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1 Introduction

Since the seminal work by Tobin (1958), Amemiya (1973) and Heckman (1976), addressing
endogenous selection has been a fundamental topic in microeconometrics. Dealing with censored
observations (i.e., zeroes) in the estimation of consumer demand has motivated the development
of important methods to account for sample selection. Most of the early literature studied the
demand for a single product, but there are also early applications to demand systems using
Amemiya’s multivariate Tobit model (Amemiya, 1974; Yen, 2005; Yen and Lin, 2006). More
recently, the selection problem in the estimation of demand systems has received substantial
attention in the context of structural models of demand for differentiated products. An important
dimension to distinguish recently proposed methods is the sources of zeroes. Gandhi, Lu, and Shi
(2022) assume that zeroes in market shares result from purchases of finite number of consumers.
Dubé, Hortaçsu, and Joo (2021) study zeroes that result from consumers not including some
products in their consideration sets. Ciliberto, Murry, and Tamer (2021) and Li, Mazur, Park,
Roberts, Sweeting, and Zhang (2022) study sample selection in demand estimation when zeroes
are the result of firms’ market entry decisions in the context of an oligopoly model of competition.

This paper deals with the estimation of demand for differentiated products using market
level data when there is censoring/selection because of firms not offering some products in some
markets or periods. Demand estimation usually relies on data from multiple geographic markets
and/or time periods. Often, some products are not offered in some markets or periods. When
making their market entry decisions, firms have information about the demand of their products,
and more specifically about components of demand that are unobserved to the researcher. Firms
are more likely to enter markets where expected demand is higher. Not accounting for this
selection can generate substantial biases in the estimation of demand parameters. This problem
appears in many demand applications and industries such as demand for airlines (Berry, Carnall,
and Spiller, 2006; Berry and Jia, 2010; Aguirregabiria and Ho, 2012), for supermarket chains
(Smith, 2004), for radio stations (Sweeting, 2013), or for personal computers (Eizenberg, 2014).
When panel data are available, a simple approach to control for this selection problem consists
of including fixed effects — product, market, and time fixed effects — and assuming that the
remaining part of the error term in the demand equation is unknown to firms when they make
their market/product entry decisions.1 Though this approach is practically convenient, it is based
on restrictions on firms’ information that may not be plausible in some empirical applications.

1For instance, this is the approach in Aguirregabiria and Ho (2012), or Eizenberg (2014). A similar but weaker
restriction consists in assuming that the residual error term — after controlling for fixed effects — follows a first
order autoregressive process, and the innovation shock of this process is not known to firms when they make
their entry decisions. This is the approach in Sweeting (2013).

1



In fact, these restrictions are testable and can be rejected by the data.
Two important features of this demand-entry model make this selection problem non-standard.

First, demand unobservables enter non-additively in the binary choice models for firms’ entry
decisions. Without further restrictions, the selection term is not only a function of the entry
probabilities (i.e., propensity scores) and it depends also on the observable variables affecting
market entry. This implies that standard identification results and two-step estimation meth-
ods in the literature do not apply (Newey, Powell, and Walker, 1990; Ahn and Powell, 1993;
Powell, 2001; Das, Newey, and Vella, 2003; Aradillas-Lopez, Honoré, and Powell, 2007; Newey,
2009). Second, the model has multiple equilibria, both in the entry game and in the pricing
game. Given the same observable characteristics, markets can select different equilibria. This
introduces an additional source of unobserved heterogeneity that may affect sample selection.

In this paper, we study the identification of demand parameters in a structural model of
demand, price competition, and market entry where the distribution of demand unobservables
is nonparametrically specified. As in other selection models, a key feature is the specification
of firms’ information about demand unobservables at the moment of their product entry deci-
sions. We assume that firms observe two signals about these demand variables: a discrete signal
with finite support which is common knowledge to all the firms in the market; and a continu-
ous (real-valued) signal which is private information of each firm and independent across firms.
This structure is different to the ones in models in Ciliberto, Murry, and Tamer (2021) and Li,
Mazur, Park, Roberts, Sweeting, and Zhang (2022). These previous papers assume that firms’
have complete information both in the product entry game and in the price competition game.
There is not uncertainty in the models of those papers. In our model, we maintain the standard
assumption of complete information in the Bertrand pricing game, but we consider that firms
have uncertainty about demand when they make their product entry decisions, and that firms
have some private information about their own future demand. This feature of our model facili-
tates dealing with the selection problem. Furthermore, it allows us to consider a nonparametric
distribution for all the unobservables in the model. In contrast, the previous methods mentioned
above consider a fully parametric distribution (i.e., normal) for the unobservables.

The paper has three main contributions. First, we present new identification results in
this model. We show that the probability of product entry conditional on firms’ information
about the unobserved components of demand is nonparametrically identified. Given these entry
probabilities, we show the identification of demand parameters. Second, we propose a simple
two-step estimator in the spirit of traditional methods to control for endogenous selection. In
the first step, we estimate a nonparametric finite mixture model for the choice probabilities of
product entry. In a second step, we estimate demand parameters using a GMM that accounts
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for both endogenous product availability and price endogeneity. Third, we illustrate our method
using simulated data and real data from the airline industry. We show that not accounting for
endogenous product entry generates substantial biases that can be even larger than those from
ignoring price endogeneity.

The motivation and purpose of our paper is closely related to the work of Ciliberto, Murry,
and Tamer (2021) and Li, Mazur, Park, Roberts, Sweeting, and Zhang (2022). These papers
develop methods for the estimation of structural models that bring together Berry, Levinsohn,
and Pakes (1995)’s framework and games of market/product entry as in Bresnahan and Reiss
(1990, 1991), and Berry (1992). These papers are interested in the identification and estimation
of all the structural parameters in the model, including demand, marginal costs, entry costs, and
the probability distribution of the corresponding unobservables. The estimation of the full model
requires the application of nested fixed point algorithms with the consequent repeated solution for
the equilibria of the two-step game. For this purpose, these authors impose strong parametric
restrictions on all the structural functions and on the distribution of the unobservables. In
contrast, our approach focuses on the identification and estimation of demand parameters only,
and derives identification results where the supply side structure is fully consistent with an
equilibrium model, but this supply side — i.e., marginal and entry costs and the distribution
of all unobservables — is nonparametrically specified. Furthermore, our estimation method is
computationally simple as it does not require the computation of equilibria.2

Our model of product entry relates to the literature of structural models of market entry with
incomplete information such as Seim (2006), Aguirregabiria and Mira (2007), Pakes, Ostrovsky,
and Berry (2007), Pakes, Ostrovsky, and Berry (2007), or Sweeting (2009). More specifically,
the specification of the unobservables in the entry-decision part of our model — that combines
common-knowledge unobsevables with finite support and private information unobservables with
continuous support — is closely related to the models in Xiao (2018) and Aguirregabiria and
Mira (2019).

Our estimation method builds on and extends the literature on semiparametric estimation
of sample selection models (Newey, Powell, and Walker, 1990; Ahn and Powell, 1993; Powell,
2001; Das, Newey, and Vella (2003); Aradillas-Lopez, Honoré, and Powell, 2007; Newey, 2009).

2An interesting feature of the methods in Ciliberto, Murry, and Tamer (2021) and Li, Mazur, Park, Roberts,
Sweeting, and Zhang (2022) is that the estimated model can be used for counterfactual experiments that account
for the endogeneity of product entry. For instance, this is particularly useful when simulating the effects of a
merger, as illustrated by Li, Mazur, Park, Roberts, Sweeting, and Zhang (2022). Our semiparametric framework
is mainly designed for the robust and computationally convenient estimation of demand. However, given estimates
of demand parameters and unobservables (residuals) from our method, one can obtain estimates of marginal costs
and entry costs under weaker parametric restrictions than the ones imposed for the joint estimation of the full
structural model.
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A distinguishing feature of our model and method is that the selection term has a nonparametric
finite mixture structure.

The rest of the paper is organized as follows. Section 2 presents our model and assumptions.
Section 3 describes the selection problem in this model. Section 4 presents our identification
results. We describe our estimation method in section 5. Section 6 presents Monte Carlo
experiments, and section 7 an empirical application on the US airline industry. We summarize
and conclude in section 8.

2 Model

2.1 Demand

The demand system follows the BLP framework (Berry, Levinsohn, and Pakes, 1995). Through-
out the paper, we maintain the assumption of single-product firms. There are J firms indexed
by j ∈ J = {1, 2, ..., J}, and T markets indexed by t ∈ M = {1, 2, ...,M}, where a market can
be a geographic location, a time period, or a combination of both. Consumers living in market t
can buy only the products available in that market. Firms make entry decisions – independently
across markets – and compete at the local market level after entry.

The indirect utility of household h in market t from buying product j is:

Uhjt ≡ δ(pjt,xjt) + v(pjt,xjt, υht) + εhjt, (1)

where pjt and xjt are the price and other characteristics, respectively, of product j in market t;
δjt ≡ δ(pjt,xjt) is the average (indirect) utility of product j in market t; and v(pjt,xjt, υht) +

εhjt represents a household-specific deviation from the average utility. The term v(pjt,xjt, υht)

depends on the vector of random coefficients υht that is unobserved to the researcher with
distribution Fυ(·|σ), where σ is a vector of parameters. The term εhjt is unobserved to the
researcher and is i.i.d. over (h, j, t) with type 1 extreme value distribution. Following the
standard specification, the average utility of product j is:

δjt ≡ α pjt + x
′
jt β + ξjt, (2)

where α and β are parameters. Variable ξjt captures the characteristics of product j in market
t which are unobserved to the researcher. The outside option is represented by j = 0 and its
indirect utility is normalized to Uh0t = εh0t.

Let ajt ∈ {0, 1} be the indicator for product j being available in market t, and let at ≡ (ajt :
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j ∈ J ) denote the vector with the indicators for the availability of every product in market t.
The outside option j = 0 is always available in every market. Every household chooses a product
to maximize utility. Let sjt be the market share of product j in market t, i.e., the proportion of
households choosing product j:

sjt = dj(δt,at,pt,xt) ≡
∫

ajt exp (δjt + v(pjt,xjt, υ))

1 +
∑J

i=1ait exp (δit + v(pit,xit, υ))
dFυ(υ). (3)

This system of J equations represents the demand system in market t. We can represent this
system in a vector form as: st = d(δt,at,pt,xt).

For our analysis, it is convenient to define the sub-system of demand equations that includes
market shares, average utilities, and product characteristics of only those products available in
the market. We represent this system as:

s
(a)
t = d(a)(δ

(a)
t ,p

(a)
t ,x

(a)
t ), (4)

where s(a)t is the subvector from st containing the market shares for only those products available
in the market, and a similar definition applies to subvectors d(a), δ(a)t , p(a)t , and x(a)

t . Lemma 1
establishes that the invertibility property in Berry (1994) applies to the demand system (4) for
any possible value of a.

LEMMA 1. Suppose that the outside option j = 0 is always available. Then, for any value of
the vector a ∈ {0, 1}J , the system s

(a)
t = d(a)(δ

(a)
t ,p

(a)
t ,x

(a)
t ) is invertible with respect to δ(a)t

such that for every product in this subsystem (i.e., for every product with ajt = 1) the inverse
function δ

(a)
jt = d

(a)−1
j (s

(a)
t ,p

(a)
t ,x

(a)
t ) exists. ■

Proof of Lemma 1. If the outside option j = 0 is available, then, for any value of the vector
a, the system of equations (4) satisfies the conditions for invertibility in Berry (1994). ■

For a product available in market t, we have:

δjt = α pjt + x
′
jt β + ξjt if and only if ajt = 1. (5)

Importantly, this regression equation for product j only depends on the availability of product
j and not on the availability of the other products. Therefore, the selection problem in the
estimation of the demand of product j can be described in terms of the conditional expectation,

E (ξjt | ajt = 1) . (6)
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This is an important implication of working directly with the inverse demand system, as repre-
sented by equation (5).

To appreciate the value of this property, consider instead the case of the Almost Ideal Demand
System (AIDS) (Deaton and Muellbauer, 1980). In that model, each value of the vector at

implies a different expression for the regression equation that relates the demand of product j to
the log-prices of all the available products. Therefore, in the AIDS model, the selection problem
in the estimation of the demand of product j is not only related to the availability of that
product but to the availability of all products in the system. In other words, the selection term
cannot be represented in terms of E (ξjt | ajt = 1) but in terms of E (ξjt | at = a). That is, in
the AIDS model we have a different selection term for each value of the vector a. This structure
makes the selection problem multi-dimensional and significantly complicates identification and
estimation when the number of products J is large.

The next Example illustrates Lemma 1 in the case of a nested logit model.

EXAMPLE 1 (Nested logit model). The J products are partitioned into R mutually
exclusive groups indexed by r. We use rj to represent the group to which product j belongs.
The indirect utility function is Uhtj ≡ δjt + (1 − σ) vht,r(j) + εhtj, where the variables vht,rj and
εhtj are i.i.d. Type I extreme value and mutually independent, and σ ∈ [0, 1] is a parameter.
This model implies sjt = d

(at)
j (δt) = d

(at)
rj d

(at)
j|rj with

d
(at)
j|rj =

ajt e
δjt∑

i∈rjait e
δit

and d(at)
rj

=

[∑
i∈rjait e

δit

] 1
1−σ

1 +
∑R

r=1

[∑
i∈rait e

δit
] 1
1−σ

.
(7)

If ajt = 1 and s0t > 0, the inverse function d
(at)−1
j (·) exists — regardless of the value of ait for

any product i different from j. It is straightforward to show that this inverse function has the
following form:

δjt = ln

(
sjt
s0t

)
− σ ln

(∑
i∈rjsit

s0t

)
, (8)

and it implies the regression equation:

ln

(
sjt
s0t

)
= σ ln

(∑
i∈rjsit

s0t

)
+ α pjt + x

′
jt β + ξjt. (9)

Given s0t > 0, this regression equation holds whenever ajt = 1. ■
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2.2 Price Competition

Firms’ market entry decisions, prices, and quantities are determined as an equilibrium of a two-
stage game. In the first stage, firms maximize their expected profit by choosing whether to be
active or not in the market. In the second stage, prices and quantities of the active firms are
determined as a Nash-Bertrand equilibrium of a pricing game. This two-stage game is played
separately across markets.

Firms that do not enter the market earn zero profit. Let Πjt be the profit of firm j if active
in market t. This equals revenues minus costs:

Πjt = pjt qjt − c(qjt;xjt, ωjt)− f(xjt, ηjt), (10)

where qjt is the quantity sold (i.e., market share sjt times market size Ht), c(qjt;xjt, ωjt) is
the variable cost function, and f(xjt, ηjt) is the fixed entry cost. Variables ωjt and ηjt are
unobservable to the researcher. Given firms’ entry decisions in at, the best response function in
the Bertrand pricing game implies the following system of pricing equations:

pjt = mcjt − d
(at)
jt

[
∂d

(at)
jt

∂pjt

]−1

for every j ∈ J , (11)

where mcjt is the marginal cost ∂cjt/∂qjt. A solution to this system of equations is a Nash-
Bertrand equilibrium. The pricing game may have multiple equilibria. We do not impose
restrictions on equilibrium selection and allow for each market to potentially select a different
equilibrium. We use scalar variable τ 2t to index the equilibrium type selected in the Bertrand
game, i.e., in step 2 of the two-stage game.

Let xt ≡ (xjt : j ∈ J ) be the vector with all the exogenous variables that are observable to
the researcher, affecting demand or costs. Vectors ξt and ωt have similar definitions. We use
V Pj(at,xt, ξt,ωt, τ

2
t ) to denote the indirect variable profit function for firm j that results from

plugging into the expression pjt qjt− c(qjt;xjt, ωjt) the value of (pjt, qjt) from the Nash-Bertrand
equilibrium given (at,xt, ξt,ωt, τ

2
t ).

2.3 Market entry game and information structure

Firms’ entry decisions are determined as an equilibrium of a game of market entry. The profit
of being inactive is normalized to zero for all firms. Firms have uncertainty about their profits if
active in the market. Their information about demand and costs plays a key role in their entry
decisions and, therefore, on the selection problem in the estimation of demand. Assumptions 1
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and 2 summarize our conditions on the information structure and on the entry cost function,
respectively.

ASSUMPTION 1. Firm j’s information at the moment of its entry decision in market t
consists of (xt, κt, τ

1
t , ηjt).

A. κt is a signal for the demand-cost variables (ξt,ωt, τ
2
t ). It is common knowledge for the

firms, has discrete and finite support that we denote as K, and its probability distribution
conditional on xt is fκ(κt|xt) and is nonparametrically specified.

B. Variable τ 1t represents the type of equilibrium selected in the entry game.

C. Variable ηjt is a component of the entry cost that is private information of firm j, inde-
pendently distributed over firms, and independent of (κt,xt) with CDF Fη, which is strictly
increasing over the real line.

D. Vector (ξt,ωt, τ
2
t , κt, τ

1
t , ηjt) is unobserved to the researcher. Conditional on κt, variables

ξt, ωt, and ηjt are independent of xt. ■

For our analysis, the payoff-relevant information in discrete variable κt plays the same role
as the equilibrium-selection discrete variable τ 1t . Therefore, for notational simplicity, we omit
τ 1t and interpret κt as representing both equilibrium selection and payoff relevant variables. We
represent this variable as an index with support {1, 2, ...,K(xt)}. Similarly, with some abuse
of notation, for the rest of the paper we represent vector of unobservables (ξt,ωt, τ

2
t ) using the

more compact notation ξt.

Let πj(a,xt, κt, ηjt) be firm j’s expected profit given its information about demand and costs
and conditional on the hypothetical entry profile a ∈ {0, 1}J . Under Assumptions 1:

πj(a,xt, κt, ηjt) =

∫
V Pj(a,xt, ξt) dFj,ξ (ξt | κt, ηjt)− f(xjt, ηjt), (12)

where Fj,ξ (ξt | κt, ηjt) is the CDF of ξt conditional on (κt, ηjt).

ASSUMPTION 2. For any value (a,xt, κt), the function πj(a,xt, κt, ηjt) is strictly monotonic
in ηjt. Without loss of generality, we consider that this function is decreasing in ηjt. Therefore,
for any scalar value π0 and any value (a,xt, κt), the equation π0 = πj(a,xt, κt, ηjt) is invertible
with respect to ηjt. That is, there is an inverse function π−1

j such that ηjt = π−1
j (a,xt, κt, π

0),
and for any other scalar π1 with π1 ≤ π0, we have that π−1

j (a−j,xt, κt, π
1) ≥ ηjt. ■
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The presence of firms’ private information implies that the entry game is of incomplete infor-
mation. Given (xt, κt), a Bayesian Nash Equilibrium (BNE) of this game can be represented
as an J-tuple of entry probabilities, one for each firm, (Pjt : j ∈ J ). To describe this BNE, we
first define a firm’s expected profit function that accounts for its uncertainty about other firms’
entry decisions.

πP
j (xt, κt, ηjt) =

∑
a−j∈{0,1}J−1

(∏
i ̸=j

[Pit]
ai [1− Pit]

1−ai

)
πj(a−j,xt, κt, ηjt). (13)

Under Assumption 2, the expected profit function πP
j (xt, κt, ηjt) is strictly monotonic and in-

vertible in ηjt.3 Let πP (−1)
j be this inverse function. Then, given the entry probabilities of its

competitors, firm j’s best response is to enter in the market if and only if:

ηjt ≤ π
P (−1)
j (xt, κt, 0) (14)

Taking this into account, we can define a BNE in this game as follows.

DEFINITION 1 (BNE). Under Assumptions 1-2 and given (xt, κt), a Bayesian Nash Equi-
librium (BNE) can be represented as a J-tuple of probabilities, {Pjt ≡ Pj(xt, κt) : j ∈ J )} that
solve the following system of J best-response equations in the space of probabilities:

Pjt = Fη

(
π
P (−1)
j (xt, κt, 0)

)
, (15)

where πP (−1)
j is the inverse function with respect to ηjt of the expected profit in (13). ■

This framework includes as particular cases different specifications of information structure about
the unobservables which have been considered in structural models of market entry and product
introduction, such as models with only complete information unobservables (e.g., Ciliberto and
Tamer, 2009; Ciliberto, Murry, and Tamer, 2021), models with only private information unob-
servables (e.g., Seim, 2006; Sweeting, 2009; Bajari, Hong, Krainer, and Nekipelov, 2010), and
models that include both types of unobservables (e.g., Grieco, 2014; Aguirregabiria and Mira,
2019).

3If πj is strictly monotonic in ηjt for any possible entry profile a, then a convex linear combination of πj for
different entry profiles is also strictly monotonic in ηjt.
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3 Selection Problem

For simplicity and concreteness, we describe our sample selection problem using the nested logit
demand model from Example 1. We use the starred variables s∗jt and p∗jt to represent latent
variables. That is, s∗jt and p∗jt represent the latent market share and price, respectively, that we
would observe if product j were offered in market t. Using these latent variables, we can write
the following demand system:

ln

(
s∗jt
s0t

)
= σ ln

(
s∗jt + S−jt

s0t

)
+ α p∗jt + x

′
jt β + ξjt, (16)

where S−jt ≡
∑

i ̸=j,i∈rjsit is the aggregate market share of all products in group rj other than
product j. Latent variables (s∗jt, p

∗
jt) are equal to the observed variables (sjt, pjt) if and only if

product j is offered in market t:

{s∗jt = sjt and p∗jt = pjt} if and only if {ajt = 1} (17)

The econometric model is completed with firm j’s best response entry decision:4

ajt = 1
{
ηjt ≤ π

P (−1)
j (xt, κt)

}
. (18)

Equations (16) to (18) imply the following regression equation for any product with ajt = 1:

ln

(
sjt
s0t

)
= σ ln

(
sjt + S−jt

s0t

)
+ α pjt + x

′
jt β + λj(xt) + ξ̃jt, (19)

where λj(xt) is the selection bias function, E [ξjt | xt, ajt = 1]. That is,

λj(xt) =

∫
ξjt 1

{
ηjt ≤ π

P (−1)
j (xt, κt)

} fξ,η,κ (ξjt, ηjt, κt|xt)

Pr (ajt = 1|xt)
d (ξjt,ηjt, κt) , (20)

and:

Pr (ajt = 1|xt) ≡ E [ajt | xt] =

∫
1
{
ηjt ≤ π

P (−1)
j (xt, κt)

}
fη,κ (ηjt, κt|xt) d (ηjt, κt) , (21)

where fη,κ and fξ,η,κ are the joint density functions of (ηjt, κt) and (ξjt,ηjt, κt), conditional of xt,
respectively.

Note that the selection bias function λj(xt) is a nonparametric function of all its arguments

4With some abuse of notation, we use function πP (−1)
j (xt, κt) to represent πP (−1)

j (xt, κt, 0).
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xt. Therefore, based on equation (19), and without further restrictions, the demand parameters
σ, α, and β are not identified. That is, we cannot disentangle the direct effect of xjt on demand
(as represented by the vector of parameters β) from the indirect effect that comes from the
selection bias function λj(xt).

Examples 2 and 3 below present restrictions that imply the identification of demand param-
eters. Example 2 is simple but it imposes strong restrictions on the unobservables. Our main
identification results in section 4 are closely related to Example 3.

EXAMPLE 2 (No signals κt). Suppose that: (1∗) κt = 0 such that, at the moment of the
entry decision, the only information that a firm has about the demand/cost variables ξt is its
private information variable ηjt; and (2∗) a unique equilibrium is played across all entry games
with the same observables xt. Under Assumptions 1-2 and conditions (1∗) and (2∗), the selection
term λj(xt) only depends on the CCP Pj (xt): that is, λj(xt) = ρj(Pj (xt)) for some function
ρj(·).

The proof is straightforward. Under conditions (1∗)–(2∗), the inverse profit function π
P (−1)
j

and the equilibrium entry probability Pj only depend on xt but not on κt. The equilibrium
entry probability Pj (xt) is equal to the conditional expectation E (ajt|xt), which is nonpara-
metrically identified. Furthermore, this probability satisfies the equilibrium condition Pj(xt) =

Fη(π
P (−1)
j (xt)), such that πP (−1)

j (xt) = F−1
η (Pj(xt)), and the entry condition can be represented

as ajt = 1{ηjt ≤ F−1
η (Pj(xt))}. Independence between (ξjt, ηjt) and xt then implies that:

λj(xt) =

∫
ξjt 1

{
ηjt ≤ F−1

η (Pj (xt))
} fξ,η (ξjt, ηjt)

Pj (xt)
dξjt dηjt = ρj(Pj (xt)) (22)

Therefore, the demand equation can be represented as:

ln

(
sjt
s0t

)
= σ ln

(
sjt + S−jt

s0t

)
+ α pjt + x

′
jt β + ρj(Pj (xt)) + ξ̃jt. (23)

The result in equation (23) has important implications for identification and estimation. Re-
gression equation (23) is a standard semiparametric partially linear model with two endogenous
regressors, ln[(sjt + S−jt)/s0t] and pjt, and with the nonparametric component ρj(Pj (xt)) only
depending on the CCP of firm j. As such, identification and estimation can follow the standard
two-step procedure as in, for example, Powell (2001).

In a first step, one can nonparametrically estimate P (xt) = (P1 (xt) , ..., PJ (xt)) from data
on (at,xt). Then, in a second step, by relying on observations from markets t and t′ with
Pj (xt) = Pj (xt′), but with ln[(sjt + S−jt)/s0t] ̸= ln[(sjt′ + S−jt′)/s0t′ ], pjt ̸= pjt′ , and xjt ̸=
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xjt′ , one can identify (σ, α,β) by correcting for both sample selection and endogeneity. More
specifically, the difference ln(sjt/s0t) − ln(sjt′/s0t′) from (23) gets rid of the selection bias term
ρj(Pj (xt)). Then, in the linear regression in deviations for ln(sjt/s0t)− ln(sjt′/s0t′) on ln[(sjt +

S−jt)/s0t] − ln[(sjt′ + S−jt′)/s0m′ ], pjt − pjt′ , and xjt − xjt′ , we can use a standard IV where
instruments are derived from xt. For instance, valid instruments in this regression are observed
x characteristics of products other than j, i.e., the so-called BLP instruments. ■

Under the assumptions of Example 2, the market entry condition has only one unobservable
variable, ηjt, which, after inverting the profit function, enters additively in the inequality that
defines the selection/entry decision. The model becomes a standard semiparametric sample
selection model. However, though practically convenient, the conditions in Example 2 are likely
to be rejected in many empirical applications.5 In particular, restriction (1∗) — i.e., ηjt is
the only relevant information that firm j has about demand/cost variables ξjt when making its
entry decision — seems unrealistic. If this restriction does not hold, the identification/estimation
approach described above is inconsistent because the equation in differences based on matching
the CCP Pj (xt) does not fully control for the selection bias function.

EXAMPLE 3 (κt has finite support). Consider the model under Assumptions 1-2, includ-
ing Assumption 1(A) on the finite support of κt. Let Pj(xt, κt) be the equilibrium probabilities
in the entry game in market t. By definition, we have that Pj(xt, κt) ≡ E[ajt|xt, κt], and:

Pj(xt, κt) = Fη

(
π
P (−1)
j (xt, κt)

)
, (24)

Similar to Example 2, the model implies a one-to-one relationship between Pj(xt, κt) and the
inverse expected profit function: i.e., πP (−1)

j (xt, κt) = F−1
η (Pj(xt, κt)). Define λ̃j(xt,κt) ≡

E[ξjt|xt, κt, ajt = 1]. Applying the one-to-one relationship between CCP and inverse profit
function, we have that this selection function is a function only of the CCP and κt:

λ̃j(xt, κt) =

∫
ξjt 1

{
ηjt ≤ F−1

η (Pj(xt, κt))
} fξ,η|κ (ξjt, ηjt|κt)

Pj(xt, κt)
d (ξjt,ηjt)

≡ ψj (Pj (xt, κt) , κt) .

(25)

5The model of Example 2 is over-identified, allowing for the testability of its over-identifying restrictions.
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By definition, we have the following relationship between λ̃j and the selection bias function
λj(xt) ≡ E[ξjt|xt, ajt = 1] that appears in the demand equation:

λj(xt) =
∑

κt∈K(xt)

λ̃j(xt, κt) fκ (κt|xt) . (26)

Combining the demand equation with equations (25) and (26), we obtain the regression equation:

ln

(
sjt
s0t

)
= σ ln

(
sjt + S−jt

s0t

)
+ α pjt + x

′
jt β

+
∑

κt∈K(xt)

ψj (Pj (xt, κt) , κt) fκ (κt|xt) + ξ̃jt.
(27)

The regression equation in (27), and more specifically, the structure of the selection bias function,
has two properties that play a key role in our identification results. First, Pj (xt, κt) and the
distribution fκ (κt) are nonparametrically identified using data on firms’ entry decisions. And
second, conditional on {Pj (xt, κ) , fκ (κ|xt) : κ ∈ K}, the vector of product characteristics xjt

has full-rank. We establish these results in section 4. ■

4 Identification

4.1 Data and Sequential Identification

Suppose that each of the J firms is a potential entrant in every local market. The researcher
observes these firms in a random sample of T markets. For every market t, the researcher
observes the vector of exogenous variables xt and the vectors of firms’ entry decisions at. For
those firms active in market t, the researcher observes prices pt and market shares st.

Let θ ∈ Θ be the vector of all the parameters in the model, where Θ is the parameter space.
This vector has infinite dimension because some of the structural parameters are real-valued
functions. The vector θ has the following components: demand parameters θδ ≡ (α,β,σ);
probability distribution of demand/cost signals, fκ ≡ (fκ(κ|x) : for every κ,x); equilibrium
choice probabilities, P κ ≡ (Pj(x, κ) : for every j,x, κ); the probability distribution of private
information Fη, and the distribution of unobserved demand conditional on signals, fξ|η,κ.

θ ≡
(
θδ, P κ, fκ, fξ|η,κ, Fη

)
. (28)

In this paper, we are interested in the identification of demand parameters θδ when the distribu-
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tions fκ and fξ|η,κ and the equilibrium choice probabilities P κ are non-parametrically specified.
We consider a two-step sequential procedure for the identification of θδ, along the lines of the

procedure in Example 2 above. First, given the empirical distribution of firms’ entry decisions,
we establish the identification of the equilibrium probabilities P κ and the distribution fκ. Then,
given the structure of the selection function in (27), we show the identification of θδ.

4.2 First Step: Game of Market Entry

Let |K(x)| be the number of points in the support of κt when xt = x such that the support set
is {1, 2, ..., |K(x)|}. The identification of the equilibrium probabilities P κ and the distribution
fκ is based on the structure of the joint probability distribution of the entry decisions of the J
firms. For any value (a,x) ∈ {0, 1}J ×X :

Pr (at = a|xt = x) =

|K(x)|∑
κ=1

fκ(κ|x)

[
J∏

j=1

[Pj(x, κ)]
aj [1− Pj(x, κ)]

1−ajt

]
(29)

This system of equations describes a non-parametric finite mixture model. The identification
of this class of models has been studied by Hall and Zhou (2003), Hall, Neeman, Pakyari, and
Elmore (2005), Allman, Matias, and Rhodes (2009), and Kasahara and Shimotsu (2014), among
others. Identification is based on the assumption of independence between firms’ entry decisions
once we condition on xt and κt.

In this first step, the proof of identification is pointwise for each value of x. For simplicity in
notation, for the rest of this subsection, we omit any further reference to x and to the market
subscript t .

4.2.1 Identification of the number of components |K|

The number of components |K| in the finite mixture (29) is typically unknown to the researcher.
Following ideas similar to Bonhomme, Jochmans, and Robin (2016), Xiao (2018), and Aguirre-
gabiria and Mira (2019), we start our first step identification argument by providing sufficient
conditions for the unique determination of |K| from observables. In particular, we adapt to our
context Proposition 2 in Aguirregabiria and Mira (2019), and Lemma 1 in Xiao (2018).

Suppose that J ≥ 3 and let (Y1, Y2, Y3) be three random variables that represent a partition
of the vector of firms’ actions (a1, a2, ..., aJ) such that Y1 is equal to the action of one firm (if J
is odd) or two firms (if J is even), and variables Y2 and Y3 evenly divide the actions of the rest
of the firms. Denote by J̃ the number of firms collected in Yi, i = 2, 3, such that J̃ = (J − 1)/2

if J is odd, and J̃ = (J − 2)/2 if J is even. For i = 1, 2, 3, let P Yi
(κ) be the vector of CCPs for
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each element of Yi conditional on component κ. The main idea is then to identify the number
of components |K| from the observed joint distribution of Y2 and Y3:

Pr(Y2 = y2, Y3 = y3) =

|K|∑
κ=1

Pr(Y2 = y2|κ) Pr(Y3 = y3|κ) fκ(κ) (30)

or, in matrix notation,
P Y2,Y3 = P Y2|κ diag(fκ) P

′
Y3|κ, (31)

where: P Y2,Y3 is the 2J̃ × 2J̃ matrix with elements P (y2, y3); P Yi|κ is the 2J̃ × |K| matrix with
elements Pr(Yi = y|κ); and diag(fκ) is the |K| × |K| diagonal matrix with the probabilities
fκ(κ).

LEMMA 2. Without further restrictions, Rank(P Y2,Y3) is a lower bound to the true value of
parameter |K|. Furthermore, if (i) |K| < 2J̃ and (ii) for i = 2, 3 the |K| vectors P Yi

(κ = 1),
P Yi

(κ = 2), ..., P Yi
(κ = |K|) are linearly independent, then |K| = Rank(P Y2,Y3). ■

The point identification of the number of components |K| from the observed matrix P Y2,Y3

hinges on a “large enough” number of firms J̃ and on the matrices P Y2|κ and P Y3|κ being of full
column rank, so that the CCPs associated to each component κ cannot be obtained as linear
combinations of the others.

4.2.2 Identification of equilibrium CCPs and distribution of κ

Allman, Matias, and Rhodes (2009) study the identification of non-parametric multinomial finite
mixtures that include our binary choice model as a particular case. They establish that a mixture
with |K| components is identified if J ≥ 3 and |K| ≤ 2J/(J + 1). The following Lemma 3 is an
application to our model of Theorem 4 and Corollary 5 by Allman, Matias, and Rhodes (2009).

LEMMA 3. Suppose that: (i) J ≥ 3; (ii) |K| ≤ 2J/(J + 1); and (iii) for i = 1, 2, 3, the |K|
vectors P Yi

(κ = 1), P Yi
(κ = 2), ..., P Yi

(κ = |K|) are linearly independent. Then, the probability
distribution of κ — i.e., fκ(κ) for κ = 1, 2, ..., |K| — and the equilibrium CCPs — i.e., Pj(κ)

for j = 1, 2, ..., J and κ = 1, 2, ..., |K| — are uniquely identified up to label swapping. ■

Remark 1. Note that the order condition (i) in Lemma 2 is in general more stringent than
the order condition (ii) of Lemma 3: that is, for J ≥ 3, we have that 2J̃ ≤ 2J/(J + 1). In this
sense, for any J ≥ 3, when the conditions in Lemma 2 holds and the |K| vectors P Y1(κ = 1),
P Y1(κ = 2), ..., P Y1(κ = |K|) are linearly independent, then |K| = Rank(P Y2,Y3) and the
distribution of κ and the equilibrium CCPs are uniquely identified, up to label swapping.
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Remark 2. Remember that Lemmas 2 and 3 apply to the model where the distribution of κt
conditional on xt is completely unrestricted. In our model, to achieve identification in the second
step and also to improve the precision of the estimator in empirical applications, we assume that
κt and xt are independently distributed. This implies that the order condition of identification
in our model is weaker than those in Lemmas 2 and 3.

4.3 Second Step: Identification of Demand Parameters

Following the discussion in section 2.1, we represent the demand system using the inverse
d
(a)−1
j (s

(a)
t , p

(a)
t , x

(a)
t ) from Lemma 1. For those markets with ajt = 1, the demand equation can

be expressed as:
δj(st,σ) = α pjt + x

′
jt β + ξjt, for ajt = 1 (32)

where we use the notation δj(st,σ) to emphasize that δjt is a function of the parameters σ
characterizing the distribution of the random coefficients υh. The selection problem appears
because the unobservable ξjt is not mean independent of the market entry (or product availabil-
ity) condition ajt = 1. Therefore, moment conditions that are valid under exogenous product
selection are no longer valid when ξjt and ajt are not independent.

Suppose for a moment that the market type κt were observable to the researcher after iden-
tification in the first step. In this case, the selection term would be ψj (Pj(xt, κt), κt) from
equation (25) and we would have — as in Example 2 — a relatively standard selection problem
represented by the semi-parametric partially linear model:

δj(st,σ) = α pjt + x
′
jt β + ψj (Pj(xt, κt), κt) + ξ̃jt. (33)

A key complication of the selection problem in our model is that the market type κt is unobserved
to the researcher. After the first step identification, we do not know the unobserved type of a
market but only its probability distribution conditional on xt. Therefore, in the second step we
cannot condition on κt as in equation (33). We instead need to deal with the more complex
selection bias function:

λj(xt) ≡ E [ξjt|xt, ajt = 1] =

|K(xt)|∑
κ=1

fκ(κ|xt) ψj (Pj(xt, κ), κ) = f ′
κ,t ψj(P j,t), (34)

where fκ,t, P j,t, and ψj(P j,t) are all vectors of dimension |K(xt)|×1 such that fκ,t ≡ (fκ(κ|xt) :

κ = 1, 2, ..., |K(xt)|), P j,t ≡ (Pj(xt, κ) : κ = 1, 2, ..., |K(xt)|), and ψj(P j,t) ≡ (ψj (Pj(xt, κ), κ) :
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κ = 1, 2, ..., |K(xt)|). Therefore, the regression equation of our model is:

δj(st,σ) = α pjt + x
′
jt β + f ′

κ,t ψj(P j,t) + ξ̃jt. (35)

where E[ξ̃jt|xt] = E[ξ̃jt|P j,t,fκ,t] = 0. This last equality establishes that (P j,t,fκ,t) is a sufficient
statistic for the selection function. This property is key for the identification result in this second
step.

The following Proposition establishes a high-level necessary and sufficient condition for the
identification of θδ ≡ (α,β,σ) from equation (35).

PROPOSITION 1. Define the vector Zjt ≡ ( E[∂δjt/∂σ | xt], E[pjt | xt], x′
jt )

′, and let Z̃jt be
the deviation (or residual) Zjt−E[Zjt | P j,t,fκ,t]. Then, given that E[ξ̃jt|xt] = E[ξ̃jt|P j,t,fκ,t] =

0, a necessary and sufficient condition for the identification of θδ ≡ (α,β,σ) in equation (35)
is that matrix E[Z̃jt Z̃

′
jt] is full-rank. ■

Intuitively, Proposition 1 says that the identification of θδ requires that, after differencing out
any dependence with respect to (P j,t,fκ,t), there should be no perfect collinearity in the vector
of “explanatory variables” Zjt ≡ ( E[∂δjt/∂σ | xt], E[pjt | xt], x′

jt )
′.

Proposition 1 does not provide identification conditions that apply directly to primitives
of the model. However, based on this Proposition, it is straightforward to establish necessary
identification conditions that apply to primitives of the model, or to objects which are more
closely related to primitives. First, we need J ≥ 2, otherwise there are no exclusion restrictions to
deal with the endogeneity of prices, i.e., E[pjt | xt] would be a linear combination of xjt. Second,
the vector of entry probabilities P j,t should depend on xit for i ̸= j. Otherwise, keeping P j,t

fixed implies also fixing xjt and the vector of parameters β would not be identified. Hence, there
should be effective competition in firms’ market entry decisions. For instance, in the absence
of observable variables affecting entry but not demand, the model would not be identified for a
monopolist or under monopolistic competition. Third, the number of points in the support of κ
should be smaller than the number of variables in vector xt: i.e., |K(xt)| < dim(xt). Otherwise,
controlling for P j,t would be equivalent to controlling for the whole vector xt, and no parameter
in θδ would be identified.
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5 Estimation and Inference

In this section, we build on our previous constructive proof of identification and present a two
step estimation method that mimics our sequential identification result. In the first step, we
estimate the number of unobserved market types |K(xt)|, the distribution fκ,t, and the vector
of CCPs for each unobserved type. For the second step, we use the method of sieves. We
specify each function ψj (Pj(xt, κ), κ) as a polynomial function of the entry probability Pj(xt, κ)

such that the selection term f ′
κ,tψj(P j,t) is a linear-in-parameters function of products between

powers of Pj(xt, κ) and densities fκ(κ|xt). Then, we plug in this expression the estimates of
Pj(xt, κ) and fκ(κ|xt) from the first step, and jointly estimate the coefficients in the sieves
approximation and the structural demand parameters θδ.

5.1 First Step: Estimation of fκ,t and P j,t

In this section, we describe our approach to estimate fκ,t and P j,t from data on firms’ entry
decisions across markets. The method that we present here builds on the nonparametric finite
mixture methods in Kasahara and Shimotsu (2014), Xiao (2018), and Aguirregabiria and Mira
(2019) and extends these methods by allowing vector xt to include continuous variables.

Step 1(a): Series Logit Estimator. To accommodate continuous explanatory variables in the
estimation of the nonparametric finite mixture, we start our sequential procedure by introducing
smoothness in the nonparametric estimates of the entry profile probabilities P(at = a|xt = x).
Following Hirano, Imbens, and Ridder (2003), we consider a sieves approximation to P(at =

a|xt = x) based on the following Series Logit model:

P(at = a|xt = x) =
exp{r(x)′ π(a)}∑

a′∈{0,1}J exp{r(x)′ π(a′)}
(36)

where r(x) is a vector with L approximating functions, i.e., (r1(x), r2(x), ..., rL(x))′, and π ≡
(π(a) : a ∈ {0, 1}J) is a vector of parameters with the normalization π(0) = 0. This vector of
parameters is estimated using the maximum likelihood estimator:

π̂ = argmaxπ

T∑
t=1

∑
a∈{0,1}J

1{at = a} ln

(
exp{r(xt)

′ π(a)}∑
a′∈{0,1}J exp{r(xt)′ π(a′)}

)
(37)

Hence, for any value of (a,x), we estimate the entry profile probability P(a|x) using the Series
Logit Estimator exp{r(x)′π̂(a)} /

∑
a′ exp{r(x)′π̂(a′)}.
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The rest of the estimation in this first step applies pointwise to each value xt in the sample.
This first step estimation starts with the construction of the estimate P̂(a|xt) using the Series
Logit Estimator. For notational simplicity, for the rest of this subsection, we omit xt as an
argument.

Step 1(b): Estimating the number of market types |K|. As shown is Lemma 2 above,
the number of market types |K| is identified by Rank(P Y2,Y3). We estimate this rank using the
sequence of rank tests proposed by Robin and Smith (2000) and Xiao (2018).

For a given value xt and a partition of the entry profile a into the variables Y1, Y2, and
Y3, let P Y2,Y3 be the matrix defined in section 4.2.1 above, and let P̂ Y2,Y3 be the estimator of
this matrix based on the Series Logit estimation in Step 1(a). We describe here the method to
estimate |K| = Rank(P̂ Y2,Y3).

Remember that matrix P̂ Y2,Y3 has dimension 2J̃ × 2J̃ , with J̃ = (J − 1)/2 if J is odd, and
J̃ = (J − 2)/2 if J is even. For any natural number r ∈ {1, ..., 2J̃ − 1}, consider the null
hypothesis Hr

0 : Rank(P̂ Y2,Y3) = r against the alternative Hr
1 : Rank(P̂ Y2,Y3) > r. This test is

based on statistic CRTr which represents the r − th characteristic root of the matrix quadratic
form, such that CRT1 ≥ CRT2 ≥ ... ≥ CRT2J̃ . Given a significance level α, there is a critical
value cr1−α such that the acceptance region for Hr

0 is {CRTr ≤ cr1−α}.
The estimator of Rank(P̂ Y2,Y3) is based on a sequence of this rank test. The sequence starts

with a null hypothesis of rank equal to r = 1. If this null is rejected, then r = 2 and the test is
repeated, and so on. Along this sequence of tests, Rank(P̂ Y2,Y3) is estimated as the value of r
for which Hr

0 obtains the first rejection. That is:

|̂K| = R̂ank(P̂ Y2,Y3) = minr∈{1,...,2J̃−1}{r : CRTr ≤ cr1−α}. (38)

In order to deal with multiple testing and to guarantee weak consistency of this rank estimator,
Robin and Smith (2000) adjust the asymptotic size of the test at each stage r to depend on the
sample size T , such that we have αr,M . See their Theorem 5.2 for a characterization of αr,M .6

Step 1(c): Estimating fκ,t and P j,t. We follow the method in Xiao (2018). Once the number
of components |̂K| is determined, we can collapse the 2J̃ × 2J̃ matrix P̂ Y2,Y3 of rank |̂K| into a
smaller |̂K| × |̂K| non-singular matrix P̂ Ỹ2,Ỹ3

. This non-singular matrix can be obtained from
P̂ Y2,Y3 by summing up some of its columns and rows.7

6For more detail on rank tests, see also Kleibergen and Paap (2006). Given the well known difficulties in
characterizing the asymptotic distribution of rank estimators, in what follows we consider this estimator of |K|
as a tool to facilitate model selection. In this sense, we interpret the weak consistency of |K| as consistent model
selection.

7Lemma 2 in Xiao (2018) proves that such a transformation is always possible. Given that for any P Y2,Y3
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Given P̂ Ỹ2,Ỹ3
, we define the full rank matrices P̂ Ỹ2|κ and P̂ Ỹ3|κ as in equation (31), as well as

the diagonal matrix P̂ Y1=a|κ ≡ diag [Pr(Y1 = a|κ = 1), ...,Pr(Y1 = a|κ = L)]. By construction,
the observed matrix P̂ Y1,Ỹ2,Ỹ3

satisfies this equation:

P̂ Y1,Ỹ2,Ỹ3
= P̂ Ỹ2|κ P̂ Y1|κ diag{f̂κ} P̂

′
Ỹ3|κ, (39)

where all the matrices are of dimension |̂K|×|̂K|. On the basis of the following eigen-decomposition,

P̂ Y1,Ỹ2,Ỹ3
P̂

−1

Ỹ2,Ỹ3
= P̂ Ỹ2|κ P̂ Y1|κ P̂

−1

Ỹ2|κ, (40)

we estimate P Ỹ2|κ as the |̂K| × |̂K| eigenvector matrix:

P̂ Ỹ2|κ = ⌉
(
P̂ Y1,Ỹ2,Ỹ3

P̂
−1

Ỹ2,Ỹ3

)
, (41)

where the operator ⌉(·) denotes the eigenvector function. Note that here the scale is determined
by imposing that each column of P Ỹ2|κ is a probability distribution that must sum up to 1.
Given P̂ Ỹ2|κ, we can estimate fκ and P Ỹ3|κ, respectively, by:

f̂κ = P̂
−1

Ỹ2|κ P̂ Ỹ2

P̂ Ỹ3|κ =

[(
P̂ Ỹ2|κ diag{f̂κ}

)−1

P̂ Ỹ2,Ỹ3

]′
,

(42)

where P Ỹ2
is the observed |̂K| × 1 vector with the marginal probabilities Pr(Ỹ2).

In the last step of the procedure, we estimate the CCPs for firm j on the basis of the two
following systems of equations:

P Ỹ2,j
= P Ỹ2|κ diag{fκ} P ′

j,κ for any aj = 1 part of Y1 or Ỹ3

P j,Ỹ3
= P j,κ diag{fκ} P ′

Ỹ3|κ for any aj = 1 part of Ỹ2,
(43)

where P Ỹ2,j
is the observed |̂K| × 1 vector with the joint probabilities Pr(Ỹ2 = ỹ2, aj = 1), P j,Ỹ3

is the analogous observed 1 × |̂K| vector, and P j,κ is the vector of firm j’s CCPs. Finally, the

there are many ways of constructing |̂K| × |̂K| non-singular matrices, Xiao (2018) suggests to create various
candidates and then to pick the one associated to the smallest condition number.The intuition is that the smaller
the condition number of a matrix, the more likely the matrix is to be non-singular.
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vector of CCPs P j,κ can be estimated for any firm j as:

P̂ j,κ =

[(
P̂ Ỹ2|κ diag{f̂κ}

)−1

P̂ Ỹ2,j

]′
for any aj = 1 part of Y1 or Ỹ3

P̂ j,κ = P̂ j,Ỹ3

(
diag{f̂κ} P̂

′
Ỹ3|κ

)−1

for any aj = 1 part of Ỹ2.

(44)

Asymptotics. Xiao (2018) characterizes the asymptotic properties of the estimation procedure
described here and shows that the proposed estimator is

√
T -consistent and asymptotically

normal when xt is discrete. In contrast, we allow for both continuous and discrete variables in
xt, and we incorporate step 1(a) where we estimate the entry-profile probabilities P(a|x) using
a Series Logit Estimator (SLE). With continuous variables in x, the SLE cannot achieve a

√
T

rate. However, under standard regularity conditions, this does not affect the
√
T -consistency

of the estimators in steps 1(b) and 1(c). The proof of this result follows from Hirano, Imbens,
and Ridder (2003). The fact that SLE is slower than

√
T does affect the convergence rates of

the estimators in steps 1b and 1c. However, this slower rate in the first step does not prevent
the demand parameters θδ to be consistent and

√
T -asymptotically normal. This result follows

from Das, Newey, and Vella (2003).

5.2 Second Step: Estimation of demand parameters

Here we describe a GMM estimator of demand parameters θδ. In the same spirit as Das, Newey,
and Vella (2003), we use the method of sieves and approximate each function ψj (Pj(xt, κ), κ)

using a polynomial of order Q of the entry probability Pj(xt, κ)
8. That is:

ψj

(
P̂j,m,κ, κ

)
≈ γ0,j,κ + γ1,j,κ P̂j,m,κ + ...+ γQ,j,κ (P̂j,m,κ)

Q (45)

where (γ0,j,κ, γ1,j,κ..., γQ,j,κ) are parameters. Given this approximation, the selection function is
linear in these γ parameters and has the following expression:

f̂
′
κ,tψj(P̂ j,t) ≈ h′

j,t γj =

|K(xt)|∑
κ=1

Q∑
q=0

γq,j,κ f̂κ(κ|xt) (P̂j,m,κ)
q (46)

where h′
j,t is the 1× (Q+1)|K(xt)| vector with elements {f̂κ(κ|xt) (P̂j,m,κ)

q : q = 0, 1, ..., Q;κ =

1, ..., |K(xt)|}.
8The demand parameters θδ can also be estimated by differencing out the selection term following Ahn and

Powel (1993) and Powell (2001).
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Plugging equation (46) into the demand equation (35), we have the regression equation:

δj(st,σ) = α pjt + x
′
jt β + h′

j,t γj + ξ̃jt. (47)

Once the order of polynomial K is chosen, equation 47 can be estimated by methods such as
2SLS or GMM. The estimation of our partially linear model is not different from estimation of
parametric models in practice. However, by specifying ψj as a nonparametric function, we allow
the order of the polynomial K grow with the sample size, T . This in turn effects the convergence
rate of our estimator. Following Das, Newey, and Vella (2003), one can show that ψ̂j is consistent
and that the finite dimensional demand parameters θδ can be estimated consistently and shown
to be

√
T -asymptotically normal.

As in Xiao(2018), our estimation is not affected by the problem of "identification up to label
swapping". This is due to the specific form of the selection function given in equation (35), which
does not need labelling the equilibrium selection probabilities and rather includes all values of
selection probabilities and the corresponding CCP’s for each firm j.

6 Monte Carlo Experiments

In this section, we present results from Monte Carlo experiments. The purpose of these ex-
periments is threefold. First, we want to evaluate the performance of the proposed estimation
method to deal with sample selection. Second, we are interested in measuring the magnitude
of the biases associated to different forms of misspecification of the model. Finally, we compare
our method with alternative approaches.

6.1 Data Generating Process

The industry consists of three firms (J = 3) and M ∈ {200, 500, 2000, 4000} geographic markets.
Each firm sells one product.

6.1.1 Consumer demand.

Consumer demand is a nested logit with two nests. One nest includes only the outside alternative
j = 0, and the other nest includes all the J = 3 products. Therefore, if ajt = 1, the equation for
the demand of product j = 1, 2, 3 is:

ln

(
sjt
s0t

)
= β xjt + α pjt + σ ln

(
sjt

1− s0t

)
+ ξjt, (48)
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where sjt/(1− s0t) = sjt/(s1t + s2t + s3t) is the within-nest market share of product j. Variable
xjt is a characteristic of product j that varies across markets.9 We consider xjt ∼ i.i.d. log-
normal(0, σ2

x). We denote vector (x1t, x2t, x3t) by xt.

6.1.2 Demand unobservables.

The demand unobservables (ξ1t, ξ2t, ξ3t) are distributed according to a mixture of normals. More
specifically, there are two “types” of markets, indexed by κ ∈ {ℓ, h}. The type of market t, κt,
determines the mean of the normal distribution of the variables ξjt. This mean is equal to µℓ if
κt = ℓ and equal to µh if κt = h. Accordingly, we have:

ξjt ∼ 1{κt = ℓ} N(µℓ, σ
2
ξ ) + 1{κt = h} N(µh, σ

2
ξ ). (49)

Market type κt is independent of xt and i.i.d. across markets with Pr(κt = ℓ) = fκ(ℓ). The
realization of the normal random variables N(µℓ, σ

2
ξ ) and N(µh, σ

2
ξ ) is independent over markets

and over firms. Note that the market type κt is the same for the three firms, and this introduces
positive correlation among ξ1t, ξ2t, and ξ3t.

Note also that ξjt is correlated with the unobservable component of the entry cost ηjt. See
below the description of the market entry game.

6.1.3 Price competition and marginal costs.

Given an hypothetical entry profile a = (a1, a2, a3) ∈ {0, 1}3, firms compete in prices à la
Bertrand. In this nested logit model, equilibrium prices given entry profile a — which we
represent as pt(a) = (p1t(a), p2t(a), p3t(a)) — are the solution to the following system of best
response equations:

pjt(a) = mcjt −
1− σ

α
(
1− σ

sjt(pt(a),a)

s1t(pt(a),a)+s2t(pt(a),a)+s3t(pt(a),a)
− (1− σ) sjt(pt(a),a)

) . (50)

To avoid the computation of this Bertrand equilibrium (for every market and Monte Carlo
repetition), we consider that prices come from the following approximation to an equilibrium:

pjt(a) = mcjt −
1− σ

α
(
1− σ

s∗jt(mct,a)

s∗1t(mct,a)+s∗2t(mct,a)+s∗3t(mct,a)
− (1− σ) s∗jt(mct,a)

) , (51)

9For instance, in the demand for air travel, consumers value an airline’s degree of operation in the origin and
destination airports of the market. Therefore, xjt can be the number of other airports that the airline connects
to from/to the airports in market t.
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where s∗jt(mct,a) represents the market share of product j in market t under entry profile a
and under the hypothetical scenario that the price of each firm were equal to its marginal cost.
That is, a firm’s price is equal to its best response to the belief that other firms are pricing to
their marginal costs.

A firm’s marginal cost in market t is a deterministic function of xjt: mcjt = ω0 + ω1 xjt,
where ω0 and ω1 are parameters.

6.1.4 Market entry game.

When making their entry decisions, firms know xt and κt. Let a−j represent the vector with the
(hypothetical) entry decisions of all firms except j. Let πj (a−j,xt,κt) be the expected variable
profit of firm j given (a−j,xt,κt). This variable profit is obtained integrating [pj (a−j,xt,ξt) −
mcjt] sj (a−j,xt,ξt) over the distribution of ξt = (ξ1t, ξ2t, ξ3t) conditional on κt.

The entry cost of firm j in market t is γj zt + ηjt, where γj is a parameter, zt is a variable
observable to the researcher, and ηjt is unobservable and i.i.d. over (j,m) with standard normal
distribution. Variable zt is i.i.d. over markets distributed uniform on the interval [zmin, zmax].
The T sample realizations of zt are generated by dividing interval [zmin, zmax] into a grid of T
equally spaced points. Let ∆ = (zmax − zmin)/(M − 1). Then, for any market t = 1, 2, ...,M , we
have zt = zmin + (m− 1)∆. We keep this grid fixed across all simulations. Firm j knows zt and
its own ηjt when making entry decisions.

Given (xt, zt, κt), we solve for a Bayesian Nash equilibrium of the entry game by solving the
following system of 3 equations and three unknown probabilities (P1t, P2t, P3t). For j = 1, 2, 3 :

Pjt = Φ
(
πP
j (xt,κt)− γj zt

)
, (52)

where πP
j (xt,κt) =

∑
a−j∈{0,1}2

[∏
i ̸=j (Pit)

ai (1− Pit)
1−ai

]
πj (a−j,xt,κt), and Φ(·) is the CDF

of the standard normal.
The unobserved variable ηjt is correlated with the demand unobservable ξjt. Note that this

introduces a source of endogenous selection in addition to the one that comes from κt. The
parameter ρ measures the correlation between ηjt and ξjt. Therefore, we have that:

E (ξjt | xt, zt, κt, ajt = 1) = µκt + ρ
ϕ
((
πP
j (xt,κt)− γj zt

))
Pj (xt, zt, κt)

, (53)

where ϕ(·) is the standard normal density function. If the researcher knew the true distribution
of the unobservables, then she could use (53) to construct an appropriate control function and
directly account for selection in the second step of the estimator. We suppose that the researcher

24



does not have such information. However, in our experiments, we evaluate the improvement in
the precision of the estimator if the researcher possessed such knowledge.

6.1.5 Solving for an equilibrium of entry game.

For a given value of (xt, zt, κt), we need solve for a Bayesian Nash equilibrium of the entry
game. There are two main computational tasks involved.

First, we need to compute the expected variable profit πj (a−j,xt,κt) for every hypothet-
ical value of a−j by integrating [pj(a−j,xt,ξt) − mcjt] sj(a−j,xt,ξt) over the distribution of
(ξ1t, ξ2t, ξ3t) conditional on κt. We approximate this expectation by Monte Carlo simulation.
That is, for each market t, we simulate 500 random draws of ξjt from the normal distribution
N
(
µκt , σ

2
ξ

)
and then obtain the average of [pj(a−j,xt,ξt)−mcjt] sj(a−j,xt,ξt) over these.

Second, we need to solve numerically for a fixed point of the system of equations (52). We
do that on the basis of fixed point iterations.

6.1.6 Generating simulations

Our Monte Carlo experiments are based on 100 Monte Carlo repetitions or samples. We describe
here the different steps to generate a single sample.

1. Generate the T values of zt using the grid points described above.

2. Generate T independent random draws of (xt, κt : t = 1, 2, ...M) from the distribution of
these variables.

3. For each market t, given (xt, zt, κt), compute the BNE CCPs (Pj(xt, zt, κt) : j = 1, 2, 3).
Then, generate ajt as a random draw from a Bernoulli with probability Pj(xt, zt, κt).

4. For each market t, given κt, generate a random draw of the variables (ξ1t, ξ2t, ξ3t).

5. For each market t, given (xt, at, ξt), compute equilibrium prices and market shares.

As is common in real datasets, also in our simulated data we generate only one realization
of the entry decisions in each market. This implies that the estimated probabilities of entry
Pr(am|xm, zm) are measured too imprecisely by frequency counters within each market t (with
3 firms, there are 8 such probabilities in each t). We however found the use of some form of
smoothing across markets essential to increase the precision of the first step estimator: e.g.,
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kernels as in (??) or flexible multinomial logits with alternative-specific coefficients and polyno-
mial expansions of (xm, zm).10 For the results presented below, we estimate the probabilities of
entry by a multinomial logit with 8 alternatives (as the possible realizations of am), alternative-
specific coefficients, and standard polynomials of zm of degree up to 1 for M ≤ 500 and up to 2
for M > 500. Table 1 summarizes the values of all the parameters in the d.g.p.

Table 1. Values of Parameters in d.g.p.

Parameter True Value Parameter True Value
β = 2.0 σξ = 1.0

α = −2.0 ρ ∈ [0, 0.8]

σ = 0.6

µℓ = −0.5 zmin = 0.1

µh = 0.5 zmax = 3.0

fκ(ℓ) = 0.5 ω0 = ω1 = 0.3

σx = 0.7 γ1 = γ2 = γ3 = 0.4

6.2 Estimators

For each of the four market sizes M ∈ {200, 500, 2000, 4000} configurations, we generate 100
repetitions of the data and implement four estimators.

(i) OLS. This is he most naive approach to the estimation of a nested logit demand system.
It ignores not only endogenous sample selection but also the endogeneity of price and of the
within-nest share.

(ii) 2SLS. This is the classic BLP estimator of a nested logit demand system. It accounts for
the endogenity of price and the within-nest share, but it ignores endogenous sample selection.
We construct instruments on the basis of xt.

(iii) Our estimator (differencing). It estimates Pj(xt, zt, κt) and fκ(ℓ) non-parametrically on
the basis of nobs entry observations per market t, and then feeds them to a second step semi-
parametric estimator which controls for both endogeneity and selection by differencing out the

10Note that both forms of smoothing are consistent with our asymptotic theory and do not introduce any
further complication. In fact, our theoretical arguments explicitly account for smoothing by kernels at this initial
stage, while smoothing by multinomial logits estimated by MLE would actually imply an even faster rate of
convergence (Powell, 2001; Newey, 2009).
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selection term f ′
κψj(P jt). In the second step estimator, we use the same instruments as in the

2SLS. This is the “differencing” version of our proposed estimator.11

(iv) Our estimator (sieve). This is the “sieve” version of our proposed estimator, where the
semi-parametric second step approximates each ψj(Pj(xt, zt, κt), κm) by polynomial expansions
of Pj(xt, zt, κt) — thereby estimating the selection term f ′

κψj(P jt) instead of differencing it
out.12 In the second step, we use again the same instruments as in the 2SLS.

In general, the nested logit demand model used to generate the data does not include
alternative-specific intercepts (i.e., they are equal to zero) as they are not separately identi-
fied by both versions of our estimator (iii) and (iv). To simplify comparisons, we do not include
alternative-specific intercepts also in the specifications of the OLS and the 2SLS.13

6.3 Results

Table 2 shows descriptive statistics for a typical repetition of the d.g.p. with 4000 markets.

Table 2. Summary Statistics from DGP

Perc. zeros Av. mkt share Av. p−c
p

Firm 1 69.1% 13.3% 56.0%
Firm 2 70.4% 13.2% 56.3%
Firm 3 69.6% 13.3% 55.5%

Table 3 reports the average point estimates and their standard deviations computed over 100
repetitions for the d.g.p. with M = 200 and correlation ρ = 0.6.

11We implement this as the pairwise differencing estimator (??) with multivariate gaussian kernel to specify
the weight function Djmn and bandwidth chosen according to Silverman (2018)’s rule of thumb.

12After extensive experimentation, we concluded that this estimator is robust to the choice of the degree
and the type of polynomials used. Operationally, for the results presented below we use standard polynomials
of degree up to 4 for M = 200 and up to 5 for M ∈ {500, 2000, 4000}, but alternative specifications with
different polynomials (e.g., Hermite or Bernstein) and/or different degrees lead to extremely similar conclusions.
For example, in the case of standard polynomials of degree up to 5, this amounts to estimating 6 functions
ψjκ(Pjt(κ)) =

∑5
d=0 φjkd × (Pjt(κ))

d, i.e. one for each (j, κ) combination, and hence 6 × 5 = 30 additional φ
parameters plus 3 alternative-specific intercepts (which will absorb the terms fκ(ℓ)× φjℓ0 + (1− fκ(ℓ))× φjh0)
with respect to differencing the selection term out.

13Controlling for alternative-specific intercepts attenuates the estimation bias induced by endogenous sample
selection on the structural parameters, but introduces huge estimation bias on these intercepts (whose true value
is zero).
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Table 3. Monte Carlo Experiments with M = 200 and ρ = 0.6

True Value OLS 2SLS Ourdiff Oursieve

β Mean 2 1.3736 1.5619 1.9676 1.9722

Std. Dev. (0.1150) (1.0228) (0.2215) (0.2132)

α Mean −2 −1.9314 −2.0456 −2.0016 −2.0079

Std. Dev. (0.0519) (0.5502) (0.0739) (0.0670)

σ Mean 0.6 0.5973 0.5740 0.5985 0.5976

Std. Dev. (0.0186) (0.0968) (0.0278) (0.0280)

Table 4 reports the relative root mean square error (RMSE) of three estimators across four
d.g.p.’s with correlation ρ = 0.6 and different values of T . The RMSE of each estimator in each
d.g.p. is computed over 100 repetitions.

Table 4. Monte Carlo Experiments with different values of M and ρ = 0.6

M = 200 M = 500

2SLS/Ourdiff 2SLS/Oursieve Ourdiff/Oursieve 2SLS/Ourdiff 2SLS/Oursieve Ourdiff/Oursieve

β 4.9694 5.1751 1.0414 6.2719 8.3841 1.3368
α 7.4727 8.1773 1.0943 9.5783 14.8747 1.5530
σ 3.5961 3.5727 0.9935 7.6558 11.4229 1.4920

M = 2000 M = 4000

2SLS/Ourdiff 2SLS/Oursieve Ourdiff/Oursieve 2SLS/Ourdiff 2SLS/Oursieve Ourdiff/Oursieve

β 14.7125 16.9704 1.1535 42.3295 92.3250 2.1811
α 13.7524 22.2134 1.6152 76.5325 167.2902 2.1859
σ 12.5900 21.5862 1.7146 78.9348 163.9341 2.0768

Table 5 also reports the relative RMSE of three estimators across four d.g.p.’s with M = 200 and
different values of the correlation ρ. The RMSE of each estimator in each d.g.p. is computed
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over 100 repetitions. The case of ρ = 0 represents the standard situation with only endogenous
prices but no endogenous sample selection.

Table 5. Monte Carlo Experiments with M = 200 and different values of ρ

ρ = 0 ρ = 0.3

2SLS/Ourdiff 2SLS/Oursieve Ourdiff/Oursieve 2SLS/Ourdiff 2SLS/Oursieve Ourdiff/Oursieve

β 0.5697 0.6053 1.0624 1.1002 1.5700 1.4271
α 1.4367 1.4651 1.0198 1.4943 2.4275 1.6245
σ 2.0455 1.5982 0.7813 0.9448 1.1013 1.1657

ρ = 0.6 ρ = 0.9

2SLS/Ourdiff 2SLS/Oursieve Ourdiff/Oursieve 2SLS/Ourdiff 2SLS/Oursieve Ourdiff/Oursieve

β 4.9694 5.1751 1.0414 15.2161 21.6817 1.4249
α 7.4727 8.1773 1.0943 17.8260 34.1255 1.9144
σ 3.5961 3.5727 0.9935 12.8979 18.7658 1.4550

Figure 1 plots the relative RMSE of the 2SLS with respect to both version of our estimator for
different values of the correlation ρ and M = 200. For any given value of ρ, we compute the
RMSE of each estimator across 100 repetitions and its Euclidean norm across the three demand
parameters: that is, norm(RMSE) = (MSE(α̂) +MSE(β̂) +MSE(σ̂))1/2. Then, we plot the
ratios between norm(RMSE) of the 2SLS and, respectively, that of Ourdiff and Oursieve.

7 Empirical Application

TBW

8 Conclusions

TBW
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Figure 1: Relative RMSE of 2SLS w.r.t. Ourdiff and Oursieve for M = 200 as a function of ρ
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Appendix: Monte Carlo Simulations – DGP

1. We consider L = 2 and J = 3.

2. We consider a continuous market-level zt. We take some interval Z = (zmin, zmax) and
divide it into a grid of T (i.e., total number of markets) equally spaced points. Call the

distance between any two such points ∆ ≡ zmax − zmin

M − 1
and then assign each point in this

grid to a market t, so that (z1, z2, ..., zT ) = (zmin, zmin +∆, ..., zmin + (M − 1)∆). We keep
this grid fixed across repetitions of the simulations.

3. The product sold by each firm j has an observable characteristic Xjt that varies across
markets and is i.i.d. Xjt ∼ |N (0, σ2

X) |, for j = 1, 2, 3. When making entry decisions, each
firm observes the realization of Xt = (X1t, X2t, X3t)

′ and zt, such that firms condition on
four variables which are observable to the researcher.

4. The demand system is a nested logit with the J = 3 products belonging to the same nest
g and the outside product j = 0 in its own nest:

ln

(
sjt
s0t

)
= β Xjt + α pjt + σ ln

(
s j|g
)
+ ξjt,

where s j|g and sjt are, respectively, the within-nest and the unconditional market shares
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of product j in market t; s0t the market share of the outside product; pjt the price; ξjt is
an unobservable demand shock, and α, β, and σ are parameters.

5. The unobservable κt can take two possible values: κt ∈ {h, ℓ}. Its probability distribu-
tion does not depend on (Xt, zt) such that h(κ|Xt, zt) = h(κ). Assuming this – or more
generally, that h(κ|Xt, zt) is a smooth function of Xt and zt – allows us using smooth
nonparametric methods instead of frequency counts in the estimation of Pj (Xt, zt).

6. The value of κt determines the mean of the distribution of the unobservable demand shocks
ξjt. More specifically, {ξjt|κt = ℓ} ∼ N

(
ξℓ, σ

2
ξ

)
, and {ξjt|κt = h} ∼ N

(
ξh, σ

2
ξ

)
.

7. Marginal costs are i.i.d. across markets and firms with distribution mcjt ∼ |N (0, σ2
mc) |.

Marginal costs are are determined before entry decisions are made, and they are common
knowledge among all firms in the market.

8. Denote the set of products available in market t by At ≡ {a1t, a2t, a3t}, and the set of
competing products faced by firm j in market t by Ajt = At \ {ajt}. For computational
tractability, we assume that for given Ajt, Xt, and ξt, each firm j with ajt = 1 chooses
prices according to a simplified version of the single-product FOCs:

pj (Ajt, Xt, ξt) = mcjt −
1− σ

α
(
1− σ s∗j|g (Ajt, Xt, ξt)− (1− σ) s∗j (Ajt, Xt, ξt)

) (54)

where s∗j|g (Ajt, Xt, ξt) and s∗j (Ajt, Xt, ξt) the within-nest and unconditional market shares
of j given market structure Ajt ∪ {ajt = 1} and where each firm sets its price equal to its
own marginal cost.

9. Let Πj(Ajt, Xt, ξt) be the profit of firm j if it enters in market t given market structure
Ajt, Xt, and ξt). By definition:

Πj (Ajt, Xt, ξt) = (pj (Ajt, Xt, ξt)−mcjt) sj (Ajt, Xt, ξt) (55)

where pj (Ajt, Xt, ξt) is the pricing function described in equation (54) above, and sj (Ajt, Xt, ξt)

is product j’s market share from the nested logit when all firms set their prices according
to the pricing equation in (54).

10. Firm j’s fixed cost from entering in market t is γjzt + ηjt, where ηjt is firm’s private
information and it has a standard normal distribution. More precisely, we assume that
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conditional on κt, variables (ηjt, ξjt) are i.i.d. across firms and markets jointly normal with
correlation ρ: (

ηjt

ξjt

∣∣∣∣∣κt = κ

)
∼ N

((
0

ξκ

)
,

(
1 ρ σξ

ρ σξ σ2
ξ

))
, (56)

It then follows that,

ξjt| (κt, ηjt) ∼ N
(
ξκt

+ ρσξ ηjt, σ
2
ξ

(
1− ρ2

))
, (57)

from which we obtain,
ξjt| (κt, ηjt) = ξκt

+ ρσξ ηjt + ejt, (58)

with ejt ∼ N
(
0, σ2

ξ (1− ρ2)
)

and independent of (κt, ηjt).

11. The expected profit of firm j if it enters in market t given (κt, Ajt, Xt, zt, ηjt) is (expectation
over the distribution of unknown ξt):

πj (κt, Ajt, Xt, ηjt)− γj zt − ηjt (59)

where πj (κt, Ajt, Xt, ηjt) is the expected variable profit function:

πj (κt, Ajt, Xt, ηjt) ≡
∫
ξt

Πj (Ajt, Xt, ξt) dFξ (ξt|κt, ηjt) (60)

where function Fξ(ξt|κt, ηjt) is the normal CDF of (ξt|κt, ηjt). The expected profit associ-
ated to non-entry is zero.

12. Having ηjt as an argument in the expected profit function introduces a substantial compli-
cation in the computation of best response probabilities in the entry game. More specif-
ically, computing best response probabilities requires the numerical inversion of the ex-
pected profit with respect to ηjt. This best response probability does not have a closed
form expression. Note that this is not an issue for our estimation method, which can easily
deal with ηjt as an argument in the expected profit. The computational difficulty is in the
solution for an equilibrium of the model and thus the generation of the simulated data.

To avoid this computational difficulty, in our Monte Carlo experiment we consider a DGP
in which firms ignore the correlation between between ξjt and ηjt when calculating expected
profit. That is, the expected profit function is πj (κt, Ajt, Xt), which does not depend on
ηjt and has very similar definition as in equation (60), but where the integral is over the
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distribution Fξ (ξt|κt) instead of Fξ (ξt|κt, ηjt). That is:

πj (κt, Ajt, Xt) ≡
∫
ξt

Πj (Ajt, Xt, ξt) dFξ (ξt|κt) (61)

13. Note that the expected variable profit function πj (κt, Ajt, Xt) is conditional on the entry
decisions of the other firms, as represented by Ajt. These competitors’ decisions are un-
known to firm j at the moment of its own entry decision. Therefore, this "conditional on
market structure" expected profit function is not the expected profit that firm j uses to
make its entry decision. To calculate the expected profit we need to integrate over the
distribution of competitors’ probabilities of entry.

Let πe
j (κt, Xt, zt) represents firm j’s expected variable profit function. That is:

πe
j (κt, Xt, zt) =

∑
A−jt

πj (κt, Ajt, Xt) Pr (Ajt|κt, Xt, zt) (62)

where Pr (Ajt|κt, Xt, zt) = Pr (akt|κt, Xt, zt)×Pr [art|κt, Xt, zt) is the conditional probability
that the other two firms, k and r, take entry decision (akt, art) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.

13. For a given value of (κt, Xt, zt), let P1t ≡ P1 (κt, Xt, zt), P2t ≡ P2 (κt, Xt, zt), and P3t ≡
P3 (κt, Xt, zt) be the equilibrium probabilities in the market entry game. These three
probabilities are a solution to the following system of equations:

P1t = Φ

−γ1 zt +
∑

(a2,a3)∈{0,1}2
π1 (κt, a2, a3, Xt)

∏
v=2,3

[Pvt]
av [1− Pvt]

(1−av)



P2t = Φ

−γ2 zt +
∑

(a1,a3)∈{0,1}2
π2 (κt, a1, a3, Xt)

∏
v=1,3

[Pvt]
av [1− Pvt]

(1−av)



P3t = Φ

−γ3 zt +
∑

(a1,a2)∈{0,1}2
π3 (κt, a1, a2, Xt)

∏
v=1,2

[Pvt]
av [1− Pvt]

(1−av)



(63)

where Φ (·) denotes the standard normal CDF.

14. Computation of equilibrium probabilities of market entry. For each value of
(κt, Xt, zt), we proceed as follows.
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(i) For each market t and conditional on a value for κt, we simulate 500 random draws of
the three random variables ξjt|κt, j = 1, 2, 3, from the normal distribution N

(
ξκt
, σ2

ξ

)
.

(ii) For given draw ξt, firm j, and market structure Ajt, we compute price pj (Ajt, Xt, ξt)

as if firm j were to enter in t and according to equation (54). We compute this price
for every possible market structure Ajt ∈ {0, 1}2. We do the same for every firm j.
Then, we use these prices and the corresponding market shares in the nested logit
demand system to obtain the profit of firm j, Πj (Ajt, Xt, ξt), using equation (55). We
repeat the same procedure for all the the 500 draws of ξt from step (i).

(iii) For each given firm j and for a given value of (κt, Xt, zt) and a given value of mar-
ket structure Ajt, we compute expected profit πj (κt, Ajt, Xt) by averaging the profit
Πj (Ajt, Xt, ξt) (obtained in step (ii)) over the 500 random draws of ξt generated in
step (i).

(iv) We repeat steps (ii) and (iii) for each firm j = 1, 2, 3 and each of the four values of
market structure Ajt ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.

(v) Given the expected profits calculated in step (iv), we construct the system of equations
in (63). We numerically solve this system of three equations with three unknowns to
obtain the equilibrium CCPs P1 (κt, Xt, zt), P2 (κt, Xt, zt), and P3 (κt, Xt, zt).

We repeat previous steps (i) to (v) for every value of (κt, Xt, zt).

15. Simulating data for the endogenous variables in the model where ξjt and ηjt

are independently distributed. For each market t, we need to simulate data for the
endogenous variables {ajt, pjt, sjt : j = 1, 2, 3}.

For the simulation of variables ξjt for the firms who have decided to enter in the market,
it is important taking into account that correlation between ξjt and ηjt and endogenous
entry introduce censoring in the distribution of ξjt. Conditional on κt, variables ξjt and ηjt
are jointly normal, such that E [ξjt|κt, ηjt] = ξκt

+ρσξ ηjt. This joint normality assumption
also implies:

ξjt| (κt, Xt, zt, ajt = 1) = −ρ σξ
ϕ (Φ−1 (Pj (κt, Xt, zt)))

Pj (κt, Xt, zt)
+ ξκt

+ ejt (64)

where ϕ(·) is the density function and Φ−1(·) is the inverse CDF (or Quantile function) for
the standard normal, and ejt ∼ N

(
0, σ2

ξ (1− ρ2)
)
.

For a given value of the exogenous variables (Xt, zt) we proceed as follows.
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(i) For each market t, we use the probability h(κ) to draw a value of κt.

(ii) Given the equilibrium probability of market entry Pj(κt, Xt, zt), we draw a value of
ajt. We do this for every firm j = 1, 2, 3. This generates the realized market structure
At = (a1t, a2t, a3t).

(iii) We take a random draw of variables ξ1t, ξ2t, and ξ3t from the censored normal distri-
bution described in equation (64).

(iv) Given Xt, the realized market structure At from step (ii), and the vector ξt from step
(iii), we use the pricing equation in (54) to generate equilibrium prices (p1t, p2t, p3t).

(v) Finally, given Xt, the realized market structure At from step (ii), the vector ξt from
step (iii), and the vector of equilibrium prices from step (iv), we use the nested logit
demand system to calculate the equilibrium market shares (s1t, s2t, s3t).

Table 1. Values of Parameters in d.g.p.

Parameter True Value Parameter True Value

β = 2.0 σξ = 2.0

α = −2.0 ρ = 1.999

σ = 0.6

σX = σmc = 0.3

ξℓ = −4.0 zmin = 0.1

ξh = 4.0 zmax = 2.0

h(ℓ) = 0.6 γ1 = γ2 = γ3 = 1.0
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