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Motivation



Motivation

Tracking as a low cost approach to improving students performance is crucial and
pervasive(Glewwe and Muralidharan, 2016).

Tracking regime (tracking time and tracking criteria) varies between countries.

ability tracking within school, in the US, China and Canada (Dieterle et al., 2015).
tracking across school (vocational or academic track), in Europe.

Tracking effects on students performance are controversial (Betts, 2011).

proponents: more homogeneous group, tailor instruction ⇒ more effective
opponents (de-tracking): mis-classification ⇒ aggravates initial differences
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Motivation

In recent years, lots of work in understanding the determinants of skill formation in
children (Heckman and Mosso, 2014).

Peer composition is as important as teacher quality, class size, and parental involvement
as a determinant of student achievement.

The debate over standardized testing and the mix of standardized measures and
discretionary evaluations (Diamond and Persson, 2016).

teachers know more about students ⇒ reduce the effects of "a bad test day"
equal criteria ⇒ increase fairness in some way

3 / 48



Research Question

1. (Tracking effects) What is the impact of tracking within a school on students’
academic performance?

+ teacher discretion
+ multiple tracking

2. (Skill formation function) How is a student’s skill determined at different ages,
taking into account innate ability, peer influences, and teacher’s instructional level?

3. (Policy relevant questions or counterfactual) To achieve the policy goal, how to
design an "optimal" tracking rule?

tracking frequency
tracking time
tracking criteria
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Contribution

1. (Empirical part) I collect the novel, rich and detailed panel data from a single high
school in China, and use the RD design, to evaluate the tracking effects.

2. (Theoretical part) I am the first one to develop and estimate a new dynamic
skill production model, that simultaneously endogenizes peer effects and teachers’
mismatch effects.

3. (Policy implications) With the estimated model in hand, I use it to do some
counterfactual analysis and simulation.

tracking rule (time + criteria)
increase/decrease the tracking frequency
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Literature Review

Tracking
Figlio and Page (2002), Fu and Mehta (2018), Duflo, Dupas, and Kremer (2011)
(Tracking effects)
Meghir and Palme (2005), Piopiunik (2014), Dustmann, Puhani, and Schönberg
(2017) (Tracking regime)

Peer effects
Epple and Romano (2011), Sacerdote (2011)

Teacher discretion
Diamond and Persson (2016), Apperson, Bueno, and Sass (2016),Lavy and Sand
(2018)

Skill production technology
Cunha and Heckman (2007, 2008), Cunha, Heckman, and Schennach (2010), Agostinelli
and Wiswall (2016)
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Motivating Example

college tier1 1 tier2 tier3
HHHH 0.96 0.35 0.56 0.05
LLHH/HHLL 0.89 0.06 0.78 0.11
LLLH/LLHL 0.85 0.02 0.57 0.26
LLLL 0.81 0 0.37 0.42

After three years, there is a large difference in college and top 1 tier program
admission rates between HHHH and LLLL. [unconditional comparison]

1Highest Quality
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Motivating Example

college tier1(Highest) tier2 tier3
H*** 0.9 0.09 0.58 0.22
L*** 0.86 0.06 0.5 0.29
X% 5% 50% 16% -24%

two students, A and B

similar entry score, at age 15
A went to High, and B went to Low track
A’s college entrance excore is 0.3 sd2 higher than B’s, at age 18

2standard deviation is 93.13, and full credit is 750.
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Background and Data Intro



Background

1. Education system in China
9 years compulsory education

▶ 6 years primary school + 3 years junior middle school

senior high school
▶ pass the Senior High School Entrance Exam
▶ three years
▶ National College Entrance Exam (Gaokao) then college application

vocational school or join the labor force
2. Special tracking rule

four tracking over three years
teacher discretion
Tracking timeline
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Data Introduction

Individual level panel data (individual - class track - time)
cohort 2017 (age 15 - 18)
class track trajectory
test score by subject of student i at class j in time t at period p: sij,pt

▶ i ∈ {1, 2..., 1979}, j = H or L
▶ p ∈ {0, 1, 2, 3}
▶ t ∈ {0, 1, ..., 27} : four tracking exams included

high school entrance exam score: sij0

characteristics: gender, age, urban/rural

Census 2010 data
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Transition Matrix and Class Track Trajectory

Period 1

Period 0

L H

L 857 151(15.0%)

H 291(35.1%) 537

Tracking decision is made with more informative information.
Transition rates decrease over time. other periods

Lots of persistence, but there are still turnovers
HHHH (27.65%) or LLLL (35.58%).
About 26.53% students changed once of class track type.
9.35% students changed twice and about 0.89% with class track type HLHL or LHLH.
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Empirical Evidence



The First Tracking (Non-discretionary)

At the beginning of Grade 10.
One-side sharp cutoff.

Pr(j1 = H) =

1 if s0 > cutoff
p(s0) if s0 ≤ cutoff

Robustness check
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RD Results of the First Tracking

No RD effects in first tracking.
Students who are in high track with lower entry score performs slightly better than
in low.
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The Second Tracking (Discretionary)

After a semester, teachers have a better understanding of their students.
Tracking is not based on a score threshold and students’ char. Robustness check
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RD Results of the Second Tracking

Positive RD effects indicate that test score is not the only tracking criteria.
Students with type lH performed much better than in low track.
Exclusion of students in the overlap makes the effects under-estimated. RD results
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Model and Identification Issues



From Empirical Patterns to the Model

Empirical observation
1. RD results from the first tracking
2. blurred tracking criteria, lower

turnover rate overtime
3. class track trajectory and academic

performance evolution

Model feature
1. + peer effects, + teacher’s target

teaching level decision
2. teacher learning about students’ ability

and using discretionary tracking criteria
3. dynamic skill formation function
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Timeline

Notation:

θposterior
1 : teacher’s posterior belief of students ability at period 1

w1: weight on the posterior belief in second tracking criteria
θ∗

H0
, θ∗

L0
, θ∗

H1
, θ∗

L1
: target teaching level set by teachers in period 0, and period 1

parameters data unobservables
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Timeline

There are three stages in this model.

Stage 0 (grade 10): School allocates students to different tracks based on s0.
Teachers choose s∗

j0 to maximize their expected payoff at the end of period 1.
(Enrollment)

Stage 1 (grade 11-12): Teachers update their belief learning from signals (st<T1)
and make the tracking decision based on θpos

1 and sT1 . Then, the new teachers
choose s∗

j1 based on new class composition. (Discretionary Tracking)
Stage 2 (end of HS): Students take the National College Entrance Exam, apply for
the college and find a job.

parameters data unobservables
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Skill Formation Function

The framework follows the approach in (Cunha, Heckman, and Schennach, 2010) and
(Agostinelli and Wiswall, 2016), adding peer effects and mismatch from lnθ∗.

lnθi,t+1 = lnAt +
self productive︷ ︸︸ ︷
γ1,tlnθi,t +

peer effect︷ ︸︸ ︷
γ2,tlnθ−i,t −γ3,t|lnθ∗

t − lnθi,t|︸ ︷︷ ︸
teacher effect

+ηi,t (1)

lnAt: TFP term

ηi,t: production shock including students’ efforts, parental inputs etc, i.i.d. and ⊥⊥ lnθi,t

lnθi,t: student i’s ability at time t

lnθ−i,t: average peer’s ability, lnθ−i,t = (
∑N

j=1 lnθj,t − lnθi,t)/(N − 1), N is class size

lnθ∗
t : teachers’ target teaching level

parameters data unobservables Justification
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Measurement Function of ln(θ)

si,t,m = µt,m︸︷︷︸
location

+ λt,m︸︷︷︸
scale

ln(θi,t) + ϵi,t,m (2)

µt,m: base score of measure m when no knowldege of m

λt,m: discrimination level of measure m

ϵi,t,m: individual measurement error at time t and E(ϵi,t,m) = 0 for all t, m

m: Chinese, Math, English, Chemistry, Biology and Physics test score

s̃i,t,m︸ ︷︷ ︸
error contaminated

= si,t,m − µt,m

λt,m
= ln(θi,t) + ϵ̃i,t,m

parameters data unobservables
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Identification of Initial Conditions

Normalization: E(ln(θ0)) = 0︸ ︷︷ ︸
fix initial latent ability

and λ0,1 = 1︸ ︷︷ ︸
normalize scale as 1

⇒ s0,1 = µ0,1 + ln(θ0) + ϵ0,1

Assumption 1:

Cov(ϵ0,m, ϵ0,m′) = 0︸ ︷︷ ︸
uncorrelated measurement error bet various measures

, for all m ̸= m′

Cov(ϵ0,m, ln(θ0)) = 0︸ ︷︷ ︸
measurement error is uncorrelated with ability

, for all m

Then λ0,m = Cov(s0,m,s0,m′ )
Cov(s0,1,s0,m′ ) , µ0,m = E(s0,m) for all m ̸= 1, m ̸= m′.

s̃0,m = s0,m − µ0,m

λ0,m
= ln(θ0) + ϵ̃0,m (3)

parameters data unobservables
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Sequential Identification

Assumption 2: (Production Function Restriction) lnAt = 0︸ ︷︷ ︸
TFP is 0

, γ1,t + γ2,t + γ3,t = 1︸ ︷︷ ︸
CRTS

s1,m = µ1,m + λ1,mlnθ1 + ϵ1,m

= (µ1,m + λ1,mlnA0) + λ1,m(γ1,0lnθ0 + γ2,0lnθ−0 − γ3,0|lnθ∗
0 − lnθ0| + ϵ0,m) + ϵ1,m

= β0,0 + β1,0s̃0,m + β2,0(
N∑

j=1
s̃j,0,m − s̃0,m)/(N − 1) + β3,0|lnθ∗

0 − s̃0,m| + π0,m

(4)

Error in variables: π0,m ∼ ϵ0,m ∼ s̃0,m ⇒ IV based on multiple measures
Exactly identified system: (λ1,m, µ1,m, γ1,0, γ2,0, γ3,0) ⇒ Assumption 2 +

β0,0 = µ1,m + λ1,mlnA0 β1,0 = λ1,mγ1,0

β2,0 = λ1,mγ2,0 β3,0 = −λ1,mγ3,0

parameters data unobservables
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Learning Process of Student’s Ability

Assumption 3: ln(θ0) ∼ N(0, σ2
θ0), ϵm ∼ N(0, σ2

ϵm
)︸ ︷︷ ︸

normal distribution of signal and noise

With Bayesian rule, ln(θ0)|s̃0,ms , s = 1, 2, ..., k0 ∼ N(µpos, σ2,pos):

µpos =
σ2

θ0
σ2

ϵ
k0

+σ2
θ0

(
∑k0

s=1 s̃0,ms

k0
)

σ2,pos = ( 1
σ2

θ0
+ k0

σ2
ϵ
)−1

(5)

parameters data unobservables
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Tracking Decision

The First Tracking

Pr(j0 = H) =

1 if s0 > cutoff1

p(s0) if s0 ≤ cutoff1

The Second Tracking More Evidence

weighted average of the posterior belief of ability (w1) and tracking exam score (1−w1)

Eln(θ1)adj = w1µpos + (1 − w1)s̃1,m (6)

cutoff is determined by the seats of high track

I(j1 = H) =

1 if Eln(θ1)adj > cutoff2

0 if Eln(θ1)adj ≤ cutoff2

parameters data unobservables
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Target Teaching Level Decision

max
lnθ∗

j,t

EEηj,tP (lnθij,t+1) = max
lnθ∗

j,t

EEηj,t(lnθij,t+1)α

rational expectation of skill formation function

α : convexity of payoff function (α = 2)
no closed-form solution for lnθ∗

j

lnθ∗
j


= lnθij,t−1 if α = 1

> lnθij,t−1 if α > 1

< lnθij,t−1 if α ∈ (0, 1)
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Identification Summary

1. Two-dimensional skill production technology (γs) + measurement equation (λs, µs)

CRTS assumption
"Guess-and-Verify" + sequential IV regression

▶ multiple measures of two-dimension skills over multiple periods

2. Tracking decision (w1)
GMM

▶ cross-sectional
▶ tracking decision for student i

Clustered Bootstrap to get the standard error and confidence interval
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Results



Skill Formation Function Estimation

.

Coefficients are changing over time.

Scientific skill formation function is more malleable compared with Humanity.
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Teacher’s Decision Estimation

Scientific Skill

Model Age 15.5 Age 16 Age 17 Age 18
Target Teaching 4.336 2.680 3.546 8.452

Low Track (0.308) (0.503) (0.417) (1.273)
[3.79,5.01] [2.14,3.95] [3.01,4.76] [7.39,9.58]

Target Teaching 12.336 21.786 24.439 31.076
High Track (0.972) (1.343) (1.459) (2.871)

[10.76,14.38] [19.25,25.94] [21.02,27.34] [27.18,37.05]

Weight 0 0.768 0.543 0.362
(0.082) (0.044) (0.043)

[0.65,0.87] [0.43,0.62] [0.26,0.41]

Teachers adjust target teaching level based on the class composition at each period.

Estimated target teaching level is higher than the average ability.

Less weight put on teachers’ belief of students’ ability when tracking in later periods.
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Measurement Equation Estimation

Scientific Skill

Age 15 Age 15.5 Age 16 Age 17 Age 18
mu 90.663 78.752 79.979 74.482 67.558

(1.188) (1.350) (0.829) (1.618)
lambda 1 1.933 1.307 1.022 1.034

(0.205) (0.130) (0.133) (0.059)

Humanity Skill

mu 84.336 98.978 89.067 96.401 96.617
(0.467) (0.580) (1.300) (1.278)

lambda 1 1.239 1.155 0.982 0.955
(0.136) (0.125) (0.195) (0.078)

µ of scientific skill is smaller in later periods.

Humanity skill measurement is more stable.
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Estimated Skill Path

Skill increased a lot in the first two periods.

The Humanity skill didn’t change much, even decreased.
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One-Time Tracking

Percentile 75 students performed worse, while percentile 25 students did better, and
average students did worse in both tracks.

Inequality decreased, but both track students did worse.
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One-Time Discretionary Tracking
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Conclusion



Conclusion and Discussion

Discretionary tracking decreased the one-time tracking mis-allocation error, increased
students’ average ability, especially high-ability students, while increased students’ inequality.

Students’ skill formation function is changing. Innate ability, peer effects, teachers
mismatch play different roles over time.

Teachers adjust target teaching level based on class composition and their payoff function.

Scientific skill formation is more malleable than humanity skill.

Exclude the students’/teachers’ effort input due to data limitation.

Constant return to scale assumption of skill formation function.
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Thank you
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Appendix



Motivating Example

college tier1 tier2 tier3
H*** 0.9 0.09 0.58 0.22
L*** 0.86 0.06 0.5 0.29
X% 5% 50% 16% -24%

college tier1 tier2 tier3
LLLL 0.81 0 0.39 0.42
LLHH/HHLL 0.89 0.02 0.58 0.28
LHHH/HLLL 0.95 0.08 0.76 0.11
HHHH 0.96 0.27 0.66 0.02

return
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Transition Matrix

period 3

period 2

L H

L 920 198(17.7%)

H 38(5.4%) 660

period 4

period 3

L H

L 865 91(9.5%)

H 105(12%) 770

return

36 / 48



Tracking Rule

return
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Class Composition before/after the Second Tracking
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First Tracking Criteria Check

log( probi,H

1 − probi,H
) = β0 + β1s0ij + β2I(urbani = 1) + β3I(femalei = 1) + ϵi,t

(1) (2) βall − βoverlap

VARIABLES all students students in the overlap z-score

s0ij 0.494*** 1.714*** -10.590
(0.0887) (0.0735)

I(urbani = 1) 0.625*** 0.553*** 0.388
(0.141) (0.121)

I(femalei = 1) -0.185 -0.125 -3.223
(0.126) (0.111)

Constant -1.478*** -0.863***
(0.145) (0.124)

Observations 1,613 2,207
Standard errors in parentheses,*** p<0.01, ** p<0.05, * p<0.1

336/1277 are in high track with lower test score (smaller than cutoff 0.7507), 1044/2493 are in high
track, 1449/2493 are in low track. return
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Second Tracking Robustness Check

students in the overlap

Assigned to low track Assigned to high track

N mean sd N mean sd

Urban ratio 637 0.642 0.480 557 0.704 0.457
Female ratio 637 0.540 0.499 557 0.490 0.500
Average standardized baseline score 637 -0.407 0.433 557 0.425 0.437
(mean 0, SD 1)
Average standardized endline score 627 -0.361 0.618 542 0.520 0.626
(mean 0, SD 1)
Previous section (high track =1) 637 0.133 0.340 557 0.871 0.336

return
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RD Results

(1) (2) (3) (4)
VARIABLES First Tracking Second Tracking Third Tracking Fourth Tracking

RD_Estimate -0.0600 0.496*** 0.448*** 0.388***
(0.0631) (0.0456) (0.0397) (0.0377)

Observations 4,396 9,761 11,176 17,933
Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

RD estimates

return
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Summary of More Evidence

As time goes on, tracking exam scores become less important, while prior class tracks
become more influential in making tracking decision.

Discretionary tracking in a corrective way.

predicted residue to show the unexplained parts

upgraders (higher), downgraders (lower).

Teacher tailor instruction level – High track students performs much better in harder
exams.

return
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Treatment Effects Measured from Different Groups

sijt = β0+β1I(sb
i > scutoff

t )+β2I(Highijt = 1)+β3I(sb
i > scutoff

t )×I(Highijt = 1)+controls+ϵijt

(7)

A0 : hL, A1 : hH, B0 : lH, B1 : lL

β0 : lL, (β0 + β1) : hL, (β0 + β2) : lH, (β0 + β1 + β2 + β3) : hH

controls : s0, I(urbani = 1), I(femalei = 1) when no student FE 43 / 48



Treatment Effects Measured from Different Groups

(1) (2) (3) (4)
VARIABLES all Periods all Periods all Periods all Periods
I(sb

i > s
cutoff
t

) 0.133*** 0.140*** 0.0373** 0.0434**
(0.0274) (0.0273) (0.0184) (0.0184)

I(Highijt = 1) 0.0694* 0.111*** 0.165*** 0.163***
(0.0379) (0.0261) (0.0182) (0.0184)

I(sb
i > s

cutoff
t

) × I(Highijt = 1) 0.113*** 0.106*** -0.0758*** -0.0702***
(0.0429) (0.0397) (0.0244) (0.0241)

Constant -0.119*** -0.00865 -0.0948*** -0.136***
(0.0140) (0.0217) (0.0111) (0.0498)

β0(lL) -0.119 -0.00865 -0.0948 -0.136
β0 + β1(hL) 0.014 0.13135 -0.0575 -0.0926
β0 + β2(lH) -0.0496 0.1024 0.0702 0.027
β0 + β1 + β2 + β3(hH) 0.1964 0.3484 0.0317 0.0004
Observations 28,223 28,223 28,216 28,216
R-squared 0.521 0.538 0.680 0.680
Student FE NO NO YES YES
Period FE NO YES NO YES

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

lH > hH > hL > lL after including student FE
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Target Teaching Level

sijt = β0 +
5∑

h=2
βhI(hardlevel = h)I(High = 1) + ExamFE + controls + ϵijt (8)

Difficult level: the standard deviation of the raw test score

level 5 is the hardest

Students in High track perform better in harder exams.

controls: raw entry score, I(urbani = 1), I(femalei = 1)
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Target Teaching Level (βh)
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Correlation of Test Score vs Peers, Teachers, Initial Ability

1. higher entry score, higher exam score
2. higher peers ability, higher exam score
3. longer distance to θ∗, lower exam score

return
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Prob of being in High Measured from Observable

Pr(Highi,p = 1) = F (β0 + β1I(Highi,p−1) + β2sij,p−1 + β3I(urbani = 1))

(1) (2) (3)
VARIABLES 2nd tracking 3rd tracking 4th tracking
sij,p−1 6.482*** 5.911*** 2.664***

(1.181) (1.365) (0.512)
I(Highij,p−1 = 1) 1.373*** 1.691*** 2.229***

(0.288) (0.380) (0.236)
I(urbani = 1) 0.519* -0.221 0.433*

(0.302) (0.318) (0.247)
Constant -4.131*** -1.054*** -1.723***

(0.668) (0.299) (0.242)
Observations 282 226 484

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

where F is the cdf of Logit distribution.

Tracking exam score is becoming less important in later tracking decision.

Previous class track is becoming more important in later tracking decision.
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