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Overview of work in progress!

▶ We analyze a large number of continuous time ascending bid
auctions of rental cars conducted online over 2 minute intervals.

▶ Due to concerns about bidder collusion, the rental company
designed a unique dynamic auction format.

▶ Bidders only know the amount of their own bids and an indicator
whether their bid is the highest so far.

▶ Bidders are never able to observe the bids placed by competing
bidders, and thus do not even know the number of other bidders
bidding in any given auction.

▶ We are aware of only one other auction that has informational
restrictions similar to the Korea auctions: auctions of certificates of
deposit (CDs) by the state of Texas.

▶ Groeger and Miller Journal of Econometrics (2021) provide an
empirical analysis bidding under of this auction format under the
assumption that bidding in the auction follows a Perfect Bayesian
Equilibrium (PBE).
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How does this relate to market design?

▶ Auctions are markets (often “small” ones, i.e. with a relatively small
number of bidders). Some of the earliest work on market design can
be traced back to work on auctions.

▶ There are many different formats for auctions (i.e. rules for running
auctions) such as English (open acscending bid) auctions, first price
sealed bid auctions, etc.

▶ One could also use non-auction mechanisms to sell an item: e.g.
selling lottery tickets

▶ Which is the best format to use? Choosing a ‘best” auction
mechism is clearly a classic example of market design

▶ Landmark paper: Optimal Auction Design (1982) by Roger Myerson
Mathematics of Operations Research

▶ Characterized the optimal auction mechanism for selling a single
object to a finite (known) set of bidders who have valuations for the
object with known distributions that are independently distributed
(the Independent Private Values (IPV) assumption)

▶ Optimal market design (maximizes expected revenue to the seller):
A second-price auction (Vickrey auction) with a reservation price.
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How do second-price auctions work? Theory vs Practice

▶ According to Wikipedia “The auction was first described
academically by Columbia University professor William Vickrey in
1961 though it had been used by stamp collectors since 1893. In
1797 Johann Wolfgang von Goethe sold a manuscript using a
sealed-bid, second-price auction.”

▶ The second price auction is ex post efficient i.e. the bidder with the
highest valuation wins the auction.

▶ If the auction is symmetric (all bidder’s values are IID) the first price
auction is also ex post efficient too.

▶ Under symmetry, the Revenue Equvalence Theorem predicts that
expected revenue in a first price auction and second price auction
are the same.

▶ However in practice (e.g. laboratory experiments) show overbidding
in second price auctions
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Overbidding in second-price auctions

Cooper and Fang, 2008, “Understanding Overbidding in Second Price
Auctions: An Experimental Study”

In laboratory experiments, however, subjects are found to exhibit
a consistent pattern of overbidding. Kagel et al. (1987) found
that the actual bids are on average 11% above the dominant
strategy bids. Kagel and Levin (1993) found that about 62% of
all bids in their five-bidder SPA sessions exceed the bidder’s value,
while only 8% of all bids were below it. Both Kagel and Levin
(1993) and Harstad (2000) further reported that experience has
only a small effect in reducing overbidding in SPA.

We found that small and medium overbids are more likely to
occur when bidders perceive their rivals to have similar values,
supporting a modified “joy of winning” hypothesis but large over-
bids are more likely to occur when bidders believe their opponents
to have much higher values, consistent with the “spite” hypoth-
esis.
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Collusion in second-price auctions

Paul Klemperer (2002) “What Really Matters in Auction Design” Journal
of Economic Perspectives

Economists are proud of their role in pushing for auctions; for
example, Coase (1959) was among the first to advocate auction-
ing the radio spectrum. But many auctions — including some
designed with the help of leading academic economists — have
worked very badly.

George Mailath and Peter Zemsky (1991) “Collusion in Second Price
Auctions with Heterogeneous Bidders” Journal of Economic Theory

We show that efficient collusion by any subset of bidders in sec-
ond price private value auctions is possible, even when the bidders
are heterogeneous. An important property of efficient collusion
is that a bidder’s net payoff from participating in collusion is in-
dependent of her valuation.
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Robust market/mechanism design

▶ Mechanism design theory is brilliant theory, but requires strong
assumptions to get crisp results and characterizations

▶ Economists who actually do auction design in practice (e.g. Paul
Milgrom and Larry Ausubel, etc) use judgement because it is not
clear that that strong assumptions necessary are valid in practical
situations.

▶ Also, many real world auctions are far more complex and involve
wider considerations (e.g. social welfare) that are difficult to handle
in theory than, say, expected revenue maximization.
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The Wilson Critique of Mechanism Design

It is noteworthy that our optimality result concerns a property of
this simple, well-motivated mechanism across a range of possible
environments and sizes of the market, rather than simply for a
single, fixed environment and size of market. Our result thus
responds to the Wilson Critique (Wilson (1987) of mechanism
design. Wilson criticized this field for focusing upon the prob-
lem of designing a mechanism explicitly for each specific problem
(e.g., as determined here by the specification of an environment
and a market size). An economic consultant asked for advice
on the selection of a mechanism may not know all the param-
eters that specify the problem, and the parameters may change
over time; theoretical results that describe how the mechanism
should be chosen assuming detailed knowledge of the problem
may thus have little value to the consultant. A more meaning-
ful task for mechanism design is to establish the sense in which
a simple mechanism performs reasonably well across the variety
of problems that might be encountered in practice, which is the
nature of our results.
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The k-double auction

Satterthwaite and Williams (2002) “The Optimality of a Simple Market
Mechanism” Econometrica

Strategic behavior in a finite market can cause inefficiency in
the allocation, and market mechanisms differ in how successfully
they limit this inefficiency. A method for ranking algorithms in
computer science is adapted here to rank market mechanisms
according to how quickly inefficiency diminishes as the size of
the market increases. It is shown that trade at a single market-
clearing price in the k-double auction is worst-case asymptotic
optimal among all plausible mechanisms: evaluating mechanisms
in their least favorable trading environments for each possible size
of the market, the k-double auction is shown to force the worst-
case inefficiency to zero at the fastest possible rate.
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Illustration of the k-double auction
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Static vs Dynamic Auction Mechanisms

▶ The k-double auction is an example of a static mechanism — it is a
generalization of the idea of a sealed bid auction for an single sided
auction (one object for sale)

▶ But there is also the continuous double auction (CDA, also known
as an “open outcry” auction) — it is a generalization of an open
ascending bid auction, i.e. an English auction

▶ The CDA is easy to play in the lab and shows high efficiency and
convergence to close to the “Walrasian” outcome, a result
demonstrated in hundreds of lab experiments by economists such as
Vernon Smith and Charlie Plott

▶ Paradox: The CDA is a continuous time game of incomplete
information and has never been fully solved, not even by the most
brilliant auction theorists such as Robert Wilson.

▶ Which mechanism is better? The static k-DA or the CDA?
▶ Designs of many auctions are motivated by the linkage principle

(release of information during the auction leads to higher bids) and
indeed the FCC spectrum auctions are dynamic combinatorial
auctions. No theorist can solve these auctions either.
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Preliminary Results of Our Analysis

▶ We characterize bidding behavior in the Korean auction and show
frequent early bidding.

▶ We conjecture that early bidding will not occur in a PBE. That is,
we conjecture that the only equilibrium is an uninformative
equilibrium where all bidders wait to the last instant to submit bids.

▶ The uninformative equilibrium always exists and and is strategically
equivalent to the equilibrium of a static first price sealed bid auction.

▶ We illustrate a two bidder, two period example where the only PBE
is the uninformative equilibrium.

▶ We introduce a behavioral boundedly rational model of bidding
behavior that can explain early bidding.

▶ Bidders learn enough from early bidding to avoid overpaying later in
the auction. As a result, expected revenue in the Korean auction is
lower than expected revenue in a first price sealed bid auction.
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Auction Format

▶ We study a data set of over 8600 auctions of cars the rental
company sold between 2003 and 2007.

▶ There is a universe of 90 professional bidders who participate in
these auctions: most are auto dealers.

▶ The auctions are conducted over the internet in back-to-back 2
minute auctions. Bidders have the ability to physically inspect the
cars being auctioned prior to the auction itself.

▶ On average there are 7 bidders participating in any individual
auction, and 59 bids are placed during the 2 minute auction.

▶ However due to the auction rules, the bidders in any single auction
do not know how many other bidders are present, what their bids
are, and they only learn the winning price in the auction if they hold
the highest bid at the end of the two minute auction.
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Key Findings

▶ We show that there is a substantial amount of early bidding in these
auctions, even though a game-theoretic analysis suggests that the
informational restrictions should create strong incentives for bid
sniping — i..e. waiting to submit a bid only in the last instant of
the auction.

▶ We define an informative equilibrium of the dynamic auction to be
one in which there are bids placed before the final instant of the
auction using strictly monotonic bid functions.

▶ In a two bidder, two period example, we show there is no informative
PBE and thus no early bidding.

▶ This creates a challenge: can the early bidding we observe in these
auctions be explained as a PBE outcome?
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Model

▶ Due to the difficulty of computing PBE and because it is not clear
that there is an informative PBE that would be consistent with the
bidding behavior we observe in these auctions, we adopt an
alternative modeling approach.

▶ We develop a behavioral DP bidding model that assumes bidders
have rational beliefs about the stochastic process for the high bid
price in the auction.

▶ Using these beliefs, we solve a dynamic program to determine the
optimal bidding strategy implied by these beliefs.

▶ We define an rational expectations equilibrium as a self-confirming
system of beliefs, i.e. where the actual stochastic process for the
highest bid during the auction is approximately equal to bidders’
beliefs about this stochastic process.
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Accounting for learning

▶ Our approach involves learning but employs a simpler model of
experiential learning rather than full Bayesian updating.

▶ Our model is appropriate for experienced bidders who have
participated in many auctions, and thus have well-defined and fixed
beliefs about the stochastic process for the high bid in the auction.

▶ If a bidder has the highest bid at t, then they know it. But if the
bidder does not have the highest bid at t, they must predict it based
on a rational belief of the probability distribution of the high bid.

▶ We show that there is a significant reduction in uncertainty by
learning that one has the high bid prior to the end of the auction.

▶ Thus the motivation for early bidding is to gather information about
the current high bid, helping bidders to win the auction without
paying more than necessary.
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Behavioral Market Design

▶ A major rental car company experimented with alternative
mechanisms for selling its cars.

▶ It originally used open outcry auctions held at each rental car
location, but the owners suspected bidding collusion that lowered
their bids.

▶ It developed its own unique online bidding system (via the Internet)
to try to defeat possible collusion.

▶ Around 2012 it abandoned its own online auction system and sold
cars via an auction house which used a sequence of English auctions.
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Is the linkage principle valid?

▶ Linkage principle if the bidders’ valuations are affiliated, auctions
that release more information over the course of the auction will
result in higher average prices compared to auctions that reveal less
information.

▶ Revenue Equivalence principle if the bidders’ valuations are IID then
auctions with the same probability of assigning a winner generate
the same expected revenue.

▶ Our 2014 JINDEC paper, “Is the Linkage Principle Valid? Evidence
from the Field” compared the alternative auction formats the rental
company used with respect to mean revenue, and found evidence
consistent with the linkage principle — the prices from the auction
house were 10% higher than the company’s online auction system.

▶ The dynamic rental auction releases more information than a static
first price auction, yet we find that the dynamic auction results in
lower expected revenue.
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Auction 1, January 26, 2005
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Plot of individual bids by the 6 bidders in auction 1
Winning bid, 5350, submitted by B41 at 119.421 seconds

45 bids, max 14 (by B11), min 1 (by B8), mean 7.5, bids by winner: 2
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B5
B8
B11
B28
B36
B41
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Frequent use of “probing/testing” strategies

▶ Notice that bidder B5 makes frequent bids, each slightly higher than
the previous one.

▶ It seems evident that B5 was trying to “probe” or “test” the market
to learn what the current high bid was.

▶ However B5 never succeeded in placing a highest bid, and only
learned that the high bid was higher than each of its sucessive bids.

▶ B5’s last bid was $4500 placed less than 30 seconds remaining in the
auction, after which B5 gave up and declined to submit any further
bids.
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Auction 3, January 26, 2005
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Plot of individual bids by the 7 bidders in auction 3
Winning bid, 7190, submitted by B36 at 120.390 seconds

60 bids, max 18 (by B11), min 1 (by B8), mean 8.57143, bids by winner: 18
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B28
B36
B41
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Auction 394 — bid sniping
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Plot of individual bids by the 7 bidders in auction 394
Winning bid, 9960, submitted by B3 at 118.125 seconds

37 bids, max 14 (by B6), min 1 (by B3), mean 5.3, bids by winner: 1
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B11
B41
B47
B49
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Auction 29 — early high bidder
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Plot of individual bids by the 8 bidders in auction 29
Winning bid, 14690, submitted by B28 at 1.265 seconds

103 bids, max 32 (by B11), min 1 (by B28), mean 12.9, bids by winner: 1
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B28
B36
B38
B41
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Auction 32 — a “crazy” bidder B11
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Plot of individual bids by the 10 bidders in auction 32
Winning bid, 6390, submitted by B11 at 118.796 seconds

99 bids, max 34 (by B11), min 3 (by B6), mean 9.9, bids by winner: 34
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B41
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Rescaled bid trajectories
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Rescaled bid trajectories — high early bids removed
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CDFs of first bid and winning bid by elapsed time
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Distribution of time winning bid was submitted
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Distribution of percentile order of winning bid
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Bids submitted per second in the auction
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CDFs of rescaled bids by time in the auction
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Distribution of number of bidders per auction
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Distribution of number of bids per auction

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

Distribution of number of bids submitted

D
en

si
ty

Number of bids submitted per auction

Mean    59.0703
Median  54
Minimum 1
Maximum 227
Std dev 32.0181
N       11279

33 / 99



Graph of the simulated auction 998 we played yesterday
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Bids by 11 simulated bidders in auction 998

Winning bid, 5850.00, submitted by B11 at 120.000 seconds

53 bids, max 12 (by B11), min 1 (by B9), mean 4.8, bids by winner: 12

High bid

B1 v=  6491, p=0.996 c=0.3, =0.05 FPA bid: 5585.16 high bid: 5393.15

B2 v=  6291, p=0.977 c=0.2, =0.05 FPA bid: 5465.17 high bid: 5722.57

B3 v=  6380, p=0.995 c=1.5, =0.05 FPA bid: 5519.56 high bid: 5172.67

B4 v=  6615, p=0.999 c=0.5, =0.05 FPA bid: 5655.16 high bid: 5192.77

B5 v=  6391, p=0.995 c=0.3, =0.05 FPA bid: 5526.03 high bid: 5752.05

B6 v=  6472, p=0.992 c=1.1, =0.05 FPA bid: 5573.55 high bid: 5454.38

B7 v=  5751, p=0.993 c=-1.6, =0.05 FPA bid: 5106.77 high bid: 5159.99

B8 v=  6093, p=0.997 c=-0.5, =0.01 FPA bid: 5339.81 high bid: 5624.75

B9 v=  6764, p=0.998 c=-0.6, =0.04 FPA bid: 5736.5 high bid: 3460.39

B10 v=  5502, p=0.999 c=4.1, =0.06 FPA bid: 4925.23 high bid: 5166.37

B11 v=  7258, p=0.000 c=0.0, =0.00 FPA bid: 5977.1 high bid: 5850
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Graph of the actual auction 998
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Winning bid, 6490, submitted by B1 at 120.171 seconds

56 bids, max 17 (by B47), min 1 (by B9), mean 5.6, bids by winner: 5
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A dynamic structural approach to bidding

▶ Is the bidding behavior we observe consistent with a Perfect
Bayesian Equilibrium (PBE) of the auction, formulated as a dynamic
game of incomplete information?

▶ Definition A Perfect Bayesian Equilibrium of a dynamic game of
incomplete information is a subgame perfect equilibrium, where
players’ beliefs are updated using Bayes rule wherever possible.

▶ “wherever possible” means that it may not be possible to use Bayes
Rule for certain off the equilibrium path deviations, where certain
events may occur that have zero probability under one or more of
the players’ equilibrium beliefs.
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The uninformative equilibrium

▶ Proposition In a discrete time approximation to the dynamic
auction, the uninformative equilibrium is always a PBE of the
dynamic auction game.

▶ In an uninformative equilibrium, players do not bid, or submit bids of
0 in times t = 1, 2, . . . ,T − 1 of the auction, and in time T they
submit bids equal to those that they would submit in a single shot
first price sealed bid auction.

▶ In an uniformative equilibrium, the players do not bother trying to
test/probe in the early stages of the auction, so the value of learning
is zero since there is no learning in this equilibrium.
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Bid Sniping in Dynamic Second Price Auctions

Ockenfels and Roth “Last-Minute Bidding and the Rules for Ending
Second-Price Auctions: Evidence from eBay and Amazon Auctions on
the Internet” American Economic Review 2002.

In fact, sniping in an auction with a fixed deadline, in which very
late bids have some probability of not being successfully trans-
mitted, need not depend on the presence of irrational bidders.
There can be equilibria even in purely private-value auctions in
which bidders have an incentive to bid late, even though this
risks failing to bid at all. This kind of equilibrium can be inter-
preted as a kind of implicit collusion against the seller, because
it has the effect of probabilistically suppressing some bids, and
hence giving higher profits to the successful bidders. The proba-
bility that some late bids will not be successfully transmitted is
a risk for each bidder, but a benefit for his opponents, and it is
this ‘public good’ aspect of the risk of bidding late that creates
the possibility of a profitable collusive late-bidding equilibrium in
eBay (but not in Amazon).
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Logic for Bid Sniping: Avoiding Bidding Wars

Ockenfels and Roth also quote from a website Esnipe.com, a site that
offers to automatically place a predetermined bid a few seconds before
the end of the eBay auction, that nicely summarizes some of these
reasons but also speaks to the risks involved:

There are many reasons to snipe. A lot of people that bid on an
item will actually bid again if they find they have been outbid,
which can quickly lead to a bidding war. End result? Someone
probably paid more than they had to for that item. By sniping,
you can avoid bid wars. That’s not all. Experienced collectors
often find that other bidders watch to see what the experts are
bidding on, and then bid on those items themselves. The expert
can snipe to prevent other bidders from cashing in on their ex-
pertise . . . Will esnipe guarantee that my bids are placed? We
certainly wish we could, but there are too many factors beyond
our control to guarantee that bids always get placed.

39 / 99



Do informative equilibria exist?

▶ The bidding data allow us to easily reject the hypothesis that all
bidders are playing uninformative PBE bidding strategies.

▶ The significant frequency of bid sniping could indicate that some
bidders are trying to play the uninformative equilbrium.

▶ However if some players are deviating from the uninformative
equilibrium, playing the uninformative equilibrium (i.e. bid sniping)
may no longer be a best response.

▶ Can the bidding behavior we observe be rationalized as some PBE of
this game?
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Difficulties of computing nontrivial PBEs

▶ The main difficulty is that all bidders must be endowed with priors
over a) the number of bidders in the auction, and b) their
valuations. These beliefs must be updated at each instant based on
the history of bids made so far.

▶ Even if the history is very limited due to the informational
restrictions of this auction, the history for each player includes at
least, a) the current time t, b) the player’s own history of bids, and
c) whether the player’s bid is the highest or not.

▶ It is extremely challenging to compute a posterior distribution over
these quantities, and the dimensionality of the posterior is effectively
infinite-dimensional (unless the posterior could be shown to be a
member of a conjugate prior class, which seems unlikely).
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Costs and benefits of informative bidding

▶ The main gain to placing “serious” bids early in the auction is to
gather significant information on what the high bid is, and to use
this to try to win without overpaying.

▶ However there are at least two costs of placing a serious bid: a) the
bidder could mistakenly overbid and the auction rules commit the
bidder to pay the highest bid submitted during the two minute
auction.

▶ and b) by bidding, the bidder provides information to other bidders
that could affect their subsequent bidding behavior to the detriment
of the bidder in question.
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Non-existence of an informative PBE, a 2x2 example

▶ Consider a symmetric equilibrium where in period t = 1 both bidders
submit bids according to a single bid function b1(v), where f (v) is
the density of the bidders’ valuations.

▶ Even if the bid function in period t = 1 is symmetric and given by
bi = b1(vi ), = 1, 2 where vi is the valuation of bidder i (a realization
of the random variable ṽ with density f (v)), the relevation of
information about which bid is the highest in period t = 1 results in
endogenous asymmetry in the bid functions at time t = 2.

▶ if b1(v1) > b1(v2) and b1 is a strictly monotonic bid function (a
necessary condition for an informative equilibrium), this implies that
v1 > v2.
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Non-existence of an informative PBE, a 2x2 example

▶ The information from period 1 bids about which of the two bidders
has the highest valuation is the source of informational asymmetry
in period 2.

▶ Suppose bidder 1 learns that he has the higher valuation. Then
bidder 1’s posterior belief of bidder 2’s valuation in period 2 is
F (v)/F (v1) where F (v) is the prior belief of the CDF of valuations
in period 1.

▶ For bidder 2, their posterior belief of bidder 1’s valuation in period 2
is given by [F (v)− F (v2)]/[1 − F (v2)].

▶ Let b2,h(v) be the period two bid function for a bidder who learns
they had the high bid in period 1, and let b2,l(v) be the bid function
of a bidder who learns their bid was the low bid in period 1.
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Period 2 equilibrium bid functions

Solve the game by backward induction, In period two the equilibrium bid
functions solve

b2,h(v , b) = argmax
b′≥b

(v − b′)×∫ v

0
I{b2,l(v

′, b1(v
′)) ≤ b′}f (v ′)dv ′/F (v)

b2,l(v , b) = argmax
b′≥b

(v − b′)×∫ ∞

v

I{b2,h(v
′, b1(v

′)) ≤ b′}f (v ′)dv ′/[1 − F (v)]
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Period 1 equilibrium bid function

b1(v) = argmax
b

(v − b2,h(v , b))×[∫ v

0
I{b2,l(v

′, b1(v
′)) ≤ b2,h(v , b)}f (v ′)dv ′

]
+

(v − b2,l(v , b))×[∫ ∞

v

I{b2,h(v
′, b1(v

′)) ≤ b2,l(v , b)}f (v ′)dv ′
]
.
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Equilibrium bid functions in period 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Equilibrium Bid Functions

E
qu

ili
br

iu
m

 B
id

Valuation of bidder

 

 
Uninformative equilibrium
High valuation bidder in the informative equilibrium
Low valuation bidder in the informative equilibrium

47 / 99



Gain from deviating from the informative equilibrium
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Feasibility of taking game theory “seriously”

▶ A preponderance of experimental evidence suggest that bidders in
auction do not behave like rational, risk-neutral expected payoff
maximizers who use Perfect Bayesian Equilibrium bidding strategies.

▶ For example even in a Second Price sealed bid auction where bidding
truthfully is a dominant strategy, we frequently observe overbidding
(i.e. bidding more than one’s valuation for the item) by experimental
subjects.

▶ Given the practical consideration that the computational complexity
in solving for even one PBE, it may be wise to consider other
computationally simpler and potentially more empirically plausible
approaches to modeling bidding in auctions.
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Behavioral DP model of bidding with fixed beliefs

▶ We discretize the two minute auction into T = 120 one second time
steps.

▶ Let τ = (v , c) denote the type of the bidder, where v is the bidder’s
valuation of the car being auctioned, and c is the bidder’s psychic
cost of submitting a bid.

▶ We assume that bidders are experienced and have fixed, rational
beliefs about the stochastic process for the high bid in auctions for
homogeneous types of cars.

▶ Bidder beliefs are captured by a family of conditional probability
distributions {λt(b|bt , ht)} where λt(b|bt , ht) is a CDF for the high
bid at during the interval (t, t + 1] of the auction, conditioned on bt ,
the bidder’s highest bid up to time t (or 0 if the bidder has not bid
yet), and ht is an indicator of whether the bidder holds the high at t.
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Justification for fixed beliefs

▶ We focus on auctions of a homogeneous class of rental cars
(Hyundai Avante Elanta XD with 1.6L engines) which are unlikely to
have unique characteristics that make individual auctions to be
“unique” (as opposed to an auction for a Picasso or Rembrandt).

▶ As a result it is plausible that experienced bidders will assume there
is a common stochastic process describing the evolution of the high
bid in these auction, and we assume all bidders know this stochastic
process.

▶ Thus, participating in additional auctions is unlikely to change the
bidder’s beliefs about this stochastic process — learning has
“converged” to a rational expectation of this stochastic process.

▶ What a bidder does learn during an individual auction is whether
he/she holds the high bid based their history of their own bids
during the auction.

▶ Thus early bidding can be regarded as means of learning what the
high bid is in order to avoid overpaying to win the auction.
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2005 Hyundai Avante Elantra XD 1.6L
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Unconditional beliefs about high bid in each second of
auction
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Evolution of beliefs of B23 in auction 9810
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Evolution of beliefs of B23 in auction 10007
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Two Step Estimation Strategy

▶ Step 1 Using data on 533 auctions of Avante cars, we estimate the
family of beliefs {λt} about the stochastic process for the high bids
in the auction.

▶ Step 2 Using {λ̂t} we solve a discrete dynamic programming
problem determining the optimal bidding of the bidder at each
second of the auction, resulting in a family of bid functions {βt}
where βt(bt , ht) is the optimal bid at the start of second t in the
auction when the bidder’s high bid so far is bt and ht is an indicator
of whether the bidder has the high bid or not.

▶ Note the only unknown parameters in step 2 are τ = (v , c , p, σ).
Thus, we form a likelihood L(τ) for each bidder in each auction
resulting in auction-by-auction bidder-specific estimates of
valuations, v and other parameters τ characterizing the bidder’s
type.

▶ Our goal is to see if such a model is capable of explaining the early
bidding we observe in these auctions.
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Bidder’s DP problem

▶ Let ht = 1 if the bidder has the highest bid up to second t in the
auction, ht = 0 otherwise. Let bt be the highest bid submitted by
the bidder up to second t in the auction.

▶ The timing is as follows. At the start of each “bidding instant” t
(t = 0, 1, . . . , 120), the bidder observes (bt , ht) and decides whether
to submit a bid b > bt or not bid, which is equivalent to a
non-improved bid of b = bt . At t = 0, the auction is initialized with
b0 = 0 and h0 = 0 for all bidders.

▶ The transition rule for bids by a given bidder is as follows: bt+1 = b,
where b is the bid decision at time t. Thus, if the decision is not to
bid, then bt+1 = bt , otherwise if the bidder submits a bid of b > bt ,
then bt+1 = b. Also ht+1 = 1 if bt+1 is the highest bid outstanding
at start of second t + 1, otherwise ht+1 = 0.

▶ We assume that there is a “distraction probability” p that prevents a
bidder from focusing on the auction and deciding whether to update
their bid at each second t of the auction. Thus, with probability at
least p, no bid is submitted and bt+1 = bt .
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Bidder’s DP problem, continued

▶ The terminal payoff of the bidder at the conclusion of the auction at
T + 1 = 121 (after the final bids have been submitted so the high
bid can be determined) is

WT+1(bT+1, hT+1) = (v − bT+1)I{hT+1 = 1},

where bT+1 is the bid the bidder submitted at the last possible
bidding instant T = 120 and hT+1 = 1 if this was the highest bid in
the auction, or 0 otherwise.

▶ Define λT (b|bT , hT ) = E{I{hT+1 = 1}|b, bT , hT}, i.e. this is the
probability that the bidder will win the auction by placing a bid of b
at the last possible instant T = 120, conditioning on their
information (bT , hT ) at this instant.
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Bidder’s DP problem, continued

▶ Define the bid-specific value function wT (b, bT , hT ) by

wT (b, bT , hT ) = E{WT+1(bT+1, hT+1)|b, bT , hT} =

(v − b)λT (b|bT , hT ).

Thus, wT (b, bT , hT ) is the expected payoff to the bidder from
placing a final bid of b at the last possible bidding instant T in the
auction, assuming the bidder is not distracted and thus able to bid.

▶ Define the value function WT (bT , hT , ϵT ) by

WT (bT , hT , ϵT ) =

max

[
wT (bT , bT , hT ) + ϵT (0), max

b≥bT
[−c + ϵT (1) + wT (b, bT , hT )]

]
where ϵT = (ϵT (0), ϵT (1)) is a bivariate Type-1 extreme value
distribution that reflects idiosyncratic “noise” affecting the bidder’s
calculation of an optimal bid. Parameter c is the cost of “mental
effort” to calculate an improved bid. We assume that passing on
bidding involves zero additional mental effort.
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Bidder’s DP problem, continued

▶ If the bidder is not distracted from bidding at T their expected value
is EWT (bT , hT ), given by

EWT (bT , hT )

=

∫
ϵT

WT (bT , hT , ϵT )q(ϵT )

= σ log

(
exp{wT (bT , bT , hT )/σ}+ exp{max

b≥bT
[wT (b, bT , hT )− c]/σ}

)
▶ However if the bidder is distracted at T and does not bid, their

value is wT (bT , bT , hT ).
▶ Then at time T − 1, the bid-specific value function is

wT−1(b, bT−1, hT−1) is

wT−1(b, bT−1, hT−1) =

[pwT (b, b, 1) + (1 − p)EWT (b, 1)]λT−1(b|bT−1, hT−1)+

[pwT (b, b, 0) + (1 − p)EWT (b, 0)] [1 − λT−1(b|bT−1, hT−1)].
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Bidder’s DP problem, continued

▶ Continuing the backward induction from t = T ,T − 1, . . . , 0 we
have solved for the optimal dynamic bidding strategy in the auction.

▶ The formulas for the expected value of bidding for bidders who are
not distracted the same as given above, so we recursively calculate
EWt(bt , ht), and the value of being distracted is wt(bb, bt , ht),
recursively for t = T − 1,T − 2, . . . , 1, 0.

▶ Then at each time t the bid-specific value function is wt(b, bt , ht)
given by

wt(b, bt , ht) =

[pwt+1(b, b, 1) + (1 − p)EWt+1(b, 1)]λt(b|bt , ht)+
[pwt+1(b, b, 0) + (1 − p)EWt+1(b, 0)] [1 − λt(b|bt , ht)].
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Maximum Likelihood Estimation

▶ We are able to estimate the parameters τ = (v , c , p, σ) for each
bidder in each auction they participate in by maximum likelihood.

▶ For a given auction, we observe {(bt , ht), t = 0, . . . , 120} where b0
is the first bid made at bidding instant t = 0 and b120 is the final bid
made at T = 120. Let the initial conditions be b−1 = h−1 = 0.

▶ Let L(τ) be the likelihood of bids by a given bidder in a given auction

L(τ) =
120∏
t=0

Pt(bt |bt−1, ht−1, τ),

where the probability Pt(b
′|b, h, τ) is given by the MNL formula

Pt(b
′|b, h, τ) =

exp{−cI{b′ ≥ b}+ wt(b
′, b, h)/σ}

exp{wt(b, b, h)/σ}+
∑

b′≥b exp{−c + wt(b′, b, h)/σ}
.
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Maximum Likelihood Estimation

▶ The maximum likelihood estimator presumes that for each t and
integer bid b′ > b there is a corresponding extreme value distributed
idiosyncratic shock ϵt(b

′) associated with choosing b′. The
bid-specific value function for this version of the model is

Wt(bt , ht , ϵt) =

max

[
wt(bt , bt , ht) + ϵt(0), max

b′≥bt
[−c + ϵt(b

′) + wt(b
′, bt , ht)]

]
and the expected value is

EWt(bt , ht) =

∫
ϵt

Wt(bt , ht , ϵt)q(ϵt)

= σ log

exp{wt(bt , bt , ht)/σ}+
∑
b′≥b

exp{[wt(b
′, bt , ht)− c] /σ}

 .

▶ This model predicts a positive probability for any integer bid b′ ≥ b
given by the logit probability above.
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Quasi Maximum Likelihood Estimation

▶ However evaluation of the sum of exponentiated bid-specific value
functions for all integer bids b′ ≥ bt is computationally expensive.
So we propose an alternative quasi-maximum likelihood estimator
based on an incomplete model of bidding that does not a formal
theory (i.e. positive probability of) any potential bid b′ ≥ bt .

▶ Under this alternative model, there are only two idiosyncratic shocks
(ϵt(0), ϵt(1)) per bidding instant and the value function is

Wt(bt , ht , ϵt) =

max

[
wt(bt , bt , ht) + ϵt(0), max

b′≥bt
[wt(b

′, bt , ht)− c] + ϵt(1)
]

and expected value is

EWt(bt , ht)

=

∫
ϵt

Wt(bt , ht , ϵt)q(ϵt)

= σ log

(
exp{wt(bt , bt , ht)/σ}+ exp{max

b′≥bt
[wt(b

′, bt , ht)− c]/σ}
)
.
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Quasi Maximum Likelihood Estimation

▶ Suppose we observe a bid of bt+1 at bidding instant t in bidding
state (bt , ht).

▶ If bt+1 > bt (i.e. the bidder improved their bid), the model with
only two idiosyncratic shocks per bidding instant cannot formally
“explain” this bid, i.e. there is zero probability of observing
“suboptimal bids” bt+1 ̸= βt(bt , ht).

▶ But the QMLE assigns the following probability to a bid bt+1 > bt

Πt(bt+1|bt , ht) =
exp{wt(bt+1, bt , ht)/γ}

exp{wt(bt+1, bt , ht)/γ}+ exp{wt(βt(bt , ht), bt , ht)/γ}
,

where βt(bt , ht) is the optimal bid function at instant t given by

βt(bt , ht) = argmax
b′≥bt

wt(b
′, bt , ht).

and γ ≥ 0 is a smoothing parameter or penalty parameter for
observations bt+1 ̸= βt(bt , ht).
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Aside on the Optimal Bid Function

▶ In our “partial” model of bidding in the Korean auction, the optimal
bid function is actually also a function of the unobserved shocks
ϵt = (ϵt(0), ϵt(1)). We denote this bid function by βt(bt , ht , ϵt) and
it is given by

βt(bt , ht , ϵt) =

argmax
[
wt(bt , bt , ht) + ϵt(0), argmax

b′≥bt

[wt(b
′, bt , ht)− c] + ϵt(1)

]
.

▶ The relationship between βt(b, h, ϵ) and βt(b, h) is as follows

βt(b, h, ϵ) =

{
βt(b, h) if wt(b, b, h) + ϵ(0) ≤ wt(βt(b, h), b, h) + ϵ(1)
b if wt(b, b, h) + ϵ(0) > wt(βt(b, h), b, h) + ϵ(1)

▶ Thus the optimal bid is βt(b, h) for any combination of private
bidding shocks that makes it optimal for the bidder to improve their
existing bid b, otherwise it is optimal not to improve the current bid
(i.e. not bid).
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Quasi Maximum Likelihood Estimation

▶ Thus, under the QMLE, Πt(bt+1|bt , ht) is maximized at the value
Πt(bt+1|bt , ht) = 1/2 when bt+1 = βt(bt , ht).

▶ To maximize the QMLE, parameters τ are found that make the
optimal bidding function βt(bt , ht , τ) to be as close as possible to
the observed bid bt+1 since this maximizes Πt(bt+1|bt , ht).

▶ The QMLE then is defined by

τ̂ = argmax
τ

QL(τ) ≡ argmax
τ

120∏
t=0

Pt(bt |bt−1, ht−1, τ),

where Pt(bt |bt−1, ht−1, τ) is given by

Pt(b
′|b, h) =

{
1 − πt(b|b, h, τ) if b′ = b
πt(b

′|b, h, τ)Πt(b
′|b, h, τ) if b′ ≥ b

(1)
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Quasi Maximum Likelihood Estimation

▶ Where πt(b
′|b, h, τ) is the probability of bidding given by

πt(b
′|b, h, τ) =

exp{[wt(βt(b, h), b, h, τ)− c]/σ}
exp{wt(b, b, h, τ)/σ}+ exp{[wt(βt(b, h), b, h, τ)− c]/σ}

,

and Πt(b
′|b, h, τ) is the probability of observing a potentially

suboptimal bid b′

Πt(b
′|b, h, τ) =

exp{wt(b
′, b, h, τ)/γ}

exp{wt(b′, b, h, τ)/γ}+ exp{wt(βt(b, h), b, h, τ)/γ}
.

▶ Thus, the QMLE τ̂ is a value of τ that maximizes the probability of
the observed sequence of bids in the auction by a given bidder, even
when we have an incomplete model of bidding — i.e. our behavioral
model does not assign a positive probability to every possible bid b′.
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MLE and QMLE Gradients

▶ Except for the parameter σ the other parameters in τ = (v , c , p, σ)
enter the MLE and QMLE only via the bid-specific value functions
wt(βt(b, h, τ), b, h, τ)

▶ So now we consider recursive calculation of gradients
∇τwt(βt(b, h, τ), b, h, τ)

▶ Note via Envelope Theorem we only have consider the direct effect
of changes in τ on wt(b

′, b, h, τ) at b′ = βt(b, h, τ) and not the
indirect effect of τ on βt(b, h, τ) since we have

▶ Case A: if βt(b, h, τ) > b (interior optimum) the first order condition
for an optimal bid holds

∂

∂b′
wt(b

′, b, h, τ) = 0 at b′ = βt(b, h, τ),

▶ Case B: if βt(b, h, τ) = b (boundary solution) we see directly that in
this case we have

∇τβt(b, h, τ) = ∇τb = 0.
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Recursion for ∇vwT (b
′, b, h, τ)

▶ Consider first the recursion formula for the gradients of the
bid-specific values with respect to v .

▶ In the final period, T = 120 we have

wT (βT (b, h, τ), b, h, τ) = [v − βT (b, h, τ)]λT (βT (b, h, τ)|b, h).

▶ Thus, by the Envelope Theorem we have

∇vwT (βT (b, h, τ), b, h, τ) = λT (βT (b, h, τ)|b, h),
∇vwT (b

′, b, h, τ) = λT (b
′|b, h).

∇vEWT (b, h, τ) = [1 − PT (βT (b, h, τ)|b, h, τ)]λT (b|b, h) +
PT (βT (b, h, τ)|b, h, τ)λT (βT (b, h, τ)|b, h).

▶ Thus ∇vEWT (b, h, τ) is the ex ante expected win probability at
time T , i.e. before the bidder realizes the values of the two bidding
shocks (ϵT (0), ϵT (1)).
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Recursions for ∇vwT−1(b
′, b, h, τ) and ∇vwt(b

′, b, h, τ)

▶ Now go back to bidding instant T − 1 and take gradient with
respect to v using the recursion for wT−1(b

′, b, h, τ) to get

∇vwT−1(b
′, b, h) =

[p∇vwT (b
′, b′, 1) + (1 − p)∇vEWT (b

′, 1)]λT−1(b
′|b, h)+

[p∇vwT (b
′, b′, 0) + (1 − p)∇vEWT (b

′, 0)] [1 − λT−1(b
′|b, h)].

▶ Substituting earlier formulas, we can that ∇vwT−1(b
′, b, h) is the

expected probability of winning the auction at instant T − 1 when a
bid of b′ is submitted.

▶ Continuing the backward induction, at instant t we have

∇vwt(b
′, b, h) =

[p∇vwt+1(b
′, b′, 1) + (1 − p)∇vEWt+1(b

′, 1)]λt(b
′|b, h)+

[p∇vwt+1(b
′, b′, 0) + (1 − p)∇vEWt+1(b

′, 0)] [1 − λt(b
′|b, h)].

▶ Thus, at all bidding instants t, ∇vwt(b
′, b, h, τ) equals the expected

probability of winning the auction as of time t, given the information
available (b, h) and conditional on submitting a bid equal to b′ ≥ b.
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Martingale property for {∇vwt(βt(bt , ht), bt , ht , τ)}

▶ Theorem Consider the stochastic process {Xt} defined by

Xt ≡ ∇vwt(βt(bt , ht , ϵt), bt , ht , τ)

i.e. {Xt} is the the gradient of the value function evaluated along
the optimal bidding strategy for the controlled stochastic process
defining optimal bidding in the Korean auction. Then {Xt} is a
martingale, i.e. with probability 1 we have

Xt = E{{hT = 1}|It} = E{X̃t+1|It},

where It is the information available at instant t in the auction,
which given the Markovian nature of the process is It = (bt , ht , ϵt).

▶ Corollary ∇vwt(b
′, b, h) ∈ [0, 1] for all b′ ≥ b, b ≥ 0 and h ∈ {0, 1}

and t ∈ {0, 1, . . . , 120}.
▶ The proof of the Corollary follows easily from the definition of

∇vwt(b
′, b, h), which we have shown is the conditional expectation

of the probability of winning the auction, and hence must be in the
unit interval for all values of its arguments.
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Recursion for ∇cwT (b
′, b, h, τ)

▶ Next, consider the recursion formula for the gradients of the
bid-specific values with respect to c .

▶ In the final period, T = 120 we have

wT (βT (b, h, τ), b, h, τ) = [v − βT (b, h, τ)]λT (βT (b, h, τ)|b, h).

▶ So clearly, we have

∇cwT (b
′, b, h, τ) = 0.

∇cEWT (b, h, τ) = −PT (βT (b, h, τ)|b, h, τ).
▶ ∇cEWT (b, h, τ) is the negative of the ex ante probability of

improving the bid at time T , i.e. before the bidder realizes the
values of the two bidding shocks (ϵT (0), ϵT (1)).
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Recursion for ∇cwT−1(b
′, b, h, τ)

▶ Now go to bidding instant T − 1. We have

∇cwT−1(b
′, b, h) = −(1 − p)PT (βT (b

′, 1)|b′, 1)λT−1(b
′|b, h)

− (1 − p)PT (βT (b
′, 0)|b′, 0)[1 − λT−1(b

′|b, h)].

▶ This equals the ex ante reduction (as of instant T − 1) in the
probability that the bidder will place a bid at the last bidding instant
T . Now we calculate

∇cEWT−1(b, h) = −PT−1(βT−1(b, h)|b, h)+
PT−1(βT−1(b, h)|b, h)∇cwT−1(βT−1(b, h), b, h)+

[1 − PT−1(βT−1(b, h)|b, h)]∇cwT−1(b, b, h).

▶ This gradient equals the direct effect of an increase in c on bidding
at instant T − 1, −PT−1(βT−1(b, h)|b, h), plus the ex ante expected
effect of reduced likelihood of bidding at the final instant T .
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Recursion for ∇cwt(b
′, b, h, τ)

▶ At generic bidding instant t < T − 1 we have

∇cwt(b
′, b, h) = [p∇cwt+1(b

′, b′, 1) + (1 − p)∇EWt+1(b
′, 1)]λt(b

′|b, h)
+ [p∇cwt+1(b

′, b′, 0) + (1 − p)∇cEWt+1(b
′, 0)] [1 − λt(b

′|b, h)].

▶ This equals the ex ante reduction (as of instant T − 1) in the payoff
to the bidder from an increase in c , which is the negative of the
recursively calculated probability that the bidder will place a bid at
at any instant between t and T . Now we calculate

∇cEWt(b, h) = −Pt(βt(b, h)|b, h)+
Pt(βt(b, h)|b, h)∇cwt(βt(b, h), b, h)+

[1 − Pt(βt(b, h)|b, h)]∇cwt(b, b, h).

▶ Thus, the gradients cumulate as we move backward to earlier
bidding instants in the auction, since the effect of an increase in
bidding costs c affects both the current and future propensity to bid
in the auction.
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Recursion for ∇pwT (b
′, b, h, τ)

▶ Next, consider the recursion formula for the gradients of the
bid-specific values with respect to p. It should act similarly to an
increase in c in that it is also a “bidding friction” that reduces the
propensity to bid in the auction, and hence can be expected to
reduce expected winnings.

▶ In the final period, T = 120 we have

∇pwT (b
′, b, h, τ) = 0

∇pEWT (b, h, τ) = 0.

▶ These are zero since at the last bidding instant, there are no future
bidding instants left where the bidder can be “distracted” from
bidding. If the bidder was distracted at T then their value would be
just wT (b, b, h), i.e. their previous bid b would also be their final
bid. If the bidder was not distracted, then they would have the
potential to adjust their final bid and submit a bid b′ > b.
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Recursion for ∇pwT−1(b
′, b, h, τ)

▶ But at T − 1, an increase in p does affect future payoffs in the
auction. We have

∇pwT−1(b
′, b, h) =

[wT (b
′, b′, 1)− EWT (b

′, 1)]λT−1(b
′|b, h)+

[wT (b
′, b′, 0)− EWT (b

′, 0)] [1 − λT−1(b
′|b, h)].

▶ And this implies that

∇pEWT−1(b, h) = PT−1(βT−1(b, h)|b, h)∇pwT−1(βT−1(b, h), b, h)+

[1 − PT−1(βT−1(b, h)|b, h)]∇pwT−1(b, b, h).

▶ It is easy to see that ∇pwT−1(b
′, b, h) ≤ 0 since

wT (b
′, b, h) ≤ EWT (b

′, h) for any bid b′ ≥ b and all h ∈ {0, 1}.
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Recursion for ∇pwt(b
′, b, h, τ)

▶ At generic bidding instant t < T the future bid-specific value
functions wt(b

′, b, h) depend on p so we have

∇pwt(b
′, b, h) =

[wt+1(b
′, b′, 1)− EWt+1(b

′, 1)]λt(b|b, h)+
[p∇pwt+1(b

′, b′, 1) + (1 − p)∇pEWt+1(b
′, 1)]λt(b|b, h)+

[wt+1(b
′, b′, 0)− EWt+1(b

′, 0)] [1 − λt(b
′|b, h)]+

[p∇pwt+1(b
′, b′, 0) + (1 − p)∇pEWt+1(b

′, 0)] [1 − λt(b
′|b, h)].

▶ And we have

∇pEWt(b, h) = Pt(βt(b, h)|b, h)∇pwt(βt(b, h), b, h)+

[1 − Pt(βt(b, h)|b, h)]∇pwt(b, b, h).

▶ By induction, it is easy to see that ∇pwt(b
′, b, h) ≤ 0 for all t,

b′ ≥ b and all h ∈ {0, 1}.
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Recursion for ∇σwT (b
′, b, h, τ)

▶ Finally, consider the recursion formula for the gradients of the
bid-specific values with respect to σ. Similar to the case of
parameters c and p we have

∇σwT (b
′, b, h, τ) = 0.

▶ However we have

∇σEWT (b, h) =
1
σ
EWT (b, h)

− 1
σ
PT (βT (b, h)|b, h)[wT (βT (b, h), b, h)− c]

− 1
σ
[1 − PT (βT (b, h)|b, h)]wT (b, b, h).

▶ It is not hard to show that ∇σEWT (b, h) ≥ 0 using the definition of
EWT (b, h) and the formula above.
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Recursion for ∇σwT−1(b
′, b, h, τ)

▶ We have

∇σwT−1(b
′, b, h) = (1 − p)∇σEWT (b

′, 1)λT−1(b
′|b, h)+

(1 − p)∇σEWT (b
′, 0)[1 − λT−1(b

′|b, h)].

∇σEWT−1(b, h) =
1
σ
EWT−1(b, h)

− 1
σ
PT−1(βT−1(b, h)|b, h)[wT−1(βT−1(b, h), b, h)− c]

− 1
σ
[1 − PT−1(βT−1(b, h)|b, h)]wT−1(b, b, h)

+ PT−1(βT−1(b, h)|b, h)∇σwT−1(βT−1(b, h), b, h)

+ [1 − PT−1(βT−1(b, h)|b, h)]∇σwT−1(b, b, h).

▶ It is not hard to show that ∇σwT−1(b
′, b, h) ≥ 0 and

∇σEWT−1(b, h) ≥ 0 using the definition of EWT−1(b, h) and the
formulas above.
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Recursion for ∇σwt(b
′, b, h, τ)

▶ At generic bidding instant t < T − 1 we have

∇σwt(b
′, b, h) =

[p∇σwt+1(b
′, b′, 1) + (1 − p)∇σEWt+1(b

′, 1)]λt(b
′|b, h)+

[p∇σwt+1(b
′, b′, 0) + (1 − p)∇σEWt+1(b

′, 0)] [1 − λt(b
′|b, h)].

∇σEWt(b, h) =
1
σ
EWt(b, h)

− 1
σ
Pt(βt(b, h)|b, h)[wt(βt(b, h), b, h)− c]

− 1
σ
[1 − Pt(βt(b, h)|b, h)]wt(b, b, h)

+ Pt(βt(b, h)|b, h)∇σwt(βt(b, h), b, h)

+ [1 − Pt(βt(b, h)|b, h)]∇σwt(b, b, h).

▶ It is not hard to show that ∇σwt(b
′, b, h) ≥ 0 and ∇σEWt(b, h) ≥ 0

using the definition of EWt(b, h) and the formulas above.
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Simulated Auction 15
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Individual bids by the 5 bidders in simulated auction

Winning bid, 5903.54, submitted by B4 at 120.000 seconds

63 bids, max 18 (by B2), min 7 (by B5), mean 12.6, bids by winner: 15

High bid

B1 v=5000.00, c=1.3, =0.50 FPA bid: 4534.1 high bid: 4679.76

B2 v=6000.00, c=1.5, =0.50 FPA bid: 5278.22 high bid: 4704.14

B3 v=7000.00, c=1.5, =0.50 FPA bid: 5856.76 high bid: 5736.34

B4 v=7000.00, c=1.2, =0.50 FPA bid: 5856.76 high bid: 5903.54

B5 v=9000.00, c=4.0, =0.05 FPA bid: 6546.85 high bid: 5618.89
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Expected Win Probability Martingales Simulated Auction 15
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Expected probability of winning for each of the 5 bidders in simulated auction

Winning bid, 5903.54, submitted by B4 at 120.000 seconds

63 bids, max 18 (by B66B50), min 7 (by B66B53), mean 12.6, bids by winner: 15

B1 v=5000.00, c=1.3, =0.50 FPA bid: 4534.1 high bid: 4679.76

B2 v=6000.00, c=1.5, =0.50 FPA bid: 5278.22 high bid: 4704.14

B3 v=7000.00, c=1.5, =0.50 FPA bid: 5856.76 high bid: 5736.34

B4 v=7000.00, c=1.2, =0.50 FPA bid: 5856.76 high bid: 5903.54

B5 v=9000.00, c=4.0, =0.05 FPA bid: 6546.85 high bid: 5618.89

83 / 99



Simulated Auction, c = 0
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Plot of individual bids by the 5 bidders in simulated auction
Winning bid, 5813.25, submitted by B4 at 120.000 seconds

156 bids, max 45 (by B3), min 23 (by B5), mean 31.2, bids by winner: 33

High bid
B1 v=5000.00, c=0.0, cni=0.0, =0.50 FPA bid: 4534.1
B2 v=6000.00, c=0.0, cni=0.0, =0.50 FPA bid: 5278.22
B3 v=7000.00, c=0.0, cni=0.0, =0.50 FPA bid: 5856.76
B4 v=7000.00, c=0.0, cni=0.0, =0.50 FPA bid: 5856.76
B5 v=8000.00, c=0.0, cni=0.0, =0.50 FPA bid: 6265.1
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Simulated Auction, c = 5
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Plot of individual bids by the 5 bidders in simulated auction

Winning bid, 5770.73, submitted by B4 at 120.000 seconds

50 bids, max 15 (by B3), min 7 (by B1), mean 10.0, bids by winner: 8

High bid

B1 v=5000.00, c=5.0, cni=0.0, =0.10 FPA bid: 4534.1

B2 v=6000.00, c=5.0, cni=0.0, =0.10 FPA bid: 5278.22

B3 v=7000.00, c=5.0, cni=0.0, =0.10 FPA bid: 5856.76

B4 v=7000.00, c=5.0, cni=0.0, =0.10 FPA bid: 5856.76

B5 v=8000.00, c=5.0, cni=0.0, =0.10 FPA bid: 6265.1
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Simulation of Auction 9925
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Estimation results: bidder valuations v
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-4 Distribution of Estimated values

Mean    5670.9
Median  5591.0
Minimum 11.0 
Maximum 89562.1
Std dev 2173.4
N       4029
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Estimation results: cost of bidding c
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Distribution of Estimated bidding costs

Mean    -1.8 
Median  -0.8 
Minimum -10.2
Maximum 17.2   
Std dev 3.3  
N       4029
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Estimation results: inattention probability p
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Distribution of Estimated inattention probability

Mean    0.9913
Median  0.9962
Minimum 0.0151
Maximum 1.0000 
Std dev 0.0220
N       4029
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Estimation results: extreme value scale parameter σ
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Distribution of Estimated extreme value scale parameter

Mean    0.2790
Median  0.0500
Minimum 0.0000
Maximum 862.0
Std dev 13.6 
N       4029
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Actual vs predicted bids: bidder 23 in auction 10086
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Actual vs predicted bids by bidder B23 in auction 10086

Auction was won by B23 at t=119 with winning bid of 5200 

B23 high bid 5200 , estimated v=5898 , p=0.992, c= 0.00, =1.000

High bid

Optimal bids given times of actual bids

Optimal bids for B23 after 1st actual bid

Optimal bid for a no-bidder

Actual bids for B23

X 17

Y 4440
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Actual vs predicted bids: bidder 10 in auction 10007
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Actual vs predicted bids by bidder B10 in auction 10007

Auction was won by B23 at t=108 with winning bid of 5550 

B10 high bid 5370 , estimated v=5559 , p=0.984, c= 0.00, =0.999

High bid

Optimal bids given times of actual bids

Optimal bids for B10 after 1st actual bid

Optimal bid for a no-bidder

Actual bids for B10
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Probability of bidding and winning: B10 auction 10007
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Probabilities of bidding and winning for bidder B10 in auction 10007

Auction was won by B23 at t=108 with winning bid of 5550 

Estimated v=5566 , p=0.985, c= 1.26, =0.052

Bid probability

Expected win probability
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Payoffs from bidding and not bidding: B10 auction 10007
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Probabilities of bidding and winning for bidder B10 in auction 10007

Auction was won by B23 at t=108 with winning bid of 5550 

Estimated v=5566 , p=0.985, c= 1.26, =0.052

Expected payoff, no bid

Expected payoff, optimal bid
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Actual vs predicted bids: bidder 32 in auction 10313
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Actual vs predicted bids by bidder B32 in auction 10313

Auction was won by B32 at t=120 with winning bid of 5400 

Estimated v=5401 , p=0.997, c=-1.99, =0.050

High bid

Optimal bids for B32

Optimal bid for a no-bidder

Actual bids for B32
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Estimated profits of auction winner
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Mean    433.2
Median  1.1  
Minimum -698.8
Maximum 19335.5
Std dev 1351.6
N       533
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Distribution of winning bid less predicted sniping bid
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Mean    548.2
Median  562.7
Minimum -1443.6
Maximum 3161.3
Std dev 434.2
N       533
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Preliminary Conclusions

▶ We have analyzed a unique new data set on dynamic informationally
restricted auctions invented by a Korean rental car company.

▶ We have shown that early bidding in these auctions is very prevalent
and appears to reflect an attempt by bidders to learn the value of
the high bid in the auction in order to win without overpaying.

▶ However we have suggested that this behavior may be inconsistent
with the predictions of a perfect Bayesian equilibrium model of
bidding in these auctions.

▶ In a 2 bidder, 2 period example, we showed there is no informative
PBE: the only PBE is an uninformative equilibrium in which both
bidders wait to the last period to submit their bids.

▶ In an uninformative equilibrium (which always exists) there is no
early bidding and the outcome is the same as the equilibrium in a
static first price sealed bid auction.
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Preliminary Conclusions

▶ In order to explain the bidding behavior we observe we developed a
behavioral bidding model that relaxes the assumption that bidders
use PBE strategies.

▶ Instead we assume that experienced bidders have rational
expectations of the stochatic process governing the high bid in the
auction.

▶ Bidders solve dynamic programs to maximize their expected payoff
from the auction, given their beliefs about the stochastic process
governing the highest bid during the auction.

▶ We have solved these dynamic programs and shown that they can
produce the early bidding behavior we observe.

▶ Early bidding enables bidders to learn the value of the high bid and
to minimize the amount they ned to pay to win the auction.

▶ Our initial results indicate that the dynamic Korean auctions result
in lower expected revenues than the rental company would earn had
they used static first price sealed bid auctions to sell their used cars.
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