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Abstract

This article considers average marginal effects (AME) in a panel data fixed effects
logit model. Relating the identified set of the AME to an extremal moment problem,
we first show how to obtain sharp bounds on the AME straightforwardly, without
any optimization. Then, we consider two strategies to build confidence intervals on
the AME. In the first, we estimate the sharp bounds with a semiparametric two-step
estimator. The second, very simple strategy estimates instead a quantity known to be
at a bounded distance from the AME. It does not require any nonparametric estimation
but may result in larger confidence intervals. Monte Carlo simulations suggest that
both approaches work well in practice, the second being often very competitive. Finally,
we show that our results also apply to average treatment effects, the average structural
functions and ordered, fixed effects logit models.
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1 Introduction

In this paper, we consider the identification and estimation of average marginal effects (AME)
and average treatment effects (ATE) in the fixed effects (FE) binary logit model, with
short panels. Estimation of the common slope parameters dates back to Rasch (1961) and
Andersen (1970) (see also Chamberlain, 1980) but up to now, there has been no study of
the identification and estimation of the AME and ATE in this model. These parameters
are yet of more direct interest than the slope parameter, which only provides information
on relative marginal effects. For this reason, and following the influential work of Angrist
(2001) (see also Angrist and Pischke, 2008), many applied economists have turned to using
FE linear probability models. Besides their simplicity, they allow one to identify the best
linear approximation of the true model, if it is nonlinear. Then, one could argue that their
slope parameter, which corresponds to the AME if the model is linear, is close to the true
AME in practice.

However, FE linear models can be problematic in panel data if “stayers”, namely units with
constant covariates over the period, differ from “movers” in their unobserved characteristics.
The reason is that the AME in FE linear models is identified using “movers” only. But
the true AME may depend on the unobserved heterogeneity and thus be very different
for the population of “stayers”. Then, approximating the AME of the whole population
using the linear model may be far from the truth. This is especially the case when the
proportion of stayers is large, something we illustrate numerically in Appendix A. Also, it
seems unfortunate that FE linear models only rely on movers given that in fact, the AME is
nonparametrically identified for the population of stayers only (Hoderlein and White, 2012;
Chernozhukov et al., 2019).1

Unlike the FE linear model, nonlinear models such as the FE logit models do allow for
heterogeneity of treatment effects, in particular between stayers and movers. Moreover, we
demonstrate in this paper that estimation and inference on the AME and the ATE in this
model can be performed almost as simply as in the FE linear model. To this end, we first
study in Section 2 the identification of the AME (the study of the ATE, which is very similar,
is postponed to Section 5). If this parameter is generally not point identified, sharp bounds
can be obtained by solving an extremal moment problem, that is, maximizing a moment over

1Nonlinearities may also cause trouble when using the FE linear model. In Appendix A, we give a simple
example, with a difference-in-differences flavor, where the FE linear model identifies a negative ATE, even
though the true ATE is positive.
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probability distributions given the knowledge of some other moments. Using existing results
on such problems, the bounds can then be obtained very simply, without any optimization.
Other results on moment problems also highlight that that the bounds are very informative
in practice, even if the panel is very short.

Next, we consider in Section 3 an estimator based on the theoretical expressions of the
sharp bounds. This involves in particular the nonparametric estimation of a vector-valued
function which, after a suitable transformation, corresponds at each point to a vector of raw
moments (1, E(U), ..., E(UT )) for some random variable U ∈ [0, 1]. One difficulty is that
standard (e.g., local polynomial) nonparametric estimators, once transformed, may not be
vectors of raw moments themselves. We show how to modify any initial estimator so as to
satisfy this constraint. We then establish root-n consistency of the estimators of the bounds
under regularity conditions. The estimators of the bounds are asymptotically normal except
if the corresponding slope coefficient is zero. We build confidence intervals of the true AME
that are valid whether this is the case or not.

The previous estimator has the drawback of relying on a nonparametric first-step estimator.
We then suggest in Section 4 an even simpler approach that avoids this issue. The idea is to
estimate a simple approximation of the true AME and then to make bias aware inference,
following the ideas of Donoho (1994) and Armstrong and Kolesár (2018). We can do so
because the structure of the model allows us to consistently estimate an upper bound on the
distance between the simple approximation and the true AME. The corresponding confidence
intervals are asymptotically valid under mild conditions and, if slightly enlarged, even control
the asymptotic size uniformly over a large set of data generating processes.

Section 5 shows that the same identification and estimation analysis can be applied to other
parameters and models. Specifically, we study the ATE, the average structural function and
FE ordered logit models. We also show that our method also applies when the number of
observations varies per individual. Thus, our method easily accommodates unbalanced pan-
els and hierarchical data. The R package MarginalFElogit and Stata command mfelogit,
developed with Christophe Gaillac, perform inference on the AME and ATE (depending on
whether X is continuous or binary) with the two methods considered here, and accommo-
dates the case of an individual-specific number of observations.2

Next, we study in Section 6 the finite sample properties of our two estimation and inference
methods. In line with the theory, they show that the estimated bounds are very informative

2The Stata command is available on the SSC repository and the R package can be found here.
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in practice. Also, the two confidence intervals have coverage close to their nominal level al-
ready for moderate sample sizes. Interestingly, we also find that the second inference method
leads to confidence intervals often of the same size as, and sometimes even shorter than those
obtained with the first method. This may seem surprising because as the sample size grows,
such confidence intervals tend to an interval that strictly includes the true identified set. But
for typical sample sizes and number of periods, it turns out that the distance between the
simple approximation and the true AME is very small, leading to a tiny bias correction.

Our work is related to the literature on the identification and estimation of average marginal
and treatment effects in panel data. Bias correcting approaches have been developed for pan-
els with large T for both the logit and probit models (Fernández-Val, 2009; Fernández-Val
and Weidner, 2016). With fixed T , Aguirregabiria and Carro (2020) shows point identifi-
cation of a class of average marginal effects in dynamic FE logit models with four or more
periods, exploiting the dynamic structure of the model. Another approach consists in us-
ing correlated random effects, following Mundlak (1978) and Chamberlain (1982); see e.g.,
for recent contributions Wooldridge (2019) for nonlinear models and Liu et al. (2021) for
semiparametric binary response models. Compared to this approach, we do not impose any
restriction on individual effects, which implies that average effects are only partially iden-
tified, though the bounds appear to be very informative in practice. An important part of
this literature has also studied nonparametric identification (see in particular Altonji and
Matzkin, 2005; Hoderlein and White, 2012; Chernozhukov et al., 2013, 2015; Botosaru and
Muris, 2017). Our goal is different, as we consider a more constrained model, with the aim
of providing a simple characterization and estimation of the bounds in this set-up.

Finally, our work is also related to moment problems, which have been studied extensively
since Chebyshev and Markov. We refer to Karlin and Shapley (1953) and Krein and Nudel-
man (1977) for mathematical expositions and to Dette and Studden (1997) for applications to
various statistical problems. D’Haultfœuille and Rathelot (2017) use similar results on mo-
ment problems as here to obtain bounds on segregation measures with small units. Finally,
Dobronyi et al. (2021) use other results on moment problems to characterize the identified
set of common parameters in dynamic logit models, generalizing the work of Honoré and
Weidner (2020).
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2 Identification

2.1 The set-up and identification of β0

We consider a panel with T periods and observe binary outcomes Y1, ..., YT and for each pe-
riod t, a vector of covariatesXt := (Xt1, ..., Xtp)′. We let Y := (Y1, ..., YT )′, X := (X ′1, ..., X ′T )′

and make the following assumption.

Assumption 1 We have Yt = 1 {X ′tβ0 + α + εt ≥ 0}, where the (εt)t=1,...,T are i.i.d., inde-
pendent of (α,X) and follow a logistic distribution.

Importantly, the individual effect α is allowed to be correlated in an unspecified way with
X. In this model, S := ∑T

t=1 Yt is a sufficient statistic for α. As a result, identification of β0

can be achieved by maximizing the expected conditional log-likelihood, where one conditions
not only on X but also on S. For any y = (y1, ...yT ) ∈ {0, 1}T , let us define

Ck(x, β) :=
∑

(d1,...,dT )∈{0,1}T :
∑T

t=1 dt=k

exp
(

T∑
t=1

dtx
′
tβ

)
,

`c(y|x; β) :=
T∑
t=1

ytx
′
tβ − ln

[
C∑T

t=1 yt
(x, β)

]
,

which are respectively the ratio of the probability that S = k given x with the probability
that S = 0 given x if β0 = β, and the conditional log-likelihood. To ensure that β0 is
identified as the unique maximizer of the expected conditional log-likelihood, we impose the
following condition.

Assumption 2 E[∑t,t′(Xt −Xt′)(Xt −Xt′)′] is nonsingular.

Assumption 2 is necessary and sufficient for the identification of the slope parameter in fixed
effects linear models. The following proposition ensures that this is also the case in FE logit
models. It must be well-known, but we have not been able to find it in the literature. Its
proof, as the other proofs of identification results, is presented in Appendix B.

Proposition 1 Suppose that Assumption 1 holds and for all t 6= t′ and k ∈ {1, ..., p},
E[(Xtk −Xt′k)2] <∞. Then β0 is identified if and only if Assumption 2 holds. In this case,
β0 = arg maxβ E (`c(Y |X, β)) and I0 = −E (∂2`c/∂β∂β

′(Y |X; β0)) is nonsingular.

The second part of Proposition 1 shows that β0 can be identified as the unique maximizer of
the average expected log-likelihood. Under mild regularity conditions, I−1

0 is the asymptotic
variance of the conditional maximum likelihood estimator (CMLE) but also the semipara-
metric efficiency bound for β0 (Hahn, 1997).
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2.2 Identification of the average marginal effects

We now turn to the average marginal effect of a continuous covariate (Xtk, say); the average
effect of a binary variable is deferred to Section 5.1. Without loss of generality, we focus on
the effect in the last period. The average marginal effect is then defined as

∆ := E

[
∂P (YT = 1|X,α)

∂XTk

]
.

By Assumption 1, P (YT = 1|X,α) = Λ(X ′Tβ0 + α) with Λ(x) := 1/(1 + exp(−x)). Thus,

∆ = β0kE[Λ′(X ′Tβ0 + α)]. (1)

The identification of ∆ is rendered difficult by the fact that α is unobserved and Assumption
1 imposes no restriction on Fα|X , the cumulative distribution function (cdf) of α given X.
The only restrictions on this cdf come from the data, namely from the distribution of Y |X.
Actually, because S is a sufficient statistic for α, its (conditional) distribution exhausts all
the information available on α. Then, the restrictions on Fα|X reduce to

P (S = k|X = x) = Ck(x, β0)
∫ exp(ka)∏T

t=1[1 + exp(x′tβ0 + a)]
dFα|X(a|x), (2)

which holds for k ∈ {0, ..., T}. Intuitively, because we only have T constraints (one constraint
is redundant, since ∑T

k=0 P (S = k|X = x) = 1), we expect Fα|X and in turn ∆ not to be
point identified. We shall see that this intuition is correct, under qualifications. Before that,
we reformulate ∆ and its sharp bounds in a more convenient way. This requires additional
notation. Let us define

T+1∑
t=0

λt(x, β0)ut := u(1− u)
T−1∏
t=1

(u(exp((xt − xT )′β0)− 1) + 1), (3)

ct(x) := E

1 {S ≥ t}
(
T−t
S−t

)
exp(Sx′Tβ0)

CS(x, β0) |X = x

 , t ∈ {0, ..., T}, (4)

mt(x) := ct(x)
c0(x) , t ∈ {0, ..., T},

r(x, s, β0) := βk
s∑
t=0

(
T − t
s− t

)
λt(x; β0) exp(sx′Tβ0)

Cs(x, β0) .

We then let m(x) := (m0(x), ...,mT (x))′. Because β0 and FS|X are identified, λt(x, β0), ct(x),
mt(x) and r(x, s, β0) are identified for each (x, s).

For any m ∈ [0, 1]T+1, we denote by D(m) the set of positive measures µ on [0, 1] whose
vector of first T + 1 raw moments (

∫
u0dµ(u), ...,

∫
uTdµ(u))′ is equal to m. We finally define

q
T

(m) := inf
µ∈D(m)

∫ 1

0
uT+1dµ(u), qT (m) := sup

µ∈D(m)

∫ 1

0
uT+1dµ(u). (5)
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Lemma 1 Suppose that Assumptions 1-2 hold. Then, there exists a collection of probability
measures (µx)x∈Supp(X), with µx ∈ D(m(x)), such that

∆ = E

[
r(X,S, β0) + β0kc0(X)λT+1(X, β0)

∫ 1

0
uT+1dµX(u)

]
. (6)

Moreover, the sharp identified set of ∆ is [∆, ∆], with3

∆ = E
[
r(X,S, β0) + β0kc0(X)λT+1(X; β0)

(
q
T

(m(X))

1 {β0kλT+1(X, β0) ≥ 0}+ qT (m(X))1 {β0kλT+1(X, β0) < 0}
)]
,

∆ = E
[
r(X,S, β0) + β0kc0(X)λT+1(X; β0)

(
qT (m(X))

1 {β0kλT+1(X, β0) ≥ 0}+ q
T

(m(X))1 {β0kλT+1(X, β0) < 0}
)]
.

(7)

Equation (6) essentially follows by showing that ∆ can be expressed as a simple function
of the (T + 1)-th moment of a variable related to U := Λ(α + X ′Tβ0) ∈ [0, 1], whose first
T + 1 moments conditional on X = x are given by m(x).4 The constraints on the last T raw
moments (ignoring here m0(x) = 1) simply correspond to the T constraints in (2). Thus
by Equation (6), ∆ is the sum of a point identified term and a term that is only partially
identified in general. This second term is

β0kE

[
c0(X)λT+1(X, β0)

∫ 1

0
uT+1dµX(u)

]
. (8)

One could consider other decompositions than Equation (6), but this precise expression is
helpful for two reasons. First, it leads to the sharp bounds (7), which take simple expressions
because q

T
(m) and qT (m) themselves have a simple closed form, as shown below. When

turning to estimation, we present in Section 3 an estimator based on these closed-form
expressions. However this first approach requires to estimate non-parametrically, for all
x observed in the data, m(x), under the constraint that m(x) is an admissible vector of
moments. This constraint is necessary since otherwise q

T
(m(x)) and qT (m(x)) are undefined.

Then, Equation (6) is also useful to avoid such a complication, because a very simple yet
3Technically, we define here the sharp identified set as the closure of the set of parameters values that can

be rationalized by the data and the model. In some cases, the bounds ∆ and ∆ do not correspond to a valid
probability distribution on α|X = x, as they amount to put mass at plus or minus infinity. Nevertheless,
these bounds can be approached arbitrarily by sequences of probability distributions rationalizing the model
and the data.

4In the proof, we actually obtain a result on ∆(x) := E [∂P (YT = 1|X,α)/∂XT k|X = x], which leads to
Equation (6) by integrating over X. A result akin to Proposition 3 below also holds for ∆(x).
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precise approximation of (8) can actually be obtained. This idea is at the basis of our second
estimation method developed in Section 4.

The expression of the bounds shows that the computation of the bounds essentially reduces
to that of the functions q

T
(·) and qT (·) defined by (5). This may seem a difficult task, since

the programs are infinite-dimensional. It turns out, however, that they can be computed
easily and without any numerical optimization, using results on moment problems (see Karlin
and Shapley, 1953; Krein and Nudelman, 1977; Dette and Studden, 1997).

To get intuition on this problem, consider the case T = 1. Then, we seek the extremal values
of E(U2), with U a random variable supported on [0, 1] such that E(U) = m1 (since U is a
random variable, we also have the constraint E(U0) = 1). The reasoning can be illustrated
in Figure 1 below. The problem admits a solution only if 0 ≤ m1 ≤ 1 or equivalently only if
a certain polynomial of m is non-negative (m1(1 −m1) ≥ 0). In the boundary cases where
m1(1 − m1) = 0, there is a unique probability distribution with such first moment, which
is the Dirac distribution at m1 ∈ {0, 1}. Then, q

T
(m) = qT (m) = m2

1 = m1 and E(U2)
is identified. In the interior case m1(1 − m1) > 0, it follows from Jensen’s inequality that
m2

1 ≤ E(U2), with equality only if the distribution of U is a Dirac at m1 ∈]0; 1[. This implies
that q

T
(m) = m2

1. And because U ≤ 1, we also have E(U2) ≤ E(U) = m1, with equality
only if U follows a Bernoulli(m1) distribution. Hence, qT (m) = m1 > q

T
(m) = m2

1 and
E(U2) is partly identified. Note that both bounds are rational functions of m.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 1: Moment space and bounds q
T

(m), qT (m) when T = 1.

It turns out that the conclusions above for T = 1 remain true when T > 1. We have point
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identification or partial identification of the (T +1)-th raw moment depending on the nullity
of a nonnegative polynomial of m. Also, the sharp bounds on this moment are some rational
functions of m.

To describe these general results, we introduce additional notation. Let D denote the set of
probability measures on [0, 1] and for any t ≥ 1, let

Mt :=
{(∫ 1

0
u0dµ(u),

∫ 1

0
u1dµ(u), ...,

∫ 1

0
utdµ(u)

)′
: µ ∈ D

}
.

This is the set of all possible vectors of the first t+ 1 raw moments. For instance, in Figure
1, the second and third components of M2 lie in between x 7→ x2 and the 45◦ line. Now,
for any t ≥ 1, s > t and m = (m0, ...,ms) ∈ Rs, we define the Hankel matrices Ht(m) and
Ht(m) as

Ht(m) = (mi+j−2)1≤i,j≤t/2+1 , Ht(m) = (mi+j−1 −mi+j)1≤i,j≤t/2 if t is even,
Ht(m) = (mi+j−1)1≤i,j≤(t+1)/2 , Ht(m) = (mi+j−2 −mi+j−1)1≤i,j≤(t+1)/2 if t is odd.

Then, we define H t(m) = det (Ht(m)) and H t(m) = det(Ht(m)).

Proposition 2 For any T ≥ 1, we have

MT =
{
m ∈ {1} × [0, 1]T : ∀ t = 1, ..., T, H t(m) ≥ 0 and H t(m) ≥ 0

}
. (9)

Moreover,

1. If HT (m) ×HT (m) > 0, then q
T

(m) < qT (m). Moreover, q 7→ HT+1(m, q) is strictly
increasing, linear and HT+1(m, q

T
(m)) = 0. Similarly, q 7→ HT+1(m, q) is strictly

decreasing, linear and HT+1(m, qT (m)) = 0.

2. If HT (m) × HT (m) = 0, then q
T

(m) = qT (m). Moreover, letting T ′ = min{t ≤ T :
H t(m)×H t(m) = 0}, q

T
(m) = qT (m) is the unique solution of

HT ′(mT−T ′+1, ...,mT , qT (m)) = 0 if HT ′(m) = 0,
HT ′(mT−T ′+1, ...,mT , qT (m)) = 0 if HT ′(m) = 0.

The first point follows by classical results in moment theory, see e.g. Theorems 1.2.7 and
1.4.3 in Dette and Studden (1997). The first part of the second point is also well-known. On
the other hand, to the best of our knowledge, the second part is new. The characterization of
MT through H t(m)×H t(m) ≥ 0 for all t ≤ T is the extension, for any T , of the constraint

9



m1(1−m1) ≥ 0 we mentioned for T = 1. Then, the first case corresponds to the interior case
described above (m1 ∈ (0, 1)) for which q

T
(m) < qT (m). In this case, the two bounds are

functions of polynomials of m appearing in HT+1(m, q) and HT+1(m, q). The second case
corresponds to the boundary case described above (m1 ∈ {0, 1}), for which D(1,m1, ...,mT )
is reduced to a single distribution and thus q

T
(m) = qT (m).

Coming back to the issue of computing the sharp bounds on ∆, the take-away from Propo-
sition 2 is that the functions q

T
(·) and qT (·) are very easy to compute. For instance in the

first case where HT (m) × HT (m) > 0, expansion of the determinant HT+1(m, q
T

(m)) = 0
along the last column of HT+1(m, q

T
(m)) leads to the linear equation a(m)+q

T
(m)b(m) = 0

for two polynomials a(m) and b(m) of m.

Using Lemma 1 and results related to Proposition 2, we obtain the following further prop-
erties of the identified set:

Proposition 3 Suppose that Assumptions 1-2 hold. Then:

1. The length of the identified set satisfies:

∆−∆ ≤ 1
4T E [c0(X)|λT+1(X, β0)|] .

2. ∆ is point identified if and only if β0k = 0 or

Pr
(

min
t<T
|(Xt −XT )′β0| = 0 ∪ |Supp(α|X)| ≤ T/2

)
= 1.

The first point exploits in particular a result of the theory of moments, namely that qT (m)−
q
T

(m) ≤ 1/4T for any m ∈ MT . For some distributions of X, this inequality yields an
upper bound on the rate of decrease of the identified set as T increases. Specifically, assume
that for all t < T , Pr(|(Xt − XT )′β0| ≤ ln(2)) = 1. Then, additional algebra shows that
E [c0(X)|λT+1(X, β0)|] ≤ 1, which in turn implies

∆−∆ ≤ 1
4T .

Similarly if for all t < T , Pr(|(Xt − XT )′β0| ≤ c) = 1 for some c ∈ [ln(2), ln(5)) then
∆−∆ ≤ (ec − 1)T−1/4T ≤ KT for K = (ec − 1)/4 < 1.

Chernozhukov et al. (2013) also obtain exponential rate of decrease on the length of the
identified set of the average structural function x 7→ E[Λ(x′β0 + α)] under some conditions
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(see their Theorem 4).5 Actually, their result imposed substantially weaker conditions on
the distribution of Yt|Xt, α. On the other hand, it only holds for discrete X and imposes
additional restrictions on the distribution of (X,α).

The second result of Proposition 3 characterizes the point identification of ∆. The cases
β0k = 0 and mint<T |(Xt −XT )′β0| = 0 almost surely can be directly deduced from the first
result, since mint<T |(Xt − XT )′β0| = 0 implies λT+1(X) = 0. That ∆ is point identified if
mint<T |(Xt −XT )′β0| = 0 could also be expected from Hoderlein and White (2012). They
show that average marginal effects are nonparametrically identified on “stayers”, namely
individuals for whom Xit remains constant between two periods. Finally, point identification
can also be achieved if |Supp(α|X)| ≤ T/2.6 This corresponds to the second, boundary case
described in Proposition 2. Intuitively, if α|X has few points of supports, its full distribution
is characterized by its first moments. Then, given these moments, the higher moments are
fully determined. As an illustration, assume that T = 2 and α|X is degenerate and equal
to α0. Then, some algebra shows that m(X) = (1,Λ(α0 + X ′Tβ0),Λ(α0 + X ′Tβ0)2)′. In such
a case, the variance of any distribution in D(m(X)) is zero. Thus, D(m(X)) reduces to the
Dirac distribution at Λ(α0 +X ′Tβ0), which implies q2(m(X)) = q2(m(X)) = Λ(α0 +X ′Tβ0)3.

3 A first estimation and inference method

In this section, we estimate the sharp bounds on ∆ and develop inference on this parameter
based on these bounds, using a sample (Yi, Xi)i=1,...,n.

3.1 Definition of the estimators

We estimate the sharp bounds (∆,∆) in three steps. Whereas Step 1 and 3 are straightfor-
ward, Step 2 is more involved, and further details are given in Online Appendix A.1.

1. Estimation of β0 by the conditional maximum likelihood estimator β̂.
5This parameter is also different from the average marginal effect. However, our analysis also applies to

the average structural function (see Section 5.2 below), so we can also obtain an exponential rate of decrease
on this parameter.

6Such identification is achieved using the logit structure: as a complement to Hoderlein and White
(2012), Chernozhukov et al. (2019) show that average marginal effects are not identified nonparametrically
for non-stayers.
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2. Estimation of the functions c0, ..., cT and m:

(a) Nonparametric estimation of c0, ..., cT .
The functions c0, ..., cT depend on β0 and γ0 = (γ00, ..., γ0T ), with γ0j(x) =
P (S = j|X = x), according to

ct(x) =
T∑
j=t

(
T − t
j − t

)
γ0j(x) exp(jx′Tβ0)

Cj(x, β0) . (10)

To estimate γ0j (j = 0, ..., T ), we consider a local polynomial estimator γ̂j, of order
` and with bandwith hn. Then, the estimators ĉ0, ..., ĉT are plug-in estimators
replacing β0 and γ0j with β̂ and γ̂j in (10).

(b) Nonparametric estimation of m.
The main difficulty of this step is to build an estimator m̂ satisfying m̂(Xi) ∈MT

for all i, which is necessary for q
T

(m̂(Xi)) and qT (m̂(Xi)) to be well-defined (the
plug-in estimator of m(x) may not lie in MT because of sampling errors). To
ensure that m̂(Xi) ∈MT , we exploit Proposition 2. We introduce a smoothing pa-
rameter cn to estimate I, the largest t such thatm→t(Xi) := (1,m1(Xi), ...,mt(Xi))
belongs to the relative interior of Mt. Next for t ≤ I, m̂t(Xi) is a function of
ĉ0, ..., ĉt and for I < t ≤ T , m̂t(Xi) is a function of m̂→I(Xi).

3. Estimation of the bounds by a plug-in estimator based on the formulas above:

∆̂ = 1
n

n∑
i=1
r(Xi, Si, β̂) + β̂kĉ0(Xi)λT+1(Xi, β̂)

[
qT (m̂(Xi))1

{
β̂kλT+1(Xi, β̂) ≥ 0

}
+ q

T
(m̂(Xi))1

{
β̂kλT+1(Xi, β̂) < 0

} ]
,

∆̂ = 1
n

n∑
i=1
r(Xi, Si, β̂) + β̂kĉ0(Xi)λT+1(Xi, β̂)

[
q
T

(m̂(Xi))1
{
β̂kλT+1(Xi, β̂) ≥ 0

}
+ qT (m̂(Xi))1

{
β̂kλT+1(Xi, β̂) < 0

} ]
, (11)

where q
T

(m̂(Xi)) and qT (m̂(Xi)) are computed according to Proposition 2.

3.2 Asymptotic properties

We show in Section A.2 of the Online Appendix that (∆̂, ∆̂) is consistent under standard
regularity conditions. The key step therein is to show that m̂ is uniformly consistent, which
is not straightforward because m̂ is a complicated function of γ̂.
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To obtain the asymptotic distribution of (∆̂, ∆̂), in addition to standard conditions (see
Assumptions 5 and 6 in the Online Appendix), we rely on an assumption specific to our
context. To introduce it, let B(u, ε) denote the closed ball centered at u ∈ Rd and with
radius ε > 0. Note that for any J ≥ 1,MJ is a convex subset of RJ+1 included in an affine
subspace of dimension J . Then, let IntMJ and ∂MJ denote the relative interior and the
relative boundary ofMJ .

Assumption 3 There exists ε > 0 and I ∈ {1, ..., T} such that for all x ∈ Supp(X); (i)
B(m→I(x), ε) ⊂ IntMI ; (ii) if I < T , m→I+1(x) ∈ ∂MI+1.

The index I therein corresponds to the index I introduced in Step 2b of the estimation. It
does not need to be known by the researcher. I is related to |Supp(α|X = x)|. Specifically,
one can prove that if I < T , then I is odd and |Supp(α|X = x)| = (I + 1)/2 for all
x ∈ Supp(X). Also, if I = T , then |Supp(α|X = x)| > T/2 for all x ∈ Supp(X), in which
case |Supp(α|X = x)| may vary with x. Hence, Assumption 3 is violated if there exists
(x, x′) ∈ Supp(X)2 such that

|Supp(α|X = x)| 6= |Supp(α|X = x′)|,

min
(
|Supp(α|X = x)|, |Supp(α|X = x′)|

)
≤ T/2.

We impose this restriction because q
T
and qT are not regular everywhere for T ≥ 3. Specifi-

cally, whereas these functions are continuous onMT and infinitely differentiable on IntMT ,
they may not be even directionally differentiable at m ∈ ∂MT .7

Theorem 1 presents the asymptotic distribution of
(

∆̂, ∆̂
)
as a function of

(
ψ
i
, ψi

)
, which

are defined in Equations (42)-(43) of the Online Appendix. Σ denotes the variance matrix
of
(
ψ
i
, ψi

)
and Σ̂ = 1

n

∑n
i=1(ψ̂

i
, ψ̂i)′(ψ̂i, ψ̂i), where (ψ̂

i
, ψ̂i) are estimators of

(
ψ
i
, ψi

)
, defined

in Equations (44)-(45) of the Online Appendix.

Theorem 1 Suppose that Assumptions 1-3 and 5,6 hold. Then:

1. If β0k > 0,
√
n
(

∆̂−∆, ∆̂−∆
)

= 1√
n

n∑
i=1

(
ψ
i
, ψi

)
+ oP (1) d−→ (Z,Z),

with (Z,Z) ∼ N (0,Σ). If β0k < 0, the same result holds by just exchanging the roles
of ψ

i
(resp. Z) and ψi (resp. Z).

7See D’Haultfœuille and Rathelot (2017) for proofs of the first two statements. Regarding the third, one
can show that, e.g., m1 7→ q3(m0,m1,m2,m3) is not differentiable at m = (1,m1,m

2
1,m

3
1).
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2. If β0k = 0,
√
n
(

∆̂−∆, ∆̂−∆
)

d−→
(
min(Z,Z),max(Z,Z)

)
.

3. We have Σ̂ P−→ Σ.

The key step to prove this theorem is to show how the influence functions of ∆̂ and ∆̂ depend
on the first-step estimators. Assumption 3 is key for this purpose.

The estimated bounds are asymptotically normal if β0k 6= 0, but not in general if β0k = 0.
An exception is when the whole vector β0 is equal to 0. Then ψ = ψ, which implies that
Z = Z. In this case

√
n(∆̂− ∆̂) = oP (1), and both bounds are asymptotically normal.

With Theorem 1 at hand, we can construct confidence intervals on ∆ that are asymptoti-
cally valid whether or not β0k = 0, at least in a pointwise sense (namely, for a fixed joint
distribution of (X, Y )). To this end, let ϕα denote a consistent test with asymptotic level
α of β0k = 0, e.g., a t-test. Following Imbens and Manski (2004), let cα denote the unique
solution to

Φ

cα +
n1/2

(
∆̂− ∆̂

)
max

(
Σ̂1/2

11 , Σ̂
1/2
22

)
− Φ(−cα) = 1− α,

with Φ the cdf of a standard normal distribution and Σij the (i, j) term of Σ. Then, we
define CI 1

1−α as

CI 1
1−α :=

∣∣∣∣∣∣∣∣
[
∆̂− cα(Σ̂11/n)1/2, ∆̂ + cα(Σ̂22/n)1/2

]
if ϕα = 1,[

min
(
0, ∆̂− cα(Σ̂11/n)1/2

)
, max

(
0, ∆̂ + cα(Σ̂22/n)1/2

)]
if ϕα = 0.

The following proposition shows that CI 1
1−α is pointwise valid as n→∞.

Proposition 4 Suppose that Assumptions 1-3 and 5,6 hold and min(Σ11,Σ22) > 0. Then
lim infn inf∆∈[∆,∆] P (∆ ∈ CI 1

1−α) ≥ 1− α, with equality when β0k 6= 0.

Intuitively, CI 1
1−α asymptotically reaches its nominal level when β0k 6= 0 because it includes

[∆̂− cα(Σ̂11/n)1/2, ∆̂ + cα(Σ̂22/n)1/2], and the latter interval has asymptotic coverage 1−α,
by Theorem 1. When β0k = 0, the asymptotic coverage of CI 1

1−α is also at least 1 − α,
because ∆ = 0 ∈ CI 1

1−α as soon as ϕα = 0.

The interval CI 1
1−α may have a uniform coverage over an appropriate set of data generating

processes (DGPs), even if β0 varies over Θ. Establishing this formally would however require
to establish the uniform convergence in distribution of (∆̂, ∆̂), a multistep estimator with a
nonparametric first step. We leave this issue for future research. Note, on the other hand,
that we consider below other confidence intervals that are uniformly conservative.
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4 An alternative, simple estimator and inference method

4.1 The estimator

As shown in Lemma 1, the only reason why ∆ is not identified is the integral term
∫
uT+1dµX(u).

In particular, because µx ∈ D(m(x)), ∆ would become point identified if we replaced uT+1 by
any polynomial of degree T . An idea, then, is to use a good approximation of uT+1 by such a
lower degree polynomial. Following this strategy, we construct a very simple estimator that,
in particular, does not require any first-step nonparametric estimator.

Specifically, note that among polynomials of degree T + 1 with leading coefficient equal
to 1, the (renormalized) Chebyshev polynomial TcT+1 has the lowest supremum norm over
[−1, 1]. Thus, the same holds on [0, 1] for TT+1(u) := 2−T−1TcT+1(2u − 1). Then, the
best approximation of u 7→ uT+1 by a polynomial of degree T for the supremum norm is
P ∗T (u) := uT+1 − TT+1(u). Figure 2 displays u 7→ uT+1 and P ∗T for T = 2, 3 and 4. As
we can see, the approximation is already good for T = 2, and the two functions become
indistinguishable for T = 4.
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0.8

1
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uT+1

PT
*

0 0.5 1
0
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PT
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0
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PT
*

Figure 2: Approximation of u 7→ uT+1 by P ∗T .

Then, using (6), we simply approximate ∆ by

∆̃ = E

[
r(X,S, β0) + β0kc0(X)λT+1(X, β0)

∫ 1

0
P ∗T (u)dµX(u)

]
.
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Let bt denote the coefficient of ut in P ∗T . Since
∫
utdµX(u) = mt(x) = ct(x)/c0(x), we obtain

∆̃ =E
[
r(X,S, β0) + β0kλT+1(X, β0)

T∑
t=0

btct(X)
]

=β0kE

[
p(X,S, β0)

]
,

where we define

p(X,S, β0) := r(X,S, β0) +
S∑
t=0

(
T − t
S − t

)
(λt(x, β0) + btλT+1(x, β0)) exp(SX ′Tβ0)

CS(X, β0) .

We then estimate ∆ by the simple plug-in estimator of ∆̃:

∆̂ = β̂k
n

n∑
i=1

p(Xi, Si, β̂). (12)

4.2 Inference on ∆

Even if ∆̂ is not a consistent estimator of ∆ when T is fixed, we now show that we can
build asymptotically valid confidence intervals for ∆ using ∆̂. By a slight adjustment, we
can even control their asymptotic size over a large class of DGPs. The confidence intervals
shrink to {∆} if T → ∞ and remain of positive length otherwise. To construct these
confidence intervals, we rely on two results. The first is the root-n asymptotic normality
of ∆̂. Before displaying this result, we introduce some notation. Let φi = (φi1, ..., φiK)′ :=
I−1

0 ∂`c/∂β(Yi|Xi; β0) be the influence function of β̂ and φ̂i be its plug-in estimator. Then,
let

ψi =E [p(X,S, β0)]φik + β0k

{
p(X,S, β0)− E [p(X,S, β0)] + E

[
∂p

∂β
(X,S, β0)

]′
φi

}
,

ψ̂i =
(

1
n

n∑
i=1

p(Xi, Si, β̂)
)
φ̂ik + β̂k

{
p(Xi, Si, β̂)− 1

n

n∑
i=1

p(Xi, Si, β̂)

+
(

1
n

n∑
i=1

∂p

∂β
(Xi, Si, β̂)

)′
φ̂i

}
.

Finally, we define σ2 = V (ψ) and σ̂2 = ∑n
i=1 ψ̂

2
i /n. The following result follows from standard

arguments. As all results of this section (except Lemma 3 below, proved in Appendix B), it
is proved in Online Appendix A.

Lemma 2 Suppose that Assumptions 1, 2 and 5 hold. Then

n1/2
(
∆̂− ∆̃

)
d−→ N (0, σ2). (13)

Moreover, σ̂ P−→ σ.
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The second result is a bound on ∆̃ − ∆, which essentially follows from the fact that the
Chebyshev polynomial TT+1 satisfies supu∈[0,1] |TT+1(u)| ≤ 1/[2× 4T ]. Below, we letM+ =
arg maxu∈[0,1] TT+1(u),M− = arg minu∈[0,1] TT+1(u) and

R := E
[
c0(X)λT+1(X, β0)

∫ 1

0
(uT+1 − P ∗T (u))dµX(u)

]
,

R := E

[(
T

S

)
|λT+1(X, β0)| exp(SX ′Tβ0)

2× 4T × CS(X, β0)

]
.

Lemma 3 Suppose that Assumption 1 holds. Then

|∆̃−∆| = |β0k|R ≤ b := |β0k|R.

Moreover, |∆̃−∆| = b if and only if:

1. β0k = 0;

2. Or, conditional on X = x, Λ(x′Tβ0 +α) is supported onM+ for almost all x such that
λT+1(x, β0) > 0 and onM− for almost all x such that λT+1(x, β0) < 0;

3. Or, conditional on X = x, Λ(x′Tβ0 +α) is supported onM− for almost all x such that
λT+1(x, β0) > 0 and onM+ for almost all x such that λT+1(x, β0) < 0.

To build a confidence interval on ∆, we first estimate b by b̂ = |β̂k|R̂, with

R̂ = 1
2× 4T

1
n

n∑
i=1

(
T

Si

)
|λT+1(Xi, β̂)| exp(SiX ′iT β̂)

CSi(Xi, β̂)
.

Let Zn := n1/2
(
∆̂−∆

)
/σ̂. To motivate the construction of the confidence intervals, let us

first assume that σ̂ = σ, b̂ = b and the asymptotic approximation (13) is exact. Then

Zn ∼ N
(
n1/2 ∆̃−∆

σ̂
, 1
)
. (14)

Let qα(b) denote the quantile of order 1 − α of a |N (b, 1)|. It is not difficult to show that
b 7→ qα(b) is symmetric and increasing on [0,∞). Then, by Lemma 3, if b̂ = b and (14) holds,

P

|Zn| ≤ qα

n1/2b̂

σ̂

 ≥ 1− α. (15)

We then define

CI 2
1−α =

∆̂± qα

n1/2b̂

σ̂

 σ̂

n1/2

 .
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Inequality (15) implies that if (14) holds and (σ̂, b̂) = (σ, b), CI 2
1−α has a level greater than

1−α. Theorem 2 below shows that actually, the same property holds asymptotically without
these conditions, as long as R < R. The only difference between CI 2

1−α and a standard
confidence interval is that because of the possible bias, we consider qα

(
n1/2b̂/σ̂

)
instead of

the usual normal quantile qα (0). This difference is important, however: one can show that
CI 2

1−α converges to [∆̃± b] 3 ∆ if b > 0, rather than to {∆̃} (but if b = 0, CI 2
1−α converges

to {∆̃} = {∆}).

We consider a second class of slightly wider confidence intervals, which has the advantage of
being uniformly valid among a large class of DGP. To this end, we now partially take into
account the randomness of b̂. Specifically, consider γ, δ > 0 such that γ + δ = α and let
z1−γ be the quantile of order 1 − γ of a N (0, 1). Define b̂γ =

(
|β̂k|+ z1−γn

−1/2τ̂k
)
R̂, where

τ̂k denotes the estimator of the asymptotic variance τk of β̂k. We consider the following
modification of CI 2

1−α,

CI 3
1−α =

∆̂± σ̂

n1/2 qδ

n1/2b̂γ
σ̂

 .
To define the class of DGPs for which the validity of CI 3

1−α is uniform, fix Θ a compact
subset of Rp, M , σ ≥ 0, ζ ≥ 0 and let A be a symmetric positive definite matrix. Define the
following subset of probability distributions:

P :=
{
P : Assumption 1 holds, β0 ∈ Θ, P (‖X‖ ≤M) = 1, I0P >> A, σ2

P ≥ σ2

and RP > RP (1 + ζ)
}
, (16)

where B >> A means that B−A is symmetric positive definite and we index I0, σ2, R and
R by P to underline their dependence in P .

Theorem 2 1. Suppose that Assumptions 1, 2 and 5 hold, σ2 > 0 and either b = 0 or
R < R. Then:

lim inf
n→∞

P
(
∆ ∈ CI 2

1−α

)
≥ 1− α.

2. Suppose that Assumption 5.1 holds, γ + δ = α in the definition of CI 3
1−α and σ > 0

and ζ > 0 in the definition of P. Then:

lim inf
n→∞

inf
P∈P

P
(
∆ ∈ CI 3

1−α

)
≥ 1− α.

Given Lemma 3, the condition that either b = 0 or R < R is very weak: it is violated only
for very peculiar Fα|X . The first point shows that under this condition, CI 2

1−α is pointwise
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asymptotically conservative. One potential issue, however, is that because CI 2
1−α does not

account for the variability of b̂, it may not be uniformly asymptotically conservative, in
particular if we consider sequences of β0k of the kind n−1/2ck. By (partially) accounting for
the variability of b̂, CI 3

1−α is uniformly valid on P , which allows for such sequences of β0k.

One limitation of CI 2
1−α and CI 3

1−α is that they are not guaranteed to work in the very
specific cases for which R = R. To include such cases, one would have to account for
the variability of R̂. However, its asymptotic distribution is non-normal and complicated
when P (λT+1(X, β0) = 0) > 0,8 so we leave this issue for future research. Also, simulations
discussed below suggest that CI 2

1−α and CI 3
1−α may still have good coverage even if R = R.

5 Extensions

We mention in this section other parameters and models for which very similar identification
and estimation strategies apply. Specifically, we study the ATE, the average structural func-
tion and FE ordered logit models. We also consider the case where T varies per individual.
We mostly focus on identification below, but also discuss in some cases how the inference
methods above adapt to these set-ups.

5.1 Average treatment effects

When the regressor Xk is a binary treatment, we usually consider other parameters than
the average marginal effect. Let X0

T (resp. X1
T ) be as XT but with a 0 (resp. 1) in its k-th

component. One usual parameter is the average treatment on the treated at period T :

∆ATT = E
[
Λ
(
X1
T
′β0 + α

)
− Λ

(
X0
T
′β0 + α

)
|XkT = 1

]
.

This is the average effect of a ceteris paribus change of XTk from 0 to 1, for all individuals
satisfying XTk = 1. Because

E
(
Λ
(
X1
T
′β0 + α

)
|XkT = 1

)
= E (Λ (X ′Tβ0 + α) |XkT = 1) = E(Y |XkT = 1)

is identified, we just have to focus on the bounds of

∆(1) = E
[
Λ(X0

T
′β0 + α)|XkT = 1

]
.

8For this reason also, we cannot use the results of Imbens and Manski (2004) and Stoye (2009) to construct
uniformly valid confidence intervals.
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The functions c0, ..., cT , m0, ...,mT , λ0, ..., λT+1 and r used for the average marginal effect
have to be slightly adapted to ∆(1). Specifically, for all t = 0, ..., T , let

T+1∑
t=1

λ
(1)
t (x, β0)ut := u

T∏
t=1

[
1 + u(exp((xt − x0

T )′β0)− 1)
]
,

c
(1)
t (x) := E

[
1 {S ≥ t}

(
T − t
S − t

)
exp(Sx0

T
′β0)/CS(x, β0)|X = x,XkT = 1

]
,

m
(1)
t (x) := c

(1)
t (x)/c(1)

0 (x),

r(1)(x, s, β0) :=
s∑
t=0

(
T − t
s− t

)
λ

(1)
t (x, β0) exp(sx0

T
′β0)/Cs(x, β0)

The following result mimics Lemma 1 for ∆(1). Its proof is very similar and is thus omitted.

Lemma 4 Suppose that Assumptions 1-2 hold, XkT ∈ {0; 1}. The sharp identified set of
∆(1) is [∆(1), ∆(1)], with

∆(1) =E
[
r(1)(X,S, β0) + c

(1)
0 (X)λ(1)

T+1(X, β0)
(
q
T

(m(1)(X))

1{λ(1)
T+1(X, β0) ≥ 0}+ qT (m(1)(X))1{λ(1)

T+1(X, β0) < 0}
)
|XkT = 1

]
∆(1) =E

[
r(1)(X,S, β0) + c

(1)
0 (X)λ(1)

T+1(X, β0)
(
qT (m(1)(X))

1{λ(1)
T+1(X, β0) ≥ 0}+ q

T
(m(1)(X))1{λ(1)

T+1(X, β0) < 0}
)
|XkT = 1

]
A similar result holds for the average treatment on the untreated, defined as

∆ATU = E
[
Λ
(
X1
T
′β0 + α

)
− Λ

(
X0
T
′β0 + α

)
|XkT = 0

]
.

Finally, consider the average treatment effect

∆ATE = E
[
Λ
(
X1
T
′β0 + α

)
− Λ

(
X0
T
′β0 + α

)]
.

To compute the bounds on ∆ATE, remark that

∆ATE = P (XkT = 1)∆ATT + P (XkT = 0)∆ATU .

Moreover, the distribution of α|X,XkT = 1 does not restrict the distributions of α|X,XkT =
0. As a result, the sharp lower bound ∆ATE on ∆ATE simply satisfies

∆ATE = P (XkT = 1)∆ATT + P (XkT = 0)∆ATU .

The same holds for the sharp upper bound.
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We can also simply estimate ∆ATE using the second method. Following the same logic as in
Section 4, we obtain the following approximation for ∆ATE:

∆̃ATE = E[pATE(X, Y, S, β0)], (17)

where we define

pATE(X, Y, S, β0) = YT (2XkT − 1) +
S∑
t=0

(
T − t
S − t

)
(dt(x, s, β0) + b∗tdT+1(x, s, β0)) exp(SX ′Tβ0)

CS(X, β0) ,

dt(x, s, β0) = −λ(1)
t (x, β0) exp(−sβ0k)xkT + λ

(0)
t (x, β0) exp(sβ0k)(1− xkT ),

T+1∑
t=1

λ
(0)
t (x, β0)ut = u

T∏
t=1

[
1 + u(exp((xt − x1

T )′β0)− 1)
]
,

and −(b∗0, ..., b∗T ) are the first T coefficients of TT+1. The estimator ∆̂ATE of ∆ATE is then
a plug-in estimator based on (17). Also, with the same reasoning as for deriving the upper
bound on ∆̃−∆, we obtain

|∆ATE − ∆̃ATE| ≤ b
ATE := E

[ (
T
S

)
exp(SX ′Tβ0)

2× 4T × CS(X, β0)
(
|λ(1)
T+1(X, β0)| exp(−Sβ0k)XT

+|λ(0)
T+1(X, β0)| exp(Sβ0k)(1−XT )

) ]
.

Then, we can build confidence intervals on ∆ATE using ∆̂ATE, a plug-in estimator of bATE

and an estimator of the asymptotic variance of ∆̂ATE, which is similar to σ̂.

5.2 Average structural function

We now turn to the average structural function defined, for any x0 ∈ Rp, by:

∆x0 := E (Λ(x′0β + α)) .

In a similar way as above, we define
T+1∑
t=1

λ
(2)
t (x, β0)ut := u

T∏
t=1

[1 + u(exp((xt − x0)′β0)− 1)] ,

c
(2)
t (x) := E

[
1 {S ≥ t}

(
T − t
S − t

)
exp(Sx′0β0)/CS(x, β0)|X = x

]
,

m
(2)
t := c

(2)
t (x)/c(2)

0 (x),

r(2)(x, s, β0) :=
s∑
t=0

(
T − t
s− t

)
λt(x, β0) exp(sx′0β0)/Cs(x, β0)

Again, we obtain a similar result as Lemma 1 on the sharp bounds of ∆(2)
x0 :
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Lemma 5 Suppose that Assumptions 1-2 hold. Then the sharp identified set of ∆(2)
x0 is

[∆(2)
x0 , ∆(2)

x0 ], with

∆(2)
x0 =E

[
r

(2)
t (X,S, β0) + c

(2)
0 (X)λ(2)

T+1(X, β0)
(
q
T

(m(2)(X))

1{λ(2)
T+1(X, β0) ≥ 0}+ qT (m(2)(X))1{λ(2)

T+1(X, β0) < 0}
)]

∆(2)
x0 =E

[
r

(2)
t (X,S, β0) + c

(2)
0 (X)λ(2)

T+1(X, β0)
(
qT (m(2)(X))

1{λ(2)
T+1(X, β0) ≥ 0}+ q

T
(m(2)(X))1{λ(2)

T+1(X, β0) < 0}
)]

5.3 Average marginal effect in ordered logit models

We now consider a model where the outcome is ordered and takes J ≥ 2 values.

Assumption 4 We have Yt = ∑J−1
k=1 k1{γk ≤ X ′tβ0 + α + εt < γk+1} with γ1 = 0 < ... <

γJ = +∞ and (εt)t=1,...,T are iid, independent of (α,X) and follow a logistic distribution.

The condition γ1 = 0 is a mere normalization: only the differences γj − γj′ are identified
since the location of the distribution of α is left unrestricted. In this model, we consider the
following AME, for any j0 ∈ {1, ..., J − 1}:

∆(3) = E

[
∂P (YT ≥ j0|X,α)

∂XTk

]
.

To identify (β0, γ2, ..., γJ−1), we follow Muris (2017). Let Π be the set of functions from
{1, ..., T} into {1, ..., J − 1} and for π ∈ Π, let Y π

t = 1 {Yt ≥ π(t)}. By conditioning on
Sπ = ∑

t Y
π
t , we get the conditional log-likelihood

`πc (y|x; β, γ2, ..., γJ−1) :=
T∑
t=1

yt(x′tβ − γπ(t))− ln
[
Cπ∑T

t=1 yt
(x, β, γ)

]
,

with Cπ
k (x, β, γ) :=

∑
(d1,...,dT )∈{0,1}T :

∑T

t=1 dt=k

exp
(

T∑
t=1

dt(x′tβ − γπ(t))
)
.

The parameters θ0 = (β0, γ2, ..., γJ−1) are then identified by stacking, over all π ∈ Π, the
first-order conditions E[∂`πc /∂θ(Y |X; θ0)] = 0 of the conditional log-likelihood maximization.

For any (j, t) ∈ {1, ..., J − 1}× {1, ..., T}, let ρ(j, t, x) = exp((xt− xT )′β0− γj + γj0)− 1 and

w(u) = 1∏
1≤j≤J−1

1≤t≤T
(1 + uρ(j, t, x)) .
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Note that w(u) is well-defined and positive on [0, 1] since ρ(j, t, x) > −1. Finally, let U =
Λ(x′Tβ0 − γj0 + α). We show in the proof of Lemma 6 below that:

span
{
u 7→ P ((Y1, ..., YT ) = y|X = x, U = u), y ∈ {1, ..., J}T

}
= span

{
u 7→ utw(u), t ∈ {0, ..., (J − 1)T}

}
.

This means that there exist identified, non-negative functions (c(3)
0 (x), ..., c(3)

(J−1)T (x)) such
that the (J − 1)T + 1 equations

∫ 1
0 u

tw(u)dFU |X=x(u) = c
(3)
t (x) exhaust the information

provided by the knowledge of (P ((Y1, ..., YT ) = y|X = x))y∈{1,...,J}T . Next, let

m(3)(x) := (c(3)
0 (x)/c(3)

0 (x), ..., c(3)
(J−1)T (x)/c(3)

0 (x))

and as previously, define λ0(x, β0), ..., λ(J−1)T+1(x, β0) as the coefficient of the polynomial
u(1−u)
w(u) of degree (J − 1)T + 1:

(J−1)T+1∑
t=0

λ
(3)
t (x, β0)ut := u(1− u)

w(u) .

Finally, let us define

r(3)(x, β0) := β0k

(J−1)T∑
t=0

λ
(3)
t (x, β0)c(3)

t (x).

Again, sharp bounds on ∆(3) can be obtained as in Lemma 1.

Lemma 6 Suppose that Assumptions 2 and 4 hold. Then the sharp identified set of ∆(3) is
[∆(3),∆(3)], with

∆(3) =E
[
r(3)(X, β0) + β0kc

(3)
0 (X)λ(3)

(J−1)T+1(X, β0)
(
q(J−1)T (m(3)(X))

1{β0kλ(J−1)T+1(X, β0) ≥ 0}+ q(J−1)T (m(3)(X))1{β0kλ(J−1)T+1(X, β0) < 0}
)]

∆(3) =E
[
r(3)(X, β0) + β0kc

(3)
0 (X)λ(3)

(J−1)T+1(X, β0)
(
q(J−1)T (m(3)(X))

1{β0kλ(J−1)T+1(X, β0) ≥ 0}+ q(J−1)T (m(3)(X))1{β0kλ(J−1)T+1(X, β0) < 0}
)]
.

The main difference between this result and Lemma 1 above is that the bounds are related
to moments of order (J − 1)T + 1 of distributions for which the first (J − 1)T raw moments
are known. Hence, the bounds are tighter than in the binary case, and substantially more
so given Proposition 3 above.
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5.4 Varying number of periods

Missing data or attrition are common in panel data. A “panel” may also correspond to
hierarchical data where (i, t) corresponds to a unit t belonging to a group i (e.g. individuals
within a household). In both cases, T is a random variable varying from one individual (or
group) to another. Our method still applies in this case, provided that T is conditionally
exogenous. Specifically, we assume that (ε1, ..., εT ) is independent of (T,X, α). Note, on
the other hand, that we remain agnostic on the dependence between T and (X,α). Then,
we consider the average marginal effects at period T = min Supp(T ). Other choices are of
course possible but this parameter has the advantage of being easily interpretable in the
panel case.9

Under the independence condition above, the identification and estimation of β0 remains
unchanged. Also, Lemma 1 holds conditional on T = t. The only changes therein are that
(i) the polynomial in (3) is now u(1−u)∏t6=T (u(exp((xt−xT )′β0−1); (ii) one should replace
xT by xT in (4). Next, we obtain the sharp bounds on ∆ by integrating over T . Similarly,
the first estimation method applies for each subpopulation satisfying T = t, and then one
can just sum over all t ∈ Supp(T ).

The second method can also be easily adapted. An inspection of ∆̃ reveals that the formula
remains similar, with the following changes: (i) Equations (3) and (4) should be modified as
above; (ii) the Chebyshev polynomials used for the approximation P ∗T (u, x) now vary with
T . The estimator ∆̂ and the formulas of σ2 and b should be adjusted in a similar way. These
features are

6 Monte Carlo simulations

We now study the finite sample performances of our two methods and compare them with
the popular linear probability model estimator.10 In all the DGPs we consider, we assume
that (X1, ..., XT ) are i.i.d., with Xt ∈ R, uniformly distributed on [−1/2, 1/2] and β0 = 1.
We also suppose that α = −X ′Tβ0 +η. Then, we first consider three correctly specified DGPs
that differ by their distribution of η|X:

9With hierarchical data, the choice of the “period” does not matter anyway.
10For an application of our methodology to a real dataset with both continuous and discrete regressors,

see the documentation of our R package MarginalFELogit.
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1. DGP1: η = 0. Since |Supp(α|X)| = 1 a.s., ∆ = 0.25 is point identified for all T ≥ 2.

2. DGP2: η|X ∼ N (0, 1). Because |Supp(α|X)| = ∞, ∆ ' 0.2067 is partially identified
for all T . The true bounds are (∆,∆) ' (0.2006, 0.2124) if T = 2 and (∆,∆) '
(0.2059, 0.2069) if T = 3.

3. DGP3: this corresponds to Point 2 of Lemma 3, for which |∆̃ −∆| = b. Specifically,
η|X is uniformly distributed over Λ−1(M+) (resp. over Λ−1(M−)) if λT+1(X, β0) ≥ 0
(resp. if λT+1(X, β0) < 0). Then, ∆ = ∆ = ∆ ' 0.1875 if T = 2 and ∆ ' 0.1667 with
(∆,∆) ' (0.1652, 0.1667) if T = 3.

For each of the three DGPs above, we consider T ∈ {2, 3}, n ∈ {250; 500; 1, 000} and
perform 500 simulations for each such (T, n). We then compute the estimators of the first
and second methods, and CI10.95, CI20.95 and CI30.95. To estimate nonparametrically γ0, we use
local linear estimators with a Gaussian product kernel. We use data-driven bandwidthes hn
and thresholds cn, on which further details are given in Section C of the Online Appendix.
In CI30.95, we use γ = 0.01 and δ = 0.04.

Table 1 displays the properties of the estimators underlying the two methods. The estimators
of the bounds appear to have a small bias in all cases, except perhaps with DGP3 and T = 2.
Note that in this case, the distribution of η|X = x does not vary in a smooth way with x:
η = Λ−1(1/4) when x1 ≤ x2 while η = Λ−1(3/4) otherwise. As a result, the regularity
condition we impose on γ0 (see Assumption 6.2) is actually violated, which could explain the
larger bias in this case. The bias of the estimator ∆̂ is very small compared to its standard
deviation; except with DGP3, T = 2 and n = 1, 000, it is always more than ten times smaller.
The exceptional case could be expected, as in this case |∆̃ −∆| reaches its upper bound b.
Even in this case, the bias of ∆̂ is more than four times smaller than its standard deviation.
Note that the bias is very small with T = 3, even under DGP3. This illustrates the fact that
the bound on |∆̃−∆| decreases quickly with T .

Table 2 presents the coverage rate and length of both confidence intervals. The coverage
rates of the third confidence interval are always greater than 95%. This is the case even
with DGP3, for which Theorem 2 does not provide any guarantee. Hence, neglecting the
variability of R does not seem to lead to undercoverage here. The second confidence interval
also shows a very good coverage, always greater than 94%. The first method leads to
somewhat smaller coverage. It is still close to 95% for DGP1, DGP2 and DGP3 with T = 3.
The lower coverage for DGP3 and T = 2 is probably due to the bias of the estimators of the
bounds, which could be due to the aforementioned irregularity of γ0.
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In terms of length of the confidence intervals, the second method actually performs better
than the first method when T = 2, and also when T = 3 with DGP3; otherwise the two
methods are very comparable. This was not obvious: when n → ∞, the length of CI10.95

becomes smaller than that of CI20.95 because ∆ − ∆ < R. Hence, at least with our three
DGPs, R − (∆ − ∆) is small compared to the standard errors of ∆̂, ∆̂ and ∆̂, even with
n = 1, 000. Finally, the third confidence interval is of course larger than CI20.95, but the
increase in length is modest, around 6% on average and never more than 8%.

First method Second method
DGP T n σ(∆̂) Bias(∆̂) σ(∆̂) Bias(∆̂) σ(∆̂) Bias(∆̂)

1 2 250 0.145 0.024 0.15 0.03 0.118 0.006
500 0.095 0.018 0.098 0.024 0.077 0.002
1,000 0.066 0.016 0.069 0.021 0.056 0∗

3 250 0.069 -0.009 0.069 -0.009 0.078 0.002
500 0.051 -0.004 0.051 -0.004 0.057 0.004
1,000 0.036 -0.003 0.036 -0.003 0.040 0.004

2 2 250 0.148 0.039 0.156 0.039 0.109 0.011
500 0.096 0.026 0.102 0.026 0.076 0.006
1,000 0.058 0.014 0.062 0.013 0.050 -0.001

3 250 0.066 -0.010 0.066 -0.011 0.072 0.002
500 0.05 -0.006 0.050 -0.006 0.052 0.001
1,000 0.034 -0.006 0.034 -0.006 0.037 0∗

3 2 250 0.176 0.064 0.184 0.077 0.110 -0.002
500 0.102 0.041 0.108 0.053 0.071 -0.007
1,000 0.071 0.030 0.075 0.041 0.052 -0.011

3 250 0.086 0.011 0.087 0.010 0.064 0.004
500 0.050 0.001 0.050 0.001 0.045 -0.004
1,000 0.035 0.004 0.035 0.004 0.032 0∗

Notes: in the three DGPs, α = −XTβ0 + η with η = 0 in DGP1, η|X ∼ N (0, 1)

in DGP2 and η|X uniformly distributed over Λ−1(M+) (resp. over Λ−1(M−)) if

λT +1(X,β0) > 0 (resp. if λT +1(X,β0) < 0) in DGP3. The results are obtained

with 500 simulations. ∗: in absolute values, smaller than 0.0005.

Table 1: Properties of the estimators

26



CI10.95 CI20.95 CI30.95

DGP T n Coverage Avg. length Coverage Avg. length Coverage Avg. length

1 2 250 0.94 0.492 0.95 0.461 0.97 0.492
500 0.93 0.344 0.96 0.325 0.97 0.347
1,000 0.93 0.243 0.96 0.231 0.97 0.248

3 250 0.97 0.309 0.96 0.317 0.97 0.332
500 0.98 0.218 0.96 0.223 0.96 0.234
1,000 0.97 0.155 0.96 0.158 0.96 0.166

2 2 250 0.93 0.463 0.96 0.420 0.97 0.454
500 0.92 0.318 0.96 0.296 0.98 0.319
1,000 0.94 0.221 0.97 0.210 0.98 0.226

3 250 0.96 0.279 0.95 0.282 0.95 0.296
500 0.95 0.197 0.95 0.201 0.96 0.210
1,000 0.96 0.139 0.94 0.141 0.95 0.148

3 2 250 0.90 0.540 0.96 0.422 0.97 0.453
500 0.92 0.365 0.96 0.296 0.97 0.318
1,000 0.88 0.250 0.94 0.209 0.95 0.224

3 250 0.95 0.279 0.95 0.249 0.96 0.261
500 0.95 0.187 0.95 0.175 0.96 0.184
1,000 0.96 0.130 0.95 0.124 0.96 0.130

Notes: in the three DGPs, α = −XTβ0 + η with η = 0 in DGP1, η|X ∼ N (0, 1) in DGP2 and

η|X uniformly distributed over Λ−1(M+) (resp. over Λ−1(M−)) if λT +1(X,β0) > 0 (resp. if

λT +1(X,β0) < 0).

Table 2: Coverage and average length of CIk0.95 for k ∈ {1, 2, 3}.

Finally, we compare ∆̂ and CI20.95 with the linear probability model (LPM) estimator and
the corresponding confidence interval (CILPM) based on asymptotic normality and the usual
standard error accounting for clustering at the individual level. We consider DGP1 but also
two incorrectly specified models. In DGP4, the (εt)t=1,...,T still marginally follow a logistic
distribution (so that ∆ is the same as in DGP1), but they are autocorrrelated: the copula
of (εs, εt) is gaussian with correlation coefficient 1/2|s−t|. In DGP5, we assume instead that
the εt are independent over time but εt ∼ N (0, 8/π). We chose this variance so that again,
∆ is the same as in DGP1. We consider T ∈ {2, 3, 4}, n = 1, 000 and two possible values of
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β0, namely β0 = 1 and β0 = 2.

Bias Coverage
DGP β0 T ∆̂ ∆̂LPM CI20.95 CILPM

0.95

1 1 2 0.003 -0.006 0.95 0.94
3 0.001 -0.008 0.96 0.96
4 -0.002 -0.01 0.96 0.95

2 2 0.002 -0.056 0.99 0.78
3 0.005 -0.055 0.96 0.67
4 -0.002 -0.057 0.95 0.50

4 1 2 0.003 -0.006 0.97 0.93
3 0.001 -0.008 0.96 0.95
4 0∗ -0.008 0.95 0.93

2 2 0.003 -0.055 1 0.73
3 0∗ -0.056 0.97 0.58
4 0∗ -0.054 0.95 0.44

5 1 2 0.003 -0.005 0.95 0.93
3 0.003 -0.006 0.95 0.94
4 0.002 -0.006 0.94 0.95

2 2 0.013 -0.047 0.97 0.85
3 0.018 -0.047 0.96 0.78
4 0.013 -0.046 0.95 0.63

Notes: DGP1 is as above. DGP4 as DGP1, but with autocorrre-

lated (εt)t=1,...,T . DGP5 as DGP1, but with εt ∼ N (0, 8/π). In

the three DGPs, ∆ = 0.25β0. Results based on 500 simulations.
∗: in absolute values, smaller than 0.0005.

Table 3: Comparison with the linear probability model

Table 3 displays the results. It first shows that in the two misspecified DGPs we consider, our
estimator ∆̂ still performs very well: its bias remains small and the corresponding confidence
interval CI20.95 still exhibits a coverage very close to or above 95%. The linear probability
model estimator also has good performances when β0 = 1, with low bias and a coverage
always larger than 93%. However, when β0 = 2, its performance deteriorates, especially for
larger T . Note that this sensitivity on β0 may be more exacerbated with fixed effects. To
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see this, we consider the same DGP as DGP1 but with α = 0. Then, the coverage rate of
CILPM

0.95 only decreases from 95% when β0 = 1 to 89% when β0 = 2 with T = 4, as opposed
to the decrease from 95% to 50% with DGP1.

7 Conclusion

In the FE logit model, the AME can be written as a function of the (T + 1)-th raw mo-
ment of an unknown distribution for which the first T moments are known. By results in
the theory of moments, this implies simple expressions for the sharp bounds of the AME.
These bounds can be estimated consistently under weak conditions. Using instead the best
uniform approximation of uT+1 by a polynomial of degree T yields an even simpler approach
for inference on the AME. We expect both ideas to apply to other set-up involving latent
variables, such as α in our context.11

The theory is simple here because only raw moments are involved; but similar results hold
with other moments, provided that the corresponding functions form a so-called Chebyshev
system (See, e.g., Krein and Nudelman, 1977, for a mathematical exposition). Results on
these systems have already been applied to the optimal design of experiments (see Dette
and Studden, 1997) and the measure of segregation with small units (D’Haultfœuille and
Rathelot, 2017). By drawing attention on these tools, we hope that this paper will contribute
to their use in econometrics.

11Noteworthy, Dobronyi et al. (2021) apply related results on moment problems to obtain a simple char-
acterization of the identified set of slope parameters in a dynamic FE logit model.
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A Potential pitfalls of using FE linear models

We illustrate here two points made in the introduction on the use of FE linear models for
binary outcomes. First, the FE linear model will only approximate the effect on the “movers”
(in terms of covariates), and this effect may be very different from the effect on the “stayers”,
and thus also different from the average effect on the whole population. Second, the linear
approximation of a true, nonlinear model may be so poor that the approximation of a true
treatment effect is of the wrong sign.

To illustrate the first point, suppose the true model is the FE logit model and assume that
T = 2. Suppose Xt ∈ R, β0 = 1 and we have a dummy variable M , with M = 1 if the
individual is a mover,M = 0 otherwise. In the first case, X1 and X2 are i.i.d. and continuous
(so that P (X1 = X2|M = 1) = 0) whereas in the second case, X1 = X2 a.s. Assume that
the individual effect is such that |α| is very large when M = 0, whereas α = 0 if M = 1.
Then, the true AME is

∆ = P (M = 1)E[Λ′(X2)|M = 1] + P (M = 0)E[Λ′(X2 + α)|M = 0]

' P (M = 1)E[Λ′(X2)|M = 1].

On the other hand, the linear approximation ∆lin of ∆, equal to the slope parameter of the
FE linear model, satisfies

∆lin = E[(Y2 − Y1)(X2 −X1)]
E[(X2 −X1)2]

= E[(Y2 − Y1)(X2 −X1)|M = 1]
E[(X2 −X1)2|M = 1]

= E[(Λ(X2)− Λ(X1))(X2 −X1)|M = 1]
E[(X2 −X1)2|M = 1]

' E[Λ′(X2)|M = 1],

where the last approximation follows by a Taylor expansion, if X2 − X1 is small. Thus, in
this example, ∆lin will overestimate ∆ by the factor 1/P (M = 1), which can be arbitrarily
large. Note that the reverse holds true if, instead, |α| is very large when M = 1 and α = 0
when M = 0.

To illustrate the second point, suppose that potential outcomes Yt(d) satisfy

Yt(d) = 1 {α + 1 {t = 2}+ d+ εt ≥ 0} , t ∈ {1, 2},
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where ε2, ε2 are i.i.d. and follow a logistic distribution. We observe Yt := Yt(Dt), where
the binary treatment satisfies D1 = 0 a.s., whereas P (D2 = 1) = 0.5. Assume further that
α = −0.5 + 1.5D2. Then, the true ATE at the second period satisfies

∆ATE = E [Y2(1)− Y2(0)]

= 0.5 [EΛ(1 + 1 + 1)− Λ(1 + 1)] + 0.5 [Λ(−0.5 + 1 + 1)− Λ(−0.5 + 1)]

' 0.13.

On the other hand, the FE linear model yields the simple difference-in-difference:

∆ATE
lin = E[Y2 − Y1|D2 = 1]− E[Y2 − Y1|D2 = 0]

= Λ(1 + 1 + 1)− Λ(1)− [Λ(−0.5 + 1)− Λ(−0.5)]

' −0.02.

This problem arises because, basically, the common trends condition is violated in this
nonlinear model. One could argue that the difference-in-difference estimand identifies the
ATT, not the ATE, under common trends. But note that the ATT is equal to 0.07 and thus
also of opposite sign to ∆ATE

lin .

B Proofs of the identification results

B.1 Proposition 1

First, suppose that Assumption 2 does not hold. Then, there exists λ 6= 0 such that X ′1λ =
... = X ′Tλ almost surely (a.s.). For any v ∈ R, let α′ = α− vX ′tλ and β = β0 + vλ. Then

Yt = 1 {X ′tβ + α′ + ε ≥ 0} .

This model satisfies Assumption 1. Thus, β0 is not identified.

Now, assume that Assumption 2 holds. By the concavity of the logarithm and Jensen’s
inequality,

E (`c(Y |X; β)) ≤ E (`c(Y |X; β0))

with equality if and only if `c(Y |X; β) = `c(Y |X; β0) a.s. Assume that the latter holds.
Then, a.s.,

exp[`c(Y |X; β)]1{S = 1} = exp[`c(Y |X; β0)]1{S = 1}. (18)
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Let us define
Pt(β) := exp(X ′tβ)∑T

s=1 exp(X ′sβ)
.

Equality (18) is equivalent to
T∑
t=1

(Pt(β)− Pt(β0))Yt
∏
s 6=t

(1− Ys) = 0 a.s.

Because the variables (Yt
∏
s 6=t(1− Ys))t are mutually exclusive, we have, for all t,

(Pt(β)− Pt(β0))Yt
∏
s 6=t

(1− Ys) = 0 a.s.

By taking the expectation with respect to X and noting that P (Yt
∏
s 6=t(1− Ys)|X) > 0 a.s.,

we get, a.s., Pt(β) = Pt(β0). This in turn, implies that X ′t(β − β0) does not depend on t.
Hence, a.s., ∑

t,s

[(Xt −Xs)′(β − β0)]2 = 0.

Taking the expectation, this implies that

(β − β0)′E
∑
t,s

(Xt −Xs)(Xt −Xs)′
 (β − β0) = 0.

By Assumption 2, β = β0. Hence, β0 is identified and β0 = arg maxβ E (`c(Y |X, β)).

We finally turn to the last result. If S = 1, we have ∂`c/∂β(Y |X; β0) = ∑T
t=1Xt (Yt − Pt(β0)).

Then, conditional on S = 1,
∂2`c
∂β∂β′

(Y |X; β0) = −
T∑
t=1

XtPt(β0)
T∑
s=1

(Xt −Xs)′Ps(β0)

= −1
2
∑
s,t

Ps(β0)Pt(β0) (Xt −Xs) (Xt −Xs)′ .

Let λ be such that λ′I0λ = 0. Because −∂2`c/∂β∂β
′ is positive semidefinite, we have

λ′I0λ ≥ λ′E

[
∂2`c
∂β∂β′

(Y |X; β0)1 {S = 1}
]
λ

= 1
2
∑
s,t

E
[
Ps(β0)Pt(β0)1 {S = 1}λ′ (Xt −Xs) (Xt −Xs)′ λ

]
= 1

2
∑
s,t

E
[
Ps(β0)Pt(β0)P (S = 1|X) [(Xt −Xs)′λ]2

]
.

Hence, for all (s, t), Ps(β0)Pt(β0)P (S = 1|X) [(Xt −Xs)′λ]2 = 0 almost surely. Since P (S =
1|X) > 0, we have (Xt −Xs)′λ = 0 almost surely. In turn, this implies that

λ′E

∑
s,t

(Xt −Xs)(Xt −Xs)′
λ = 0.

Thus, by Assumption 2, λ = 0, proving that I0 is nonsingular.
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B.2 Lemma 1

Remark that ∆ = E (∆(X)), where ∆(x) is defined by

∆(x) :=β0kE[Λ′(x′Tβ0 + α)|X = x]

=β0k

∫
Λ′(x′Tβ0 + a)dFα|X(a|x). (19)

Let us first show that the identified set Ix of ∆(x) satisfies Ix = Ex, with

Ex :=
{
E (r(X,S, β0)|X = x) + β0kc0(x)λT+1(x, β0)

∫ 1

0
uT+1dµx(u) : µx ∈ D(mx)

}
. (20)

To this end, let us define U = Λ(α+x′Tβ0). Then, a change of variable in (19) and (2) shows
that

∆(x) =β0k

∫ 1

0
u(1− u)dFU |X(u|x), (21)

P (S = k|X = x) =Ck(x, β0) exp(−kx′Tβ0)

×
∫ 1

0

uk(1− u)T−k∏T−1
t=1 [1 + u(exp((xt − xT )′β0)− 1)]

dFU |X(u|x). (22)

Remark that for all t ∈ {0, ..., T}, ∑T
k=t

(
T−t
k−t

)
uk−t(1− u)T−k = 1. Then, for such t,

ct(x) =E
[
1 {S ≥ t}

(
T − t
S − t

)
exp(Sx′Tβ0)/CS(x, β0)|X = x

]

=
∫ 1

0

∑T
k=t

(
T−t
k−t

)
uk(1− u)T−k∏T−1

t=1 [1 + u(exp((xt − xT )′β0)− 1)]
dFU |X(u|x)

=
∫ 1

0

ut∏T−1
t=1 [1 + u(exp((xt − xT )′β0)− 1)]

dFU |X(u|x).

Let µx be the measure having a density with respect to FU |X(·|x) equal to

f(u) =
∏T−1
t=1 1/[1 + u(exp((xt − xT )′β0)− 1)]∫ 1

0
∏T−1
t=1 1/[1 + v(exp((xt − xT )′β0)− 1)]dFU |X(v|x)

.

Then, by definition of mt(x), we obtain, for all t ∈ {0, ..., T}

mt(x) =
∫ 1

0
utdµx(u), (23)

so that µx ∈ D(m(x)). By a change of measure in (21) and by definition of (λt(x, β0))t=0,...,T+1,
we also get

∆(x) = β0kc0(x)
∫ 1

0

T+1∑
t=0

λt(x, β0)utdµx(u). (24)
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Then, using (23), ct(x) = c0(x)mt(x) and E (r(X,S, β0)|X = x) = β0k
∑T
t=0 ct(x)λt(x; β0),

we obtain Ix ⊂ Ex.

Conversely, for all x ∈ Supp(X), define the probability measure Gx through its density with
respect to µx:

dGx

dµx
(u) =

∏T−1
t=1 [1 + u(exp((xt − xT )′β0)− 1)]∫ 1

0
∏T−1
t=1 [1 + u(exp((xt − xT )′β0)− 1)]dµx(u)

.

Then, let U |X = x ∼ Gx and define the distribution of α|X = x as the distribution of
Λ−1(U)− x′Tβ0. Using again the definitions of ct(x) and mt(x), we obtain that (19) and (2)
hold. This implies that Ex ⊂ Ix. Hence, Ix = Ex.

Now, remark that the distribution of α|X = x is not constrained by the distribution of
(α|X = x′)x′ 6=x. As a result, the identified set of ∆ is{

E
[
r(X,S, β0) + β0kc0(X)λT+1(X, β0)

∫ 1

0
uT+1dµX(u)

]
: µX ∈ D(mX) a.s.

}
.

Hence, (6) holds. Finally, because D(m(x)), and thus {
∫
uT+1dµ(u) : µ ∈ D(m(x))}, are

convex, we get that the closure of {
∫ 1
0 u

T+1dµx(u) : µx ∈ D(mx)} is [q
T

(m(x)); qT (m(x))].
The two equalities in (7) follow.

B.3 Proposition 2

Equation (9) follows from Point 1 of Theorem 1.4.3 in Dette and Studden (1997).

1. If HT (m)HT (m) > 0, by Point of Theorem 1.4.3 in Dette and Studden (1997), m ∈
IntMT . Then, by Theorem 1.2.7 in Dette and Studden (1997), q

T
(m) < qT (m). Moreover,

(m0, ...,mT−1) ∈ IntMT−1. Thus, again by the second part of Theorem 1.4.3 in Dette and
Studden (1997),

HT−1(m0, ...,mT−1) > 0.

By expanding the determinantHT+1(m, q) along its last column, we get that q 7→ HT+1(m, q)
is linear and strictly increasing. The same reasoning applies to qT (m).

2. If HT (m)HT (m) = 0, Theorem 1.4.3 in Dette and Studden (1997) implies that m ∈
∂MT . Then, by Theorem 1.2.5 in Dette and Studden (1997), there is a unique distribution
corresponding to m. Let U a random variable with this unique distribution. Note that
q
T

(m) = qT (m) = E(UT+1). Suppose first that T ′ is even and HT ′(m) = 0. Then, there
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exists a vector λ = (λ1, ..., λT ′/2+1)′ such thatHT ′(m)λ = 0. Hence, for all i ∈ {1, ..., T ′/2+1},∑T ′/2+1
j=1 λjmi+j−2 = 0. Thus, for all i ∈ {0, ..., T ′/2},

E

U i
T ′/2∑
j=0

λj+1U
j

 = 0.

Hence, E
[(∑T ′/2

j=0 λj+1U
j
)2]

= 0, which implies that almost surely, ∑T ′/2
j=0 λj+1U

j = 0. In
particular, for all k ≥ 1 and letting mk := E(Uk) for k > T , we have

T ′/2+1∑
j=1

λjmj+k−2 = 0.

Since this holds for k ∈ {T + 2−T ′, ..., T + 2−T ′/2}, we have HT ′(mT+1−T ′ , ...,mT+1)λ = 0.
Therefore, HT ′(mT+1−T ′ , ...,mT+1) = 0, with q

T
(m) = qT (m) = mT+1.

The reasoning is the same if T ′ is odd and still HT ′(m) = 0, with just one difference. Instead
of having E

[(∑T ′/2−1
j=0 λj+1U

j
)2]

= 0, we have

E

U
(T ′−1)/2−1∑

j=0
λj+1U

j

2 = 0.

But since U ≥ 0, this still implies U
(∑(T ′−1)/2−1

j=0 λj+1U
j
)2

= 0, and the rest of the proof is
similar as above. When instead HT ′(m) = 0 and T ′ is even, we have instead

E

U(1− U)
T ′/2−1∑

j=0
λj+1U

j

2 = 0,

implying again U(1 − U)
(∑T ′/2−1

j=0 λj+1U
j
)2

= 0. Finally, when HT ′(m) = 0 and T ′ is odd,
we have

E

(1− U)
(T ′−1)/2−1∑

j=0
λj+1U

j

2 = 0,

implying again (1− U)
(∑(T ′−1)/2−1

j=0 λj+1U
j
)2

= 0.

B.4 Proposition 3

1. From Lemma 1, we have

∆−∆ = |β0k| × E
(
c0(X)× |λT+1(X, β0)| × [qT (m(X))− q

T
(m(X))]

)
. (25)
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Now, by a result of Karlin and Shapley (1953), we have, for all m ∈MT ,

qT (m)− q
T

(m) ≤ 1
4T . (26)

The result follows.

2. ∆ is point identified if and only if ∆ = ∆ or equivalently if and only if

β0kc0(X) |λT+1(X, β0)|
(
qT (m(X))− q

T
(m(X))

)
= 0 a.s. (27)

We have c0(X) > 0 almost surely. Then, (27) holds if and only if β0k = 0 or

|λT+1(X, β0)|
(
qT (m(X))− q

T
(m(X))

)
= 0 a.s.

We have λT+1(x, β0) = 0 if and only if (xt − xT )′β0 = 0 for some t < T . By Proposition
2, q

T
(m) = qT (m) is equivalent to HT (m) × HT (m) = 0. By the proof of Lemma 1 and,

e.g., Theorem 1.2.5 in Dette and Studden (1997), this holds if and only if the index of the
conditional distribution of U = Λ(α + x′Tβ0) is smaller than or equal to T/2. The index
denotes here the number of support points, except that 0 and 1 are counted only as one-half.
Now, because 1 < U < 0 almost surely, the number of support points of U |X = x (or
equivalently α|X = x), is equal to its index. The result follows.

B.5 Lemma 3

Define ∆̃(x) = β0k
∑T
t=0 λt(x, β0)ct(x) + β0kλT+1(x, β0)∑T

t=0 btct(x). Then

∆̃(x) = β0k

T∑
t=0

λt(x, β0)ct(x) + β0kc0(x)λT+1(x, β0)
∫ 1

0
P ∗T (u)dµx(u),

which implies that ∆̃ = E(∆̃(X)). Then by (24), we obtain∣∣∣∆̃(x)−∆(x)
∣∣∣ ≤ |β0kλT+1(x, β0)|c0(x) sup

u∈[0,1]
|TT+1(u)| (28)

= |β0kλT+1(x, β0)|c0(x)
2T+1 sup

u∈[−1,1]
|TcT+1(u)|

= |β0kλT+1(x, β0)|c0(x)
2× 4T .

The last equality follows by standard properties of Chebyshev polynomials, see, e.g., Mason
and Handscomb (2002). The first result follows by integration, using

|∆̃−∆| ≤ E
[∣∣∣∆̃(X)−∆(X)

∣∣∣] . (29)
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By what precedes, |∆̃ − ∆| = b if and only if we have an equality in (28) for almost
all x, and an equality in (29). The latter holds if and only if β0k = 0, or the sign of
λT+1(X)

∫ 1
0 TT+1(u)dG(u|X) is constant. The former holds if and only if β0k = 0 or the

support of G(·|x) is either M+ or M−. The characterization of the equality |∆̃ − ∆| = b

follows.

B.6 Lemma 6

We have ∆(3) = E(∆(3)(X)), for ∆(3)(x) = E [∂P (YT ≥ j0|X,α) /∂XTk|X = x]. Because
the conditional distribution of α|X is not constrained, we have to find the sharp bounds of
∆(3)(x) for each x ∈ Supp(X).
Let Π0 be the set of functions from {1, ..., T} into {0, 1, ..., J − 1}. First, we prove that the
set of conditional probabilities (P (Sπ = s|X,U))s=0,...,T,π∈Π0

is in one-to-one linear mapping
with P (Y = y|X,U)y∈{0,1,...,J−1}T . First,

P (Y = (J − 1, ..., J − 1)|X,U) = P (Sπ = T |X,U)

with π such that π(t) = J − 1 for all t. Next, for any y = (y1, ..., yT ) ∈ {0, 1, ..., J − 1}T , let
π ∈ Π0 be such that π(t) = yt. Then:

P (Y = y|X,U) = P (Sπ = T |X,U)−
∑

y′:y′ 6=y
∀t,y′t≥yt

P (Y = y′|X,U).

Hence, by a decreasing induction on y, using the lexicographic order, P (Y = y|X,U)
is a linear combination of the (P (Sπ = T |X,U))π∈Π0

. Conversely, P (Sπ = s|X,U) =∑
y∈Yπs P (Y = y|X,U) with Yπs =

{
y ∈ {0, 1, ..., J − 1}T : ∑t 1{yt ≥ π(t)} = s

}
. This en-

sures that (Sπ)π∈Π0
is exhaustive for U and

span
{
u 7→ P (Y = y|X,U = u), y ∈ {0, 1, ..., J − 1}T

}
=span {u 7→ P (Sπ = s|X,U = u), s = 0, ..., T, π ∈ Π0} .

Then the sharp lower bound (say) ∆(3)(x) satisfies:

∆(3)(x) = arg min
FU|X(.|x)

∫ ∂P (YT ≥ j0|X = x, U = u)
∂XTk

dFU |X(u|x)

s.t.
∫
P (Sπ = s|X = x, U = u) dFU |X(u|x) = P (Sπ = s|X = x) ,

π ∈ Π0, s ∈ {0, 1, ..., T}.
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Thus, to conclude the proof, it suffices to show

span {u 7→ P (Sπ = s|X = x, U = u), π ∈ Π0, s = 0, ..., T}

= span
{
u 7→ utw(u), t = 0, ..., (J − 1)T

}
. (30)

For π ∈ Π0, let T π+ = {t : π(t) > 0} and for k ≤ |T π+ |, let Dπk = {d ∈ {0, 1}T π+ : ∑t∈T π+ dt = k}
and

Cπ
k (x, β, γ) :=

∑
d∈Dπ

k

exp
∑
t∈T π+

dt(x′tβ − γπ(t))
 .

For any π ∈ Π0, let sπ0 = T − |T π+ |. We have

P (Sπ = s|X = x, U = u)

=
Cπ
s−sπ0

(x, β0, γ) exp(−(s− sπ0 )(x′Tβ0 − γj0))us−sπ0 (1− u)T−s∏
t∈T π+ [1 + uρ(π(t), t, x)] 1 {sπ0 ≤ s ≤ T} .

The Bernstein polynomials {u 7→ us−s
π
0 (1 − u)T−s, s = sπ0 , ..., T} are a basis of polynomials

of degree lower than |T π+ |. Thus,

span {u 7→ P (Sπ = s|X = x, U = u), π ∈ Π0, s = 0, ..., T}

= span

u 7→ ut∏
t∈T π+ [1 + uρ(π(t), t, x)] , π ∈ Π0, t = 0, ..., |T π+ |

 (31)

⊂ span
{
u 7→ utw(u), t = 0, ..., (J − 1)T

}
.

Conversely, let ∼ be the equivalence relation on {1, ..., J − 1} × {1, ..., T} defined by:

(j, t) ∼ (j′, t′)⇔ ρ(j, t, x) = ρ(j′, t′, x).

Then let [(j, t)] denote the equivalence class of (j, t) and let E be a set of representatives of
all the equivalence classes, except [(j0, T )]. Let also n(j, t) = |[(j, t)]|. Using ρ(j0, T, x) = 0
and partial fraction decompositions, we obtain

span
{
u 7→ utw(u), t = 0, ..., (J − 1)T

}
⊂ span

{
u 7→ ud, d = 0, ..., n(j0, T ), u 7→ (1 + uρ(j, t′, x))−d ,

(j, t′) ∈ E , d = 1, ..., n(j, t′)
}
. (32)
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Fix (j, t′) ∈ E , d ∈ {1, ..., n(j, t′)} and let (j1, t1), ..., (jd, td) denote d distinct elements of
[(j, t′)]. By definition of ρ, t1, ..., td are all distinct. Then, define π ∈ Π0 as π(ti) = ji for
i = 1, ..., d and π(t) = 0 for t /∈ {t1, ..., td}. Then:

1
(1 + uρ(j, t′, x))d

= 1∏
t∈T π+ [1 + uρ(π(t), t, x)] . (33)

Next, fix d ∈ {0, ..., n(j0, T )}, and let (j1, t1), ..., (jd, td) denote d distinct elements of [(j0, T )].
Define π ∈ Π0 exactly as above if d > 0 and π(t) = 0 for all t if d = 0. Using ρ(ji, ti, x) = 0
for i = 1, ..., d and the definition of T π+ , we obtain d = |T π+ | and

ud = ud∏
t∈T π+ [1 + uρ(π(t), t, x)] . (34)

Using (32) (33) and (34) and then (31), we finally obtain

span
{
u 7→ utw(u), t = 0, ..., (J − 1)T

}
⊂ span

u 7→ ut∏
t∈T π+ [1 + uρ(π(t), t, x)] π ∈ Π0, t = 0, ..., |T π+ |


= span {u 7→ P (Sπ = s|X = x, U = u), π ∈ Π0, s = 0, ..., T} .

Equation (30) follows, and this concludes the proof.
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Online Appendix

A Proofs of the asymptotic results

A.1 Estimation of (c0, ..., cT ) and m

A.1.1 Estimation of (c0, ..., cT )

Let γ0j(x) = P (S = j|X = x) for j = 0, ..., T . The functions (ct)t=0...T and (γ0j)j=0...T are
related through

(c0(x), ..., cT (x))′ = Γ
(
γ00(x) exp(0× x′Tβ0)

C0(x, β0) , ... ,
γ0T (x) exp(T × x′Tβ0)

CT (x, β0)

)′
, (35)

where Γ is a square matrix of size T + 1 with coefficients Γij =
(
T−i
j−i

)
1 {i ≤ j} for i, j =

1, ..., T +1. We first estimate γ0 := (γ00, ..., γ0T ) nonparametrically. We use local polynomial
estimators of order ` to avoid boundary effects. Let K denote a kernel function and for a
given 0 ≤ j ≤ T , define

âj(x) := argmina
n∑
i=1

K
(
Xi − x
hn

)1 {Si = j} −
∑
|b|≤`

ab (Xi − x)b
2

, (36)

where, in this definition, for b ∈ NpT , |b| = ∑pT
j=1 bj and xb = xb1

1 ...x
bpT
pT . The estimator of

γ0j(x) is then γ̂j(x) = âj0(x). Our estimator for ct(x), ĉt(x), uses (35), replacing γ0 and β0

with their estimators.

A.1.2 Estimation of m

Given its definition, a natural estimator of m is

m̃(x) =
(

1, ĉ1(x)
ĉ0(x) , ...,

ĉT (x)
ĉ0(x)

)
.

However, this estimator may not satisfy m̃(x) ∈MT . This is especially the case if m(x) is at
the boundary ofMT , or for a “large” T , because the volume ofMT decreases very quickly
with T (Karlin and Shapley, 1953). In our simulations, this already occurs with T = 3 and
n = 1, 000, even if m(x) is in the interior of MT . That m̃(x) 6∈ MT is an issue because
then q

T
(m̃(x)) and qT (m̃(x)) are undefined. We thus consider another estimator m̂ such

that m̂(x) ∈MT .
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To this end, we rely on Proposition 2. For any (mt)t≥0 and t ∈ {0, ..., T}, let m→t =
(m0, ...,mt). The idea of the estimator is to use the first elements of m̃(x), until m̃t(x) falls
too close to q

t−1(m̃→t−1(x)) or qt−1(m̃→t−1(x)). In such a case, we simply replace m̃t(x) by
q
t−1(m̃→t−1(x)) or qt−1(m̃→t−1(x)). We finally complete the vector using the second part of
Proposition 2.

Specifically, let cn be a sequence tending to 0 at a rate specified later and define

Î(x) := max
{
t ∈ {1, ..., T} : H t(m̃→t(x))×H t(m̃→t(x)) > cn

}
.

with the convention that max ∅ = 0. We then let

m̂→Î(x)(x) := m̃→Î(x)(x).

If Î(x) = T , m̂(x) is fully defined. Otherwise, we complete m̂(x) by first letting

m̂
Î(x)+1(x) :=

∣∣∣∣∣∣ qÎ(x)(m̃→Î(x)(x)) if H
Î(x)+1(m̃→Î(x)+1(x)) < c1/2

n ,

q
Î(x)(m̃→Î(x)(x)) otherwise.

Next, if Î(x) + 1 < T , by construction, we have

H
Î(x)+1(m̂→Î(x)+1(x))×H

Î(x)+1(m̂→Î(x)+1(x)) = 0.

Then, applying Part 2 of Proposition 2, we construct by induction the unique possible
moments m̂

Î(x)+2, ..., m̂T that are compatible with m̂→Î(x)+1(x). By construction, the corre-
sponding vector m̂(x) belongs toMT .

A.2 Consistency of (∆̂, ∆̂)

We first establish consistency of the estimated bounds under the following conditions.

Assumption 5

1. The variables (Xi, αi, εi1, ..., εiT ) are i.i.d across i.

2. Supp(X) is a compact set and β0 ∈ Θ, where Θ is a compact set.

Assumption 6

1. X admits a density fX with respect to the Lebesgue measure on RpT . fX is C1 and
bounded away from 0 on Supp(X),
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2. (a) γ0 is C`+2 on Supp(X),

(b) ` ≥ pT/2,

3. K is a Lipschitz density on RpT with compact support including a neighborhood of 0,

4. (a) hn → 0 and nhpTn / lnn→∞ as n→∞,

(b) nh2(`+1)
n → 0 and n[hpTn / lnn]3 →∞ as n→∞,

5.
[
(lnn/(nhpTn ))1/2 + h`+1

n

]
/cn → 0 as n→∞.

Assumption 5 is sufficient for β̂ to be consistent. Also, Assumptions 5 and 6.1 to 6.4 guarantee
that γ̂ converges uniformly to γ0 over the support of X at a rate at least δn, with δn :=
(lnn/(nhpTn ))1/2 + h`+1

n . Note that Assumption 6.2 is in fact a smoothness condition on the
distribution of α givenX. For instance, if this distribution is discrete and both support points
and weighting probabilities are C`+2 as functions of X on Supp(X), then Assumption 6.2
holds. Last, Assumption 6.5 imposes condition on the rate of convergence on the smoothing
parameter cn used to estimate m̂(Xi).

Theorem 3 Suppose that Assumptions 1, 5, 6.1, 6.2a, 6.3, 6.4a and 6.5 hold. Then

(∆̂, ∆̂) P−→ (∆,∆).

Proof: We focus on ∆̂ hereafter, as the proof for the upper bound is the same. The proof
proceeds in three steps. First, we show the uniform consistency of m̃ over Supp(X). Second,
we prove that m̂ is also uniformly consistent. Finally, we show the consistency of ∆̂. For any
function f from D to Rq, we let ‖f‖∞ = supx∈D ‖f(x)‖, where ‖·‖ denotes the Euclidean
norm on Rq. We denote by C, C and C generic constants subject to change from one line
to the next.

Step 1: Uniform consistency of m̃

Remark that the Under Assumptions 1-5, P ∈ P ′ as defined in Lemma 8, with σ = 0 and
some appropriate M and A. Then, by Lemma 8, β̂ P−→ β0. Moreover, Supp(X) is compact.
Then, for all (k, x, β) ∈ {0, ..., T} × Supp(X) × {β0, β̂}, with probability approaching one
(wpao),

C > Ck(x, β) ≥ C > 0, C > exp(kx′Tβ) ≥ C. (37)
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Moreover, by definition of ck(γ, x, β),∥∥∥c(γ̂, x, β̂)− c(γ0, x, β0)
∥∥∥

≤ C

∣∣∣∣∣∣
∣∣∣∣∣∣
 γ̂0(x)e0×x′T β̂

C0(x, β̂)
, ... ,

γ̂T (x)eT×x′T β̂

CT (x, β̂)

′ −
γ00(x)e0×x′T β0

C0(x, β0) , ... ,
γ0T (x)eT×x′T β̂
CT (x, β0)

′∣∣∣∣∣∣
∣∣∣∣∣∣ .

Fix 0 ≤ k ≤ T . Then wpao,∣∣∣∣∣∣ γ̂k(x)ek×x′T β̂

Ck(x, β̂)
− γ0k(x)ek×x′T β0

Ck(x, β0)

∣∣∣∣∣∣ ≤ |γ̂k(x)− γ0k(x)|ek×x′T β̂

Ck(x, β̂)
+ γ0k(x)

∣∣∣∣∣∣ e
k×x′T β0

Ck(x, β0) −
ek×x

′
T β̂

Ck(x, β̂)

∣∣∣∣∣∣ .
The derivatives of β 7→ ek×x

′
T β/Ck(x, β) are uniformly bounded over β and x ∈ Supp(X)

wpao. Combined with (37), this implies that wpao,∣∣∣∣∣∣ γ̂k(x)ek×x′T β̂

Ck(x, β̂)
− γ0k(x)ek×x′T β0

Ck(x, β0)

∣∣∣∣∣∣ ≤ C
(
|γ̂k(x)− γ0k(x))|+ ‖β0 − β̂‖

)
.

Therefore, recalling that ĉ = c(γ̂, x, β̂),

‖ĉ− c‖∞ ≤ C
(
‖γ̂ − γ0‖∞ +

∥∥∥β0 − β̂
∥∥∥) . (38)

Next, by (35), (37) and ∑T
j=0 γ0j(x) = 1, for all (x, β) ∈ Supp(X)× {β0, β̂}, wpao,

c0(γ0, x, β) >
T∑
j=0

γ0j(x)C/C = C/C. (39)

The conditions in Theorem 6 of Masry (1996) hold under Assumptions 1-6. Thus, γ̂ is
uniformly consistent. Given (38) and (39), we then have c0(γ̂, x, β̂) > C wpao.

By definition of m̃, we have, for all (k, x) ∈ {0, ..., T} × Supp(X), wpao,

|m̃k(x)−mk(x)| ≤ 1
c0(γ0, x, β0) |ck(γ̂, x, β̂)− ck(γ, x, β0)|

+ 1
c̃2

0
|ck(γ̂, x, β̂)| × |c0(γ̂, x, β̂)− c0(γ0, x, β0)| (40)

where c̃2
0 ≥ min(c0(γ0, x, β)2, c0(γ̂, x, β̂)2) > C and |ck(γ̂, x, β̂)| is bounded in probability in

view of (38). Therefore, by (40) and, again, (38),

‖m̃−m‖∞ ≤ C (‖c− ĉ‖∞ + ‖c0 − ĉ0‖∞)

≤ C
(
‖γ̂ − γ0‖∞ +

∥∥∥β0 − β̂
∥∥∥) .

The result follows by uniform consistency of γ̂ and consistency of β̂.
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Step 2: Uniform consistency of m̂

We drop the dependence in x and write m, m̂,... instead of m(x), m̂(x),... to simplify
notation as all the statements to follow hold uniformly over x ∈ Supp(X). We start by
showing that for all ε > 0 and for n large enough, if Î = t then |mt+1 − m̂t+1| ≤ 2ε. A
first step is to notice that for all ε > 0, there exists N0 such that n ≥ N0, m ∈ MT and
H t+1(m1, ..., mt+1) < 2c1/2

n implies |mt+1 − q
t
(m→t)| = |mt+1 − m̂t+1| ≤ ε. To see this,

suppose the contrary. Then there exists ε > 0 and a subsequence (mφ(n)) ∈ MN
T such that

for all n ∈ N,

0 < H t+1(mφ(n)
1 , ..., m

φ(n)
t+1 ) < 2c1/2

φ(n) and |mφ(n)
t+1 − qt(m

φ(n)
→t )| > ε.

The set MT is compact, thus there exists a further subsequence (mφ′(n)) converging to
some m0. By continuity of the functions q

t
and H t+1, we have H t+1(m0

1, ..., m
0
t+1) = 0 and

|m0
t+1 − qt(m

0
→t)| ≥ ε > 0. But this contradicts Proposition 2. The same result holds for

H t+1.

Define C ′ a Lipschitz constant valid for both H t and H t for all t ≤ T . Take ε > 0, N1 larger
than the corresponding N0 and such that n > N1 implies

∀ t ≤ T, ‖m→t −m′→t‖ ≤ δn ⇒ ‖qt|(m→t)− qt(m′→t)| ≤ ε,

δn ≤ ε and δn ≤ c1/2
n /C ′.

Then for n ≥ N1, for all t ≤ T , if m̃→t ∈ Mt and 0 < H t+1(m̃1, ..., m̃t, m̃t+1) < c1/2
n then

wpao, 0 ≤ H t+1(m1, ..., mt+1) ≤ c1/2
n +C ′× δn ≤ 2c1/2

n . Thus if Î = t and we are in the case
0 < H t+1(m̃1, ..., m̃t, m̃t+1) < c1/2

n then wpao

|mt+1 − m̂t+1| = |mt+1 − qt(m̃→t)| ≤ |mt+1 − qt(m→t)|+ |qt(m→t)− qt(m̃→t)|

≤ 2ε.

The same result holds for H t+1. We can then proceed by induction, as

|mt+2 − m̂t+2| = |mt+2 − qt+1(m̃→t, m̂t+1)|

≤ |qt+1(m→t+1)− q
t+1(m→t+1)|+ |q

t+1(m→t+1)− q
t+1(m̃→t, m̂t+1)|

≤ |qt+1(m→t+1)− qt+1(m̃→t, m̂t+1)|+ |q
t+1(m̃→t, m̂t+1)− q

t+1(m→t+1)|

+ |q
t+1(m→t+1)− q

t+1(m̃→t, m̂t+1)|

where the last inequality follows from q
t+1(m̃→t, m̂t+1) = qt+1(m̃→t, m̂t+1). Using recursively

the uniform continuity of qt′ and q
t′
as functions of m→t over Mt and properly adjusting

recursive choices of the ε’s, we then obtain the uniform convergence of m̂−m to 0.
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Step 3: Consistency of the lower bound

Let Â(x) := β̂kĉ0(x)λT+1(x, β̂)q̂
T

(m̂(x)) and B̂(x) := β̂kĉ0(x)λT+1(x, β̂)q̂T (m̂(x)). By Equa-
tion (11), ∆̂ satisfies

∆̂ = 1
n

n∑
i=1

r(Xi, Si, β̂) + 1
n

n∑
i=1

min
(
Â(Xi), B̂(Xi)

)
. (41)

Since λt is infinitely differentiable for all t ≤ T , Supp(X) is compact and β̂ is consistent,
x 7→ λt(x, β̂) converges uniformly in probability to x 7→ λt(x, β0). The same holds for
(x, s) 7→ Cs(x, β̂) and (x, s) 7→ exp(sX ′T β̂). Because wpao Cs(x, β̂) > C for all x ∈ Supp(X)
and s ≤ T , (x, s) 7→ r(x, s, β̂) converges uniformly in probability to (x, s) 7→ r(x, s, β0).
Then, by the triangle inequality and the law of large numbers (LLN),

1
n

n∑
i=1

r(Xi, Si, β̂) P−→ E (r(X,S, β0)) .

Next, let us show the convergence in probability of the second term in (41). The functions
qT and q

T
are continuous and thus uniformly continuous over the compact setMT . Then,

by Step 2 and since by construction (m(x), m̂(x)) ∈M2
T , x 7→ q

T
(m̂(x)) and x 7→ qT (m̂(x))

converge uniformly in probability to x 7→ q
T

(m(x)) and x 7→ qT (m(x)) respectively. Thus,
the functions Â and B̂ converge uniformly in probability to their corresponding limits, which
we write A and B. Since min(A,B) = (A + B − |A − B|)/2, x 7→ min(Â(x), B̂(x)) also
converges uniformly in probability to A and B. Then, by the triangle inequality and the
LLN,

1
n

n∑
i=1

min
(
Â(Xi), B̂(Xi)

)
P−→ E (min (A(X), B(X))) .

The result follows.

A.3 Theorem 1

Before proving Theorem 1, we introduce additional notation. First, for any vector of func-
tions γ = (γ0, ..., γT ), let

(c0(γ, x, β), ..., cT (γ, x, β))′ := Γ
(
γ0(x) exp(0× x′Tβ)

C0(x, β) , ... ,
γT (x) exp(T × x′Tβ)

CT (x, β)

)′
,

where Γ is a square matrix of size T + 1 with coefficients Γij =
(
T−i
j−i

)
1 {i ≤ j} for i, j =

1, ..., T + 1. Note that ĉt(x) = ct(γ̂, x, β̂). Then, with I defined in Assumption 3, let

m(γ, x, β) :=
(

1, c1(γ, x, β)
c0(γ, x, β) , ...,

cI(γ, x, β)
c0(γ, x, β)

)
,
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so that m(γ0, x, β0) = m→I(x) and m(γ̂, x, β̂) = m̃→I(x). Now, if I = T , we let, with a slight
abuse of notation, q

T
(γ, x, β) = q

T
(m(γ, x, β)). If I < T , by Assumption 3 and Proposition

2, mI+1(x) = q
I
(m→I(x)) or mI+1(x) = qI(m→I(x)). Then, by Proposition 2 again and a

straightforward induction, we can define mt(x) for t ∈ {I+1, ..., T} as a function of m→I(x).
We let Ext(.) denote the corresponding extension function. Then m(x) = Ext(m→I(x)).
Finally, we let (with again a slight abuse of notation)

q
T

(γ, x, β) := q
T

(Ext(m(γ, x, β))).

We define similarly qT (γ, x, β). Note that q
T

(·, ·, ·) and qT (·, ·, ·) depend on the unknown I,
and when I < T , on the true function m, since the definition of E involves this true function.
However, we show in the proof of Theorem 1 below that with probability approaching one,
q
T

(m̂(x)) = q
T

(γ̂, x, β̂).

Then, we also define

h(x, s, γ, β) =r(x, s, β) + βkc0(γ, x, β)λT+1(x, β)
[
q
T

(γ, x, β)1 {λT+1(x, β0) > 0}

+ qT (γ, x, β)1 {λT+1(x, β0) < 0}
]
,

h(x, s, γ, β) =r(x, s, β) + βkc0(γ, x, β)λT+1(x, β)
[
qT (γ, x, β)1 {λT+1(x, β0) > 0}

+ q
T

(γ, x, β)1 {λT+1(x, β0) < 0}
]
.

Note that h(x, s, γ, β) (and similarly h(x, s, γ, β)) depends on γ only through γ(x). Also, h
is differentiable with respect to β and the vector γ(x). We denote its corresponding partial
derivatives as Dβh(x, s, γ, β) and Dγh(x, s, γ, β).

The influence functions of ∆̂ and ∆̂ are:

ψ
i

=h(Xi, Si, γ0, β0)− E[h(X,S, γ0, β0)] + E [Dβh(X,S, γ0, β0)]′ φi
+ Dγh(Xi, Si, γ0, β0)′[Zi − γ0(Xi)], (42)

ψi =h(Xi, Si, γ0, β0)− E[h(X,S, γ0, β0)] + E
[
Dβh(X,S, γ0, β0)

]′
φi

+ Dγh(Xi, Si, γ0, β0)′[Zi − γ0(Xi)], (43)

where Zi = (1 {Si = 0} , ...,1 {Si = T})′ and φi = I−1
0 ∂`c/∂β(Yi|Xi; β0) is the influence

function of β̂. We let Σ denote the variance-covariance matrix of (ψ, ψ). We introduce φ̂i as
the sample analog of φi and similarly, sample analogs of ψ

i
and ψi are

ψ̂
i

= h(Xi, Si, γ̂, β̂)− 1
n

n∑
j=1

h(Xj, Sj, γ̂, β̂) +
 1
n

n∑
j=1

Dβh(Xj, Sj, γ̂, β̂)
′ φ̂i
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+Dγh(Xi, Si, γ̂, β̂)′[Zi − γ̂(Xi)] (44)

ψ̂i = h(Xi, Si, γ̂, β̂)− 1
n

n∑
j=1

h(Xj, Sj, γ̂, β̂) +
 1
n

n∑
j=1

Dβh(Xj, Sj, γ̂, β̂)
′ φ̂i

+Dγh(Xi, Si, γ̂, β̂)′[Zi − γ̂(Xi)] (45)

We finally estimate Σ by Σ̂ = 1
n

∑n
i=1(ψ̂

i
, ψ̂i)′(ψ̂i, ψ̂i).

Proof of Theorem 1:

Part 1: asymptotic approximation and normality when β0k 6= 0.

We show the linear approximation here. The convergence in distribution then follows directly
from the central limit theorem (CLT). Also, we focus on ∆̂: the proofs for ∆̂ is similar. We
prove the result in three steps. First, we show that wpao, Î(Xi) = I for all i. Second, we
prove that

∆̂ = 1
n

n∑
i=1

h(Xi, Si, γ̂, β̂)1
{
β̂k ≥ 0

}
+ h(Xi, Si, γ̂, β̂)1

{
β̂k < 0

}
+ oP (n−1/2). (46)

These two steps are valid whatever the sign of β0k. Finally, we show the result in the third
step, assuming that β0k > 0; the proof when β0k < 0 follows similarly.

Step 1: wpao, Î(Xi) = I for all i.

First, let Tt(m) := H t(m)H t(m). By definition of Î(x) and I,

Î(x) > I ⇒ TI+1(m(x)) = 0 and TI+1(m̃(x)) > cn.

Moreover,

TI+1(m̃(x)) > cn ⇒ HI+1(m̃(x))HI+1(m̃(x))−HI+1(m(x))HI+1(m(x)) > cn,

The functions HI+1 and HI+1 are infinitely differentiable on the compact set MI+1. The
product of these functions is thus Lipschitz on this set. By induction, (m̃0(x), ..., m̃I+1(x))
lies inMI+1. Indeed, otherwise we would not have Î(x) > I + 1. This implies that for any
given value x ∈ Supp(X), wpao

TI+1(m̃(x)) > cn ⇒ ‖m̃(x)−m(x)‖ > Ccn.

Because δn/cn → 0, this cannot occur for any x ∈ Supp(X), wpao. Hence, wpao, Î(Xi) ≤ I

for all i.
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Now, assume that Î(x) < I for some x ∈ Supp(X). Then,

∃k = Î(x) < I, Hk(m̃(x))Hk(m̃(x)) ≤ cn and Hk(m(x))Hk(m(x)) > 0.

We know m→k(x) ∈Mε
k for any k ≤ t. Thus if Hk(m(x))Hk(m(x)) > 2cn then

Hk(m̃(x))Hk(m̃(x)) > 2cn − |Hk(m̃(x))Hk(m̃(x))−Hk(m(x))Hk(m(x))|

> 2cn − C‖m− m̃‖∞,

using again the Lipschitz property of the product HkHk on Mk. By δn/cn → 0 and by
‖m̃−m‖∞ = OP (δn), wpao and for n large enough we have

∃N0, ∀x, n ≥ N0, Hk(m(x))Hk(m(x)) > 2cn ⇒ Hk(m̃(x))Hk(m̃(x)) > cn,

or alternatively

Hk(m̃(x))Hk(m̃(x)) ≤ cn ⇒ Hk(m(x))Hk(m(x)) ≤ 2cn

while k < I. Thus, wpao, for n ≥ N0

Î(x) < I ⇒ ∃k = Î(x) < I, Hk(m(x))Hk(m(x)) ≤ 2cn.

But since m→k(x) ∈ Mε
k for all x ∈ Supp(X), HkHk is a continuous function and Mk is

a compact set, we know that there exists ε′ such that for all x, Hk(m(x))Hk(m(x)) > ε′ is
strictly positive. This makes it impossible to have for n ≥ N0, Hk(m(x))Hk(m(x)) ≤ 2cn
for any x. Thus we get {i ∈ {1, ..., n} : Î(Xi) < I} = ∅ wpao.

In conclusion, wpao, we have Î(Xi) = I for all i ∈ {1, ..., n}.

Step 2: (46) holds.

P
(
∀ i ∈ {1, ..., n}, q

T
(m̂(Xi)) = q

T
(γ̂, Xi, β̂)

)
→ 1 as n→∞. This in turn implies wpao

∆̂ = 1
n

n∑
i=1
r(Xi, Si, β̂) + β̂kĉ0(Xi)λT+1(Xi, β̂)

[
q
T

(γ̂, Xi, β̂)1
{
β̂kλT+1(Xi, β̂) ≥ 0

}
+ qT (γ̂, Xi, β̂)1

{
β̂kλT+1(Xi, β̂) < 0

} ]
. (47)

To obtain (46), we define the set V0 = {x ∈ Supp(X) |λT+1(x, β0) ≥ 0} and Jn := ∆̂ −
1
n

∑n
i=1 h(Xi, Si, γ̂, β̂)1

{
β̂k ≥ 0

}
+ h(Xi, Si, γ̂, β̂)1

{
β̂k < 0

}
. Note first that wpao

Jn = 1
n

n∑
i=1

β̂kĉ0(Xi)λT+1(Xi, β̂)
[
qT (m̂(Xi))

(
1
{
λT+1(Xi, β̂) ≥ 0

}
− 1 {Xi ∈ V0}

)
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+ q
T

(m̂(Xi))
(
1
{
λT+1(Xi, β̂) < 0

}
− 1 {Xi ∈ Vc0}

)]
= 1
n

n∑
i=1

β̂kĉ0(Xi)λT+1(Xi, β̂)
[
q
T

(γ̂, Xi, β̂)− qT (γ̂, Xi, β̂)
]

[
1
{
λT+1(Xi, β̂) < 0

}
− 1 {Xi ∈ Vc0}

]
,

and we denote the right-hand side of the second equality as In. We prove now that In =
oP (n−1/2) which will guarantee that (46) holds.

By definition, λT+1(x, β) = −ΠT−1
t=1

(
e(xt−xT )′β − 1

)
= −e(T−1)x′T βΠT−1

t=1

(
ex
′
tβ − ex′T β

)
. Define

the random variables Vit := eX
′
itβ0 and V̂it = eX

′
itβ̂ for i ≤ n and t ≤ T . Then λT+1(Xi, β0) =

−V T−1
it ΠT−1

t=1 (Vit − ViT ). The same equality holds replacing variables with their estimators.
Define L(Xi, β0) = ΠT−1

t=1 (Vit − ViT ). Using previous results and Proposition 3, wpao,

In ≤ C
1
n

n∑
i=1

∣∣∣L(Xi, β̂)
∣∣∣ ∣∣∣1{λT+1(Xi, β̂) < 0

}
− 1 {Xi ∈ Vc0}

∣∣∣ .
Note that wpao,

|1
{
λT+1(Xi, β̂) < 0

}
− 1 {Xi ∈ Vc0} |

≤ 1
{
∃t < T : Vit − ViT < 0 < V̂it − V̂iT ou Vit − ViT > 0 > V̂it − V̂iT

}
.

Moreover
∣∣∣V̂it − V̂iT − (Vit − ViT )

∣∣∣ ≤ |V̂it − Vit| + |V̂iT − ViT |. We use | exp(a) − exp(b)| ≤
exp(b+ |b− a|)|b− a|, ‖Xit‖ ≤ C and the Cauchy-Schwarz inequality to obtain

|V̂it − Vit| ≤ C‖β̂ − β0‖ exp(C‖β̂ − β0‖). (48)

Take (rn)n a sequence such that rn →∞ and rn = o(n1/4). The previous inequalities give

|1
{
λT+1(Xi, β̂) < 0

}
− 1 {x ∈ Vc0k} |

≤ 1
{√

n‖β̂ − β0‖ ≤ rn
}
1
{
∃t : |Vit − ViT | < 2C(rn/

√
n) exp(C(rn/

√
n))

}
+ 1

{√
n‖β̂ − β0‖ > rn

}
. (49)

Write un = 2C(rn/
√
n) exp(Crn/

√
n) where only here C is fixed to be the constant in the

previous inequality. Assume
√
n‖β̂ − β0‖ ≤ rn and |Vit∗ − ViT | < un for some t∗. Then

|V̂it∗ − V̂iT | ≤ 2un, and |V̂it − V̂iT | ≤ C + un.

Thus we have
√
nIn ≤

C

n1/2

n∑
i=1

Ini + C
√
n1

{√
n‖β̂ − β0‖ > rn

}
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with Ini =
∣∣∣L(Xi, β̂)

∣∣∣1 {∃t : |Vit − ViT | ≤ un}. We imposed rn →∞, the second term is thus
oP (1). Note that

∣∣∣L(Xi, β̂)
∣∣∣ ≤ C. The second term will thus be an oP (1) as well if

E

[
un
n1/2

n∑
i=1

Ini

]
→ 0. (50)

Note now that under Assumptions 5 and 6, if β0 6= 0,

∃u0, u ≤ u0 ⇒ P (∃t : |(Xit −XiT )′β0| ≤ u) ≤ C ′u.

This is a consequence of Supp(X) being compact and fX being absolutely continuous with
respect to the Lebesgue measure on RpT . Since un → 0, this implies that E(Ini) ≤ C ′un and

E

[
un
n1/2

n∑
i=1

Ini

]
.

r2
n√
n

= o(1),

since rn = o(n1/4). This proves (50) and In = oP (n−1/2).

Finally, consider the case β0 = 0. Using (48) and β̂ ∈ Θ compact, we get

Ini ≤
∣∣∣L(Xi, β̂)

∣∣∣ ≤ C‖β̂‖T−1.

By Lemma 8 (with P ′ defined with σ = 0 and some appropriate M and A) and the fact that
β̂ is bounded imply that n1/2E

[
‖β̂‖T−1

]
is bounded. Thus, n1/2E(Ini) is bounded, which

implies that (50) holds. Thus, in all cases, (46) holds.

Step 3: conclusion

DefineHn(γ, β) := 1
n

∑n
i=1 h(Xi, Si, γ, β) andH(γ, β) := E(h(X,S, γ, β)), so thatH(γ0, β0) =

∆. Moreover, by Lemma 8, β̂k P−→ β0k > 0. Thus, β̂k ≥ 0 wpao. Then, by the previous
step,

∆̂ = Hn(γ̂, β̂) + oP (n−1/2).

Now, Hn(γ̂, β̂) is a semiparametric estimator with a nonparametric first step. We then show
the result by applying Chen et al. (2003). To this end, let α := dpT/2e and following Chen
et al. (2003), let us define, for any function γ from Supp(X) to RT+1 admitting at least α
derivatives,

‖γ‖G := max
|a|≤α
‖Daγ‖∞ .

For any c > 0, we let Cαc denote the set of functions γ admitting at least α derivatives
and such that ‖γ‖G ≤ c. By Assumptions 5.2 and 6.2a, there exists C such that γ0 ∈ CαC .
Hereafter, we let G := CαC′ for some C ′ > C. We prove in Lemma 7 (in Section B of the
Online Appendix) the five following conditions:
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1. Condition 1: for all (εn)n≥1 such that εn → 0,

sup
‖β−β0‖≤εn,
‖γ−γ0‖G≤εn

| [Hn(γ, β)−H(γ, β)]− [Hn(γ0, β0)−H(γ0, β0)] | = oP (n−1/2).

2. Condition 2: The functional pathwise and ordinary derivatives of h with respect to γ
and β exist. Moreover, there exists b(·) such that E(b(Xi)) <∞ and

|h(Xi, Si, γ, β)− h(Xi, Si, γ0, β0)

−Dγh(Xi, Si, γ0, β0)′[γ(Xi)− γ0(Xi)]−Dβh(Xi, Si, γ0, β0)[β − β0]|

≤ b(Xi)
(
‖γ − γ0‖2

∞ + |β − β0|2
)
.

3. Condition 3: We have
√
n(β̂ − β0) = 1√

n

∑n
i=1 φi + oP (1).

4. Condition 4: We have γ̂ ∈ G wpao, ‖γ̂ − γ0‖∞ = oP (n−1/4) and ‖γ̂ − γ0‖G = OP (ε̃n)
for some ε̃n → 0.

5. Condition 5: Holding fixed the nonparametric estimator γ̂ in the expectation,
√
nE∗

(
Dγh(Xi, Si, γ0, β0)[γ̂(Xi)− γ0(Xi)]

)
= 1√

n

n∑
i=1

Dγh(Xi, Si, γ0, β0)′ [Zi − E(Zi|Xi)] + oP (1).

Then, we have
√
n[∆̂−∆] =

√
n[Hn(γ̂, β̂)−H(γ0, β0)]

=
√
n[Hn(γ0, β0)−H(γ0, β0)] +

√
n[H(γ̂, β̂)−H(γ0, β0)]

+
√
n[Hn(γ̂, β̂)−H(γ̂, β̂)]−

√
n[Hn(γ0, β0)−H(γ0, β0)]

= 1√
n

n∑
i=1

[
h(Xi, Si, γ0, β0)− E(h(X,S, γ0, β0)) + E [Dβh(X,S, γ0, β0)]′

× φi + E [Dγh(Xi, Si, γ0, β0)|Xi]′ [Zi − E(Zi|Xi)]
]

+ oP (1).

The result follows using E [Dγh(Xi, Si, γ0, β0)|Xi] = Dγh(Xi, Si, γ0, β0) and the definition of
ψ
k
.

Part 2: case β0k = 0.

First, let us define

Zn = 1
n1/2

n∑
i=1

h(Xi, Si, γ̂, β̂), Zn = 1
n1/2

n∑
i=1

h(Xi, Si, γ̂, β̂).
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Remark that when β0k = 0, ∆ = ∆ = 0. Then, by Step 2 above (which holds regardless of
the value of β0k) and remarking that h(Xi, Si, γ̂, β̂) ≤ h(Xi, Si, γ̂, β̂) if and only if β̂k ≥ 0,
we get

√
n
(

∆̂−∆, ∆̂−∆
)

=
(
min

(
Zn, Zn

)
,max

(
Zn, Zn

))
+ oP (1).

Now, the proof of asymptotic linearity of Zn in Part 1 above also applies when β0k = 0.
Thus,

(
Zn, Zn

)
d−→
(
Z,Z

)′
. The result follows by the continuous mapping theorem.

Part 3: Consistency of Σ̂.

Let us assume wlog that β0k > 0. The estimator of the variance covariance matrix is
Σ̂ = 1

n

∑n
i=1(ψ̂

i
, ψ̂i)(ψ̂i, ψ̂i)

′ where

ψ̂
i

= h(Xi, Si, γ̂, β̂)− 1
n

n∑
j=1

h(Xj, Sj, γ̂, β̂) +
 1
n

n∑
j=1

Dβh(Xj, Sj, γ̂, β̂)
′ φ̂i

+Dγh(Xi, Si, γ̂, β̂)′[Zi − γ̂(Xi)]

ψ̂i = h(Xi, Si, γ̂, β̂)− 1
n

n∑
j=1

h(Xj, Sj, γ̂, β̂) +
 1
n

n∑
j=1

Dβh(Xj, Sj, γ̂, β̂)
′ φ̂i

+Dγh(Xi, Si, γ̂, β̂)′[Zi − γ̂(Xi)]

We show that the functions of (Xi, Si) appearing in ψ̂
i
and ψ̂i converge uniformly to their

pointwise limits. Similarly to what we argued in the proof of Theorem 3, (x, s) 7→ h(x, s, γ̂, β̂)−
1
n

∑n
j=1 h(Xj, Sj, γ̂, β̂) converges uniformly in probability to (x, s) 7→ h(x, s, γ0, β0)−E(h(X,S, γ0, β0)).

The smoothness arguments given in Condition 1 (Part 2) implies in particular that the
derivatives of h with respect to both the vector γ(x) and β are Lipschitz continuous on CαC
and Θ, with Lipschitz constant uniform over x ∈ Supp(X). This implies that (x, s, z) 7→
Dγh(x, s, γ̂, β̂)′[z−γ̂(x)] converges uniformly in probability to (x, s, z) 7→ Dγh(x, s, γ0, β0)′[z−
γ0(x)]. The same results follow for h. By I0 nonsingular and Cs(x, β) bounded away from 0
uniformly over (s, x, β), the derivatives of β 7→

[
1√
n

∑n
j=1 ∂

2`c/∂β
2(Yj|Xj; β)

]−1
∂`c/∂β(y|x; β)

are uniformly bounded over (y, x, β) wpao. Thus φ̂i converges uniformly in probability to
φi.

In conclusion, the functions of (Xi, Si) appearing in ψ̂
i
and ψ̂i converge uniformly to their

pointwise limits. This implies that (ψ̂
i
, ψ̂i)(ψ̂i, ψ̂i)

′ converges uniformly to (ψ
i
, ψi)(ψi, ψi)

′.
As in Theorem 3, we obtain using the LLN that Σ̂ P−→ Σ.
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A.4 Proposition 4

First assume that β0k = 0. Then ∆ = 0 and

P
(
∆ ∈ CI 1

1−α

)
≥ P (ϕα = 0)→ 1− α,

where the latter follows since ϕα has asymptotic level α. Now, assume β0k 6= 0. Then
ϕα

P−→ 1, so that CI 1
1−α takes the first form wpao. Suppose first that ∆ < ∆. By consistency

of the bounds, consistency of Σ̂ and min(Σ11,Σ12) > 0, we have

n1/2
(

∆̂− ∆̂
)

max
(
Σ̂1/2

11 , Σ̂
1/2
12

) P−→∞.

Then, by Lemma 5.10 of van der Vaart (2000), cα → Φ−1(1 − α). The result follows as in
Lemma 2 of Imbens and Manski (2004). Next, assume ∆ = ∆. Then, because ∆̂ ≥ ∆̂ a.s.,
Z − Z must be degenerate, implying in turn Z = Z a.s. Hence,

n1/2
(

∆̂− ∆̂
)

max
(
Σ̂1/2

11 , Σ̂
1/2
12

) = oP (1).

By, again, Lemma 5.10 of van der Vaart (2000), cα → Φ−1(1−α/2). The result follows using
standard arguments for this point identified case.

A.5 Lemma 2

First, let Wi = (Xi, Si) and

g(Wi, β) = βk

Si∑
t=0

at(Xi, β)
(
T−t
Si−t

)
exp(SiX ′iTβ)

CSi(Xi, β) ,

so that ∆̃ = E[g(W1, β0)] and ∆̂ = ∑n
i=1 g(Wi, β̂)/n. By choosing appropriate M , σ and A,

P ∈ P . Then, by Lemma 8, we have

√
n
(
β̂ − β0

)
= 1
n1/2

n∑
i=1

φi + oP (1). (51)

Since β 7→ g(w, β) is differentiable for all w, by the mean value theorem, there exists βi =
tiβ̂+ (1− ti)β0, with ti ∈ [0, 1], such that g(Wi, β̂)− g(Wi, β0) = ∂g/∂β(Wi, βi)(β̂− β0). Let

Ĝ = 1
n

n∑
i=1

∂g

∂β
(Wi, βi).
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Then, by what precedes,
√
n
(
∆̂− ∆̃

)
= 1
n1/2

n∑
i=1

[
Ĝφi + g(Wi, β0)− ∆̃

]
+ oP (1).

Because ∂g/∂β is continuous, Supp(W ) is compact and β̂ is consistent, we have (see, e.g.,
Lemma 2.4 in Newey and McFadden, 1994)

Ĝ
P−→ G := E

[
∂g

∂β
(Wi, β0

]
.

Thus,
√
n
(
∆̂− ∆̃

)
= 1
n1/2

n∑
i=1

[
Gφi + g(Wi, β0)− ∆̃

]
+ oP (1).

The first result follows by the central limit theorem and a few algebra. The second result
follows using the same reasoning as to prove Ĝ P−→ G.

A.6 Theorem 2

1. First assume that b = 0. Then ∆̃ = ∆ and b̂ ≥ 0. Since b 7→ qα(b) is increasing on R+,
we obtain

P

n1/2
∣∣∣∣∣∆̂−∆

σ̂

∣∣∣∣∣ ≤ qα

n1/2 b̂

σ̂

 ≥ P

(
n1/2

∣∣∣∣∣∆̂− ∆̃
σ̂

∣∣∣∣∣ ≤ qα(0)
)

→ 1− α,

where the convergence follows by Lemma 2.

Next, let us assume that b > 0, and thus R < R. Let b := ∆̃−∆. Then, remark that b < b.
Let us define the event

En :=

σ̂qα
n1/2 b̂

σ̂

 ≥ σqα

(
n1/2 b

σ

) .
Note that qα(x) = x+ z1−α + o(1) as x→∞, where we recall that z1−α the quantile of order
1− α of a standard normal distribution. Fix η ∈ (0, z1−α). Then, for x large enough,

x+ z1−α − η ≤ qα(x) ≤ x+ z1−α + η.

Now, σ̂/σ P−→ 1 by Lemma 2 and b̂ P−→ b > b by Lemmas 8 and 9. Thus, with probability
approaching one, σ̂/σ > 1− η/(z1−α − η) and b̂ > b+ 3n−1/2ση. If so,

σ̂qα

n1/2 b̂

σ̂

 ≥ σ̂

n1/2 b̂

σ̂
+ z1−α − η
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≥ σ

[
n1/2 b+ 3n−1/2ση

σ
+
(

1− η

z1−α − η

)
(z1−α − η)

]

≥ σ

(
n1/2 b

σ
+ z1−α + η

)

≥ σqα

(
n1/2 b

σ

)
.

As a result, P (En)→ 1. Then, using P (A ∩B) ≥ P (A) + P (B)− 1,

P

n1/2
∣∣∣∆̂−∆

∣∣∣ ≤ σ̂qα

n1/2 b̂

σ̂

 ≥ P

(
n1/2

∣∣∣∆̂− ∆̃ + b
∣∣∣ ≤ σqα

(
n1/2 b

σ

))

+ P (En)− 1

≥ P

(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qα

(
n1/2 b

σ

))

+ P (En)− 1,

where Z̃n := n1/2(∆̂−∆)/σ. Hence, by what precedes,

lim inf
n→∞

P

n1/2
∣∣∣∆̂−∆

∣∣∣ ≤ σ̂qα

n1/2 b̂

σ̂

 ≥ lim inf
n→∞

P

(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qα

(
n1/2 b

σ

))
.

Now, let Fn denote the cdf of Z̃n and let Z ∼ N (0, 1). We have:∣∣∣∣∣P
(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qα

(
n1/2 b

σ

))
− (1− α)

∣∣∣∣∣
=
∣∣∣∣∣P
(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qα

(
n1/2 b

σ

))
− P

(∣∣∣∣∣Z + n1/2 b

σ

∣∣∣∣∣ ≤ qα

(
n1/2 b

σ

))∣∣∣∣∣
≤ sup

x∈R

∣∣∣P (∣∣∣Z̃n + x
∣∣∣ ≤ qα (x)

)
− P (|Z + x| ≤ qα (x))

∣∣∣
= sup

x∈R
|Fn(x+ qα(x))− Φ(x+ qα(x))− Fn(x− qα(x)) + Φ(x− qα(x))|

≤2 sup
x∈R
|Fn(x)− Φ(x)| .

Finally, Lemma 2 implies that for all x, Fn(x)→ Φ(x) with Φ continuous. By Lemma 2.11
in van der Vaart (2000), the convergence is uniform. The result follows.

2. To show the result, it suffices to show that

lim inf
n

Pn
(
∆ ∈ CI 3

1−α

)
≥ 1− α, (52)

for any sequence of probability distributions (Pn)n≥1 in P . Note that to simplify notation,
we do not index parameters by Pn (nor by n). We proceed in three steps. We first show that

lim inf
n

Pn
(
|β̂k|+ z1−γn

−1/2τ̂k ≥ |β0k|
)
≥ 1− γ. (53)
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Then, we prove that for any η small enough,

lim inf
n
Pn

σ̂qδ
n1/2b̂γ

σ̂

 ≥ σqδ

(
n1/2b

σ

)
− η

 ≥ 1− γ. (54)

We finally establish (52) in the third step.

Step 1: (53) holds.
Define Zn = n1/2(β̂k − β0k)/τk. If A′ ∩ B ⊂ A ∩ B, then Pn(A) ≥ Pn(A′) − Pn(A′ ∩ Bc) +
Pn(A ∩Bc) ≥ Pn(A′)− Pn(Bc). Thus for any η > 0:

Pn
(
|β̂k|+ z1−γn

−1/2τ̂k ≥ |β0k|
)

= Pn

(
|Zn + n1/2β0k/τk| ≥ |n1/2β0k/τk| − z1−γ

τ̂k
τk

)
≥ Pn

(
|Zn + n1/2β0k/τk| ≥ |n1/2β0k/τk| − z1−γ(1− η)

)
− Pn

(
τ̂k
τk
< 1− η

)
≥
[

inf
|x|≥z1−γ(1−η)

Pn (|Zn + x| ≥ |x| − z1−γ(1− η))
]
− o(1)

≥ min [Fn (z1−γ(1− η)) , 1− Fn (−z1−γ(1− η))]− o(1)

→ min [Φ(z1−γ(1− η)), 1− Φ(−z1−γ(1− η))] = Φ(z1−γ(1− η))

by Lemma 8 and uniform convergence of the estimator of the variance of β̂. Because η is
arbitrarily small and Φ is continuous everywhere, we conclude that

lim inf
n

Pn
(
|β̂k|+ z1−γn

−1/2τ̂k ≥ |β0k|
)
≥ 1− γ.

Step 2: (54) holds.

We will use below the following results on qα. First, for all x ≥ 0 (a restriction that we can
make wlog),

x+ z1−α ≤ qα(x) ≤ x+ z1−α/2. (55)

To see this, note that the first inequality comes from

Φ(qα(x)− x)− Φ(−x− qα(x)) = 1− α (56)

and Φ(−x−qα(x)) ≥ 0. The second inequality comes from −qα(x)−x ≤ x−qα(x) and thus,
from (56) again, 2Φ(qα(x)− x)− 1 ≤ 1− α. Second, by differentiating (56) with respect to
x, we obtain that x 7→ qα(x)− x is decreasing, from z1−α/2 at x = 0 to z1−α at x→∞.

Now, fix C > z1−δ/2/ζ and let us first suppose that n1/2b/σ > C. Fix η ∈ (0, 1). We have

qδ

(
n1/2b

σ

)
≤ n1/2b

σ
+ z1−δ/2
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≤ n1/2 |β0k|R(1 + ζ)
σ

+ (1− η)z1−δ, (57)

where the first inequality uses the second inequality in (55) and the second inequality follows
from z1−δ/2 − (1− η)z1−δ ≤ Cζ ≤ n1/2bζ/σ. From (55), we also have:

σ̂qδ

n1/2 b̂γ
σ̂

 ≥ σ̂

n1/2 b̂γ
σ̂

+ z1−δ


= σ

n1/2

(
|β̂k|+ n−1/2τ̂kz1−γ

)
R̂

σ
+ σ̂

σ
z1−δ

 . (58)

Moreover,

lim inf
n:n1/2b/σ>C

Pn

[
σ

(
n1/2

(
|β̂k|+ n−1/2τ̂kz1−γ

)
R̂

σ
+ σ̂

σ
z1−δ

)
≥ σ

(
n1/2 |β0k|R(1 + ζ)

σ
+ (1− η)z1−δ

)]

≥ lim inf
n:n1/2b/σ>C

Pn

({
|β̂k|+ z1−γn

−1/2τ̂k ≥ |β0k|
}
∩
{
R̂ > R(1 + ζ)

}
∩
{
σ̂

σ
≥ 1− η

})
≥ 1− γ,

where the second inequality follows from (53), limn Pn(R̂ > R(1 + ζ)) = 1 (in view of
R > R(1 + ζ) and uniform convergence of R̂ shown in Lemma 9), limn Pn(σ̂/σ ≥ 1− η) = 1
(in view of σ ≥ σ > 0 and uniform convergence of σ̂ shown in Lemma 8) and Pn(A∩B∩C) ≥
Pn(A) + Pn(B) + Pn(C)− 2. Combined with (57)-(58), this yields

lim inf
n:n1/2b/σ>C

Pn

[
σ̂qδ

(
n1/2 b̂γ

σ̂

)
≥ σqδ

(
n1/2b

σ

)]
≥ 1− γ. (59)

Next, assume that n1/2b/σ ≤ C. Because x 7→ qδ(x) is increasing:

Pn

qδ
n1/2b̂γ

σ̂

 ≥ qδ

(
n1/2b

σ̂

) = Pn

(
n1/2b̂γ ≥ n1/2b

)

= Pn

((
|β̂k|+ z1−γn

−1/2τ̂k
)
R̂ ≥ |β0k|R

)
≥ Pn

({(
|β̂k|+ z1−γn

−1/2τ̂k
)
≥ |β0k|

}
∩
{
R̂ ≥ R

})
≥ Pn

(
|β̂k|+ z1−γn

−1/2τ̂k ≥ |β0k|
)
− Pn

(
R > R̂

)

Since limn Pn

(
R > R̂

)
= 0, (53) ensures that

lim inf
n:n1/2b/σ≤C

Pn

qδ
n1/2b̂γ

σ̂

 ≥ qδ

(
n1/2b

σ̂

) ≥ 1− γ. (60)
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Moreover, using the fact that x 7→ qδ(x) − x is decreasing and x 7→ qδ(x) is increasing, we
get

qδ

(
n1/2b

σ̂

)
≥qδ

(
n1/2b

σ

)
−max

(
0, 1− σ

σ̂

)
n1/2 b

σ

≥qδ
(
n1/2b

σ

)
−max

(
0, 1− σ

σ̂

)
C.

Thus, for any η > 0 small enough, we have with probability approaching one, using again
n1/2b/σ ≤ C and the fact that σ < σ for some σ < ∞ by smoothness of the functions
involved in the definition of ψ and compactness of Θ and of the support of X,

σ̂qδ

(
n1/2b

σ̂

)
≥ σ̂
σ
σqδ

(
n1/2b

σ

)
−max

(
0, σ̂
σ
− 1

)
σC

≥σqδ
(
n1/2b

σ

)
− η.

From (60), we then have, for any η > 0,

lim inf
n:n1/2b/σ≤C

Pn

σ̂qδ
n1/2b̂γ

σ̂

 ≥ σqδ

(
n1/2b

σ

)
− η

 ≥ 1− γ (61)

Combining (59) and (61), we finally obtain (54).

Step 3: conclusion.

Let En,η =
{
σ̂qδ

(
n1/2b̂γ
σ̂

)
≥ σqδ

(
n1/2b
σ

)
− η

}
, following the same line as in the proof of simple

convergence, we have:

Pn
(
∆ ∈ CI 3

1−α

)
= Pn

n1/2
∣∣∣∆̂−∆

∣∣∣ ≤ σ̂qδ

n1/2 b̂γ
σ̂


≥ Pn

(
n1/2

∣∣∣∆̂− ∆̃ + b
∣∣∣ ≤ σqδ

(
n1/2 b

σ

)
− η

)

+ Pn(En,η)− 1

≥ Pn

(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qδ

(
n1/2 b

σ

)
− η

)

+ Pn(En,η)− 1,

where Z̃n := n1/2(∆̂− ∆̃)/σ. Hence, by what precedes,

Pn
(
∆ ∈ CI 3

1−α

)
≥ lim inf

n→∞
Pn

(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qδ

(
n1/2 b

σ

)
− η

)
− γ.
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Now, let Fn denote the cdf of Z̃n under Pn and let Z ∼ N (0, 1). We have,∣∣∣∣∣Pn
(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qδ

(
n1/2 b

σ

)
− η

)
− (1− δ)

∣∣∣∣∣
≤
∣∣∣∣∣Pn

(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qδ

(
n1/2 b

σ

)
− η

)
− Pn

(∣∣∣∣∣Z + n1/2 b

σ

∣∣∣∣∣ ≤ qδ

(
n1/2 b

σ

)
− η

)∣∣∣∣∣
+
∣∣∣∣∣Pn

(∣∣∣∣∣Z + n1/2 b

σ

∣∣∣∣∣ ≤ qδ

(
n1/2 b

σ

)
− η

)
− Pn

(∣∣∣∣∣Z + n1/2 b

σ

∣∣∣∣∣ ≤ qδ

(
n1/2 b

σ

))∣∣∣∣∣
≤ sup

x∈R

∣∣∣Pn (∣∣∣Z̃n + x
∣∣∣ ≤ qδ (x)− η

)
− Pn

(
n1/2 |Z + x| ≤ qδ (x)− η

)∣∣∣+√
2/πη

= sup
x∈R
|Fn(x+ qδ(x)− η)− Φ(x+ qδ(x)− η)− Fn(x− qδ(x) + η) + Φ(x− qδ(x) + η)|+

√
2/πη

≤2 sup
x∈R
|Fn(x)− Φ(x)|+

√
2/πη.

Finally, Lemma 8 implies that for all x, Fn(x)→ Φ(x) with Φ continuous. By Lemma 2.11
in van der Vaart (2000), the convergence is uniform. Since η was arbitrary we obtain

lim
n→∞

∣∣∣∣∣Pn
(∣∣∣∣∣Z̃n + n1/2 b

σ

∣∣∣∣∣ ≤ qδ

(
n1/2 b

σ

)
− η

)
− (1− δ)

∣∣∣∣∣ = 0.

The result follows because α = δ + γ.

B Technical lemmas

Lemma 7 Suppose that Assumptions 1-3 and 5, 6 hold. Then, the five conditions in Part
1, Step 3 of the proof of Theorem 1 hold.

Proof: We use the same notation as that introduced in the proof of Theorem 1.

Condition 1: By Assumption 3 and uniform consistency of m̃ (see Step 1 in the proof of
Theorem 3), m̃(x) = m(γ̂, x, β̂) lies inMε/2

I for all x ∈ Supp(X) wpao, where, for any η > 0

Mη
I := cl{m ∈MI ; B(m, η) ⊂ IntMI}.

It is known that q
T
and qT are infinitely differentiable on Mε/2

I . The function (γ, x, β) 7→
m(γ, x, β) depends on γ only through its value when evaluated at x, γ(x), and is infinitely
differentiable with respect to the vector γ(x) and with respect to β. Moreover, the set V0 is
constructed using the known β0 and thus does not depend on β̂. The function h is therefore
infinitely differentiable in the vector γ(x) and in β. It is in particular Fréchet differentiable
in γ and continuously differentiable in β and we have

|h(Xi, Si, γ1, β1)− h(Xi, Si, γ2, β2)|
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≤ sup
β∈Θ
‖∂βh(Xi, Si, γ2, β)‖ ‖β1 − β2‖+ sup

γ(Xi), γ∈G
‖∂γh(Xi, Si, γ, β2)‖ ‖γ1(Xi)− γ2(Xi)‖

≤ b(Xi, Si) (‖β1 − β2‖+ ‖γ1 − γ2‖G) ,

where the suprema of the derivatives exist since Θ and {γ(X), γ ∈ G} are compact sets
by Assumptions 5.2 and 6.2a. Note additionally that by similar smoothness arguments and
because indicator functions are bounded, E(b(Xi, Si)r) <∞ for any r ≥ 2 as X and S have
bounded support. Moreover using the definitions of Chen et al. (2003) and the results they
cite from van der Vaart and Wellner (1996), the covering number of G exists and is integrable
if α > dim(X)/2 = pT/2. Thus by Theorem 3 of Chen et al. (2003), Condition 1 holds.

Condition 2: The difference

|h(Xi, Si, γ, β)− h(Xi, Si, γ0, β0)|

−Dγh(Xi, Si, γ0, β0)′[γ(Xi)− γ0(Xi)]−Dβh(Xi, Si, γ0, β0)′[β − β0],

is equal to the second-order partial derivatives of h evaluated at some point γ̃(Xi) and β̃, and
applied to γ(Xi)− γ0(Xi) and β− β0. By the same argument as in Condition 1, the second-
order derivatives of h can be bounded uniformly over β and γ(X) and these bounds have
finite expectation over (Xi, Si). The residual can thus be bounded by a constant multiplied
by (‖γ − γ0‖2

∞ + |β − β0|2).

Condition 3: This condition holds by Lemma 8 below, with P ′ = {P} and

φ(Xi, Yi) = E

[
∂2`c
∂β2 (Yi|Xi; β0)

]−1
∂`c
∂β

(Yi|Xi; β0).

Condition 4: We apply Theorem 6 of Masry (1996) on the convergence rate of local polyno-
mial estimators. This theorem requires the conditional density fX|Z to exist and be bounded,
which holds here as Z = (1 {S = 0} , ..., 1 {S = T})′ and X has compact support and
bounded density. By Assumptions 5-6, the other conditions of the theorem hold. Thus,
by Masry (1996)

sup
x∈D
|γ̂j(x)− γ0j(x)| = O

( lnn
nhpTn

)1/2

+ h`+1
n

 almost surely. (62)

By Assumption 6.4b,
(
lnn/

(
nhpTn

))1/2
+ h`+1

n = o
(
n−1/3

)
thus ‖γ̂ − γ0‖∞ = OP (n−1/4).

Theorem 6 of Masry (1996) also states that almost surely

for |a| ≤ `, sup
x∈D

∣∣∣∣∣∂aγ̂j(x)
∂xa

− ∂aγ0j(x)
∂xa

∣∣∣∣∣ = O

( lnn
nh

pT+2|a|
n

)1/2

+ h`+1−|a|
n

 . (63)
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Define ε̃n :=
[
lnn/(nhpT+2|α|

n )
]1/2

+ h`+1−|α|
n . Then by α ≤ `, ‖γ̂ − γ0‖G = OP (ε̃n) and by

α ≤ `, α ≤ pT and Assumption 6.4b, ε̃n → 0. Moreover, note that γ̂ is continuous by
construction and since γ ∈ CαC′ , Equations (62) and (63) imply that γ̂ ∈ G w.p.a.1.

Condition 5: First, we apply Corollary 1 of Kong et al. (2010). To this end, we check their
Assumptions A1-A7. To avoid confusion with the notations of Kong et al. (2010), let p′ = pT .
For u, e, θ ∈ R3, let ρ(u, θ) = 1

2(u−θ)2 and ϕ(e) = −e, we have ρ(u, θ) = ρ(u, 0)+
∫ θ

0 ϕ(u−t)dt
and E (ϕ(εj)|X) = 0 for εj = 1 {S = j} − γ0j(X).

First, because εj has a bounded support and a bounded density, A1 and A2 in Kong et al.
(2010) hold for any value of the parameter ν1 as defined in Kong et al. (2010).

Assumption 6.3 ensures that for any α = (αj,t) ∈ Np′ such that∑j,t αj,t ≤ 2`+1, u 7→ uαK(u)
is Lipschitz on any compact set (as a product of Lipschitz functions) and on Rp′\Supp(K)
(as the null function). If u ∈ Supp(K) and v ∈ Rp′\Supp(K) there exists w ∈ {µu+(1−µ)v :
µ ∈ [0; 1]} ∩ (2 · Supp(K)) ∩

(
Rp′\Supp(K)

)
. Because 2 · Supp(K) is a compact containing

Supp(K), we have:

|uαK(u)− vαK(v)| ≤ |uαK(u)− wαK(w)|+ |wαK(w)− vαK(v)|

≤ C (|u− w|+ |w − v|) = C|u− v|,

ensuring that u 7→ uαK(u) is Lipshitz on Rp′ . So, A3 holds.

Assumptions 5.1 and 6.1 (resp. 6.2) imply that A4 (resp. A5) holds.

To check A6, we fix the values λ1 = 3/4, λ2 = 1/2, p = ` and take any ν2 > 12, borrowing
here the notation of Kong et al. (2010). Then, tedious algebra shows that under Assumption
6.4b, the three conditions on the bandwidth hn in A6 hold.

Finally, the Bayes formula and Assumptions 1 and 6.1 ensure that X|S admits a bounded
density with respect to the Lebesgue measure. By independence across i = 1, ..., n, A7 holds.

Hence, by Corollary 1 in Kong et al. (2010), we have with probability 1 and uniformly in
x ∈ K, a compact subset of RpT ,

γ̂j(x)− γ0j(x) = Tj(x) +O

( log n
nhpTn

)3/4
+ o

(
h`+1
n

)
, (64)

where
Tj(x) := α(x)h`+1

n + 1
n
e′Shn(x)−1

n∑
i=1

K
(
Xi − x
hn

)
εijw (Xi − x) .
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In this expression, e is the first element of the canonical basis of the corresponding vector
space, the dimension of which depends on ` and pT (it is the number of polynomials of X
of degree less than or equal to `). The function α(x) is a bounded function of x, w(x) is the
vector (1, x, ..., xk, ...)′ for all |k| ≤ ` ordered by increasing degree and Shn(x) is the matrix
E[w((X − x)/hn)w((X − x)/hn)′K((X − x)/hn)].

Under Assumption 6.4b, we have
(
lnn/(nhpTn )

)3/4
= o(n−1/2) and h`+1

n = o(n−1/2). Thus
(64) implies

E∗ (Dγh(Xi, Si, γ0, β0)′[γ̂(X)− γ0(X)])

=
∫
x∈RpT

[Dγh(Xi, Si, γ0, β0)]′ Tj(x)fX(x)dx+ oP (n−1/2)

= 1
n

n∑
i=1

∑
j≤T+1

εij

∫
x∈RpT

e′Shn(u)−1w (Xi − x)λh,j(x)K
(
Xi − x
hn

)
fX(x)dx

+ oP (n−1/2),

where λh,j(x) is the derivative of h(x, s, γ0, β0) with respect to the jth component of γ(x),
written Dγ,jh(x, s, γ0, β0). Note that this derivative is not a function of s, as

λh,j(x) =βkDγ,jc0(γ0, x, β0)λT+1(x, β0)
[
q
T

(γ0, x, β0)1 {λT+1(x, β0) > 0}

+ qT (γ0, x, β0)1 {λT+1(x, β0) < 0}
]

+ βkc0(γ0, x, β0)λT+1(x, β0)
[
Dγ,jqT (γ0, x, β0)1 {λT+1(x, β0) > 0}

+Dγ,jqT (γ0, x, β0)1 {λT+1(x, β0) < 0}
]
. (65)

Also, λh,j(x) is a continuous function of x. Let Ii,j denote the integral in the display above.
After a change of variable, Ii,j is equal to

Ii,j = hpTn

∫
u
e′Shn(Xi − hnu)−1w (hnu)λh,j(Xi − hnu)K (u) fX(Xi − hnu)du.

Assumptions A3-A6 of Kong et al. (2010) hold. Thus, by their Lemma 8,

sup
x∈D
|Shn(x)/(hpTn )− fX(x)S`| = O(νn),

with νn := hn +
[
nhpTn / lnn

]−1/2
. Then, we have

Ii,j =
∫
u
e′S−1

` w (hnu)λh,j(Xi − hnu)K (u) du+ gj,n(Xi),

where gj,n is a deterministic function and because K is compact, supK |gj,n| = O(νn). While
λh,j is not differentiable, it is directionally differentiable and we can write λh,j(Xi − hnu) =
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λh,j(Xi)−hnu′∇λh,j(X̃, u), for some X̃, where ∇λh,j(X̃, u) is uniformly bounded over X̃ and
u. Including this new residual in the definition of gj,n and νn and noting that w(hnu)′e = 1,

Ii,j =
∫
u
e′S−1

` w (hnu)w(hnu)′eλh,j(Xi)K (u) du+ gj,n(Xi)

= e′S−1
`

∫
u
Hnw (u)w(hnu)′K (u) du eλh,j(Xi) + gj,n(Xi)

= e′S−1
` HnS`Hneλh,j(Xi) + gj,n(Xi),

where again gn is deterministic and such that supK |gj,n| = O(νn), and Hn is a diagonal
matrix with diagonal entries h|r|n for |r| ≤ `. Their entries are ordered in the same order as
for the polynomial terms in w(x). One can show that

HnS`Hn = S` +O(hn)

where the O(hn) is an entry-wise bound. This gives Ii,j = λh,j(Xi)+gj,n(Xi), changing again
the definition of gj,n to a function with the same properties. By Assumption 6.4b, νn → 0.
Then, by Chebyshev’s inequality and since E(εij|Xi) = 0, we have 1√

n

∑n
i=1 εijgj,n(Xi) =

oP (1). Thus,

√
nE∗ (Dγh(Xi, Si, γ0, β0)′[γ̂(Xi)− γ0(Xi)]) = 1√

n

n∑
i=1

∑
j≤T+1

εij[λh,j(Xi) + gj,n(Xi)]

= 1√
n

n∑
i=1

∑
j≤T+1

εijλh,j(Xi) + oP (1).

Hence, Condition 5 follows.

Lemma 8 Let P ′ be defined as P (see (16)) but without the constraint on RP and σ ≥ 0.
Suppose that Assumption 5 holds. Then:

lim sup
n→∞

sup
P∈P ′

P

(∥∥∥∥∥n1/2(β̂ − β0)− 1
n1/2

n∑
i=1

φi

∥∥∥∥∥ > η

)
= 0. (66)

Moreover, for τ = E(φiφ′i) and τ̂ its plug-in estimator, τ̂ P−→ τ holds uniformly over P ′ and
if σ > 0, Lemma 2 holds uniformly over P ′.

Proof: To show these results, it suffices to show that they hold along any sequence of
probability distribution (Pn)n≥1 in P ′. We use the same notation as in the other proofs but
index parameters, variables and the expectation operator by n to underline their dependence
on Pn when deemed necessary. Relatedly, we use oPn(1) as a shortcut for a sequence of
random variable εn satisfying Pn(‖εn‖ > η)→ 0 for all η > 0.
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To prove the first point, let us first prove that β̂ − β0n = oPn(1). To that end, consider
the class of functions L := {(y, x) 7→ `c(y|x; β); β ∈ Θ}. We apply a version of Glivenko-
Cantelli theorem on L that is uniform over P . The functions (y, x, β) 7→ `c(y|x; β) are C1

on {0, 1}T × Supp(X)×Θ, which is a compact set. The class L thus satisfies the Lipschitz
requirement of Theorem 2.7.11 of van der Vaart and Wellner (1996). Then, by that theorem
and the fact that Θ is compact,

N(ε‖F‖Q,1,L, L1(Q)) ≤ N[ ](ε‖F‖Q,1,L, L1(Q)) ≤ N(ε/2,Θ, ‖.‖) <∞,

where N[ ] denotes bracketing numbers, N denotes covering numbers and F is the envelope
function defined in the same theorem. Hence,

sup
Q

logN(ε‖F‖Q,1,L, L1(Q)) <∞.

In view of the comment after its proof, we can then apply Theorem 2.8.1 of van der Vaart
and Wellner (1996). As a result,

sup
β∈Θ

∣∣∣∣∣ 1n
n∑
i=1

`c(Yi|Xi; β)− En[`c(Y |X; β)]
∣∣∣∣∣ = oPn(1). (67)

We establish below a uniform version of the well-separation condition by proving that for all
η > 0, there exists ν > 0 such that for all n ≥ 1,

sup
β:‖β−β0n‖>η

Mn(β) < Mn(β0n)− ν, (68)

where Mn(β) = En[`c(Y |X; β)]. By suitably modifying the proof of Theorem 5.7 in van der
Vaart (2000) to the sequence (Pn), the result follows.

Now, we prove that for any η > 0, there exists ν > 0 such that (68) holds. For any β such
that ‖β − β0n‖ > η, let

β′ = η

‖β − β0n‖
β +

(
1− η

‖β − β0n‖

)
β0n.

Then ‖β′ − β0n‖ = η. Moreover, by concavity of Mn,

Mn(β′) ≥ η

‖β − β0n‖
Mn(β) +

(
1− η

‖β − β0n‖

)
Mn(β0n) ≥Mn(β).

Thus,
sup

β:‖β−β0n‖>η
Mn(β) ≤ sup

β∈Sn,η
Mn(β),
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where Sn,η = {β : ‖β − β0n‖ = η}. Next, for any β ∈ Sn,η by a Taylor expansion of Mn at
β0n,

Mn(β) = Mn(β0n)− 1
2(β − β0n)′In,0(β − β0n) + ∂3Mn

∂β∂β′
(β̃)[β − β0n],

where β̃ = tβ+(1−t)β0n for some t ∈ (0, 1) and ∂3Mn

∂β∂β′
(β̃)[β−β0n] is the third order differential

of Mn at β̃ evaluated at β − β0n. We know that In,0 >> A, write ρ the smallest eigenvalue
of A. By Assumption 5, there exists B > 0 such that

∣∣∣ ∂3Mn

∂β∂β′
(β̃)[β − β0n]

∣∣∣ ≤ Bη3, which gives

Mn(β) ≤Mn(β0n) + η2(Bη − 1
2ρ) ≤Mn(β0n)− εη2

if η ≤ (1
2ρ− ε)/B for some ε > 0. Taking η small enough is without loss of generality, thus

(68) follows.

Next, we prove (66). By a Taylor expansion, there exists tn ∈ (0, 1) such that

1
n

n∑
i=1

∂`c
∂β

(Yi|Xi; β0n) +
[

1
n

n∑
i=1

∂2`c
∂β∂β′

(Yi|Xi; β̃n)
] (
β̂ − β0n

)
= 0,

where β̃n = β̂ + (1− tn)β0n. Thus, by definition of φn,i,

I−1
n,0

[
1
n

n∑
i=1

∂2`c
∂β∂β′

(Yi|Xi; β̃n)
]
√
n
(
β̂ − β0n

)
= 1√

n

n∑
i=1

φn,i. (69)

Now, by the triangle inequality and the fact that the third derivatives of `c are uniformly
bounded, there exists C > 0 such that∥∥∥∥∥ 1

n

n∑
i=1

∂2`c
∂β∂β′

(Yi|Xi; β̃n)− In,0
∥∥∥∥∥ ≤

∥∥∥∥∥ 1
n

n∑
i=1

∂2`c
∂β∂β′

(Yi|Xi; β̃n)− ∂2`c
∂β∂β′

(Yi|Xi; β0n)
∥∥∥∥∥

+
∥∥∥∥∥ 1
n

n∑
i=1

∂2`c
∂β∂β′

(Yi|Xi; β0n)− In,0
∥∥∥∥∥

≤ C
∥∥∥β̂ − β0n

∥∥∥+
∥∥∥∥∥ 1
n

n∑
i=1

∂2`c
∂β∂β′

(Yi|Xi; β0n)− In,0
∥∥∥∥∥ .

By what precedes, the first term is an oPn(1). Moreover, for all i and n, each element of
the matrix ∂2`c/∂β∂β

′(Yi|Xi; β0n) is bounded almost surely. Thus, the uniform integrability
condition of Gut (1992) holds for this variable. Then, by his weak LLN, the second term of
the right-hand side above is also an oPn(1). Thus, because I−1

n0 << A−1 (since Pn ∈ P ′), we
have

I−1
n,0

[
1
n

n∑
i=1

∂2`c
∂β∂β′

(Yi|Xi; β̃n)
]

= Id + oPn(1).

Next, for all i and n, we have

En[φn,i] = 0, Vn(φn,i) = I−1
n0 << A−1. (70)
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Hence, by Chebyshev’s inequality, the right-hand side of (69) is bounded in probability
uniformly over n. Thus, this is also the case of

√
n
(
β̂ − β0n

)
. Hence,

√
n
(
β̂ − β0

)
= 1√

n

n∑
i=1

φn,i + oPn(1).

In other words, (66) holds.

We now show that τ̂ converges uniformly over P ′ to τ . First, we have

φ̂i =
 1
n

n∑
j=1

∂2`c
∂β2 (Yj|Xj; β̂)

−1
∂`c
∂β

(Yi|Xi; β̂)

=


 1
n

n∑
j=1

∂2`c
∂β2 (Yj|Xj; β̂)

−1

− I−1
0

 ∂`c
∂β

(Yi|Xi; β̂) + I−1
0
∂`c
∂β

(Yi|Xi; β̂).

Denote with φ̂i1 and φ̂i2 the first and second terms respectively on the right hand side of
the second equality above. By the same argument as below Equation (69), using sequences of
probability distributions and replacing β̃n with β̂, one can show that 1

n

∑n
j=1 ∂

2`c/∂β
2(Yj|Xj; β̂)

converges uniformly to I0. And since I−1 << A−1,
[

1
n

∑n
j=1 ∂

2`c/∂β
2(Yj|Xj; β̂)

]−1
converges

uniformly to I−1
0 . Moreover, since Cs(x, β) is bounded away from 0 uniformly over (s, x, β),

∂`c/∂β(y|x; β) is a continuous function of (y, x, β) and since the support of (Yi, Xi, β) is a
compact set, ||∂`c/∂β(Yi|Xi; β̂)|| ≤ C with probability going to 1 uniformly. This implies
that in φ̂iφ̂

′
i = φ̂i1φ̂

′
i1 + φ̂i1φ̂

′
i2 + φ̂i2φ̂

′
i1 + φ̂i2φ̂

′
i2, the sample average of all terms including

φ̂i1 converges uniformly to 0. As for the term φ̂i2φ̂
′
i2, writing φi2 = I−1

0 ∂`c/∂β(Yi|Xi; β)
then ||φ̂i2 − φi2|| ≤ C|β̂ − β0| with probability uniformly going to 1. Since φi2 is uniformly
bounded, we obtain ∑n

i=1 φ̂i2φ̂
′
i2/n

P−→ ∑n
i=1 φi2φ

′
i2/n uniformly over P ′.

We now show that Lemma 2 holds uniformly over P ′. Let us start with the asymptotic
normality. Reasoning as in the proof of Lemma 2 and using the first point above, we get

√
n
(
∆̂− ∆̃

)
= 1
n1/2

n∑
i=1

[
Ĝφn,i + g(Wi, β0n)− ∆̃

]
+ oPn(1).

Note that g is C2 on the compact set Supp(W ) × Θ. Moreover, βi as defined in Lemma 2
satisfies

∥∥∥βi − β0n

∥∥∥ ≤ ∥∥∥β̂ − β0n

∥∥∥. Hence, there exists M > 0 such that

∥∥∥Ĝ−Gn

∥∥∥ ≤M
∥∥∥β̂ − β0n

∥∥∥+
∥∥∥∥∥ 1
n

n∑
i=1

∂g

∂β
(Wi, β0n)−Gn

∥∥∥∥∥ . (71)

By the first part of the proof, β̂ − β0n = oPn(1). Next, because ∂g/∂β(., β0n) is bounded
on Supp(W ), the uniform integrability condition of Gut (1992) also holds for this variable.
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Then, by his weak LLN„ the second term of (71) is an oPn(1). Thus,
∥∥∥Ĝ−Gn

∥∥∥ = oPn(1).
As a result,

√
n

∆̂− ∆̃
σn

= 1
n1/2

n∑
i=1

Gnφn,i + g(Wi, β0n)− En[g(Wi, β0n)]
σn

+ oPn(1).

Now, by the triangle and Cauchy-Schwarz inequalities, we have

|Gnφn,i + g(Wi, β0n)− En[g(Wi, β0n)]| ≤ ‖Gn‖ ‖φn,i‖+ |g(Wi, β0n)− En[g(Wi, β0n)]| . (72)

‖Gn‖ is bounded uniformly over n. The variables |g(Wi, β0n)− En[g(Wi, β0n)]| are also
bounded. Next, φn,i = I−1

n0 Vn,i where Vn,i is a bounded vector (with ‖Vn,i‖ ≤ C, say).
Moreover, because Pn ∈ P ′, ∥∥∥I−1

n0 Vn,i
∥∥∥ ≤ ∥∥∥A−1Vn,i

∥∥∥ ≤ ρ−1C,

where ρ > 0 denotes the smallest eigenvalue of A. Then, using (72) and σn ≥ σ, the variables
(Gnφn,i + g(Wi, β0n)/σn are bounded by a constant independent of n. Thus, they satisfy the
Lindeberg condition. Then, by the central limit theorem for triangular arrays,

√
n

∆̂− ∆̃
σn

d−→ N (0, 1).

We now show that σ̂ converges to σ uniformly over P ′. First note that using the notation
of the proof of Lemma 2, we have

ψ̂i =
 1
n

n∑
j=1

g(Wj, β̂)
 φ̂ik + β̂kg(Wi, β̂) +

 1
n

n∑
j=1

∂g

∂β
(Wj, β̂)

′ φ̂i.
Since ∂g/∂β is continuous in β, 1

n

∑n
j=1 g(Wj, β̂) converges uniformly to E(g(Wj, β0n)). Simi-

larly since ∂2g/∂β2 is continuous, 1
n

∑n
j=1 ∂g/∂β(Wj, β̂) converges uniformly toE(∂g/∂β(Wj, β0n)).

Thus since φ̂ik, g(Wi, β̂) and φ̂i are all bounded with probability uniformly going to 1, to show
that σ̂2 = 1

n

∑n
i=1 ψ̂

2
i converges uniformly to σ2 it suffices to show that 1

n

∑n
i=1 ψ̃

2
i converges

uniformly to σ2, where

ψ̃i = E [g(Wj, β0n)] φ̂ik + βkg(Wi, β̂) + E

[
∂g

∂β
(Wj, β0n)

]′
φ̂i.

Each of the terms in this sum are bounded with probability uniformly going to 1. They
are converging uniformly for all i to E [g(Wj, β0n)]φik, βkg(Wi, β0n) and E

[
∂g
∂β

(Wj, β0n)
]′
φi

respectively, by the proof of uniform convergence of τ̂ for φ̂, and continuity of ∂g/∂β. Thus
one can conclude that 1

n

∑n
i=1 ψ̃

2
i converges uniformly to σ2.
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Lemma 9 Suppose that Assumption 5 holds. Then R̂ converges to R and if ζ > 0 in the
definition of P, this convergence holds uniformly over P.

Proof: Define
f(Wi, β) :=

(
T

Si

)
λT (Xi, β) exp(SiX ′iTβ)

2× 4T × CSi(Xi, β) .

Then, R̂ = ∑n
i=1 |f(Wi, β̂)|/n. The function w 7→ f(w, .) is C1 and (w, β) 7→ ∂f(w, β)/∂β is

continuous over the compact set Supp(W )×Θ′ where Θ′ is a compact set such that Θ ( Θ′.
Hence, there exists M > 0 such that β 7→ f(w, β) is Lipschitz with coefficient M for all
β ∈ Θ′ and w ∈ Supp(W ). The same property then holds for β 7→ |f(w, β)|. Since β̂ ∈ Θ′

with probability uniformly going to 1 and |f(Wi, β)| is bounded almost surely when β ∈ Θ′,
one can use the argument below Equation (69) to show that R̂ converges to R and this
convergence holds uniformly over P .

C Further details on the simulations

First, to estimate γ0t(x), we use a local linear estimator with a common bandwidth ht for the
T components ofX. To choose ht, we aim at reaching a certain ratio between the (integrated)
bias and standard deviation of the estimator. Specifically, let Bt(x, h) and σ2

t (x, h) denote
respectively the asymptotic bias and variance of γ̂t(x) with a bandwidth equal to h. Then
(see, e.g. Ruppert and Wand, 1994),

Bt(x, h) = h2
(∫

u2K(u)du
) pT∑
j=1

∂2γ0t

∂x2
j

(x),

σ2
t (x, h) = 1

nhT
(
∫
K(u)2du)T γ0t(x)(1− γ0t(x))

fX(x) .

Then, define B2
t (h) := E[B2

t (X, h)] and σ2
t (h) := E[σ2

t (X, h)]. Assuming first that B2
t (h)

and σ2
t (h) are known, we would choose ht so that σ2

t (ht) = Rn × B2
t (ht), where Rn > 0

fixes to the degree of undersmoothing. For instance, Rn = 1 corresponds to the optimal
bandwidth in terms of asymptotic mean integrated squared error. We use Rn = 5(n/500)2

in our simulations. Now, B2
t (h) and σ2

t (h) are actually unknown. We estimate both assuming
that α is constant. Then, we can estimate this constant by MLE (plugging the CMLE β̂ in
the log-likelihood) and then estimate γ0t(x) by plug-in, using (2).

Finally, to obtain m̂, we must choose a threshold cn. We actually slightly modify Î(x), by
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letting

Î(x) := max
{
t ∈ {1, ..., T} : H t(m̃→t(x)) ≥ cnt(x) and H t(m̃→t(x)) ≥ cnt(x)

}
,

where cnt(x) := σ̂t[2 ln ln(n)]1/2, cnt(x) := σ̂t(x)[2 ln ln(n)]1/2 and σ̂2
t (x) (resp. σ̂2

t (x)) is an
estimator of the asymptotic variance of H t(m→t(x)) (resp. H t(m→t(x))).
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