# Ability Tracking, Teacher Discretion and Student's Achievement

Cong Li

October 25, 2022

## Motivation

- Tracking as a low cost approach to improving students performance is crucial and pervasive(Glewwe and Muralidharan, 2016).
- Tracking regime (tracking time and tracking criteria) varies between countries.
  - ability tracking within school, in the US, China and Canada (Dieterle et al., 2015).
  - tracking across school (vocational or academic track), in Europe.
- Tracking effects on students performance are controversial (Betts, 2011).
  - $\bullet\,$  proponents: more homogeneous group, tailor instruction  $\Rightarrow\,$  more effective
  - opponents (de-tracking): mis-classification  $\Rightarrow$  aggravates initial differences

- In recent years, lots of work in understanding the determinants of skill formation in children (Heckman and Mosso, 2014).
- Peer composition is as important as teacher quality, class size, and parental involvement as a determinant of student achievement.
- The debate over standardized testing and the mix of standardized measures and discretionary evaluations (Diamond and Persson, 2016).
  - $\bullet\,$  teachers know more about students  $\Rightarrow\,$  reduce the effects of "a bad test day"
  - equal criteria  $\Rightarrow$  increase fairness in some way

- 1. (Tracking effects) What is the impact of tracking within a school on students' academic performance?
  - $\bullet \ + \ teacher \ discretion$
  - $\bullet \ + \ multiple \ tracking$
- 2. (Skill formation function) How is a student's skill determined at different ages, taking into account innate ability, peer influences, and teacher's instructional level?
- 3. (Policy relevant questions or counterfactual) To achieve the policy goal, how to design an "optimal" tracking rule?
  - tracking frequency
  - tracking time
  - tracking criteria

- 1. (Empirical part) I collect the novel, rich and detailed panel data from a single high school in China, and use the RD design, to evaluate the tracking effects.
- (Theoretical part) I am the first one to develop and estimate a new dynamic skill production model, that simultaneously endogenizes peer effects and teachers' mismatch effects.
- 3. (Policy implications) With the estimated model in hand, I use it to do some counterfactual analysis and simulation.
  - tracking rule (time + criteria)
  - increase/decrease the tracking frequency

### **Literature Review**

#### Tracking

- Figlio and Page (2002), Fu and Mehta (2018), Duflo, Dupas, and Kremer (2011) (Tracking effects)
- Meghir and Palme (2005), Piopiunik (2014), Dustmann, Puhani, and Schönberg (2017) (Tracking regime)
- Peer effects
  - Epple and Romano (2011), Sacerdote (2011)
- Teacher discretion
  - Diamond and Persson (2016), Apperson, Bueno, and Sass (2016), Lavy and Sand (2018)
- Skill production technology
  - Cunha and Heckman (2007, 2008), Cunha, Heckman, and Schennach (2010), Agostinelli and Wiswall (2016)

|           | college | tier1 <sup>1</sup> | tier2 | tier3 |
|-----------|---------|--------------------|-------|-------|
| НННН      | 0.96    | 0.35               | 0.56  | 0.05  |
| LLHH/HHLL | 0.89    | 0.06               | 0.78  | 0.11  |
| LLLH/LLHL | 0.85    | 0.02               | 0.57  | 0.26  |
| LLLL      | 0.81    | 0                  | 0.37  | 0.42  |

• After three years, there is a large difference in college and top 1 tier program admission rates between HHHH and LLLL. [unconditional comparison]

<sup>&</sup>lt;sup>1</sup>Highest Quality

|      | college | tier1(Highest) | tier2 | tier3 |
|------|---------|----------------|-------|-------|
| H*** | 0.9     | 0.09           | 0.58  | 0.22  |
| L*** | 0.86    | 0.06           | 0.5   | 0.29  |
| X%   | 5%      | 50%            | 16%   | -24%  |

#### two students, A and B

- similar entry score, at age 15
- A went to High, and B went to Low track
- A's college entrance excore is 0.3 sd<sup>2</sup> higher than B's, at age 18

<sup>&</sup>lt;sup>2</sup>standard deviation is 93.13, and full credit is 750.

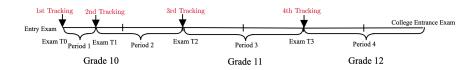
## Background and Data Intro

- 1. Education system in China
  - 9 years compulsory education
    - ▶ 6 years primary school + 3 years junior middle school

- 1. Education system in China
  - 9 years compulsory education
    - ▶ 6 years primary school + 3 years junior middle school
  - senior high school
    - pass the Senior High School Entrance Exam
    - three years
    - ▶ National College Entrance Exam (Gaokao) then college application
  - vocational school or join the labor force

- 1. Education system in China
  - 9 years compulsory education
    - ▶ 6 years primary school + 3 years junior middle school
  - senior high school
    - pass the Senior High School Entrance Exam
    - three years
    - ▶ National College Entrance Exam (Gaokao) then college application
  - vocational school or join the labor force
- 2. Special tracking rule
  - four tracking over three years
  - teacher discretion

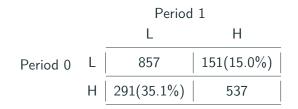
- 1. Education system in China
  - 9 years compulsory education
    - ▶ 6 years primary school + 3 years junior middle school
  - senior high school
    - pass the Senior High School Entrance Exam
    - three years
    - ▶ National College Entrance Exam (Gaokao) then college application
  - vocational school or join the labor force
- 2. Special tracking rule
  - four tracking over three years
  - teacher discretion
  - Tracking timeline



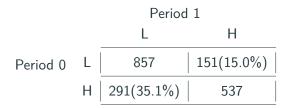
- Individual level panel data (individual class track time)
  - cohort 2017 (age 15 18)
  - class track trajectory
  - test score by subject of student i at class j in time t at period p:  $s_{ij,pt}$ 
    - ▶  $i \in \{1, 2..., 1979\}, j = H \text{ or } L$
    - ▶  $p \in \{0, 1, 2, 3\}$
    - $t \in \{0, 1, ..., 27\}$  : four tracking exams included
  - high school entrance exam score:  $s_{ij0}$
  - characteristics: gender, age, urban/rural

Census 2010 data

#### **Transition Matrix and Class Track Trajectory**

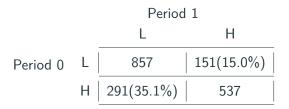


#### **Transition Matrix and Class Track Trajectory**



- Tracking decision is made with more informative information.
  - Transition rates decrease over time. other periods

### **Transition Matrix and Class Track Trajectory**



- Tracking decision is made with more informative information.
  - Transition rates decrease over time. other periods
- Lots of persistence, but there are still turnovers
  - HHHH (27.65%) or LLLL (35.58%).
  - About 26.53% students changed once of class track type.
  - 9.35% students changed twice and about 0.89% with class track type HLHL or LHLH.

## **Empirical Evidence**

## The First Tracking (Non-discretionary)

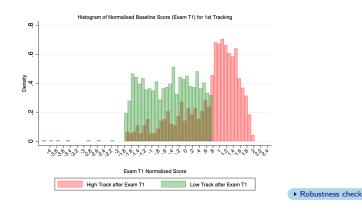
- At the beginning of Grade 10.
- One-side sharp cutoff.

$$Pr(j_1 = H) = \begin{cases} 1 & \text{if } s_0 > \text{cutoff} \\ p(s_0) & \text{if } s_0 \leq \text{cutoff} \end{cases}$$

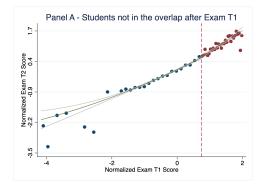
## The First Tracking (Non-discretionary)

- At the beginning of Grade 10.
- One-side sharp cutoff.

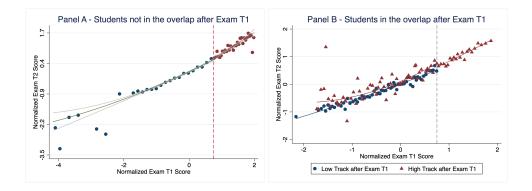
$$Pr(j_1 = H) = \begin{cases} 1 & \text{if } s_0 > \text{cutoff} \\ p(s_0) & \text{if } s_0 \leq \text{cutoff} \end{cases}$$



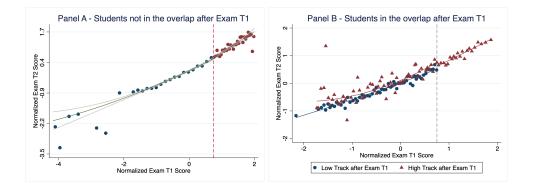
#### **RD** Results of the First Tracking



#### **RD** Results of the First Tracking



### **RD** Results of the First Tracking



- No RD effects in first tracking.
- Students who are in high track with lower entry score performs slightly better than in low.

- After a semester, teachers have a better understanding of their students.
- Tracking is not based on a score threshold and students' char. 
   Robustness check

- After a semester, teachers have a better understanding of their students.
- Tracking is not based on a score threshold and students' char. Robustness check



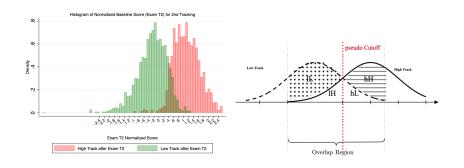
- After a semester, teachers have a better understanding of their students.
- Tracking is not based on a score threshold and students' char. Robustness check



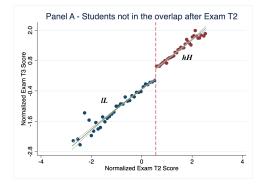


- After a semester, teachers have a better understanding of their students.
- Tracking is not based on a score threshold and students' char. Robustness check

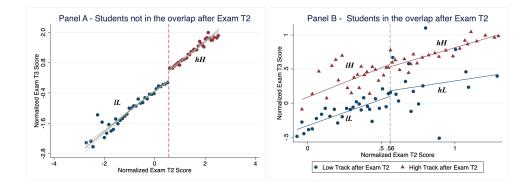




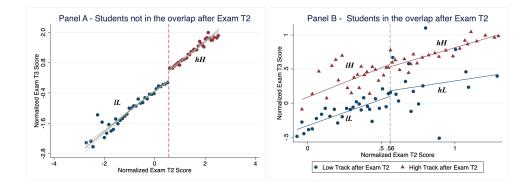
### **RD** Results of the Second Tracking



### **RD** Results of the Second Tracking



## **RD** Results of the Second Tracking



- Positive RD effects indicate that test score is not the only tracking criteria.
- Students with type *lH* performed much better than in low track.
- Exclusion of students in the overlap makes the effects under-estimated. RD results

Model and Identification Issues

#### Empirical observation

- 1. RD results from the first tracking
- 2. blurred tracking criteria, lower turnover rate overtime
- 3. class track trajectory and academic performance evolution

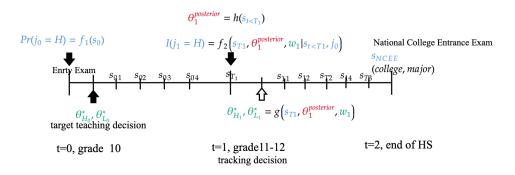
#### Empirical observation

- 1. RD results from the first tracking
- 2. blurred tracking criteria, lower turnover rate overtime
- 3. class track trajectory and academic performance evolution

#### Model feature

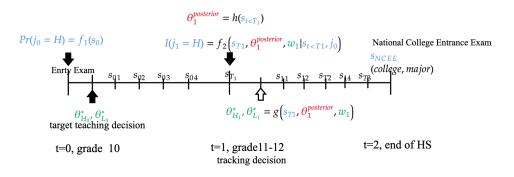
- 1. + peer effects, + teacher's target teaching level decision
- 2. teacher learning about students' ability and using discretionary tracking criteria
- 3. dynamic skill formation function

### Timeline



Notation:

## Timeline



#### Notation:

- $\theta_1^{posterior}$ : teacher's posterior belief of students ability at period 1
- $w_1$ : weight on the posterior belief in second tracking criteria
- $\theta_{H_0}^*, \theta_{L_0}^*, \theta_{H_1}^*, \theta_{L_1}^*$ : target teaching level set by teachers in period 0, and period 1

parameters data unobservables

There are three stages in this model.

 Stage 0 (grade 10): School allocates students to different tracks based on s<sub>0</sub>. Teachers choose s<sup>\*</sup><sub>j0</sub> to maximize their expected payoff at the end of period 1. (Enrollment) There are three stages in this model.

- Stage 0 (grade 10): School allocates students to different tracks based on s<sub>0</sub>. Teachers choose s<sup>\*</sup><sub>j0</sub> to maximize their expected payoff at the end of period 1. (Enrollment)
- Stage 1 (grade 11-12): Teachers update their belief learning from signals  $(s_{t < T_1})$  and make the tracking decision based on  $\theta_1^{pos}$  and  $s_{T_1}$ . Then, the new teachers choose  $s_{j_1}^*$  based on new class composition. (Discretionary Tracking)

There are three stages in this model.

- Stage 0 (grade 10): School allocates students to different tracks based on s<sub>0</sub>. Teachers choose s<sup>\*</sup><sub>j0</sub> to maximize their expected payoff at the end of period 1. (Enrollment)
- Stage 1 (grade 11-12): Teachers update their belief learning from signals  $(s_{t < T_1})$  and make the tracking decision based on  $\theta_1^{pos}$  and  $s_{T_1}$ . Then, the new teachers choose  $s_{j_1}^*$  based on new class composition. (Discretionary Tracking)
- Stage 2 (end of HS): Students take the National College Entrance Exam, apply for the college and find a job.

parameters data unobservables

## **Skill Formation Function**

The framework follows the approach in (Cunha, Heckman, and Schennach, 2010) and (Agostinelli and Wiswall, 2016), adding peer effects and mismatch from  $ln\theta^*$ .

$$ln\theta_{i,t+1} = lnA_t + \overbrace{\gamma_{1,t}ln\theta_{i,t}}^{\text{self productive}} + \overbrace{\gamma_{2,t}ln\theta_{-i,t}}^{\text{peer effect}} - \underbrace{-\gamma_{3,t}|ln\theta_t^* - ln\theta_{i,t}|}_{\text{teacher effect}} + \eta_{i,t}$$
(1)

## **Skill Formation Function**

The framework follows the approach in (Cunha, Heckman, and Schennach, 2010) and (Agostinelli and Wiswall, 2016), adding peer effects and mismatch from  $ln\theta^*$ .

$$ln\theta_{i,t+1} = lnA_t + \underbrace{\gamma_{1,t}ln\theta_{i,t}}_{\text{teacher effect}} + \underbrace{\gamma_{2,t}ln\theta_{-i,t}}_{\text{teacher effect}} \underbrace{-\gamma_{3,t}|ln\theta_t^* - ln\theta_{i,t}|}_{\text{teacher effect}} + \eta_{i,t}$$
(1)

 $lnA_t$ : TFP term

 $\eta_{i,t}:$  production shock including students' efforts, parental inputs etc, i.i.d. and  $\perp\!\!\!\perp ln\theta_{i,t}$ 

 $ln\theta_{i,t}$ : student *i*'s ability at time *t* 

 $ln\theta_{-i,t}$ : average peer's ability,  $ln\theta_{-i,t} = (\sum_{j=1}^{N} ln\theta_{j,t} - ln\theta_{i,t})/(N-1)$ , N is class size

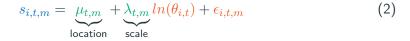
 $ln\theta_t^*$ : teachers' target teaching level

parameters data unobservables • Justification

# Measurement Function of $ln(\theta)$

$$s_{i,t,m} = \underbrace{\mu_{t,m}}_{\text{location}} + \underbrace{\lambda_{t,m}}_{\text{scale}} ln(\theta_{i,t}) + \epsilon_{i,t,m}$$
(2)

# Measurement Function of $ln(\theta)$



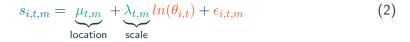
 $\mu_{t,m}$ : base score of measure m when no knowldege of m

 $\lambda_{t,m}$ : discrimination level of measure m

 $\epsilon_{i,t,m}$ : individual measurement error at time t and  $E(\epsilon_{i,t,m}) = 0$  for all t, m

m: Chinese, Math, English, Chemistry, Biology and Physics test score

## Measurement Function of $ln(\theta)$



 $\mu_{t,m}$ : base score of measure m when no knowldege of m

 $\lambda_{t,m}$ : discrimination level of measure m

 $\epsilon_{i,t,m}$ : individual measurement error at time t and  $E(\epsilon_{i,t,m}) = 0$  for all t, m

m: Chinese, Math, English, Chemistry, Biology and Physics test score

$$\underbrace{\widetilde{s_{i,t,m}}}_{\text{error contaminated}} = \frac{s_{i,t,m} - \mu_{t,m}}{\lambda_{t,m}} = ln(\theta_{i,t}) + \widetilde{\epsilon_{i,t,m}}$$

#### parameters data unobservables

Normalization:

$$\underbrace{E(ln(\theta_0)) = 0}_{\text{fix initial latent ability}} \quad \text{and} \quad \underbrace{\lambda_{0,1} = 1}_{\text{normalize scale as } 1} \Rightarrow s_{0,1} = \mu_{0,1} + ln(\theta_0) + \epsilon_{0,1}$$

Normalization:  $\underbrace{E(ln(\theta_0)) = 0}_{\text{fix initial latent ability}} \text{ and } \underbrace{\lambda_{0,1} = 1}_{\text{normalize scale as 1}} \Rightarrow s_{0,1} = \mu_{0,1} + ln(\theta_0) + \epsilon_{0,1}$ Assumption 1:

$$\underbrace{Cov(\epsilon_{0,m},\epsilon_{0,m'})=0}, \ \text{ for all } m\neq m'$$

uncorrelated measurement error bet various measures

$$\underbrace{Cov(\epsilon_{0,m}, ln(\theta_0)) = 0}$$
, for all  $m$ 

measurement error is uncorrelated with ability

Normalization:  $\underbrace{E(ln(\theta_0)) = 0}_{\text{fix initial latent ability}} \text{ and } \underbrace{\lambda_{0,1} = 1}_{\text{normalize scale as 1}} \Rightarrow s_{0,1} = \mu_{0,1} + ln(\theta_0) + \epsilon_{0,1}$ Assumption 1:

$$\underbrace{Cov(\epsilon_{0,m},\epsilon_{0,m'})=0}, \text{ for all } m\neq m'$$

uncorrelated measurement error bet various measures

$$Cov(\epsilon_{0,m}, ln(\theta_0)) = 0$$
 , for all  $m$ 

measurement error is uncorrelated with ability

Then 
$$\lambda_{0,m} = \frac{Cov(s_{0,m},s_{0,m'})}{Cov(s_{0,1},s_{0,m'})}, \mu_{0,m} = E(s_{0,m})$$
 for all  $m \neq 1, m \neq m'$ .

Normalization:  $E(ln(\theta_0)) = 0$  and  $\lambda_{0,1} = 1$   $\Rightarrow s_{0,1} = \mu_{0,1} + ln(\theta_0) + \epsilon_{0,1}$ fix initial latent ability normalize scale as 1 Assumption 1:

$$\underbrace{Cov(\epsilon_{0,m},\epsilon_{0,m'})=0}, \text{ for all } m \neq m'$$

uncorrelated measurement error bet various measures

$$\underbrace{Cov(\epsilon_{0,m}, ln(\theta_0)) = 0}_{}$$
, for all  $m$ 

measurement error is uncorrelated with ability

Then 
$$\lambda_{0,m} = \frac{Cov(s_{0,m},s_{0,m'})}{Cov(s_{0,1},s_{0,m'})}, \mu_{0,m} = E(s_{0,m})$$
 for all  $m \neq 1, m \neq m'$ .

$$\widetilde{s_{0,m}} = \frac{s_{0,m} - \mu_{0,m}}{\lambda_{0,m}} = \ln(\theta_0) + \widetilde{\epsilon_{0,m}}$$
(3)

parameters data unobservables

Assumption 2: (Production Function Restriction)  $\underbrace{lnA_t = 0}_{\text{TFP is 0}}, \underbrace{\gamma_{1,t} + \gamma_{2,t} + \gamma_{3,t} = 1}_{\text{CRTS}}$ 

Assumption 2: (Production Function Restriction)  $\underbrace{lnA_t = 0}_{\text{TFP is 0}}, \underbrace{\gamma_{1,t} + \gamma_{2,t} + \gamma_{3,t} = 1}_{\text{CRTS}}$ 

$$s_{1,m} = \mu_{1,m} + \lambda_{1,m} ln\theta_1 + \epsilon_{1,m}$$
  
=  $(\mu_{1,m} + \lambda_{1,m} lnA_0) + \lambda_{1,m} (\gamma_{1,0} ln\theta_0 + \gamma_{2,0} ln\theta_{-0} - \gamma_{3,0} |ln\theta_0^* - ln\theta_0| + \epsilon_{0,m}) + \epsilon_{1,m}$   
=  $\beta_{0,0} + \beta_{1,0} \widetilde{s_{0,m}} + \beta_{2,0} (\sum_{j=1}^N \widetilde{s_{j,0,m}} - \widetilde{s_{0,m}}) / (N-1) + \beta_{3,0} |ln\theta_0^* - \widetilde{s_{0,m}}| + \pi_{0,m}$   
(4)

Assumption 2: (Production Function Restriction)  $\underbrace{lnA_t = 0}_{\text{TFP is 0}}, \underbrace{\gamma_{1,t} + \gamma_{2,t} + \gamma_{3,t} = 1}_{\text{CRTS}}$ 

$$s_{1,m} = \mu_{1,m} + \lambda_{1,m} ln\theta_1 + \epsilon_{1,m}$$
  
=  $(\mu_{1,m} + \lambda_{1,m} lnA_0) + \lambda_{1,m} (\gamma_{1,0} ln\theta_0 + \gamma_{2,0} ln\theta_{-0} - \gamma_{3,0} |ln\theta_0^* - ln\theta_0| + \epsilon_{0,m}) + \epsilon_{1,m}$   
=  $\beta_{0,0} + \beta_{1,0} \widetilde{s_{0,m}} + \beta_{2,0} (\sum_{j=1}^N \widetilde{s_{j,0,m}} - \widetilde{s_{0,m}}) / (N-1) + \beta_{3,0} |ln\theta_0^* - \widetilde{s_{0,m}}| + \pi_{0,m}$   
(4)

• Error in variables:  $\pi_{0,m} \sim \epsilon_{0,m} \sim \widetilde{s_{0,m}} \Rightarrow$  IV based on multiple measures

Assumption 2: (Production Function Restriction)  $\underbrace{lnA_t = 0}_{\text{TFP is 0}}, \underbrace{\gamma_{1,t} + \gamma_{2,t} + \gamma_{3,t} = 1}_{\text{CRTS}}$ 

$$s_{1,m} = \mu_{1,m} + \lambda_{1,m} ln\theta_1 + \epsilon_{1,m}$$
  
=  $(\mu_{1,m} + \lambda_{1,m} lnA_0) + \lambda_{1,m} (\gamma_{1,0} ln\theta_0 + \gamma_{2,0} ln\theta_{-0} - \gamma_{3,0} |ln\theta_0^* - ln\theta_0| + \epsilon_{0,m}) + \epsilon_{1,m}$   
=  $\beta_{0,0} + \beta_{1,0} \widetilde{s_{0,m}} + \beta_{2,0} (\sum_{j=1}^N \widetilde{s_{j,0,m}} - \widetilde{s_{0,m}}) / (N-1) + \beta_{3,0} |ln\theta_0^* - \widetilde{s_{0,m}}| + \pi_{0,m}$   
(4)

Error in variables:  $\pi_{0,m} \sim \epsilon_{0,m} \sim \widetilde{s_{0,m}} \Rightarrow IV$  based on multiple measures
Exactly identified system:  $(\lambda_{1,m}, \mu_{1,m}, \gamma_{1,0}, \gamma_{2,0}, \gamma_{3,0}) \Rightarrow Assumption 2 + \beta_{0,0} = \mu_{1,m} + \lambda_{1,m} ln A_0 \qquad \beta_{1,0} = \lambda_{1,m} \gamma_{1,0} \\ \beta_{2,0} = \lambda_{1,m} \gamma_{2,0} \qquad \beta_{3,0} = -\lambda_{1,m} \gamma_{3,0}$ 

Assumption 3:  $ln(\theta_0) \sim N(0, \sigma_{\theta_0}^2), \epsilon_m \sim N(0, \sigma_{\epsilon_m}^2)$ 

normal distribution of signal and noise

Assumption 3: 
$$ln(\theta_0) \sim N(0, \sigma_{\theta_0}^2), \epsilon_m \sim N(0, \sigma_{\epsilon_m}^2)$$

normal distribution of signal and noise

With Bayesian rule,  $ln(\theta_0)|\widetilde{s_{0,m_s}}, s = 1, 2, ..., k_0 \sim N(\mu^{pos}, \sigma^{2, pos})$ :

Assumption 3: 
$$\underline{ln(\theta_0) \sim N(0, \sigma_{\theta_0}^2), \epsilon_m \sim N(0, \sigma_{\epsilon_m}^2)}$$

normal distribution of signal and noise

With Bayesian rule,  $ln(\theta_0)|\widetilde{s_{0,m_s}}, s = 1, 2, ..., k_0 \sim N(\mu^{pos}, \sigma^{2, pos})$ :

$$\mu^{pos} = \frac{\sigma_{\theta_0}^2}{\frac{\sigma_{\epsilon}^2}{k_0} + \sigma_{\theta_0}^2} \left( \frac{\sum_{s=1}^{k_0} \widetilde{s_{0,m_s}}}{k_0} \right)$$
  
$$\sigma^{2,pos} = \left( \frac{1}{\sigma_{\theta_0}^2} + \frac{k_0}{\sigma_{\epsilon}^2} \right)^{-1}$$
(5)

parameters data unobservables

# **Tracking Decision**

■ The First Tracking

$$Pr(j_0 = H) = \begin{cases} 1 & \text{if } s_0 > cutoff^1\\ p(s_0) & \text{if } s_0 \le cutoff^1 \end{cases}$$

## **Tracking Decision**

The First Tracking

$$Pr(j_0 = H) = \begin{cases} 1 & \text{if } s_0 > cutoff^1\\ p(s_0) & \text{if } s_0 \le cutoff^1 \end{cases}$$

- The Second Tracking 
  More Evidence
  - weighted average of the posterior belief of ability  $(w_1)$  and tracking exam score  $(1-w_1)$

$$Eln(\theta_1)^{adj} = w_1 \mu^{pos} + (1 - w_1) \widetilde{s_{1,m}}$$
(6)

## **Tracking Decision**

■ The First Tracking

$$Pr(j_0 = H) = \begin{cases} 1 & \text{if } s_0 > cutoff^1\\ p(s_0) & \text{if } s_0 \le cutoff^1 \end{cases}$$

- The Second Tracking 
  More Evidence
  - weighted average of the posterior belief of ability  $(w_1)$  and tracking exam score  $(1-w_1)$

$$Eln(\theta_1)^{adj} = w_1 \mu^{pos} + (1 - w_1) \widetilde{s_{1,m}}$$
(6)

• cutoff is determined by the seats of high track

$$I(j_1 = H) = \begin{cases} 1 & \text{if } Eln(\theta_1)^{adj} > cutoff^2 \\ 0 & \text{if } Eln(\theta_1)^{adj} \le cutoff^2 \end{cases}$$

parameters data unobservables

$$\max_{ln\theta_{j,t}^*} EE_{\eta_{j,t}} P(ln\theta_{ij,t+1}) = \max_{ln\theta_{j,t}^*} EE_{\eta_{j,t}} (ln\theta_{ij,t+1})^{\alpha}$$

rational expectation of skill formation function

$$\max_{ln\theta_{j,t}^*} EE_{\eta_{j,t}} P(ln\theta_{ij,t+1}) = \max_{ln\theta_{j,t}^*} EE_{\eta_{j,t}} (ln\theta_{ij,t+1})^{\alpha}$$

- rational expectation of skill formation function
- $\alpha$  : convexity of payoff function ( $\alpha = 2$ )
- no closed-form solution for  $ln\theta_i^*$

$$ln\theta_{j}^{*} \begin{cases} = \overline{ln\theta_{ij,t-1}} & \text{if } \alpha = 1 \\ > \overline{ln\theta_{ij,t-1}} & \text{if } \alpha > 1 \\ < \overline{ln\theta_{ij,t-1}} & \text{if } \alpha \in (0,1) \end{cases}$$

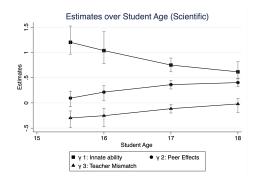
- 1. Two-dimensional skill production technology ( $\gamma$ s) + measurement equation ( $\lambda$ s,  $\mu$ s)
  - CRTS assumption
  - $\bullet~$  "Guess-and-Verify" + sequential IV regression
    - multiple measures of two-dimension skills over multiple periods

1. Two-dimensional skill production technology ( $\gamma$ s) + measurement equation ( $\lambda$ s,  $\mu$ s)

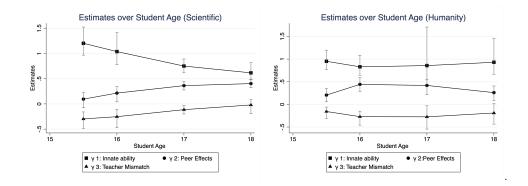
- CRTS assumption
- $\bullet \ "Guess-and-Verify" + sequential \ IV \ regression$ 
  - multiple measures of two-dimension skills over multiple periods
- 2. Tracking decision  $(w_1)$ 
  - GMM
    - cross-sectional
    - tracking decision for student i
  - Clustered Bootstrap to get the standard error and confidence interval

## Results

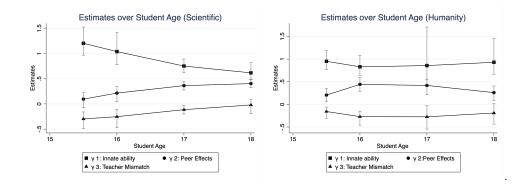
# **Skill Formation Function Estimation**



## **Skill Formation Function Estimation**



# **Skill Formation Function Estimation**



- Coefficients are changing over time.
- Scientific skill formation function is more malleable compared with Humanity.

## **Teacher's Decision Estimation**

|                 | Scientific Skill |               |               |               |  |  |  |
|-----------------|------------------|---------------|---------------|---------------|--|--|--|
| Model           | Age 15.5         | Age 16        | Age 17        | Age 18        |  |  |  |
| Target Teaching | 4.336            | 2.680         | 3.546         | 8.452         |  |  |  |
| Low Track       | (0.308)          | (0.503)       | (0.417)       | (1.273)       |  |  |  |
|                 | [3.79,5.01]      | [2.14,3.95]   | [3.01,4.76]   | [7.39,9.58]   |  |  |  |
| Target Teaching | 12.336           | 21.786        | 24.439        | 31.076        |  |  |  |
| High Track      | (0.972)          | (1.343)       | (1.459)       | (2.871)       |  |  |  |
|                 | [10.76,14.38]    | [19.25,25.94] | [21.02,27.34] | [27.18,37.05] |  |  |  |
| Weight          | 0                | 0.768         | 0.543         | 0.362         |  |  |  |
|                 |                  | (0.082)       | (0.044)       | (0.043)       |  |  |  |
|                 |                  | [0.65,0.87]   | [0.43,0.62]   | [0.26,0.41]   |  |  |  |

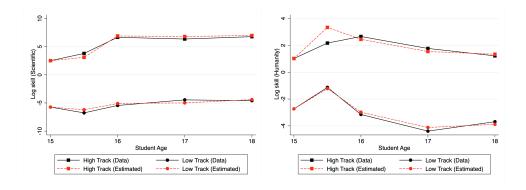
- Teachers adjust target teaching level based on the class composition at each period.
- Estimated target teaching level is higher than the average ability.
- Less weight put on teachers' belief of students' ability when tracking in later periods.

#### **Measurement Equation Estimation**

|        | Scientific Skill |          |         |         |         |  |  |
|--------|------------------|----------|---------|---------|---------|--|--|
|        | Age 15           | Age 15.5 | Age 16  | Age 17  | Age 18  |  |  |
| mu     | 90.663           | 78.752   | 79.979  | 74.482  | 67.558  |  |  |
|        |                  | (1.188)  | (1.350) | (0.829) | (1.618) |  |  |
| lambda | 1                | 1.933    | 1.307   | 1.022   | 1.034   |  |  |
|        |                  | (0.205)  | (0.130) | (0.133) | (0.059) |  |  |
|        | Humanity Skill   |          |         |         |         |  |  |
| mu     | 84.336           | 98.978   | 89.067  | 96.401  | 96.617  |  |  |
|        |                  | (0.467)  | (0.580) | (1.300) | (1.278) |  |  |
| lambda | 1                | 1.239    | 1.155   | 0.982   | 0.955   |  |  |
|        |                  | (0.136)  | (0.125) | (0.195) | (0.078) |  |  |

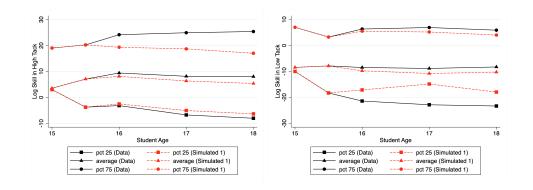
- $\blacksquare \ \mu$  of scientific skill is smaller in later periods.
- Humanity skill measurement is more stable.

#### **Estimated Skill Path**



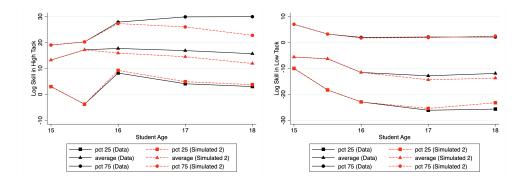
- Skill increased a lot in the first two periods.
- The Humanity skill didn't change much, even decreased.

# **One-Time Tracking**



- Percentile 75 students performed worse, while percentile 25 students did better, and average students did worse in both tracks.
- Inequality decreased, but both track students did worse.

#### **One-Time Discretionary Tracking**



Conclusion

- Discretionary tracking decreased the one-time tracking mis-allocation error, increased students' average ability, especially high-ability students, while increased students' inequality.
- Students' skill formation function is changing. Innate ability, peer effects, teachers mismatch play different roles over time.
- Teachers adjust target teaching level based on class composition and their payoff function.
- Scientific skill formation is more malleable than humanity skill.

- Discretionary tracking decreased the one-time tracking mis-allocation error, increased students' average ability, especially high-ability students, while increased students' inequality.
- Students' skill formation function is changing. Innate ability, peer effects, teachers mismatch play different roles over time.
- Teachers adjust target teaching level based on class composition and their payoff function.
- Scientific skill formation is more malleable than humanity skill.
- Exclude the students'/teachers' effort input due to data limitation.
- Constant return to scale assumption of skill formation function.



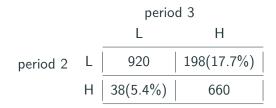
# Appendix

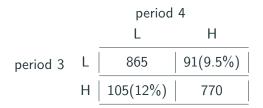
# Motivating Example

|      | college | tier1 | tier2 | tier3 |
|------|---------|-------|-------|-------|
| H*** | 0.9     | 0.09  | 0.58  | 0.22  |
| L*** | 0.86    | 0.06  | 0.5   | 0.29  |
| X%   | 5%      | 50%   | 16%   | -24%  |

|           | college | tier1 | tier2 | tier3 |
|-----------|---------|-------|-------|-------|
| LLLL      | 0.81    | 0     | 0.39  | 0.42  |
| LLHH/HHLL | 0.89    | 0.02  | 0.58  | 0.28  |
| LHHH/HLLL | 0.95    | 0.08  | 0.76  | 0.11  |
| НННН      | 0.96    | 0.27  | 0.66  | 0.02  |

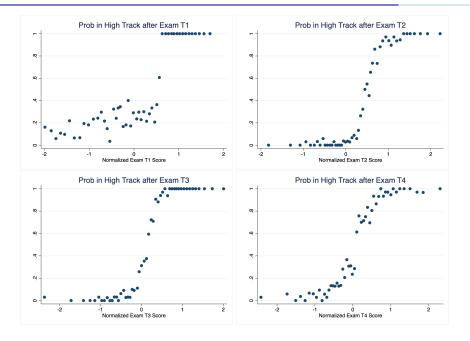
return



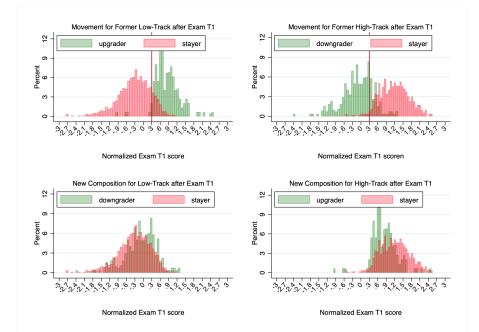


✓ return

### **Tracking Rule**



### **Class Composition before/after the Second Tracking**



### First Tracking Criteria Check

| $g(\frac{prob_{i,H}}{1 - prob_{i,H}}) =$ | $\beta_0 + \beta_1 s_{0ij} +$ | $\beta_2 I(urban_i = 1) + \beta_3 I(f$ | $female_i = 1) + e_i$           |
|------------------------------------------|-------------------------------|----------------------------------------|---------------------------------|
|                                          | (1)                           | (2)                                    | $\beta_{all} - \beta_{overlap}$ |
| VARIABLES                                | all students                  | students in the overlap                | z-score                         |
| $s_{0ij}$                                | 0.494***                      | 1.714***                               | -10.590                         |
| $I(urban_i = 1)$                         | (0.0887)<br>0.625***          | (0.0735)<br>0.553***                   | 0.388                           |
| $I(female_i = 1)$                        | (0.141)<br>-0.185             | (0.121)<br>-0.125                      | -3.223                          |
| Constant                                 | (0.126)<br>-1.478***          | (0.111)<br>-0.863***                   |                                 |
| Observations                             | (0.145)<br>1,613              | (0.124)<br>2,207                       |                                 |

Standard errors in parentheses,\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

336/1277 are in high track with lower test score (smaller than cutoff 0.7507), 1044/2493 are in high track, 1449/2493 are in low track.  $\checkmark$  return 39/48

|                                     | students in the overlap |        |                        |     |           |       |
|-------------------------------------|-------------------------|--------|------------------------|-----|-----------|-------|
|                                     | Assigned to low track   |        | Assigned to high track |     | igh track |       |
|                                     | Ν                       | mean   | sd                     | Ν   | mean      | sd    |
| Urban ratio                         | 637                     | 0.642  | 0.480                  | 557 | 0.704     | 0.457 |
| Female ratio                        | 637                     | 0.540  | 0.499                  | 557 | 0.490     | 0.500 |
| Average standardized baseline score | 637                     | -0.407 | 0.433                  | 557 | 0.425     | 0.437 |
| (mean 0, SD 1)                      |                         |        |                        |     |           |       |
| Average standardized endline score  | 627                     | -0.361 | 0.618                  | 542 | 0.520     | 0.626 |
| (mean 0, SD 1)                      |                         |        |                        |     |           |       |
| Previous section (high track $=1$ ) | 637                     | 0.133  | 0.340                  | 557 | 0.871     | 0.336 |

|                                | (1)                 | (2)                  | (3)                  | (4)                  |  |
|--------------------------------|---------------------|----------------------|----------------------|----------------------|--|
| VARIABLES                      | First Tracking      | Second Tracking      | Third Tracking       | Fourth Tracking      |  |
| RD_Estimate                    | -0.0600<br>(0.0631) | 0.496***<br>(0.0456) | 0.448***<br>(0.0397) | 0.388***<br>(0.0377) |  |
| Observations                   | 4,396               | 9,761                | 11,176               | 17,933               |  |
| Standard errors in parentheses |                     |                      |                      |                      |  |
| *** p<0.01, ** p<0.05, * p<0.1 |                     |                      |                      |                      |  |
| RD estimates                   |                     |                      |                      |                      |  |

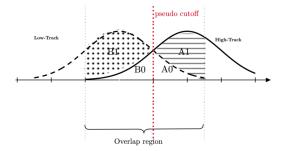
- As time goes on, tracking exam scores become less important, while prior class tracks become more influential in making tracking decision.
- Discretionary tracking in a corrective way.
- predicted residue to show the unexplained parts
- upgraders (higher), downgraders (lower).
- Teacher tailor instruction level High track students performs much better in harder exams.



#### **Treatment Effects Measured from Different Groups**

$$s_{ijt} = \beta_0 + \beta_1 I(s_i^b > s_t^{cutoff}) + \beta_2 I(High_{ijt} = 1) + \beta_3 I(s_i^b > s_t^{cutoff}) \times I(High_{ijt} = 1) + controls + \epsilon_{ijt}$$

$$\tag{7}$$



• A0: hL, A1: hH, B0: lH, B1: lL

- $\ \ \, \blacksquare \ \ \, \beta_0: lL, (\beta_0+\beta_1): hL, (\beta_0+\beta_2): lH, (\beta_0+\beta_1+\beta_2+\beta_3): hH$
- controls :  $s^0$ ,  $I(urban_i = 1)$ ,  $I(female_i = 1)$  when no student FE

#### **Treatment Effects Measured from Different Groups**

|                                                    | (1)             | (2)         | (3)         | (4)         |
|----------------------------------------------------|-----------------|-------------|-------------|-------------|
| VARIABLES                                          | all Periods     | all Periods | all Periods | all Periods |
| $I(s_i^b > s_t^{cutoff})$                          | 0.133***        | 0.140***    | 0.0373**    | 0.0434**    |
|                                                    | (0.0274)        | (0.0273)    | (0.0184)    | (0.0184)    |
| $I(High_{ijt} = 1)$                                | 0.0694*         | 0.111***    | 0.165***    | 0.163***    |
|                                                    | (0.0379)        | (0.0261)    | (0.0182)    | (0.0184)    |
| $I(s_i^b > s_t^{cutoff}) \times I(High_{ijt} = 1)$ | 0.113***        | 0.106***    | -0.0758***  | -0.0702***  |
|                                                    | (0.0429)        | (0.0397)    | (0.0244)    | (0.0241)    |
| Constant                                           | -0.119***       | -0.00865    | -0.0948***  | -0.136***   |
|                                                    | (0.0140)        | (0.0217)    | (0.0111)    | (0.0498)    |
| $\beta_0(lL)$                                      | -0.119          | -0.00865    | -0.0948     | -0.136      |
| $\beta_0 + \beta_1(hL)$                            | 0.014           | 0.13135     | -0.0575     | -0.0926     |
| $\beta_0 + \beta_2(lH)$                            | -0.0496         | 0.1024      | 0.0702      | 0.027       |
| $\beta_0 + \beta_1 + \beta_2 + \beta_3(hH)$        | 0.1964          | 0.3484      | 0.0317      | 0.0004      |
| Observations                                       | 28,223          | 28,223      | 28,216      | 28,216      |
| R-squared                                          | 0.521           | 0.538       | 0.680       | 0.680       |
| Student FE                                         | NO              | NO          | YES         | YES         |
| Period FE                                          | NO              | YES         | NO          | YES         |
|                                                    | . I she she she | 0.01 **     |             |             |

Robust standard errors in parentheses, \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

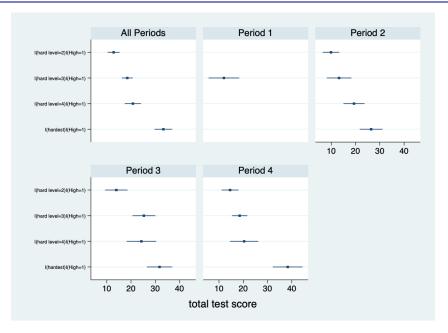
#### • lH > hH > hL > lL after including student FE

$$s_{ijt} = \beta_0 + \sum_{h=2}^{5} \beta_h I(hardlevel = h)I(High = 1) + ExamFE + controls + \epsilon_{ijt}$$
(8)

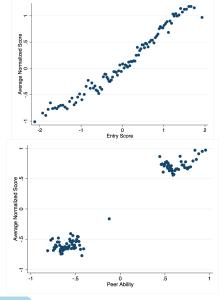
- Difficult level: the standard deviation of the raw test score
- level 5 is the hardest
- Students in High track perform better in harder exams.

• controls: raw entry score,  $I(urban_i = 1)$ ,  $I(female_i = 1)$ 

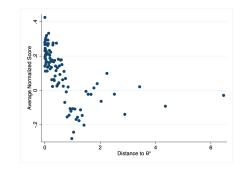
## Target Teaching Level ( $\beta_h$ )



#### Correlation of Test Score vs Peers, Teachers, Initial Ability



- 1. higher entry score, higher exam score
- 2. higher peers ability, higher exam score
- 3. longer distance to  $\theta^*,$  lower exam score



### Prob of being in High Measured from Observable

 $Pr(High_{i,p} = 1) = F(\beta_0 + \beta_1 I(High_{i,p-1}) + \beta_2 s_{ij,p-1} + \beta_3 I(urban_i = 1))$ 

|                        | (1)          | (2)          | (3)          |
|------------------------|--------------|--------------|--------------|
| VARIABLES              | 2nd tracking | 3rd tracking | 4th tracking |
| $s_{ij,p-1}$           | 6.482***     | 5.911***     | 2.664***     |
| 571                    | (1.181)      | (1.365)      | (0.512)      |
| $I(High_{ij,p-1} = 1)$ | 1.373***     | 1.691***     | 2.229***     |
| 571                    | (0.288)      | (0.380)      | (0.236)      |
| $I(urban_i = 1)$       | 0.519*       | -0.221       | 0.433*       |
|                        | (0.302)      | (0.318)      | (0.247)      |
| Constant               | -4.131***    | -1.054***    | -1.723***    |
|                        | (0.668)      | (0.299)      | (0.242)      |
| Observations           | 282          | 226          | 484          |

Standard errors in parentheses, \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

where F is the cdf of Logit distribution.

Tracking exam score is becoming less important in later tracking decision.

Previous class track is becoming **more** important in later tracking decision.

- [ ]Agostinelli, Francesco and Matthew Wiswall. 2016. ?Estimating the technology of children's skill formation.? Tech. rep., National Bureau of Economic Research.
- ]Apperson, Jarod, Carycruz Bueno, and Tim R Sass. 2016. ?Do the cheated ever prosper? The long-run effects of test-score manipulation by teachers on student outcomes.? National Center for Analysis of Longitudinal Data in Education Research (CALDER) Working Paper 155.
- [ ]Betts, Julian R. 2011. **?**The economics of tracking in education.**?** In *Handbook of the Economics of Education*, vol. 3. Elsevier, 341–381.
- [ ]Cunha, Flavio and James Heckman. 2007. **?**The technology of skill formation.**?** *American economic review* 97 (2):31–47.
- ]Cunha, Flavio and James J Heckman. 2008. **?**Formulating, identifying and estimating the technology of cognitive and noncognitive skill formation.**?** *Journal of human resources* 43 (4):738–782.

]Cunha, Flavio,

James J Heckman, and Susanne M Schennach. 2010. **?**Estimating the technology of cognitive and noncognitive skill formation.**?** *Econometrica* 78 (3):883–931.

]Diamond, Rebecca and Petra Persson.

2016. **?**The Long-term Consequences of Teacher Discretion in Grading of High-stakes Tests.**?** URL http://www.nber.org/papers/w22207.pdf.

]Dieterle, Steven, Cassandra M Guarino, Mark D Reckase, and Jeffrey M Wooldridge. 2015. ?How do principals assign students to teachers? Finding evidence in administrative data and the implications for value added.? *Journal of Policy Analysis and Management* 34 (1):32–58.

]Duflo, Esther, Pascaline Dupas, and Michael Kremer. 2011. ?Peer Effects, Teacher Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya.? 101 (5):1739–1774. URL https://pubs.aeaweb.org/doi/10.1257/aer.101.5.1739.

[]Dustmann, Christian, Patrick A Puhani, and Uta Schönberg. 2017. **?**The long-term effects of early track choice.**?** *The Economic Journal* 127 (603):1348–1380.

]Epple, Dennis and Richard E

Romano. 2011. **?**Peer effects in education: A survey of the theory and evidence.**?** In *Handbook of social economics*, vol. 1. Elsevier, 1053–1163.

]Figlio, David N and Marianne E Page. 2002. ?School choice and the distributional effects of ability tracking: does separation increase inequality?? *Journal of Urban Economics* 51 (3):497–514.

]Fu, Chao and Nirav Mehta. 2018. **?**Ability tracking, school and parental effort, and student achievement: A structural model and estimation.**?** *Journal of Labor Economics* 36 (4):923–979.

]Glewwe, P. and K. Muralidharan. 2016. ?Chapter 10 - Improving Education Outcomes in Developing Countries: Evidence, Knowledge Gaps, and Policy Implications.? In *Handbook of the Economics of Education*, vol. 5, edited by Eric A. Hanushek, Stephen Machin, and Ludger Woessmann. Elsevier, 653–743. URL https: //www.sciencedirect.com/science/article/pii/B9780444634597000105.

]Heckman, James J and Stefano Mosso. 2014. **?**The economics of human development and social mobility.**?** *Annu. Rev. Econ.* 6 (1):689–733.

[]Lavy, Victor and Edith Sand. 2018. **?**On the origins of gender gaps in human capital: Short-and long-term consequences of teachers' biases.**?** *Journal of Public Economics* 167:263–279.

[ ]Meghir, Costas and Mårten Palme. 2005. ?Educational reform, ability, and family background.? *American Economic Review* 95 (1):414–424.

]Piopiunik, Marc.

- 2014. **?**The effects of early tracking on student performance: Evidence from a school reform in Bavaria.**?** *Economics of Education Review* 42:12–33.
- ]Sacerdote, Bruce. 2011. **?**Peer effects in education: How might they work, how big are they and how much do we know thus far?**?** In *Handbook of the Economics of Education*, vol. 3. Elsevier, 249–277.