Entry Barriers and Scale at Entry

Joonkyo Hong

The Pennsylvania State University

October 6, 2022

▶ How do entry barriers affect market structure?

- ▶ How do entry barriers affect market structure?
 - relevant for studying entry promotion measures

- ► How do entry barriers affect market structure?
 - relevant for studying entry promotion measures
 - traditional focus on # entrants

- How do entry barriers affect market structure?
 - relevant for studying entry promotion measures
 - traditional focus on # entrants

▶ But, entry is intensive: entrants differ in scale which is difficult to adjust later

- nursing homes: # beds
- theaters: # screens

- How do entry barriers affect market structure?
 - relevant for studying entry promotion measures
 - traditional focus on # entrants
- ▶ But, entry is intensive: entrants differ in scale which is difficult to adjust later
 - nursing homes: # beds
 - theaters: # screens
- Lower entry barriers' effect on resource uses is hard to detect w/o looking at scale choice
 - Lower entry barriers
 - alter the entry cost schedule over different scales
 - shift the scale dist.

- How do entry barriers affect market structure?
 - relevant for studying entry promotion measures
 - traditional focus on # entrants
- ▶ But, entry is intensive: entrants differ in scale which is difficult to adjust later
 - nursing homes: # beds
 - theaters: # screens
- Lower entry barriers' effect on resource uses is hard to detect w/o looking at scale choice
 - Lower entry barriers
 - alter the entry cost schedule over different scales
 - shift the scale dist.
 - Predicted resource uses on operating costs w/o scale choice would be
 - Iower than actual if more larger-scaled entrants
 - higher than actual if more smaller-scaled entrants

Theaters by Screen Counts in South Korea in 2013 (1 yr before land-use regulatory reforms)

Figure: Number of theaters by screen counts: 2013

Theaters by Screen Counts in South Korea in 2018 (3 yrs after land-use regulatory reforms)

Figure: Number of theaters by screen counts: 2018

invited more theaters; attracted middle-scaled theaters (5-7 screens)

Looking at Scale Choice Is Important

▶ The typical entry model looks at *#* entrants (i.e, theaters), ignoring

- the influence of the reforms (reduction in entry costs) on
 - the screen choice upon entry
 - the shift of screen dist

- its subsequent effect on resource uses on fixed operating and sunk entry costs

Looking at Scale Choice Is Important

▶ The typical entry model looks at *#* entrants (i.e, theaters), ignoring

- the influence of the reforms (reduction in entry costs) on
 - the screen choice upon entry
 - the shift of screen dist
- its subsequent effect on resource uses on fixed operating and sunk entry costs
- Exploiting the land-use regulatory reforms, this paper
 - measures the change in entry costs, accounting for screen choice upon theater opening
 - measures the response of market outcomes (screen dist. and net profit)
 - showcases that ignoring scale choices can generate a qualitatively different counterfactual

- 1. Document that the regulatory reforms particularly attract mid-plex (5-7) theaters
 - accounting for other explanatory variables (demand and cost shifters, time trend)

- 1. Document that the regulatory reforms particularly attract mid-plex (5-7) theaters
 - accounting for other explanatory variables (demand and cost shifters, time trend)
- 2. Estimate a dynamic game of store-entry (theater) and discrete scale choice (screens)
 - estimate sunk entry cost schedules over screens
 - recover pre- and post-reforms entry cost schedules

- 1. Document that the regulatory reforms particularly attract mid-plex (5-7) theaters
 - accounting for other explanatory variables (demand and cost shifters, time trend)
- 2. Estimate a dynamic game of store-entry (theater) and discrete scale choice (screens)
 - estimate sunk entry cost schedules over screens
 - recover pre- and post-reforms entry cost schedules
- 3. Counterfactual exercise to measure the reduced entry costs' effect:
 - # theaters; screen distribution
 - industry net profits

- 1. Document that the regulatory reforms particularly attract mid-plex (5-7) theaters
 - accounting for other explanatory variables (demand and cost shifters, time trend)
- 2. Estimate a dynamic game of store-entry (theater) and discrete scale choice (screens)
 - estimate sunk entry cost schedules over screens
 - recover pre- and post-reforms entry cost schedules
- 3. Counterfactual exercise to measure the reduced entry costs' effect:
 - # theaters; screen distribution
 - industry net profits
- 4. Re-do 3 using the typical dynamic entry model
 - learn the consequence of ignoring the screen decision upon theater opening

- 1. A salient increase in the number of mid-plex theaters relative to other types
 - the reforms have attracted mid-plex theaters by 9% than others

- 1. A salient increase in the number of mid-plex theaters relative to other types
- 2. The reforms have disproportionately shifted the per-screen sunk entry costs
 - per-screen entry costs drop by 32% and 27% for mid- and mega-plex (>=8)
 - the minimum efficient entry scale changes from mega-plex to mid-plex

1. A salient increase in the number of mid-plex theaters relative to other types

- 2. The reforms have **disproportionately** shifted the *per-screen* sunk entry costs
- 3. The disproportionate cost reductions reduce industry net profits by 5.6%
 - # theaters \uparrow by 20%
 - Δ proportion of mini-, mid-, mega-plex theaters: -34%, 26%, -14%
 - industry's payments on entry costs \downarrow 12%
 - resource uses on fixed operating costs \uparrow 14%
 - Δ variable profit ≈ 0 as theaters steal business from each other

- 1. A salient increase in the number of mid-plex theaters relative to other types
- 2. The reforms have **disproportionately** shifted the *per-screen* sunk entry costs
- 3. The disproportionate cost reductions reduce industry net profits by 5.6%
- 4. The resulting loss of net profits is **not uncovered** by the typical entry model
 - ignoring the shift of screen distribution
 - under-predicting increases in fixed operating cost; over-predicting decreases in entry costs
 - incorrectly predicting that the reduced entry costs increases net profit by 27.3%

Contributions

- ► To literature on discrete entry:
 - usually restricting strategy space to the extensive-margin dimension
 - My work: highlighting the limitation of status quo

Contributions

- ► To literature on discrete entry:
 - usually restricting strategy space to the extensive-margin dimension
 - My work: highlighting the limitation of status quo
- ▶ To literature on entry promotion measures and policymakers:
 - presuming removing an entry barrier is desirable
 - My work: highlighting the potential costs resulting from business-stealing effects

Outline of Talk

Data & Facts

Industry Model

Estimation & Results

The Impact of Reduced Sunk Entry Costs

Concluding Remarks

Data & Facts

Industry Model

Estimation & Results

The Impact of Reduced Sunk Entry Costs

Concluding Remarks

- ► The typical chain industry
 - multi-store oligopoly: 3 chains (CGV, Lotte Cinema, Megabox)
 - geographically concentrated detail
 - $-\,$ the scope of service differentiation is limited
 - ticket prices are nearly fixed detail

- The typical chain industry
 - multi-store oligopoly: 3 chains (CGV, Lotte Cinema, Megabox)
 - geographically concentrated detail
 - the scope of service differentiation is limited
 - ticket prices are nearly fixed detail
- Screens are primary sources of profitability:
 - a broader selection of movies or showing popular movies in multiple timeslots.
 - Rao and Hartmann (2015), Orhun et al. (2016), Yang et al. (2021).

- The typical chain industry
 - multi-store oligopoly: 3 chains (CGV, Lotte Cinema, Megabox)
 - geographically concentrated detail
 - the scope of service differentiation is limited
 - ticket prices are nearly fixed detail
- Screens are primary sources of profitability:
 - a broader selection of movies or showing popular movies in multiple timeslots.
 - Rao and Hartmann (2015), Orhun et al. (2016), Yang et al. (2021).
- Screen counts of theater opening is determined upon entry and fixed:
 - post-entry adjustments are almost infeasible

- The typical chain industry
 - multi-store oligopoly: 3 chains (CGV, Lotte Cinema, Megabox)
 - geographically concentrated detail
 - the scope of service differentiation is limited
 - ticket prices are nearly fixed detail
- Screens are primary sources of profitability:
 - a broader selection of movies or showing popular movies in multiple timeslots.
 - Rao and Hartmann (2015), Orhun et al. (2016), Yang et al. (2021).
- Screen counts of theater opening is determined upon entry and fixed:
 - post-entry adjustments are almost infeasible
- Underwent a series of land-use regulatory reforms in 2014
 - executive orders by the Ministry of Land and Transportation in Feb and Sep 2014
 - removed stringent administrative processes
 - relaxed zoning restrictions in urban area

Data Sources

- Theater-Time information
 - scrapped from Korea Box Office Information System
 - name, address, screen, chain affiliations, opening/closing dates
 - daily box office schedule with ticket prices

Data Sources

- Theater-Time information
 - scrapped from Korea Box Office Information System
 - name, address, screen, chain affiliations, opening/closing dates
 - daily box office schedule with ticket prices
- Market (municipality)-Time information
 - from Korean Statistical Information Service
 - market size: population
 - demand shifter: regional GDP per capita
 - cost shifter: commercial property prices

Data Sources

- Theater-Time information
 - scrapped from Korea Box Office Information System
 - name, address, screen, chain affiliations, opening/closing dates
 - daily box office schedule with ticket prices
- Market (municipality)-Time information
 - from Korean Statistical Information Service
 - market size: population
 - demand shifter: regional GDP per capita
 - cost shifter: commercial property prices
- Sample: fully balanced panel at the chain-market-time level
 - 3 chains, 131 municipalities, 2010H1-2018H2 (7,074 obs)
 - # of incumbent, entering, and exiting theaters by screen counts

Higher Turnover Rates Following the Reforms

Table: Entry and Exit Distribution (% of the sample)

	2010H1-2014H2	2015H1-2018H2
Entry	3.14%	4.25%
Exit	0.94%	1.24%
Unchanged	97.80%	94.51%
	-	

Note. The unit of measurement is firm-market-halfyear.

- ▶ Higher turnover rates are consistent with the reduced sunk entry costs
 - The reduced sunk entry costs encourages the entry of theaters
 - It increases the threat of potential entrant, increasing the exit of theaters as well

The Chainâs Theater Screen Choice Changed Following the Reforms

	2010H1-2014H2	2015H1-2018H2
Size profile of theater entries (%)		
Miniplex (screens less than 4)	15.45%	9.40%
Midplex (screens between 5 and 7)	52.85%	64.96%
Megaplex (screens more than 8)	31.71%	25.64%
Size profile of theater exits (%)		
Miniplex (screens less than 4)	40.54%	47.06%
Midplex (screens between 5 and 7)	56.76%	41.18%
Megaplex (screens more than 8)	2.70%	11.76%

Table: Size Profile of Theater Entries and Exits

- Suggesting the reform has affected the theater screen choices as well
- ► A model with extensive margin alone ignores this pattern

Do the Reforms Invite More Mid-plex Theaters?

- To confirm whether the entry of more mid-plex theaters is a result of the reforms
- In spirit of event study, scale category j, market m, half-year t,

$$n_{mt}^{(j)} = \theta_j + \theta_m + \theta_t + \sum_{k=-1}^{-8} \tau_k H_k D_j + \sum_{k=1}^{8} \tau_k H_k D_j + W'_{mt-1} \theta_w + u_{mt}^{(j)},$$

where

$$-n_{mt}^{(j)}$$
: # of j category theaters: $j \in \{midplex, others\}$

- $\theta_j, \theta_m, \theta_t$: scale, market, and time FEs
- W_{mt-1} : population, GDP, commercial property prices in m and in t-1
- D_j : dummy of midplex theaters
- H_k : dummy of k halfyears relative to 2014H2

Do the Reforms Invite More Mid-plex Theaters?

Diff. between midplex theaters and others

Summary of Descriptive Patterns

Descriptive patterns tell

1. The chains open theaters more frequently following the reforms (1.4pp $\uparrow)$

 \rightarrow suggesting a reduction in sunk entry costs

Summary of Descriptive Patterns

Descriptive patterns tell

- 1. The chains open theaters more frequently following the reforms (1.4pp \uparrow) \rightarrow suggesting a reduction in sunk entry costs
- 2. The screen distribution shift toward mid-plex following the reforms \rightarrow suggesting the reforms favored mid-plex scales with cost advantages
Summary of Descriptive Patterns

Descriptive patterns tell

- 1. The chains open theaters more frequently following the reforms (1.4pp \uparrow) \rightarrow suggesting a reduction in sunk entry costs
- 2. The screen distribution shift toward mid-plex following the reforms \rightarrow suggesting the reforms favored mid-plex scales with cost advantages
- But, they are silent about
 - 1. The magnitude of the reduction in sunk entry costs
 - 2. Economic implication of the resulting shift of industry screen distribution

Summary of Descriptive Patterns

Descriptive patterns tell

- 1. The chains open theaters more frequently following the reforms (1.4pp \uparrow) \rightarrow suggesting a reduction in sunk entry costs
- 2. The screen distribution shift toward mid-plex following the reforms \rightarrow suggesting the reforms favored mid-plex scales with cost advantages
- But, they are silent about
 - 1. The magnitude of the reduction in sunk entry costs
 - 2. Economic implication of the resulting shift of industry screen distribution
- Develop a dynamic oligopoly model to simulate market structure (# theaters & screen dist.) under the pre-reforms entry cost schedule

Data & Facts

Industry Model

Estimation & Results

The Impact of Reduced Sunk Entry Costs

Concluding Remarks

Environment

- Discrete time $t = 1, 2, 3, \dots, \infty$
- Independent local markets $m = 1, 2, \dots, M$
- Three chains i = 1, 2, 3
 - maximize NPV of net profits with beliefs over rivals' actions
 - by choosing screen counts of a theater opening/closing an existing theater
- Markov Perfect Nash Equilibrium

Publicly Observed State

Chains observe state s_{mt} containing

- own configuration $\vec{n}_{imt} = (n_{imt}^{(1)}, \dots, n_{imt}^{(J)})$
- rival configuration \vec{n}_{-imt}
- population, GDP per capita, and commercial property prices $(z_{1mt}, z_{2mt}, R_{mt})$

Flow Operating Profit

Reduced-form operating profits

$$\pi_{im}(s_{mt}) = k_{imt} \times (-FIXED_{im} - FIXED_RR_{mt} + z'_{mt}\lambda + \gamma_1k_{imt} + \gamma_2k_{-imt})$$

$$-k_{imt}=\sum_j n_{imt}^{(j)}$$
: total number of same-chain screens

-
$$k_{-imt} = \sum_{l \neq i} k_{lmt}$$
: total number of rival-chain screens

- FIXED_{im}: fixed costs (or baseline profits)
- Two trade-offs for opening a larger-scale theater
 - higher fixed costs (*FIXED_R*) vs. higher variable profits (λ)
 - cannibalization (γ_1) vs. business-stealing (γ_2)

Sunk Entry Costs

- Average *per-screen* sunk entry cost schedules $(SUNK_1, \ldots, SUNK_J)$
- Privately observed cost shock $\varepsilon_{imt} \sim G$
- Sunk costs for opening a *d*-screen theater (d > 0)

$$C(d, R_{mt}, \varepsilon_{imt}) = [d \times SUNK_d + d \times \varepsilon_{imt}] \times R_{mt}$$

• Closing a *d*-screen theater (d < 0)

$$C(d, R_{mt}, \varepsilon_{imt}) = d \times \varepsilon_{imt} \times R_{mt}$$

Flexible schedule admits both economies and diseconomies of entry scale

Transition

Transition of market configuration

$$n_{imt+1}^{(j)} = n_{imt}^{(j)} + \mathbb{I}_{\{d_{imt}=j\}} - \mathbb{I}_{\{d_{imt}=-j\}}$$

Transition of market demand and cost shifters

$$F_m(z_{mt+1}, R_{mt+1}|z_{mt}, R_{mt})$$

Dynamic Optimization

- Chain *i* takes public state *s* given; forms beliefs Ψ_i over rivals' decisions
- Chain *i*'s choice over a new theater's screens σ_i : a Markov strategy

Dynamic Optimization

- Chain *i* takes public state *s* given; forms beliefs Ψ_i over rivals' decisions
- Chain *i*'s choice over a new theater's screens σ_i : a Markov strategy
- The corresponding Bellman equation is given by

$$W_i(s;\sigma_i,\Psi_i) = \pi_i(s) + \int_{arepsilon_i} \max_{d_i \in D(ec{n}_i)} \left[-SUNK_{d_i}d_i\mathbb{I}_{\{d_i > 0\}}R - d_iarepsilon_iR + W(d_i|s,\Psi_i)
ight] dG(arepsilon_i),$$

where

•
$$W(d_i|s, \Psi_i) = \beta \sum_{\vec{n}'_{-i}, z'_1, z'_2, R'} V_i(\vec{n}'_i(\vec{n}_i, d_i), \vec{n}'_{-i}, z'_1, z'_2, R') \Psi_i(\vec{n}'_{-i}|s) F(z'_1, z'_2, R'|z_1, z_2, R)$$

Sunk Cost Schedule & Optimal Screen Choices

Focus on a cutoff strategy σ_i

 $\bar{\varepsilon}_{d+1,d} < \varepsilon_i < \bar{\varepsilon}_{d,d-1} \Rightarrow i$ opens a *d*-screen theater,

where

$$\bar{\varepsilon}_{d,d-1} = \frac{W(d|s,\Psi) - W(d-1|s,\Psi)}{R} - SUNK_{d-1} - d \times (SUNK_d - SUNK_{d-1})$$
$$\bar{\varepsilon}_{d+1,d} = \frac{W(d+1|s,\Psi) - W(d|s,\Psi)}{R} - SUNK_d - (d+1) \times (SUNK_{d+1} - SUNK_d)$$

- Economies of entry scale (SUNK_d < SUNK_{d-1}) → ē_{d,d-1} ↑: more likely to open a d-screen theater
- Diseconomies of entry scale (SUNK_d > SUNK_{d-1}) → ē_{d,d-1} ↓: less likely to open a d-screen theater

Markov Perfect Nash Equilibrium

A MPNE constitute optimal cutoff strategy profile (σ₁^{*}, σ₂^{*}, σ₃^{*}) and belief profile (Ψ₁^{*}, Ψ₂^{*}, Ψ₃^{*}) such that

1.
$$V_i(s; \sigma_i^*, \Psi_i^*) \ge V_i(s; \tilde{\sigma}_i, \Psi_i^*)$$
 (Optimality)

2.
$$\Psi_i^*(\vec{n}_{-i}|s) = \prod_{l \neq i} P_l^*(\sigma_l^*|s)$$
 (Belief Consistency)

Data & Facts

Industry Model

Estimation & Results

The Impact of Reduced Sunk Entry Costs

Concluding Remarks

Tying the Model to the Data

- 1. Estimate an ordered probit model of screen counts choice with time-varying cutpoints (pre- and post-reforms)
 - complete description of what chains will do at any state (conditional choice probs.; CCPs)
 - $-\,$ tell how chains adjust the theater scale decision following the reforms

Tying the Model to the Data

- 1. Estimate an ordered probit model of screen counts choice with time-varying cutpoints (pre- and post-reforms)
 - complete description of what chains will do at any state (conditional choice probs.; CCPs)
 - tell how chains adjust the theater scale decision following the reforms
- 2. Find the parameters at which the estimated CCPs weakly dominate alternative strategies
 - allow fixed operating (or base profit) and sunk entry costs to differ before and after the reforms
 - obtain the cost effects of the land-use regulatory reforms

1st Step: Equilibrium Choice Over Theater Openingâs Screen Counts

Assumption ε_{imt} ~ N(0, ν) implies cutoff strategy σ_i is characterized by an ordered probit regression

$$P(d_{imt} = j | s_{mt}, r) = \Phi(\kappa_{ijr} - y_{imt}^*) - \Phi(\kappa_{i,j-1,r} - y_{imt}^*),$$

where $r \in \{\text{pre-reforms, post-reforms}\};$

$$y_{imt}^* = \alpha_1 k_{imt} + \alpha_2 k_{-imt} + z'_{mt} \alpha_z + \alpha_R R_{mt} + \delta_m$$

- Cutpoint \(\kappa_{ijr}\) differ before and after the reforms: capture the changes in fixed operating and sunk entry costs
- * Coarsen screen counts into three scale categories:
 <=4 (mini; 3-screen), 5–8 (mid; 6-screen)), >=8 (mega; 9-screen))

1st Step: Predicted Probabilities Implied by Estimates

Table: Predicted Probabilities at Median of Explanatory Variables: CGV

Predicted Probs.	2010H1-2014H2	2015H1-2018H2		
	CGV			
P(d=0 s)	0.9813	0.9385		
P(d = 3 s)	0.0044	0.0079		
P(d=6 s)	0.0103	0.0418		
P(d=9 s)	0.0041	0.0118		

- At the median of other explanatory vars, P(d > 0|s, CGV) increases by 4.28%p
- ▶ P(d = 3|s, d > 0, CGV) decreases by 11%p; P(d = 6|s, d > 0, CGV) increases by 13%p
- Similar patterns arise for the other chains Others

coeff cutpoints

CCPs are complete description of what chains will do at any state

- CCPs are complete description of what chains will do at any state
- Sufficient to simulate market state evolution and approximate the value function $- \hat{V}(\hat{P}_i, \hat{P}_{-i}; \Theta)$ $- \hat{V}(\tilde{P}_i, \hat{P}_{-i}; \Theta)$

CCPs are complete description of what chains will do at any state

Sufficient to simulate market state evolution and approximate the value function $-\hat{V}(\hat{P}_i, \hat{P}_{-i}; \Theta)$ $-\hat{V}(\tilde{P}_i, \hat{P}_{-i}; \Theta)$

 \blacktriangleright MPNE restriction requires there are no profitable deviations at the true parameter Θ_0

$$\hat{V}(\hat{P}_i,\hat{P}_{-i};\Theta_0)\geq\hat{V}(ilde{P}_i,\hat{P}_{-i};\Theta_0)$$

• $\hat{\Theta}$ best minimizes profitable deviations (Bajari, Benkard, and Levin (2007)) detail

- ► Estimate *FIXED* and *SUNK* separately for periods before and after the reforms
 - Rust and Rothwell (1996), Ryan (2012), Kalouptsidi (2018)
- Calibrations
 - $SUNK_6 = 300M$ KRW: matching the engineering estimate of a business report
 - $\beta=$ 0.963: matching the annual real interest rates of 7.8% in South Korea from 2010 to 2018 <code>relevance</code>

Effects on Fixed Costs/Baseline Profits Are Not Considerable

Table: Averaged *per-screen* fixed operating cost/baseline profit (in millions of 2011 KRW)

	Pre		Post		Difference	
FIXED _i	Estimates	SEs	Estimates	SEs	Estimates	SEs
CGV	8.53	3.64	-2.84	3.72	-11.37	3.27
Lottecinema	5.53	3.12	-6.14	3.50	-11.67	3.02
Megabox	19.39	3.75	-9.15	3.88	-28.54	3.77

- reduced fixed opearting costs (or increased baseline profitability)
- small magnitude changes relative to sunk entry costs (ex: 28/300), suggesting a substantial reduction in sunk costs

variable profit

Effects on Sunk Costs Are Significant

Table: Per-screen sunk entry cost parameters (in millions of 2011 KRW)

	Pre		Post		Difference	
	Estimates	SEs	Estimates	SEs	Estimates	SEs
3-screen (SUNK ₃)	524.46	14.66	439.56	34.06	-84.90	41.60
6-screen (SUNK ₆)	300.00	N/A	202.98	10.10	-97.02	10.10
9-screen (SUNK ₉)	287.55	4.96	220.28	12.85	-67.27	12.76

*The standard deviation of private cost shock (ν) is estimated 64.63

- ▶ Following the reforms, 6-screen becomes the minimum efficient entry scale
- In terms of *total* sunk entry costs, the costs for 6- and 9-screen theaters decrease equally by 600 million KRW

Data & Facts

Industry Model

Estimation & Results

The Impact of Reduced Sunk Entry Costs

Concluding Remarks

Experiment Overview

- Held fixed at estimates for post-reforms periods:
 - Fixed costs (or baseline profits)
 - Transition matrices

Experiment Overview

- Held fixed at estimates for post-reforms periods:
 - Fixed costs (or baseline profits)
 - Transition matrices
- Simulate market outcomes $Q(SUNK_{pre})$ under pre-reform sunk entry cost schedule
 - $SUNK_{pre} = (1.16SUNK_{3,post}, 1.47SUNK_{6,post}, 1.33SUNK_{9,post})$
 - Compute the corresponding equilibrium CCPs through best-response iterations
 - -Q: proportion of mini-, mid-, mega-plex theaters; NPV of profits and costs

Experiment Overview

- Held fixed at estimates for post-reforms periods:
 - Fixed costs (or baseline profits)
 - Transition matrices
- Simulate market outcomes $Q(SUNK_{pre})$ under pre-reform sunk entry cost schedule
 - $SUNK_{pre} = (1.16SUNK_{3,post}, 1.47SUNK_{6,post}, 1.33SUNK_{9,post})$
 - Compute the corresponding equilibrium CCPs through best-response iterations
 - Q : proportion of mini-,mid-,mega-plex theaters; NPV of profits and costs

Calculate

$$\frac{Q(SUNK_{post}) - Q(SUNK_{pre})}{Q(SUNK_{pre})}$$

- Q(SUNK_{post}): caculated using the 1st-stage CCPs for periods after the reforms (Arcidiacono et al. (2016))
- * narrowly focus only on the impacts of the reduced sunk entry costs

More Mid-plex Theaters Over the Middle-run

Table: Reduced Sunk Entry Costs and Industry Composition (%)

		Y	ear	
	1	3	5	7
Changes in the number of movie theaters Percent	7.51	17.95	20.33	21.04
Changes in the number of movie screens Percent	7.43	17.44	19.64	20.23
Changes in proportion of mini-plex theaters Percent	-8.49	-21.25	-28.73	-34.14
Changes in proportion of mid-plex theaters Percent	4.63	14.23	20.71	26.35
Changes in proportion of mega-plex theaters Percent	-2.19	-7.62	-11.26	-14.42

Lower Entry Barrier Decreases Industry Entry Costs

Table: Reduced Sunk Entry Costs and Industry Performance

	Percent	billions in KRW
Δ NPV of net profits (Chain value)		
Industry Total		
Δ NPV of variable profits		
Industry Total		
\triangle NPV of fixed operating costs		
Industry Total		
Δ NPV of sunk entry costs		
Industry Total	-12.53	-95.68

* NPV of scrap values ($E(\nu|d < 0, s)$) are suppressed for expositional purpose

- Industry saves payments on entry costs by 12% (95.68 bill KRW)
- Because of more entrants, the entry cost savings are smaller than the reduction of per-screen entry costs (14% - 32%)

It Increases Industry Operating Costs

Table: Reduced Sunk Entry Costs and Industry Performance

	Percent	billions in KRW
Δ NPV of net profits (Chain value)		
Industry Total		
Δ NPV of variable profits		
Industry Total		
Δ NPV of fixed operating costs		
Industry Total	14.59	367.26
Δ NPV of sunk entry costs		
Industry Total	-12.53	-95.68

* NPV of scrap values (E(
u|d < 0, s)) are suppressed for expositional purpose

- New mid-plex that would be mini-plex under the pre-reform entry cost increase the industry's spending on fixed operating costs
- ▶ Resource uses on fixed operating costs ↑ by 14.59% (367.26 bill KRW)

Theaters Steal Business From Each Others

Table: Reduced Sunk Entry Costs and Industry Performance

	Percent	billions in KRW
Δ NPV of net profits (Chain value)		
Industry Total	-5.60	-77.35
Δ NPV of variable profits		
Industry Total	-0.26	-10.79
Δ NPV of fixed operating costs		
Industry Total	14.59	367.26
Δ NPV of sunk entry costs		
Industry Total	-12.53	-95.68

* NPV of scrap values ($E(\nu|d < 0, s)$) are suppressed for expositional purpose

- > Theaters steal businesses from each other, not expanding the market
- Industry variable profits do not change considerably
- A loss of net profit arises

Abstracting Away Scale Choices Fails To Uncover Higher Resource Uses

Table: When scale choices are ignored

	Baseline Model		Restricted Model (no scale cho	
	Percent	billions in KRW	Percent	billions in KRW
Δ NPV of net profits (Chain value)				
Industry Total	-5.60	-77.35	27.3	311.51
Δ NPV of variable profits				
Industry Total	-0.26	-10.79	-0.00	-0.908
Δ NPV of fixed operating costs				
Industry Total	14.59	367.26	2.77	120.83
Δ NPV of sunk entry costs [*]				
Industry Total	-12.53	-95.68	-23.1	-169.95

* NPV of scrap values ($E(\nu|d < 0, s)$) are suppressed for expositional purpose

- Savings from the reduced sunk costs are over-predicted
- Increases in fixed operating costs are under-predicted

Data & Facts

Industry Model

Estimation & Results

The Impact of Reduced Sunk Entry Costs

Concluding Remarks

Recaps

- Combine web-archived data on movie theaters and a case study to explore the economic implications of scale choices upon entry
- Look at the land-use regulatory reforms as a reduction in entry costs; recognize the reforms alter the optimal entry scale (screen)
- The resulting shift of the screen distribution incurs substantial resource uses on fixed operating costs, leading to a loss of industry net profit
- Standard entry model underpredicts resource uses on fixed operating costs, predicting the positive profit effect of the entry cost reduction
- My idea can be applied to other settings where entrants jointly decide entry and scale decisions, and regulators are interested in entry promotion measures

Most markets have fewer than 5 theaters

# of theaters	# of municipality-semester obs.	Percent
0	265	11.24%
1	721	30.58%
2	631	26.76%
3	302	12.81%
4	204	8.65%
5	120	5.09%
6 or more	115	4.88%
Total	2,358	100%

Table: Summary of Market Structure

Prices are nearly Fixed

Figure: Local Market Price with the Number of Theaters

1st step: coefficients

Table: Ordered Probit on Intensive Marginal Theater Entry-Exit Decision: coefficients

Covariates	(1)	(2)
# own chain screens	-0.1013***	-0.0260***
	(0.0129)	(0.0094)
# rival chain screens	—`0.0739 ^{****}	`0.0022´
	(0.0082)	(0.0034)
population (thousand people)	0.0084***	0.0008***
	(0.0014)	(0.0001)
GDP per capita (thousand KRW)	`0.0057´	`0.0013´
	(0.0048)	(0.0007)
Property value per m ² (million KRW)	—0.3692 [*]	-0.0250
	(0.2067)	(0.0160)
Market Dummies	\checkmark	
Log likelihood	-1456.33	-1551.38
Observations	6,681	

*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

1st step: cutpoints

Cutpoints	2010H1-2014H2	2015H1-2018H2		
	CGV			
κ_3	3.1500	2.6105		
κ_6	3.2563	2.6788		
κ_9	3.7141	3.3317		
	Lotte Cinema			
κ_3	3.0476	2.7593		
κ_6	3.1540	2.8276		
κ_9	3.6118	3.4805		
	Megabox			
κ_3	3.4949	2.6464		
κ_6	3.6012	2.7148		
κ_9	4.0590	3.3676		

Table: Ordered probit on screen counts of theater opening/closure: cutpoints

1st step: cutpoints

	1		
Predicted Probs.	2010H1-2014H2	2015H1-2018H2	
	Lotte Cinema		
P(d=0 s)	0.9761	0.9546	
P(d = 3 s)	0.0054	0.0062	
P(d=6 s)	0.0130	0.0313	
P(d = 9 s)	0.0055	0.0079	
	Megabox		
P(d=0 s)	0.9924	0.9427	
P(d = 3 s)	0.0020	0.0074	
P(d=6 s)	0.0043	0.0391	
P(d=9 s)	0.0014	0.0107	

Table: Predicted Probabilities at Median of Explanatory Variables

BBL Details: Imposing equilibrium restriction

Simulate the market states forward and approximate the value function

$$\hat{V}_i(s|\hat{P}_i,\hat{P}_{-i};\Theta) = \mathbb{E}[\sum_{t=0}^T eta^t \zeta_i(s_t,arepsilon_{it};d_t;\Theta)|s_0=s,\hat{P}_i,\hat{P}_{-i}],$$

where $\zeta_i(s_t, \varepsilon_{it}; d_t) = \pi_i(s_t) - C(d_t, \varepsilon_{it}, R_t)$

- For perturbed strategy \tilde{P}_i , calculate the resulting value function $\hat{V}_i(s|\tilde{P}_i, \hat{P}_{-i}; \Theta)$ analogously
- The value of deviating from \hat{P}_i to \tilde{P}_i

$$g_i(s|\hat{P}_i,\tilde{P}_i;\Theta)=\hat{V}_i(s|\tilde{P}_i,\hat{P}_{-i};\Theta)-\hat{V}_i(s|\hat{P}_i,\hat{P}_{-i};\Theta)$$

 $\blacktriangleright \Rightarrow \hat{\Theta}$ best minimizes the values of profitable deviations

$$\hat{\Theta} = \arg\min_{\Theta} \int_{\tilde{P}_i} \sum_{s,i} g_i^2(s|\hat{P}_i, \tilde{P}_i; \Theta) \mathbb{I}_{\{g_i(s|\hat{P}_i, \tilde{P}_i; \Theta) > 0\}} dQ(\tilde{P}_i)$$

Calibration is relevant: Operating Margins

Figure: Operating Margins: CGV

Simulated by using the estimated profit function parameters and CCPs

Return

2nd step: variable profit parameters

Table: Estimates of variable profits per screen (in millions of 2011 Korean Won)

	Estimates	SEs
Competitive Effects: γ		
Cannibalization	-3.8228	0.2392
Rival competition	-3.4897	0.3130
Demand Shifters: λ		
Population (thousands)	0.3676	0.0241
GDP per capita (thousand 2011 KRW)	0.0964	0.0402

