of productivity losses from inappropriateness across countries. The right graph is
a scatterplot of productivity losses against observed productivity. The line is a best-fit linear regression across countries
(slope = −0.024, robust SE = 0.004). In each plot, colors indicate continents.

implications of our findings. The left panel displays the distribution of productivity losses across
continents. The largest losses from inappropriateness are concentrated in Africa and Asia, while the
smallest are in Europe. The right panel plots observed log revenue productivity against the model’s
losses from inappropriateness. The negative correlation conveys that the countries with the highest
predicted loss from inappropriateness are the least productive today.37

These results, taken together, highlight the inequality created by the interaction of ecological
heterogeneity with concentrated innovation. Neglected agricultural ecosystems are disproportion-
ately located in unproductive parts of the world, which are kept unproductive due to an absence of
appropriate technology or incentives to develop it.

Sensitivity to Calibrated Parameters. Our empirical analysis is focused on accurately estimating
𝛽, the effect of CPP mismatch on output. Our calibration also relies on estimates of the elasticity of
supply to productivity (𝜂) and the price elasticity of demand (𝜀), both obtained from existing work. To
explore sensitivity of our findings, we identify maximum and minimum plausible estimates of each
parameter from the literature and re-produce the counterfactual estimates using these alternative
parameter values (Figure A10).38 Decreasing the extent of unobserved heterogeneity (decreasing 𝜂)

37Estimated as a linear regression, this relationship is statistically significant with a 𝑡 statistic of -6.22. Some, but not all,
of this effect is spanned by the cross-continent variation highlighted above. Replicating the same regression model with
continent fixed effects gives a coefficient of -0.019 (SE: 0.005), with a 𝑡-statistic of -3.81.

38For the maximum and minimum plausible values for 𝜀, we use 𝜀 = 2 and 𝜀 = 3.5. For the minimum plausible value
for 𝜂, we use 𝜂 = 2.06 from Sotelo (2020), to our knowledge the lowest estimate of the relevant parameter in existing
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amplifies the effects of inappropriateness by increasing our calibrated effect of CPP mismatch on
productivity. Nonetheless, even our conservative choice of 𝜂 = 2.86 results in an average loss of
52.4%. Changing the price elasticity does not affect our finding for average losses, although it does
change the exact distributional incidence. This suggests that indirect effects of inappropriateness
via relative crop prices and reallocation wash out on average across countries.

Inappropriateness Due to Other Ecological Differences. Our main results focus on CPP mis-
match as a key shifter of technology diffusion and inappropriateness. However, as highlighted
in Section 2.3, CPP mismatch is not the only determinant of inappropriateness; other features of
ecological and geographic mismatch with the frontier could contribute to the inappropriateness of
modern technology and aggregate effect of inappropriateness on global productivity. Appendix B.2
describes our measurement of non-CPP, agro-climatic characteristics and Figure A11 visualizes the
impact of removing inappropriateness in the form of this broader set of geographic and ecological
features, in addition to CPP mismatch. Incorporating these additional dimensions of potential in-
appropriateness, as we measure them, increases our estimate of the losses due to inappropriateness
to 68.2%, and increases the effect on disparities in productivity to 16.3%.

The Productivity Effects of Reallocating Research. In our baseline counterfactual scenario, total
research investment in the frontier may considerably increase—the imagined subsidies equalize
research focused on neglected threats with research focused on threats in the frontier. An alternative
set of scenarios, which embody the same idea of “research equality” without necessarily increasing
total research costs, are the following: either taxing or subsidizing all CPP research to reach level
𝐵̄ exp(−(1 − 𝜔)𝜏̂), for some 𝜔 ∈ [0, 1]. When 𝜔 = 1, this is the counterfactual studied above.
When 𝜔 = 0.58, frontier CPP research is taxed such that the CPP mismatch between all crop-by-
country-pairs equals the median in-sample mismatch, med[𝛿𝑘,ℓ ′,ℓ ] = 0.42. Figure A9 summarizes
our findings. For all 𝜔, equalizing inappropriateness reduces disparities by exactly 15.1%. This is a
consequence of constant returns to scale in the model. The average productivity effect is increasing
in 𝜔 and becomes positive when 𝜔 > 0.70, above the point at which CPP mismatch is brought to
the median value everywhere but well below the point at which all CPP research is brought to the
level of the frontier.

5.3 Three Ongoing Changes in Biotechnology and the Environment

Next, we turn to a series of counterfactual analyses that capture real-world policy decisions or
trends in global biotechnology.

5.3.1 Research Targeting in a “Second Green Revolution”

In the face of persistent global hunger and looming threats including climate change, there are
renewed calls among governments and philanthropists for a “Second Green Revolution.” Bill Gates,
speaking at the World Food Prize Symposium in 2009, averred that:

literature. For the maximum plausible value, we add the difference between the Sotelo (2020) estimate and our baseline
estimate of 𝜂.
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Table 6: Inappropriateness-Minimizing Centers for Modern Agricultural Innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Best	Site
%	Change	in	
Productivity	

Second	Best	
Site

%	Change	in	
Productivity	 Best	Site

%	Change	in	
Productivity	

Second	Best	
Site	

%	Change	in	
Productivity	

Wheat Russia 1.9 Australia 1.5 Russia 4.3 Australia 3.1
Maize China 3.9 USA 3.8 South	Africa 1.7 India 1.6

Sorghum India 0.8 Nigeria 0.7 India 1.6 Nigeria 1.5
Millet India 1 South	Africa 0.8 India 1.9 South	Africa 1.6
Beans India 1.3 China 1 India 1.8 China 1.2
Potatoes China 0.4 Russia 0.2 Russia 0.4 Turkey 0.1
Cassava Nigeria 0.5 Ghana 0.4 Nigeria 1 Tanzania 0.8
Rice India 6.7 China 6.6 India 7.9 China 5.4

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Best	Site
%	Change	in	
Productivity	

Second	Best	
Site

%	Change	in	
Productivity	 Best	Site

%	Change	in	
Productivity	

Second	Best	
Site	

%	Change	in	
Productivity	

Wheat China 4.87 India 2.75 India 11.17 Pakistan 6.76
Maize China 13.40 USA 10.24 India 9.08 Tanzania 7.61

Sorghum India 1.26 Nigeria 1.11 Nigeria 3.39 India 3.08
Millet Nigeria 1.37 India 1.04 Nigeria 3.43 Zimbabwe 2.02
Beans India 1.99 Brazil 1.73 India 3.93 China 1.82
Potatoes China	 1.48 India 0.73 India 1.20 China 0.65
Cassava Nigeria 0.64 Ghana 0.47 Nigeria 1.81 DRC 1.45
Rice China 10.74 India 9.59 India 16.65 Thailand 10.98

Notes: 	Column	1	reports	the	crops	included	in	our	analysis	of	the	Green	Revolution.	Columns	2-5	report	the	results	of	our	analysis	to	select	
the	two	countries	where	breeding	investment	would	have	the	largest	positive	effect	on	global	output	for	each	crop.	Columns	6-9	report	the	
results	of	our	analysis	to	select	the	two	countries	where	breeding	investment	would	have	the	largest	positive	effect	on	output	in	countries	
with	below	median	productivity	for	each	crop.	All	estimates	rely	on	the	full	model	with	non-linear	adjustments	and	price	responses.	

Sites	Chosen	to	Minimize	Global	Inappropriateness
Sites	Chosen	to	Minimize	Inappropriateness	in	Countries	with	

Below	Median	Productivity

Notes: 	Column	1	reports	the	crop	name.	Columns	2-5	report	the	results	of	our	analysis	to	select	the	two	countries	where	breeding	investment	
would	have	the	largest	positive	effect	on	global	output.	Columns	6-9	report	the	results	of	our	analysis	to	select	the	two	countries	where	
breeding	investment	would	have	the	largest	positive	effect	on	output	in	countries	with	below	median	productivity.

Crop

Crop

Sites	Chosen	to	Minimize	Global	Inappropriateness
Sites	Chosen	to	Minimize	Inappropriateness	in	Countries	with	

Below	Median	Productivity

[The Green Revolution] was one of the great achievements of the 20th century. But it
didn’t go far enough. [...] The charge is clear—we have to develop crops that can grow
in a drought; that can survive in a flood; that can resist pests and disease (Gates, 2009).

In the same speech, he especially emphasized the importance of targeting research toward neglected
food systems in Africa.

Our empirical analysis of the historical (“First”) Green Revolution suggested that productivity
benefits were mediated by the location of the coordinating research institutes (see Section 4.4). By
implication, the geographic focus of future coordinated breeding efforts in a “Second Green Revo-
lution” could critically shape its aggregate effects. When deciding where to locate breeding efforts,
a philanthropic or government organization would likely weigh two forces. The first is the cost of
conducting research in a location, which may vary due to differences in breeding infrastructure,
human capital, etc. While these differences in cost are incorporated in our theoretical model, ex-
ploring their quantitative impact is beyond the scope of this paper. The second force is the potential
spillover benefits of targeting research in a location. On this front, our analysis provides a potential
way to directly quantify these benefits which, while not being the full story, are a key ingredient in
the research targeting decision making process.

Therefore, we use our model to ask: if public sector or philanthropic organizations were to
design a “Second Green Revolution,” where should they locate the main research centers in order to
generate benefits that could potentially be shared as widely as possible? Concretely, for each of the
eight Green Revolution crops, we calculate the counterfactual (general-equilibrium) productivity
benefit of moving the “Frontier” to each country in the world. We then identify which new Frontier
choices would have the largest effect on global productivity and on productivity in initially below-
median-productivity countries, the main focus of philanthropic attention.

We report our results in Table 6. Our findings are consistent with the hypothesis that a lack

39



of breeding in Africa holds back global productivity growth (Pingali, 2012), especially in currently
unproductive locations. Nigeria, Ghana, Zimbabwe, Tanzania, and the Democratic Republic of
Congo all emerge as countries where breeding research could potentially have large effects on global
output. Our results also suggest potentially large opportunities for large emerging economies, like
India and China. In the next section, we directly explore the rise of large, emerging markets and
how their growing role in global R&D could shape global productivity.

5.3.2 The Rise of New Technology Leaders

One of the most dramatic transformations to global innovation in the coming decades could be the
expected rise of large emerging economies as hubs of R&D. In particular, the “BRIC” countries—
Brazil, Russia, India, and China—are expected to become major players in global biotechnology
research, and their growth in research output has already begun. Figure A12 displays the number
of patented agricultural technologies in the US and in the BRIC countries over time, relative to
the period 1990-1995. While the level of innovation in the US is higher, agricultural innovation is
growing substantially faster in the BRIC countries.

What might the impact in this shift in the center of global research be on global productiv-
ity? The prominence of India and China in Table 6 hinted that such a shift in international focus
may boost global productivity; moreover, several anecdotes suggest that BRIC-nation policymakers
have recognized the associated business opportunities from investment in agricultural R&D and
marketing it around the world. As one example, the Brazilian Agricultural Research Corporation
(EMBRAPA), a state-owned agricultural research organization, has a long-standing cooperation
with several African countries based on the premise of their ecological similarity.39

To operationalize a “Rise of BRIC” scenario in our model, we first calculate the CPP mismatch
of every country-crop pair with the BRIC research frontier as:

CPPMismatchFrontierBRIC
𝑘,ℓ =

∑
ℓ ′∈BRIC

𝜋ℓ ′,𝑘∑
ℓ ′′∈BRIC 𝜋ℓ ′′,𝑘

× CPPMismatch𝑘,ℓ ,ℓ ′ (24)

In words, we estimate the inappropriateness of BRIC ecology for each crop, weighting by area 𝜋𝑘,ℓ .40
We then consider the effects of moving the frontier such that 𝛿𝑘,ℓ ,𝐹𝑘 = CPPMismatchFrontierBRIC

𝑘,ℓ .
Panel (a) of Figure 8 summarizes our findings in a continent-coded histogram of productivity

changes. The average effect is a 29.2% productivity boost, due to the fact that the BRIC countries
span more ecological diversity than the existing technological leaders. Africa and parts of Asia
stand particularly to gain, on average, from this realignment. However, there are also clear losers,
including several countries in Europe and Asia, which benefit from their ecological similarity to the
current technological leaders. From the perspective of the developing world, a shift of innovation
investment to the BRIC nations may be a partial, if incomplete, substitute for encouraging local
technological development or for targeted investment by Western philanthropies.

39See here: https://www.embrapa.br/en/cooperacao-tecnica/m-boss.
40For crops that are not cultivated in any BRIC country, we use the estimated leader countries from the main analysis.
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Figure 8: Counterfactuals: Rise of BRIC and Climate-Induced CPP Migration
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Notes: Each graph is a cross-country histogram of productivity changes, across countries. The left scenario corresponds to
a shift of biotechnological leadership to Brazil, Russia, India, and China (Section 5.3.2) and the right scenario corresponds
to a poleward migration of CPPs induced by climate change (Section 5.3.3).

5.3.3 Climate Change and CPP Mass Migration

So far, we have treated ecology as immutable and allowed the location and focus of innovators
to shift over time. Climate change, however, may begin to rapidly alter ecological systems over
the coming decades (Parmesan and Yohe, 2003). In the context of CPPs, increases in temperature
are predicted to generate systematic movement toward the poles (Bebber et al., 2013). While such
movement has been limited to date, temperature change is projected to dramatically accelerate in
the near future.41 This could change the relevant “geography of innovation” by shifting the relevant
set of CPP threats and hence the focus of technological progress in each country, even if the identity
of innovating countries remains fixed.

While the rising temperatures are likely to be detrimental to agricultural production in much of
the world (e.g., Lobell et al., 2008; Hertel et al., 2010), our framework highlights how the response
of technology could either mitigate or exacerbate the distributional impacts of climate change. If
CPP range shifts increase the ecological similarity between a given country and the Frontier, then it
might be able to more effectively make use of modern technology developed in the new equilibrium.
However, CPP movement could also reduce the CPP overlap across countries if, for example, the US
inherits several unique CPPs from Central America (or Europe from North Africa), reducing their
ecological similarity to other large parts of the world. The pattern of both ecological change and

41CPPs have moved poleward over the past 50 years by about 135 kilometers (Bebber et al., 2013).
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technological leadership determines how innovation might shape the global productivity impacts
of environmental change.

To investigate the impact of climate change on the global appropriateness of frontier technology,
we extrapolate the estimates in Bebber et al. (2013) of poleward CPP movement to date into the future,
using projected changes in global temperature due to climate change between the present and 2100.42
We then use these data to construct CPPDistFrontierCC

𝑘,ℓ
based on ecological dissimilarity to the

modern set of frontier innovators, and re-calculate productivity as in the previous counterfactuals.
Panel (b) of Figure 8 shows that we find an overall positive effect, which is relatively evenly spread

across space. Our analysis therefore highlights that increasing ecological similarity may provide
a partially offsetting force to the (here, unmodeled) direct negative effects of ecological change,
insofar as it coordinates the global research system around a more common set of productivity
threats. This dynamic in agricultural innovation, and in climate-induced innovation more broadly,
is an important topic for further research.

6. Conclusion
We investigate a long-standing hypothesis that frontier technologies’ endogenous appropriate-

ness for the high-income countries that develop them shapes global patterns of technology diffusion
and productivity. Our empirical focus is global agriculture. We develop a new measure of the
potential inappropriateness of crop-specific technology based on the mismatch in crop pest and
pathogen (CPP) environments across crops and locations. We first show that technology develop-
ment is concentrated in a small set of countries and focused on local pest and pathogen threats.
We next show that environmental mismatch is a substantial barrier to the international diffusion
of crop-specific technology. We finally show that countries shift production away from crops that
have higher environmental mismatch with research-intensive countries. Technological progress in
the frontier, far from diffusing broadly and evenly around the world, underlies global inequality.

Combining our estimates with a model of global agricultural production, we estimate that inap-
propriateness as captured by CPP mismatch reduces global agricultural productivity by 42%, and
increases global disparities in agricultural productivity by 15%. Substantial ecological differences
around the world, and innovators’ neglect of ecosystem threats in low-income areas, sustains large
disparities in productivity.

However, by the same token, changes in the geography of innovation can substantially alter
patterns of technology adoption and productivity around the world. We show that the impact
of the Green Revolution was shaped by ecological mismatch with the key breeding centers and
that the rise of modern US biotechnology has disproportionately benefitted regions with lower
ecological mismatch with the US. We also show how future changes in the centers of innovation and

42The consensus worst case scenario implies a 4.3◦C increase in temperature by 2100, and hence a 700km poleward
movement of CPPs on average (or approximately the distance from Tunis to Rome). We simulate poleward range spread
of each pest by identifying all countries that intersect a 700km translation of all countries that presently contain the CPP,
and appending these matches to the observed presence data to construct a dataset of predicted CPP presence in 2100.
Finally, we include manual corrections for countries with non-contiguous territory.
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in ecology, including the growth of R&D investment in large emerging markets, could have similarly
large but unequal global productivity effects, as production evolves endogenously in response to
the changing global appropriateness of frontier technology. Exploration of these trends, which will
define agriculture and technology in the coming century, as well as policy design focused on seeding
appropriate technology development around the world, are important areas for future research.

References
Access to Seeds Foundation (2019). Access to Seeds Index: 2019 Synthesis Report. Accessed from:
https://www.accesstoseeds.org/media/publications/.

Acemoglu, D. and Zilibotti, F. (2001). Productivity differences. The Quarterly Journal of Economics,
116(2):563–606.

Adamopoulos, T. and Restuccia, D. (2022). Geography and agricultural productivity: Cross-country
evidence from micro plot-level data. The Review of Economic Studies, 89:1629–1653.

Atkin, D., Chaudhry, A., Chaudry, S., Khandelwal, A. K., and Verhoogen, E. (2017). Organizational
barriers to technology adoption: Evidence from soccer-ball producers in Pakistan. The Quarterly
Journal of Economics, 132(3):1101–1164.

Atkinson, A. B. and Stiglitz, J. E. (1969). A new view of technological change. The Economic Journal,
79(315):573–578.

Bandiera, O. and Rasul, I. (2006). Social networks and technology adoption in northern Mozambique.
The Economic Journal, 116(514):869–902.

Barro, R. and Sala-i Martin, X. (1997). Technological diffusion, convergence, and growth. Journal of
Economic Growth, 2(1):1–26.

Basu, S. and Weil, D. N. (1998). Appropriate technology and growth. The Quarterly Journal of
Economics, 113(4):1025–1054.

Bebber, D. P., Holmes, T., Smith, D., and Gurr, S. J. (2014). Economic and physical determinants of
the global distributions of crop pests and pathogens. New Phytologist, 202(3):901–910.

Bebber, D. P., Ramotowski, M. A., and Gurr, S. J. (2013). Crop pests and pathogens move polewards
in a warming world. Nature Climate Change, 3(11):985–988.

Beintema, N., Stads, G.-J., Fuglie, K., and Heisey, P. (2012). ASTI global assessment of agricultural
R&D spending: developing countries accelerate investment. Technical report, International Food
Policy Research Institute. doi: 10.2499/9780896298026.

Belloni, A., Chernozhukov, V., and Hansen, C. (2014). High-dimensional methods and inference on
structural and treatment effects. Journal of Economic Perspectives, 28(2):29–50.

Bessin, R. (2019). Bt-corn: What it is and how it works. Entfact 130, University of Kentucky College
of Agriculture, Food and Environment. https://entomology.ca.uky.edu/ef130.

Bloom, D. E. and Sachs, J. D. (1998). Geography, demography, and economic growth in africa.

43

https://www.accesstoseeds.org/media/publications/
https://entomology.ca.uky.edu/ef130


Brookings Papers on Economic Activity, 1998(2):207–295.

Boroush, M. (2020). Research and development: U.S. trends and international comparisons. Science
and Engineering Indicators Report NSB-2020-3, National Science Foundation (NSF).

Bresnahan, T. F. (1989). Empirical studies of industries with market power. Handbook of Industrial
Organization, 2:1011–1057.

Campagne, P., Capdevielle-Dulac, C., Pasquet, R., Cornell, S., Kruger, M., Silvain, J.-F., LeRü, B.,
and Van den Berg, J. (2017). Genetic hitchhiking and resistance evolution to transgenic Bt toxins:
insights from the African stalk borer Busseola fusca (Noctuidae). Heredity, 118(4):330–339.

Caselli, F. (2005). Accounting for cross-country income differences. Handbook of Economic Growth,
1:679–741.

Caselli, F. and Coleman II, W. J. (2006). The world technology frontier. American Economic Review,
96(3):499–522.

Caselli, F. and Wilson, D. J. (2004). Importing technology. Journal of Monetary Economics, 51(1):1–32.

Cirera, X. and Maloney, W. F. (2017). The innovation paradox: Developing-country capabilities and the
unrealized promise of technological catch-up. World Bank.

Collinge, D. B., editor (2016). Plant Pathogen Resistance Biotechnology. John Wiley & Sons, Ltd,
Hoboken, NJ, USA.

Comin, D. and Hobĳn, B. (2004). Cross-country technology adoption: making the theories face the
facts. Journal of Monetary Economics, 51(1):39–83.

Comin, D. and Hobĳn, B. (2010). An exploration of technology diffusion. American Economic Review,
100(5):2031–59.

Comin, D. and Mestieri, M. (2014). Technology diffusion: Measurement, causes, and consequences.
In Handbook of Economic Growth, volume 2, pages 565–622. Elsevier.

Comin, D. and Mestieri, M. (2018). If technology has arrived everywhere, why has income diverged?
American Economic Journal: Macroeconomics, 10(3):137–78.

Conley, T. G. and Udry, C. R. (2010). Learning about a new technology: Pineapple in Ghana. American
Economic Review, 100(1):35–69.

Costinot, A., Donaldson, D., and Smith, C. (2016). Evolving comparative advantage and the impact
of climate change in agricultural markets: Evidence from 1.7 million fields around the world.
Journal of Political Economy, 124(1):205–248.

Diamond, J. (1997). Guns, Germs, and Steel: the Fates of Human Societies. WW Norton & Company,
New York.

Diwan, I. and Rodrik, D. (1991). Patents, appropriate technology, and North-South trade. Journal of
International Economics, 30(1-2):27–47.

Dong, O. X. and Ronald, P. C. (2019). Genetic engineering for disease resistance in plants: recent
progress and future perspectives. Plant Physiology, pages 26–38.

44



Duflo, E., Kremer, M., and Robinson, J. (2011). Nudging farmers to use fertilizer: Theory and
experimental evidence from Kenya. American Economic Review, 101(6):2350–90.

Duvick, D., Smith, J., Cooper, M., and Janick, J. (2004). Long-term selection in a commercial hybrid
maize breeding program. Plant Breeding Reviews, 24:109–151.

Eaton, J. and Kortum, S. (1996). Trade in ideas: Patenting and productivity in the OECD. Journal of
International Economics, 40(3-4):251–278.

Eaton, J. and Kortum, S. (2002). Technology, geography, and trade. Econometrica, 70(5):1741–1779.

Evenson, R. E. and Gollin, D. (2003a). Assessing the impact of the Green Revolution, 1960 to 2000.
Science, 300(5620):758–762.

Evenson, R. E. and Gollin, D., editors (2003b). Crop variety improvement and its effect on productivity.
CABI Publishing, Cambridge, MA, USA.

Fernandez-Cornejo, J. and Caswell, M. (2006). The First Decade of Genetically Engineered Crops in
the United States. Technical report, USDA Economic Research Service. https://www.ers.usda.
gov/webdocs/publications/43731/13396_eib11_1_.pdf?v=0.

Fuglie, K. (2015). Accounting for growth in global agriculture. Bio-based and Applied Economics,
4(3):201–234.

Fuglie, K. (2016). The growing role of the private sector in agricultural research and development
world-wide. Global Food Security, 10:29–38.

Fuglie, K. O. (2012). Productivity growth and technology capital in the global agricultural economy.
In Fuglie, K. O., Wang, S. L., and Ball, E., editors, Productivity Growth in Agriculture: An International
Perspective, pages 335–368. CABI, Wallingford, UK.

Gallup, J. L., Sachs, J. D., and Mellinger, A. D. (1999). Geography and economic development.
International Regional Science Review, 22(2):179–232.

Gates, B. (2009). Prepared Remarks for 2009 World Food Prize Symposium.
Retrieved from: https://www.gatesfoundation.org/ideas/speeches/2009/10/

bill-gates-2009-world-food-prize-symposium.

Giorcelli, M. (2019). The long-term effects of management and technology transfers. American
Economic Review, 109(1):121–52.

Gollin, D., Lagakos, D., and Waugh, M. E. (2014). The agricultural productivity gap. The Quarterly
Journal of Economics, 129(2):939–993.

Gorodnichenko, Y. and Schnitzer, M. (2013). Financial constraints and innovation: Why poor
countries don’t catch up. Journal of the European Economic Association, 11(5):1115–1152.

Gray, M. E., Sappington, T. W., Miller, N. J., Moeser, J., and Bohn, M. O. (2009). Adaptation and
invasiveness of Western Corn Rootworm: intensifying research on a worsening pest. Annual
Review of Entomology, 54:303–321.

Griliches, Z. (1957). Hybrid corn: An exploration in the economics of technological change. Econo-

45

https://www.ers.usda.gov/webdocs/publications/43731/13396_eib11_1_.pdf?v=0
https://www.ers.usda.gov/webdocs/publications/43731/13396_eib11_1_.pdf?v=0
https://www.gatesfoundation.org/ideas/speeches/2009/10/bill-gates-2009-world-food-prize-symposium
https://www.gatesfoundation.org/ideas/speeches/2009/10/bill-gates-2009-world-food-prize-symposium


metrica, 25(4):501–522.

Herrera-Estrella, L. and Alvarez-Morales, A. (2001). Genetically modified crops: hope for developing
countries? EMBO Reports, 2(4):256–258.

Hertel, T. W., Burke, M. B., and Lobell, D. B. (2010). The poverty implications of climate-induced
crop yield changes by 2030. Global Environmental Change, 20(4):577–585.

Hotez, P. J., Molyneux, D. H., Fenwick, A., Kumaresan, J., Sachs, S. E., Sachs, J. D., and Savioli, L.
(2007). Control of neglected tropical diseases. New England Journal of Medicine, 357(10):1018–1027.

Jaccard, P. (1900). Contribution an probléme de l’immingration post-glaciaire de la flore alpine.
Bulletin de la Société Vaudoise des Sciences Naturelles, 36:87–130.

Jost, L., Chao, A., and Chazdon, R. L. (2011). Compositional similarity and 𝛽 (beta) diversity.
In Magurran, A. E. and McGill, B. J., editors, Biological Diversity: Frontiers in Measurement and
Assessment, pages 66–84. Oxford University Press, New York.

Kamarck, A. M. (1976). The tropics and economic development. The John Hopkins University Press,
Baltimore, MD, USA.

Kantor, S. and Whalley, A. (2019). Research proximity and productivity: long-term evidence from
agriculture. Journal of Political Economy, 127(2):819–854.

Keller, W. (2004). International technology diffusion. Journal of Economic Literature, 42(3):752–782.

Kosmowski, F., Aragaw, A., Kilian, A., Ambel, A., Ilukor, J., Yigezu, B., and Stevenson, J. (2019).
Varietal identification in household surveys: results from three household-based methods against
the benchmark of dna fingerprinting in southern ethiopia. Experimental Agriculture, 55(3):371–385.

Kremer, M. and Glennerster, R. (2004). Strong Medicine: Creating Incentives for Pharmaceutical Research
on Neglected Diseases. Princeton University Press.

Lansing, J. S. (2009). Priests and programmers: technologies of power in the engineered landscape of Bali.
Princeton University Press.

Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., and Naylor, R. L. (2008).
Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863):607–610.

Marenya, P. P. and Barrett, C. B. (2009a). Soil quality and fertilizer use rates among smallholder
farmers in western Kenya. Agricultural Economics, 40(5):561–572.

Marenya, P. P. and Barrett, C. B. (2009b). State-conditional fertilizer yield response on western
Kenyan farms. American Journal of Agricultural Economics, 91(4):991–1006.

McMullen, N. (1987). Seeds and world agricultural progress. Report 227, National Planning Asso-
ciation.

Monfreda, C., Ramankutty, N., and Foley, J. A. (2008). Farming the planet: 2. Geographic distribution
of crop areas, yields, physiological types, and net primary production in the year 2000. Global
Biogeochemical Cycles, 22(1).

Montesquieu, C. d. S. (1748). The Spirit of the Laws. Paris.

46



Moseman, A. H. (1970). Building agricultural research systems in the developing countries. Agricultural
Development Council, New York.

Munkvold, G. P. and Hellmich, R. L. (1999). Genetically modified insect resistant corn: Implications
for disease management. APSnet Plant Pathology On-line Feature, 15.

Nordhaus, H. (2017). Cornboy vs. the Billion-Dollar Bug. Scientific American, 316(3):64–71.

Oerke, E.-C. and Dehne, H.-W. (2004). Safeguarding production—losses in major crops and the role
of crop protection. Crop Protection, 23(4):275–285.

Olmstead, A. L. and Rhode, P. W. (2008). Creating Abundance: Biological Innovation and American
Agricultural Development. Cambridge University Press, New York.

Ongamo, G., Khadioli, N., Le Ru, B., Mujica, N., and Carhuapoma, P. (2016). Maize stalk borer,
Busseola fusca (Fuller 1901). In Pest Distribution and Risk Atlas for Africa. Retrieved from: https:
//cipotato.org/riskatlasforafrica/busseola-fusca/.

Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across
natural systems. Nature, 421(6918):37–42.

Pasiecznik, N., Smith, I., Watson, G., Brunt, A., Ritchie, B., and Charles, L. (2005). CABI/EPPO
distribution maps of plant pests and plant diseases and their important role in plant quarantine.
EPPO Bulletin, 35(1):1–7.

Pingali, P. L. (2012). Green revolution: impacts, limits, and the path ahead. Proceedings of the National
Academy of Sciences, 109(31):12302–12308.

Reynolds, M. P. and Borlaug, N. (2006). Impacts of breeding on international collaborative wheat
improvement. The Journal of Agricultural Science, 144(1):3–17.

Rossi, F. (2022). The relative efficiency of skilled labor across countries: Measurement and interpre-
tation. American Economic Review, 112(1):235–66.

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. (2019). The
global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3):430–
439.

Shaw, M. W. and Osborne, T. M. (2011). Geographic distribution of plant pathogens in response to
climate change. Plant Pathology, 60(1):31–43.

Sotelo, S. (2020). Domestic trade frictions and agriculture. Journal of Political Economy, 128(7):2690–
2738.

Stewart, F. (1978). Technology and Underdevelopment. MacMillan, London, UK.

Stone, M. (2020). A plague of locusts has descended on East Africa. Climate change may be to blame.
National Geographic: Science. Retrieved from: https://www.nationalgeographic.com/science/
article/locust-plague-climate-science-east-africa.

Suri, T. (2011). Selection and comparative advantage in technology adoption. Econometrica, 79(1):159–
209.

47

https://cipotato.org/riskatlasforafrica/busseola-fusca/
https://cipotato.org/riskatlasforafrica/busseola-fusca/
https://www.nationalgeographic.com/science/article/locust-plague-climate-science-east-africa
https://www.nationalgeographic.com/science/article/locust-plague-climate-science-east-africa


Union for the Protection of New Varieties of Plants (1991). International Convention for the Protection
of New Varieties of Plants. First adopted on December 2, 1961. UPOV Publication no. 221(E).
https://upovlex.upov.int/en/convention.

Union for the Protection of New Varieties of Plants (2015). Explanatory notes on variety denomi-
nations under the UPOV convention. Adopted by the upov council on october 29, 2015. UPOV
Document UPOV/INF/12/5. https://www.upov.int/edocs/infdocs/en/upov_inf_12.pdf.

Van Esse, H. P., Reuber, T. L., and van der Does, D. (2020). Genetic modification to improve disease
resistance in crops. New Phytologist, 225(1):70–86.

Vanderplank, J. E. (2012). Disease resistance in plants. Academic Press, Orlando, FL, USA.

Verhoogen, E. (2021). Firm-level upgrading in developing countries. Working Paper 29461, National
Bureau of Economic Research.

Vidal, J. (2014). Gates foundation spends bulk of agriculture grants in rich countries. The Guardian.
November 3. Retrieved from: https://www.theguardian.com/global-development/2014/nov/
04/bill-melinda-gates-foundation-grants-usa-uk-africa.

Wineman, A., Njagi, T., Anderson, C. L., Reynolds, T. W., Alia, D. Y., Wainaina, P., Njue, E., Biscaye,
P., and Ayieko, M. W. (2020). A case of mistaken identity? Measuring rates of improved seed
adoption in Tanzania using DNA fingerprinting. Journal of Agricultural Economics, 71(3):719–741.

48

https://upovlex.upov.int/en/convention
https://www.upov.int/edocs/infdocs/en/upov_inf_12.pdf
https://www.theguardian.com/global-development/2014/nov/04/bill-melinda-gates-foundation-grants-usa-uk-africa
https://www.theguardian.com/global-development/2014/nov/04/bill-melinda-gates-foundation-grants-usa-uk-africa


Online Appendix
for “Inappropriate Technology: Evidence from Global Agriculture”

by Moscona and Sastry

Contents

A Omitted Proofs and Derivations 2
A.1 Supplementary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
A.2 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A.3 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A.4 Optimal Pricing of the Technological Good . . . . . . . . . . . . . . . . . . . . . . . . . 9
A.5 Mapping to Multiple-Input Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A.6 Social Versus Private Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.7 An Alternative Source of Inappropriateness: Copycat Innovators . . . . . . . . . . . . 14

B Additional Empirical Analysis 15
B.1 Invasive Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B.2 Inappropriateness Driven By Agro-Climatic Conditions . . . . . . . . . . . . . . . . . . 16
B.3 The Global Direction of Agricultural Innovation . . . . . . . . . . . . . . . . . . . . . . 18
B.4 Technology Transfer to Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.5 Technology Adoption in Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C CPP Threats and Plant Breeding: Extended Discussion 22

D Supplementary Figures and Tables 25

1



A. Omitted Proofs and Derivations
We first derive lemmas that assist in proving the main result (A.1). We then prove Proposition

1 (A.2) and 2 (A.3). We then micro-found our assumed pricing via monopoly pricing with varying
conduct (A.4), describe a mapping between the baseline model and an extension with multiple
chosen inputs (A.5), describe the relationship between private and social incentives in the model
(A.6), and describe an alternative model with copycat inventors (A.7).

A.1 Supplementary Lemmas

Lemma 1. The profit of farmer 𝑖, if they choose crop-technology (𝑘, ℓ ′) and have idiosyncratic productivity
draw 𝜀𝑘,ℓ ′,𝑖 , is

Π𝑘,ℓ ′,𝑖 = 𝛾

(
1 − 𝛾

𝑞𝑘,ℓ ′,ℓ

) 1−𝛾
𝛾

𝑝
1
𝛾

𝑘
𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖 (25)

Moreover, farmers’ crop and technology choice solves

max
𝑘,ℓ ′

{
𝑝

1
𝛾

𝑘
𝑞
− 1−𝛾

𝛾

𝑘,ℓ ′,ℓ𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖

}
(26)

Proof. Farmers solve the following profit maximzation problem for their input choice:

Π𝑘,ℓ ′,𝑖 = max
𝑋𝑘,ℓ′ ,ℓ

{
𝑝𝑘(𝑋𝑘,ℓ ′,𝑖)1−𝛾(𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖)𝛾 − 𝑞𝑘,ℓ ′,ℓ𝑋𝑘,ℓ ′,ℓ

}
(27)

This is a strictly concave problem. The first-order condition is

0 = (1 − 𝛾)𝑝𝑘(𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖)𝛾(𝑋𝑘,ℓ ′,𝑖)−𝛾 − 𝑞𝑘,ℓ ′,ℓ (28)

Rearranging, 𝑋𝑘,ℓ ′𝑖 = (1 − 𝛾)
1
𝛾 𝑞

− 1
𝛾

𝑘,ℓ ′,ℓ 𝑝
1
𝛾

𝑘
𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖 . Substituting this into Equation 27,

Π𝑘,ℓ ′,𝑖 = 𝛾𝑝
1
𝛾

𝑘

(
1 − 𝛾

𝑞𝑘,ℓ ′,ℓ

) 1−𝛾
𝛾

𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖 (29)

To derive Equation 26, we observe that the farmer 𝑖 solves max𝑘,ℓ ′ {Π𝑘,ℓ ′,𝑖}, and observe that the
constant 𝛾(1 − 𝛾)(1−𝛾)/𝛾 is irrelevant to this program.

□
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Lemma 2. The measure of farmers planting crop 𝑘 with technology ℓ ′ in country ℓ is given by

𝜋𝑘,ℓ ′,ℓ =
𝑝

𝜂
𝛾

𝑘
𝑞
−𝜂 1−𝛾

𝛾

𝑘,ℓ ′,ℓ 𝜃
𝜂
𝑘,ℓ ′,ℓ𝜔

𝜂
𝑘,ℓ∑

𝑘′,ℓ ′′ 𝑝
𝜂
𝛾

𝑘′𝑞
−𝜂 1−𝛾

𝛾

𝑘′,ℓ ′′,ℓ𝜃
𝜂
𝑘′,ℓ ′′,ℓ𝜔

𝜂
𝑘′,ℓ

(30)

Moreover, the expected profit of farmers conditional on any (𝑘, ℓ ′) choice is

Ξℓ = 𝛾(1 − 𝛾)
1−𝛾
𝛾

(
𝐾∑
𝑘=1

𝐿∑
ℓ ′=1

𝑝
𝜂
𝛾

𝑘
𝑞
−𝜂 1−𝛾

𝛾

𝑘,ℓ ′,ℓ 𝜃
𝜂
𝑘,ℓ ′,ℓ𝜔

𝜂
𝑘,ℓ

) 1
𝜂

(31)

Proof. Let 𝑢∗
𝑖
∈ {1, . . . , 𝐾} × {1, . . . , 𝐿} denote the crop-technology choice of farmer 𝑖, let

𝜈𝑘,ℓ ′,ℓ = 𝛾(1 − 𝛾)
1−𝛾
𝛾 𝑝

1
𝛾

𝑘
𝑞
− 1−𝛾

𝛾

𝑘,ℓ ′,ℓ𝜔𝑘,ℓ𝜃𝑘,ℓ ′,ℓ (32)

be the shifters of revenue for each (𝑘, ℓ ′) pair in ℓ , and let 𝜋𝑘,ℓ ′,ℓ = P[𝑢∗𝑖 = (ℓ ′, 𝑘)] if 𝑖 ∈ [ℓ − 1, ℓ ). Let
𝐹(𝑧) denote the cumulative distribution function of a Fréchet random variable with scale one and
shape parameter 𝜂 > 1, or 𝐹(𝑧) = exp (−𝑥−𝜂).

The random shock 𝜀𝑘,ℓ ′,𝑖 is Fréchet random variable with mean one and shape 𝜂 > 1, so its scale
parameter is 𝑠 = (Γ(1 − 1/𝜂))−1; thus the normalized shock 𝜀̂𝑘,ℓ ′,𝑖 =

1
𝑠 𝜀𝑘,ℓ ′,𝑖 is distributed by 𝐹(𝑧).

If a farmer draws 𝜀̂𝑘,ℓ ′,𝑖 = 𝑧, then that farmer chooses pair (𝑘, ℓ ′) if this results in the maximum
productivity among all options, or 𝜈𝑘,ℓ ′,ℓ 𝑧 > 𝜈𝑘′,ℓ ′′,ℓ 𝜀̂𝑘′,ℓ ′′,𝑖 for all other pairs (𝑘′, ℓ ′′). These events are
independent across all (𝑘′, ℓ ′′). Thus the probability of choosing (𝑘, ℓ ′) is given by the probability
of the event described above, conditional on each realization 𝑧, integrated over the probability
distribution of 𝑧. Because of the assumed law of large numbers, this also gives 𝜋𝑘,ℓ ′,ℓ . We therefore
write

𝜋𝑘,ℓ ′,ℓ =

∫ ∞

0

∏
𝑘′,ℓ ′′≠𝑘,ℓ ′

𝐹

(
𝜈𝑘,ℓ ′,ℓ
𝜈𝑘′,ℓ ′′,ℓ

𝑧

)
d𝐹(𝑧)

=

∫ ∞

0

( ∏
𝑘′,ℓ ′′≠𝑘,ℓ ′

exp
(
−

(
𝜈𝑘,ℓ ′,ℓ
𝜈𝑘′,ℓ ′′,ℓ

𝑧

)−𝜂))
𝜂𝑧−1−𝜂 exp(−𝑧𝜂)d𝑧

=

∫ ∞

0
𝜂 exp

(
−𝑧−𝜂

Ξ
𝜂
ℓ

𝜈
−𝜂
𝑘,ℓ ′,ℓ

)
𝑧−1−𝜂 d𝑧

(33)

where we substituted the expression for 𝐹(𝑧) in the second line and simplified and defined the
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productivity index

Ξℓ =

(
𝐾∑
𝑘=1

𝐿∑
ℓ ′=1

𝜈
𝜂
𝑘,ℓ ′,ℓ

) 1
𝜂

(34)

in the third line. After a change in variables in the integrand to 𝑧̃ = 𝑧
𝜈𝑘,ℓ′ ,ℓ
Ξℓ

, the original integral can
be re-written and simplified as

𝜋𝑘,ℓ ′,ℓ =
𝜈
𝜂
𝑘,ℓ ′,ℓ∑

𝑘′,ℓ ′′ 𝜈
𝜂
𝑘′,ℓ ′′,ℓ

∫ ∞

0
𝜂 exp (−𝑧̃−𝜂) 𝑧̃−1−𝜂 d𝑧

=
𝜈
𝜂
𝑘,ℓ ′,ℓ∑

𝑘′,ℓ ′′ 𝜈
𝜂
𝑘′,ℓ ′′,ℓ

∫ ∞

0
d𝐹(𝑧̃) =

𝜈
𝜂
𝑘,ℓ ′,ℓ∑

𝑘′,ℓ ′′ 𝜈
𝜂
𝑘′,ℓ ′′,ℓ

(35)

Re-writing the last line with the definition of 𝜈𝑘,ℓ ′,ℓ completes the derivation of 𝜋𝑘,ℓ ′,ℓ .
We next derive profitability of (𝑘, ℓ ′) production conditional on choice. Let

𝑉∗
𝑖 = max

𝑘′,ℓ ′′
{𝜈𝑘′,ℓ ′′,ℓ 𝜀𝑘′,ℓ ′′,𝑖} (36)

denote the profitability of farmer 𝑖 evaluated at the optimal choice. The probability that 𝑉∗
𝑖

is less
than some value 𝑣, conditional on the optimal choice being (𝑘′, ℓ ′′), can be obtained by integrating
the right-hand-side of Equation 33 up to the realization 𝑣

𝑠𝜈𝑘′ ,ℓ′′ ,ℓ
, and normalizing by the probability

of choosing (𝑘′, ℓ ′′):

P[𝑉∗
𝑖 ≤ 𝑣 | 𝑢∗𝑖 = (𝑘′, ℓ ′′)] = 1

𝜋𝑘,ℓ ′,ℓ

∫ 𝑣
𝑠𝜈𝑘′ ,ℓ′′ ,ℓ

0

∏
𝑘′,ℓ ′′≠𝑘,ℓ ′

𝐹

(
𝜈𝑘,ℓ ′,ℓ
𝜈𝑘′,ℓ ′′,ℓ

𝑧

)
d𝐹(𝑧) (37)

After the change in variables in the integrand to 𝑧̃ = 𝑧
𝜈𝑘,ℓ′ ,ℓ
Ξℓ

,

P[𝑉∗
𝑖 ≤ 𝑣 | 𝑢∗𝑖 = (𝑘′, ℓ ′′)] =

∫ 𝑣
𝑠Ξℓ

0
d𝐹 (𝑧̃) (38)

which implies that 𝑉∗
𝑖
, conditional on 𝑢∗

𝑖
= (𝑘′, ℓ ′′), can be written as the product of Ξℓ and a unit-

mean, 𝜂-shape Fréchet random variable. Since this is invariant to 𝑘′, ℓ ′′, this is also the unconditional
distribution of 𝑉∗

𝑖
. Thus, E[𝑉∗

𝑖
|𝑢∗
𝑖
= (𝑘′, ℓ ′′)] = Ξℓ ,∀(𝑘′, ℓ ′′). This implies the desired claim, after

substituting in the expression for Ξℓ .
□
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Lemma 3. Each innovator’s research in (𝑘, ℓ ) specific technology solves the following problem

max
(𝐵𝑡 ,𝑘,ℓ′ ,ℓ )𝑡∈𝒯𝑘,ℓ

𝑒−𝜌ℓ′ ,ℓ𝑅
(
(𝐵𝑡 ,𝑘,ℓ ′,ℓ )𝑡∈𝒯𝑘,ℓ ; 𝑝̂𝑘 , Ξ̂ℓ , 𝜇ℓ ′

)
−

∑
𝑡∈𝒯𝑘,ℓ

𝑒−𝜏(𝐵̂𝑡 ,𝑘,ℓ′ ,ℓ′)
(𝐵0,ℓ ′𝐵𝑡 ,𝑘,ℓ ′,ℓ )1+𝜙

𝑇(1 + 𝜙)

 (39)

where

𝑅
(
(𝐵𝑡 ,𝑘,ℓ ′,ℓ )𝑡∈𝒯𝑘,ℓ ; 𝑝̂𝑘 , Ξ̂ℓ , 𝜇ℓ ′

)
= 𝛾𝜂−1(1 − 𝛾)1+𝜂

1−𝛾
𝛾 (1 − 𝜇−1

ℓ ′ )𝜇
−𝜂 1−𝛾

𝛾

ℓ ′ Ξ̂
1−𝜂
ℓ

𝑝̂
𝜂
𝛾

𝑘
𝜔

𝜂
𝑘,ℓ
𝐴

𝛼𝜂
𝑘,ℓ ′

∏
𝑡∈𝒯𝑘,ℓ

𝐵
𝜂(1−𝛼)
𝑇

𝑡 ,𝑘,ℓ ′,ℓ (40)

given conjectures (𝑝̂𝑘 , Ξ̂ℓ ) for prices and research productivity, and conjecture (𝐵̂𝑡 ,𝑘,ℓ ′,ℓ ′) for local research on
each pest.

Proof. Let 𝑉𝑘,ℓ ′,ℓ be the total profit of farmers in ℓ who choose (𝑘, ℓ ′). We can write

𝑉𝑘,ℓ ′,ℓ = 𝜋𝑘,ℓ ′,ℓE[𝑉∗
𝑖 |𝑢

∗
𝑖 = (𝑘′, ℓ ′′)]

= 𝜋𝑘,ℓ ′,ℓΞℓ

= 𝛾𝜂(1 − 𝛾)𝜂
1−𝛾
𝛾 Ξ

1−𝜂
ℓ

𝑝
𝜂
𝛾

𝑘
𝑞
−𝜂 1−𝛾

𝛾

𝑘,ℓ ′,ℓ 𝜔
𝜂
𝑘,ℓ
𝐴

𝛼𝜂
𝑘,ℓ ′

∏
𝑡∈𝒯𝑘,ℓ

𝐵
𝜂(1−𝛼)
𝑇

𝑡 ,𝑘,ℓ ′,ℓ

(41)

where the first line is a definition, the second line uses the result of Lemma 2, and the third line
re-writes 𝜋𝑘,ℓ ′,ℓ from Lemma 2 in terms of the productivity index Ξℓ and simplifies. The total
expenditure of farmers on the (𝑘, ℓ ′) technological good is 1−𝛾

𝛾 𝑉𝑘,ℓ ′,ℓ , since farmers retain fraction 𝛾

of revenues (see Lemma 1) and spend fraction (1− 𝛾) on the input. Moreover, fraction 1−𝜇−1
ℓ ′ of this

expenditure is the innovator’s revenue net of costs, since 𝜇ℓ ′ is the markup over the marginal cost
(normalized to one). We therefore write the revenue 𝑅𝑘,ℓ ′,ℓ of innovator ℓ ′ in the (𝑘, ℓ ) market as

𝑅𝑘,ℓ ′,ℓ = (1 − 𝜇−1
ℓ ′ )

(
1 − 𝛾

𝛾
𝑉𝑘,ℓ ′,ℓ

)
= (1 − 𝜇−1

ℓ ′ )
©­«1 − 𝛾

𝛾
𝛾𝜂(1 − 𝛾)𝜂

1−𝛾
𝛾 Ξ̂

1−𝜂
ℓ

𝑝̂
𝜂
𝛾

𝑘
𝑞
−𝜂 1−𝛾

𝛾

𝑘,ℓ ′,ℓ 𝜔
𝜂
𝑘,ℓ
𝐴

𝛼𝜂
𝑘,ℓ ′

∏
𝑡∈𝒯𝑘,ℓ

𝐵
𝜂(1−𝛼)
𝑇

𝑡 ,𝑘,ℓ ′,ℓ
ª®¬

= 𝛾𝜂−1(1 − 𝛾)1+𝜂
1−𝛾
𝛾 (1 − 𝜇−1

ℓ ′ )𝜇
−𝜂 1−𝛾

𝛾

ℓ ′ Ξ̂
1−𝜂
ℓ

𝑝̂
𝜂
𝛾

𝑘
𝜔

𝜂
𝑘,ℓ
𝐴

𝛼𝜂
𝑘,ℓ ′

∏
𝑡∈𝒯𝑘,ℓ

𝐵
𝜂(1−𝛼)
𝑇

𝑡 ,𝑘,ℓ ′,ℓ

(42)

where the second line substitutes in Equation 41 and the third line substitutes in 𝑞𝑘,ℓ ′,ℓ = 𝜇ℓ ′, the
pricing policy, and re-arranges terms. This third line defines the function 𝑅 defined in Equation 40
in the Lemma’s statement.
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The innovator’s objective, for each (𝑘, ℓ ) pair, is to maximize net revenue minus research costs.
Combining Equation 42 with the expression for costs (Equation 4), and accounting for the fact that
innovators receive only fraction 𝑒−𝜌ℓ′ ,ℓ ≤ 1 of net revenue due to trade, licensing, and IP costs, yields
Equation 39.

□

A.2 Proof of Proposition 1

Fix crop 𝑘, innovator country ℓ ′, and downstream market ℓ . We first derive an expression for the
quality of the transferred technology, 𝜃𝑘,ℓ ′,ℓ . Program 39, derived in Lemma 3, is concave under the
maintained assumption that 𝜂(1 − 𝛼) < 1 + 𝜙 (Footnote 7). Observe first that, for a non-present pest
𝑡 ∉ 𝑇𝑘,ℓ , the marginal benefit of innovation is zero. Hence 𝐵𝑡 ,𝑘,ℓ ′,ℓ = 0. For a present pest 𝑡 ∈ 𝑇𝑘,ℓ , the
first-order condition is

𝜂(1 − 𝛼)
𝑇𝐵𝑡 ,𝑘,ℓ ′,ℓ

©­«𝐾0(𝛾, 𝜂)𝐾1(𝜇ℓ ′)𝑒−𝜌ℓ′ ,ℓ Ξ̂1−𝜂
ℓ

𝑝̂
𝜂
𝛾

𝑘
𝜔

𝜂
𝑘,ℓ
𝐴

𝛼𝜂
𝑘,ℓ ′

∏
𝑡∈𝒯𝑘,ℓ

𝐵
𝜂(1−𝛼)
𝑇

𝑡 ,𝑘,ℓ ′,ℓ
ª®¬ − 1

𝑇
𝑒−𝜏(𝐵̂𝑡 ,𝑘,ℓ′ ,ℓ′)𝐵

1+𝜙
0,ℓ ′ 𝐵

𝜙
𝑡 ,𝑘,ℓ ′,ℓ = 0

where 𝐾0(𝛾, 𝜂) = 𝛾𝜂−1(1 − 𝛾)1+𝜂
1−𝛾
𝛾 is a constant depending on farmers’ profit share and supply

elasticity, and 𝐾1(𝜇ℓ ′) = (1 − 𝜇−1
ℓ ′ )𝜇

−𝜂 1−𝛾
𝛾

ℓ ′ summarizes the effect of the markup for increasing profit
margins (first term) and decreasing demand (second term). We next take logs and impose the
equilibrium condition that the conjectures are correct. The first-order condition re-arranges to

log 𝐵𝑡 ,𝑘,ℓ ′,ℓ =
log (𝐾0(𝛾, 𝜂)𝜂(1 − 𝛼))

1 + 𝜙
− log 𝐵0,ℓ ′ −

𝜌ℓ ′,ℓ
1 + 𝜙

+
1 − 𝜂

1 + 𝜙
logΞℓ +

𝜂

𝛾(1 + 𝜙) log 𝑝𝑘

+ 1
1 + 𝜙

log𝐾1(𝜇ℓ ′) +
𝜂

1 + 𝜙
log 𝜔𝑘,ℓ +

𝜂

1 + 𝜙
log𝜃𝑘,ℓ ′,ℓ +

1
1 + 𝜙

𝜏(𝐵𝑡 ,𝑘,ℓ ′,ℓ ′)
(43)

We next substitute Equation 43 into the definition of log𝜃𝑘,ℓ ′,ℓ (Equation 3) to write

log𝜃𝑘,ℓ ′,ℓ = 𝛼 log𝐴𝑘,ℓ ′ + (1 − 𝛼)
log (𝐾0(𝛾, 𝜂)𝜂(1 − 𝛼))

1 + 𝜙
− (1 − 𝛼) log 𝐵0,ℓ ′ −

(1 − 𝛼)𝜌ℓ ′,ℓ
1 + 𝜙

+ (1 − 𝛼)(1 − 𝜂)
1 + 𝜙

logΞℓ +
(1 − 𝛼)𝜂
𝛾(1 + 𝜙) log 𝑝𝑘 +

(1 − 𝛼)𝜂
1 + 𝜙

log 𝜔𝑘,ℓ +
(1 − 𝛼)
1 + 𝜙

log𝐾1(𝜇ℓ ′)

+ (1 − 𝛼)𝜂
1 + 𝜙

log𝜃𝑘,ℓ ′,ℓ +
1 − 𝛼

(1 + 𝜙)𝑇
∑
𝜏∈𝒯𝑘,ℓ

𝜏(𝐵𝑡 ,𝑘,ℓ ′,ℓ ′)

(44)

We now simplify the last term on the right-hand-side. Let 𝐵𝑘,ℓ ′ > 0 be a conjectured solution to
Equation 43 for any 𝑡 ∈ 𝒯𝑘,ℓ ′ or “locally present pest.” For any 𝑡 ∉ 𝒯𝑘,ℓ ′, or “non-locally present
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pest,” 𝐵𝑡 ,𝑘,ℓ ′,ℓ ′ = 0 as argued earlier. Thus, if we define 1 − 𝛿𝑘,ℓ ′,ℓ =
1
𝑇 |𝒯𝑘,ℓ ∩ 𝒯𝑘,ℓ ′ | as the fraction of

overlapping CPPs, we can write

1 − 𝛼

(1 + 𝜙)𝑇
∑
𝜏∈𝒯𝑘,ℓ

𝜏(𝐵𝑡 ,𝑘,ℓ ′,ℓ ′) =
1 − 𝛼
1 + 𝜙

(1 − 𝛿𝑘,ℓ ′,ℓ )𝜏(𝐵𝑘,ℓ ′) + 0 · 𝛿𝑘,ℓ ′,ℓ =
1 − 𝛼
1 + 𝜙

(1 − 𝛿𝑘,ℓ ′,ℓ )𝜏(𝐵𝑘,ℓ ′) (45)

We finally derive the desired expression for technology transfer, in quantity units. As show in
Lemma 3 (Equation 41), total expenditure on the technological input is

𝐸𝑘,ℓ ′,ℓ :=
1 − 𝛾

𝛾
𝑉𝑘,ℓ ′,ℓ =

𝑅𝑘,ℓ ′,ℓ

1 − 𝜇−1
ℓ ′

= 𝛾𝜂−1(1 − 𝛾)1+𝜂
1−𝛾
𝛾 𝜇

−𝜂 1−𝛾
𝛾

ℓ ′ Ξ̂
1−𝜂
ℓ

𝑝̂
𝜂
𝛾

𝑘
𝜔

𝜂
𝑘,ℓ
𝜃
𝜂
𝑘,ℓ ′,ℓ (46)

Since the price is 𝑞𝑘,ℓ ′,ℓ = 𝜇ℓ ′, the physical quantity demanded is 𝑋𝑘,ℓ ′,ℓ = 𝜇−1
ℓ ′ 𝐸𝑘,ℓ ′,ℓ . Finally, taking

logs and substituting in Equations 44 and 45, we write

log𝑋𝑘,ℓ ′,ℓ = 𝛽𝑘,ℓ ′ · 𝛿𝑘,ℓ ′,ℓ + 𝜒𝑘,ℓ + 𝜒𝑘,ℓ ′ + 𝜒ℓ ,ℓ ′ (47)

where the coefficient is
𝛽𝑘,ℓ ′ = − 𝜂(1 − 𝛼)𝜏(𝐵𝑘,ℓ ′)

1 + 𝜙 − 𝜂(1 − 𝛼) (48)

and one representation of the fixed effects is

𝜒𝑘,ℓ =

( (1 − 𝛼)𝜂
1 + 𝜙 − 𝜂(1 − 𝛼) + 𝜂

)
log 𝜔𝑘,ℓ + 𝜒𝑘 + 𝜒ℓ + 𝜒

𝜒𝑘,ℓ ′ =
𝜂𝛼(1 + 𝜙)−1

1 + 𝜙 − 𝜂(1 − 𝛼) log𝐴𝑘,ℓ ′ + 𝜒ℓ ′

𝜒ℓ ,ℓ ′ = −
𝜂(1 − 𝛼)

1 + 𝜙 − 𝜂(1 − 𝛼)𝜌ℓ ,ℓ
′

(49)

where
𝜒 =

1 − 𝛼

1 + 𝜙 − 𝜂(1 − 𝛼) log(𝐾0(𝛾, 𝜂)𝜂(1 − 𝛼)) + log𝐾0(𝛾, 𝜂)

𝜒𝑘 =
𝜂

𝛾

(
1 − 𝛼

1 + 𝜙 − 𝜂(1 − 𝛼) + 1
)

log 𝑝𝑘

𝜒ℓ = (1 − 𝜂)
(

1 − 𝛼

1 + 𝜙 − 𝜂(1 − 𝛼) + 1
)

logΞℓ

𝜒ℓ ′ = −
(1 − 𝛼)(1 + 𝜙)−1

1 + 𝜙 − 𝜂(1 − 𝛼) log 𝐵0,ℓ ′

(50)

The representation of fixed effects is not unique, as each term in the set (𝜒, 𝜒𝑘 , 𝜒ℓ , 𝜒ℓ ′) can be
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represented in at least two different two-way fixed effects.
Having proved the Proposition, we conclude with a brief discussion of the model’s interpretation

of the fixed effects representation in Equation 49. The crop-by-destination fixed effect 𝜒𝑘,ℓ controls
for the effects of destination suitability, crop prices, and overall destination productivity. The crop-
by-origin fixed effect 𝜒𝑘,ℓ controls for the general productivity of origin technology and the research
costs in the origin. The origin-destination fixed effect controls for bilateral trade, licensing, and IP
frictions.

A.3 Proof of Proposition 2

As derived in Lemma 1, physical production on farm 𝑖 conditional on planting (𝑘, ℓ ′) is

𝑌𝑘,ℓ ′,𝑖 =

(
1 − 𝛾

𝑞𝑘,ℓ ′,ℓ

) 1−𝛾
𝛾

𝑝
1
𝛾−1
𝑘

𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ 𝜀𝑘,ℓ ′,𝑖 =
Π𝑘,ℓ ′,𝑖

𝛾𝑝𝑘
(51)

or dollar profits divided by 𝛾 (the profit share of revenue) and 𝑝𝑘 (the price). Thus, using the
language of Lemma 2, total production is the sum of expected production given each choice of
technology ℓ ′:

𝑌𝑘,ℓ =

𝐿∑
ℓ ′
E

[
𝑉∗
𝑖

𝛾𝑝𝑘
| 𝑢∗𝑖 = (𝑘, ℓ ′)

]
· 𝜋𝑘,ℓ ′,ℓ (52)

As shown in Lemma 2, E
[
𝑉∗
𝑖
| 𝑢∗

𝑖
= (𝑘, ℓ ′)

]
= Ξℓ for any (𝑘, ℓ ′). By the arguments above,

E

[
𝑉∗
𝑖

𝛾𝑝𝑘
| 𝑢∗𝑖 = (𝑘, ℓ ′)

]
≡ Ξℓ

𝛾𝑝𝑘
(53)

and hence, returning to Equation 52,

𝑌𝑘,ℓ =
1

𝛾𝑝𝑘
Ξℓ

𝐿∑
ℓ ′

𝜋𝑘,ℓ ′,ℓ

=
1

𝛾𝑝𝑘
Ξℓ

𝐿∑
ℓ ′

(
𝜃
𝜂
𝑘,ℓ ′,ℓ𝜔

𝜂
𝑘,ℓ
𝑝

𝜂
𝛾

𝑘
Ξ
−𝜂
ℓ
𝛾𝜂(1 − 𝛾)𝜂

1−𝛾
𝛾

)
= 𝛾𝜂−1(1 − 𝛾)𝜂

1−𝛾
𝛾 𝑝

𝜂
𝛾−1
𝑘

Ξ
1−𝜂
ℓ

𝜔
𝜂
𝑘,ℓ

𝐿∑
ℓ ′

𝜃
𝜂
𝑘,ℓ ′,ℓ

= 𝛾𝜂−1(1 − 𝛾)𝜂
1−𝛾
𝛾 𝑝

𝜂
𝛾−1
𝑘

Ξ
1−𝜂
ℓ

𝜔
𝜂
𝑘,ℓ
Θ

𝜂
𝑘,ℓ

(54)

8



where the second line substitutes the expression for 𝜋𝑘,ℓ ′,ℓ derived in Lemma 2, the third line collects
terms, and the fourth defines Θ𝑘,ℓ = (∑𝐿

ℓ ′=1 𝜃
𝜂
𝑘,ℓ ′,ℓ )

1/𝜂.
Taking a log, we derive the desired form

log𝑌𝑘,ℓ = 𝜂 logΘ𝑘,ℓ + 𝜒̃𝑘 + 𝜒̃ℓ + 𝜂 log 𝜔𝑘,ℓ (55)

where one representation of the fixed effects is

𝜒̃𝑘 =

(
𝜂

𝛾
− 1

)
log 𝑝𝑘

𝜒̃ℓ = (1 − 𝜂) logΞℓ + (𝜂 − 1) log 𝛾 + 𝜂
1 − 𝛾

𝛾
log(1 − 𝛾)

(56)

As additional results, alluded to in the main text, we derive analogous expressions for planted
area and physical yield. First, total planted area of crop 𝑘 is the sum of planted area of each (𝑘, ℓ )
pair: 𝜋𝑘,ℓ =

∑𝐿
ℓ ′=1 𝜋𝑘,ℓ ′,ℓ . Applying Lemma 2 and simplifying gives

log𝜋𝑘,ℓ = 𝜂 logΘ𝑘,ℓ + 𝜂 log 𝜔𝑘,ℓ +
𝜂

𝛾
log 𝑝𝑘 − 𝜂 logΞℓ + 𝜂 log 𝛾 + 𝜂

1 − 𝛾

𝛾
log(1 − 𝛾) (57)

Finally, observe that physical yield 𝑧𝑘,ℓ equals production per unit area. Thus

log 𝑧𝑘,ℓ = log𝑌𝑘,ℓ − log𝜋𝑘,ℓ = logΞℓ − log 𝑝𝑘 − log 𝛾 (58)

A.4 Optimal Pricing of the Technological Good

In this appendix, we micro-found our assumption that the innovator prices the technological
good at (monopolist-specific) markup 𝜇ℓ ′. We first study the conventional model in which the
innovator behaves as a monopolist, in which case the markup is 𝜇ℓ ′ = (1 − 𝛾)−1 for all ℓ ′. We
next study a variant model in which the innovator perceives 𝜎ℓ ′ ∈ [1,∞) times the impact of
prices on product demand, where 𝜎ℓ ′ can be interpreted as the “conduct parameter” in empirical
industrial organization (Bresnahan, 1989). We show that, in this model, we can micro-found markups
𝜇ℓ ′ = (1 − 𝜎−1

ℓ ′ 𝛾)−1 ∈ (1, (1 − 𝛾)−1].

Lemma 4. If the innovator in ℓ ′ is a monopolist, it charges price 𝑞𝑘,ℓ ′,ℓ = (1 − 𝛾)−1 for each (𝑘, ℓ ) market.

Proof. Conditional on any choice for quality 𝜃𝑘,ℓ ′,ℓ , the monopolist chooses its price to solve

max
𝑞𝑘,ℓ′ ,ℓ

{∫ 1

0
(𝑞𝑘,ℓ ′,ℓ − 1) · 𝑋𝑘,ℓ ′,𝑖 · I[𝑢∗𝑖 = (𝑘, ℓ ′)]d𝑖

}
(59)
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where the marginal cost is normalized to one; 𝑋𝑘,ℓ ′,𝑖 is 𝑖’s demand for (𝑘, ℓ ′) inputs, if they were to
choose (𝑘, ℓ ′); and 𝑢∗

𝑖
is 𝑖’s optimal choice of a crop-technology pair. Substituting in the demand

curve derived in Lemma 1, and applying the argument of Lemma 2 toward the expectation of
idiosyncratic productivity, this can be re-written as

max
𝑞𝑘,ℓ′ ,ℓ

{(
(1 − 𝛾)

1
𝛾 𝑝

1
𝛾

𝑘
(𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ )𝜋𝑘,ℓ ′,ℓ 𝑓 (Ξℓ )

)
(𝑞𝑘,ℓ ′,ℓ − 1) 𝑞

− 1
𝛾

𝑘,ℓ ′,ℓ

}
(60)

where 𝜋𝑘,ℓ ′,ℓ is the measure of farmers in ℓ choosing (𝑘, ℓ ′) and 𝑓 (Ξℓ ) is some function of aggregate
productivity in ℓ , capturing the conditional expectation of the idiosyncratic component of technology
demand. Program 60 is concave. Taking the first order condition yields(

(1 − 𝛾)
1
𝛾 𝑝

1
𝛾

𝑘
(𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ )𝜋𝑘,ℓ ′,ℓ 𝑓 (Ξℓ )

) (
𝑞
− 1

𝛾

𝑘,ℓ ′,ℓ −
1
𝛾
(𝑞𝑘,ℓ ′,ℓ − 1)𝑞

− 1
𝛾−1

𝑘,ℓ ′,ℓ

)
= 0 (61)

Re-arranging gives the desired expression

𝑞𝑘,ℓ ′,ℓ =
1

1 − 𝛾
(62)

□

Lemma 5. If the innovator in ℓ ′ behaves with conduct parameter 𝜎ℓ ′ ∈ (0, 1], it charges price 𝑞𝑘,ℓ ′,ℓ =

(1 − 𝜎ℓ ′𝛾)−1.

Proof. An innovator with conduct parameter 𝜎ℓ ′ internalizes fraction 𝜎ℓ ′ of the effect its pricing has
on overall demand. The innovator therefore has the modified first-order condition(

(1 − 𝛾)
1
𝛾 𝑝

1
𝛾

𝑘
(𝜃𝑘,ℓ ′,ℓ𝜔𝑘,ℓ )𝜋𝑘,ℓ ′,ℓ 𝑓 (Ξℓ )

) (
𝑞
− 1

𝛾

𝑘,ℓ ′,ℓ −
𝜎ℓ ′

𝛾
(𝑞𝑘,ℓ ′,ℓ − 1)𝑞

− 1
𝛾−1

𝑘,ℓ ′,ℓ

)
= 0 (63)

where 𝜎ℓ ′ multiplies the second term in the second parenthesis, which captures the effect on demand
of changing the price. Re-arranging yields the desired expression

𝑞𝑘,ℓ ′,ℓ =
1

1 − 𝛾
𝜎ℓ′

(64)

□

A.5 Mapping to Multiple-Input Model

Here, we show how a variant model with multiple inputs maps to our main model. This clarifies
the sense in which our main analysis abstracts away from these other inputs without loss.
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Consider, as in our baseline setup, a farm 𝑖 producing crop 𝑘 with biotechnology from ℓ ′.
Departing from the baseline, the farm has a new production function that uses 𝑁 + 1 inputs.
The first input is the biotechnological input, which was the only input in our main analysis. The
production function, supressing dependence on the index 𝑖, crop 𝑘, and biotechnology source ℓ ′ for
convenience, is

𝑌 = 𝑋1−𝛾−∑𝑁
𝑛=1 𝛼𝑛

(
𝑁∏
𝑛=1

𝑋
𝛼𝑛
𝑛

)
(𝜃𝜔̃𝜀)𝛾 ∀𝑖 ∈ [ℓ − 1, ℓ ) (65)

where 𝛾 ∈ (0, 1) continues to measure the return to fixed factors versus technology; 𝜔̃ ∈ R+ is
average natural suitability; 𝜀 ∈ R+ is an idiosyncratic perturbation with a Fréchet distribution with
mean one and shape parameter 𝜂 > 0; the 𝛼𝑛 are the returns to scale for each additional input;
𝑋 is usage of the biotechnological input; and the 𝑋𝑛 are the usage of other inputs. We assume
that 0 < 𝛾 + ∑𝑁

𝑛=1 𝛼𝑛 < 1, so there are decreasing returns to scale in the variable factors. The
farm faces price 𝑞̃ for the biotechnological input and 𝑞̃𝑛 for the other inputs. Its input-choice profit
maximization problem is

max
𝑋,(𝑋𝑛)𝑁𝑛=1

{
𝑝𝑋1−𝛾−∑𝑁

𝑛=1 𝛼𝑛

(
𝑁∏
𝑛=1

𝑋
𝛼𝑛
𝑛

)
(𝜃𝜔̃𝜀)𝛾 − 𝑞̃𝑋 −

𝑁∑
𝑛=1

𝑞̃𝑛𝑋𝑛

}
(66)

For comparison, in the baseline model with no additional inputs, the farm chooses only the input
𝑋 to solve

max
𝑋,(𝑋𝑛)𝑁𝑛=1

{
𝑝𝑋1−𝛾(𝜃𝜔𝜀)𝛾 − 𝑞𝑋

}
(67)

where we remove tildes on 𝜔 and 𝑞 to more easily state the equivalence result.
We now state and prove a result that maps between this variant model and our baseline model:

Lemma 6. The multiple-input model implies the same farm-level profits as the one-input model where

𝑞ℓ ′ = 𝑞̃

1−𝛾−∑𝑁
𝑛=1 𝛼𝑁

1−𝛾
ℓ ′

𝜔𝑘,ℓ = 𝜔̃𝑘,ℓ𝐾(𝛼, 𝛾)
1
𝛾

(
𝑁∏
𝑛=1

𝑞
−𝛼𝑛
𝑛

) (68)

and 𝐾(𝛼, 𝛾) = (1 − 𝛾 − ∑𝑁
𝑛=1 𝛼𝑛)1−𝛾−

∑𝑁
𝑛=1 𝛼𝑛

∏𝑁
𝑛=1 𝛼

𝛼𝑛
𝑛 . Given this mapping, the multiple-input and one-

input models therefore have the same implications for aggregate technology development, technology transfer,
production, and productivity.
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Proof. The first-order condition for the inputs can be re-arranged to

𝑋 =
(1 − 𝛾 −∑𝑁

𝑛=1 𝛼𝑛)𝑝𝑌
𝑞

𝑋𝑛 =
𝛼𝑛𝑝𝑌

𝑞𝑛
∀𝑛 (69)

Substituting these choices into the production function and solving for 𝑌, we find

𝑌 =
𝐾(𝛼, 𝛾)

1
𝛾𝜃𝜔𝜀𝑝

1−𝛾
𝛾

𝑞
1−𝛾−∑𝑁

𝑛=1 𝛼𝑛
𝛾

∏𝑁
𝑛=1 𝑞

𝛼𝑛
𝑛

(70)

where 𝐾(𝛼, 𝛾) = (1 − 𝛾 −∑𝑁
𝑛=1 𝛼𝑛)1−𝛾−

∑𝑁
𝑛=1 𝛼𝑛

∏𝑁
𝑛=1 𝛼

𝛼𝑛
𝑛 . The profits of the farmer are share 𝛾 of total

revenues, or

Π = 𝛾𝑝𝑌 = 𝛾 ·
(
𝑝

1
𝛾 𝑞

−
1−𝛾−∑𝑁

𝑛=1 𝛼𝑛
𝛾

(
𝑁∏
𝑛=1

𝑞
−𝛼𝑛
𝑛

)
𝐾(𝛼, 𝛾)

1
𝛾𝜃𝜔𝜀

)
(71)

Comparing this expression to Equation 25 in Lemma 2, which derived farmer profits in the main
model, we see that the models are isomorphic under the following transformation. We re-introduce
subscripts 𝑖, 𝑘, ℓ ′, and ℓ and let tildes denote parameters as they were used in the variant model of
this appendix. We set, in the baseline model,

𝑞ℓ ′ = 𝑞̃

1−𝛾−∑𝑁
𝑛=1 𝛼𝑁

1−𝛾
ℓ ′

𝜔𝑘,ℓ = 𝜔̃𝑘,ℓ𝐾(𝛼, 𝛾)
1
𝛾

(
𝑁∏
𝑛=1

𝑞
−𝛼𝑛
𝑛

) (72)

The first equation reflects the fact that the new model predicts a different elasticity of farm profits to
the biotechnological input’s price. This is immaterial for any of our model’s predictions, as this price
is fixed at the ℓ ′ level. The second equation incorporates the (inverse) price of the other inputs into
our measure of crop-by-location level productivity. Intuitively, a country in which crop-𝑘 specific
variable inputs (e.g., machinery) are cheap is, enveloping over the optimal choice of those inputs,
more productive per unit of land.

The last claims about equivalent implications for technology development, technology transfer,
production, and productivity follow from recognizing that all of this paper’s subsequent results
characterizing these objects depend on farmers’ behavior only through profit function and input
demand derived in Lemma 1. □
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A.6 Social Versus Private Incentives

In this appendix, we contrast the private incentives for pest and pathogen research with public
incentives. To define the social planner’s problem, we must first take a stand on the preferences of
the representative consumer, from which we derived global demand curves (𝑝𝑘)𝐾𝑘=1 = 𝑑((𝑌𝑘)𝐾𝑘=1). We
assume that the economy has, in addition to the 𝐾 crops, a numeraire good representing the rest of
the economy. Consumption of this good, which we denote as𝑀, can be negative. The representative
household’s preferences are represented by some function 𝑢 : R × R𝐾+ which takes, as arguments,
consumption of the numeraire and total consumption of all of the crops. The household is rebated
all profits of all global innovators, who transform the numeraire into research output.

The social planner’s problem can be written as

max
(𝐵𝑡 ,𝑘,ℓ′ ,ℓ )𝑘,ℓ′ ,ℓ ,𝑡∈𝒯𝑘,ℓ ,(𝑋𝑘,ℓ′ ,ℓ )𝑘,ℓ′ ,ℓ

𝑢(𝑀, (𝑌𝑘)𝐾𝑘=1) −
𝐾∑
𝑘=1

𝐿∑
ℓ=1

∑
𝑡∈𝒯𝑘,ℓ

𝑒−𝜏(𝐵𝑡 ,𝑘,ℓ′ ,ℓ′)
(𝐵0,ℓ ′𝐵𝑡 ,𝑘,ℓ ′,ℓ )1+𝜙

𝑇(1 + 𝜙)

−
𝐾∑
𝑘=1

𝐿∑
ℓ=1

𝐿∑
ℓ ′=1

𝑋𝑘,ℓ ′,ℓ

}
s.t . 𝐹𝑘((𝐵𝑡 ,𝑘,ℓ ′,ℓ )𝑘,ℓ ,𝑡∈𝒯𝑘,ℓ , (𝑌𝑘)𝐾𝑘=1) ≤ 0, ∀𝑘

(73)

The planner chooses research levels and quantities produced of the technological good. The func-
tions 𝐹𝑘 are defined to encompass the technological possibilities, or the assignment of each farmer 𝑖
to crop 𝑘.

Let 𝜆𝑘 denote the Lagrange multiplier on each dimension of 𝐹. Under the assumption that the
program in Equation 73 is concave, the following first-order condition for the choice of 𝐵𝑡 ,𝑘,ℓ ′,ℓ is
necessary for optimality:

𝐵
1+𝜙
0,ℓ ′ 𝐵

𝜙
𝑡 ,𝑘,ℓ ′,ℓ exp(−𝜏(𝐵𝑡 ,𝑘,ℓ ′,ℓ ′)) = 𝜆𝑘

𝜕𝐹𝑘((𝐵𝑡 ,𝑘,ℓ ′,ℓ )𝑘,ℓ ,𝑡∈𝒯𝑘,ℓ , (𝑌𝑘)𝐾𝑘=1)
𝜕𝐵𝑡 ,𝑘,ℓ ′,ℓ

+ I[ℓ ′ = ℓ ]𝜏′(𝐵𝑡 ,𝑘,ℓ ′,ℓ )
𝐿∑

ℓ ′′=1
𝑒−𝜏(𝐵𝑡 ,𝑘,ℓ′ ,ℓ )

(𝐵0,ℓ ′𝐵𝑡 ,𝑘,ℓ ′,ℓ ′′)1+𝜙
𝑇(1 + 𝜙)

(74)

The left-hand-term is the marginal research cost, ignoring the externality. The first right-hand-term
is the marginal production benefit of increasing research, in utility units (i.e., transformed by the
Lagrange multiplier 𝜆𝑘). The second term appears only for local CPP research, or when ℓ ′ = ℓ , and
it encodes the benefit via the externality on research for all countries ℓ .

A sharp difference between the social planner’s allocation versus the equilibrium allocation is that
the planner, perceiving these cost reduction benefits, would have researchers in ℓ ′ invest in research
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for pests not present in ℓ ′ (i.e., with the first right-hand-side term zero), purely to exploit these
external benefits. More generally, the presence of these terms increases marginal incentives toward
environment-specific research in the social planner’s allocation relative to the market allocation.

A.7 An Alternative Source of Inappropriateness: Copycat Innovators

In this Appendix, we describe a model with limited IP and “copycat innovators” that derives
similar conclusions to our baseline setting.

Our setting for production is the same as the baseline described in Section 1.1. Our structure
of innovation is different. First, innovation is only possible in one country which, without loss, we
index as ℓ = 1. Moreover, innovators in this country receive profits only from technology sold in the
home country. We can encode this by assuming that the iceberg cost is is

𝜌ℓ ,ℓ ′


0 if ℓ = ℓ ′ = 1

∞ otherwise
(75)

Our interpretation, as in Acemoglu and Zilibotti (2001), is that imperfect contract enforcement and IP
protection prevents innovators in the technology-producing “North” (ℓ = 1) from obtaining profits
in the other countries which comprise the “South.” We assume that the market structure and costs
faced by innovators in ℓ = 1 are the same as in our baseline model, although these details are
immaterial for some of our main conclusions in this model variation.

Next, we assume that there exist “copycat” innovators in each country ℓ ≠ 1 that can adapt
country 1’s technology and sell their version at zero cost. Specifically, if country 1 produces crop-𝑘
technology with general attribute 𝐴𝑘 and pest-specific attribute 𝐵𝑡 ,𝑘 , the copycat technology has
quality

log𝜃𝑘,1,ℓ = 𝛼 log𝐴𝑘 +
1 − 𝛼
𝑇

∑
𝑡∈𝒯𝑘,ℓ

max
{
log 𝐵𝑡 ,𝑘 , log 𝐵ℓ

}
(76)

for some log 𝐵ℓ > −∞. In words, the copycat can reproduce the general and specific qualities of the
North’s technology, and can substitute a local practice with productivity 𝐵ℓ to deal with any local
pest or pathogen threat. As indicated by our notation, the copycat’s innovation exactly plays the role
of international technology sourced from country 1 in farmer’s choices and, by extension, aggregate
productivity.

Proposition 2, as stated, holds exactly in this economy as it does not depend directly on the
structure of endogenous innovation. To derive an analogy to Proposition 1, we first observe that the
innovative North will develop quality 𝐵𝑡 ,𝑘 ≡ 𝐵𝑘 to combat all ecological threats 𝑡 ∈ 𝒯𝑘,1 and 𝐵𝑡 ,𝑘 = 0
for all 𝑡 ∉ 𝒯𝑘,1. The argument for this result is exactly the same as the one given in the proof of
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Proposition 1. Under the assumption that log 𝐵𝑘 > log 𝐵, we can re-write Equation 76 as

log𝜃𝑘,1,ℓ = 𝛼 log𝐴𝑘 + (1 − 𝛼)
(
(1 − 𝛿𝑘,1,ℓ ) log 𝐵𝑘 + 𝛿𝑘,1,ℓ log 𝐵

)
(77)

where 𝛿𝑘,1,ℓ is the fraction of non-shared CPP threats, as in the main analysis. We can therefore write
the following equation for the quality or intensity of copycatting that mirrors our representation for
technology diffusion in Proposition 1:

log𝜃𝑘,ℓ ′,ℓ = 𝛽𝑘,ℓ ′ · 𝛿𝑘,ℓ ′,ℓ + 𝜒𝑘,ℓ + 𝜒𝑘,ℓ ′ + 𝜒ℓ ,ℓ ′ (78)

In this case, the fixed effects are given by

𝜒𝑘,ℓ = 0

𝜒𝑘,ℓ ′ = I[ℓ ′ = 1]
(
𝛼 log𝐴𝑘 + (1 − 𝛼) log 𝐵𝑘

)
𝜒ℓ ′,ℓ = 0

(79)

and the coefficient of interest is

𝛽𝑘,ℓ ′ = −I[ℓ ′ = 1](1 − 𝛼)(𝐵𝑘 − 𝐵ℓ ) (80)

In words, the marginal effect of inappropriateness is high when technology is very CPP-specific (low
𝛼) and when the gap between frontier and local technology is larger (high 𝐵𝑘 − 𝐵ℓ ). This parallels
the prediction of our baseline model under 𝜏′ > 0 (see the discussion in Section 1.2).

B. Additional Empirical Analysis

B.1 Invasive Species

In our baseline estimates, we construct CPP mismatch using all known CPPs present in each
country that affect each crop. This measure captures the true extent of global differences in CPP
ecology across crops and countries. An important question is whether the baseline findings are
driven in part by relatively recent species invasions, or if they are driven predominantly by persistent
differences in ecology across crops and locations. As discussed in the main text, there are several
prominent examples of how persistent differences in CPP environment shape the effectiveness of
technology (see Section 2.1). However, if the results are strongly driven by invasive species, it
would be important to explore further the causes of species movement and ensure that they are not
correlated with omitted factors that could drive our results.

To investigate the role of invasive species, we use an additional data set produced by CABI:
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the Invasive Species Compendium (ISC). The ISC is a list of global invasive species, as determined
by extensive literature searches. Since the ISC is also a CABI data set, we can use the unique
species identifiers to link ISC species to CPC species in our main CPP data set. 748 CPPs from our
main sample, or 15% of the original list, are identified as potentially invasive species in the ISC.
To construct versions of CPP mismatch that exclude the possible influence of invasive species, we
exclude from our calculations any CPP listed in the ISC (i.e., known to be invasive anywhere in the
world). We view this as a conservative choice because we do not rely on information about exactly
where a specific CPP is invasive instead of native.43 We then re-produce all of our main estimates
using the CPP mismatch measures purged of variation from invasive species.

The estimates are presented in Table A20. We show results corresponding to our analyses of
international technology diffusion (columns 1-3), technology adoption in Africa (column 4), and
production (column 5). Compared to our baseline estimates, the effects on technology diffusion
are (if anything) slightly larger, and the effects on output very similar in standardized units. These
findings indicate that the baseline results are not driven by invasive species.

B.2 Inappropriateness Driven By Agro-Climatic Conditions

This section investigates the possible importance of non-CPP agro-climatic conditions as shifters
of ecological inappropriateness. We estimate ecological differences across crop-specific growing
areas in different countries, and incorporate these additional measures of mismatch into both our
baseline empirical estimates and counterfactual results.

B.2.1 Constructing Agro-climatic Mismatch

We include ten key agro-climatic characteristics that shape the usefulness of biotechnology for
production in a region: temperature, precipitation, elevation, ruggedness, the length of the growing
season, soil acidity, soil clay content, soil silt content, soil coarse fragment content, and soil water
capacity.44 We combine geographically coded raster files of each characteristic with grid-cell level
information from the EarthStat database on the global planting pattern of 175 important crops in
2000 (Monfreda et al., 2008).45 We then compute the value of each characteristic for each crop-
by-country pair by estimating the average value of each characteristic in each country on the land
devoted to the crop in question; we denote these as 𝑥𝑘,ℓ . We then normalize each characteristic to
comparable, 𝑧-score units by re-centering by the global mean value of each attribute and normalizing

43This information is also not systematically collected by CABI or any other source, to our knowledge.
44The temperature and precipitation data from National Center for Atmospheric Research Staff (Eds) (2020); elevation

from the GTOP30 Digital Elevation model; ruggedness from Riley et al. (1999) via Nunn and Puga (2012); growing season
length from FAO GAEZ; and soil statistics from WoSIS (Batjes et al., 2020, https://www.isric.org/explore/wosis).

45The data set was created by combining national, state, and county level census data with crop-specific maximum
potential yield data, to construct a 5-by-5-minute grid of the area devoted to each crop circa 2000.
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by the global dispersion (standard deviation); we refer to these normalized values as 𝑥̂𝑘,ℓ . Then, for
each agro-climatic characteristic 𝑥, crop, and location pair, we define the absolute distances

Δ𝑥̂𝑘,ℓ ,ℓ ′ = |𝑥̂𝑘,ℓ − 𝑥̂𝑘,ℓ ′ | (81)

In words, Δ𝑥̂𝑘,ℓ ,ℓ ′ is the normalized mismatch (“inappropriateness”) in agro-climatic feature 𝑥 for
crop 𝑘 between countries ℓ and ℓ ′. For simplicity, we also aggregate the individual agroclimatic
characteristics into a single index at the crop-by-country-pair level, summing over all characteristics
𝒳:46

AgroClimMismatch𝑘,ℓ ,ℓ ′ =
1
|𝒳| ·

∑
𝑥∈𝒳

Δ𝑥̂𝑘,ℓ ,ℓ ′ (82)

B.2.2 Empirical Estimates

We next investigate whether mismatch in agro-climatic features shapes the transfer of technology and
global patterns of production. Column 1 of Table A6 re-produces our baseline estimate of Equation
12, our main technology transfer model, on the sample of country-pairs and crops for which all
agro-climatic features could be measured. In column 2, we add all ten agro-climatic mismatch
measures Δ𝑥𝑘,ℓ ,ℓ ′. Consistent with technology also being specific to particular non-CPP features of
the environment, the coefficients on the Δ𝑥𝑘,ℓ ,ℓ ′ are almost all negative and four are significant at the
10% level. Mismatch in temperature and precipitation are associated with the largest reductions in
technology transfer. There is also a significant effect of mismatch in elevation and soil pH. Despite the
inclusion of these additional mismatch metrics, however, the coefficient on CPP mismatch barely
changes. In column 3, we include the one-dimensional AgroClimMismatch𝑘,ℓ ,ℓ ′ instead of the
individual Δ𝑥𝑘,ℓ ,ℓ ′. The coefficient on agro-climatic mismatch is negative and significant; however,
the coefficient on CPP mismatch again remains very similar.

In Table A12, we present our results for production. The dependent variable is log of agricultural
output and the regression specification is (15). Column 1 reproduces our baseline estimate of the
relationship between CPP mismatch with the frontier and output on the reduced sample on which
we were able to estimate all agro-climatic characteristics. The specification in column 2 includes
both CPP mismatch and agro-climatic mismatch. While mismatch with the frontier in non-CPP
agro-climatic features significantly lowers output, these effects again operate largely independently
from CPP mismatch.

Taken together, these results show that our main findings are not specific to CPP differences
across crops and places (or, more perniciously, not driven by some specific feature of our CPP data
and measurement strategy); other agro-climatic shifters of inappropriateness also affect technology

46The index is similar to the agro-climatic similarity index used by Bazzi et al. (2016).
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transfer and productivity gaps. At the same time, non-CPP agro-climatic differences seem to operate
independently from our baseline measure of CPP mismatch, suggesting that the baseline estimates
are not simply picking up standard features of climate and geography. These findings are all
consistent with the fact that the pairwise correlations between CPP mismatch with the frontier,
and mismatch with the frontier in each other ecological characteristic, is relatively low. Table A1
reports a correlation matrix, including CPP distance to the frontier along with all agro-climatic
characteristics discussed above. The first column shows the correlation between CPP distance and
all other distance measures; the correlation coefficients tend to be small, and only one is above 0.2.

Finally, we estimate our baseline counterfactuals scenario incorporating both CPP mismatch and
acro-climatic mismatch, using the estimates from column 3 of Table A12. Our modeling strategy
is identical to the one outlined in Section 5.1 of the main text. We find that inappropriateness, as
captured by both CPP mismatch and agro-climatic mismatch, reduces global productivity by 68.2%
and increases disparities in global productivity across countries, measured by the interquartile range,
by 16.3%. These results are summarized graphically in Figure A11, which is structured in the same
way as Figure 7. Incorporating agro-climatic mismatch as an additional shifter of inappropriateness
increases our estimate of the overall effect of inappropriateness on productivity. However, as
foreshadowed by the estimates in Table A12, the effect of CPP mismatch on global output is about
four times as large as the effect of agro-climatic mismatch, suggesting that inappropriateness in the
form of CPP mismatch is a more important determinant of agricultural productivity.

B.3 The Global Direction of Agricultural Innovation

The inappropriate technology hypothesis is based on the premise that global innovation is
biased toward the needs and demands of wealthy frontier countries. There are three reasons we
expect this bias to exist, which we discuss via the model in Section 1.1. First, if innovation is more
likely to occur in rich countries with more biotechnological infrastructure, it may take advantage of
local “technology production opportunities.” This mechanism is embodied in the local knowledge
spillovers and primitive research-cost heterogeneity in the model. It may, in practice, manifest in
accumulated expertise, available test fields for breeding or trials, and readily available germplasm for
genetic analysis. Second, since wealthy countries tend to be large markets, global innovation which
occurs anywhere in the world may still be directed toward their needs as part of profit-maximizing
behavior. Third, wealthy countries may be more likely to have effective intellectual property (IP)
protection, which also manifests as an effectively larger market.

We study all three of these hypotheses within our global varieties data from UPOV, focusing on
novel plant varieties released anywhere in the world since 2000. Let 𝑉𝑘 be the count of all unique
denominations produced in the world for crop 𝑘 over this period; this will be our simple measure
of global technological progress for a given crop. To quantify the targeting of this technology, we
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estimate the following regression model:

ln(𝑉𝑘) = 𝛼 + 𝛿1 · log Area𝑘 + 𝛿2 · log GDPArea𝑘 + 𝛿3 · log IPArea𝑘 + 𝜀𝑘 (83)

in which log Area𝑘 is the (log of) global area devoted to crop 𝑘, and the other two regressors are
respectively this area weighted by per-capita GDP (averaged over 1990-1999) and the presence of
intellectual property for plant varieties as of 2000:47

log GDPArea𝑘 = log

(∑
ℓ

Area𝑘,ℓ · GDPℓ

)
log IPArea𝑘 = log

(∑
ℓ

Area𝑘,ℓ · I𝐼𝑃ℓ

)
(84)

We think of the first regressor, and its coefficient 𝛿1, as a proxy for each crop’s importance to
global livelihoods when not adjusted by production and/or willingness to pay for technology; while
the latter two regressors, and their coefficients (𝛿2 , 𝛿3), could each capture bias via the channels
described above.

Figure A2 reports our estimates of 𝛿2 and 𝛿3, in the form of partial correlation plots. Consistent
with the hypothesis, both are positive and significant, and together have an incremental 𝑅2 of 29%.
To give a sense of the estimated magnitudes, suppose the global market size of cotton increased by
1%; the estimates imply that, if this expansion occurred in the United States, the number of cotton
varieties developed would increase by 4.41%; if it occurred in Brazil, a less wealthy country but one
that protects IP, the number of cotton varieties developed would increase by 1.31%; and if it occurred
in India, a low-income country that does not protect IP, there would be essentially no effect.

To zoom in on the knowledge spillovers channel, we also estimate the following model:

log(𝑉𝑘,ℓ ) = 𝛿0 log Area𝑘,ℓ + 𝛿1 log Area𝑘 + 𝛿2 log GDPArea𝑘 + 𝛿3 log IPArea𝑘 + 𝜒ℓ + 𝜀𝑘,ℓ (85)

in which 𝑉𝑘,ℓ is the number of varieties of crop 𝑘 developed in country ℓ since 2000, and 𝜒ℓ are
country fixed effects. The term Area𝑘,ℓ isolates “local focus,” potentially due to local specificity
of technology production, relative to all innovators’ uniform desire to cater to large markets, as
captured by the next three terms. Estimates of (85) are reported in Table A4. We find that 𝛿0 ≫ 0,
suggesting that the local focus of innovators is an important mechanism; 𝛿2 and 𝛿3 are also positive,
although only marginally significant. Un-weighted global market size is uncorrelated with variety
development (𝛿1 = 0).

Together, this evidence suggests that in our data, technology development is biased toward the
demands of wealthy, IP-protecting countries; this effect appears driven by the fact that innovation
takes place in these countries and innovators develop technology for their home markets. These

47We compile country-level information on variety IP protection from UPOV.
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estimates mirror our findings using the CPP-specific patent data in Section 2.4 and further motivate
the local R&D spillovers in the model.

B.4 Technology Transfer to Africa

The UPOV data set tracks all plant variety certificates and as a result only covers countries for
which intellectual property protection is in place. This results in several omissions, most notably
much of Africa (Figure A1). To partially fill this gap, we compile data from the Consultative Group
on International Agricultural Research (CGIAR) Diffusion and Impact of Improved Varieties in
Africa (DIIVA) project. DIIVA has collected data on improved crop varieties for 28 countries in
sub-Saharan Africa and across 19 crops since 1960.

Using the DIIVA Project data, we compute the number of varieties for each plant species intro-
duced in 28 African countries; since we do not know the country of origin of each variety, in order
to investigate whether inappropriateness is a barrier to technology using these data, we estimate a
simplified version of (12):

𝑦𝑘,ℓ = 𝛽 · CPPMismatchFrontier𝑘,ℓ + 𝜒ℓ + 𝜒𝑘 + 𝜀𝑘,ℓ (86)

where CPPMismatchFrontier𝑘,ℓ is defined using either method described in Section 4.1. We expect
CPP mismatch with the frontier to inhibit technology transfer; that is, we hypothesize that 𝛽 <

0. Estimates of Equation 86 are reported in Figure A3. Consistent with our main technology
transfer results estimated at the country pair-by-crop level, we find that CPP mismatch with frontier
significantly inhibits biotechnology introduction in sub-Saharan Africa. While these estimates are
necessarily less precise, given the smaller sample size and absence of data on the origin country,
they tell a very similar story to our main analysis.

B.5 Technology Adoption in Africa

In this appendix, we study how inappropriateness affects production on smallholder farms in
sub-Saharan Africa, which have received substantial attention for the low penetration of agricultural
technology in spite of ostensible benefits (see, e.g., Suri, 2011; Duflo et al., 2011). Our specific question
is the extent to which the inappropriateness of frontier technology explains low use of improved
inputs.

To measure the use of improved technologies, we combine data from the latest geo-coded round
of all Living Standard Measurement Survey (LSMS) Integrated Surveys of Agriculture (ISA). These
are detailed surveys on all facets of agricultural production, including technology use, collected
by the World Bank in collaboration with the statistical agencies of eight countries: Burkina Faso,
Ethiopia, Malawi, Mali, Niger, Nigeria, Tanzania, and Uganda. Data are collected at the field and
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farm level.
Our dependent variable, ImprovedSeed𝑘,𝑧 , is a crop-by-farm indicator for the use of improved

seeds (i.e., not locally bred varieties), as reported in the LSMS-ISA survey. One shortcoming of
this measure is that self-reported data on improved seed use is not always accurate. For example,
Kosmowski et al. (2019) compare survey evidence to DNA re-analysis in Ethiopia and find that
farmers are accurate approximately 60% of the time. Our assumption is that this measurement error
is not systematically correlated with CPP mismatch across cross-country pairs and conditional on
our control variables.

Our main estimating equation is:

ImprovedSeed𝑘,𝑧 = 𝛽 · CPPMismatchFrontier𝑘,ℓ (𝑧) + 𝜒ℓ (𝑧) + 𝜒𝑘 + 𝜀𝑘,𝑧 (87)

where 𝑘 continues to index crops and 𝑧 indexes farms in the LSMS-ISA data. The regressor
CPPMismatchFrontier𝑘,ℓ is defined using either method described in Section 4.1. The dependent
variable is an indicator that equals one if farmer 𝑧 uses an improved seed variety for crop 𝑘. 𝜒𝑘
denotes crop fixed effects and 𝜒ℓ (𝑧) denotes country fixed effects. If the inappropriateness of tech-
nology reduces technology adoption, we would expect that 𝛽 < 0; however, it is possible that
the smallholder farmers in the sample are not likely to use improved technology regardless of its
appropriateness, and the context specificity of frontier innovation is not an important barrier to
productivity enhancements in this setting.

Our findings are reported in Table A8, where CPP mismatch is measured either as CPP mismatch
with the measured set of crop-specific frontier countries (Panel A) or CPP mismatch with the US
(Panel A). Across specifications, we find a negative and significant relationship between adoption
and CPP mismatch. The estimates of column 1 imply that improved seed use by the median farmer
in our sample would be 14% more prevalent absent inappropriateness, relative to an in-sample
mean of 17.9%. The estimates are similar after including state fixed effects (column 2) or a quadratic
polynomial in farm latitude and longitude (column 3) in order to control more flexibly for the local
geography. Our findings are also similar when the regression is weighted by farm size (column 4)
or using our two alternative constructions of CPP mismatch (columns 5-6).

These estimates indicate that inappropriateness contributes toward low improved input use
on some of the world’s least productive small farms. Through the lens of our model, in which
endogenous innovation responds to demand for inputs, they further suggest a reason why research
and marketing investment from global biotechnology firms has not materialized in sub-Saharan
Africa (Access to Seeds Foundation, 2019).
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C. CPP Threats and Plant Breeding: Extended Discussion
Crop pests and pathogens (CPPs), which include viruses, bacteria, fungi, insects, and parasitic

plants, are a dominant threat to agricultural productivity. Experts estimate that between 50-80% of
global output is lost each year to CPP damage (Oerke and Dehne, 2004), which represents “possibly
the greatest threat to productivity” across all environments (Reynolds and Borlaug, 2006, p. 3). In
Brazil, a major agricultural producer, it is estimated that 38% of annual production is lost due only
to insects (Gallo et al., 1988), amounting to $2.2 billion in lost output per year (Bento, 1999). Prior to
the development of transgenic corn, the Western Corn Rootworm alone caused $1 billion in annual
losses in the US and substantially more around the world (Gray et al., 2009). A critical focus of crop
breeding, as a result, is developing resistance to damaging CPPs.

The most fundamental technique for breeding favorable plant traits, including those that confer
CPP resistance, is mass selection: saving the seeds of the “best” plants from a given crop cycle,
re-planting them the next year, and repeating the process (McMullen, 1987, p. 41). This process
naturally selects crop lineages with sufficient resistance to the local CPP environment. But it creates
no selective pressure for resistance to non-present CPP threats, and such resistance is extremely
unlikely to arise by chance mutation.

Historians have written extensively about how the environmental-specificity of traditional breed-
ing severely limited the diffusion of agricultural technology in the 20th century. Moseman (1970, p.
71) argues that US programs during the 1960s to increase agricultural productivity in other coun-
tries via technological diffusion largely failed because of the “unsuitability of U.S. temperate zone
materials [...] to tropical agricultural conditions.” In a review of agricultural technology diffusion,
Ruttan and Hayami (1973, p. 122) state that “ecological variations [...] among countries inhibit the
direct transfer of agricultural technology.” The location specificity of breeding has, anecdotally, been
a major barrier to technology diffusion.

There are a handful of examples of the international transfers of crop biotechnology across
environments, but these exceptions often prove the rule. Reynolds and Borlaug’s (2006) detailed
account of one uncommonly successful program of international crop diffusion, the CIMMYT wheat
program, makes clear the time and resources required to overcome these obstacles with coordinated
international breeding. The authors describe, as one example, how cooperation between CIMMYT
laboratories and the Brazilian Institute of Agricultural Research (EMPRAPA) enabled the production
of semi-dwarf wheat varieties adapted to Brazil’s acidic soil and distinct CPP environment. This
process involved more than a decade of intense coordination and the development of a novel “shuttle
breeding” program to breed alternate generations of plants in different locations. EMBRAPA itself, a
state-owned agricultural research organization whose mission is to develop agricultural technologies
that are well suited to the Brazilian context, is an example of the type of investment in local research
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that may allow countries to overcome the “inappropriate technology problem.” However, there are
few examples in the world at that scale.

In recent decades, genetic modification (GM) has been added to the crop development toolkit.
The vast majority of modern GM technology has directly related to conferring resistance to specific
pests and pathogens (Vanderplank, 2012; Van Esse et al., 2020). In principle, direct access to a plant’s
genetic code side-steps the slow process of natural selection in the field and consequent obstacles
to breeding for non-local environments. But, in practice, GM technology has been used almost
exclusively for solving the pathogen threats facing high-income countries, due to these countries’
higher demand (Herrera-Estrella and Alvarez-Morales, 2001).

An illustrative case study of how modern plant varieties are “locally” targeted comes from Bt
varieties, a large and celebrated class of genetically modified plants. Bt varieties are engineered
to express crystalline proteins, cry-toxins, that are naturally produced Bacillus thuringiensis bacteria
(“Bt”) and destructive toward specific insect species. Cry toxins are insecticidal because they bind
receptors on the epithelial lining of the intestine and prevent ion channel regulation. Due to the
specificity of intestinal binding activity, cry toxins are highly insect-specific. This feature, while
crucial for limiting the Bt varieties’ broader ecological impact, makes their development highly
targeted to specific pest threats. The main targets for early Bt corn varieties were the European maize
borer and maize rootworm (Munkvold and Hellmich, 1999), major threats in the US and Western
Europe. 𝛿-endotoxins produced by Bt were originally identified as candidate toxins specifically
because of their effectiveness against these particular pests (Bessin, 2019). Indeed, Monsanto’s
Bt corn varieties, MON863 and MON810 were developed with 𝛿-endotoxins selected for their
effectiveness against maize rootworm, which, as it turns out, is relatively uncommon among Cry
proteins (Galitsky et al., 2001).

In other parts of the world with different CPP threats, however, frontier Bt maize is neither
commonly used nor effective. For example, in South Africa there is widespread resistance to Bt
maize and production damage caused by the maize stalk borer, which does not exist in the US but is
widespread in sub-Saharan Africa (Campagne et al., 2017). As one additional example of the large
disparities in research focus on these pests: in our analysis of biotechnology patents described in
the main text, we were able to identify only five patents globally related to the maize stalk borer,
while we identified 5,007 related to the European maize borer. Disparities in the international
appropriateness of GM technologies therefore emerge as a result of focus on “rich-world pests.”

This pattern in GM development and research intensity is not restricted to corn. The first varieties
of Bt Cotton introduced in the early 1990s were focused on limiting the damage caused jointly by the
tobacco budworm, cotton bollworm, and pink bollworm. In India, outbreaks of the pink bollworm
in particular pose a major threat to cotton production (Fand et al., 2019). But frontier biotechnology
has not adapted to patterns of Bt-resistance in India (or any other low-income countries) due to the
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lower relevance of the pink bollworm threat in the United States (see Tabashnik and Carrière, 2019,
for a review of pink bollworm resistance in global cotton populations). In recent years, the desert
locust (see Figure 1, bottom panel) has caused substantial damage in East Africa, causing major
losses across several crops and concerns about food security (Salih et al., 2020); yet just 14 patents
have ever been issued related to the desert locust and biotechnological solutions to this pest threat
are limited. The same is true of the spotted stem borer, which causes an estimated $450 million in
losses each year in East Africa (corresponding to 15-100% in yield losses depending on the location),
but has been the subject of limited research (53 patents) (Pratt et al., 2017).

24



D. Supplementary Figures and Tables

Figure A1: UPOV Compliant Countries

Notes: This figure denotes in green all UPOV member countries. This is the sample of countries for which we have data
on biotechnology development and transfer.

Figure A2: Bias in Global BioTech Development
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(b) GDP-Weighted Area and BioTech Development
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Notes: Partial correlation plots (𝑁 = 107) of our estimates of 𝛿2 and 𝛿3 from Equation (83). Both are estimated from the
same regression, which also includes a control for log of global planted area.
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Figure A3: CPP Mismatch and Biotechnology Transfer to sub-Saharan Africa

(a) Mismatch with the US
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(b) Mismatch with Estimated Frontier Countries
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Notes: This figure displays binned partial correlation plots, after absorbing country and crop fixed
effects, of our estimates of Equation (86), both using pathogen distance to the US (left) and pathogen
distance to the estimated frontier set (right). The number of observations is 345 in both sub-figures
and standard errors are clustered by country.
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Figure A4: CPP Mismatch and Agricultural Yield
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(b) Wheat
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(d) Soybeans

-2

-1

0

1

lo
g(

So
yb

ea
ns

 O
ut

pu
t/A

re
a)

 | 
X

-.4 -.2 0 .2 .4
Soybeans CPP Mismatch with the Frontier | X

coef = -1.4837841, (robust) se = .37464258, t = -3.96

(e) All Crops
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(f) All Crops (No Country FE)
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Notes: Each sub-figure reports a partial correlation plot of (15). In A4a - A4d we restrict the sample to corn, wheat, rice,
and soybeans respectively. In A4e and A4f the sample includes all crops and in A4f country fixed effects are removed
from the regression equation. The dependent variable is log of output per acre. The coefficient estimates and standard
errors are noted at the bottom of each sub-figure.
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Figure A5: Falsification Test: CPP Mismatch with All Countries and Output (2000s)

(a) Unconditional
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(b) Conditional on CPP Mismatch with the US
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Notes: This figure displays histograms of the coefficient estimates of the relationship between CPP mismatch with each
country separately and log of crop-level output. In A5a, CPP mismatch with each country is included on the right hand
side of the regression alone (along with crop and country fixed effects) and A5b, CPP mismatch with the frontier is also
included in the regression.

Figure A6: CPP Mismatch and Agricultural Output: Brazil and India Separately

(a) India (𝑁 = 384)
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(b) Brazil (𝑁 = 1, 052)
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Notes: This figure displays binned partial correlation plots, after absorbing crop and state fixed effects, of our estimates
of Equation (16), separately for India (A6a), where we estimate 𝛽 = −9.85 (3.59), and Brazil (A6b), where we estimate
𝛽 = −13.83 (2.16).
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Figure A7: Growth in Patented Agricultural Technologies, Europe vs. the United States
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Notes: Total number of patented agricultural technologies (i.e., in CPC class A01) in each five year
period, comparing patents with assignees in the US to patents with assignees in the modern EU (as
of 2018). Bars are the number of patents issued in the five year bin noted on the horizontal axis.

Figure A8: Falsification Test: CPP Mismatch with All Countries and Output Growth (1990s-2010s)
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Notes: This figure displays histograms of the coefficient estimates of the relationship between CPP mismatch with each
country separately and log of crop-level output change between the 1990s and the 2010s. The effect of CPP mismatch
with the US is marked with a dotted line. The implied 𝑝-values from this permutation test is 𝑝 = 0.004.
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Figure A9: Causal Effects of Inappropriateness, Against Different Baselines
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Notes: The graphs plot the increase in average productivity (left) and decrease in productivity disparities (right) due to
inappropriateness, relative to different baseline scenarios parameterized by 𝜔.
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Figure A10: Sensitivity Analysis of Counterfactual Experiment
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Figure A11: Causal Effects of Inappropriateness: CPP and Agro-Climatic Mismatch
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Notes: This figure recreates Figure 7 under an experiment that removes inappropriateness due to both CPP mismatch and
Agro-Climatic mismatch. The left graph is a histogram of productivity losses from inappropriateness across countries.
The right graph is a scatterplot of productivity losses against observed productivity. The line is a best-fit linear regression
across countries (slope = −0.031, robust SE = 0.005). In each plot, colors indicate continents.
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Figure A12: Growth in Patented Agricultural Technologies, BRIC vs. the United States
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Notes: Total number of patented agricultural technologies (i.e., in CPC class A01) in each five year period, comparing
patents with assignees in the US to patents with assignees in Brazil, Russia, India, or China, from one of the five major
patent offices (USPTO, WIPO, EPO, JPO, KIPO). Bars are the number of patents issued in the five year bin noted on the
horizontal axis.
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Table A1: Correlation Matrix: All Ecological Mismatch Measures

Difference	in: CPPs Temp. Precip. Elevation Rugged.
Soil	Clay	
Content

Soil	Silt	
Content

Coarse	
Frag.	

Content
Soil	pH

Growing	
Season	
Length

Available	
Water	
Capacity

CPPs 1.0000
Temp. 0.2356 1.0000
Precip. 0.1061 0.2121 1.0000
Elevation 0.1578 0.0104 -0.0405 1.0000
Rugged. 0.1726 -0.0382 0.05 0.5052 1.0000
Soil	Clay	Content 0.0374 0.1602 0.146 -0.0074 -0.0096 1.0000
Soil	Silt	Content 0.1807 0.3564 0.0236 0.0402 -0.1209 0.0966 1.0000
Soil	Coarse	Fragement	Content 0.1045 0.0697 0.0188 0.3407 0.5595 -0.0999 -0.1013 1.0000
Soil	pH 0.0793 0.0829 0.4994 -0.0082 0.0128 0.1087 0.0326 -0.0001 1.0000
Growing	Season	Length 0.084 0.1186 0.5092 -0.0121 0.009 0.0216 0.0275 0.0001 0.4116 1.0000
Available	Water	Capacity 0.1375 0.1829 0.099 0.0126 -0.0466 0.3531 0.3893 -0.0966 0.0906 0.0665 1.0000
Notes: 	This	table	presents	a	correlation	matrix	among	all	individual	measures	of	ecological	distance	to	the	frontier	including	CPP	distance	to	the	
frontier.	The	additional	characteristics	are:	temperature,	precipitation,	elevation,	ruggedness,	soil	clay	content,	soil	silt	content,	soil	coarse	
fragement	content,	soil	pH,	growing	season	length,	and	available	water	capacity.	Each	cell	reports	a	pairwise	correlation	coefficient.

Table A2: Patenting Activity Directed Toward Local CPPs

(1) (2) (3)

CPP-Specific	

Patents	

(asinh)

Any	CPP-

Specific	

Patent	(0/1)

log	CPP-

Specific	

Patents

Local	CPP 0.0972*** 0.0479*** 0.181***

(0.0288) (0.0106) (0.0635)

Country	Fixed	Effects Yes Yes Yes

CPP	Fixed	Effects Yes Yes Yes

Observations 492,422 492,422 8,557

R-squared 0.211 0.202 0.557

Notes: The	unit	of	observation	is	a	CPP-by-country	pair.	The	dependent	variable	is	the	
number	of	patents	registered	to	inventors	in	the	country	and	with	the	CPP's	scientific	name	
in	the	title,	abstract,	or	patent	description.	Standard	errors,	clustered	by	country	and	CPP,	are	
included	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A3: Patenting Activity Directed Toward Local CPPs: Larger Effects in Rich Countries

(1) (2) (3) (4) (5) (6)

CPP-Specific	
Patents	
(asinh)

Any	CPP-
Specific	

Patent	(0/1)

log	CPP-
Specific	
Patents

CPP-Specific	
Patents	
(asinh)

Any	CPP-
Specific	

Patent	(0/1)

log	CPP-
Specific	
Patents

Local	CPP 0.0720*** 0.0395*** 0.142* 0.147*** 0.0679*** 0.172***
(0.0242) (0.00887) (0.0711) (0.0418) (0.0138) (0.0521)

Local	CPP	x	United	States	(0/1) 1.002*** 0.334*** 0.394***
(0.0274) (0.0108) (0.0825)

Local	CPP	x	log	per-capita	GDP	(pre-period) 0.0860*** 0.0366*** 0.0492
(0.0294) (0.0101) (0.0593)

Country	Fixed	Effects Yes Yes Yes Yes Yes Yes
CPP	Fixed	Effects Yes Yes Yes Yes Yes Yes
Observations 492,422 492,422 8,557 364,144 364,144 8,478
R-squared 0.233 0.214 0.559 0.240 0.228 0.557
Notes: The	unit	of	observation	is	a	CPP-by-country	pair.	The	dependent	variable	is	the	number	of	patents	registered	to	inventors	in	
the	country	and	with	the	CPP's	scientific	name	in	the	title,	abstract,	or	patent	description.	GDP	is	computed	at	the	country	level	from	
1990-2000	and	normalized	by	the	global	mean.	Standard	errors,	clustered	by	country	and	CPP,	are	included	in	parentheses	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A4: Global Bias of Technology Development: Crop-by-Country Estimates

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

asinh(Local	Area) 0.227*** 0.213*** 0.209*** 0.204*** 0.204*** 0.155***
(0.0125) (0.00986) (0.0112) (0.00977) (0.00982) (0.00842)

asinh(Global	Area) 0.0565*** -0.0451 -0.0155 -0.0551
(0.0208) (0.0540) (0.0310) (0.0459)

asinh(GDP-Weighted	Area) 0.0925 0.0512
(0.0606) (0.0620)

asinh(IP-Weighted	Area) 0.0814*** 0.0625*
(0.0309) (0.0369)

Country	Fixed	Effects Yes Yes Yes Yes Yes Yes
Crop	Fixed	Effects No No No No No Yes
Observations 6,758 6,758 6,758 6,758 6,758 6,758
R-squared 0.495 0.501 0.505 0.506 0.507 0.600

asinh(BioTech	Since	2000)

Notes: The	unit	of	observation	is	a	crop-by-country	pair.	The	dependent	variable	is	the	number	of	
varieties	developed	in	the	country	for	the	crop	since	2000.	Standard	errors,	clustered	by	crop,	are	
included	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A5: CPP Mismatch Inhibits International Technology Transfer: Sensitivity Analysis

(1) (2) (3) (4) (5) (6) (7)

CPP	Mismatch	(0-1) -0.0605** -0.120** -0.0848*** -0.0509** -0.0556** -0.0434** -0.0486***
(0.0241) (0.0481) (0.0258) (0.0231) (0.0222) (0.0189) (0.0169)

Jaccard	(1900,	1901)	Distance	Metric ✓
Broad	CPP	Presence	Classification ✓
Control	for	bilaterial	crop-level	trade ✓
Control	for	log	bilaterial	distance	x	Crop	FE ✓
Exclude	country	pairs	<1000km	apart ✓
Exclude	country	pairs	<2000km	apart ✓
Mean	of	CPP	Distance	Metric 0.423 0.327 0.413 0.423 0.423 0.423 0.423
Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Pair	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Observations 204,287 204,287 204,345 204,287 189,302 185,344 156,007
R-squared 0.439 0.439 0.439 0.442 0.461 0.405 0.372

(1) (2) (3) (4) (5) (6) (7)

CPP	Mismatch	(0-1) -0.0624** -0.113** -0.0848*** -0.0528** -0.0572** -0.0385** -0.0443***
(0.0235) (0.0467) (0.0258) (0.0227) (0.0220) (0.0186) (0.0161)

CPP	Mismatch	(0-1) -0.0275** -0.0570** -0.0373*** -0.0226** -0.0289*** -0.0204** -0.0239***
(0.0106) (0.0218) (0.0119) (0.00998) (0.0108) (0.00855) (0.00821)

CPP	Mismatch	(0-1) -1.202*** -0.937* -0.935** -1.198*** -1.247*** -1.888*** -1.955***
(0.386) (0.523) (0.363) (0.390) (0.444) (0.502) (0.666)

Jaccard	(1900,	1901)	Distance	Metric ✓
Broad	CPP	Presence	Classification ✓
Control	for	bilateral	crop-level	trade ✓
Control	for	log	bilateral	distance	x	Crop	FE ✓
Exclude	country	pairs	<1000km	apart ✓
Exclude	country	pairs	<2000km	apart ✓
Mean	of	CPP	Distance	Metric 0.423 0.327 0.413 0.423 0.423 0.423 0.423
Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Pair	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Notes:	 The	unit	of	observation	is	a	crop-origin-destination.	The	dependent	variable	is	noted	in	the	header	of	each	panel	and	the	
distance	metric,	sample	restriction,	and	control	set	included	in	each	specification	is	noted	at	the	bottom	of	each	column.	Standard	
errors	are	double-clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	(asinh)	Biotechnology	Transfers

Panel	A:	Dependent	Variable	is	(asinh)	Biotechnology	Transfers

Panel	B:	Dependent	Variable	is	Any	Biotechnology	Transfer	(0/1)

Panel	C:	Dependent	Variable	is	log	Biotechnology	Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	Specification	details	are	noted	at	the	bottom	of	each	column.		Standard	
errors	are	double-clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A6: Agro-climatic Mismatch and Technology Transfer

(1) (2) (3)

CPP	Mismatch	(0-1) -0.0783** -0.0737** -0.0752**
(0.0314) (0.0309) (0.0311)

Mismatch	in:
Temperature -0.0107*

(0.00619)
Precipitation -0.0141*

(0.00807)
Elevation -0.00589*

(0.00311)
Ruggedness -0.000652

(0.00246)
Soil	Clay	Content -0.00596

(0.00568)
Soil	Silt	Content 0.00342

(0.00575)
Soil	Coarse	Fragment	Content 0.000883

(0.00318)
Soil	pH -0.00825**

(0.00355)
Growing	Season	Length -0.00453

(0.00519)
Available	Water	Capacity -0.00561

(0.00466)
Overall	Agro-Climatic	Mismatch -0.0412***

(0.0129)

p-value	joint	significance - 0.007 -
Crop-by-Origin	Fixed	Effects Yes Yes Yes
Crop-by-Destination	Fixed	Effects Yes Yes Yes
Country	Pair	Fixed	Effects Yes Yes Yes
Observations 153,038 153,026 153,038
R-squared 0.464 0.464 0.464

Dependent	Variable	is	(asinh)	
Biotechnology	Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	Mismatch	in	agro-
climatic	features	is	estimated	by	first	calcualting	the	value	of	each	
characteristic	in	the	land	area	devoted	to	each	crop	in	each	country,	as	
recorded	by	the	EarthStat	database.	The	agro-climatic	index	in	column	3	is	
constructed	as	a	sum	of	the	normalized	values	of	the	characteristics	listed	in	
column	2.	Standard	errors	are	double-clustered	by	origin	and	destination	
and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

37



Table A7: CPP Mismatch with Frontier Countries and Technology Transfer: All Margins

(1) (2) (3) (4)

Frontier	defined	as: United	States
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Mismatch	(0-1) -0.0571** -0.0453** -0.0330 -0.0207

(0.0216) (0.0215) (0.0199) (0.0196)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.392*** -1.237*** -1.076*** -1.076***

(0.0313) (0.290) (0.249) (0.249)

Observations 204,287 204,287 204,287 204,287

R-squared 0.439 0.442 0.444 0.444

CPP	Mismatch	(0-1) -0.0241** -0.0229** -0.0181* -0.0136

(0.00956) (0.00986) (0.00917) (0.00884)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.254*** -0.332*** -0.343*** -0.322***

(0.0142) (0.0699) (0.0623) (0.0535)

Observations 204,287 204,287 204,287 204,287

R-squared 0.383 0.384 0.385 0.385

CPP	Mismatch	(0-1) -1.161*** -1.084*** -1.154*** -0.852**

(0.364) (0.350) (0.322) (0.381)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.698 -0.694 -0.173 -0.892**

(1.248) (0.423) (0.503) (0.437)

Observations 5,791 5,791 5,791 5,791

R-squared 0.797 0.797 0.797 0.797

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes

(1) (2) (3) (4)

Frontier	defined	as: United	States
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Mismatch	(0-1) -0.0571** -0.0453** -0.0330 -0.0207

(0.0216) (0.0215) (0.0199) (0.0196)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.392*** -1.237*** -1.076*** -1.076***

(0.0313) (0.290) (0.249) (0.249)

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes

Observations 204,287 204,287 204,287 204,287

R-squared 0.439 0.443 0.444 0.444

(1) (2) (3)

Frontier	defined	as:
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Distance	(0-1) -0.0429* -0.0302 -0.0178

(0.0217) (0.0198) (0.0194)

CPP	Distance	(0-1)	x	Frontier	(0/1) -1.251*** -1.091*** -0.972***

(0.292) (0.250) (0.216)

Crop-by-Origin	Fixed	Effects Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes

Observations 204,287 204,287 204,287

R-squared 0.443 0.444 0.444

Panel	A:	Dependent	Variable	is	(asinh)	Biotech	Transfers

Panel	B:	Dependent	Variable	is	Any	Biotech	Transfer	(0/1)

Panel	C:	Dependent	Variable	is	log	Biotech	Transfers

Dependent	Variable	is	(asinh)	Biotech	

Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	secification	is	noted	
at	the	to	of	each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-

clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	secification	is	noted	at	the	to	of	
each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-clustered	by	origin	and	

destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	(asinh)	Biotech	Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	specification	is	noted	at	the	top	of	
each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-clustered	by	origin	and	

destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A8: CPP Mismach Inhibits Biotechnology Adoption in Africa

(1) (2) (3) (4) (5) (6)

Panel	A:	CPP	Mismach	with	the	Estimated	Frontier	Set
CPP	Mismatch	(0-1) -0.321*** -0.242*** -0.237*** -0.157*** -0.227*** -0.237***

(0.0793) (0.0805) (0.0812) (0.0563) (0.0793) (0.0812)

Observations 114,605 114,601 114,601 103,968 114,601 114,601
R-squared 0.213 0.246 0.247 0.235 0.246 0.246

CPP	Mismatch	(0-1) -0.220*** -0.186*** -0.185*** -0.147*** -0.205*** -0.314***
(0.0635) (0.0610) (0.0614) (0.0511) (0.0689) (0.0870)

Observations 115,397 115,393 115,393 104,623 115,393 115,393
R-squared 0.213 0.246 0.247 0.235 0.247 0.247
Quadratic	Polynomial	in	Lat	and	Lon ✓ ✓ ✓ ✓
log	Area-Weighted	Estimates ✓
Broad	CPP	Presence	Classification ✓
Jaccard	(1900,	1901)	Mismatch	Metric ✓
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes - - - - -
State	Fixed	Effects No Yes Yes Yes Yes Yes

(1) (2) (3) (4) (5) (6)

CPP	Mismatch	(0-1) -0.220*** -0.186*** -0.185*** -0.147*** -0.205*** -0.314***
(0.0635) (0.0610) (0.0614) (0.0511) (0.0689) (0.0870)

Observations 115,397 115,393 115,393 104,623 115,393 115,393
R-squared 0.213 0.246 0.247 0.235 0.247 0.247

Panel	B:	CPP	Mismach	with	the	Estimated	Frontier	Set
CPP	Mismatch	(0-1) -0.321*** -0.242*** -0.237*** -0.157*** -0.227*** -0.237***

(0.0793) (0.0805) (0.0812) (0.0563) (0.0793) (0.0812)

Observations 114,605 114,601 114,601 103,968 114,601 114,601
R-squared 0.213 0.246 0.247 0.235 0.246 0.246
Quadratic	Polynomial	in	Lat	and	Lon ✓ ✓ ✓ ✓
log	Area-Weighted	Estimates ✓
Broad	CPP	Presence	Classification ✓
Jaccard	(1900,	1901)	Mismatch	Metric ✓
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes - - - - -
State	Fixed	Effects No Yes Yes Yes Yes Yes

(1) (2) (3) (4) (5) (6)

CPP	Mismatch	(0-1) -0.321*** -0.242*** -0.237*** -0.157*** -0.227*** -0.237***
(0.0793) (0.0805) (0.0812) (0.0563) (0.0793) (0.0812)

Quadratic	Polynomial	in	Lat	and	Lon ✓ ✓ ✓ ✓
log	Area-Weighted	Estimates ✓
Broad	CPP	Presence	Classification ✓
Jaccard	(1900,	1901)	Mismatch	Metric ✓
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes - - - - -
State	Fixed	Effects No Yes Yes Yes Yes Yes
Observations 114,605 114,601 114,601 103,968 114,601 114,601
R-squared 0.213 0.246 0.247 0.235 0.246 0.246

Dependent	Variable	is	Improved	Seed	Use	(=1)

Panel	B:	CPP	Mismatch	with	the	US

Notes: 	The	unit	of	observation	is	a	plot.	In	Panel	A,		CPP	mismatch	is	estimated	using	the	frontier	set	selected	from	the	UPOV	
data,	and	in	Panel	B	it	is	estimated	as	CPP	mismatch	with	the	US.	The	controls	included	in	each	specification,	as	well	as	the	
mismatch	metric	when	the	baseline	measure	is	not	used,	are	noted	at	the	bottom	of	each	column.	Standard	errors	are	
clustered	by	crop-country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes: 	The	unit	of	observation	is	a	plot.	The	controls	included	in	each	specification,	as	well	as	the	mismatch	metric	when	the	
baseline	measure	is	not	used,	are	noted	at	the	bottom	of	each	column.	Standard	errors	are	clustered	by	crop-country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes: 	The	unit	of	observation	is	a	plot.	In	Panel	A,		CPP	mismatch	with	the	frontier	is	estimated	as	CPP	mismatch	with	the	US	
and	in	Panel	B	it	is	estimated	using	the	frontier	set	selected	from	the	UPOV	data.	The	controls	included	in	each	specification,	
as	well	as	the	mismatch	metric	when	the	baseline	measure	is	not	used,	are	noted	at	the	bottom	of	each	column.	Standard	
errors	are	clustered	by	crop-country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	Improved	Seed	Use	(=1)

Panel	A:	CPP	Mismatch	with	the	US

Dependent	Variable	is	Improved	Seed	Use	(=1)

Table A9: CPP Mismatch Effects and Innovation

(1) (2)

Dependent	Variable:
log(BioTech	
Developed)

IP	Protection	
(0/1)

βℓ -0.584*** -0.134***
(0.159) (0.0173)

Observations	(Countries) 59 242
R-squared 0.173 0.250
Notes:	The	unit	of	observation	is	a	country.	log(BioTech	Developed)	is	the	(log	of	the)	
number	of	unique	varieties	developed	in	the	country	from	2000-2018.	IP	Protection	
(0/1)	is	an	indicator	variable	that	equals	one	if	a	country	had	UPOV	compliant	IP	
protection	for	plant	biotechnology	by	2000.	βℓ		refers	to	the	coefficient	estimate	of	the	
relationship	between	CPP	mismatch	with	country	ℓ	and	output.	Both	regressions	are	
weighted	by	the	inverse	of	the	standard	error	of	the	estiamte	of	βℓ.		Robust	standard	
errors	are	reported	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A10: CPP Mismach Reduces Agricultural Output: Crop × Continent Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -8.780*** -8.198*** -6.999*** -6.385*** -8.809*** -9.831*** -8.780*** -8.198***
(0.769) (0.742) (0.595) (0.614) (1.124) (2.608) (0.769) (0.742)

log(FAO-GAEZ-Predicted	Output) 0.273*** 0.239***
(0.0770) (0.0704)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Crop	x	Continent	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,631 2,334 6,696 5,903 6,844 2,334 6,920 6,069
R-squared 0.679 0.689 0.680 0.694

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -8.809*** -9.831*** -8.780*** -8.198*** -8.780*** -8.198*** -6.999*** -6.385***
(1.124) (2.608) (0.769) (0.742) (0.769) (0.742) (0.595) (0.614)

log(FAO-GAEZ-Predicted	Output) 0.239*** 0.273***
(0.0704) (0.0770)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Crop	x	Continent	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,844 2,334 6,920 6,069 6,631 2,334 6,696 5,903
R-squared 0.680 0.694 0.679 0.689

Dependent	Variable	is	log	Output

CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	mismatch	with	the	US	and	columns	5-8		use	CPP	mismatch	
with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	
double	LASSO	estimates.	Country	and	crop-by-continent	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	
set	in	thet	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	countries	in	
which	they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	335.	The	set	of	
ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growing	season	days,	soil	acidity,	soil	clay	content,	soil	silt	
content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output

CPP	Mismatch	with	the	USCPP	Mismatch	with	the	Estimated	Frontier

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	mismatch	with	the	estimated	set	of	technological	leader	
countries	and	columns	5-8		use	CPP	mismatch	with	the	US.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	
post	double	LASSO	estimates.	Country	and	crop-by-continent	fixed	effects	are	included	in	all	specifications,	and	included	in	the	
amelioration	set	in	thet	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	
countries	in	which	they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	335.	
The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growing	season	days,	soil	acidity,	soil	clay	
content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	country	
and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A11: CPP Mismatch and Agricultural Output: Additional Controls

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -6.963*** -6.838*** -7.351*** -7.206*** -6.895*** -7.172*** -7.337*** -7.250***
(0.934) (0.879) (1.029) (1.065) (0.980) (1.011) (1.058) (1.743)

Observations 6,693 6,458 6,227 4,765 6,499 5,838 3,631 2,864
R-squared 0.600 0.632 0.611 0.633 0.613 0.623 0.669 0.781

CPP	Mismatch	(0-1) -9.122*** -8.849*** -9.573*** -9.323*** -9.186*** -9.661*** -10.10*** -10.83***
(1.152) (1.105) (1.217) (1.345) (1.221) (1.316) (1.295) (2.115)

Observations 6,915 6,678 6,433 4,949 6,719 6,032 3,729 2,946
R-squared 0.600 0.632 0.612 0.634 0.614 0.626 0.671 0.786
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
log	Per	Capita	GDP	x	Crop	FE No Yes No No No No No Yes
Trade	Share	(%	GDP)	x	Crop	FE No No Yes No No No No Yes
Gini	Coefficient	x	Crop	FE No No No Yes No No No Yes
Share	Arable	Land	x	Crop	FE No No No No Yes No No Yes
log	Agricultural	Value	Added	x	Crop	FE No No No No No Yes No Yes
R&D	Share	(%	GDP)	x	Crop	FE No No No No No No Yes Yes

Dependent	Variable	is	log	Output

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	Panel	A	uses	CPP	mismatch	with	the	estimated	set	of	technological	leader	countries	
and	Panel	B	uses	CPP	mismatch	with	the	US.	Controls	included	in	each	specification	are	noted	at	the	bottom	of	the	column.	Standard	
errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	B:	CPP	Mismatch	with	the	Estimated	Frontier	Set

Panel	A:	CPP	Mismatch	with	the	US
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Table A12: Agro-climatic Mismatch and Agricultural Output

(1) (2) (3)

CPP	Mismatch	(0-1) -10.17*** -8.996*** -9.393***
(1.559) (1.425) (1.518)

Mismatch	in:
Temperature -0.582***

(0.155)
Precipitation -0.329*

(0.186)
Elevation 0.150

(0.0924)
Ruggedness -0.254*

(0.135)
Soil	Clay	Content 0.0649

(0.0969)
Soil	Silt	Content 0.0283

(0.123)
Soil	Coarse	Fragment	Content -0.323**

(0.134)
Soil	pH -0.0720

(0.106)
Growing	Season	Length 0.0681

(0.124)
Available	Water	Capacity -0.255**

(0.116)
Overall	Agro-Climatic	Mismatch -1.319***

(0.285)
- 0.000 -

Crop	Fixed	Effects Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes
Observations 5,285 5,270 5,285
R-squared 0.575 0.591 0.582

(1) (2)

CPP	Mismatch	(0-1) -7.511*** -6.682***
(1.361) (1.344)

Overall	Agro-Climatic	Mismatch -1.222***
(0.318)

Crop	Fixed	Effects Yes Yes
Country	Fixed	Effects Yes Yes
Observations 4,881 4,881
R-squared 0.574 0.580
Notes:	The	unit	of	observation	is	a	crop-country	pair.	Mismatch	in	agro-
climatic	features	is	estimated	by	first	calcualting	the	value	of	each	
characteristic	in	the	land	area	devoted	to	each	crop	in	each	country,	as	
recorded	by	the	EarthStat	database.	The	agro-climatic	index	is	constructed	
as	a	sum	of	the	normalized	values	of	the	individual	characteristics.		
Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output

Notes:	The	unit	of	observation	is	a	crop-country	pair.	Mismatch	in	agro-climatic	features	is	
estimated	by	first	calcualting	the	value	of	each	characteristic	in	the	land	area	devoted	to	
each	crop	in	each	country,	as	recorded	by	the	EarthStat	database.	The	agro-climatic	index	
in	column	3	is	constructed	as	a	sum	of	the	normalized	values	of	the	characteristics	listed	in	
column	2.		Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	
Output

Table A13: CPP Mismatch Reduces Area Harvested

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -7.139*** -7.020*** -7.200*** -5.837*** -9.517*** -12.08*** -9.541*** -7.855***
(0.941) (0.725) (0.437) (0.496) (1.212) (2.892) (0.595) (0.635)

log(FAO-GAEZ-Predicted	Output) 0.363*** 0.303***
(0.0487) (0.0768)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - p No Yes

Controls	in	LASSO	Pool 335 3935 - - 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,469 2,268 6,474 5,748 6,675 2,268 6,683 5,908
R-squared 0.609 0.603 0.612 0.612

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -9.517*** -12.08*** -9.541*** -7.855*** -7.139*** -7.020*** -7.200*** -5.837***
(1.212) (2.892) (0.595) (0.635) (0.941) (0.725) (0.437) (0.496)

log(FAO-GAEZ-Predicted	Output) 0.303*** 0.363***
(0.0768) (0.0487)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,675 2,268 6,683 5,908 6,469 2,268 6,474 5,748
R-squared 0.612 0.612 0.609 0.603

Dependent	Variable	is	log	Area	Harvested

CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	mismatch	with	the	US	and	columns	5-8		use	CPP	
mismatch	with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-
8	report	post	double	LASSO	estimates.	Country	and	crop	fixed	effects	are	included	in	all	specifications,	and	included	in	the	
amelioration	set	in	thet	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	
of	countries	in	which	they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	
is	335.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growing	season	days,	soil	acidity,	
soil	clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	
and	state	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Area	Harvested

CPP	Mismatch	with	the	USCPP	Mismatch	with	the	Estimated	Frontier

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	mismatch	with	the	estimated	set	of	technological	leader	
countries	and	columns	5-8		use	CPP	mismatch	with	the	US.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	
report	post	double	LASSO	estimates.	Country	and	crop	fixed	effects	are	included	in	all	specifications,	and	included	in	the	
amelioration	set	in	the	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	
of	countries	in	which	they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	
is	335.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growing	season	days,	soil	acidity,	
soil	clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	
and	state	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A14: CPP Mismatch Reduces Exports and Increases Price Volatility

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

CPP	Mismatch	(0-1) -7.136*** -5.386*** -0.415 0.364*** 0.212** 0.628*** 0.349**
(0.959) (0.877) (0.871) (0.101) (0.0978) (0.177) (0.176)

Observations 6,704 5,332 5,687 4,481 4,461 4,481 4,461
R-squared 0.600 0.535 0.649 0.243 0.262 0.662 0.668

CPP	Mismatch	(0-1) -9.285*** -8.768*** 1.269 0.523*** 0.317*** 1.026*** 0.671***
(1.199) (1.200) (1.295) (0.126) (0.109) (0.237) (0.224)

Observations 6,926 5,495 5,854 4,580 4,559 4,580 4,559
R-squared 0.599 0.531 0.647 0.244 0.263 0.661 0.667
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

CPP	Mismatch	(0-1) -9.285*** -8.768*** 1.269 0.523*** 0.317*** 1.026*** 0.671***
(1.199) (1.200) (1.295) (0.126) (0.109) (0.237) (0.224)

Observations 6,926 5,495 5,854 4,580 4,559 4,580 4,559
R-squared 0.599 0.531 0.647 0.244 0.263 0.661 0.667

CPP	Mismatch	(0-1) -7.136*** -5.386*** -0.415 0.364*** 0.212** 0.628*** 0.349**
(0.959) (0.877) (0.871) (0.101) (0.0978) (0.177) (0.176)

Observations 6,704 5,332 5,687 4,481 4,461 4,481 4,461
R-squared 0.600 0.535 0.649 0.243 0.262 0.662 0.668
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes

(1) (2) (3) (4) (5) (6) (7)

Baseline

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

CPP	Distance	(0-1) -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

Pathogen	Distance	to	the	US -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

Pathogen	Distance	to	the	US -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

Pathogen	Distance	to	the	US -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

Pathogen	Distance	to	the	US -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

Panel	B:	CPP	Mismatch	wih	the	Estimated	Frontier	Set

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	In	Panel	A,	CPP	mismatch	is	measured	as	CPP	mismatch	with	the	
estimated	set	of	technological	leader	countries	and	in	Panel	B	CPP	mismatch	is	measured	as	CPP	mismatch	with	the	US.	
The	dependent	variable	is	listed	at	the	top	of	each	column	and	control	set	listed	at	the	bottom.	Standard	errors	are	double-
clustered	by	crop	and	country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Trade Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Panel	A:	CPP	Mismatch	wih	the	US

Trade Producer	Price	Volatility

Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Trade

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	The	dependent	variable	is	listed	at	the	top	of	each	column	and	
control	set	listed	at	the	bottom.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.

Trade Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	CPP	Mismatch	wih	the	US

Panel	B:	CPP	Mismatch	wih	the	Estimated	Frontier	Set

Trade Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Trade Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Trade Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Table A15: Historical Green Revolution Breeding Sites

(1) (2)

Crop	 Site	Location

Wheat Mexico	(CIMMYT)
Maize Mexico	(CIMMYT)

Sorghum India	(ICRISAT)
Millet India	(ICRISAT)
Beans Colombia	(CIAT)
Potatoes Peru	(CIP)
Cassava Colombia	(CIAT)
Rice Philippines	(IRRI)

Green	Revolution	Breeding	Sites

Notes: 	Column	1	reports	the	crops	included	in	our	analysis	of	the	Green	
Revolution	and	column	2	reports	the	main	breeding	site	during	the	Green	
Revolution	for	each	crop,	along	with	the	corresponding	IARC.
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Table A16: Inappropriateness and the Green Revolution

(1) (2) (3) (4) (5)

	Δ	log	

Output	

	Δ	log	Area	

Harvested	

CPP	Mismatch	with	GR	Breeding	Centers -26.62*** -96.20*** -27.69*** -2.642** -2.501***

(9.155) (27.17) (9.492) (1.052) (0.881)

Crop	Fixed	Effects Yes Yes - - -

Country	Fixed	Effects Yes Yes Yes Yes Yes

Crop	x	Continent	Fixed	Effects - - Yes Yes Yes

Only	Rice,	Wheat,	and	Maize No Yes No No No

Observations 594 104 591 543 543

R-squared 0.406 0.677 0.471 0.419 0.419

Pct.	Modern	Variety	Adoption	

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	CPP	mismatch	for	each	crop	is	estimated	as	the	CPP	
distance	to	the	crop-specific	Green	Revolution	main	breeding	center.	All	columns	include	crop	and	country	
fixed	effects,	as	well	as	the	pre-period	value	of	the	dependent	variable,	and	columns	3-5	also	include	crop	by	
continent	fixed	effects.			In	columns	1-3,	the	dependent	variable	is	the	change	in	percent	(0-100)	land	area	
devoted	to	modern	varieties	between	1960	and	1980,	and	in	columns	4	and	5	the	dependent	variable	is	the	
change	in	log	output	and	log	area	harvested	respectively,	between	the	1960s	and	the	1980s.	Standard	errors	
are	double-clustered	by	country	and	crop-continent	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	
1%	levels.

Table A17: Inappropriateness and the Green Revolution: Timing and Geography

(1) (2) (3) (4) (5) (6) (7)

Sample: All	Africa All	South	
America

All	Asia All	
Europe

Time	period: 1960s-
1980s

1980s-
2000s

1990s-
2010s

1960s-
1980s

1960s-
1980s

1960s-
1980s

1960s-
1980s

CPP	Mismatch	with	GR	Breeding	Centers -2.642** -0.339 -0.544 -1.307 -5.758** -1.990 0.668
(1.052) (0.832) (0.783) (0.808) (1.903) (1.372) (1.516)

Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Crop	x	Continent	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Observations 543 540 538 277 83 207 118
R-squared 0.419 0.485 0.451 0.343 0.606 0.456 0.542

Dependent	Variable	is		Δ	log	Output	

Baseline	Sample

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	CPP	mismatch	for	each	crop	is	estimated	as	the	CPP	distance	to	
the	crop-specific	Green	Revolution	main	breeding	center.		All	columns	include	country	and	crop-by-continent	fixed	
effects,	as	well	as	the	pre-period	value	of	the	dependent	variable.	The	dependent	variable	is	the	change	in	log	of	crop	
output.	The	regression	sample	as	well	as	time	period	over	which	the	change	in	output	is	calculated	is	listed	at	the	top	
of	each	column.	Standard	errors	are	double-clustered	by	country	and	crop-continent	in	columns	1-3	and	by	country	in	
columns	4-7,	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A18: Growth of US Biotechnology and Changes in Global Production

(1) (2) (3) (4)

CPP	Mismatch	with	the	US -0.999* -0.974* -1.004** -1.044*
(0.520) (0.572) (0.502) (0.533)

CPP	Mismatch	with	the	EU 0.644 0.251 0.352 0.222
(0.512) (0.531) (0.529) (0.534)

Crop	Fixed	Effects Yes - Yes -
Country	Fixed	Effects Yes Yes Yes Yes
Crop	x	Continent	Fixed	Effects - Yes - Yes
p-value, 	Dist	US	-	Dist	EU 0.097 0.249 0.172 0.216
Observations 6,414 6,338 6,183 6,107
R-squared 0.281 0.366 0.262 0.353

	Δ	log	Output 	Δ	log	Area	Harvested	

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Both	CPP	mismatch	with	the	US	and	
CPP	mismatch	with	the	EU	are	included	in	all	specifications.	All	columns	include	crop	and	
country	fixed	effects,	as	well	as	the	pre-period	value	of	the	dependent	variable,	and	columns	
2	and	4	also	include	crop	by	continent	fixed	effects.	In	columns	1-2,	the	dependent	variable	
is	the	change	in	log	output	from	the	1990s	to	2010s	and	in	columns	3-4	it	is	the	change	in	
log	area	harvested	from	the	1990s	to	2010s.	Standard	errors	are	double-clustered	by	
country	and	crop	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A19: Growth of US Biotechnology and Changes in Global Production: Heterogeneity

(1) (2) (3) (4)

CPP	Mismatch	with	the	US -0.634** -0.798** -0.819*** -0.839***
(0.299) (0.316) (0.272) (0.305)

CPP	Mismatch	with	the	US		x		Major	US	Field	Crop -1.161 -2.374** -2.208** -3.877***
(0.898) (1.091) (0.986) (1.394)

Crop	Fixed	Effects Yes - Yes -
Country	Fixed	Effects	x	Major	US	Field	Crop	Indicator Yes Yes Yes Yes
Crop	x	Continent	Fixed	Effects No Yes No Yes
Observations 6,380 6,304 6,137 6,061
R-squared 0.312 0.393 0.292 0.379

	Δ	log	Output 	Δ	log	Area	
Harvested	

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	CPP	mismatch	with	the	US	is	included	in	all	specifications.	
All	columns	include	crop	and	country	fixed	effects,	as	well	as	the	pre-period	value	of	the	dependent	variable,	and	
columns	2	and	4	also	include	crop	by	continent	fixed	effects.	In	columns	1-2,	the	dependent	variable	is	the	change	
in	log	output	from	the	1990s	to	2010s	and	in	columns	3-4	it	is	the	change	in	log	area	harvested	from	the	1990s	to	
2010s.	The	major	US	field	crops	are	corn,	wheat,	soybeans,	and	cotton.	Standard	errors	are	double-clustered	by	
country	and	crop	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A20: CPP Mismatch Without Invasive Species: Baseline Estimates

(1) (2) (3) (4) (5)
Technology	
Adoption Output

Dependent	Variable:
asinh	
Biotech	
Transfer

Any	Biotech	
Transfer	

log	Biotech	
Transfer

Improved	
Seed	(=1)

log	Output

CPP	Mismatch	Without	Invasive	Species -0.0712*** -0.0304*** -0.5451
(0.0241) (0.0096) (0.34)

CPP	Mismatch	with	the	Frontier	Without	Invasive	Species -0.248*** -6.335***
-0.0743 (0.948)

Crop-by-Origin	Fixed	Effects Yes Yes Yes - -
Crop-by-Destination	Fixed	Effects Yes Yes Yes - -
Country	Pair	Fixed	Effects Yes Yes Yes - -
Country	Fixed	Effects - - - Yes Yes
Crop	Fixed	Effects - - - Yes Yes
Observations 202,154 202,154 5,752 115397 6,858
R-squared 0.4397 0.3831 0.7965 0.213 0.584

0.0241 0.0096 0.34

Technology	Transfer

Notes:	 The	unit	of	observation	is	a	crop-origin-destination	in	columns	1-3,	a	farm-crop	pair	in	column	4,	and	a	crop-country	pair	
in	column	5.	Standard	errors	are	double-clustered	by	origin	and	destination	in	columns	1-3,	clustered	by	crop-country	in	column	
4,	and	double	clustered	by	crop	and	country	in	column	5.	In	all	cases,	the	independent	variable	is	constructed	after	excluding	
invasive	CPPs.	The	fixed	effects	included	in	each	specification	are	noted	at	the	bottom	of	each	column.		*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.
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