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Abstract

Renewable energy and ba�ery storage are seen as complementary technologies
that can together facilitate reductions in carbon emissions. We develop and esti-
mate a dynamic competitive equilibrium model of storage investment and oper-
ations to evaluate the adoption trajectory of utility-scale storage under di�erent
counterfactual policy environments. Using data from California, we �nd that the
�rst storage unit breaks even in 2027 when renewable energy share will reach
52%. Despite this, ba�ery adoption is virtually non-existent until 2040 without
a storage mandate or subsidy. Our model indicates this is because equilibrium
e�ects reduce the marginal value of subsequent storage investments; expected
future capital cost reductions incentivize delayed investment; and depreciation
from cycling lowers the value of investment. We show that California’s 2024
storage mandate decreases future electricity generation costs by $511 million but
also increases expected capital costs by $944 million by shi�ing adoption earlier,
before projected capital cost declines are realized.
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1 Introduction

Growth in renewable electricity generation has been dramatic over the past 10 years,
in the U.S. and worldwide. By displacing generation from fossil fuels, renewables re-
duce greenhouse gas emissions. However, almost all recent growth in renewables
comes from intermi�ent sources such as solar photovoltaics (PV): a solar farm cannot
generate electricity a�er the sun sets, or when a cloud passes overhead. Absent the
ability to store electricity, integrating these intermi�ent sources into the electricity
grid requires the capability both to produce electricity at times with low expected re-
newable production and to adjust production suddenly when renewable production
is unavailable. Intermi�ency reduces the bene�ts of renewables through the costs of
building, maintaining, and operating additional fossil fuel generators (Bushnell and
Novan, 2018; Gowrisankaran et al., 2016; Joskow, 2011). �us, ba�ery storage is a po-
tentially important complement to intermi�ent renewable energy: it can lower the
social costs of integrating renewables by storing energy when renewable production
peaks and releasing it when it plummets.

In tandem with recent growth in renewable energy investment, the capital costs of
lithium-ion ba�ery cells fell by 85% from 2010 to 2018 with projections of 50% further
cost drops over the next decade (Cole and Frazier, 2019; Goldie-Scot, 2019).1 Despite
these dramatic cost decreases, capital costs are still a central impediment to utility-
scale ba�ery storage. Moreover, even a�er these costs reach a break-even point, com-
panies may defer ba�ery investments to wait for future capital cost declines. Finally,
in the long run, the equilibrium value of large-scale storage investment is limited be-
cause each additional storage unit acts as an arbitrageur, smoothing price di�erentials
across time and lowering the value of existing units.

�is paper has four main goals related to understanding the economics of ba�ery
storage. First, we evaluate the e�ects of utility-scale ba�eries in the electricity mar-
ket, focusing on how their presence and operation would impact equilibrium prices,
electricity generation costs, and pro�ts for di�erent market participants. Second, we
develop a ba�ery adoption model to understand the likely path of storage capacity
that will enter over time. �ird, we evaluate factors that might lead to delays in entry,

1Other storage technologies are also expected to have up to 90% lower capital costs within the next
decade (U.S. Department of Energy, 2021).
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including equilibrium price e�ects and the expectation of future cost declines. Fourth,
we evaluate the extent to which ba�ery mandates or subsidies are necessary to achieve
adoption, as well as the cost implications of these policies.

Understanding the value of policies that encourage ba�ery storage as a comple-
ment to renewable energy is particularly important because many states have paired
renewable energy mandates with ba�ery mandates. For example, in conjunction with
its aggressive renewable energy standards, California passed a requirement for utili-
ties to procure 1,300 MW of storage power capacity by 2024. 2 �e state justi�ed the
storage mandate on the basis that storage resources can help optimally integrate re-
newable energy resources and improve grid reliability. Additionally, implementing a
concurrent ba�ery mandate and renewable portfolio standard could be a cost e�ective
way to achieve renewable energy goals if there is the potential for coordination fail-
ures at the investment stage due to these complementarities (Zhou and Li, 2018). Other
states—notably Arizona, Massachuse�s, New Jersey, New York, Nevada, Oregon, and
Virginia—have also implemented ba�ery procurement targets or requirements as com-
plements to their renewable energy standards. Despite the increasing prevalence of
storage mandates, li�le is known about the impact of these policies.

To �x ideas, we illustrate the complementarity between renewable energy and stor-
age with California data. Figure 1a displays median electricity demand and Figure 1b
displays median solar generation, over the hours of the day and separately for 2015
and 2019. Solar generation in California increased dramatically over this period, but
this generation typically occurs in the middle of the day and not in the evening, when
demand is highest. Figure 1c displays median net load, which is the di�erence between
total demand and renewable generation, and hence the electricity that is supplied by
dispatchable generators.3 Net load in 2019 plummets in the middle of the day but rises
again in the early evening to a similar level as in 2015, resulting in a curve with two
humps. �is change in the shape of the net load curve has at least two implications
for costs. First, it implies that solar PVs are not producing in the evening when net
load, and hence marginal costs, are highest. Second, it increases the ramping costs
that generators bear every time they turn on or o� (Cullen, 2010; Jha and Leslie, 2020;

2�is size is a similar to a large natural gas power station, and could serve about 6% of typical
CAISO load. With 4-hour duration ba�eries, it corresponds to 5,200 MWh of stored energy capacity.

3Unlike intermi�ent generators like wind and solar PV power plants, dispatchable generators,
which include natural gas and hydroelectric plants, can be started on demand.
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Figure 1: Electricity Demand, Solar Generation, and Prices by Year in California

(a) Electricity Demand (Load) (b) Solar Generation

(c) Net Load (d) Wholesale Price

Notes: Each panel shows the hourly median, 25th percentile, and 75th percentile of electricity demand
(load), solar generation, net load, and real-time wholesale market price, respectively. Figures calcu-
lated by authors from California Independent System Operator data. All prices are for the California
South Hub Trading Zone (SP15).

Mansur, 2008; Reguant, 2014). Finally, Figure 1d displays median wholesale electricity
prices. Despite the similarity in evening load between 2015 and 2019, median whole-
sale prices are substantially higher in 2019, suggesting the importance of increased
ramping costs and the potential of storage to mitigate these costs.

To incorporate key features of the electricity market, we develop a new theoretical
and estimation framework with three main innovations. First, we specify and analyze
a dynamic competitive equilibrium ba�ery operations model that allows us to eval-
uate how much large-scale ba�ery operations would a�ect the wholesale electricity
price, and through that, limit the marginal value of additional ba�ery capacity. Sec-
ond, to solve this equilibrium operations model across di�erent counterfactual ba�ery
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capacity levels, we develop a high-frequency time-series model of net load and the
electricity generation supply curve. Our operations model and supply curve incorpo-
rate ramping costs, where past generation by dispatchable generators reduces current
marginal costs. Finally, we link our operations model with a ba�ery adoption model.
In particular, our operations model microfounds revenues for our adoption model. �e
adoption model in turn allows us to understand how renewable energy standards and
ba�ery mandates a�ect ba�ery adoption and social surplus.

Our framework has two dynamic components: an operations model and a capacity
adoption model. �e operations model solves for a dynamic competitive equilibrium
in charge/discharge decisions, given a �xed ba�ery capacity level. Each �ve-minute
interval, a �eet of ba�ery operators buys and sells energy in the wholesale energy mar-
ket. �e model incorporates a number of features that we believe are important in this
context: predictable within-day �uctuations in net load; a non-linear marginal cost (or
supply) curve of electricity that evolves over time and includes ramping costs; serial
correlation of the shocks to net load and marginal cost curve of electricity; a restric-
tion that charge/discharge policies be based on data that would have been available
in real-time to a market participant; a loss in energy from charging and discharging
the ba�ery; and the depreciation of ba�eries from operation, particularly with deep
cycles. We estimate the electricity demand and marginal cost curves using data from
the California Independent System Operator (CAISO)—which covers 80% of Califor-
nia’s electricity demand—from 2015-19. We estimate current and future ba�ery capital
costs from data compiled by the National Renewable Energy Laboratory (NREL).

Our capacity adoption model solves for a dynamic competitive equilibrium of in-
vestment decisions of potential ba�ery operators. Each year, potential ba�ery opera-
tors make an optimal stopping decision, choosing whether to install capacity or wait,
given ba�ery installation costs, current and future renewable energy standards, and
the mass of existing ba�ery capacity. �e operating revenues in our capacity adoption
model derive from the solution to the operations model. We solve the operations model
for di�erent in-sample levels of renewable penetration and across counterfactual bat-
tery penetration levels. We then estimate a regression that links the two models by
estimating the social surplus of ba�ery storage across these two variables.

Our results depend crucially on four main identifying assumptions. First, we as-
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sume that our market price and quantity data allow us to recover the supply curve
of electricity for each �ve-minute interval in our sample. Second, we assume that the
net load process and electricity generation supply curves that we identify from the
data are structural and hence will continue to hold in the presence of utility-scale bat-
teries. �is assumption implicitly rules out the possibility that fossil fuel generators
will retire due to large-scale ba�ery storage. We leverage this assumption to evaluate
the marginal value of ba�ery operations at counterfactual aggregate ba�ery capacity
levels. We allow for ramping costs, serial correlation of the residuals, and daily innova-
tions to the supply curve. �is rich dependence on observables adds to the plausibility
of this assumption. �ird, we identify the impact of counterfactual renewable adoption
with the assumption that the relation between ba�ery storage and renewable gener-
ation that holds in our data will continue to hold in the future when there is higher
renewable penetration than exists in the data. Finally, in order to be able to solve for
a dynamic competitive equilibrium, we assume that the electricity generation supply
curves that we estimate represent the marginal costs of production.4

Relation to literature. Our study builds on three main literatures. First, it re-
lates to an engineering and economics literature that investigates the value of storage
in wholesale electricity markets. Early engineering papers in this literature modeled
the storage decision using a �nite-horizon framework and assumed that the storage
device operator had perfect foresight about future prices or relied on historical prices
when making discharge and charge decisions (e.g. Sioshansi et al., 2009). More recent
engineering studies relax the perfect foresight assumption and model storage deci-
sions given uncertainty about future prices (e.g. Mokrian and Stephen, 2006). Our
operations model extends this framework by considering the equilibrium e�ects of
large-scale storage in competitive storage markets. It also relates to two recent eco-
nomics working papers. Kirkpatrick (2018) estimates the e�ect of recent utility-scale
ba�ery installations on electricity market prices and transmission line congestion in
California. Karaduman (2021) also considers the economics of grid-scale energy stor-

4We leverage this assumption primarily to compute counterfactual market outcomes—speci�cally,
generation from dispatchable generators and wholesale electricity prices—in the se�ing of a large bat-
tery �eet. One can also interpret our approach as recovering the more general generator supply relation
in the presence of market power. Under this interpretation, our framework is still appropriate for ana-
lyzing the market impacts of a small ba�ery �eet, and projecting when ba�eries would break even.
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age, employing di�erent modeling approaches and data from ours.5

Second, we contribute to an economics literature that explores market impacts of
new energy technologies. Wolak (2018) and Woo et al. (2016) measure the environ-
mental and market e�ects of renewable energy generation. Feger et al. (2017), Langer
and Lemoine (2018), and De Groote and Verboven (2019) evaluate the impact of solar
subsidies on adoption. We add to this literature with a dynamic model of investment
in ba�ery capacity, that is micro-founded with our operations model.

�ird, our work also relates to the literature on electricity forecasting (Kanamura
and Ōhashi, 2007; Kni�el and Roberts, 2005; Weron, 2014) and commodity pricing
(Deaton and Laroque, 1992; Pirrong, 2012). Based on this literature, we develop and
estimate a model of electricity load and marginal costs that allows for seasonal pat-
terns, dynamics from ramping costs, and high-frequency cost volatility arising from
unanticipated shocks to available generation.

Summary of Results. Starting with our operations model, we �nd that a very
small ba�ery �eet would break even—earn enough revenues in the energy market to
cover costs—if capital costs were to fall by 41% from 2019 levels and renewable energy
share were to increase from 40% (the share in 2019) to 52%, which are both expected
to occur in 2027. A somewhat larger ba�ery �eet with 1,000 MWh of energy capacity
would reduce CAISO wholesale prices during evening hours by 6% and overall prices
by 3% over our sample period. Consequently, these ba�ery operations would improve
gross social surplus by $13 million annually through reductions in the total cost of
electricity generation.6 Disaggregating these impacts, ba�ery operations would re-
duce prices paid by utilities to serve load by $256 million annually, provide $14 million
in annual pro�ts for ba�ery owners, but reduce generator pro�ts by $257 million. �e
marginal value of storage capacity increases by more than 10% when the renewable
generation share increases from 40% to 50%. However, this marginal value declines
sharply with aggregate ba�ery capacity: while the �rst unit of storage capacity would
provide over $200/kWh in social surplus, the marginal value falls to $125/kWh when
there is 5,000 MWh of storage capacity already operating in the market. �is �nding
highlights the importance of modeling equilibrium e�ects here.

5Andrés-Cerezo and Fabra (2020) investigate the in�uence of market structure on ba�ery invest-
ment levels, and subsequent e�ects on social welfare.

6Gross social surplus does not account for the �xed capital costs of ba�ery capacity.
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Turning to our adoption model, we �nd that an ambitious renewable energy stan-
dard is not su�cient to encourage large-scale ba�ery adoption on its own. Despite
�nding that a small ba�ery adopter could break-even as soon as 2027, in the absence
of California’s 2024 mandate, the ba�ery market would not have reached the mandated
level of capacity until 2044, in expectation. �ree key mechanisms limit aggregate bat-
tery adoption in the absence of a mandate: (1) the equilibrium e�ects of ba�ery oper-
ations greatly reduce the value of subsequent investment, (2) rapidly declining capital
costs create option value that incentivizes delayed investment, and (3) ba�ery capac-
ity depreciation caused by charging and discharging substantially reduces the lifetime
value of ba�ery investments. All together, this set of results shows that absent a bat-
tery mandate, policymakers should expect relatively modest installed ba�ery capacity,
but also that this capacity would substantially mitigate the pa�ern of sharp peaks and
troughs in wholesale electricity prices created by large-scale renewable generation,
and thus lead to a reduction in the overall cost to serve load.

Finally, we assess the costs of meeting California’s ba�ery mandate policy. �e
mandate causes earlier ba�ery adoption, which provides electricity generation cost
savings, but it increases expected capital costs by shi�ing ba�ery adoption forward.
We �nd that the 1,300 MW (5,200 MWh) mandate decreases electricity generation costs
by $511 million, but increases expected ba�ery capital costs by $944 million, implying a
total cost of $433 million, or $11.50 per California resident. �is �gure does not include
other bene�ts of storage–including grid reliability–that were part of the justi�cation
for the mandate.7

�e remainder of our paper is structured as follows. Section 2 discusses our data
and institutional features. Section 3 exposits our model. Section 4 explains our esti-
mation. Section 5 presents our results and counterfactuals, and Section 6 concludes.

7For instance, if the presence of storage averted a single system-wide power outage for 2.2 hours
in present value terms, this would add $433 million in bene�ts.
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2 Data and Institutional Setting

2.1 Storage Resources in the Electricity Market

Recognizing the complementarity with renewable energy, regulators nationally and
in California have enacted new policies to increase electricity storage investment.
In early 2018, the Federal Energy Regulatory Commission (FERC) issued Order 841,
which requires independent system operators (ISO) to remove any existing barriers
that would inhibit participation of storage resources in wholesale markets.

In 2010, the California legislature authorized the California Public Utility Com-
mission (CPUC) to evaluate and determine energy storage targets for the state. Ac-
cordingly, the CPUC required the state’s investor-owned utilities to procure 1.3 GW
of storage power capacity by 2020,8 with installations required to be operational no
later than the end of 2024. Since this time, California’s utilities have been adding stor-
age capacity and, by 2019, utilities had at least 126 MW of operational ba�ery power
capacity.9

�ough energy storage technologies such as pumped hydroelectric storage have
been established for decades, the majority of recent utility storage installations use
ba�ery technologies. More speci�cally, lithium-ion based ba�eries now dominate the
U.S. market—accounting for over 90% of ba�ery storage capacity (EIA, 2020). Nearly
all lithium-ion ba�ery grid resources were installed a�er 2014. We focus our analysis
on lithium-ion ba�eries.

Although the stock of utility-scale ba�eries is growing at a rapid rate, the overall
ba�ery �eet remains small. As of 2018, there was only 900 MW of aggregate ba�ery
power capacity in the U.S., similar to that of two to three combined-cycle natural gas
generators (EIA, 2020).

2.2 Capital Costs of Battery Storage

Our adoption model relies on data on the capital costs of energy storage. Given the
large expected declines in utility-scale ba�ery capital costs, we use forward-looking

8Power capacity is the amount of power that the ba�ery can supply to the grid at any point in time
while energy capacity is the maximum amount of energy that the ba�ery can store.

9Authors’ calculations based on maximum aggregate output reported by the California Independent
System Operators between May 2018 and December 2019.
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Figure 2: Ba�ery Capital Cost Projections and Renewable Energy Trends

(a) Projected Ba�ery Capital Costs (b) Solar + Wind Market Share

Notes: �e authors constructed Figure 2a using data from Cole and Frazier (2019). Each transparent
line represents a future cost projection from a single publication. �e dashed line plots the mean
cost projection. �e �gure re�ects all cost projections related to grid ba�ery applications (not electric
cars). �e authors constructed Figure 2b from CAISO data. It shows the share of electricity generation
coming from solar and wind generators for each week between 2015 to 2019.

projections from the the National Renewable Energy Laboratory (Cole and Frazier,
2019) to model the evolution of future lithium-ion ba�ery costs. �ese data compile
utility-scale lithium-ion ba�ery cost projections from over 25 publications published
between 2016 and 2018.

Ba�eries vary in their round-trip e�ciency and duration. A ba�ery’s round-trip
e�ciency measures the percentage of stored energy that is available for later usage.
A ba�ery’s duration indicates the amount of time the ba�ery is able to discharge at
its rated power capacity. For example, a 2-hour duration ba�ery could discharge at
full power capacity for 2 hours. Our study follows Cole and Frazier (2019) and focuses
on the most common type of ba�ery system currently being added in U.S. markets:
ba�eries with 4-hour duration and 85% round-trip e�ciency.

Figure 2a demonstrates variation in cost projections for ba�ery storage over time
in $/kWh. Each point in the �gure represents a normalized cost projection from a
single publication for one year, and the dashed line plots the mean projection by year.

9



2.3 �e California Wholesale Electricity Market

Our operations model relies on data from the California Independent System Opera-
tor (CAISO).10 California restructured its electricity sector in 1998, and consequently
designated CAISO the state’s new independent system operator. CAISO dispatches
over 200 million megawa�-hours of electricity to 30 million consumers each year, ac-
counting for about 80% of electricity demand in California. CAISO runs two distinct
wholesale energy markets: a day-ahead market (DAM) and a real-time market (RTM).

In the day before power is delivered, CAISO conducts 24 DAM energy auctions,
one for each hour of the day, making available projections of net load and market-
clearing prices prior to the auction. Market participants then submit bids to either
buy or sell energy and CAISO computes market-clearing quantities and prices that
meet projected load at lowest cost.11 On the day of energy delivery, CAISO uses an
RTM auction 75 minutes before each delivery hour to adjust generator production in
response to unplanned outages or deviations. During the delivery hour, the system op-
erator dispatches the lowest-cost generators every �ve minutes. �e system operator
uses reserve operations to meet any unanticipated imbalance within the �ve minute
interval.

As we discuss in Section 4, our estimation uses data from both the DAM and the
RTM. We focus on wholesale electricity prices from CAISO’s South-Zone hub (SP-15),
because this zone covers the largest share of the California population and currently
hosts the most ba�ery storage capacity. Additionally, we augment the electricity price
data with other market data: total load from the CAISO territory, generation by re-
source type, natural gas prices, and hydroelectric availability.

Following FERC Order 841, CAISO has made e�orts to integrate new storage tech-
nologies into its wholesale markets. CAISO allows ba�eries to submit either demand
bids or supply bids in both day-ahead and real-time energy auctions. A ba�ery can
submit a set of prices and associated quantities at which it is willing to discharge en-
ergy, with negative quantities when it would like to charge.

Ba�eries also have the option to supply reserve capacity in the ancillary services
market. A limitation of our approach is that we model ba�eries’ operations in the

10We obtained data used from the CAISO Open Access Same-time Information System (OASIS) por-
tal. OASIS provides real-time data related to the ISO transmission system and its markets

11CAISO also uses the day-ahead market to secure energy reserves.
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energy market but not in the ancillary services market. Although many of the earliest
ba�ery operators provided ancillary services, it unlikely that ancillary services will be
the primary ba�ery storage application in the long-run. Industry experts have made
this point, noting that ISOs typically require only limited ancillary services capacity,
on the order of 100-400 MW (Sackler, 2019).12 For this reason, we focus our analysis
on ba�ery operations in the energy market.

Notably, California’s grid is currently undertaking a dramatic transition away from
fossil fuel generation and towards renewable resources that will impact storage invest-
ment and operations. As of 2015, California already hosted the largest capacity of solar
PV panels in the United States. Figure 2b shows that during the sample period of our
study—January 2015 to December 2019—utility-scale solar and wind resources’ market
share doubled from 10% to 20%, and exceeded 30% during some weeks. Going forward,
state lawmakers have voted to boost renewable energy further under Senate Bill 100,
signed in September 2018, which establishes the state’s updated renewable portfolio
standard (RPS). Figure A.2 in Online Appendix A provides details on California’s RPS
schedule. �e law speci�es the share of generation that must come from renewable
sources: 44% by 2024, 52% by 2027, 60% by 2030, and 100% by 2045. �e �gure also
projects the share of energy that will come from solar and wind together for each
future year that we model, as required by our analysis. We form this projection by
linearly interpolating the RPS to intermediate years, assuming that all new renewable
energy will be from solar and wind, in equal proportions to the present.

Figure A.3 in Online Appendix A provides more details on market trends in CAISO
over our sample period. From Figure A.3a, average demand (load) for electricity has re-
mained relatively stable, falling by 7.5%. Figures A.3b, A.3c, and A.3d show the solar,
wind, and combined solar plus wind market shares over our sample period, respec-
tively. Average wind power production increased slightly from 5% to 7% of genera-
tion, and solar PV’s generation share rose from 6% to 14%. Figure A.3e shows that
prices for natural gas, the predominant fossil fuel generation source in CAISO, hov-
ered around $3/MMBtu for much of the sample period. Figure A.3f shows that mean
prices in the real-time market have also trended upwards by nearly 20%. Finally, Fig-
ure A.4 in Online Appendix A replicates Figure 1d but with data at the �ve-minute,

12Figure A.1 in Online Appendix A shows that CAISO procured an average of less than 800 MW of
hourly regulation reserves in all but �ve months of our �ve-year sample.
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rather than hourly, level. It shows that real-time prices have become more volatile
within each hour of the day as intermi�ent renewable generation has expanded and
more high-frequency adjustments are required in the real-time market.

3 Model

Our dynamic equilibrium framework of ba�ery storage includes two components.
First, the capacity adoption model solves agents’ decisions of whether to make a capital
investment in storage capacity in a given year. Second, the operations model micro-
founds the capacity adoption model by solving agents’ short-run dynamic decisions
regarding when to charge and discharge energy. �is section describes both compo-
nents, in turn.

3.1 Capacity Adoption Model

Our capacity adoption model considers an in�nite mass of ex-ante identical potential
ba�ery operators, or agents for short. Each agent i has the ability to install a unit
capacity of storage technology, k = 1, at one point in time. �e unit capacity is
su�ciently small that each agent takes electricity market prices as given.

Agents face an in�nite horizon dynamic problem and have an annual discount
factor of β. Each agent has room for one storage system and cannot replace the system
once installed. Hence, agents solve an optimal stopping problem of when to invest.
Adopters bear a �xed cost of obtaining storage capacity but can then use the storage
capacity to earn future �ow pro�ts, by acting as arbitrageurs in the energy market.

Agent Decision Problem

At each year y, agents that have not previously adopted make a binary decision of
whether or not to invest in storage capacity. Agents that adopt must pay a �xed cost,
cy, that is the cost net of any subsidy available at year y. At year y, agents observe cy
but do not know future adoption costs. We assume that these costs evolve stochasti-
cally, declining over time in expectation due to technological advances. Agents have
rational expectations over future adoption costs and hence form accurate distributions
over future trajectories. A bene�t of waiting to invest is that capital costs are likely
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to be lower in the future. Adoption costs can depend in part on subsidies that the
government o�ers for ba�ery investments in year y. We consider subsidy paths that
evolve deterministically and are known to market participants.

Besides costs, agents must also forecast the expected current and future revenues
from their system. �e annual per-unit revenues depend on both the year and the
aggregate capacity of storage present in the market. �e year ma�ers both because
the expansion of renewable energy generation over time will likely increase the value
of storage by increasing intertemporal price �uctuations and also because the year
may a�ect available subsidies. Following California’s renewable portfolio standard,
we model renewable energy market share as the exogenous and deterministic func-
tion of y shown in Figure A.2. Aggregate storage capacity ma�ers because of equilib-
rium e�ects: with additional capacity, storage owners will arbitrage away more of the
intertemporal price di�erentials, reducing per-unit revenues.

De�ne K to be the aggregate ba�ery capacity present in the market at the start
of a year. �e agent’s state includes the aggregate state, (c, y,K), plus its capacity,
which starts at k = 1 upon installation. De�ne K∗(c, y,K) to be the equilibrium ag-
gregate storage capacity following adoption at state (c, y,K);K∗ includes the existing
capacity K plus the capacity from the new adopters. Given the rational expectations
assumption, agents can accurately predict K∗ given (c, y,K).

Owners of storage capacity buy and sell energy to maximize expected discounted
pro�ts in every small time interval of each year. De�ne π (y,K) to be the expected
revenues per unit of capacity from storage at year y with capacityK and δ (y,K) to be
the capacity depreciation rate.13 �us, a ba�ery owner that installs a ba�ery system
at state (c, y,K) will have δ(y,K∗(c, y,K)) of capacity at year y + 1. We microfound
π (y,K) and δ (y,K) from our operations model, as we discuss in Section 3.2.

13π (y,K) and δ (y,K) incorporate the fact that agents will modulate usage of their ba�ery to lower
depreciation. We discuss this point further in Sections 3.2 and 4.2.
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We describe the agent’s decision problem with the following Bellman equation:

V(k, c, y,K) = 1{k = 0}[
max

{ Value from adopting︷ ︸︸ ︷
π(y,K∗)− c+ β

∫
V
(
δ (y,K∗) , c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y),

Value from waiting︷ ︸︸ ︷
β

∫
V
(

0, c′, y + 1, δ (y,K∗)K∗
)
dGc′(c′|c, y)

}]
(1)

+1{k > 0}

[
π(y,K∗)k + β

∫
V
(
δ (y,K∗) k, c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y)︸ ︷︷ ︸

Value if adoption before y

]
,

where integration is over the conditional density of the next period’s costs net of sub-
sidies, dGc′(c′|c, y) (and where K∗ abbreviates K∗(c, y,K) throughout).

In (1), an agent that has not already adopted can invest (the second line) or wait
(the third line). �ese agents face an important trade-o� in their capacity investment
problem. On the one hand, agents that do not invest maintain the option to invest
in future years with lower capital costs (unless subsidies expire). On the other hand,
agents that wait and do not invest forgo π(y,K∗). Finally, agents that already invested
(the fourth line) face no further choices, but their capacity depreciates over time.

Equilibrium of Model

A market equilibrium consists of values of K∗ for all values of the aggregate state
such that no potential adopters want to deviate from their strategy given K∗. �e
equilibrium condition speci�es that potential entrants must be indi�erent between
adopting and not adopting for all states with positive investment:

Value from adopting︷ ︸︸ ︷
π(y,K∗)− c+ β

∫
V
(
δ (y,K∗) , c′, y + 1, K∗δ (y,K∗) dGc′(c′|c, y) (2)

= β

∫
V
(

0, c′, y + 1, K∗δ (y,K∗)
)
dGc′(c′|c, y)︸ ︷︷ ︸

Value from waiting

, ∀c, y,K s.t. K∗ > K.
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In addition, for all states with zero investment, K∗ = K , and the value from adopting
must be less than or equal to the value from waiting.

We solve for the competitive dynamic equilibrium by computing the social plan-
ner’s problem, which is easier to compute since it does not require that an equilibrium
condition such as (2) hold (Ljungqvist and Sargent, 2012; Lucas and Presco�, 1971).
De�ne GSS(y,K) to be the social surplus from the electricity market at year y with
capacity K minus the surplus in the market without any ba�ery capacity, gross of
ba�ery capital costs.14 We then express the planner Bellman equation as:

W(c, y,K) = max
K∗≥K

(3){
K∗GSS (y,K∗)− c (K∗ −K) + β

∫
W
(
c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y)

}
.

Comparing (3) to (1), the planner faces incentives on its last unit of investment that are
equivalent to the agents in the competitive equilibrium. We compute (3) by discretizing
both c and K . We choose a range for these values that is su�ciently broad to avoid
constraining the solution during the time period we study.

3.2 Operations Model

Our operations model and our linking regression allow us to obtain GSS(y,K∗) and
δ(y,K∗) for a range of values of y and K∗. Since our data contain essentially no
variation in ba�ery capacity, we calculate GSS(y,K∗) and δ(y,K∗) across di�erent
values of K∗ as counterfactuals from a dynamic competitive equilibrium operations
model. We then use the in-sample variation in renewable energy production to project
these quantities to future years with more renewables.

In the operations model, ba�ery operators, or agents, buy and sell energy in the
real-time electricity market in every �ve-minute time interval, with the goal of maxi-
mizing their expected discounted pro�ts from being arbitrageurs. We model agents as
solving in�nite-horizon dynamic problems where the structural parameters for each
day are repeated in perpetuity. We believe that this is a reasonable approximation be-
cause we focus on ba�eries that can completely �ll or empty within a few hours, so
expectations about changes in future days’ demand and supply conditions will have

14We discuss our microfounding of GSS(y,K) in Section 3.2 below.
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relatively li�le in�uence on charging decisions.
Each agent’s charge decision at each time interval is a function of its charge level

and the market state, which characterizes the current and expected future electricity
market prices. Although each agent takes electricity prices as given, it knows that
ba�ery operations together will a�ect dispatchable generator production levels and
through this a�ect equilibrium marginal costs and prices. We estimate marginal cost
curves for dispatchable generators that account for ramping costs, by le�ing marginal
costs depend on lagged production.

Storage Technology

Our modeling approach captures three critical properties about ba�ery storage tech-
nology. First, a ba�ery’s power capacity F determines what fraction of the ba�ery
can be charged or discharged in each �ve-minute interval and therefore how quickly

the ba�ery can transition from full to empty and vice versa. Second, we model the
round-trip e�ciency of the ba�ery, υ, which is the percentage of energy that is lost
during a charge/discharge cycle. Following Section 2.2, we model four-hour ba�eries
and thus set F = 1

4×12
, and υ2 = 0.85.

Finally, we model capacity fading or depreciation, which occurs when a ba�ery’s
energy capacity decreases with repeated use. Lithium-ion ba�eries, as well as most
other ba�eries, will exhibit substantial depreciation. A storage operator may not want
to engage in arbitrage if the expected pro�ts are not substantial enough to justify the
additional depreciation from the arbitrage. We model capacity depreciation using Xu
et al. (2016). It would be computationally di�cult to model agent’s optimization over
depreciation in the operations model. Instead, as we detail in Section 4.2, we account
for capacity depreciation with a heuristic optimization process.

Agent Decision Problem and Equilibrium of Model

At each �ve-minute time interval, each agent makes charge/discharge decisions in
order to maximize the sum of its expected discounted pro�ts. We let S denote the
number of time intervals within a day (i.e., S = 288), D denote the number of days
within a year, d denote any day in our (multi-year) sample, and s denote a particular
time period. �e per-period discount factor is then β 1

SD .
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We focus on a symmetric equilibrium, where all ba�ery operators start each period
with the same fraction already charged—which we denote f ∈ [0, 1]—and then choose
the same charge/discharge fraction each period—which we denote q. Let Q(q) be the
quantity of electricity supplied to the grid by ba�ery operators at a period where this
(common) discharge fraction is given by q:

Q(q) = K∗ ×
(
1{q > 0}qυ + 1{q < 0}q/υ

)
.

We model the net load—the electricity demanded by �nal users net of the amount
produced by intermi�ent renewable sources—as an autoregressive process whose mean
depends on the time of day, s. De�ne X to be the net load and Z the amount of elec-
tricity that needs to be supplied by dispatchable generators, at some state. We assume
that X = XL

s + εL, where XL
s is the interval-of-day mean of net load and εL is the

deviation of the realization of net load from the interval-of-day mean. In the absence
of storage, Z = X , since net load is the amount of electricity that needs to be supplied
by dispatchable generators. With ba�ery storage, Z = X −Q(q).

�e wholesale market price and marginal cost of production are a function of s, Z ,
last period’s Z , which we denote Z̃ , and εP :

P (s, Z, Z̃, εP ) = MC(s, Z, Z̃, εP ), (4)

where MC(s, Z, Z̃, εP ) is the marginal cost function, and is equal to price by our
perfect competition assumption. We include Z̃ to allow for ramping costs. �e εP

term represents other factors that determine the price of electricity conditional on
the amount of electricity supplied, and includes factors such as weather, generator
outages, and transmission congestion. We assume that the residuals εL and εP have
a joint conditional distribution dGε(·, ·|·, ·). �e current values of εL and εP and their
joint conditional distribution is known to the agents.

While equation (4) speci�es that price is equal to marginal costs, one can also in-
terpret our approach as recovering a more general supply relationship for the set of
existing generators, which themselves might have market power. In this case, the
supply relationship may even include oligopoly power. �us, our framework is appro-
priate for analyzing the market impacts of a small ba�ery �eet, even in the presence
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of dispatchable generator market power. However, in the case that the generators and
ba�eries are in oligopolistic competition, the counterfactual presence of a large ba�ery
�eet may a�ect equilibrium behavior of generators in a way that could deviate from
the supply relationship we estimate. Even in this case, our results could be consis-
tent with a model where ba�ery operators �rst choose quantity levels and generators
then choose their strategies under oligopolistic competition, if generators were static
players. However, the ramping costs in our model imply that both the generators and
ba�ery operators are dynamic agents. For this reason, the state-contingent production
responses of this oligopoly may change following large-scale ba�ery adoption due to
the storage operators’ decisions a�ecting the future state-contingent price distribu-
tion. �erefore, the supply relationship may be di�erent from what we estimate with
large-scale ba�ery adoption, generator oligopoly power, and ramping costs.

We can write the agent optimization problem under the symmetric equilibrium as:

Vd(f, s, Z̃, εL, εP ) =

max
q

{
P (s, Z, Z̃, εP )× (1{q > 0}qυ + 1{q < 0}q/υ)

+β
1

SD

∫
Vd(f − q, s+ 1− 1{s = S}S,Z, εL′ , εP ′)dGε′(εL

′
, εP

′ |εL, εP )
}
, (5)

s.t. Z = XL
s −Q(q∗(f, s, Z̃, εL, εP )) + εL,−Fυ ≤ q ≤ F/υ, and 0 ≤ f − q ≤ 1.

where ε′ denotes the value of ε next period, and where q∗(f, s, Z̃, εL, εP ) is the equi-
librium quantity discharged at that state and is equal to the value of q that maximizes
(5) at every state.

Analogously to our approach for solving the equilibrium in the investment stage,
we recast the ba�ery operations problem as a social planner’s problem. For a similar
model to ours, Cullen and Reynolds (2017) prove that competitive equilibria and a solu-
tion to the planner’s problem exist, and that that the planner’s solution is equivalent to
all competitive equilibria. We rewrite the problem as the single-agent planner’s prob-
lem whose allocation is then equivalent to the competitive equilibrium problem. �e
objective of the social planner is to maximize welfare. Since we assume that electricity
demand is perfectly inelastic in the short-run, the planner will meet demand by choos-
ing the state-contingent ba�ery discharge fraction q∗(f, s, Z̃, εL, εP ) that minimizes
the total expected discounted cost of electricity production.
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Let TC(q, s, Z̃, εL, εP ) denote the period total cost of production for any state. It
is equal to �xed costs plus the integral of marginal cost from zero to the amount of
dispatchable generation. It would be di�cult to identify the impact of Z̃ on �xed costs
using marginal cost (or equivalently in our context, price) data alone. Accordingly,
while we allow Z̃ to a�ect period marginal costs, we assume that it cannot a�ect period
�xed costs. Any remaining �xed costs (e.g., capital costs or annual maintenance costs)
are not relevant to the planner decision, since dispatchable generation capacity is �xed.
Hence, we assume that �xed costs are 0 and write:

TC(q, s, Z̃, εL, εP ) =

∫ XL
s −Q(q)+εL

0

P (s, ζ, Z̃, εP )dζ. (6)

We then write the social planner’s Bellman equation as:

Wd(f, s, Z̃, εL, εP ) = max
q

{
− TC(q, s, Z̃, εL, εP )

+β
1

SD

∫
Wd(f − q, s+ 1− 1{s = S}S,Z, εL′ , εP ′)dGε′(εL

′
, εP

′ |εL, εP )
}
, (7)

s.t. Z = XL
s −Q(q) + εL,−Fυ ≤ q ≤ F/υ, and 0 ≤ f + q ≤ 1.

We solve the operations model by discretizing the state elements Z̃ , εL, εP , and
f into 10 dimensions each and solving the social planner’s problem.15 We solve the
optimization separately for each day in our 4-year main estimation sample and across
8 candidate values of K∗. �ese dimensions result in an overall size of the state space
that is roughly 10× 10× 10× 10× 288× 4× 365× 8 ≈ 33 million states. We solve
the optimization independently for each day-K∗ pair which results in about 11,000
dynamic problems with 2,880,000 states each.16 �e in�nite horizon solution is very
computationally challenging to solve. We instead solve for a �nite approximation of
the in�nite horizon model. For each day, we set up a �nite horizon model with the
base 288 periods for the day plus 288×3 additional periods which repeat the same set
of net load and marginal cost parameters as the base periods. We then kept the policies

15We discretize the transitions of εL, εP by assuming that the innovation to these shocks are inde-
pendent and normally distributed. We use the Rouwenhurst method to discretize εL, which avoid the
sensitivity of the Tauchen (1986) procedure to very persistent processes (Kopecky and Suen, 2010).

16We also solve the operations model under an (infeasible) assumption of perfect foresight. For this
model, we assume that the current and future values of εL, εP are known to the agent before it makes
its operations decisions. �e state space for this model is thus much smaller.
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for the �rst 288 periods and used these to compute GSS(y,K∗), as we discuss in Sec-
tion 4.2 below. We veri�ed that the policies computed from the �nite approximation
are virtually identical to the policies from the in�nite horizon solution.

4 Estimation

�is section �rst discusses our estimation of the inputs to the operations model. We
then discuss our estimation of the regressions that links the two models. Finally, we
discuss our estimation of the inputs to the adoption model.

4.1 Estimation of Inputs to the Operations Model

Computation of our operations model requires an estimation of the structural parame-
ters underlying net load and the electricity marginal cost curve. We estimate our model
using both CAISO’s day-ahead and real-time wholesale electricity markets. Speci�-
cally, we use forecasts of (hourly) net load and prices from the DAM to estimate our
structural parameters underlying P (·, ·, ·, ·) andXL, as this information would be fea-
sible to ba�ery operators. We then use 5-minute realizations from the RTM to obtain
the distribution and values of ε at each time period. �is approach allows us to account
for the high frequency changes in market conditions over time.

Net Load

We assume that net load for electricity is perfectly inelastic and hence does not respond
to price variations. �e process for net load (XL

t ) at any �ve-minute period in our
sample, t, is given by the following equation:

XL
t = E0

[
XL
t

]︸ ︷︷ ︸
XL

s(t)

+
[
XL
t − E0

[
XL
t

]]︸ ︷︷ ︸
εLt

, (8)

where E0[·] is the expectation taken at time “zero,” s(t) is the interval of day corre-
sponding to t, and εLt represents the deviation in net load from what was expected in
the day-ahead market.

In (8), we obtain XL
s(t) from the net load forecast published by the system opera-
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tor in the DAM, and XL
t from the RTM.17 Since the DAM net load forecasts are only

reported at the hourly frequency, while our operations model is formulated at the
�ve-minute frequency, we temporally disaggregate the DAM net load forecasts using
a Kalman �lter/smoother approach; see Online Appendix B for details.

We model the transition of εL as an AR(1) process given by:

εLt = ρLεLt−1 + ηLt , ηLt ∼ N(0, σL), (9)

where ρL and σL are parameters to estimate. We estimate the AR(1) model using
ordinary least squares (OLS) on εL estimated from a training sample in 2015,18 and
hold these parameters �xed over the evaluation sample, 2016–19, which we then use
to compute the value of ba�eries. �is ensures that the model would be feasible to
estimate and implement given the information set of a market participant.

Table A.1 in Online Appendix A summarizes estimation results for the model of net
load. �e day-ahead forecasts of net load are relatively accurate.19 Our estimate of ρL

is very close to one—indicating a high level of persistence in the day-ahead forecast er-
rors. �e parameters governing the AR(1) process (ρL, σL) are fairly stable across both
our training (i.e., 2015) and evaluation samples (i.e., 2016–19), with only σL appearing
to exhibit a modest increase over the evaluation sample (Table A.1, panel b).

Marginal Cost Curve

We adapt the functional form for marginal cost from the literature on commodity stor-
age. Following Pirrong (2012), we express price as a function of electricity supplied Z
given available generation capacity K:

P (Z|K) = θ1 + θ2[K − Z]−θ3 , (10)

17We measure XL
t as the amount of energy supplied in MWh per 5-minute interval.

18Day ahead forecasts for solar and wind are publicly available starting in Nov. 2015. �us, our
training sample includes only data from Nov. and Dec. 2015.

19CAISO market reports indicate that the CAISO day-ahead load forecasts are shaded up to ensure
su�cient supply is available. We scale the net load forecasts by 0.95 to re�ect this practice. �is choice
is supported by the empirical relationship between the day-ahead market forecasts and the realized
values, see Table A.1, panel (a) in Online Appendix A.
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where θ ≡ (θ1, θ2, θ3) are parameters that we estimate and that vary at the daily level.
�e functional form in (10) has two appealing properties for our application. First, as
long as θ2, θ3 > 0, P is monotonically increasing in Z , which is critical for solving
the operations model. Second, it is parsimonious, yet �exible enough to capture the
highly convex shape of the electricity marginal cost curve. In particular, price rises
inde�nitely as Z approaches K. �us, this functional form can capture the high price
spikes that occur frequently in the real-time market.

In (10),K indicates the generation capacity that is available to produce at any given
time. In principle, available capacity includes generators that are currently online or
those that can quickly become operational without any lead time to start up (e.g., gas
peaker plants). For the �nal price—RTM price—we specify:

K = καZ̃1−α exp(εP ) (11)

⇒ PRTM(Z|K, θ, α) = θ1 + θ2

[
καZ̃1−α exp(εP )− Z

]−θ3
,

where κ and α are two additional parameters to estimate, that also vary at the daily
level. Our functional form forK is Cobb-Douglas in a constant κ, lagged generation Z̃ ,
and an unobservable term εP . By including Z̃ in (11), we are able to capture ramping
costs: if electricity supplied last period is higher, this will raise the current available
capacity, which will raise the quantity at which prices start to spike in the current
period. �e α parameter governs the relative importance of Z̃ versus κ in determining
the available generation capacity. For α = 1, marginal cost is static and there are
no ramping costs, while if α < 1, an increase in generation last period will reduce
marginal costs in the current period.

We include the unobservable εP as an idiosyncratic shock to K in determining
PRTM , which allows for shi�s in RTM electricity supply to be due to unforeseen
changes in available generation capacity. �is non-linear entry of εP into PRTM al-
lows for extreme price spikes (drops) to be mitigated by storage operators discharging
(charging) energy. We believe that this placement of the structural residual gener-
ates more plausible counterfactuals than would an additive structural unobservable
on PRTM .

We use DAM prices and quantities to estimate the marginal cost curves, because
these data are available prior to the operating day, and therefore, could feasibly be
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used by ba�ery operators in developing output choices in the RTM. Our model of
DAM price is similar to PRTM but with the exclusion of εP , which we assume to be
realized in the 24+ hour period a�er the DAM clears. We also allow for the possibility
of measurement error and other linear disturbances and write:

E
[
PDAM(Z|Z̃, θ, κ, α)

]
= θ1 + θ2

[
καZ̃1−α − Z

]−θ3
. (12)

We estimate the marginal cost curve parameters (θ, κ, α) separately for each day of
our sample using non-linear least squares. Speci�cally, for each day d, our estimates
satisfy:

θ̂d, κ̂d, α̂d = arg min
θ,κ,α∈Θ

∑
t∈D(d)

[
PDAM
t −

(
θ1 + θ2

[
καXL,1−α

s(t−12) −X
L
s(t)

]−θ3)]2

, (13)

where D(d) comprises the time periods belonging to day d, and Θ describes the al-
lowable domain for the marginal cost parameters. Given the hourly frequency of the
day-ahead market, these (daily) non-linear least squares regressions constitute regres-
sions with 24 observations each.20 Because Qt ≈ 0 for most of our sample, we use X
instead of Z in estimating (13).

We estimate an AR(1) model using OLS on the realizations of εPt for a training
sample of Nov. and Dec. 2015 and �x these parameters over our evaluation sample. As
was the case for net load, our approach of estimating these parameters from a training
sample ensures that the model would be feasible to estimate given the information
set of a ba�ery operating in the real-time market. Online Appendix C provides more
discussion on our estimation of electricity generation costs.

4.2 Regressions Linking the Operations and Adoption Models

We use the dynamic competitive equilibrium policies from our storage model to esti-
mate surfaces of GSS(y,K) and δ(y,K), which we then use in our adoption model.
Our basic approach is to calculate optimal policies from the operations models and
then compute GSS and δ using these policies. Let q∗(f, s, Z̃, εL, εP |d,K) denote the
policy consistent with the maximization process in (7) at day d and with capital K .

20For this reason, the lagged value of net load in the non-linear least squares step constitutes the lag
of mean net load last hour, XL

s(t−12).
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We estimate q∗ for each day in our 2016–19 sample and for a grid of eight candidate
values of K ranging from 10 MWh to 50,000 MWh. �ese values then form the basis
points for our estimation of the surfaces.

For each value of K and each week in our sample, we simulate GSS over a week-
long period where ba�eries start with 50% charge.21 At each �ve minute period, our
simulation uses the calculated policies q∗, evaluated at the observed values of the de-
terministic states s, d,K ; the realized values of the residuals εL, εP ; and at the state
variables f, Z̃ consistent with previous actions.22 �e simulation then outputs the re-
alized GSS from having ba�ery operators with capacity K for each week.

We use a simulation approach to calculating the value since we compute the value
function using a �nite approximation, which gives accurate policies, though not accu-
rate values. �is approach also is robust to misspeci�cation in the distribution assump-
tions around εL and εP . Finally, it allows us to use a heuristic approach to incorporate
capacity fading, as we discuss below.

We use our approximation to GSS to estimate the following regression:

GSSwk
Kk

= γ1 ln (Kk) + γ2RenewableSharew + γ3 ln (Kk)× RenewableSharew

+γ4Xw + νw + εwk, (14)

where w indexes sample week, k indexes sample capacity levels, Kk is a capacity in
our sample, RenewableSharew is the share of load generated by renewables in the
week, Xw are other controls, νw is a week-of-year �xed e�ect, and εwk is an i.i.d.
unobservable. �e ��ed values from (14) provide us withGSS at a weekly level across
K∗ values and years in our sample.23

Note that RenewableSharewk �uctuates seasonally, but is increasing over time on
average. As a consequence, this variable could be correlated with other factors that
are changing over time or are seasonal and that might a�ect the social value of stor-
age. To address these endogeneity concerns, we include week-of-year �xed e�ects,
νw. We also control for the average price of natural gas in week w, and the average

21Because we de�ne simulated realized pro�ts at the week level, our sample starts on Friday, Jan. 1,
2016 and ends on �ursday, Dec. 27, 2019.

22We set Z̃ for the �rst �ve-minute interval of the week to the value that is consistent with no charge
or discharge.

23We transformed GSS from a weekly to an annual measure to use it in our adoption model.
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peak electricity load (demand) in week w. Last, we control for the Sacramento Valley
water-year index in week w, which proxies for the amount of hydroelectric resources
available during each week. In contrast, ln(Kk) will not be correlated with any omit-
ted variables because we use the same set of candidate ba�ery capacity values to solve
the model in every distinct week of the sample.

Accounting for Battery Capacity Depreciation

We use heuristic methods to account for how agents would change their operations
and adoption behavior to account for the fact that ba�ery capacity will depreciate
through use. �e idea is that the perception of a lower-than-actual round-trip e�-
ciency will make a ba�ery operator more reluctant to charge or discharge unless the
payo� is su�ciently high. �is may then help the ba�ery operator in its expected
long-run pro�ts by causing less capacity depreciation. �us, we use a perceived lower-
than-actual round-trip e�ciency to proxy for long-run capacity depreciation. �is ap-
proach is feasible for the agent to implement and ensures we do not overstate the value
of storage by ignoring depreciation.

We operationalize this idea by again spli�ing our sample into a training sam-
ple, 2015, and an evaluation sample, 2016–19. We solve the operations model for the
training sample using a sparse grid of di�erent candidate perceived e�ciency levels
[.7υ, .75υ, . . . , υ].24 For each candidate perceived e�ciency and value of K , we use
our training sample to solve for optimal policies, simulate the evolution of the state-
of-charge, f , using the actual demand and price data, and then feed the simulated
state-of-charge series into an engineering capacity depreciation model. See Online
Appendix D for details. For each case, the capacity deprecation model outputs δ, the
percent by which the e�ective ba�ery capacity depreciates over the training sample.
For each K , we calculate the best perceived e�ciency level as the one that maximizes
an approximation to expected future value, GSS

1−β−δ over the training sample.
Using our estimated optimal heuristic policy, we obtain an estimate of δ for each

week in our evaluation sample and K . We then calculate a regression that is identical
in sample and regressors to (14), but with δwk instead of GSSwk/Kk as the depen-
dent variable. We use the ��ed values from this regression to calculate an annualized

24We solve the perfect foresight version of these models, because of computational ease and because
DAM forecasts of net load (load net of renewable generation) were not available before November 2015.
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δ(y,K∗), which enters into the adoption model (3). We also use our calculated δ values
to approximate the expected future value of a ba�ery during our evaluation sample,
again with the formula GSS

1−β−δ .

4.3 Estimation of Inputs to Adoption Model

To solve the adoption model, we estimate the evolution of ba�ery capital costs over
time. We specify the following unit root with dri� process for the cost of the storage
technology, cy:

cy = cy−1 exp(τ) exp(ξy), ξy ∼ N(0, σ2
c ), (15)

with c2018 as the capital cost of ba�eries in 2018, the initial year, and τ and σc governing
the size of the dri� and future uncertainty of costs. To the extent that τ < 0, the costs
of storage will trend down over time on average. �e uncertainty about the size of
these future declines in costs is captured by the process ξy. We assume that ξy are i.i.d.
over time.

�e National Renewable Energy Laboratory (NREL) cost projections in Figure 2a
motivate this functional form. In particular, they demonstrate: (i) a downward trend in
costs, (ii) a non-linear trajectory to costs, (iii) an increase in the uncertainty the further
we are in the future, and (iv) positive skewness in the distribution of future costs. �ese
pa�erns motivate our modeling approach in (15): �e downward trend in costs moti-
vates the dri� term in our model; the non-linear trajectory motivates the exponential
formulation; the increasing level of uncertainty in the forecast uncertainty motivates
the unit-root (in logarithms) formulation of the model; and the positive skewness in
the cost assessments justi�es the log-normal distribution for the shock process.

We estimate two parameters in (15): the magnitude of the downward dri� (τ ) and
the size of the shock process governing the level of cost uncertainty (σc). Importantly,
we do not observe actual realizations of the ba�ery capital cost process, only the set
of projected cost realizations from Cole and Frazier (2019). �erefore, our estimation
treats each cost projection (i.e., each line in Figure 2a) as a realization of the cost pro-
cess. We use a method of moments approach to recover τ and σc. Online Appendix E
derives the moment conditions for estimation. Our estimates for the cost process are
τ̂ = −0.044 (with a standard error of 0.001) and σ̂c = 0.064 (with a standard error of
0.003). Following Cole and Frazier (2019), our simulations use an initial condition for
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capital costs in 2018 of c2018=$380/kWh.

5 Results

�is section discusses results from our operations model, our linking regressions, and
our adoption model. It then provides an overall discussion and analysis of public poli-
cies.

5.1 Operations Model Results

Figure 3a illustrates the mean simulated ba�ery discharge quantity for each hour of
the day for our evaluation sample, 2016–19. Each line in the �gure shows ba�ery
output for a speci�c aggregate ba�ery �eet capacity K . Ba�eries discharge the most
during the hours that net load is the highest—the evening peak hours of 5–10 pm, but
also discharge on average between 5–7 am. As aggregate ba�ery capacity grows, total
discharges increase in the evening and total charges increase during the day.

Figure 3b shows that, as the �eet expands, ba�ery operations exert a strong e�ect
on lowering the volatility of mean equilibrium prices. It illustrates that ba�er oper-
ations have the biggest impact on prices during the peak evening hours, and have a
relatively small e�ect on prices during the middle of the day, because marginal costs

Figure 3: Mean Ba�ery Output and Equilibrium Prices E�ects

(a) Mean Hourly Ba�ery Output Across Day (b) Mean Hourly Equilibrium Prices

Notes: Each line plots the mean counterfactual outcome across all days during 2016–19.
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are relatively low and �at during these hours.25 Additionally, Figure 3b shows that
the �rst few units of ba�ery investment would have the largest impact on equilibrium
price, whereas incremental storage investment has a smaller impact on prices. �e �rst
ba�eries that enter the market will reduce the occurrence of extreme pricing events by
discharging during periods when net load approaches the available generation capac-
ity. By doing so, the ba�eries will reduce prices and also move the equilibrium to �a�er
regions of the marginal cost curve, thus reducing the marginal impact of subsequent
ba�ery entry on prices.

Table A.4 in Online Appendix A emphasizes this result. It shows that the �rst
1,000 MWh of storage capacity would reduce evening prices by 6% ($54.27/MWh to
$51.15/MWh) and overall average price by over 3% ($35.97 per MWh to $34.79 per
MWh). In contrast, an increase in capacity from 25,000 to 50,000 would only reduce
mean prices by an additional 3.2% ($30.63/MWh to $29.62/MWh).

Appendix Figure A.5b demonstrates how ba�ery operations would a�ect the mean
generation from dispatchable power plants (e.g., natural gas generators) throughout
the day. Unsurprisingly, ba�eries increase power plant output during the middle of the
day and reduce power plant production in the evening peak hours. Notably though,
ba�eries would also change the times of day that dispatchable power plant production
troughs and peaks occur. With no ba�ery capacity, the lowest production hour is 11
am, whereas with a large ba�ery �eet the lowest production period moves an hour
later to noon. Similarly, the peak for dispatchable production without ba�ery storage
is 7 pm, relative to a�er 8 pm with a large storage �eet. �ese pa�erns demonstrate the
importance of ramping costs in modeling the equilibrium e�ects of storage operations.
Ba�ery operations can reduce generators’ costs by reducing the rate that dispatchable
production increases. With a large ba�ery �eet, the morning ramp down and evening
ramp up are spread over more hours to allow more time for adjustment.

To further understand how large ba�ery �eets would optimally operate, Figure
A.6 in Online Appendix A graphs real-time prices and ba�ery operations for two
randomly-selected days—June 23rd, 2016 and December 29, 2018—both for a 25,000
MWh capacity. Ba�ery operations change discretely and abruptly during the day. On

25Figure A.5a in Online Appendix A focuses on the evening hours, showing that from 6-7 pm—
the hours with the highest average net load—a relatively small 1,000 MWh ba�ery �eet would reduce
average prices by over $10 per MWh.
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the le� graph, ba�eries charge substantially in the morning before 8 am, remain idle
throughout the middle of the day, and then discharge at di�erent points in time in the
evening. On the right graph, where prices did not plummet in the morning, ba�eries
do not charge until later in the day. On both days, ba�eries reach a full state of charge,
wait several hours, and then discharge in the evening when real-time market prices
spike. �e two days di�er in the times at which ba�eries start charging and discharg-
ing. More generally, and consistent with Figure A.6, we �nd that (1) ba�ery output at
any time period varies considerably across days, and (2) on most days, ba�eries will
fully charge prior to the evening ramp-up period and then wait to discharge until a
price spike occurs.

As a result of highly volatile real-time prices, ba�ery operational revenues are
highly skewed across time periods. From Table A.5 in Online Appendix A, ba�eries
earn over 70% of total revenues during the most pro�table 1% of time intervals. For a
1000 MWh ba�ery �eet, each 1 MWh of ba�ery capacity would earn $37,396 during the
most pro�table 1% of 5-minute intervals and only $16,762 across the other 99% of time
periods over our sample period. Ba�ery revenues are very sensitive to equilibrium
e�ects. Speci�cally, ba�ery revenues during the most pro�table hours decline dra-
matically as aggregate ba�ery capacity rises. For example, an increase in the ba�ery
�eet from 100 MWh to 10,000 MWh reduces per-unit revenues by nearly 37%. �ese
�ndings highlight the considerable decreasing returns-to-scale in ba�ery storage ca-
pacity, which has important implications for the time path of ba�ery investment.

Value of Small Battery Fleet

To understand the value of ba�eries implied by our operations model, we calculate the
gross social surplus from ba�ery storage for each sample week over the 2016–19 period
for a small ba�ery �eet of 10 MWh. We convert each of these weekly observations into
a “lifetime” value of storage capacity, using an annual discount factor of β = 0.95.

Figure 4 uses these value calculations to illustrate the value of ba�eries relative
to capital costs. First, Figure 4a plots the marginal social value of storage capacity
for each week in our 4-year sample, with and without accounting for depreciation.26

�is panel demonstrates a strong positive association between the renewable gener-

26We approximate the marginal value as the average value for this very small �eet.
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Figure 4: Renewable Energy, Depreciation, Uncertainty, and the Social Value of Bat-
teries

(a) Ba�ery Depreciation and Ba�ery Value (b) Price Uncertainty and Perfect Foresight

Notes: Each point in the sca�er plots (a-b) represents the marginal value of storage capacity for a
single week during the sample (2016–19). �e solid lines in (a-b) plot the linear trend for each group.
�e marginal value is the estimated per-unit value from the �rst 10 MWh of operational storage
capacity. We rescale the estimated weekly storage value into a perpetuity using a 5% annual discount
rate and adjusting for the rate of capacity depreciation. All estimates in plot (b) account for ba�ery
depreciation from operations.

ation and the value of storage. �e dashed-red line plots a simple linear �t of the
relationship between marginal storage value and the share of electricity generated by
renewable sources, before adjusting for capacity depreciation.27 �e dashed-grey line
shows expected capital cost per kWh of storage capacity in 2019. Together, these lines
show that, absent capacity depreciation, the marginal social value would exceed the
2019 expected capital cost of storage if the renewable energy share were over 50%.

�e solid blue line in Figure 4a highlights how capacity depreciation (as discussed
in Section 4.2) in�uences the estimated storage values. Depreciation from cycling re-
duces the estimated value of storage investment by 24% on average. Moreover, the
impact of depreciation is higher with more renewable energy, which is due to ba�er-
ies cycling more in this case. A�er accounting for depreciation, the �rst ba�ery unit
would break even in the energy market only when the share of renewable energy was
52% and capital costs declined by 41%, as is expected to occur in 2027.28 �is �nding
emphasizes the signi�cance of accounting for depreciation when measuring the social

27We calculate the renewable energy share as the percentage share of solar plus wind generators
during the sample week plus 19%. 19% is the mean share of generation from non-intermi�ent renew-
ables including hydro, geothermal, and biomass generators across the sample period.

28We calculate the expected renewable share based on the California RPS schedule and expected
capital costs based on our capital cost model in Section 4.3.
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value of ba�ery capacity.
Figure 4b compares our baseline storage value estimates—that assume ba�ery op-

erators face uncertainty about future wholesale prices—to the value estimates if bat-
tery operators have perfect foresight about future load and electricity supply curve
realizations.29 Our model with uncertainty, which can be feasibly implemented by bat-
tery operators, achieves 68% of the theoretical maximum value under perfect foresight.
Although our baseline model under uncertainty a�ains the majority of the perfect-
foresight value, it is notable that the social value of storage could be further increased
with a be�er-performing forecasting model. Importantly, our results that allow for
uncertainty should be interpreted as a lower bound for storage value that could be
further improved through be�er forecasting and modeling.

Equilibrium and Distributional E�ects of Storage Operations

Table 1 considers the impact of ba�ery �eets of di�erent sizes on overall value and
the value to di�erent market participants. From Column 1, a 1,000 MWh storage �eet
would increase gross social surplus by $13.6 million annually.30 A larger �eet with
10,000 MWh would further reduce costs by $100 million per year. �e other columns of
Table 1 report how ba�ery operations would a�ect pro�ts and costs for di�erent mar-
ket participants. Column 2 indicates that ba�eries would signi�cantly reduce the total
cost (price×load) that load serving entities need to pay to meet demand. In particular,
a 1,000 MWh ba�ery �eet would reduce mean hourly expenditures for utilities by over
$256 million per year. Relatedly, ba�eries would reduce the revenues of dispatchable
generators substantially, by $227 million per year. Perhaps surprisingly, these ba�ery
operations reduce solar and wind generators revenues by $29 million annually. Al-
though, ba�eries increase prices between 9 am and 1 pm when solar plants are coming
online, ba�eries also reduce prices during the early a�ernoon (3-5pm) when many so-
lar generators are still producing. Summing these impacts, solar generators are made
slightly worse o� by ba�ery operations. �ese results illustrate that large-scale storage
will have important implications on the pro�ts of di�erent industry participants. �e
reduction in pro�ts to dispatchable generators and solar and wind producers further

29In both cases, we adjust the values to account for depreciation.
30Since we assume that demand is perfectly inelastic, a change in gross social surplus is equal to the

change in the total cost of electricity generation.
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implies that storage may lead to greater exit or lower investment by these facilities.

Table 1: Annual Gross Social Surplus Across Aggregate Ba�ery Capacity Levels

∆ Gross
Social Surplus

∆ Total Costs
to Serve Load

∆ Dispatchable
Generator π

∆ Solar
and Wind π ∆ Ba�ery π

0 0.00 0.00 0.00 0.00 0.00
100 1.43 -44.10 -39.13 -5.12 1.59
1000 13.58 -256.31 -227.32 -29.60 14.21
10000 99.63 -862.23 -764.47 -80.70 82.68
25000 184.77 -1,157.50 -1,008.45 -87.95 123.83
50000 261.26 -1,377.29 -1,164.05 -102.86 151.06

Notes: All variables are annual means in millions of dollars. “∆ Gross Social Surplus” is the change
in mean total costs of generation relative to the K = 0 case. “∆ Cost to Serve Load” is the change in
total price paid by load-serving entities for energy (change in equilibrium price times total load). “∆
Dispatchable Generator π”, “∆ Solar and Wind π”, and “∆ Ba�ery π” are the mean change in annual
gross revenues for dispatchable generators, renewable generators, and ba�ery operators respectively.

5.2 Results from Linking Regressions

Table 2 report the results of our linking regressions, which estimate surfaces ofGSS(y,K)/K

and δ(y,K). Column 1 shows results from a speci�cation of GSS with logged bat-
tery capacity, renewable energy share (wind + solar share), and an interaction term.
Column 2, our preferred speci�cation, adds week-level controls for mean load in the
evening peak hours, mean natural gas price, and the Sacramento Valley hydroelectric
water year index (WYI), and week-of-year �xed e�ects.

�e speci�cations with and without controls yield very similar results, adding
to our con�dence that the estimates are not being confounded by electricity market
changes that are contemporaneous to renewable energy share changes. In our pre-
ferred speci�cation, we estimate a negative and statistically signi�cantly coe�cient
on ln (K), a positive and signi�cant coe�cient on renewable share, and a negative
and signi�cant coe�cient for the interaction term, consistent with the trends in Fig-
ure 4. Overall, our results paint a clear picture of the link between installed ba�ery
capacity, renewable generation, and the social value per unit of storage capacity.

�e regression estimates indicate that per-unit storage value falls quickly as the
aggregate storage capacity in the market rises. �is �nding is consistent with the sig-
ni�cant equilibrium pricing impacts of storage documented in Section 5.1. Moreover,
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Table 2: Gross Social Surplus and Discounting by Year and Ba�ery Capacity

Gross Social Surplus / K ($/kWh) Annual Depreciation Rate (%)
(1) (2) (3) (4)

ln(K) -8.220∗∗∗ -8.220∗∗∗ 0.0089 0.0089
(2.702) (2.748) (0.0075) (0.0076)

Renewable Share (%) 8.485∗∗∗ 8.183∗ 0.0557∗∗∗ 0.0588∗∗∗
(2.577) (4.395) (0.0072) (0.0091)

ln(K) × Renewable Share (%) -0.6855∗∗∗ -0.6855∗∗∗ -0.0028∗∗∗ -0.0028∗∗∗
(0.1625) (0.1653) (0.0005) (0.0005)

Observations 1,664 1,664 1,664 1,664
R2 0.11863 0.39122 0.21373 0.52397
Within R2 0.16075 0.17552

Controls + week �xed e�ects X X

Notes: In columns 1 and 2, the dependent variable is the present discounted social surplus per kWh
of storage capacity, not accounting for capacity depreciation. Each observation represents a single
week of the sample for a single storage capacity. In columns 3 and 4, the dependent variable is the
annual capacity depreciation due to operations. Columns 2 and 4 include controls for the mean load
in the evening peak hours of 5–10 pm over the week, the mean natural gas price over the week, and
the Sacramento Valley hydroelectric water year index (WYI) associated with that week. Peak load is
the mean load between 5pm and 9pm hours during the week. Standard errors are clustered by week
of sample.

the value of storage rises with renewable energy market share, but particularly when
there is low storage capacity operating in the market. As aggregate storage capac-
ity increases, the marginal e�ect of renewable energy additions diminishes because
the pre-existing ba�eries mitigate some of the marginal cost �uctuations that would
normally be exacerbated by solar and wind generation.

Table A.6 in Online Appendix A shows that the regression estimates are robust to
alternative speci�cations and control variables. Perhaps the most important control
variable is peak load. Changes in electricity demand can strongly impact the value
of storage. Table A.6 shows that the results are similar if we control for average load
across the entire day instead of at peak times. �e results are also similar if we add
separate controls for both peak and o�-peak load conditions. Last, we estimate a spec-
i�cation that allows for a quadratic term on the renewable share variable. We �nd that
the coe�cient on the quadratic term is close to zero and not statistically signi�cant,
motivating the use of our linear speci�cation.

Table 2, Columns 3 and 4 show regression results with the annual ba�ery depre-
ciation rate as the dependent variable. �e coe�cient on the renewable energy share
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is positive and statistically signi�cant: as renewable energy increases, the annual de-
preciation rate also rises because ba�eries engage in more charge-discharge cycles.
Importantly, this �nding implies that the marginal e�ect of increasing renewables on
ba�ery value will be smaller a�er accounting for depreciation. However, the inter-
action term is negative, which implies that marginal e�ect of renewable energy on
depreciation declines with larger ba�ery �eets.

5.3 Battery Adoption Results

�e regression estimates outlined above provide the �nal input needed to solve the
adoption model. Figure 5 provides simulated mean competitive equilibrium adoption
paths under a variety of alternative assumptions, all using β = 0.95. �e purple line in
Figure 5a plots the expected ba�ery capital cost over time implied by our capital cost
model outlined in Section 4.3. �roughout each panel of Figure 5, the solid black line
shows the expected ba�ery capacity trajectory under our baseline case, in which we
assume that: ba�ery capacity depreciates as a function of use; potential adopters have
rational expectations over future capital costs; renewable energy increases according
to the California RPS; and peak load is held �xed at the 2019 mean level. �e solid
black line shows that ba�ery adoption begins slowly around 2030 before ramping up
and reaching an aggregate capacity 420 MWh in 2035, and 7,500 MWh in 2045.

�e remaining lines in Figure 5 explore several potential factors that may be lim-
iting the baseline equilibrium adoption. First, Figure 5a contrasts expected ba�ery
capacity over time without capacity depreciation to the baseline. When we ignore de-
preciation in calculating the value of storage, adoption starts several years sooner and
increases at much faster pace. In particular, expected capacity would be four times
higher in 2035 (1,840 MWh) and two times larger in 2045 (17,200 MWh).

Another factor that encourages potential ba�ery adopters to delay investment is
the anticipation of future capital cost reductions. Figure 5b quanti�es the in�uence of
future cost expectations on investment by calculating the predicted adoption path for
myopic agents. While the forward-looking agents in our baseline know the parameters
of the stochastic capital cost process in equation (15), myopic agents assume that the
current capital cost will remain unchanged in future years, but are otherwise identical
to the baseline agents.
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Figure 5: Counterfactual Ba�ery Capacity Adoption Paths

(a) Ba�ery Capacity With vs. Without Depre-
ciation

(b) Myopic vs. Forward-Looking Expectations

(c) Renewable Mandates and Ba�ery Capacity (d) Peak Demand and Ba�ery Capacity

Notes: In Figure 5a, the purple line show the expected capital cost over time. In all �gures, the
solid black line plots expected ba�ery capacity under the baseline case with: capacity depreciation,
forward-looking expectations, 100% RPS, and peak load held constant. �e other lines plot expected
ba�ery capacity adoption under di�erent counterfactuals. Each �gure varies a single parameter, and
holds all other assumptions �xed.

Myopic agents invest much more heavily in storage between the years of 2025
and 2035. Under myopic expectations, the �rst unit of ba�ery investment is expected
by 2024, with aggregate ba�ery capacity passing 4,000 MWh by 2030, and surpassing
23,300 MWh by 2045. �e myopic results are striking, as they indicate that expecta-
tions of future ba�ery cost declines may play a big role in limiting adoption.

Another key driver of the ba�ery adoption decisions is the trajectory of future
renewable energy generation. Figure 5c measures the e�ect of changing the renew-
able portfolio standard on the time path of ba�ery adoption. Speci�cally, we plot the
ba�ery investment path for a 40% RPS by 2045, a 60% RPS by 2045, an 80% RPS by
2045, and a 100% RPS by 2045 (the current policy). With an RPS of 40%—a policy that
would hold renewable generation constant at 2019 levels—almost no ba�ery invest-
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ment would occur until a�er 2035, and aggregate storage capacity would remain be-
low 3,300 MWh through 2045. With the more aggressive renewable energy mandates,
storage investment substantially increases. �e 60% RPS would result in 4,700 MWh
of expected storage capacity by 2045, and the 80% RPS would lead to 6,200 MWh by
2045. �ese results indicate that subsidies will be necessary for ba�ery storage invest-
ments to be economically viable in the wholesale energy market unless intermi�ent
renewable penetration is relatively high and/or capital costs decline substantially.

Finally, Figure 5d explores how changes in future electricity load (demand) would
change the time-path of ba�ery adoption. In our baseline case, Figure 5a, we assumed
that peak load would remain constant at 2019 levels in all future years. However, Cal-
ifornia’s peak load may change over time for a multitude of reasons. On the one hand,
peak load could decrease over time due to energy e�ciency retro�ts and adoption of
behind-the-meter storage technologies. On the other hand, rising adoption of electric
vehicles could increase peak load if drivers plug in their cars during evening hours.
Figure 5d illustrates how di�erent assumptions about future peak load in California
would change the trajectory of ba�ery adoption. We evaluate expected ba�ery adop-
tion under �ve di�erent cases: (1) 25% increase in peak load, (2) 10% increase in peak
load, (3) no change in peak load (baseline), (4) 10% decrease in peak load, and (5) 25%
decrease in peak load. We �nd that peak load changes can result in signi�cant changes
in expected ba�ery investment. A 25% increase in peak load leads to a massive four-
fold increase in capacity by 2045, whereas a 25% decrease in peak load reduces aggre-
gate capacity by 38% relative to the baseline case. �ese results show that utility-scale
ba�ery investment serves as a substitute for other investments that reduce peak load.
For instance, energy e�ciency retro�ts can reduce electricity demand at times of the
day when the grid is most strained (Boomhower and Davis, 2020) while home ba�ery
installations could also reduce peak household electricity demand. Accordingly, poli-
cies that encourage residential storage or energy e�ciency investments would reduce
the optimal capacity of utility-scale storage investment, while further investments in
residential solar might complement them.
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5.4 Further Discussion and Policy Implications

Our results analyze the impact and value of ba�ery adoption over time, accounting
for complementarity with renewable energy and the equilibrium e�ects of large-scale
ba�ery operations. Taking the California RPS as given, and assuming no ba�ery sub-
sidy or mandate exists, we �nd that expected ba�ery adoption would begin to increase
steadily in the late 2020s. Although storage investment increases substantially a�er
2030, we �nd that the overall level of storage investment would likely remain relatively
low over the coming decades, reaching 7,500 MWH by 2045. A 7,500 MWh storage �eet
composed of 4-hour duration ba�eries can produce 1,875 MW at any instant, similar
to the typical output of a nuclear power plant. While this output would mark a sub-
stantial increase relative to present storage penetration, it is only su�cient to serve
around 8% of the typical CAISO load.

To be�er understand why our model predicts relatively low ba�ery adoption, Fig-
ure 6a overlays the trajectory of expected capital costs with per-unit value of ba�ery
operations over time. We calculate the per-unit value across several candidate capacity
levels. For small aggregate ba�ery capacity (e.g., K = 10), the gross marginal value of
ba�ery operations (i.e., generation cost reductions) increases rapidly over time as more
renewables enter the market. Indeed, a 10 MWh ba�ery �eet would be quite pro�table
by the 2030s. Nevertheless, as more ba�eries enter the market, the marginal value of
additional capacity shi�s downward due to market equilibrium e�ects of operations
of the preceding ba�ery stock.31 For example, the gross marginal value of storage
investment in 2020 falls from over $200/kWh to $125/kWh when aggregate capacity
increases from 10 kWh to 5,000 kWh. �ese equilibrium e�ects prevent a very large
storage �eet (e.g., 25,000 MWh) from ever becoming economical unless capital costs
were to fall far below current expectations.32

�e ba�ery adoption results have some important implications for policymaking.
Speci�cally, the results suggest that a stringent renewable energy standard alone is
not su�cient to encourage enough investment in ba�ery storage for the grid to oper-
ate solely using renewable energy and ba�eries. Consequently, additional policies will

31Figure 6b highlights the dramatic decline in gross marginal value as aggregate capacity rises across
years with di�erent renewable energy penetration.

32Note that our analysis holds fossil fuel generation capacity �xed. As more fossil fuel generators
retire, this might raise the value of additional ba�ery storage.
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likely be needed if policymakers and the public aspire to transform the electric grid to
run primarily with intermi�ent renewable energy in tandem with storage. Policymak-
ers have already begun implementing other rules and regulations to spur investment
in ba�ery technologies. For example, several states including California have imple-
mented targets or mandates for ba�ery storage investment. Despite the increasing
prevalence of these policies, there is li�le evidence about their costs or bene�ts.

To shed light on this issue, we use our adoption model to measure the e�ect of
California’s storage mandate on electricity generation and capital costs. Under the
mandate, utilities are directed to procure contracts for storage resources by 2020, and
those resources should be fully operational by 2024. Figure 7 shows how various bat-
tery mandates—e�ective by 2024—would change discounted total costs–de�ned to be
the sum of total electricity generation and ba�ery capital costs (i.e.,W). We compare
total costs relative to a case with zero ba�ery investment, analogous to a permanent
ban on ba�eries from the electricity market.33 �e black line shows that total cost de-
clines roughly linearly as the level of the ba�ery mandate increases. �e y-intercept of
the black line, $925 million, represents the change in total cost under the competitive
equilibrium investment path (surplus maximizing investment path) relative to having
no ba�ery market.

Figure 6: Gross Marginal Value and Cost of Ba�ery Investment Over Time

(a) Gross Marginal Value By Aggregate Capac-
ity

(b) Gross Marginal Value by Year

Notes: In panel (a), the solid red line plots the expected value of future ba�ery capital costs based
on the estimated parameters of the cost process. �e dashed lines plot the annual value of a ba�ery
investment over time, for selected aggregate ba�ery capacity levels. �e gross marginal values are
obtained by plugging in the associated capacity level and the renewable energy share based on the
California RPS into the regressions in Equation 2. Panel (b) shows the relationship between the gross
marginal value and aggregate capacity across three selected years, the gross marginal value varies
across years due to changes in projected renewable energy share.

33�e assurance that ba�eries can participate in the wholesale market was guaranteed in 2018 by
Federal Energy Regulatory Commission (FERC) Order 841.
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Figure 7: Evaluating the Cost of Ba�ery Mandates, Ba�ery Subsidy Policies

Notes: �e black line plots the change in discounted total costs (ba�ery capital costs plus generation
costs) in millions of dollars as a function of mandated ba�ery capacity, relative to a ba�ery ban (i.e.,
no ba�ery adoption). We assume the mandated capacity must be achieved by 2024. �e pink dashed
line indicates the California storage target under AB 2514. �e blue line plots the minimum ba�ery
subsidy (percentage) required to reach the mandated level.

�e vertical pink line in Figure 7 marks the change in total cost imposed by Cal-
ifornia’s storage mandate.34 We �nd that the mandate would decrease total costs by
$492 million dollars, or about $12.45 per California resident, relative to a ba�ery ban.
Moreover, any ba�ery mandate below 10,000 MWh would decrease total costs relative
to a case where no ba�eries operate in the wholesale market.

Figure 7 also shows the level of government subsidies for ba�ery storage needed to
achieve varying storage targets by 2024. We estimate that California would require a
49% up-front subsidy for ba�eries to achieve the amount ordered under California’s AB
2514 storage bill. While California’s mandate decreases total costs relative to a ban, it
also increases total costs by $433 million ($925m-$492m) compared to the competitive
equilibrium investment path.

�ere are two main channels through which a ba�ery mandate changes total costs
relative to the market without a mandate. First, a mandate will decrease total elec-
tricity generation costs by moving ba�ery investment to earlier years, and therefore,
ba�ery operations will reduce generation costs in earlier years by displacing high
marginal cost power plants. More speci�cally, our results indicate California’s bat-

34California’s target under Bill AB 2514 is 1.3 GW of storage power capacity, which equates to 5.2
GWh of storage energy capacity if all ba�ery installations have a 4-hour depth-of-discharge.
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tery mandate reduces total expected generation costs by $511 million in present value
terms. Second, a ba�ery mandate increases total capital cost expenditures by mov-
ing investments forward in time before expected capital cost declines are realized.
Namely, Figure 5 shows that without the ba�ery mandate, expected ba�ery capacity
would not reach 5,200 MWh (1,300 MW) until 2043. By moving adoption forward in
time, we �nd that the mandate increases expected capital costs by $944 million. No-
tably though, the ex-post total cost of a mandate depends on the speed and extent of
future ba�ery capital cost declines. If future ba�ery capital cost reductions turn out
to be relatively small, then the ex-post relative total cost of the mandate (i.e., ba�ery
capital costs plus generation costs) will be relatively low. However, if future capital
cost declines are large, then the ex-post relative cost of the mandate will be bigger.
Figure A.7 in Online Appendix A shows the distribution of the total cost from imple-
menting the 5,200 MWh (1,300 MW) mandate relative to the case without a mandate
across 10,000 simulated paths from the capital cost distribution. We see that 75% of
the time, the mandate increase total cost by less than $580 million, and 25% of the time
the increase is less than $202 million. About 2% of the time, the mandate reduces total
cost because future capital cost reductions end up being much smaller than expected.

Overall, we �nd the expected change in total costs from meeting California’s man-
date is relatively small, amounting to $433 million or about $11.50 per California resi-
dent. Moreover, one of policymakers’ main justi�cations for the mandate in California
was that energy storage will help to integrate renewable energy and also improve grid
reliability.35 �us, our estimates suggest that California’s mandate policy would be
welfare improving if the reliability bene�ts of energy storage exceed $433 million by,
for instance, helping avoid blackouts during times that electricity demand exceeds
available supply. �e mean system load during our sample is 24,746 MW. A value of
lost load of $8,000 (Cramton and Lien, 2000) implies a value of $198 million per hour
of system-wide outage averted. �erefore, our estimates suggest that the ba�ery man-
date would improve welfare if the ba�eries were to avert a single system-wide outage
for more than 2.2 discounted hours or mitigate a 10% outage for 22 hours discounted
over their lifespan.

35Indeed, lawmakers rationalized the mandate—Assembly Bill 2514—on the basis that energy storage
will help to integrate renewable energy while maintaining grid reliability.
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6 Conclusion

A signi�cant challenge to meeting the world’s growing demand for energy is that util-
ities cannot typically store electricity for later use. As the majority of new renewable
generation capacity comes from intermi�ent resources, the interest and potential role
for ba�ery storage technology has grown substantially. �is paper develops a novel
dynamic equilibrium model of ba�ery adoption and operations. �e model includes
a number of key features that we believe are critical for understanding the ba�ery
adoption capacity and value created by ba�eries under di�erent policies. �is includes
modeling the equilibrium price e�ects of large-scale ba�ery adoption, ramping costs,
depreciation from ba�ery use, and the uncertainty faced by participants in the whole-
sale electricity market.

We estimate our model using data from California’s electricity market—which al-
lows us to exploit variation in renewable energy generation over time—but our model
can be applied to explore the economic impacts of storage in other markets and pol-
icy contexts. Our results highlight a number of factors that have �rst-order impacts
on ba�ery storage investment: (1) falling ba�ery capital costs, (2) renewable energy
penetration, (3) decreasing marginal value of storage due to equilibrium e�ects, and
(4) ba�ery capacity depreciation.

Although we are currently not very far from a point where a small ba�ery stor-
age investment could break-even in the energy market, expected ba�ery investment
could still remain relatively low for decades in the absence of other policy interven-
tions. �e largest factor leading to low capacity investment is that ba�eries �a�en
electricity price peaks and valleys, thereby limiting the marginal value of additional
capacity. While California’s current storage mandate leads to a modest increase in
total costs (i.e., ba�ery capital costs plus generation costs) relative to no mandate, it
decreases total costs relative to not having a ba�ery market. More ambitious policies
to encourage large scale storage will be substantially more costly.

While our analysis makes several contributions towards understanding the eco-
nomics of ba�ery storage investment, our modeling approach has several limitations.
We believe that the most important limitations are as follows. First, our model holds
the existing fossil-fuel generation capacity and the associated electricity supply curve
constant over time. Second, we use weekly variation in renewable energy over our
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4-year sample period and extrapolate to predict the value of storage investment in a
world where more renewable generation exist than we can observe within our sample.
�ird, our base model assumes that future peak load in California remains �xed at 2019
levels. Fourth, our model assumes perfect competition in both traditional generation
and storage operations. Fi�h, we model ba�ery resources that are operating entirely
in the real-time energy market, even though ba�eries can also o�er reserve services.
Finally, we assume that ba�ery costs evolve exogenously, and do not allow for ba�ery
mandates to lead to declines in production costs through learning-by-doing. As more
ba�eries and renewable resources are deployed in electricity markets, new data will
create opportunities to relax some of these assumptions and further investigate still
other issues related to the economics of ba�ery storage.
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Online Appendix

A Additional Tables & Figures Referenced in Main

Paper

Figure A.1: Regulation Service �antity Procured by CAISO

Notes: �e �gure plots the mean hourly quantity of regulation services procured by CAISO each month.
Regulation quantity is calculated the sum of “regulation up” and “regulation down” quantities in the
day-ahead market.

.
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Figure A.2: Renewable Energy Over Time Under the California Renewable Portfolio
Standard

Notes: Each horizontal line shows the share of generation that must come from renewable sources in a
particular year under the California RPS. �e “All Renewables” line shows our linear interpolation of
the California RPS. �e “Solar + Wind” line shows our assumption about the solar and wind generation
in each year.

Table A.1: Summary Statistics for Estimated Net Load Model

2015 2016 2017 2018 2019 2016–19
(a) Dependent Variable: Net Loadt

Net Load DAM Forecast 0.969 0.950 0.950 0.971 0.955 0.956
(0.003) (0.002) (0.001) (0.001) (0.002) (0.001)

Dependent Variable Mean 1794.61 1798.35 1734.13 1687.41 1599.83 1704.99
In-sample RMSE (day-ahead) 67.721 83.007 77.494 74.292 80.513 80.511

(b) Dependent Variable: εLt
εLt−1 0.996 0.996 0.996 0.995 0.995 0.996

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant 0.144 -0.014 -0.023 0.178 0.017 0.032

(0.043) (0.016) (0.016) (0.023) (0.021) (0.009)
σL 6.426 7.110 7.245 7.591 8.131 7.530
Num. Observations 17568 105408 105120 105120 105120 420768

Notes: �is table summarizes the estimates of the net load model. �e 2015 sample, which is used to
obtain the parameters of the AR(1) process, includes only Nov. and Dec. Standard errors, clustered by
day-of-sample, are reported in parentheses.
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Figure A.3: CAISO Electricity Market Trends

(a) Load (b) Solar PV Share

(c) Wind Share (d) Solar + Wind Share

(e) Natural Gas Price ($/mmbtu) (f) RTM Price ($/MWh)

Notes: Each graphic plots the weekly average of a given single variable over the sample period. �e
solar generation measure does not include distributed generation. �e reported market prices are for
the CAISO South Zone Trading Hub (SP 15). All data collected from CAISO.
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Figure A.4: Real-Time Market Prices (5-Minute Frequency)

Notes: Figure shows the average real-time market price (South Hub - SP-15) for each 5-minute interval
of the day, separately for 2015 and 2019.

Figure A.5: Equilibrium Prices E�ects and Dispatchable Generator Output

(a) Peak Five-Minute Equilibrium Prices (b) Mean Hourly Output from Dispatchable
Generators

Notes: Each line plots the mean counterfactual outcome for speci�c storage capacity level across all
days during 2016–19.
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Table A.2: Summary Statistics for Estimated Marginal Cost Curve Parameters

Parameter 2015 2016 2017 2018 2019 2016–19
θ1

Mean -14.59 -15.85 -10.96 -7.92 -8.64 -10.85
Std. Dev. 20.79 19.58 15.67 12.22 12.78 15.64
25th-percentile -15.75 -30.38 -11.50 -6.57 -7.42 -9.95
75th-percentile -2.05 -2.29 -1.73 -1.69 -2.01 -1.95

θ2

Mean 76.30 88.82 57.07 36.13 40.96 55.77
Std. Dev. 148.17 144.35 111.87 87.27 92.63 113.11
25th-percentile 0.82 0.94 0.62 0.77 0.71 0.76
75th-percentile 35.46 134.63 26.10 10.10 10.98 21.79

θ3

Mean 1.60 1.41 1.42 1.53 1.28 1.41
Std. Dev. 1.20 0.99 0.97 1.09 0.81 0.97
25th-percentile 1.01 1.01 1.01 1.01 1.01 1.01
75th-percentile 1.01 1.01 1.01 1.01 1.01 1.01

κ
Mean 2.99 3.32 2.87 2.53 2.61 2.83
Std. Dev. 2.43 2.73 2.46 2.09 2.29 2.42
25th-percentile 1.43 1.33 1.28 1.32 1.28 1.29
75th-percentile 3.18 5.32 3.08 2.38 2.39 2.91

α
Mean 0.84 0.87 0.83 0.84 0.82 0.84
Std. Dev. 0.10 0.10 0.13 0.13 0.13 0.12
25th-percentile 0.77 0.80 0.74 0.77 0.73 0.77
75th-percentile 0.91 0.97 0.95 0.94 0.93 0.95

Notes: �is table summarizes the means, standard deviations, 25th and 75th percentile of the daily
estimated marginal cost curve parameters.
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Table A.3: Summary Statistics for Estimated Marginal Cost Curve Residuals

2015 2016 2017 2018 2019 2016–19
Dependent Variable: εPt

εPt−1 0.869 0.896 0.880 0.907 0.838 0.891
(0.030) (0.013) (0.015) (0.012) (0.016) (0.008)

Constant 0.019 0.011 0.013 0.011 0.009 0.011
(0.004) (0.001) (0.002) (0.001) (0.001) (0.001)

σP,Peak 0.015 0.012 0.013 0.015 0.017 0.014
σP,O�-peak 0.013 0.010 0.012 0.012 0.015 0.012
Num. Observations 17568 105408 105120 105120 105120 420768

Notes: �is table summarizes the estimates of the marginal cost curve residual parameters. �e 2015
sample includes only Nov. and Dec. Standard errors, clustered by day-of-sample, are reported in paren-
theses.

Figure A.6: Ba�ery Operations on Selected Days

Notes: �e black lines show the observed real-time market price in the absence of ba�ery operations.
�e orange lines show the equilibrium prices a�er incorporating storage operations. �e green lines
in both show the simulated amount of energy held in storage (i.e. the stock) as a percentage of energy
capacity on June, 23, 2016 and December, 29, 2018. �e simulations use an aggregate storage capacity
of 25,000 MWh.

Table A.4: Equilibrium Prices and Aggregate Ba�ery Capacity

Price (All hours) Price (6-9 AM) Price (10 AM - 3 PM) Price (5-10 PM)
0 35.97 31.52 25.23 54.27
10 35.95 31.51 25.23 54.21
100 35.77 31.40 25.17 53.72
1000 34.79 30.83 24.87 51.15
5000 33.14 30.00 24.73 46.46
10000 31.99 29.31 24.91 42.94
15000 31.42 29.08 25.24 40.90
25000 30.63 28.56 25.74 38.22
50000 29.62 28.24 25.51 35.25

Notes: Prices reported are in $/MWh and are the load-weighted mean across all �ve minute intervals
between 2016–19.
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Table A.5: Skewed Distribution of Ba�ery Revenues Across Time Periods

Time Periods - Other Percentiles Time Periods - 99th Percentile

Ba�ery Capacity in MWh: 10 15,996.72 41,948.91
Ba�ery Capacity in MWh: 100 15,993.46 41,171.26
Ba�ery Capacity in MWh: 1000 16,762.16 37,395.82
Ba�ery Capacity in MWh: 5000 14,518.92 30,495.52
Ba�ery Capacity in MWh: 10000 12,852.22 26,891.49
Ba�ery Capacity in MWh: 15000 10,752.46 24,265.86
Ba�ery Capacity in MWh: 25000 8,681.60 20,800.56
Ba�ery Capacity in MWh: 50000 5,374.76 15,469.13

Notes: �e �rst column lists the aggregate ba�ery capacity. �e second column indicates the total revenue a ba�ery
owner would earn between 2016–19 summed over the least pro�table 99 percent of time periods. �e third column
lists the total revenue a ba�ery owner would earn summed over the most pro�table 1 percent of time periods. All
numbers are in $/MWh of capacity.

Figure A.7: Total Cost Distribution with 5,200 MWh Mandate Relative to No Mandate

Notes: We calculate the di�erence in ex-post discounted total costs (generation costs plus ba�ery
capital costs), with and without a 5,200 MWh (1,300 MW) mandate across 10,000 di�erent simulated
paths of the capital cost distribution.
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Table A.6: Robustness Checks: Social Value of Storage as a Function of Storage Capac-
ity and Renewables

Gross Social Surplus / K ($/kWh)
(1) (2) (3) (4)

ln(K) -8.220∗∗∗ -8.220∗∗∗ -8.220∗∗∗ -8.220∗∗∗
(2.748) (2.748) (2.749) (2.748)

Renewable Share (%) 8.183∗ 8.779∗ 8.342∗ 16.99
(4.395) (4.680) (4.809) (13.99)

ln(K) × Renewable Share (%) -0.6855∗∗∗ -0.6855∗∗∗ -0.6855∗∗∗ -0.6855∗∗∗
(0.1653) (0.1653) (0.1653) (0.1653)

Peak Load (Mean) 0.1568∗ 0.1353
(0.0930) (0.2180)

Load (Mean) 0.2172
(0.1317)

O�-Peak Load (Mean) 0.0358
(0.3410)

(Renewable Share)2 -0.3166
(0.3212)

Observations 1,664 1,664 1,664 1,664
R2 0.39122 0.39093 0.39124 0.38622
Within R2 0.16075 0.16035 0.16078 0.15385

Controls + week of year �xed e�ects X X X X

Notes: �e dependent variable is the present discounted social surplus per kWh of storage capacity,
not accounting for capacity depreciation. Each observation represents a single week of the sample
for a single storage capacity. All columns include controls for the mean natural gas price over the
week and the Sacramento Valley hydroelectric water year index (WYI) associated with that week.
Peak load is the mean load between 5pm and 9pm hours during the week; o�-peak load is the mean
load at all other times. Standard errors are clustered by week of sample.
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B �e Kalman Filter/Smoother

As described in Section 4.1, a complication of our data is that CAISO implements the
day-ahead market (DAM) only at the hourly frequency, reporting prices and forecasts
for net load that are constant over the 12 5-minute intervals of each hour. Our oper-
ations model and the real-time market (RTM) prices use a 5-minute frequency. �us,
our estimation procedure needs to accommodate the mixed-frequency nature of the
data.

We use the Kalman �lter/smoother to temporally disaggregate (i.e., interpolate)
the forecasts of net load to yield a forecast at the 5-minute frequency. Generically,
assume that a series At is observed only every h periods, and what is observed is the
average of the interim h periods of the latent process at, so At = 1

h

∑h−1
j=0 at−j . Our

objective is to take the observed seriesAt and construct estimates of the latent process
at such that the implied values of the accumulated version of that series, φt, match the
observable data (At) at the end of the h periods. We cast the problem as a state space
model and use the Kalman �lter/smoother to estimate the latent process (e.g., Proie�i,
2006).

More speci�cally, we use the following state space model:

At = Ht

 at

φt

 ,
 at

φt

 = Mt

 at−1

φt−1

+ Utψt, ψt ∼ N(0, 1),

whereHt is a deterministically time-varying selection matrix36 designed to handle the
missing observations of At; Mt

37 and Ut38 are deterministically time-varying matrices
designed to create the accumulated version of the latent process, φt; and ψt is a serially
independent error term that contributes to the time series variation in the latent pro-

36Ht iterates between the matrix [0 1] on the last period of each hour (the period we observe At,
and [0 0] for the �rst to penultimate period of each hour.

37Mt takes 12 possible values for each period within the hour such that Mt = [1 0; 1/j(t) (j(t)−
1)/j(t)], where j(t) is the period within the hour associated with time period t.

38Ut takes 12 possible values for each period within the hour such that Ut = [1; 1/j(t)], where j(t)
is the period within the hour associated with time period t.
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cess of interest at. We use the techniques outlined in Harvey (1989) and Durbin and
Koopman (2012) to recover an estimate of the latent at for each �ve minute interval in
our sample.39 We then use these estimates to augment our data on the deterministic
portion of net load, XL

s .
AB/JD: changed title.

C Details of Estimation of ElectricityGenerationCosts

We use the net load and price data from the day-ahead market (DAM) to estimate daily
supply curve parameters. Variation in these parameters over time may be caused by
shi�s in natural gas prices, changes in the availability of low cost generation coming
from nuclear power plants and hydroelectric sources, as well as day-to-day changes
in generator availability and imports and exports from neighboring states. By using
the DAM to estimate the marginal cost curve, our approach allows us to account for
market characteristics that vary at a high frequency, while ensuring that our dynamic
operations model remains feasible in that it only uses information that would be avail-
able to a market participant in bidding in the real-time market.

Given the de�nition of total costs in (6) and the functional form for marginal costs
in (11), total costs are equal to:

TC(q, s, Z̃, εL, εP ) = θ1Z −
θ2

[
exp(εP )καZ̃1−α − Z

]1−θ3

1− θ3

, (C.1)

+
θ2

[
exp(εP )καZ̃1−α

]1−θ3

1− θ3

, where Z = XL
s −Q(q) + εL.

39See Brave et al. (2021) for the explicit recursive formulation of the Kalman �lter/smoother equa-
tions for a temporally aggregated series involving an average.
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We model the transition of εP as an AR(1) process given by:

εPt = ρP εPt−1 + σPs(t)η
P
t

(C.2)

σPs(t) =

 σP,Peak if s(t) ∈ Hours 5–10pm
σP,O�-peak if s(t) /∈ Hours 5–10pm

,

where ηP is a mean zero serially uncorrelated shock with unit variance, ρP governs
the persistence of changes to available capacity, and σs(t) accommodates any het-
eroskedasticity that exists across peak (5pm-10pm) and o�-peak hours of the day.

To facilitate estimation, we also standardize each day’s DAM prices and net load
forecasts. For the DAM prices, we subtract the median and divide by its interquartile
range. For net load, we divide by the maximum of that day’s net load forecast. Finally,
we restrict the parameter domain, Θ, to be such that θ1 ∈ [−700, 500], θ1 ∈ [0, 500],
θ3 ∈ [1.01, 4], κ ∈ [1, 8], α ∈ [0, 1].40

Turning to the structural unobservable, conditional on a set of supply curve pa-
rameters for any particular day, we recover a time series of εPt as the shocks required
to rationalize the RTM price observed at time t with the realizations of net load and
lagged net load. At time t, we obtain:

εPt = ln

[
Zt +

(
PRTM
t − θ1

θ2

)−1/θ3
]
− ln

[
καZ̃1−α

t

]
, (C.3)

where we use the day d estimated values of (θ, κ, α).
To account for the possibility of heteroskedasticity, we estimate separate variances

for peak and o�-peak periods.41 We also estimated the ρP , σP (Peak), σP (O�-Peak)

parameters separately for each year in our sample and found that these parameters
are relatively constant over time, see Table A.3 in Online Appendix A.

Table A.2 in Online Appendix A reports sample statistics on the marginal cost
curve parameters. �e linear marginal cost parameter, θ1, is below zero for the large
majority of days. �e weights on the current capital in the Cobb-Douglas capital func-

40We also compute a perfect foresight model, which uses the same marginal cost curve parameters.
41For our estimates of σP (Peak), σP (O�-Peak), we use a robust (and consistent) estimator of the

scale for the normal distribution: 1.4826×mediant{|xt −medianjxj |} (?).
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tion, α, center around 0.80 and are fairly stable, indicating the presence of positive and
similar ramping costs throughout our sample. Consistent with the declining natural
gas prices, the average slope of the marginal cost curve, θ2, falls over our sample pe-
riod, although there is signi�cant within-year volatility. Finally, estimates for θ3 and
κ indicate that the curvature of the marginal cost curve and the scheduled available
capacity are relatively stable over our analysis sample.

Table A.3 reports our parameter estimates for the AR(1) process for εP . Our es-
timate of ρP—based o� the training sample of 2015—is 0.869. �us, shocks to avail-
able generating capacity exhibit less persistence than the shocks to net load. �is
level of persistence is also stable over the evaluation sample–lying within a range of
0.838 to 0.907. Our estimates of the standard deviations for on- and o�-peak from
our training sample are 0.015 and 0.13, respectively. �ese estimates exhibit stability
over our evaluation sample–never deviating more than 24 percent from our training
sample estimates. Across both the training and evaluation samples, the estimates of
σP (Peak), σP (O�-Peak) indicate that on-peak hours experience approximately 15 per-
cent more volatile changes in εP .

As an example of the features of our approach towards modeling marginal costs,
Figure C.1 provides the marginal cost curve on June 2, 2016, when net load was ap-
proaching the constraint on available generating capacity. From Figure C.1a, at 5:15
pm, the market equilibrium was near an in�ection point: an increase in net load would
signi�cantly raise equilibrium price, while a decrease in net load would only have a
small e�ect in decreasing price. Figure C.1b illustrates the importance of ramping
costs in our model. At this same time, a 20% decrease in generation from fossil fuel
generators last period (Z̃) would lead to a substantial price increase, with a smaller
price decrease from a 20% increase in Z̃ .

Figures C.1c and C.1d illustrate how our model rationalizes a rapid change in price
that occurred in the real-time market. At 3:20 pm on June 2, 2016, the real-time market
price was just under $50/MWh, then at 3:40 pm price nearly tripled to $140/MWh. As
evidenced by the change in the marginal cost curves between 3:20 pm (top sub-panel
of c) and 3:40 pm (top sub-panel of d), the model largely rationalizes this price change
as being due to a shock in the available generating capacity, εPt , (as opposed to an
anticipated or unanticipated movement along the curve driven by net load), perhaps
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Figure C.1: Time-Varying Marginal Cost Curve

(a) Price Rises at Capacity Constraint (b) Generation Output at t− 1 shi�s MC

(c) Equilibrium Before Price Spike Event (d) Equilibrium During Price Spike Event

Notes: �is �gure displays marginal cost curves for June 2, 2016. Figure C.1a shows the market
equilibrium and the implied generation capacity available for a single �ve-minute interval. Figure
C.1b shows how 20% changes in last period’s dispatchable generation would shi� the marginal cost
curve. Figures C.1c and C.1d show how both the net load and the marginal cost curve shi�s during a
period when price increased rapidly over a 20-minute span.

due to unplanned generator outages or a transmission congestion event.
Figure C.2 provides the �t of the supply curve for June 28, 2016. �e maroon dots

show the net load forecasts and DAM price realizations. �e blue line shows the pre-
dicted DAM prices as a function of the forecasts of net load from our estimated model.
Finally, the orange line shows the predicted DAM prices as a function of the forecasts
of net load from a model estimated without ramping costs (i.e., α = 1). By allowing
for ramping costs, the blue line is able to explain more of the variation in the DAM
prices than the orange line, and hence lies closer to the maroon dots.
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Figure C.2: Marginal Cost Curve From Day-Ahead Market

Notes: �is �gure displays the day-ahead market prices and forecast of net load for each hour for June
28, 2016. Additionally, the �gure displays the estimated marginal cost curve with ramping costs (blue
line) and without ramping costs (orange line). �e reported market prices are for the CAISO South
Zone Trading Hub (SP 15).

D Modeling Battery Capacity Depreciation

We model capacity fading or depreciation using Xu et al. (2016). In their approach, the
depreciation rate of a ba�ery is a non-linear function of time and cycling. Speci�cally,
depreciation depends on: (1) temperature, (2) depth-of-discharge, (3) state-of-charge,
(4) calendar time, and (5) number of cycles. For our application, we assume that bat-
teries are operated at 25◦C (77◦F) throughout the year, which is the Xu et al. base
case.

Let K denote the ba�ery’s capacity this period, K ′ denote its capacity next pe-
riod,42 and gd be the term that determines degradation between the current period and
next period, so that:

K ′ = K exp(−gd). (D.1)

From Xu et al. (2016), gd consists of calendar degradation and cycle degradation.
�e �rst component of the degradation function, calendar degradation gt, is the

portion that occurs regardless of how much the ba�ery is charged or discharged. Cal-
endar degradation is a function of elapsed time as well as the ba�ery’s mean state-
of-charge. Ba�ery capacity will degrade more if the ba�ery is le� idle at full state-of-
charge relative to if the ba�ery is le� idle at 50% state-of-charge. More concretely, at

42Our evaluation sample uses a period length of a week, as we discussed in Section 4.2.
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25◦C, calendar degradation is the following function of elapsed time in seconds, t̃, and
the mean state-of-charge during the time elapsed, σ̄:

gt = 0.000000000414× t̃× exp(1.04(σ̄ − 0.5)). (D.2)

�e second component of the degradation function, cycle degradation, is the de-
preciation a�ributable to operations. Using the Xu et al. notation, de�ne N to be
the total number of cycles that the ba�ery undertakes during a time period, where a
full cycle indicates a ba�ery making a roundtrip of charging and discharging; ni to
indicate if cycle i was a full roundtrip cycle (ni = 1) or a half cycle (ni = 0.5) of ei-
ther charge or discharge; and gci to be the cycle degradation during cycle i. �e cycle
degradation gci depends on the mean state-of-charge during cycle i, σi, as well as the
depth of discharge of the cycle, δi. �e depth of discharge indicates what fraction of
power was gained or lost during the cycle. Cycle degradation is convexly increasing
in the depth of discharge. E.g., cycling from 0% to 100% once is more damaging than
cycling from 25–75% twice. Applying Xu et al. (2016) to the case of 25◦C,

gci = exp(1.04(σi − 0.5))× (140000δ−0.501
i − 123000)−1. (D.3)

We combine the di�erent degradation terms to write:

gd = gt +
N∑
i

nigci. (D.4)

From (D.2)–(D.4), capacity depreciation gd is a function of t̃, N , σ̄, and ni, δi, and
σi,∀i = 1, . . . , N .

Following Xu et al. (2016), we perform the following algorithm to simulate capacity
depreciation for our evaluation sample:43

1. Solve the optimal policy for a given week. Recall that we solve for policies sep-
arately for each day within the week and that our policy functions for the eval-
uation sample incorporate a heuristic approach that limits cycling due to depre-
ciation.

43Our algorithm for the training sample is similar, but occurs over the entire 2015 training sample
period—rather than separately by each week—and uses perfect foresight policies.
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2. Use the optimal policy from (1) and the realized stream of load residuals εL, price
residuals εP , and supply curve parameters across all time periods in the week to
simulate charge/discharge actions.

• Record the ba�eries’ state-of-charge for each 5-minute time interval of the
simulation.

3. Calculate gt over the simulation period using (D.2).

• Use the recorded state-of-charge path to calculate the mean state-of-charge
over the simulation period, σ̄.

• Over one week, t̃ = 60× 60× 24× 7 = 604, 800.

4. Feed the recorded state-of-charge path into a rain�ow cycle counting algorithm.

• See h�ps://www.mathworks.com/matlabcentral/�leexchange/3026-rain�ow-
counting-algorithm.

• �e rain�ow counting algorithm returnsN andni, δi, and σi,∀i = 1, . . . , N .
In words, it returns the number of cycles and whether each cycle is full or
half, and determines the depth-of-discharge and mean state-of-charge for
each cycle.

5. Calculate gci, ∀i = 1, . . . , N using (D.3).

6. Calculate the total depreciation rate exp(−gd) for each week-long simulation
using the above estimates and (D.4) and (D.1).

Finally, we note that this formulation implicitly assumes that both power and en-
ergy capacity depreciate through cycling. �e engineering literature shows that pri-
marily energy capacity should degrade. �erefore, our calculation should provide a
lower bound on the social value of storage.

E Details of Estimation of Battery Capital Costs

We treat the �rst year of our sample, 2018, as y = 0. We rescale costs in year y to be
relative to initial cost c0, so that c̃y ≡ cy/c0. Taking logs of both sides of the (rescaled)
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capital cost evolution equation (15) from Section 4.3, we obtain:

ln (c̃y)− ln (c̃0)︸ ︷︷ ︸
ln 1=0

= τ × y +

y∑
1

ξy. (E.1)

Using (E.1), we derive the following moment conditions.
First moment:

E[ln (c̃y)] = τ × y. (E.2)

Second moment:

Var [ln (c̃y)] = Var
[
yτ +

y∑
1

ξy

]

⇒ Var [ln (c̃y)] = Var [yτ ] + Var
[

y∑
1

ξy

]
⇒ Var [ln (c̃y)|y] = y × Var [ξy]

⇒ SD [ln (c̃y)|y] =
√
y × SD [ξy]

⇒ SD [ln (c̃y)|y] =
√
y × σ. (E.3)

We �nd the parameters τ and σc that solve the two moment conditions by estimat-
ing two univariate regressions, pooling across the set of cost projections. For the �rst
regression the dependent variable is ln (c̃y), and the independent variable is y. For the
second regression, the dependent variable is the standard deviation of all the logged
cost realizations ln (c̃y) conditional on y and the independent variable is √y. To ac-
commodate the variation in the number of cost assessments over time, in the second
regression we weight the regression by the number of cost projections that were made
for that year.44

44Figure 2a shows that years that are further in the future tend to have fewer cost projections.
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