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Abstract

This paper develops a model to explore how favor exchange in�uences wealth dy-

namics. We identify a key obstacle to wealth accumulation: wealth crowds out favor

exchange. Therefore, households must choose between growing their wealth and access-

ing favor exchange. We show that low-wealth households rely on favor exchange at the

cost of having tightly limited long-term wealth. As a result, initial wealth disparities

persist and can even grow worse. We then explore how communities and policymakers

can overcome this obstacle. Using simulations, we show that community bene�ts and

place-based policies can stimulate both saving and favor exchange, and in some cases,

can even transform favor exchange into a force that accelerates wealth accumulation.
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1 Introduction

Rising economic tides do not lift all households equally. Even in growing economies, some

communities are left behind, with persistently lower wealth than surrounding areas. Such

left-behind communities can be found in both rich and developing countries, and in both

rural and urban areas.1

Faced with limited wealth, members of left-behind communities rely on one another for

practical support (e.g., Kranton 1996, Ali and Miller 2016). Community members engage

in all kinds of favor exchange, from the trade of food, lodging, and childcare within poor

neighborhoods in Milwaukee (Desmond 2012, 2016) to the exchange of rice and kerosene

among villagers in India (Jackson et al. 2012). By allowing households to procure goods and

services without spending money, in-kind favor exchange frees up resources and therefore

has the potential to lead to faster wealth accumulation. Yet in practice, favor exchange does

not readily translate into growing wealth. Households instead struggle to �get by� (Warren

et al. 2001), even when they have access to high-return savings opportunities like making

productive investments or paying o� high-interest debts (Ananth et al. 2007, Stegman 2007,

Bernheim et al. 2015). Given that favor exchange frees up money that can then be saved,

and given the presence of high-return savings opportunities, why doesn't community support

translate into growing wealth?

This paper develops a model to study how favor exchange shapes wealth dynamics. While

favor exchange could, in principle, encourage saving, it su�ers from a commitment problem:

households can renege on promised favors and instead use money alone to meet their needs.

We show that this commitment problem prevents favor exchange from encouraging saving.

Even worse, wealth actually crowds out favor exchange, so that households must keep their

wealth arti�cially low in order to access favor exchange. The result is a persistent wealth gap

between left-behind communities and the rest of the economy. We then explore how commu-

1Desmond [2012] and Hendrickson et al. [2018] document left-behind communities in rich countries. Ho�
and Sen [2006], Jakiela and Ozier [2016], and Munshi and Rosenzweig [2016] document such communities in
developing countries.
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nities and policymakers can mitigate this tension between favor exchange and saving, and

potentially even transform favor exchange into a force that encourages wealth accumulation.

The foundation of our analysis is a model that introduces endogenous wealth dynamics

into favor-exchange relationships. A household faces a standard consumption-saving prob-

lem, with the twist that it can �purchase� consumption using not only money but also

promises of future in-kind favors. However, the household cannot commit to following

through on these promises, so they must be credible in the context of an ongoing favor-

exchange relationship.

Using this model, we show that wealth undermines the trust that is essential for favor

exchange. The reason is that even after losing access to favor exchange, households can

use money to buy consumption. Wealthier households therefore have less to lose from not

reciprocating favors; namely, they have better outside options to favor exchange. These

households therefore have a weaker incentive to return favors. Recognizing this, community

members are less willing to do favors for households that are expected to become wealthy

in the future. In short, households that accumulate wealth become �too big for their boots�

and lose access to community support.

Our main result characterizes how this �too-big-for-their-boots� mechanism constrains

wealth accumulation and exacerbates long-term inequality. Equilibrium wealth dynamics

are shaped by two forces. First, there is an initial selection e�ect: wealthy households

opt out of favor exchange, while low-wealth households rely on it. Second, in response to

the �too-big-for-their-boots� mechanism, households that rely on favor exchange engage in

sharply constrained saving. Some households are so constrained that they even decrease

their wealth over time. Consequently, for households that rely on favor exchange, long-term

wealth remains substantially below what it would be without favor exchange. Together,

the selection e�ect and the �too-big-for-their-boots� mechanism imply that initial wealth

disparities between households persist and can even grow worse over time.

The �too-big-for-their-boots� mechanism resonates with sociological and ethnographic
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evidence on favor exchange in left-behind communities. Support for this mechanism dates

back at least to Stack [1975]'s classic study of favor exchange in a low-wealth U.S. community.

Stack [1975, p43] notes that the wealthiest members of that community are most at risk of

being excluded from favor exchange:

As people say, �The poorer you are, the more likely you are to pay back.�
This criterion often determines which kin and friends are actively recruited into
exchange networks.

To explain why wealthier households are excluded, Stack [1975] suggests that everyone knows

that these households can more easily leave the community and move to a nearby city. Portes

and Sensenbrenner [1993], Briggs [1998], Dominguez and Watkins [2003], and others echo

this tension between favor exchange and outside options. Our main result characterizes

the dynamic implications of the �too-big-for-their-boots� mechanism for households' saving

decisions.

Building on this result, we then explore how community leaders and policymakers can

mitigate the �too-big-for-their-boots� mechanism. This mechanism arises because households

cannot commit to repaying favors. We �rst prove that, if a household were able to commit,

then favor exchange would unambiguously encourage wealth accumulation instead of dis-

couraging it. This result suggests that easing the commitment problem can transform favor

exchange into a force that accelerates wealth accumulation.

Using simulations, we show that communities can unlock this transformative e�ect by

making non-favor-exchange bene�ts, such as participation in family, social, or religious ac-

tivities, contingent on repaying past favors. For communities that provide these types of

bene�ts, favor exchange can help at least some low-wealth households catch up to their

wealthier peers. We link this analysis to examples of communities that appear to have

successfully transformed favor exchange in this way.

Policymakers can similarly mitigate the �too-big-for-their-boots� mechanism using �place-

based� policies, which provide bene�ts that are localized to a particular community (Austin

et al. 2018). Using simulations, we show that these policies can relax the commitment
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problem and lead to higher long-term wealth in the community. While such policies cannot

completely eliminate the wealth gap between low-wealth households and their wealthier

peers, they can help left-behind communities by narrowing that gap.

In some communities, favor exchange not only augments consumption but also provides

insurance against negative shocks. To explore how this insurance role a�ects wealth dynam-

ics, we enrich our model to incorporate random savings shocks. If shocks are not too large,

then we prove that our main result goes through: the �too-big-for-their-boots� mechanism

still depresses long-term wealth for households that rely on favor exchange. We then use nu-

merical simulations to explore what happens with large savings shocks. Here, qualitatively

di�erent dynamics emerge. Large shocks substantially relax the commitment problem, since

even wealthy households are willing to repay substantial favors in order to keep accessing

favor exchange following large negative shocks. Thus, similar to community bene�ts, large

shocks can transform favor exchange into a force that accelerates wealth accumulation rather

than discouraging it.

A key feature of our model is that favor exchange is in-kind: community members trade

consumption goods and services rather than borrowing and lending money. This distinction

separates our paper from the literature on informal lending (e.g., Bulow and Rogo� 1989,

Ligon et al. 2000). In the �nal part of the paper, we show that it is exactly this in-kind

nature that allows favor exchange to �ourish. Indeed, if favors were instead monetary, then

favor exchange would be impossible in our setting. The reason is that when a household

borrows money, it necessarily gets wealthier and so becomes less reliant on favor exchange

in the future. Monetary favor exchange is therefore self-defeating (as in, e.g., Bulow and

Rogo� 1989). In contrast, in-kind favor exchange is self-sustaining, because the household

can engage in substantial favor exchange without becoming any wealthier.
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Related Literature

This paper makes three contributions. First, we build a model that incorporates endoge-

nous wealth dynamics into in-kind favor exchange. Second, we characterize the �too-big-for-

their-boots� mechanism and demonstrate how it discourages saving and exacerbates wealth

inequality. Third, we identify policies and community characteristics that can mitigate the

�too-big-for-their-boots� mechanism and encourage wealth accumulation. We discuss the

literature related to the �rst two contributions here, deferring the discussion of the third

contribution to Section 5.

Our modeling approach draws from the literature on community enforcement and favor

exchange (e.g., Hauser and Hopenhayn 2008, Jackson et al. 2012, Ambrus et al. 2014, Ali and

Miller 2016 and 2020, Miller and Tan 2018, Sugaya and Wolitzky 2021), and the literature

on relational contracting (e.g., Levin 2003, Malcomson 2013). Our key departure from these

papers is to introduce wealth as an endogenous state variable. This addition gives rise to

the wealth dynamics that are at the core of our analysis.

In our model, the �too-big-for-their-boots� mechanism arises because market exchange

acts as an endogenous outside option to favor exchange. Thus, our analysis builds on papers

that study the role of outside options in relationships (e.g., Baker et al. 1994, Kovrijnykh

2013), as well as papers that study how favor and market exchange interact (e.g., Kranton

1996, Banerjee and Newman 1998, Gagnon and Goyal 2017, Banerjee et al. 2020, Jackson

and Xing 2020). Unlike those papers, the outside option in our setting evolves based on the

household's saving decisions. This dynamic feedback is what leads to the �too-big-for-their-

boots� mechanism. More distantly related are papers that study other types of distortions

in communities, such as those that arise from signaling (e.g., Austen-Smith and Fryer 2005)

or hold-up (e.g., Ho� and Sen 2006).

Our main result shows how persistent wealth inequality arises from the combination of

a selection e�ect and the �too-big-for-their-boots� mechanism. The selection e�ect says that

wealthy households opt out of favor exchange. By identifying how the value of favor exchange
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varies with wealth, this e�ect relates to papers that consider the costs and bene�ts of being

part of a close-knit community (e.g., Kranton 1996, Banerjee and Newman 1998) and the role

of wealth in migration decisions (e.g., Munshi and Rosenzweig 2016). On its own, however,

the selection e�ect is silent about how favor exchange in�uences saving decisions within

communities. The �too-big-for-their-boots� mechanism addresses this gap by identifying a

hidden cost of saving, which is that it undermines favor exchange.

Our analysis provides an explanation for the well-documented fact that poverty can

persist even in the presence of high-return savings opportunities (e.g., Ananth et al. 2007,

Karlan et al. 2019). In contrast to other explanations of under-saving, our mechanism does

not rely on �xed costs of investment (e.g., Nelson 1956, Advani 2019), monopolistic credit

markets (e.g., Mookherjee and Ray 2002, Liu and Roth 2020), or behavioral preferences

(e.g., Banerjee and Mullainathan 2010, Bernheim et al. 2015). Thus, while we share Advani

[2019]'s emphasis on favor exchange and Liu and Roth [2020]'s focus on outside options, our

mechanism leads to persistently low wealth even in the absence of frictions like �xed-cost

investments (in contrast to Advani 2019) or monopolistic credit markets (in contrast to Liu

and Roth 2020). By connecting a household's saving decisions to its ability to engage in

favor exchange, our mechanism leads to novel empirical predictions and policy prescriptions.

2 Model

A long-lived household (�it�) has initial wealth w0 > 0 and discount factor δ ∈ (0, 1).

The household starts in a community. At the beginning of each period t ∈ {0, 1, ...}, if the

household still lives in the community, it can choose to either stay or move to a city. Once

it moves to the city, it remains there forever.

If the household is in the community in period t, then it plays the following community

game with a short-lived neighbor t (�she�), who is another member of the community:

1. The household requests a consumption level ct > 0 and o�ers a payment pt > 0 in
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exchange. The payment cannot exceed the household's wealth, pt 6 wt.

2. Neighbor t either accepts or rejects this exchange, dt ∈ {1, 0}. If she accepts (dt = 1),

then she receives pt and incurs the cost of providing ct. If she rejects (dt = 0), then no

trade occurs.

3. The household decides how much of a favor, ft > 0, to perform for neighbor t. The

household incurs the cost of providing ft.

4. The household invests its remaining wealth, wt−ptdt, to generate wt+1. Let R(·) denote

the return on investment, so that wt+1 = R(wt − ptdt).

Let U(·) be the household's consumption utility in the community. The household's period-t

payo� in the community is πt = U(ctdt) − ft. Neighbor t's payo� is (pt − ct) dt + ft. The

community is tight-knit and so all actions are observed by all neighbors.

We assume that consumption utility U(·) and investment returns R(·) are strictly increas-

ing, with U ′′(·) and R′(·) continuous, U(0) = R(0) = 0, U(·) strictly concave, R(·) concave,

limc↓0 U
′(c) = ∞, and limc→∞ U

′(c) = 0. We say that investment generates positive returns

at investment level w if R′(w) > 1
δ
. We assume that R′(w) > 1

δ
for w < w̄ and R′(w) = 1

δ

for w > w̄, so that investment generates positive returns at all investment levels and strictly

so below a threshold w̄ > 0. Investment returns are deterministic in this model; Section 6

considers a setting with stochastic returns.

If the household has moved to the city by period t, then it plays the city game with a

short-lived vendor t (�she�), who has the same actions and payo� as neighbor t. The city

game is identical to the community game in all but two ways. First, each vendor observes

only her own interaction with the household, so that interactions are anonymous in the

city. Second, the household's marginal utility of consumption is weakly higher in the city.

Formally, the household's period-t payo� in the city is πt = Û(ctdt)− ft, where Û(·) satis�es

the same regularity conditions as U(·), with Û ′(c) > U ′(c) for all c > 0.
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The household's continuation payo� at the beginning of period t is

Πt = (1− δ)
∞∑
s=t

δs−tπs.

We characterize household-optimal equilibria, which are the perfect Bayesian equilibria that

maximize the household's ex ante expected payo�. Without loss of generality, we assume

that the household leaves the community if it is indi�erent between staying and leaving.

The following assumption ensures that in equilibrium, households that stay in the com-

munity have access to strictly positive-return investments.

Assumption 1 De�ne c̄ > 0 as the solution to U
′
(c̄) = 1. Then, R(w̄ − c̄) > w̄.

In the context of Stack [1975], the household and neighbors are members of a low-income

Midwestern community called �the Flats.� Members regularly exchange food, clothing, child-

care, lodging, and other goods and services (ct). To compensate one another, households

can pay with money (pt) and �pay� with future favors (ft). For example, the recipient of

childcare (ct > 0) can reciprocate with future childcare (ft > 0). These favors are in-kind,

in the sense that they involve directly trading goods and services. Households accumulate

wealth (R(·)) by repaying high-interest debt or making other investments. The Flats is a

tight-knit community and �everyone knows who is working, when welfare checks arrive, and

when additional resources are available� (p. 37), as well as who has reneged on promised

favors. Households in the Flats can move to a nearby city, Chicago, which harbors greater

opportunities (Û ′ > U ′) but separates them from their favor-exchange network.

While we assume that moving to the city is irreversible, this assumption is not essential for

our results; in online appendix C.1, we prove that our main �ndings are robust to allowing the

household to return to the community after leaving. Neither is it essential for the household's

cost of providing ft to be linear; in online appendix C.2, we prove a similar result if the cost

of providing ft is convex. As a special case, the cost of providing ft could be U−1(ft), in

which case neighbors value the favor in the same way as the household values consumption.
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We model the city as an alternative location to the community, but our main result would

hold without change if we eliminated the city and instead assumed that any deviation was

punished by reversion to a Markov perfect equilibrium in the community. The reason is that

even within the community, wealth crowds out favor exchange, since wealthier households

are better able to meet their needs using money alone. Given this equivalence, we include

the city in our analysis in order to match our applications, which typically include mobility

across locations, and to derive empirical and policy implications. In applications that do not

have mobility across locations, one can interpret �leaving for the city� as opting out of favor

exchange in the community.

3 Life in the City

We begin by characterizing wealth dynamics in the city. The household faces a standard

consumption-saving problem. It takes full advantage of investment opportunities and accu-

mulates wealth.

Interactions are anonymous in the city, so ft = 0 in equilibrium. Vendor t is therefore

willing to accept an o�er only if the payment covers her cost (i.e., pt > ct), and strictly

prefers to do so if pt > ct. Consequently, every equilibrium entails pt = ct in every t > 0,

so that wt+1 = R(wt − ct). For a household with wealth w, the resulting optimal payo� and

consumption are given, respectively, by:

Π̂(w) = max
c∈[0,w]

(
(1− δ)Û(c) + δΠ̂ (R (w − c))

)
and

Ĉ(w) ∈ arg max
c∈[0,w]

(
(1− δ)Û(c) + δΠ̂ (R (w − c))

)
.

Our �rst result shows that in any equilibrium of the city, the household consumes Ĉ(wt)

and its payo� is Π̂(wt). Moreover, both consumption and wealth increase over time, with

long-term wealth above R(w̄).
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Proposition 1 Both Π̂(·) and Ĉ(·) are strictly increasing, with Π̂(·) continuous. In any

equilibrium of the city, Πt = Π̂(wt) and ct = Ĉ(wt) in any t > 0, with (wt)
∞
t=0 increasing and

lim
t→∞

wt ≥ R(w̄)

on the equilibrium path.

The proof of Proposition 1 is routine and relegated to online appendix B. Since R′(w) > 1
δ

for w < w̄, the standard Euler equation,

Û ′(Ĉ(wt)) = δR′(wt − Ĉ(wt))Û
′(Ĉ(wt+1)), ∀ t, (Euler)

implies that the household's long-term wealth is at least R(w̄) in the city. Figure 1 simulates

equilibrium outcomes in the city.2

Figure 1: Left panel: the household's equilibrium payo� and consumption in the city as
a function of w. Right panel: consumption and wealth over time in the city, starting at
w0 = 0.006.

2Parameters in Figures 1 to 3 are δ = 8
10 , U(c) =

√
c
2 , Û(c) = 13

√
c

25 , and

R(w) =

{
3
(√
w + 1− 1

)
w 6 11

25 ;
5w
4 + 1

20 otherwise.
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4 Wealth Dynamics in the Community

This section characterizes household-optimal equilibria for a household starting in the com-

munity. Section 4.1 presents our main result, which shows that households that rely on favor

exchange have sharply limited long-term wealth. Section 4.2 discusses empirical implications

of this result. Section 4.3 gives the proof.

4.1 Underinvestment and Persistent Inequality

Our main result identi�es two reasons why wealth in the community remains substantially

below wealth in the city. First, there is a selection e�ect: su�ciently wealthy households

leave the community, whereas poorer households stay. Second, the �too-big-for-their-boots�

mechanism constitutes an extra cost of investment in the community, resulting in sharply

limited long-term wealth for households that stay.

To understand this result, note that the community's sole advantage over the city is

that favor exchange can augment consumption in the community but not in the city. In

particular, neighbors are able to observe and punish a household that reneges on ft > 0.

Consequently, the household can credibly promise ft > 0 to repay neighbor t for providing

consumption. Given a credibly promised favor ft > 0, neighbor t is willing to accept any

request that satis�es ct ≤ pt + ft.

The opportunity to engage in favor exchange is most attractive to low-wealth households,

which would otherwise have low consumption and a high marginal utility of consumption.

Conversely, wealthy households already consume a lot, so their marginal utility from fur-

ther increasing ct is low. Thus, wealthy households leave the community while low-wealth

households stay, giving us our selection e�ect.

To understand the �too-big-for-their-boots� mechanism, consider a household with wealth

wt that stays in the community, consumes ct = pt + ft, and invests It = wt − pt. Since

the household can renege on ft, leave the community, and earn Π̂(R(It)) in the city, the
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maximum favor that can be sustained in equilibrium depends on the investment It. Denote

a household's maximum continuation payo� if it is in the community and has wealth R(It)

by Π∗(R(It)). Then, ft must satisfy the following dynamic enforcement constraint:

ft 6 f̄(It) =
δ

1− δ
(Π∗(R(It))− Π̂(R(It))). (DE)

This constraint ensures that the household prefers to do favor ft and earn continuation payo�

Π∗(R(It)), rather than reneging on ft and earning punishment payo� Π̂(R(It)).

If (DE) binds, then changing It a�ects the size of the favor, which a�ects period-t con-

sumption because ct = pt + ft. The �too-big-for-their-boots� mechanism holds when f̄(It)

is decreasing in It, so that investment crowds out favor exchange. When this occurs, the

standard cost-bene�t trade-o� captured by the Euler equation, (Euler), is augmented by an

extra cost: the favor ft, and so consumption ct, decrease as investment increases. Conse-

quently, the household optimally invests less than the investment that would satisfy (Euler).

This is the sense in which a household in the community underinvests.

This intuition elides a key complication: f̄(·) depends on both Π∗(·) and Π̂(·), which

in turn depend on the household's future decisions about consumption, favor exchange,

and investment. Wealth a�ects all of these decisions, rendering a full characterization of

household-optimal equilibria intractable.

Our main result, Proposition 2, focuses on the selection e�ect and the �too-big-for-their-

boots� mechanism. Selection is summarized by a wealth threshold, wse < w̄, and a set

W ⊆ [0, wse]. The household stays forever if w0 ∈ W and otherwise leaves the community

immediately. The �too-big-for-their-boots� mechanism is summarized by a wealth level, wtr <

wse, such that the long-term wealth of a household that stays in the community is below

wtr. Since wtr < wse < R(w̄), long-term wealth in the community is substantially below

long-term wealth in the city. Moreover, a household that stays with wealth w0 ∈ (wtr, wse)

has strictly declining wealth over time. This is the sense in which wealth inequality persists
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and can grow worse over time.

Proposition 2 Impose Assumption 1. There exist wealth levels wtr and wse satisfying 0 ≤

wtr < wse < w̄, and a positive-measure set W ⊆ [0, wse] with supW = wse, such that in any

household-optimal equilibrium:

1. Selection. The household stays in the community forever if w0 ∈ W, and otherwise

leaves in period 0.

2. �Too-big-for-their-boots� mechanism. If the household stays in the community,

then (wt)
∞
t=0 is monotone, with

lim
t→∞

wt 6 wtr.

Moreover, W ∩ [wtr, wse] has a positive measure.

Section 4.3 gives the proof of this result. We have already argued that su�ciently wealthy

households leave the community, giving us the selection threshold wse, while some poorer

households stay, giving us the set W . Moreover, any household that stays in t = 0 stays

forever. The reason is that a household that leaves in period t > 0 cannot engage in favor

exchange during period (t − 1), so it might as well leave in period (t − 1). Iterating this

argument, such a household might as well leave in period 0.

To understand why long-term wealth in the community is below wtr, consider a household

that stays with wealth just below wse. Such a household is close to indi�erent between leaving

and staying. Since staying implies that wealth remains below wse, which is lower than long-

term wealth in the city, this household optimally stays only if it engages in signi�cant favor

exchange in some period; that is, only if ft � 0 in some t. If the household's wealth always

remains near wse, then the right-hand side of the dynamic enforcement constraint, (DE), is

close to zero, so ft ≈ 0 in every t ≥ 0. Therefore, for ft � 0 to be sustainable in equilibrium,

the household must underinvest so severely that its wealth decreases. We conclude that

long-term wealth in the community is below some level, wtr, which is below the selection
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threshold wse and so sharply below long-term wealth in the city. The proof of Proposition

2 strengthens this result by showing that (wt)
∞
t=0 is monotone in the community and that

a positive measure of households, W ∩ [wtr, wse], stay in the community. These households

have decreasing wealth.

Figure 2: Household-optimal equilibrium payo�s and wealth dynamics.

Figure 2 summarizes Proposition 2. In this simulation, the household moves to the city

if w0 > wse and otherwise stays in the community. Among those that stay, households with

w0 < wtr grow their wealth, but only up to wtr. Those with w0 ∈ (wtr, wse) have declining

wealth over time.

4.2 Empirical Implications

An immediate implication of Proposition 2 is that one-time transfers do not necessarily

improve long-term wealth. In Figure 2, consider transferring money to a household with

initial wealth w0 < wse. If the household's post-transfer wealth is still below wse, then this

extra money is consumed rather than saved, and long-term wealth remains below wtr. This

implication resonates with Karlan et al. [2019], who study what happens when indebted

individuals receive one-time debt relief. Consistent with Figure 2, they �nd that recipients

tend to quickly fall back into debt. In contrast, a transfer that is large enough to bring
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wealth above wse induces further investment, but only by spurring the household to opt out

of favor exchange.

Figure 3: Investment in the city versus in the community.

We use numerical simulations to explore further implications of our model. Figure 3

identi�es a key non-monotonicity in how favor exchange a�ects wealth accumulation. This

�gure plots investment as a function of the household's current wealth both in the city

(the blue sparsely-dotted curve) and in the community (the green densely-dotted curve).

As expected, the wealthier households in the community underinvest relative to the city;

however, the poorest households invest strictly more than they would in the city. The reason

is that the outside option for the poorest households is so low that the dynamic enforcement

constraint, (DE), does not bind. These households optimally invest all of their wealth and

rely on favor exchange to meet their needs. Of course, these households eventually reach

wealth levels where (DE) binds, at which point the �too-big-for-their-boots� mechanism kicks

in and limits their long-term wealth. Nevertheless, this simulation result shows that favor

exchange has the potential to free up resources and thereby accelerate wealth accumulation.

We explore this idea further in Section 5.

Our model also sheds light on how changes in more prosperous areas can spill over

onto left-behind communities. For instance, productivity has diverged across localities in

the United States over the past 20 years, with the most productive metropolitan areas

growing even more productive relative to the rest of the country (Parilla and Muro 2017).
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Figure 4: Simulated comparative statics with respect to Û(·).

Figure 4 illustrates how growing productivity in the city, which we model by increasing Û ,

a�ects wealth dynamics in the community.3 While nothing material has changed within

the community, a higher Û translates into a higher outside option and so tightens (DE).

Households in the community respond by investing less, leading to lower long-term wealth,

wtr.

4.3 The Proof of Proposition 2

Let Π∗(w) be the maximum equilibrium payo� of a household with wealth w. De�ne

Πc(w) = maxc>0,f>0 {(1− δ)(U(c)− f) + δΠ∗(R(w + f − c))}

s.t. 0 6 c− f 6 w (1)

f 6
δ

1− δ

(
Π∗(R(w + f − c))− Π̂(R(w + f − c))

)
. (2)

We show that Πc(w) is the household's maximum payo� conditional on staying in the com-

munity in the current period. Hence, the household's maximum equilibrium payo�, Π∗(w),

is the maximum of Π̂(w) and Πc(w).

3The simulation for �lower Û � uses parameters identical to Figures 1-3. For �higher Û ,� parameters are

the same except that Û(c) = 27
√
c

50 .
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Lemma 1 The household's maximum equilibrium payo� is Π∗(w0) = max
{

Π̂(w0),Πc(w0)
}
,

where Πc(·) and Π∗(·) are strictly increasing.

Proof of Lemma 1: In any equilibrium, neighbor 0 accepts only if c0 6 p0 + f0. The

household's continuation payo� is at most Π∗(R(w0−p0)) and at least Π̂(R(w0−p0)). Hence,

it is willing to do favor f0 only if

f0 6
δ

1− δ

(
Π∗(R(w0 − p0))− Π̂(R(w0 − p0))

)
.

Setting c0 = p0 +f0 yields Πc(w0) as an upper bound on the household's payo� from staying.

This bound is tight. For any (c0, f0) that satis�es (1) and (2), it is an equilibrium

to set p0 = c0 − f0 > 0, play a household-optimal continuation equilibrium on-path, and

respond to any deviation with the household leaving and ft = 0 in all future periods.4 Thus,

Πc(·) is the household's maximum equilibrium payo� conditional on staying. It follows that

Π∗(w) = max{Π̂(w),Πc(w)}. Since Πc(·) is strictly increasing by inspection and Π̂(·) is

strictly increasing by Proposition 1, Π∗(·) is strictly increasing. �

The next three lemmas characterize household-optimal equilibria in the community.

First, we show that households that stay in the community, stay forever.

Lemma 2 If w0 > 0 is such that Π∗(w0) > Π̂(w0), then in any t > 0 of any household-

optimal equilibrium, Π∗(wt) > Π̂(wt) on the equilibrium path.

Proof of Lemma 2: Suppose t > 0 is the �rst period in which Π∗(wt) = Π̂(wt), so

Π∗(wt−1) = Πc(wt−1) > Π̂(wt−1). Let {ct−1, ft−1} achieve Πc(wt−1). Since Π∗(wt) = Π̂(wt),

(2) implies ft−1 = 0. Therefore, Π̂(wt−1) > Πc(wt−1), since if the household exits in t − 1,

it could choose the same pt−1 and ct−1 and earn continuation payo� Π̂(wt) = Π∗(wt). This

contradicts the presumption that Πc(wt−1) > Π̂(wt−1). �

4If ft = 0 in all t ≥ 0, then the household is willing to leave because U ≤ Û .
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Second, we show that wealthy households leave the community, while poorer households

stay.

Lemma 3 The set W =
{
w : Π∗(w) > Π̂(w)

}
has positive measure. Moreover,

wse = sup
{
w : Π∗(w) > Π̂(w)

}
satis�es 0 < wse < w̄.

Proof of Lemma 3: First, we show that Π∗(0) > Π̂(0) = 0. Because limc↓0 U
′(c) = ∞,

there exists a c > 0 such that c 6 δU(c). Suppose that in all t > 0, ft = ct = c and pt = 0

on the equilibrium path, so the household's equilibrium payo� is U(c) − c. Any deviation

is punished by ft = 0 in all future periods and the household immediately exiting. This

strategy delivers a strictly positive payo�. It is an equilibrium because c 6 δU(c) implies

(2). Thus, Π∗(0) > 0. Since Π∗(w) is increasing and Π̂(w) is continuous, there exists an

interval around 0 such that Π∗(w) > Π̂(w). So
{
w : Π∗(w) > Π̂(w)

}
has positive measure.

Next, we show that wse < w̄. Let c̄ satisfy U ′(c̄) = 1, and let w0 be such that Π∗(w0) >

Π̂(w0). By Lemma 2, Π∗(wt) > Π̂(wt) in any t > 0 of any household-optimal equilibrium.

Suppose that ct > c̄ in period t > 0. If ft > 0, then we can perturb the equilibrium by

decreasing ct and ft by ε > 0, which increases the household's payo� at rate 1− U ′(ct) > 0

as ε→ 0. So, ft = 0.

Let τ > t be the �rst period after t such that fτ > 0. Consider decreasing pt and ct

by ε > 0, increasing pτ by χ(ε), and decreasing fτ by χ(ε), where χ(ε) is chosen so that

wτ+1 remains constant. Then, χ(ε) > ε
δτ−t

because R′(·) > 1
δ
. As ε → 0, this perturbation

increases the household's payo� by at least δτ−t 1
δτ−t
−U ′(ct) > 0. It is an equilibrium because

fs = 0 for all s ∈ [t, τ − 1], so (2) still holds in these periods.

The above argument implies that if ct > c̄, then fτ = 0 for all τ > t. But then Π∗(wt) 6

Π̂(wt), contradicting Lemma 2. Therefore, if Π∗(w0) > Π̂(w0), then ct 6 c̄ in every t ≥ 0

and so Π∗(w0) 6 U(c̄). Since R(w̄ − c̄) > w̄ by Assumption 1, it follows that Π∗(w̄) >

Π̂(w̄) > Û(c̄) > U(c̄). By the de�nition of wse, there exists a sequence of initial wealth levels

in W which are arbitrarily close to wse such that the household strictly prefers to stay in
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the community with those initial wealth levels. If wse > w̄, the equilibrium payo�s at those

initial wealth levels would be strictly above U(c̄) due to the continuity of Π̂(w). This leads

to a contradiction, so wse < w̄. �

Finally, we show that household-optimal equilibria exhibit monotone wealth dynamics.

Lemma 4 In any household-optimal equilibrium, (wt)
∞
t=0 is monotone.

The proof of Lemma 4 is in appendix A. The key step of this proof shows that household-

optimal investment, wt − pt, increases in wt. Thus, if w1 > w0, then w2 = R(w1 − p1) >

R(w0 − p0) = w1 and so on, and similarly if w1 6 w0.

We can now prove Proposition 2. Selection is implied by Lemma 2 and Lemma 3. For

the �too-big-for-their-boots� mechanism, de�ne

c̃(w) = w −R−1(w)

and Π̃(w) = U(c̃(w)). Since wse < w̄ by Lemma 3, consumption c̃(wse) does not satisfy

(Euler). Thus, there exists K > 0 such that

Π̃(wse) +K < Π̂(wse).

De�ne

f̃(w) =
δ

1− δ

(
Π̂(wse)− Π̂(w)

)
and

p̃(w) = wse −R−1(w).

Consider w0 < wse such that Π∗(w0) > Π̂(w0), and suppose that there exists an equilibrium

in which (wt)
∞
t=0 is increasing on the equilibrium path. We claim that pt 6 p̃(w0) and
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ft 6 f̃(w0) in every t ≥ 0. Indeed,

ft 6
δ

1− δ

(
Π∗(wt+1)− Π̂(wt+1)

)
6

δ

1− δ

(
Π∗(wse)− Π̂(w0)

)
= f̃(w0),

and

pt = wt −R−1(wt+1) 6 wse −R−1(w0) = p̃(w0),

where the inequalities hold because (i) wt, wt+1 6 wse by Lemma 2, and (ii) wt+1 ≥ w0 by

our presumption that (wt)
∞
t=0 is increasing.

Since ct 6 pt + ft, the household's payo� satis�es

Π∗(w0) 6 U
(
p̃(w0) + f̃(w0)

)
= H(w0).

The function H(w0) is continuous and decreasing in w0, with H(wse) = Π̃(wse). Since

Π̃(wse) +K < Π̂(wse), there exists wtr < wse such that for any w0 ∈ (wtr, wse),

H(w0) < Π̂(w0).

Therefore, for any w0 ∈ (wtr, wse), if w0 ∈ W , then (wt)
∞
t=0 must be strictly decreasing, with

limt→∞wt 6 wtr.

By de�nition of wse, there exists w0 ∈ W ∩ (wtr, wse) such that Π∗(w0) > Π̂(w0). Since

Π∗(·) and Π̂(·) are increasing, with Π̂(·) continuous, we conclude that Π∗(w) > Π̂(w) on a

neighborhood around w0. So W ∩ [wtr, wse] has a positive measure. �

5 Transforming Favor Exchange

While favor exchange increases consumption in left-behind communities, the accompanying

�too-big-for-their-boots� mechanism is a serious obstacle to wealth accumulation. In this

section, we explore how communities and policymakers can mitigate this obstacle, or even
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transform favor exchange into a force that accelerates wealth accumulation. Section 5.1

proves that with commitment, favor exchange leads to faster wealth accumulation than

would occur in the city. Informed by this result, Section 5.2 explores practical ways to relax

the household's commitment problem.

5.1 With Commitment, Favor Exchange Accelerates Wealth Accu-

mulation

De�ne themodel with commitment identically to the baseline model in Section 2, except

that the household can commit to following through on promised favors. Formally, if the

household is still in the community at the start of period t ≥ 0, then it chooses a promised

favor, f ∗t ≥ 0, at the same time as it chooses the payment, pt, and the consumption request,

ct. The promised favor is observed by all neighbors. If neighbor t accepts the request, then

the household is committed to following through on its promised favor: ft = f ∗t . If neighbor

t rejects the request, then ft = 0. We assume that favor exchange is not possible in the city,

so as in Section 3, the household earns continuation payo� Π̂(wt) if it leaves the community

at the start of period t.

Recall that Ĉ(wt) is the household's equilibrium consumption in the city, so that in-

vestment in the city equals wt − Ĉ(wt). We say that favor exchange accelerates wealth

accumulation if a household that stays in the community invests strictly more than it would

in the city. Our next result shows that favor exchange unambiguously accelerates wealth

accumulation in the model with commitment.

Proposition 3 Consider a household in the community with initial wealth w0 > 0. In the

model with commitment, there exists a household-optimal equilibrium in which the household

leaves at the start of period τ <∞. For any t < τ , the household invests more than it would

in the city by choosing It = wt−pt > wt− Ĉ(wt). Moreover, for any t < τ −1, the household

invests its entire wealth by choosing pt = 0, so that It = wt.
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The proof of Proposition 3 is in Appendix A. Favor exchange allows the household to meet

its needs with favors and invest the money it would have otherwise used for consumption.

Indeed, the household optimally invests its entire wealth in every period until it is about

to leave the community. To see why, consider the problem of maximizing the household's

payo� while in the community, subject to holding �xed its continuation payo� upon leaving,

Π̂(wτ ), and its total discounted cost of favors,
∑τ−1

t=0 δ
tft. Holding this �budget� of favors

�xed, the household can decrease ft at rate 1 in order to increase ft+1 at rate 1
δ
. Holding

wτ , and hence Π̂(wτ ), �xed, the household can decrease payment pt at rate 1 in order to

increase pt+1 at rate R′(wt − pt). Since R′(wt − pt) ≥ 1
δ
, the household gets higher returns

from delaying monetary payments relative to delaying favors. It therefore relies entirely on

favor exchange in early periods and entirely on monetary payments in later periods. Once it

starts relying on monetary payments alone, the household optimally leaves the community.

5.2 Ways to Increase Long-term Wealth

Proposition 3 implies that relaxing the household's commitment problem can mitigate the

tension between favor exchange and investment. In this section, we show that both com-

munity leaders and policymakers have tools to accomplish this goal, although they do so in

di�erent ways.

Community Bene�ts: Thus far in our model, the only reason for the household to repay

favors is to access future favors. In reality, households sometimes repay favors to avoid losing

access to other bene�ts that communities provide (Ambrus et al. 2014). They might do so

to maintain warm relationships with their friends, to keep their family happy, or to remain

a respected member of their social or religious community.

These types of community bene�ts have two properties that help transform favor ex-

change. First, these bene�ts can be conditioned on the household's behavior, and in particu-

lar, they can be withheld if the household reneges on a promised favor. Second, a household
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values these bene�ts even after it no longer relies on favor exchange. We therefore treat these

bene�ts as being available in both the community and the city if and only if the household

has not reneged.5

Figure 5: Wealth dynamics for various levels of community bene�ts. The x-axis is the
household's current wealth. The orange dashed line is the 45-degree line, corresponding to
current wealth. Wealth is increasing in the community if the green densely-dotted line is
above the orange dashed line and decreasing otherwise. Investment is higher than it would
be in the city if the green densely-dotted line is above the blue sparsely-dotted line.

Formally, we model community bene�ts as providing a per-period additive utility bene�t,

5As discussed in the �nal paragraph of Section 2, �moving to the city� can be interpreted as staying in
the community but no longer engaging in favor exchange, rather than moving to a di�erent location. Under
this interpretation, these bene�ts include bene�ts that are available only within the community.
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B > 0, so long as the household has not deviated. These bene�ts are lost following a

deviation, so the household's punishment payo� remains the same as in the baseline model.

These bene�ts therefore relax the commitment problem by adding B to the right-hand side

of the dynamic enforcement constraint, (DE).

Figure 5 presents simulated equilibrium wealth dynamics for various levels of B.6 Each

�gure gives wealth in period t+ 1 as a function of wealth in period t, so that the household's

wealth is increasing in the community whenever the green densely-dotted line is above the

orange dashed line and decreasing otherwise. The right-hand boundary of these �gures

corresponds to the selection threshold wse.

Panel I sets B = 0. The �too-big-for-their-boots� mechanism is apparent from the fact

that wt+1 < wt whenever wt ∈ (wtr, wse). As we increase B in Panel II, new wealth dynamics

emerge: wealthier households in the community now accumulate wealth until they eventually

leave. Even when they are about to leave, these households can engage in some favor

exchange, because they prefer repaying small favors to losing B. This feature is what allows

households to smoothly transition from the community to the city. As we will show, this

feature is a key di�erence between community bene�ts and place-based policies.

Panel II shows that, as in Proposition 3, wealthier households in the community invest

some of the money that is freed up by favor exchange and so grow their wealth strictly

faster than they would in the city. In contrast, while low-wealth households also bene�t

from B > 0, they still su�er from the �too-big-for-their-boots� mechanism and so still have

substantially lower long-term wealth than in the city.

Panel III shows that large enough community bene�ts can completely transform favor

exchange, so that the household invests more than it would in the city for any wt ∈ (0, wse).

In this case, for any initial wealth w0, the household has the same long-term wealth as it

would in the city. Large enough community bene�ts can therefore turn favor exchange into

a force that helps left-behind communities catch up.

6These simulations use parameters identical to Figures 1-3, with values of B given in Figure 5.
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In practice, community bene�ts are likely to be large when members rely heavily on the

community for social relationships. Indeed, Portes and Sensenbrenner [1993] suggest that

members of the Dominican community in New York were able to accumulate wealth because

the community provided a valuable safe haven, a place of shared language and culture that

was free from discrimination. In describing the economic success of the Chinese immigrant

community in New York, Zhou [1992] highlights that members received similarly large bene-

�ts from the community. Religious organizations can also be a source of community bene�ts.

Coleman [1988] notes that for the New York community of Jewish diamond merchants, the

threat of social ostracism from synagogues and other religious activities supported business

relationships.

Place-Based Policies: Policymakers also have tools that can relax the household's com-

mitment problem. However, unlike community bene�ts, public policies typically cannot

condition on a household's behavior in its favor-exchange relationships. The closest that

a policy can come is to condition on whether the household locates in the community or

the city. The following simulations show that such �place-based� policies can lead to higher

long-term wealth in the community, albeit without the transformative e�ects of community

bene�ts.

Place-based policies include local infrastructure improvements, job subsidies, and other

policies that provide localized bene�ts; see Austin et al. [2018] for a detailed discussion. We

model these policies as providing a per-period additive utility bene�t, B > 0, so long as the

household stays in the community. Unlike community bene�ts, place-based policies cannot

condition on whether or not the household has deviated. Instead, a household loses the

bene�t B if and only if it leaves the community.

Figure 6 simulates the equilibrium e�ects of a place-based policy,7 where we assume that

players play a Markov perfect equilibrium following a deviation.8 This policy increases wse

7This �gure uses the same parameters as Figures 1 to 3, with B = 1
250 .

8Place-based policies might induce a household to stay in the community following a deviation. Thus, in
contrast to our baseline model, Markov perfect equilibria do not necessarily min-max the household. This
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Figure 6: Household-optimal equilibrium payo�s with a place-based policy (blue solid line)
versus without the policy (green dashed line).

by inducing the household to stay for a wider range of wealth levels. It also relaxes the com-

mitment problem and so increases long-term wealth in the community, wtr. However, unlike

community bene�ts, place-based policies do not induce households to smoothly transition

from the community to the city; instead, households that choose to stay in the community

stay forever, with long-term wealth substantially below that in the city. This di�erence arises

because unlike community bene�ts, place-based policies cannot induce a household that was

already planning to leave to repay favors. Nevertheless, because place-based policies relax

the commitment problem, they have a special role to play in decreasing the wealth gap

between left-behind communities and the rest of the economy.

Place-based policies are most e�ective if the household leaves the community following

a deviation. In particular, the household must prefer to leave rather than staying and

continuing to bene�t from the policy. Therefore, place-based policies tend to have a large

e�ect when the utility gain from moving to the city, Û − U , is large relative to the policy

bene�t, B, since then a deviating household is likely to actually move to the city.

simulation therefore gives an upper bound on punishment payo�s and so a lower bound on household-optimal
equilibrium payo�s.
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6 Stochastic Investment Returns

In some communities, favor exchange not only augments consumption in normal times but

also provides insurance against negative shocks. To explore how this insurance role a�ects

wealth dynamics, this section enriches the model to incorporate stochastic investment re-

turns. We show that a version of our main result continues to hold so long as returns are

not too noisy. Using simulations, we also show that extremely noisy returns can transform

favor exchange in a way that is similar to community bene�ts.

We consider a model with stochastic returns, which is identical to the model from

Section 2 except that investment returns are given by a distribution rather than a deter-

ministic function. Formally, in every t > 0, period-(t + 1) wealth, wt+1, is drawn from the

distribution F (·|It), where It = wt − pt is the investment in period t. Wealth is drawn

independently across periods conditional on the investment and is publicly observed.

We impose the following assumption on the return distributions {F (·|I)}I>0.

Assumption 2 1. For every investment I > 0, the return distribution F (·|I) has support

[RL(I), RH(I)] ⊆ R+. Both RL(·) and RH(·) are strictly increasing, concave, and

continuously di�erentiable. There exist thresholds w̄L, w̄H > 0 such that (i) (RL)′(w) >

1
δ
for w < w̄L and (RL)′(w) = 1

δ
for w > w̄L; and (ii) (RH)′(w) > 1

δ
for w < w̄H and

(RH)′(w) = 1
δ
for w > w̄H .

2. De�ne c∗ > 0 as the solution to Û ′(c∗) = 1. Then, RH(w̄H)− c∗ > w̄H .

The �rst part of this assumption requires the bounds on the support of {F (·|I)}I>0,

RL(I) and RH(I), to satisfy similar conditions as the return function R(·) in the baseline

model, with the sole exception that RL(0) and RH(0) need not be zero. The second part is

analogous to Assumption 1 and ensures that even if investment returns were given by RH(·),

su�ciently wealthy households would leave the community.

Our main result in this section shows that if returns are not too noisy, then both the

selection e�ect and the �too-big-for-their-boots� mechanism hold.
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Proposition 4 Consider a sequence of return distributions, {{F k(·|I)}I>0}∞k=0, such that

{F k(·|I)}I>0 satis�es Assumption 2 for every k > 0. Let the corresponding bounds on sup-

ports, RH,k(·) and RL,k(·), be monotone in k and converge uniformly to a return function

R(·) as k →∞. Suppose that R(·) satis�es the conditions imposed in Section 2. Then, there

exists K <∞ such that for any k ≥ K:

1. Selection. There exists a selection threshold wse,k > 0 and a positive-measure set

Wk ⊆ R+ with supWk = wse,k < w̄H,k + c∗ such that in any household-optimal equi-

librium, a household in the community chooses to stay in period t if wt ⊆ Wk and

otherwise leaves.

2. �Too-big-for-their-boots� mechanism. There exists a wealth level wtr,k < wse,k

such that in any household-optimal equilibrium, if a household chooses to stay in the

community and wt ≥ wtr,k, then RH,k(It) < wtr,k. The set Wk ∩ [wtr,k, wse,k] has a

positive measure.

Moreover, there exist constants w, γ > 0 such that [0, w] ⊆ Wk and wtr,k < wse,k − γ for any

k ≥ K.

We prove Proposition 4 in online appendix B. For su�ciently large k, the return distribu-

tions {F k(·|I)}I>0 are not too noisy, in the sense that the bounds on their supports, RH,k(·)

and RL,k(·), are close to one another. For such k, the selection result says that wealthy

households leave the community, while a positive measure of less-wealthy households stay in

the current period. This result is the analogue of the selection result in Proposition 2.

The second statement gives a strong version of the �too-big-for-their-boots� mechanism.

It says that a relatively wealthy household in the community invests so little that its wealth

drops below wtr,k even under the most favorable return function RH,k(·). In other words,

such a household's wealth decreases with probability 1.

The proof of Proposition 4 follows the structure of the proof of Proposition 2, but stochas-

tic returns make the arguments considerably more complicated. We proceed by bounding

29



equilibrium payo�s from above and below using various deterministic return functions. For

example, equilibrium payo�s in the city are bounded from above and below by equilibrium

payo�s in the city when returns are given by RH,k(·) and RL,k(·), respectively. As k → ∞,

these bounds converge, so we can approximate equilibrium payo�s in the city using proper-

ties from the model in Section 2. We can similarly approximate equilibrium payo�s in the

community. Given these approximations, we extend the proof of Proposition 2 to stochastic

returns, taking care to ensure that the arguments hold uniformly across all wealth levels and

for any k ≥ K.

Figure 7: Wealth dynamics and investment with moderately large shocks. F (·) has binary
support, with RH(I) = 1.15 ∗R(I) and RL(I) = 0.85 ∗R(I) each occurring with probability
1/2. Here, R(w) is the return function from Figures 1-3. The left panel gives the range of
wt+1 realizations as a function of wt. The right panel gives investment in the city and the
community as a function of wealth.

While Proposition 4 applies to �small� shocks, numerical simulations suggest that it

remains true even when shocks are moderately large. For instance, Figure 7 shows that it

holds for a binary distribution over returns in which the high return is 35 percent higher

than the low return. In this simulation, a household that stays in the community invests so

little that it remains there forever regardless of the shocks. Further (unreported) simulations

con�rm that Proposition 4 holds widely for moderately large shocks.

In contrast, qualitatively di�erent wealth dynamics can emerge when shocks are very

large. In Figure 7, the household faces an extremely large binary shock: the high return is
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Figure 8: Wealth dynamics and investment in the model with very large shocks. The return
distribution is again binary, with RH(I) = 1.4 ∗R(I) and RL(I) = 0.6 ∗R(I) each occurring
with probability 1/2. Here, R(w) is the return function from Figures 1-3.

133 percent higher than the low return. With such large shocks, a household that stays in the

community invests strictly more than it would in the city. This stark transformation occurs

because with very large shocks, even a wealthy household has substantial commitment power,

since it is willing to repay favors today in order to keep accessing favor exchange following

a negative shock. Similar to Section 5, this commitment power turns favor exchange into a

force that accelerates wealth accumulation.

7 The Impossibility of Monetary Favor Exchange

A key feature of our model is that favors are in-kind rather than monetary, which distin-

guishes it from the literature on informal lending (e.g., Bulow and Rogo� 1989, Ligon et al.

2000). In this section, we show that this distinction is crucial: in sharp contrast to in-kind

favors, no favor exchange would occur if favors were monetary.

To make this point, we consider a model with monetary favors. A long-lived house-

hold with initial wealth w0 ≥ 0 starts in the community. At the start of each period
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t ∈ {0, 1, 2, ...}, it chooses to either stay in the community or permanently leave for the city.

If it remains in the community in period t, then the household plays the following community

game with a long-lived neighbor:

1. The household requests a payment st ∈ [−wt,∞) from the neighbor, where st < 0

indicates that it pays the neighbor.

2. The neighbor accepts (dt = 1) or rejects (dt = 0) this request. If it accepts, then it

pays st. If it rejects, then no transfer is made.

3. The household chooses an amount to consume, ct ≥ 0, where consumption cannot

exceed its total wealth including the transfer: ct ≤ wt + stdt. Any remaining wealth is

invested, so It = wt + stdt − ct, resulting in period-(t+ 1) wealth wt+1 = R(It).

The household's stage-game payo� is U(ct), while the neighbor's stage-game payo� is −stdt.

The parties share a common discount factor δ ∈ [0, 1).

Once the household leaves the community, it thereafter plays the city game, which is

identical to the community game except that st = 0 in every period and the household's

payo� is Û(ct). We maintain the assumptions on U(·), Û(·), and R(·) from Section 2.

This model makes two changes to the model from Section 2. First, and most impor-

tantly, it replaces in-kind favors with monetary favors, st, which capture both borrowing

and repayments by the household. Borrowed money can either be consumed or invested to

generate returns according to R(·). The second change is that the neighbor is long-lived,

which ensures that the household can delay repayments in order to invest borrowed money.

Making the neighbor long-lived makes it easier to sustain favor exchange and so strengthens

our impossibility result.

We show that favor exchange cannot occur in any equilibrium of this model.

Proposition 5 In any equilibrium of the model with monetary favors, st = 0 in all t ≥ 0.

See online appendix B for the proof of this result, which is nearly identical to the proof

of the impossibility result in Bulow and Rogo� [1989]. The intuition is that monetary
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favor exchange is inherently self-defeating, since the household becomes wealthier when it

borrows money, which necessarily improves its outside option. In particular, if the household

ever borrows money, then there must exist a period in which the discounted sum of future

repayments strictly exceeds the discounted sum of future loans. In that period, the household

prefers to renege on future repayments and leave for the city.

Why are Propositions 2 and 5 so di�erent? The key is that in-kind favor exchange

can increase consumption utility without increasing wealth. As the �too-big-for-their-boots�

mechanism shows, the household can access favor exchange only if it keeps its wealth from

increasing, which is possible with in-kind favors. Thus, while monetary favor exchange is

self-defeating, in-kind favor exchange can be self-sustaining.

We view Proposition 5 as highlighting an important di�erence between in-kind and mon-

etary favor exchange in settings where households have investment opportunities and the

commitment problem is at play. This result is particularly stark because investment re-

turns are deterministic. With stochastic returns, monetary favor exchange can insure the

household in the same way that in-kind favor exchange does. If households cannot purchase

insurance in the market, then the insurance role of monetary favor exchange can be enough

to make it self-sustaining. See, e.g., Ligon et al. [2000].

8 Conclusion

Helping left-behind communities requires understanding the social constraints faced by those

experiencing poverty. This paper argues that while favor exchange is an essential source

of support in left-behind communities, it imposes hidden costs that can constrain wealth

accumulation and deepen long-term inequality. More work remains to be done to under-

stand how heterogeneity within communities�whether from heterogeneous access to favor-

exchange networks, heterogeneous ability to repay favors, or another source�in�uences the

constraints imposed by favor exchange and thereby a�ects economic outcomes.
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A Appendix: Omitted Proofs

A.1 Proof of Lemma 4

We break the proof of this lemma into four steps.

A.1.1 Step 1: Locally Bounding the Slope of Π∗(·) from Below

We claim that for any w ∈ [0, wse), there exists εw > 0 such that for any ε ∈ (0, εw),

Π∗(w + ε)− Π∗(w) > (1− δ)ε.

First, suppose Π̂(w) ≥ Πc(w), and let {wt, ct}∞t=0 be the wealth and consumption se-

quences if the household enters the city. The proof of Lemma 3 implies that for any w0 < wse,

R(w0− c̄) < w0. Proposition 1 says that {wt}∞t=0 is increasing, so c0 < c̄. Hence, there exists

εw > 0 such that U ′(c0 + εw) > 1. Since Û ′(c) ≥ U ′(c) for all c > 0, Û ′(c0 + εw) > 1.

For any ε < εw, if w0 = w+ε, then the household can enter the city and choose ĉ0 = c0+ε,

with ĉt = ct in all t > 0. We can bound Π∗(w+ε) from below by the payo� from this strategy,

Π∗(w + ε) ≥ (1− δ)
(
Û(c0 + ε)− Û(c0)

)
+ Π̂(w) > (1− δ)ε+ Π̂(w) = (1− δ)ε+ Π∗(w).

We conclude that Π∗(w + ε)− Π∗(w) > (1− δ)ε, as desired.

Now, suppose Π̂(w) < Πc(w). Let {wt, ct, ft}∞t=0 be the wealth, consumption, and favor

sequence in a household-optimal equilibrium. There exists τ ≥ 0 such that fτ > 0 for the �rst

time in period τ ; otherwise, the household could implement the same consumption sequence

in the city. Choose εw > 0 to satisfy εw < δτfτ .

For ε ∈ (0, εw) and initial wealth w0 = w + ε, consider the perturbed strategy such that

p̂t = pt, ĉt = ct, and f̂t = ft in every period except τ . In period τ , f̂τ = fτ − ε
δτ

and

p̂τ = pτ + χ, where χ is chosen so that ŵt+1 = wt+1. Then, ĉτ = cτ + χ − ε
δτ
. Based on

the proof of Proposition 2, wt < wse for all t ≤ τ . This observation together with wse ≤ w̄
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and Assumption 1, implies that we can choose a su�ciently small εw such that the marginal

return from capital in every t < τ is strictly higher than 1
δ
even if the initial wealth is w + ε

rather than w. Hence, χ > ε
δτ
.

Under this perturbed strategy, (2) is satis�ed in all t < τ because ft = 0 in these periods;

in t = τ because f̂τ < fτ and ŵτ+1 = wτ+1; and in t > τ because play is unchanged after τ .

Moreover, fτ − ε
δτ
> 0 because ε < εw, and f̂τ + p̂τ = ĉτ , so this strategy is feasible. Thus, it

is an equilibrium. Consequently, Π∗(w+ ε) is bounded from below by the household's payo�

from this strategy,

Π∗(w + ε) > (1− δ)δτ ε
δτ

+ Πc(w) = (1− δ)ε+ Π∗(w),

as desired.

A.1.2 Step 2: Moving from Local to Global Bound on Slope

Next, we show that for any 0 ≤ w < w′ < wse, Π∗(w′)− Π∗(w) > (1− δ)(w′ − w).

Let

z(w) = sup{w′′|w < w′′ ≤ wse, and ∀w′ ∈ (w,w′′],Π∗(w′)− Π∗(w) > (1− δ)(w′ − w)}.

By Step 1, z(w) ≥ w exists. Moreover,

Π∗(z(w))− Π∗(w) ≥ lim
w̃↑z(w)

Π∗(w̃)− Π∗(w) ≥ (1− δ)(z(w)− w),

where the �rst inequality follows because Π∗(·) is increasing, and the second inequality follows

by de�nition of z(w).

Suppose that z(w) < wse. By Step 1, there exists εz(w) such that for any ε < εz(w),

Π∗(z(w) + ε)− Π∗(z(w)) > (1− δ)ε.

38



Hence,

Π∗(z(w)+ε)−Π∗(w) = Π∗(z(w)+ε)−Π∗(z(w))+Π∗(z(w))−Π∗(w) > (1−δ)ε+(1−δ)(z(w)−w).

This contradicts the de�nition of z(w), so z(w) ≥ wse.

For any w′ < wse, w′ < z(w) and so Π∗(w′)− Π∗(w) > (1− δ)(w′ − w), as desired.

A.1.3 Step 3: Investment is Increasing in Wealth.

Consider two wealth levels, 0 ≤ wL < wH < wse, and suppose that Πc(wL) > Π̂(wL) and

Πc(wH) > Π̂(wH). Given any household-optimal equilibria, let pH , pL be the respective

period-0 payments under wH , wL. We prove that wH − pH ≥ wL − pL. De�ne Ik = wk − pk,

k ∈ {L,H}. Towards a contradiction, suppose that IH < IL.

We �rst show that cH > cL + (wH − wL). Suppose instead that cH ≤ cL + (wH − wL).

Since IH < IL, we have pH > pL + (wH − wL). But then fH < fL, since

fH = cH − pH < cH − (pL + (wH − wL)) ≤ cL + (wH − wL)− (pL + (wH − wL)) = fL.

Consider the following perturbation: p̂H = pL+ (wH −wL) ∈ (pL, pH), f̂H = fH +pH − p̂H ≥

fH , and ĉH = cH . Under this perturbation, ÎH = wH − p̂H = IL. Thus, to show that the

perturbation satis�es (2), we need only show that f̂H ≤ fL. Indeed:

f̂H = fH+pH−(pL+(wH−wL)) = cH−(cL−fL)−(wH−wL) = fL+cH−(cL+wH−wL) ≤ fL,

where the �nal inequality holds because cH ≤ cL + (wH − wL) by assumption. Thus, this

perturbation is also an equilibrium.

We claim that a household with initial wealth wH strictly prefers this equilibrium to the
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original equilibrium, which is true so long as

(1− δ)(U(cH)− f̂H) + δΠ∗(R(IL)) > (1− δ)(U(cH)− fH) + δΠ∗(R(IH))

⇐⇒ (1− δ)(f̂H − fH) < δ(Π∗(R(IL))− Π∗(R(IH)))

⇐⇒ (1− δ)(pH − p̂H) < δ(Π∗(R(IL))− Π∗(R(IH))).

We know that IL = IH+pH−p̂H . Since the household stays in the community, IH < IL < wse,

so R′(IH), R′(IL) > 1
δ
. Thus,

R(IL)−R(IH) >
1

δ
(IL − IH) =

1

δ
(pH − p̂H).

By Step 2, Π∗(·) increases at rate strictly greater than (1− δ), so we conclude

δ(Π∗(R(IL))− Π∗(R(IH))) > δ(1− δ)1

δ
(pH − p̂H),

as desired. Thus, if IH < IL, then cH > cL + (wH − wL).

We are now ready to prove that IH < IL contradicts household optimality. To do so, we

consider two perturbations: one at wL and one at wH . At wH , consider setting

ĉH = cL + (wH − wL) > cL ≥ 0,

p̂H = pL + wH − wL ∈ (pL, wH ],

f̂H = ĉH − p̂H = fL.

By construction, wH− p̂H = IL. Thus, f̂H satis�es (2) because fL does. Moreover, p̂H+ f̂H =

ĉH , so the neighbor is willing to accept. This perturbed strategy is therefore an equilibrium.

For the original equilibrium to be household-optimal, we must therefore have

(1− δ)(U(cH)− fH) + δΠ∗(R(IH)) ≥ (1− δ)(U(ĉH)− f̂H) + δΠ∗(R(ÎH)). (3)
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At wL, consider setting

ĉL = cH − (wH − wL) > cL ≥ 0,

p̂L = pH − (wH − wL) ∈ (pL, wL]

f̂L = ĉL − p̂L = fH .

,

By construction, wL − p̂L = IH . Thus, f̂L satis�es (2) because fH does. This perturbed

strategy is again an equilibrium, so the original equilibrium is household-optimal only if

(1− δ)(U(cL)− fL) + δΠ∗(R(IL)) ≥ (1− δ)(U(ĉL)− f̂L) + δΠ∗(R(ÎL)). (4)

Combining (3) and (4) and plugging in de�nitions, we have

U(cH)− U(cH − (wH − wL)) ≥ U(cL + (wH − wL))− U(cL).

However, cH > cL+wH−wL and U(·) is strictly concave, so this inequality cannot hold. Thus,

if IH < IL, then at least one of the equilibria at wH and wL cannot be household-optimal.

A.1.4 Step 4: Establishing Monotonicity

We have shown that investment, I(w), is increasing in w. Consider a household-optimal

equilibrium with w1 ≥ w0. Then, I(w1) ≥ I(w0), so w2 = R(I(w1)) ≥ R(I(w0)) = w1. Thus,

w2 ≥ w1, and wt+1 ≥ wt for all t > 1 by the same argument. Similarly, if w1 ≤ w0, then

I(w1) ≤ I(w0), w2 ≤ w1, and wt+1 ≤ wt in all t ≥ 0. We conclude that (wt)
∞
t=0 is monotone

in any household-optimal equilibrium. �

A.2 Proof of Proposition 3

We show that there exists a household-optimal equilibrium such that if pt > 0, then ft′ = 0

in all t′ > t so τ 6 t+ 1.
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De�ne ε = min
{
pt, δ

t′−tft′
}
. Consider the following perturbation in periods t and t′

(denoted by tildes): in period t, p̃t = pt − ε, f̃t = ft + ε, and c̃t = ct; in period t′, p̃t′ =

pt′ + R(w̃t′−1) − R(wt′−1), f̃t′ = ft′ − ε
δt′−t

, and c̃t′ = ct′ + (p̃t′ − pt′) + (f̃t′ − ft′). This

perturbation is feasible, and neighbors t and t′ are willing to accept these requests. Thus, it

is also an equilibrium.

Note that ct = c̃t and δ
tf̃t + δt

′
f̃t′ = δtft + δt

′
ft′ . Thus, this perturbation improves the

household's payo� only if c̃t′ ≥ ct′ , or p̃t′+ f̃t′ ≥ pt′+ft′ . But p̃t′−pt′ = R(w̃t′−1)−R(wt′−1) ≥
ε

δt′−t
because R′(·) ≥ 1

δ
, while f̃t′ = ft′ − ε

δt′−t
. Therefore, c̃t′ ≥ ct′ , as desired. By similarly

perturbing any periods t < t′ such that pt > 0 and ft′ > 0, we can construct a household-

optimal equilibrium with the property that if pt > 0, then ft′ = 0 in all t′ > t. If τ = ∞ in

this equilibrium, then pt = 0 for every t which is clearly suboptimal. Hence, τ < ∞ in this

equilibrium and pt = 0 for every t < τ − 1. Since It = wt for every t < τ − 1, the household

invests strictly more than in the city with the same wealth level.

We next show that for t = τ − 1, the household also invests strictly more. If pτ−1 = 0,

then this is clearly true. If pτ−1 > 0, let {ct}t>τ−1 be the consumption sequence starting

from period τ − 1. Optimality implies that

U ′(cτ−1) = δR′(wτ−1 − pτ−1)Û ′(cτ ).

Now consider a household in the city with wealth wτ−1 . The household can consume pτ−1

today and continue with the consumption sequence {ct}t>τ . Since pτ−1 < pτ−1 + fτ−1 = cτ−1

and Û ′ > U ′,

Û ′(pτ−1) > δR′(wτ−1 − pτ−1)Û ′(cτ ).

Hence, the household in the city with wealth wτ−1 would like to consume strictly more

than pτ−1. Hence, the household would invest strictly less than wτ−1 − pτ−1, which is the

investment level in the community. �
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B Online Appendix: Additional Proofs

B.1 Proof of Proposition 1

Suppose that the household lives in the city. In any period t, since future vendors don't

observe ft, the household always chooses ft = 0. Hence, vendor t accepts only if pt ≥ ct.

This means that ct ∈ [0, wt] are the feasible consumption levels, so that the household's

equilibrium continuation payo� is at most Π̂(wt) given wealth wt.

The following equilibrium gives the household an equilibrium continuation payo� of

Π̂(wt). In period t, (i) the household proposes (ct, pt) = (Ĉ(wt), Ĉ(wt)); (ii) vendor t accepts

if and only if pt ≥ ct. Vendor t has no pro�table deviation. This strategy attains Π̂, so the

household has no pro�table deviation either.

Let {c∗t}∞t=0 be the consumption sequence in the equilibrium above, given initial wealth

w. If w = 0, then c∗t = 0 in all t ≥ 0, so Π̂(0) = Û(0) = 0 is the unique equilibrium payo�.

If w > 0, then it must be true that c∗t > 0 in every t ≥ 0. Suppose otherwise. Let τ ≥ 0 be

the �rst period in which min{c∗τ , c∗τ+1} = 0 and max{c∗τ , c∗τ+1} > 0. If c∗τ > 0 and c∗τ+1 = 0,

consider the perturbation cτ = c∗τ−ε1, cτ+1 = c∗τ+1 +ε2 for some small ε1, ε2 > 0 such that the

wealth wτ+2 stays the same. If c∗τ = 0 and c∗τ+1 > 0, consider the perturbation cτ = c∗τ + ε1,

cτ+1 = c∗τ+1− ε2 for some small ε1, ε2 > 0 such that the wealth wτ+2 stays the same. In either

case, the perturbation gives a strictly higher payo�, since limc↓0 Û
′(c) =∞.

Next, we show that Π̂(w) is the household's unique equilibrium payo�. At w = 0,

Π̂(0) = 0, so the household's unique equilibrium payo� is indeed Π̂(0). For w > 0, the

household can choose (ct, pt) = ((1− ε)c∗t , c∗t ) in every t ≥ 0 for ε > 0 small. Vendor t strictly

prefers to accept. As ε ↓ 0 , the consumption sequence {(1− ε)c∗t}∞t=0 gives the household a

payo� that converges to Π̂(w). So the household must earn at least Π̂(w) in any equilibrium.

Turning to properties of Π̂(·), we claim that Π̂(·) is strictly increasing. Pick 0 ≤ w < w̃.

Let {c∗t}∞t=0 be the sequence associated with w. If the initial wealth is w̃, it is feasible to

choose c0 = c∗0 + w̃−w and ct = c∗t for t ≥ 1. Since Û(·) is strictly increasing, so too is Π̂(·).
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It remains to show that Π̂(·) is continuous for all w > 0. If w > 0, then Ĉ(w) > 0. For

w̃ su�ciently close to w, setting c0 = Ĉ(w) + (w̃ − w) and ct = Ĉ(wt) for t ≥ 1 is feasible.

The household's payo�s converge to Π̂(w) as w̃ → w under this perturbation, which means

that limw̃↑w Π̂(w̃) ≥ Π̂(w) and limw̃↓w Π̂(w̃) ≥ Π̂(w). Since Π̂(·) is increasing, we conclude

that Π̂(·) is continuous at every w > 0.

We now show that Π̂(·) is continuous at w = 0. Consider limw↓0 Π̂(w). Since R′(w̄) = 1
δ
,

the line tangent to R(·) at w̄ is R̂(w) = R(w̄) + w−w̄
δ
. Since R(·) is concave, R(w) ≤ R̂(w)

for all w ≥ 0. Therefore, Π̂(w) is bounded from above by the household's maximum payo�

if we replace R(·) with R̂(·). For consumption path {ct}∞t=0 to be feasible under R̂(·), it must

satisfy

(1− δ)
∞∑
t=0

δtct ≤ (1− δ)w0 + δR(w̄)− w̄.

This means that the payo� of a household with initial wealth w0 is at most

Û((1− δ)w0 + δR(w̄)− w̄).

Pick any small ε > 0. There exists T <∞ and su�ciently small w0 > 0 such that

δT Û
(
(1− δ)RT (w0) + δR(w̄)− w̄

)
<
ε

2
,

where RT (w0) denotes the function that applies R(·) T -times to w0.

Consider a hypothetical setting that is more favorable to the household: we allow the

household to both consume and save its wealth until period T , after which it must play

the original city game. The household's payo� from this hypothetical is strictly larger than

Π̂(w0) and is bounded from above by

(1− δ)
T−1∑
t=0

δt(Û(Rt(w0)) + δT Û((1− δ)RT (w0) + δR(w̄)− w̄).
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As w0 ↓ 0, RT (w0) ↓ 0, so Rt(w0) ↓ 0 for any t < T . Thus,

Π̂(w0) ≤ (1− δ)
T−1∑
t=0

δtÛ(Rt(w0)) + δT Û((1− δ)RT (w0) + δR(w̄)− w̄) < ε.

This is true for any ε > 0, so limw↓0 Π̂(w) = 0.

Finally, consider any equilibrium in the city. If w0 = 0, then wt = 0 in any t ≥ 0. If

w0 > 0, then we have shown that ct > 0 in every t ≥ 0, so wt > ct > 0. A standard argument

(see below) implies the following Euler equation:

Û ′(ct) = δR′(wt − ct)Û ′(ct+1). (5)

Together with R′(·) ≥ 1
δ
and Û(·) strictly concave, (5) implies ct ≤ ct+1, and strictly so if

wt − ct < w̄.

Next, we argue that Ĉ(·) is strictly increasing in w. Let {ct}∞t=0 and {c̃t}∞t=0 be the

equilibrium consumption sequences for w > 0 and w̃ > w, respectively. Suppose c0 ≥ c̃0,

and let τ ≥ 1 be the �rst period such that ct < c̃t, which must exist because Π̂(·) is strictly

increasing. Then, cτ−1 ≥ c̃τ−1, wτ−1 − cτ−1 < w̃τ−1 − c̃τ−1, and cτ < c̃τ , so at least one

of (cτ−1, wτ−1, cτ ) and (c̃τ−1, w̃τ−1, c̃τ ) violates (5). Hence, Ĉ(w) is strictly increasing in w.

Therefore, ct+1 ≥ ct implies wt+1 ≥ wt, with strict inequalities if wt ≤ w̄.

Since (wt)
∞
t=0 is monotone, it converges to some w∞ ∈ R+ ∪ {∞}. Suppose w∞ < R(w̄).

Since wt+1 = R(wt− ct), we must have ct and wt− ct converging, with limt→∞(wt− ct) < w̄.

But then R′(wt−ct) converges to a number strictly above 1
δ
, which implies that (5) is violated

as t→∞. We conclude that limt→∞wt ≥ R(w̄). �
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Deriving the Euler Equation

Consider a household in the city, and let its optimal consumption and wealth sequence be

{c∗t , w∗t }∞t=0. We prove that if w0 > 0, then

Û ′(c∗t ) = δR′(w∗t − c∗t )Û ′(c∗t+1)

in every t ≥ 0.

The proof of Proposition 1 says that c∗t > 0, c∗t+1 > 0, and w∗t − c∗t > 0. Suppose that

Û ′(c∗t ) > δR′(w∗t − c∗t )Û ′(c∗t+1). Then, we can perturb (c∗t , c
∗
t+1) to (c∗t + ε, c∗t+1− χ(ε)), where

χ(ε) is chosen such that w∗t+2 remains the same as before the perturbation. In particular,

R(w∗t − (c∗t + ε))− (c∗t+1 − χ(ε)) = R(w∗t − c∗t )− c∗t+1.

Hence, χ′(ε) = R′(w∗t − (c∗t + ε)).

As ε ↓ 0, this perturbation strictly increases the household's payo�:

lim
ε↓0

{
Û ′(c∗t + ε)− δÛ ′(c∗t+1 − χ(ε))χ′(ε)

}
= lim

ε↓0

{
Û ′(c∗t + ε)− δÛ ′(c∗t+1 − χ(ε))R′(w∗t − c∗t − ε)

}
= Û ′(c∗t ) + δR′(w∗t − c∗t )Û ′(c∗t+1) > 0.

This contradicts the fact that (c∗t , c
∗
t+1) is optimal. Using a similar argument, we can show

that Û ′(c∗t ) < δR′(w∗t − c∗t )Û ′(c∗t+1) is not possible either. �

B.2 Proof of Proposition 4

B.2.1 Uniform convergence of Π̂H,k(·) and Π̂L,k(·) to Π̂(·).

Let Π̂(·) be the equilibrium payo� in the city if the investment is given by R(·). Similarly,

Π̂H,k(·) is the payo� under the return function RH,k(·) and Π̂L,k(·) is the payo� under the

46



return function RL,k(·).

We want to show that ∀w > 0 and ∀ε > 0, there exists K such that ∀k > K, Π̂H,k(w)−

Π̂(w) < ε and Π̂(w)− Π̂H,k(w) < ε. This shows pointwise convergence. By the monotonicity

of Π̂H,k(·), Π̂L,k(·) and Dini's theorem, we obtain uniform convergence.

We begin with the zero wealth w = 0. Since RL,k(0) 6 R(0) = 0, Π̂L,k(0) = 0. We

now consider the return function RH,k(·) and construct the following more generous return

function:

R̂H,k(w) =
w − w̄H,k

δ
+RH,k(w̄H,k).

Given the initial wealth w and the return function R̂H,k(·), the consumption sequence must

satisfy the following condition:

(1− δ)
∞∑
t=0

δtct = (1− δ)w + δRH,k(w̄H,k)− w̄H,k.

Hence, the equilibrium payo� giving the initial wealth w under R̂H,k(·) is:

Û
(
(1− δ)w + δRH,k(w̄H,k)− w̄H,k

)
.

We now allow the household to both save and consume its entire wealth from period 0 to

T − 1. From period T onward, we give the household the return function R̂H,k(·). The

household's payo� given the initial wealth w = 0 is:

(1− δ)

(
T−1∑
t=0

δtÛ((RH,k)t(0)) +
δT Û

(
(1− δ)(RH,k)T (0) + δRH,k(w̄H,k)− w̄H,k

)
1− δ

)
. (6)

Fix any T , as k → ∞, (RH,k)T (0) ↓ 0, so (RH,k)t(0) ↓ 0 for any t 6 T . Moreover, there

exists a T such that:

δT Û
(
δRH,k(w̄H,k)− w̄H,k

)
<
ε

2
.

Therefore, for this value of T , there exists K > 0 such that for any k > K the payo� (6) is at
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most ε, so the payo� Π̂H,k(0) is at most ε. This concludes the proof of pointwise convergence

at w = 0.

We now prove the pointwise convergence at w > 0. Let {ct}∞t=0 be the consumption

sequence in the city under return function R(·). Recall that c0 > 0 and ct increases in t. For

any ε, there exists a small enough γ ∈ (0, c0) such that:

(1− δ)
∞∑
t=0

Û(ct − γ) > Π̂(w)− ε.

On the other hand, there exists K > 0 such that for any k > K, RL,k(w) > R(w) − γ for

every w > 0. Under such RL,k(·), the consumption sequence {ct− γ}∞t=0 is feasible, since the

household can choose the same investment sequence as under R(·) and consume the rest in

each period. Hence, Π̂L,k(w) > Π̂(w)− ε.

Let {cH,kt }∞t=0 be the consumption sequence under the return function RH,k(·). By the

next claim, claim 1, there exists a c > 0 such that cH,k0 > c for any k. By the Euler equation,

cH,kt increases in t. Fix any su�ciently small ε > 0 and consider the number γk > 0 which

solves the following equation:

Û(cH,k0 )− Û(cH,k0 − γk) = ε.

Since cH,kt increases in t, we have:

Û(cH,kt )− Û(cH,kt − γk) 6 ε, ∀t > 0.

This implies that

Π̂H,k(w)− (1− δ)
∞∑
t=0

Û(cH,k0 − γk) 6 ε.

Moreover, since ck0 > c for any su�ciently large k, there exists γ > 0 such that γk > γ for

any such k.

By the convergence of RH,k(·) to R(·), there exists K > 0 such that for any k > K, we
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have

R(w) > RH,k(w)− γ, ∀w > 0.

This implies that {cH,kt −γk}∞t=0 is feasible under the return function R(·), so Π̂(w) > Π̂H,k−ε

for any k > K.

Claim 1: Fix the initial wealth w0 > 0. There exists c > 0 such that cH,k0 > c for any

k > 0.

Proof of claim 1: We proceed by bounding period-t consumption from above as a function

of cH,k0 . By (Euler), equilibrium consumption satis�es

Û ′
(
cH,kt

)
= δ(RH,k)′

(
wH,kt − cH,kt

)
Û ′
(
cH,kt+1

)
.

Since wH,kt − cH,kt is increasing in t and (RH,k)′(·) is decreasing,

Û ′
(
cH,kt

)
6 δ(RH,k)′

(
w0 − cH,k0

)
Û ′
(
cH,kt+1

)
.

Moreover,

(RH,k)′(I) 6
RH,k(I)−RH,k(0)

I
6
RH,0(I)

I
,

where the �rst inequality follows because RH,k is concave, and the second inequality follows

because RH,k(0) > 0 and RH,k(I) is decreasing in k. Thus, in equilibrium,

Û ′
(
cH,kt

)
6 δ

RH,0(w0 − cH,k0 )

w0 − cH,k0

Û ′
(
cH,kt+1

)
. (7)

Let c̃(cH,kt ;w0, c
H,k
0 ) be the largest cH,kt+1 that satis�es (7), given (cH,kt , w0, c

H,k
0 ). Since Û ′(·)

is decreasing, c̃ satis�es this inequality with equality. Notice that for a �xed (w0, c
H,k
0 ),

c̃(·;w0, c
H,k
0 ) is continuous, with limc↓0 c̃(c;w0, c

H,k
0 ) = 0. Thus, for any t > 1, we have

that limcH,k0 ↓0c̃
t(w0, c

H,k
0 ) = 0, where c̃t is de�ned inductively by c̃1 = c̃(cH,k0 ;w0, c

H,k
0 ) and
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c̃t(w0, c
H,k
0 ) = c̃

(
c̃t−1(w0, c

H,k
0 );w0, c

H,k
0

)
for t > 1.

For any t > 1, we claim that c̃t(w0, c
H,k
0 ) > cH,kt . We prove this inductively: for t = 1,

c̃1(w0, c
H,k
0 ) > cH,k1 because cH,k1 satis�es (7) and c̃1 is the largest consumption that satis�es

this inequality. If c̃t−1(w0, c
H,k
0 ) > cH,kt−1, then (suppressing arguments):

Û ′(cH,kt ) >
w0 − cH,k0

δRH,0(w0 − cH,k0 )
Û ′(cH,kt−1) >

w0 − cH,k0

δRH,0(w0 − cH,k0 )
Û ′(c̃t−1) = Û ′(c̃t),

where the �rst inequality is a rewriting of (7), the second inequality follows from c̃t−1 > cH,kt−1

and Û ′(·) decreasing, and the �nal equality holds because c̃t = c̃
(
c̃t−1;w0, c

H,k
0

)
. We conclude

that c̃t > cH,kt , proving the claim.

De�ne c̃0(w0, c
H,k
0 ) = cH,k0 . We provide an upper bound on Π̂H,k(w) using the following

bounds on consumption: (i) for t ∈ {0, ..., T−1}, the household consumes c̃t, which is greater

than cH,kt ; (ii) during these periods, the household saves its entire wealth using the return

function RH,0(·) which is greater than RH,k(·), so that its wealth at the beginning of period

T is (RH,0)T (w0); and (iii) from period T onward, the return function is given by the more

generous function R̂H,0(w) = w−w̄H,0
δ

+RH,0
(
w̄H,0

)
. Thus, for any T ≥ 0,

Π̂H,k(w0) 6 (1− δ)
T−1∑
t=0

δtÛ(c̃t(w0, c
H,k
0 )) + δT Û

(
(1− δ)(RH,0)T (w0) + δRH,0(w̄H,0)− w̄H,0

)
.

(8)

Since RH,0(w) 6 R̂H,0(w),

(RH,0)T (w) 6 (R̂H,0)T (w) =
w

δT
+
δ
(
1− δT

)
(1− δ)δT

(
RH,0

(
w̄H,0

)
− w̄H,0

δ

)
.

Consequently,

limT→∞ δ
T Û
(
(1− δ)(RH,0)T (w0) + δRH,0(w̄H,0)− w̄H,0

)
6 limT→∞ δ

T Û

(
(1− δ) w

δT
+

δ(1−δT )
δT

(
RH,0

(
w̄H,0

)
− w̄H,0

δ

)
+ δRH,0(w̄H,0)− w̄H,0

)
= 0,
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where the equality follows from L'Hopital's rule and the assumption that Û ′(c) → 0 as

c→∞. Thus, the �nal term in (8) goes to zero as T →∞.

We are now prepared to demonstrate that the lower bound c > 0 exists. Since RH,k(·) >

R(·), Π̂H,k(w0) > Π̂(w0). Choose ε ∈ (0, Π̂(w0)). There exists T independent of k such that

the �nal term in (8) is at most ε/2. For this T , there exists ξ > 0 independent of k such

that the �rst term in (8) is at most ε/2 if cH,k0 < ξ. This shows that for any k, cH,k0 > ξ.

Otherwise, there exists k such that Π̂H,k(w0) < ε < Π̂(w0), leading to a contradiction. �

B.2.2 Selection

For any k, consider the game with stochastic return F k and let Wk be the collection of

wealth levels such that the household stays in the community if its wealth is in Wk and

leaves the community otherwise. Let wse,k = supWk denote the selection margin. We want

to show that when k is large enough:

1. Wk includes [0, w] for some wealth level w > 0 which is independent of k;

2. wse,k 6 w̄H,k + c∗ which is smaller than RH,k(w̄H,k).

We �rst show that Wk includes [0, w] for some �xed w > 0. Recall that

Π∗(0) = maxc
{
U(c)− c|c 6 δ

1−δ (U(c)− c)
}
> 0 and that Π̂(w) is a continuous function with

Π̂(0) = 0. Fix a small γ > 0. Let w = max{w|Π̂(w′) 6 Π∗(0) − 2γ, for every w′ ∈ [0, w]}.

We next show that there exists K such that for every k > K, [0, w] ⊆ Wk.

Denote by Π∗,k(w) the household-optimal equilibrium payo� under the stochastic return

F k(·). Then

Π∗,k(w) > max
c

{
U(c)− c|c 6 δ

1− δ

(
U(c)− c− Π̂H,k(RH,k(0))

)}
,

since the household can always consume all wealth in each period and rely entirely on favor

exchange. Since Π̂H,k is continuous, with Π̂H,k and RH,k converging uniformly to Π̂ and R,

respectively, we have limk→∞ Π̂H,k(RH,k(0)) = Π̂(R(0)) = 0. Therefore, there exists K1 such
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that if k > K1, Π∗,k(w) > Π∗(0) − γ. Meanwhile, there exists K2 such that if k > K2,

Π̂H,k(w)− Π̂(w) < γ for every w > 0. Therefore, if k > max{K1, K2}, for any w ∈ [0, w]:

Π∗,k(w) > Π∗(0)− γ > Π̂(w) + γ > Π̂H,k(w),

where the second inequality follows from the de�nition of w. This shows that [0, w] ⊆ Wk.

We now show that when k is large enough, wse,k 6 w̄H,k + c∗. For any k, we de�ne an

auxiliary game which di�ers from the original game with the stochastic return F k in two

ways:

1. the investment return is given by the deterministic function RH,k(·) instead of the

stochastic return F k in the original game;

2. in any period t, if the household stays in the community, he can commit to ft. In other

words, the household faces no dynamic enforcement constraint.

Let Π̃H,k(·) be the household's optimal equilibrium payo� in this auxiliary game if it initially

lives in the community. Then, Π̃H,k(w) = max{Π̂H,k(w),ΠH,k
c (w)}, where ΠH,k

c (w) is given

by:

ΠH,k
c (w) = max

I∈[0,w],f>0

{
(1− δ) (U(w + f − I)− I) + δΠ̃H,k(RH,k(I))

}
. (9)

It follows that ΠH,k
c (w) is an upper bound on the household's payo� if it optimally stays in

the community in the original game. On the other hand, Π̂L,k(w) is a lower bound on the

household's payo� if it leaves for the city in the original game. If ΠH,k
c (w) < Π̂L,k(w), then

the household strictly prefers to leave for the city at the wealth level w in the original game.

We now show that this is the case for any w > w̄H,k + c∗.

Claim 2: In the auxiliary game, given a wealth level wt > 0, if the solution to (9) is such

that wt + ft − ct > c̄, then ft = 0 and Π̃H,k(RH,k(It)) = Π̂H,k(RH,k(It)).
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Proof of Claim 2: We will show that wt+ft−It > c̄ implies that ft′ = 0 for all t′ > t. This

implies that the optimal continuation payo� at the beginning of (t+ 1) is Π̂H,k(RH,k(It)).

The �rst step is to show that wt+ft−It > c̄ implies that ft = 0. Suppose otherwise. Then

we could decrease ft by a small amount which will increase the household's period-t payo� at

rate−U ′(wt+ft−It)+1 > 0, where the inequality follows because U ′(wt+ft−It) < U ′(c̄) = 1.

Now suppose that ft = 0 and that there exists t′ > t such that ft′ > 0. Consider

the following perturbation: (i) in period t, increase It by ε > 0 and decrease ct by the

same amount; (ii) in period t′ decrease ft′ and It′ by
ε

δt′−t
. We claim that this perturbation is

feasible for small ε. Indeed, wt−It > c̄ so we can increase It by ε. Moreover, this perturbation

increases wt′ by at least ε
δt′−t

because
(
RH,k

)′
(w) > 1

δ
, so decreasing It′ by

ε
δt′−t

is feasible.

As ε→ 0, this perturbation increases the household's payo� at a rate which is at least:

−U ′(wt − It) + δt
′−t 1

δt′−t
> 0,

where the inequality follows because U ′(wt − It) < 1.

We conclude that if the solution to (9) is such that wt + ft− ct > c̄, then ft′ for all t
′ > t,

which implies the claim. �

Claim 3: Suppose that w0 > w̄H,k + c∗. Then:

ΠH,k
c (w0) < Π̂H,k(w0)− (1− δ)

(
Û(c̄)− U(c̄)

)
. (10)

Proof of Claim 3: It su�ces to show that the solution to (9) entails w0 +f0−I0 > c̄. If so,

the previous claim says that f0 = 0 and the household's continuation payo� Π̃H,k(RH,k(I0))

is equal to its payo� from the city Π̂H,k(RH,k(I0)). If the household instead leaves at the

beginning of period 0, it could replicate the entire consumption sequence in the city. Its

payo� from doing so is

(1− δ)Û(c0) + δΠ̂H,k(RH,k(I0)),
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which exceeds ΠH,k
c (w0) by (1 − δ)(Û(c0) − U(c0)) > (1 − δ)(Û(c̄) − U(c̄)), and is weakly

smaller than Π̂H,k(w0). The inequality (10) then follows. For the rest of the proof, we will

show that the solution to (9) entails w0 + f0 − I0 > c̄.

Suppose, towards contradiction, that the solution to (9) given the wealth level w0 >

w̄H,k + c∗ entails w0 + f0 − I0 6 c̄. Then, I0 > w0 − c̄ > w̄H,k + c∗ − c̄ > w̄H,k. So,

w1 = RH,k(I0) > RH,k(w̄H,k) > w̄H,k + c∗. We now consider the auxiliary game starting from

period 1. Either the household leaves the community in t = 1 or it stays. In either case, it

must be unable to improve its payo� ΠH,k
c (w0) by decreasing I0 slightly and increasing c1 by

an amount equal to the resulting decrease in w1, which implies that:

U ′(c0) 6 δ(RH,k)′(I0)Û ′(c1) (11)

if the household leaves the community in t = 1, or

U ′(c0) 6 δ(RH,k)′(I0)U ′(c1) (12)

if the household stays in t = 1.

Suppose that the household leaves the community t = 1. We �rst argue that c1 > c∗.

If c1 6 c∗, then I1 = w1 − c1 > w̄H,k, so (RH,k)′(I1) = 1
δ
. This implies that c2 = c1 by the

Euler equation and that I2 = w2− c2 > RH,k(w̄H,k)− c∗ > w̄H,k. Iterating this argument, we

can show that if c1 6 c∗ and I1 > w̄H,k, then ct is constant for all t > 1, which contradicts

the fact that w1 > RH,k(w̄H,k) > w̄H,k + c∗. Therefore, c1 > c∗. But then, (11) implies

that U ′(c0) 6 δ(RH,k)′(I0)Û ′(c1) < 1, where the last inequality follows from (RH,k)′(I0) = 1

and Û ′(c1) < Û ′(c∗) = 1. This contradicts the presumption that U ′(c0) > 1. Therefore, the

household cannot leave the community in t = 1 if c0 6 c̄ and w1 > RH,k(w̄H,k).

Suppose instead that the household stays in the community in t = 1. Then, (12) implies

that U ′(c0) 6 U ′(c1) since (RH,k)′(I0) = 1
δ
. Therefore, c1 6 c0 6 c̄ and w2 > RH,k(w̄H,k).

Consequently, the argument in the previous paragraph implies that the household must stay
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in the community in t = 2 as well, with c2 6 c̄ and w3 > RH,k(w̄H,k). We can iterate this

argument to conclude that the household must stay in the community in every t > 1, with

ct 6 c̄ in every t > 1. But this cannot be optimal, since the household can instead leave in

t = 1 and receive a payo� strictly greater than Û(c∗) > U(c̄). So the household cannot stay

in the community in t = 1.

We have shown a contradiction to either the household leaving the community in t = 1

or staying. We conclude that w0 + f0 − I0 > c̄ in any household-optimal equilibrium, which

proves Claim 3. �

Completing the proof of Selection: Finally, we turn to the original game. Choose K

such that for any k > K, Π̂H,k(w) − Π̂L,k(w) 6 (1 − δ)(Û(c̄) − U(c̄)) for any w > 0. For

any such k, �x w > w̄H,k + c∗, and suppose that the household optimally remains in the

community. As we noted previously, its payo� is then bounded from above by ΠH,k
c (w),

which by Claim 3, satis�es:

ΠH,k
c (w) < Π̂H,k(w)− (1− δ)(Û(c̄)− U(c̄) < Π̂L,k(w).

But Π̂L,k(w) bounds the household's payo� in the city from below. Therefore, it cannot be

optimal for the household to remain in the community. We conclude that for any k > K

and w > w̄H,k + c∗, the household optimally leaves the community at wealth level w. �

B.2.3 The �Too Big for their Boots� Mechanism

We want to prove the following claim. There exists γ > 0 and K > 0, such that for any

k > K in the game with stochastic return F k, if wt ∈ [wse,k − γ, wse,k] and the household

chooses to stay in the community in period t, then RH,k(It) < wse,k − γ.

We �rst explain how γ is chosen. We have shown in the selection proof that there exists
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K0 such that for any k > K0, w
se,k > w. De�ne the function ∆(ε) as follows:

∆(ε) = max
w∈[w,∞)

(
Π̂(w + ε)− Π̂(w − 2ε)

)
,

with limε→0 ∆(ε) = 0. Consider the following expression as a function of w ∈ [wse,k−ε, wse,k]:

Û
(
w −R−1(wse,k + ε)

)
− U

(
w −R−1(wse,k − 2ε) +

δ

1− δ
(∆(ε) + 2ε)

)
(13)

As ε→ 0, the value of (13) converges to

Û
(
wse,k −R−1(wse,k)

)
− U

(
wse,k −R−1(wse,k)

)
. (14)

Since (w −R−1(w)) is an increasing function of w and wse,k > w for any k > K0, the value

of (14) is at least:

Û
(
w −R−1(w)

)
− U

(
w −R−1(w)

)
> 0.

Hence, there exists γ ∈ (0, w) such that for any k > K0, (13) is greater than
δ

1−δ (∆(γ) + 2γ)

for every w ∈ [wse,k − γ, wse,k].

Given this γ > 0, there exists K1 > 0 such that for every k > K1, R
H,k(w) − RL,k(w),

Π̂H,k(w)− Π̂(w), and Π̂(w)− Π̂L,k(w) are all smaller than γ for every w > 0. For the rest of

the proof, we will consider only k > max{K0, K1}.

Suppose that wt ∈ [wse,k − γ, wse,k] and the household chooses to stay in the community

in period t. Towards contradiction, suppose that RH,k(It) > wse,k − γ. This implies that

RL,k(It) > wse,k−2γ, so the wealth at the beginning of period (t+1) is at least
(
wse,k − 2γ

)
.

On the other hand, the household will never choose It such that RL,k(It) > wse,k, since in

that case ft = 0 and the household could pro�tably deviate by leaving for the city at the

beginning of period t. Hence, RL,k(It) 6 wse,k and RH,k(It) 6 wse,k + γ, so the wealth at

the beginning of period (t + 1) is at most
(
wse,k + γ

)
. Then a necessary condition for the
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dynamic enforcement constraint is

ft 6
δ

1− δ

(
Π̂H,k(wse,k + γ)− Π̂L,k(wse,k − 2γ)

)
. (15)

A necessary condition for (15) is that:

ft 6
δ

1− δ

(
Π̂(wse,k + γ)− Π̂(wse,k − 2γ) + 2γ

)
6

δ

1− δ
(∆(γ) + 2γ) . (16)

Here, the �rst inequality follows from the fact that Π̂H,k(wse,k+γ) < Π̂(wse,k+γ)+γ and that

Π̂L,k(wse,k − 2γ) > Π̂(wse,k − 2γ)− γ, and the second inequality follows from the de�nition

of ∆(γ). Now we can bound the household's payo� at the beginning of period t:

Π∗,k(wt) 6 (1− δ)U(wt − It + ft) + δΠ∗,k(wse,k + γ)

6 (1− δ)U
(
wt − (RH,k)−1(wse,k − γ) + δ

1−δ (∆(γ) + 2γ)
)

+ δΠ̂H,k(wse,k + γ).

(17)

Here, the �rst inequality plugs in the de�nition of ct and uses the fact that on wt+1 6 wse,k+γ;

and the second inequality plugs in the lower bound on It implied by RH,k(It) > wse,k − γ,

the upper bound on ft given by (16), and Π∗,k(wse,k + γ) 6 Π̂H,k(wse,k + γ).

Now, consider the following deviation: the household leaves the community in period t,

invests It, and then continues to play according to the optimal equilibrium in the city. This

deviation results in a payo� of at least:

(1− δ)Û (wt − It) + δΠ̂k(RL,k(It)) > (1− δ)Û(wt − It) + δΠ̂L,k(wse,k − 2γ)

> (1− δ)Û(w − (RL,k)−1(wse,k)) + δΠ̂L,k(wse,k − 2γ),

(18)

where Π̂k(·) is a household's payo� in the city under the stochastic return F k. The �rst

inequality uses Π̂k > Π̂L,k and RL,k(It) > RH,k(It)− γ > wse,k − 2γ. The second inequality

uses the fact that It 6 (RL,k)−1(wse,k).
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Comparing the bounds in (17) and (18), this deviation is pro�table so long as

(1− δ)Û(wt − (RL,k)−1(wse,k)) + δΠ̂L,k(wse,k − 2γ) >

(1− δ)U
(
wt − (RH,k)−1(wse,k − γ) + δ

1−δ (∆(γ) + 2γ)
)

+ δΠ̂H,k(wse,k + γ)

or, equivalently,

Û
(
wt − (RL,k)−1(wse,k)

)
− U

(
wt − (RH,k)−1(wse,k − γ) + δ

1−δ (∆(γ) + 2γ)
)
>

δ
1−δ

(
Π̂H,k(wse,k + γ)− Π̂L,k(wse,k − 2γ)

)
.

The de�nition ∆(·) implies that Π̂H,k(wse,k + γ)− Π̂L,k(wse,k − 2γ) 6 ∆(γ) + 2γ. Moreover,

since RH,k(w)−RL,k(w) < γ, (RL,k)−1(w) < (RH,k)−1(w + γ) for any w > 0. Thus,

Û
(
wt − (RL,k)−1(wse,k)

)
− U

(
wt − (RH,k)−1(wse,k − γ) + δ

1−δ (∆(γ) + 2γ)
)
>

Û
(
wt − (RH,k)−1(wse,k + γ)

)
− U

(
wt − (RL,k)−1(wse,k − 2γ) + δ

1−δ (∆(γ) + 2γ)
)
>

Û
(
wt −R−1(wse,k + γ)

)
− U

(
wt −R−1(wse,k − 2γ) + δ

1−δ (∆(γ) + 2γ)
)
.

(19)

Note that the last line of (19) is the same as (13) with w = wt, which is great than
δ

1−δ (∆(γ)+

2γ). Hence, the deviation is indeed pro�table.

B.3 Proof of Proposition 5

We �rst claim that if w > R(w̄), then the household leaves the community. This shows that

in the community, wealth is at most R(w̄).

To prove this claim, we give the household a more generous return function R̂(w) =

(w − w̄)/δ + R(w̄). Suppose that the household starts in the community with some initial

wealth w > R(w̄). Then the discounted sum of consumptions is at most:

(1− δ)
∞∑
t=0

δtct 6 (1− δ)w + δR(w̄)− w̄ + (1− δ)
∞∑
t=0

δtst.
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The neighbor's payo� at the beginning of period 0 is −(1 − δ)
∑∞

t=0 δ
tst, so it must be the

case that (1− δ)
∑∞

t=0 δ
tst 6 0. Therefore, the discounted sum of consumptions is at most:

(1− δ)
∞∑
t=0

δtct 6 (1− δ)w + δR(w̄)− w̄.

The best consumption sequence given this constraint is to consume constantly (1 − δ)w +

δR(w̄)− w̄ in every period. If the household with wealth w chooses to consume (1− δ)w +

δR(w̄)− w̄, then the investment is:

w − ((1− δ)w + δR(w̄)− w̄) = δw + w̄ − δR(w̄),

which is greater than w̄ if w > R(w̄). Hence, this constant consumption sequence can be

sustained in the city under the return function R(·) for any w > R(w̄). This shows that in

the community, the wealth is at most R(w̄).

Consider an equilibrium such that the household stays in the community. De�ne Lt =

(1− δ)
∑

τ=t δ
τ−tsτ . We �rst show that −Lt 6 R(w̄) for any t > 0. This is because:

Lt +R(w̄) = (1− δ)
∑

τ=t δ
τ−t(sτ +R(w̄)) > (1− δ)

∑
τ=t δ

τ−t(sτ + wt)

> (1− δ)
∑

τ=t δ
τ−t(sτ + wt − It) = (1− δ)

∑
τ=t δ

τ−tct > 0.

Here, the �rst inequality follows from the previous result that wt 6 R(w̄) in the community.

Next, we show that −Lt 6 0 for any t > 0. Suppose not. Let k ∈ (0, 1] be the smallest

number such that:

−Lt 6 kR(w̄), ∀t > 0.

Therefore, there exists a period t′ such that:

−Lt′ > kδR(w̄).
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Consider the following deviation in period t′: the household chooses st′ = 0 and leaves for

the city. In each τ > t′, it chooses the investment Ĩτ given by:

Ĩτ = Iτ − sτ +
kδR(w̄) + Lτ

1− δ
,

with the remainder, c̃τ , being consumed. We show that this deviation (i) is feasible, and (ii)

strictly improves the household's payo�.

Note that in each τ > t′,

Ĩτ − Iτ = −sτ +
kδR(w̄) + Lτ

1− δ
=
kδR(w̄) + Lτ − (1− δ)sτ

1− δ
= δ

kR(w̄) + Lτ+1

1− δ
> 0, (20)

where the inequality holds by the de�nition of k. Thus, this deviation results in more

investment, and so higher wealth, in each period τ > t′.

Next, we show that this deviation is pro�table. Using the de�nition of Ĩτ and the fact

that w̃t′ = wt′ , period-t
′ consumption satis�es

c̃t′ = w̃t′ − Ĩt′ = wt′ − It′ + st′ −
kδR(w̄) + Lt′

1− δ
> ct′ .

Here, the inequality follows from the fact that kδR(w̄) + Lt′ < 0 by choice of t′. So this

deviation results in strictly higher consumption in period t′.

Now consider τ > t′. From (20) and R′(·) > 1
δ
, we have that:

w̃τ − wτ = R(Ĩτ−1)−R(Iτ−1) >
kR(w̄) + Lτ

1− δ
.

Therefore,

c̃τ = w̃τ − Ĩτ > wτ + kR(w̄)+Lτ
1−δ −

(
Iτ − sτ + kδR(w̄)+Lτ

1−δ

)
= cτ + kR(w̄) > cτ .

Therefore, this deviation leads to strictly higher consumption in every τ > t′. Since Û ≥ U ,
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we conclude that this deviation is pro�table, which contradicts the presumption that the

original strategy was an equilibrium. Thus, it must be that −Lt 6 0 for any t > 0

Suppose that st > 0 in some period t > 0. For the neighbor to be willing to choose st > 0,

it must be that her continuation payo� satis�es −
∑∞

τ=t+1 δ
τ−(t+1)sτ > 0, or −Lt+1 > 0. This

contradicts −Lt+1 6 0. We conclude that st 6 0 in all t > 0, which implies st = 0 for all

t ≥ 0, proving the proposition. �

C Online Appendix: Extensions to the Model

C.1 Reversible Exit

This appendix shows that underinvestment occurs even if the household can return to the

community after leaving for the city. Formally, we modify the game in Section 2 so that at

the start of every period while the household is in the city, it can return to the community. If

it does, then it plays the community game until it again chooses to leave for the city. Payo�s

and information structures are the same as in Section 2, and so neighbors observe all of the

household's interactions with neighbors, while vendors observe only their own interactions.

We impose a slightly stronger version of Assumption 1 and also assume that the house-

hold's marginal utility of consumption is strictly higher in the city.

Assumption 3 De�ne c̄m as the solution to Û ′(c̄m) = 1, and let ŵm satisfy R(ŵm − c̄m) =

ŵm. Then, R
′(ŵm) > 1

δ
. Moreover, for every c > 0, Û ′(c) > U ′(c).

Under this assumption, we can prove that underinvestment occurs even if exit is re-

versible.

Proposition 6 Impose Assumption 3. There exists a w∗∗ < w̄, a wcc < w∗∗, and a positive-

measure set W ⊆ [0, w∗∗] with supW = w∗∗ such that (i) if w0 /∈ W, the household perma-

nently exits the community, with limt→∞wt > w̄, and (ii) if w0 ∈ W, the household is in the

community for an in�nite number of periods.
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If w0 ∈ W, then for every t ≥ 0, wt < w∗∗. Moreover, wt+1 < wt whenever wt ∈

(wcc, w∗∗) ∩W.

C.1.1 Proof of Proposition 6

Much like the proof of Proposition 2, we break this proof into a sequence of lemmas. We begin

by showing that the household's worst equilibrium payo� equals Π̂(·), its worst equilibrium

payo� from the game in Section 2.

Lemma 5 For any initial wealth w ≥ 0, the household's worst equilibrium payo� is Π̂(·).

Proof of Lemma 5: This proof is similar to the proof of Proposition 1. It is an equilibrium

for ft = 0 in every t ≥ 0, in which case it is optimal for the household to permanently leave

the community. In the city, vendor t accepts only if pt ≥ ct. Therefore, Π̂(·) gives the

maximum equilibrium payo� if the household permanently leaves the community. But as in

the proof of Proposition 1, the household cannot earn less than Π̂(·), because vendor t must

accept whenever pt > ct. �

Now, we turn to the household's maximum equilibrium payo�. De�ne Π∗∗(w) as the

maximum equilibrium payo� with initial wealth w. De�ne Π∗c(·) identically to Πc(·), except

that Π∗(·) is replaced by Π∗∗(·). De�ne

Π∗m(w) = max
0≤c≤w

{
(1− δ)Û(c) + δΠ∗∗(R(w − c))

}

as the household's maximum equilibrium payo� if it chooses the city in the current period.

The key di�erence between this model and the baseline model is that Π∗m(·) might entail

the household returning to the community to take advantage of relational contracts in the

future. Therefore, Π∗m(·) ≥ Π̂(·), since the latter entails staying in the city forever.
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Lemma 6 Both Π∗c(·) and Π∗m(·) are strictly increasing. For all w ≥ 0,

Π∗∗(w) = max {Π∗c(w),Π∗m(w)} .

Proof of Lemma 6: As in Lemma 1, conditional on choosing the community in period 0,

the household's maximum equilibrium payo� equals Π∗c(w0). If the household instead chooses

the city in period 0, then f0 = 0 in any equilibrium. Thus, the household optimally sets

pt = ct, so its maximum equilibrium continuation payo� equals Π∗∗(R(w− c)). We conclude

that Π∗m(w) is the household's maximum equilibrium payo� conditional on choosing the city.

It then immediately follows that Π∗∗(w) = max {Π∗c(w),Π∗m(w)}. Both Π∗c(·) and Π∗m(·) are

strictly increasing by inspection. �

Apart from some details of the proof, the next result is similar to Lemma 2.

Lemma 7 If Π∗∗(w0) > Π̂(w0), then Π∗∗(wt) > Π̂(wt) in all t ≥ 0 of any household-optimal

equilibrium.

Proof of Lemma 7: Suppose not, and let τ > 0 be the �rst period such that Π∗∗(wτ ) =

Π̂(wτ ). In period τ − 1, (2) implies that ft = 0 if the household stays in the community.

Therefore, it is optimal for the household to leave the community in τ − 1. But then it is

optimal for the household to permanently leave the community in τ − 1, since Π∗∗(wτ ) =

Π̂(wτ ). So Π∗∗(wτ−1) = Π̂(wτ−1), contradicting the de�nition of τ . �

Lemma 8 Suppose that Π∗∗(w0) > Π̂(w0). Then in every t ≥ 0, (i) Û ′(ct) ≥ 1, and (ii)

there exists τ > t such that the household stays in the community in period τ .

Proof of Lemma 8: Towards contradiction, suppose that there exists t ≥ 0 such that

Û ′(ct) < 1, so that a fortiori, U ′(ct) < 1. If ft > 0, then we can decrease ft and ct by the

same ε > 0. This perturbation is also an equilibrium, and increases the household's period-t

payo� at rate 1− Û ′(ct) > 0 as ε→ 0. Thus, ft = 0, which implies that pt = ct > 0.
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By Lemma 7, Π∗∗(wt+1) > Π̂(wt+1). Therefore, there exists a τ > t such that fτ > 0,

since otherwise the household could do no better than exiting the city permanently. Let τ be

the �rst period after t such that fτ > 0. Note that the household must be in the community

in period τ .

Consider the following perturbation: decrease pt and ct by ε > 0, and increase pτ and

decrease fτ by χ(ε), where χ(ε) is chosen so that wτ+1 remains constant. Then, χ(ε) ≥ ε
δτ−t

because R′(·) ≥ 1
δ
. As ε→ 0, χ(ε)→ 0. Hence, this perturbation is feasible for small enough

ε > 0. It is an equilibrium, since (2) is trivially satis�ed in all t′ ∈ [t, τ − 1] because ft′ = 0

in those periods. This perturbation changes the household's period-t continuation payo� at

rate no less than

−(1− δ)Û ′(ct) + δτ−t(1− δ) 1

δτ−t
> 0

as ε→ 0. Thus, the original equilibrium could not have been household-optimal. �

Next, we show that the household stays in the community for su�ciently low initial

wealth levels.

Lemma 9 The set

W =
{
w|Π∗∗(w) > Π̂(w)

}
has positive measure, with

w∗∗ = sup
{
w|Π∗∗(w) > Π̂(w)

}
< w̄.

Proof of Lemma 9: The proof that
{
w|Π∗∗(w) > Π̂(w)

}
has positive measure is identical

to the proof in Lemma 3, since the same constructions work at w = 0, Π∗∗(·) is increasing, and

Π̂(·) is continuous. If w0 ∈ W , then ct 6 c̄m in every t by Lemma 8, so Π∗∗(w0) 6 Û(c̄m).

If w0 is such that R(w0 − c̄m) > w0, then Π∗∗(w0) > Π̂(w0) > Û(c̄m). This implies that

R(w0 − c̄m) 6 w0 for any w0 ∈W . Hence, by Assumption 3, w∗∗ 6 ŵm < w̄.�

We are now in a position to prove Proposition 6. So far, the argument has hewn closely
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to the proof of Proposition 2. The rest of the proof marks a more substantial departure.

Lemma 9 shows that a positive-measure set W exists such that Π∗∗(w0) > Π̂(w0) for

all w0 ∈ W and supW < w̄. For any w0 /∈ W , Π∗∗(w0) = Π̂(w0) and so the household

permanently exits the community and has a long-term wealth strictly above w̄. Lemma 7

implies that for any w0 ∈ W , we can construct an in�nite sequence of periods such that the

household remains in the community for each period in that sequence. This proves the �rst

part of Proposition 6.

Suppose w0 ∈ W . Then, Lemma 7 and the de�nition of w∗∗ immediately imply that

wt < w∗∗ in every t ≥ 0. It remains to identify a wcc < w∗∗ such that if wt ∈ W∩(wcc, w∗∗),

then wt+1 < wt. Since Π∗∗(·) is increasing, (2) holds only if

ft ≤ ∆(wt) =
δ

1− δ
(Π∗∗(w∗∗)− Π̂(wt)).

Proposition 1 implies that ∆(wt) is strictly decreasing and continuous. Continuity implies

that limw↑w∗∗ Π̂(w) = Π̂(w∗∗). If Π∗∗(w∗∗) > Π̂(w∗∗), then Π∗∗(·) increasing and Π̂(·) contin-

uous imply Π∗∗(w) > Π̂(w) just above w∗∗, contradicting the de�nition of w∗∗. Therefore,

Π∗∗(w∗∗) = Π̂(w∗∗) and ∆(w∗∗) = 0.

For any w ∈ [R−1(w∗∗), w∗∗], de�ne

G(w) = Û(w −R−1(w∗∗))− (U(w∗∗ −R−1(w) + ∆(w)) + ∆(w)).

Then, G(·) is strictly increasing, continuous, and strictly crosses 0 from below. De�ne

wcc1 ∈ (R−1(w∗∗), w∗∗) as the unique wealth such that G(wcc1) = 0.

Consider a household with wt > wcc1 such that Π∗∗(wt) = Π∗c(wt) > Π̂(wt), with corre-

sponding household-optimal choices (ct, pt, ft). Towards contradiction, suppose wt+1 > wcc1.

Then, this household can exit permanently, choose ĉt = p̂t = pt = ct − ft and f̂t = 0,

where pt ≥ 0 because wcc1 ≥ R−1(w∗∗). This deviation leaves wt+1 unchanged and results in

continuation payo� Π̂(wt+1).
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We argue that this deviation is pro�table:

(1− δ)Û(ĉt) + δΠ̂(wt+1) ≥ (1− δ)Û(ct − ft) + δΠ̂(wcc1)

> (1− δ)(U(ct) + ∆(wcc1)) + δΠ̂(wcc1)

= (1− δ)(U(ct) + ∆(wcc1)) + δΠ∗∗(w∗∗)− (1− δ)∆(wcc1)

= (1− δ)U(ct) + δΠ∗∗(w∗∗)

≥ (1− δ)U(ct) + δΠ∗∗(wt+1)

= Π∗∗(wt).

Here, the �rst line follows from ĉt = ct− ft and wt+1 ≥ wcc1; the second line is proven below;

the third line follows from the de�nition of ∆(wcc1); and the �fth line because, by Lemma

7, wt+1 ≤ w∗∗. The fourth and sixth lines are algebra.

The second line follows because for any wt > wcc1, Û(ct − ft) > U(ct) + ∆(wcc1). To see

this, note

w∗∗ ≥ wt+1 = R(wt − pt) > R(wcc1 − pt).

Hence, pt > wcc1 −R−1(w∗∗). Similarly,

wcc1 < wt+1 = R(wt − pt) ≤ R(w∗∗ − pt),

so pt < w∗∗ −R−1(w∗∗). Therefore,

Û(ct − ft) = Û(pt) > Û(wcc1 −R−1(w∗∗))

≥ U(w∗∗ −R−1(wcc1) + ∆(wcc1)) + ∆(wcc1)

> U(pt + ∆(wcc1)) + ∆(wcc1)

≥ U(pt + ∆(wt)) + ∆(wcc1)

≥ U(ct) + ∆(wcc1).

Here, the �rst and third lines follow from w∗∗ − R−1(wcc1) > pt > wcc1 − R−1(w∗∗); the

second line from G(wcc1) = 0; the fourth line from the fact that wcc1 < wt and ∆(·) strictly
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decreasing; and the last line from pt + ∆(wt) ≥ pt + ft = ct. The household therefore has a

pro�table deviation if wt+1 > wcc1, so wt+1 ≤ wcc1 whenever wt ∈ (wcc1, w∗∗).

De�ne the function

F (w) = (1− δ)Û(w∗∗ −R−1(w)) + δΠ̂(w∗∗)− Π̂(w)

on w ∈ [0, w∗∗]. Then F (·) is strictly decreasing and continuous, with

F (0) = (1− δ)Û(w∗∗) + δΠ̂(w∗∗) > 0.

At w0 = w∗∗, it is feasible for the household to permanently leave the community and

consume ct = w∗∗ − R−1(w∗∗) in each t ≥ 0. However, doing so violates (Euler), since

R′(w∗∗) > 1
δ
. Therefore, this consumption path must be dominated by some other feasible

consumption path once the household permanently leaves the community, which implies

Û(w∗∗ −R−1(w∗∗)) < Π̂(w∗∗).

Consequently,

F (w∗∗) = (1− δ)Û(w∗∗ −R−1(w∗∗))− (1− δ)Π̂(w∗∗) < 0.

We conclude that there exists a unique wcc2 ∈ (0, w∗∗) such that F (wcc2) = 0.

Suppose the household with wt ∈ W and wt > wcc2 chooses to live in the city in t.

Towards contradiction, suppose that wt+1 ≥ wt. Therefore, the household's payo� satis�es

Π∗∗(wt) ≤ (1− δ)Û(w∗∗ −R−1(wt)) + δΠ∗∗(w∗∗)

= (1− δ)Û(w∗∗ −R−1(wt)) + δΠ̂(w∗∗)

< Π̂(wt),
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where the �rst inequality follows because ft = 0, so that pt = ct = wt − R−1(wt+1) ≤

w∗∗−R−1(wt); the equality follows because Π∗∗(w∗∗) = Π̂(w∗∗), and the �nal, strict inequality

follows because wt > wcc2 and so F (wt) < 0. But Π∗∗(·) ≥ Π̂(·), proving a contradiction. So

wt+1 < wt.

Set wcc = max{wcc1, wcc2}. We have shown that wt+1 < wt whenever wt > wcc. This

completes the proof. �

C.2 Non-Linear Favors

C.2.1 Model and Statement of Result

In this appendix, we show that a (slightly weaker version of) Proposition 2 holds if the

household's cost in providing ft is convex.

Consider the game with non-linear favors, which is identical to the game in Section

2 except that the household's stage-game payo� is

πt =


U(ctdt)− k(ft) in the community

Û(ct, dt)− k(ft) in the city.

Assume that k(·) is strictly increasing, strictly convex, twice continuously di�erentiable, and

satis�es k′(0) = 0, k(0) = 0, and limf→∞ k
′(f) = ∞. We assume Û ′(·) > U ′(·). A special

case of this game has k = U−1, which corresponds to a setting in which the neighbors value

ft according to the same utility function as the household's consumption.

De�ne f ∗(c) as the unique solution to U ′(c) = k′(f ∗(c)) and c∗ as the solution to U(c∗) =

Û(c∗ − f ∗(c∗)). Note that c∗ exists and is unique because Û ′(c) > U ′(c), f ∗(·) is decreasing,

and limc→∞ f
∗(c) = 0. We impose the following assumption.

Assumption 4 De�ne c̃(w) as the unique solution to R(w − c̃(w)) = w. Assume that

Û(c̃(w̄)− f ∗(c̃(w̄)))− U(c̃(w̄)) >
δ

1− δ
U(c∗).
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Suppose that the household has wealth w̄, which is the wealth level at which strictly

positive-return investments are exhausted. Assumption 4 ensures that this household's value

from moving to the city and consuming c̃(w̄)− f ∗(c̃(w̄)) forever after is substantially greater

than its utility from staying in the community and consuming c̃(w̄) forever. Note that c̃(w)

is increasing because R′(·) ≥ 1
δ
> 1.

We now prove our main result for the game with non-linear favors.

Proposition 7 Impose Assumption 4 in the game with non-linear favors. Then, there exists

a wse < w̄, a wtr ∈ [0, wse), and a positive-measure set W ⊆ [0, wse), such that in any

household-optimal equilibrium,

1. Selection: The household stays in the community forever if w0 ∈ W and otherwise

leaves immediately.

2. �Too-big-for-their-boots:� If w0 ∈ W and wt ≥ wtr on the equilibrium path, then

wt+1 < wt.

C.2.2 Proof of Proposition 7

We focus only on those parts of the proof that di�er substantially from the proof of Propo-

sition 2.

The proof of Proposition 1 goes through without change, since ft = 0 in every period

of any equilibrium in the city. Similarly, once we substitute the cost function k(f) into the

household's payo�, the proofs of Lemmas 1 and 2 go through without change.

The next step of the proof, which shows that wealthy households leave the community

and poorer households stay, requires a new argument.

Lemma 10 The set
{
w : Π∗(w) > Π̂(w)

}
has positive measure. Moreover,

wse = sup
{
w : Π∗(w) > Π̂(w)

}
satis�es 0 < wse < w̄.

Proof of Lemma 10: The argument that Π∗(0) > Π̂(0) = 0 goes through essentially

without change. Thus, we need to show only that wse <∞.
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Step 1: In any t ≥ 0 of any household-optimal equilibrium, ft ≤ f ∗(ct). If

the household is in the city, ft = 0 ≤ f ∗(ct). If it is in the community, then suppose that

ft > f ∗(ct). Consider perturbing the equilibrium by decreasing ct and ft by ε > 0. This

perturbation is feasible as ε→ 0, and moreover, increases the household's stage-game payo�

at rate k′(ft) − U ′(ct) > k′(f ∗(ct)) − U ′(ct) = 0. Thus, the original equilibrium was not

household-optimal. This proves Step 1.

Step 2: For any w ≥ 0, Π∗(w)− Π̂(w) ≤ U(c∗). If Π∗(w) = Π̂(w), then the result is

immediate. Suppose that Π∗(w) > Π̂(w). By Lemma 2, a household with w0 = w stays in

the community in any t ≥ 0 of any household-optimal equilibrium.

Fixing such an equilibrium, we can derive a lower bound on Π̂(w) using the following

perturbation: the household leaves the community, chooses p̃t = pt in each t ≥ 0, and request

consumption c̃t = ct − ft ≥ 0. This strategy is feasible, and the resulting payo� satis�es

∑∞
t=0 δ

t(1− δ)Û(ct − ft) =
∑

t|ct≥c∗ δ
t(1− δ)Û(ct − ft) +

∑
t|ct<c∗ δ

t(1− δ)Û(ct − ft)

≥
∑

t|ct≥c∗ δ
t(1− δ)Û(ct − f ∗(ct)),

where the inequality follows because ft ≤ f ∗(ct) and ct − ft ≥ 0. Therefore,

Π∗(w)− Π̂(w) ≤
∑∞

t=0 δ
t(1− δ)

(
U(ct)− Û(ct − ft)

)
≤

∑
t|ct≥c∗ δ

t(1− δ)
(
U(ct)− Û(ct − f ∗(ct))

)
+
∑

t|ct<c∗ δ
t(1− δ)U(ct)

≤ U(c∗),

where the �rst two inequalities follow from our lower bound on Π̂(w), and the �nal inequality

holds because U(ct) ≤ Û(ct − f ∗(ct)) for all ct ≥ c∗, and U(ct) ≤ U(c∗) for all ct < c∗. This

proves Step 2.

Step 3: There exists a wse such that for all w ≥ wse, Π∗(w) = Π̂(w). Fix a

wealth level such that Π∗(w) > Π̂(w) and Π̂(w) > U(c∗), and consider a household-optimal
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equilibrium with w0 = w. By Lemma 2, the household must stay in the community forever.

Therefore, there exists t ≥ 0 such that U(ct) ≥ Π̂(w), so ct > c∗.

In this period t, we must have Π∗(wt+1) > Π̂(wt+1). Since the household can always leave

the community, consume ct − f ∗(ct), and earn Π̂(wt+1), Π∗(wt) > Π̂(wt) holds only if

(1− δ)U(ct) + δΠ∗(wt+1) > (1− δ)Û(ct − f ∗(ct)) + δΠ̂(wt+1)

or

δ

1− δ

(
Π∗(wt+1)− Π̂(wt+1)

)
> Û(ct − f ∗(ct))− U(ct).

By Step 2, this inequality holds only if

δ

1− δ
U(c∗) > Û(ct − f ∗(ct))− U(ct). (21)

Now, choose wse such that Û(c̃(wse) − f ∗(c̃(wse))) − U(c̃(wse)) = δ
1−δU(c∗); note that

wse exists and satis�es wse < w̄ by Assumption 4. For any w ≥ wse, (21) cannot hold,

which means that in any household-optimal equilibrium, there exists a t ≥ 0 such that

Π∗(wt) = Π̂(wt). Lemma 2 then implies that for all w ≥ wse, Π∗(w0) = Π̂(w0). We conclude

that wse < w̄, as desired. �

We can now complete the proof of Proposition 7. As in the proof of Proposition 2,

selection follows from Lemmas 2 and 10. The argument for �too-big-for-their-boots� is

similar to the argument in Proposition 6, with one change. We must substitute k(ft) into

the household's payo�. With this change, we can construct a similar wcc1 as in Proposition

6 so wt+1 < wt whenever wt > wcc1. We can therefore take wtr = wcc1 to prove Proposition

7. �
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