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Abstract

Local projections (LPs) are a popular tool in macroeconomic research. We show
that LPs are often used with very small samples in the time dimension. Consequently,
LP point estimates can be severely biased. We derive simple expressions for this bias
and propose a way to bias-correct LPs. Small sample bias can also lead autocorrelation-
robust standard errors to dramatically understate sampling uncertainty. We argue
they should be avoided in LPs like the ones we study. Using identified monetary
policy shocks, we demonstrate that the bias in point estimates can be economically
meaningful and the bias in standard errors can affect inference.

1 Introduction

We show that if a time series is persistent—as is generally the case when researchers are inter-
ested in impulse responses—then estimators of impulse responses by local projections (LPs)
can be severely biased in sample sizes commonly found in the empirical macroeconomics
literature.

Starting with Jordà (2005), LPs have been used by researchers as an alternative to other
time series methods, such as vector autoregressions (VARs). We survey the literature and
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Reserve Board or the Federal Reserve System. We thank Todd Clark, Marco Del Negro, Eric Ghysels, Òscar
Jordà, Lutz Kilian, Mikkel Plagborg-Møller, Frank Schorfheide, and Minchul Shin, as well as seminar partic-
pants, for helpful comments and discussions. We thank Nicholas Zevanove for excellent research assistance.
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find that, over the past 15 years, LPs have been applied in a variety of settings that are
notably different than the setting studied in Jordà (2005). In particular, we find that sample
sizes in the time dimension are typically much smaller than the sample sizes studied in
Jordà (2005) and that LPs have become increasingly prevalent when researchers also have
a cross section of data (i.e., panel data). Additionally, researchers often approach LPs with
identified structural shocks in hand, rather than identifying those shocks as a part of the
estimation.1 We focus on this idealized case in this paper, as it is a natural benchmark for
understanding the methodology.

Using Monte Carlo analysis, we demonstrate that the magnitude of the bias in LPs can
be large when sample sizes in the time dimension are similar to those typically found in the
empirical macroeconomics literature. Our Monte Carlo simulations use simple, linear data
generating processes. While researchers may be drawn to LPs because they invoke fewer
parametric restrictions than other methods, an important standard for this methodology is
that it performs well in simple scenarios. Notably, we show that the bias in LPs persists
even when the shock on the right-hand-side of the regressions in our Monte Carlo analysis is
iid, as is often the case when researchers have access to a time series of identified structural
shocks.

We analyze the small-sample bias in LPs using a higher-order expansion of the LP es-
timator, building on the related work of Kendall (1954), Rilstone et al. (1996), Anatolyev
(2005), and Bao and Ullah (2007). We show that the bias of the LP estimator at horizon h

is a function—specifically, a weighted sum—of the (population) impulse response function
at other horizons. As a result, if LP estimators across horizons have the same sign (as is
the case for hump-shaped impulse responses), then the least-squares estimators are biased
toward zero at every horizon. Additionally, our analysis highlights that the small-sample es-
timates from LPs are not “local” because the small-sample biases of those estimates depend
on the true impulse responses at other horizons.

We use the higher-order expansion of the LP estimator to develop a simple bias correction
that can added to the ordinary least squared (OLS) estimator. In Monte Carlo simulations,
on average our bias-corrected estimators are markedly closer to the true values of the impulse
responses.2 In addition, using coverage probabilities as a metric, we show that our estimator

1In what follows, we always refer to the regressor associated with the LP coefficient as the “shock.”
2Because our bias correction does not completely eliminate small sample bias, in some settings researchers
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performs relatively well when compared to the OLS estimator.
We extend our analysis to settings using panel data and show that—when using fixed

effects—the bias we document persists. We provide formulas for bias correcting the OLS
estimator in panel settings with and without controls. Additionally, we show that increasing
the number of entities in the panel will not eliminate the bias.

Finally, we also study the downward bias in the standard errors of LP estimators. Our
analysis of standard errors is related to recent work by Olea and Plagborg-Møller (2020),
who suggest that researchers using LPs should use heteroskedasticity-consistent, but not
autocorrelation-robust, standard errors.3 Our focus on finite sample issues leaves us at
similar conclusions, but for different reasons.

We show that, like the LPs themselves, commonly-used standard errors for LPs that
are heteroskedasticity- and autocorrelation-robust (HAR) are also severely downward biased
when sample sizes are similar to those commonly found in the literature. When the regression
scores—the regression residuals times the regressors—are autocorrelated, HAR standard
errors are necessary for valid inference. Popular HAR estimators, such as the Newey and West
(1987) estimator, rely on estimators of the autocorrelation of the regression score. Like the
LP point estimators, in finite samples, the estimators of these autocorrelations will be biased.
In most empirically-realistic settings, the bias will be downwards. This downward bias is
large enough that, in LP settings like the ones we study, estimates of the autocorrelation are,
on average, negative in small samples, even when the true autocorrelation is zero or mildly
positive!

The possibility of the bias leading to an incorrectly signed estimate of autocorrelations
suggests researchers may prefer standard errors that are heteroskedasticity-consistent, but
not autocorrelation-robust, such as Huber-White standard errors. In fact, in our empirical
examples, switching from Newey-West to Huber-White estimators generally increases the
estimates of standard errors, sometimes dramatically so. In the case that researchers need
to use autocorrelation-robust standard errors, our small sample analysis suggests that they
should be aware that these standard errors may be dramatically biased.

Additionally, when researchers have the shocks in hand, we argue that under the null

may prefer methods, such as VARs, that estimate the same impulse responses as LPs (see Plagborg-Møller
and Wolf (2019)) and have well-understood, effective methods for bias correction (see Kilian (1998)).

3Olea and Plagborg-Møller (2020) specifically advocate the use of lag-augmented LPs. We analyze the
effects of lag augmentation in our setup in Appendix G.
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hypothesis that is typically of interest, HAR standared errors are not even necessary for valid
inference. We provide an analytical characterization of the true autocorrelation function of
the regression score in a simple setting. In this case, using HAR standard errors is not
conservative; in fact, it will typically understate uncertainty relative to a standard error
calculated without attempting to take autocorrelation into account.

We analyze bias in three examples drawn from the empirical monetary economics liter-
ature. We show that the bias in point estimates can be economically meaningful. In these
examples, consistent with our simulations and analytical results, the use of HAR estimators
typically leads to smaller standard error estimates than the use of the Huber-White estima-
tor; in many cases this difference is large enough to affect inference. This is true even when
the estimated bias in the point estimate is small.

Our paper is related to work by Kilian and Kim (2011), who study the coverage probabil-
ities for confidence intervals for LP estimators using bootstrap methods. Their work focuses
on the case when shocks are identified as a part of the LP estimation and uses the block boot-
strap to approximate the finite sample distribution of the OLS estimate. By contrast, our
paper considers the case when a time series of identified shocks is available to the researcher,
so right-hand-side variables are iid. Our analysis relies on higher-order expansions of the
OLS estimator, which illustrate the reasons that the LP estimator is biased and provide a
natural bias correction without bootstrapping. In addition, we extend the analysis to panel
data settings, which are common settings for LPs in practice. In Appendix F, we compare
the bias correction from the block bootstrap used in Kilian and Kim (2011) to our pro-
posed bias correction and use insights from our higher-order expansion of the OLS estimator
to explain why the bootstrap performs relatively poorly unless block lengths are relatively
long. More generally, our paper is related to work on bias in least-squares estimators of
autocorrelation (such as Kendall (1954) and Shaman and Stine (1988)), in dynamic panel
data settings (such as Nickell (1981) and Hahn and Kuersteiner (2002)), and in generalized
method of moments systems (Rilstone et al. (1996), Anatolyev (2005), and Bao and Ullah
(2007)). We extend this work to our LP setting.
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2 Some evidence on the use of LPs

To get a sense of how LPs are used in the literature, we examine the 100 “most relevant”
papers citing Jordà (2005) on Google Scholar.4 Google Scholar’s relevance ranking weights
the text of the document, the authors, the source of the publication, and the number of
citations. Of these 100 papers, 71 employed LPs in an empirical project (rather than merely
citing but not applying LP).5

The focus of this paper is parameter bias associated with short time series, so for each
of the studies we recorded the length of the time series, T , in the main LP in each of these
papers. About two-thirds of the papers surveyed employed panel data. As mentioned in
the introduction and discussed later, with entity-specific fixed effects, the time dimension is
still the relevant component of the sample size for determining the LP bias. Because many
of the panel data sets are unbalanced, constructing a single summary T is challenging. For
unbalanced panels, we summarize the size of the time dimension using the mean T across
entities, when readily available, or using the largest value of T across entities. In general,
our assessment of T is extremely conservative in the sense that it overestimates the time
series dimension of the data for many of the LP applications. It is not unusual, for example,
to see unbalanced panels that have an average T that is less than half of the time-series
dimension of the entire panel or to see robustness exercises that use a small fraction of the
data series. In these cases, we use the entire time series dimension of the panel, which biases
our estimates of T up.

Figure 1 displays a histogram of the sample of 71 T s collected in our literature review.
The median T (the red dash dotted line) is around 95. These sample sizes are significantly
smaller than those typically used in empirical macroeconometrics papers, as most of the
papers surveyed here use the increasingly popular strategy of using observed shocks, such as
the monetary policy shocks of Romer and Romer (2004), rather than identified shocks from
a VAR, as in Jordà (2005). Constructing these observed shocks is often difficult and costly,
and so the time series typically have short length.

The application of LPs to such short time series does not seem to have been anticipated
in the early literature on LPs. In fact, the Monte Carlo studies in Jordà (2005) used T = 300

4We conducted this search in October 2019. See Appendix I for the list of citations.
5If a paper appeared as both a working paper and a published paper, we excluded the working paper

version from our analysis.
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Figure 1: T is small in the literature using LPs.

and T = 496 (the orange, dashed lines in Figure 1). Less than 6 percent of the surveyed
studies use sample sizes at least that large. Of course, it is difficult to fault Jordà (2005)
for not anticipating how researchers would subsequently apply LP methods. While many
studies in our survey use annual or quarterly data, Jordà (2005) used monthly data. In
general, however, increasing T by using monthly data rather than quarterly or annual data
will not completely eliminate the issue of small-sample bias in LPs because the monthly
series are likely to be more persistent, and the bias in LPs is more severe when the data are
more persistent.

3 Bias in LPs

In this section, we demonstrate that LPs can be severely biased with sample sizes like those
documented in Section 2. We explore this bias using both Monte Carlo evidence and a new
analytic approximation of the bias. The analytic approximation yields insights into the bias
associated with LPs at different horizons and suggests a correction of the bias.

6



3.1 Bias in LPs using an AR(1) example

To demonstrate that LPs can be severely biased in small samples, we first consider Monte
Carlo analysis using an AR(1) data generating process. Our objective is to study the accuracy
of estimated impulse responses via LPs for various sample sizes. For a given T , we simulate
Nmc = 10, 000 time series, {yt}Tt=1, for the data generating process:

yt =ρyt−1 + εt + νt. (1)

Here, εt and νt are iid standard normal random variables. In these Monte Carlo simulations,
to be consistent with the high persistence of macroeconomic data, we set ρ = 0.95.6 We use
the AR(1) time series model because LPs were designed to capture the dynamics of a wide
range of data generating processes and one would hope that they would perform well in the
simplest examples.

We assume that the researcher does not know the true data generating process but is
otherwise in a near-ideal setting for estimating the impulse response function of yt using
LPs. The researcher observes {yt, εt}Tt=1; that is, the researcher directly observes the shock
εt which is independent over time and uncorrelated with past values of yt. In addition, the
researcher may control for other variables, denoted by the vector ct. When we include such
controls in the Monte Carlo exercise, we assume ct = yt−1. We stress that our regressions
with controls are ideal in the sense that no useful additional information from earlier periods
could be added to the regressors and we include the correct number of lags of yt as controls.

The LP model is the set of regression models indexed by the impulse response horizon h,

yt+h = αh + β′
hxt + ut,h, h = 0, . . . , H. (2)

where xt ≡ [εt, c
′
t]
′.7 Thus, the first elements of the coefficient vectors {βh}Hh=0 trace out the

impulse response of interest. We denote the H + 1 vector describing the impulse response
by θ with elements θh for h = 0, . . . , H. As in the empirical macroeconomics literature, we
estimate each βh using least squares. We denote the estimator of the βh by β̂h,LS and the
estimator of the impulse response by θ̂LS.

Using Monte Carlo simulations, we can compute, for any T , the finite sample expectation
of the least-squares estimator, E[θ̂LS]. Figure 2 displays the expectation for the LP estimators

6In Appendix C, we provide results for alternative values of ρ. In each simulation, we initialize y0 at a
draw from the unconditional distribution of yt. The variances of εt and νt are set to σ2

ε = σ2
ν = 1.

7When we do not include controls, xt = εt.
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Figure 2: LP estimators are biased in empirically-relevant samples when yt is an AR(1) with
ρ = 0.95.

with and without controls for the AR(1) data generating process with T ∈ {50, 100, 200}.
Recall that about half of the surveyed literature uses T less than 100.

When controls are not included in the LP (the left panel), the estimator is biased even
at short horizons. This is true even for moderately long time series—i.e., T = 200. As the
horizon of the impulse response increases, the bias becomes worse. When yt−1 is included as
a control (the right panel), the bias diminishes substantially at short horizons. Intuitively,
adding controls makes the least-squares error terms less autocorrelated with at short horizons.
However, even for the impulse response only 10 periods ahead (2.5 years with quarterly
data), the controls alleviate only a small fraction of the bias. The reason that controls are
less effective at reducing the bias as h increases is that they are less effective at forecasting
yt+h. Note also that, at these longer horizons, the overlapping nature of the left-hand-side
variables in the LP implies that the error terms are autocorrelated.8

8Following Jordà (2005), for each regression of horizon h, researchers typically use all available data,
meaning that the regression error term is autocorrelated for at least h − 1 periods. With autocorrelated
regression error terms, the generalized least-squares estimator asymptotically performs better than the ordi-
nary least-squares estimator. However, researchers typically use the ordinary least-squares estimator because
of the small-sample shortcomings of the feasible generalized least-squares estimator. That said, recent work
by Lusompa (2019) suggests that well-behaved small sample GLS estimators may be obtained for LPs.
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3.2 Approximating the small sample bias in LPs

In this subsection we derive an analytic approximation to the bias of the least-squares esti-
mator, θ̂LS, given by E[θ̂LS]−θ. The expressions we derive are, to the best of our knowledge,
new to the literature and highlight the interdependence of the bias in LPs at different hori-
zons. In order to illustrate the point clearly (and to avoid tedious matrix algebra), we first
focus on LPs without controls. We generalize our analytic approximation to the case when
controls are included in the LP, and the intuition for the bias is similar (we provide the
associated derivations in our Appendix A).

In all of our derivations, we make the following assumptions. Let wt = [yt, εt, c
′
t]
′.

Assumption 1. The data {wt} is stationary and ergodic. The demeaned series {wt − µw},
where µw = E[wt], is purely non-deterministic with absolutely summable Wold decomposition
coefficients and E[||wtw

′
t||2] <∞.

Under Assumption 1, the Wold representation can be inverted and the data has a
VAR(∞) representation. If {wt} is jointly Gaussian, the data satisfies the Assumption 1.
The next assumption explicitly characterizes the relationship between yt and εt as well the
conditional moments of εt.

Assumption 2. The time series yt can be decomposed as

yt =
∞∑
j=0

θjεt−j + ȳt

where ȳt is independent of εt−j for j = −∞, . . . ,∞. Moreover,

E[εt|{wτ}τ<t, {ετ}t<τ ] = E[εt] = µε

and E[(εt − µε)
2|{wτ}τ<t, {ετ}t<τ ] = E[(εt − µε)

2] = σ2
ε > 0.

The first part of this assumption characterizes yt as the sum of a casual linear filter in
{εt−j}∞j=0 and an additional component which is independent of all εj. The filter coefficients
are the impulse response coefficients of interest. This is a stark assumption that is meant
to represent an idealized case where “direct causal inference”—as in Nakamura and Steins-
son (2018)—is possible. A jointly Gaussian time series trivially satisfies this portion of the
assumption. The second part of this assumption precludes first and second moment depen-
dence in εt. The idealized case where the researcher has iid shocks in hand trivially satisfies
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the second part of Assumption 2. Such a stark assumption is consistent with the emerging
practice of constructing such shocks with desirable statistical properties. We stress that a
violation of Assumption 2 does not eliminate the small sample bias discussed here, it merely
makes it difficult to characterize analytically. This assumption allows us to obtain sharp
analytical results, a necessary first step in understanding finite sample issues in LPs.

Recall that in our framework, the researcher observes {yt, εt}Tt=1. For a given h, the
ordinary least-squares estimator of θh can be written as

θ̂h,LS =

1
T−h

∑T−h
t=1 εtyt+h − 1

(T−h)2

(∑T−h
t=1 εt

)(∑T−h
t=1 yt+h

)
1

T−h

∑T−h
t=1 ε

2
t − 1

(T−h)2

(∑T−h
t=1 εt

)2
=

ĉov[εt, yt+h]

v̂ar[εt]
. (3)

Here, ĉov and v̂ar are the sample covariance and variance, respectively.9 Equation (3) makes
it clear that θh in population is the scaled covariance between yt+h and εt.

Analytical Result 1 (Expression for the bias in an LP without controls). Under Assump-
tions 1 and 2, the bias of the LP estimator in equation (3) is given by

E
[
θ̂h,LS

]
− θh = − 1

T − h

T−h−1∑
j=1

(
1− j

T − h

)
(θh+j + θh−j) +O

(
T−3/2

)
. (4)

A proof of this claim is given in Appendix A, but we provide some discussion here. To
derive an expression for the approximate bias of θ̂h,LS, we need to compute E

[
θ̂h,LS

]
. In

such a simple example, one can calculate higher-order expansions of equation (3). This is a
widely adopted approach to these kinds of problems. We apply the methodology of Bao and
Ullah (2007), which does not require, for example, that the shocks be normally distributed.
Finally, note that equation (4) gives an approximate expression for the bias of θ̂h,LS that
consists of only the impulse response coefficients at different horizons.10

To gain intuition for equation (4), it is useful to consider the case when εt is symmetric
around the origin.11 In this case,

E
[
θ̂h,LS

]
=

E[ĉov[εt, yt+h]]

E[v̂ar[εt]]
+O

(
T−3/2

)
. (5)

9Note that for the variance to be consistent with the least-squares estimator, we use only the T − h

observations of εt.
10Given our maintained assumption that εt is uncorrelated with past values of yt, θ−j = 0 for j > 0.
11In this case, the derivation of our expression for the bias of θ̂h,LS is similar to the derivation in Kendall

(1954) for the well-known bias of estimators of autocorrelation—see also Shaman and Stine (1988).
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The numerator of equation (5) is given by

E[ĉov[yt+h, εt]] =

(
1− 1

T − h

)
cov[yt+h, εt] (6)

− 1

T − h

T−h−1∑
j=1

(
1− j

T − h

)
(cov[yt+h+j, εt] + cov[yt+h−j, εt]) .

Here, cov is the true covariance. The summation in equation (6) comes from the plug-in
estimator for the mean in ĉov. The denominator of equation (5) is

E[v̂ar[εt]] =
(
1− 1

T − h

)
var[εt]. (7)

Here, var is the true variance. Noting that θh+j = cov[εt, yt+h+j]/var[εt], we obtain equa-
tion (4).12 From this derivation, it is clear that the bias arises because of the need to estimate
the means of the variables in the OLS calculations.

Several more remarks regarding equation (4) are in order. First, as expected, the bias
is a decreasing function of T ; for fixed h, the least-squares estimator is consistent. Second,
the bias of θ̂h,LS is a function of the impulse response coefficients at all other horizons.
Intuitively, the data generating process affects the bias of OLS estimators at similar horizons
in similar ways. The interdependence of LP estimates across h highlights that, in finite
samples, LPs are not “local.” Third, the contribution of the horizon h+ j impulse response
coefficients to the bias in the least-squares estimate of the h impulse response coefficient
decreases only at linear rate as j increases or decreases. In practice, this means that the
bias in the portion of the impulse response of interest—typically, say, the first 20 periods in
quarterly macroeconomic applications—can be meaningfully affected by the impulse response
at much longer horizons. This is especially true for extremely persistent time series (like many
macroeconomic series).

We next consider the case when a researcher includes controls in the LP. We maintain
the following assumptions.

Assumption 3. αh + x′tβh is an optimal linear forecast for yt+h.

The assumption that the LP produces an optimal linear forecast implies that, using the
true parameters, forecast errors are MA(h+ 1) processes.

12In this derivation, the expression for the bias would be divided by T −h− 1 rather than T −h, but that
difference is absorbed in the term O(T−3/2).
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Assumption 4. The matrix E[xtx′t] is full rank.

This assumption ensures our estimator is consistent and that our setup satisfies the
assumptions of Rilstone et al. (1996). With these additional assumptions, we can state our
next analytical result.

Analytical Result 2 (Expression for the bias in an LP with controls). Under Assumptions
1-4, the bias for the LP with controls is given by

E
[
θ̂h,LS

]
− θh = − 1

T − h

h∑
j=1

(
1− j

T − h

)(
1 + tr

{
Σ−1

c,0Σc,j

})
θh−j +O

(
T−3/2

)
, (8)

where Σc,j ≡ E
[
(ct−j − µc) (ct − µc)

′].
The claim again relies on the results of Bao and Ullah (2007). A detailed derivation is

in Appendix A. Several remarks regarding equation (8) are in order. First, as in the case
without controls, the bias is a decreasing function of T ; for fixed h, the least-squares estimator
is consistent. Second, the bias of θ̂h,LS is a function of the impulse response coefficients at all
horizons up to h. Intuitively, the data generating process affects the bias of OLS estimators
at similar horizons in similar ways, however controlling for past data truncates the terms
that are important for the bias by truncating the correlation in the regression errors. Third,
the contribution of the horizon h − j impulse response coefficients to the bias in the least-
squares estimate of the h impulse response coefficient is scaled by 1 + tr

{
Σ−1

c,0Σc,j

}
. As a

result, when controls are persistent or when unneeded persistent controls are added to the
LP, the bias increases.

Using our AR(1) example, figure 3 shows E
[
θ̂LS

]
calculated using the approximation in

equation (5), assuming that the true values of θh are known. The figure also shows the exact
finite sample value from Monte Carlo simulations. Notably, the approximation works quite
well in population. For the no-controls case, the analytic approximation is nearly exact for
T ∈ {50, 100, 200}. With controls, the analytic approximation to the impulse response is
somewhat above the true finite-sample expectation, though it still captures most of the bias
associated with the least-squares estimator.

3.3 A bias-corrected estimator

Equations 4 and 8 lend themselves to constructing bias corrected estimators for θh using
plug-in estimators for θj and Σc,j. In the case of no controls, the bias depends on the values
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Figure 3: The bias approximation is accurate in our LPs.

of θj for all j ̸= h and |j| ≤ T . Given the inability to estimate all of these parameters with
a sample size of T , in practice a researcher could truncate the horizon of the coefficients
used in the bias correction. Without theory on how to optimally pick the maximum horizon
used in the bias correction, H, we set H to 20, 25, and 50 for T equal to 50, 100, and 200,
respectively. In the case when controls are included in the LP, all of the needed values of θj
and Σc,j are easily computed.

Notably, the researcher could bias correct the coefficients using the OLS estimates of
θj. When we construct the bias-corrected estimator in this way, we denote the estimator as
θ̂BC,h. Alternatively, the researcher could iterate the bias correction on all values of θj. When
we construct the bias-corrected estimator in this way, we denote the estimator as θ̂BCC,h.

For the case of an LP without controls and an LP with controls, respectively, figures
4 and 5 show the average value of θ̂LS, θ̂BC , and θ̂BCC over our Monte Carlo simulations
when yt follows an AR(1) with ρ = 0.95. Clearly, our bias correction does not completely
correct for the bias in θ̂LS in either case, indicating that our bias-corrected estimator is not
a panacea for bias in LPs. Nevertheless, θ̂BC and θ̂BCC are markedly closer than θ̂LS to θ on
average.
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(a) T = 50
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Figure 4: θ̂BC and θ̂BCC are closer than θ̂LS to θ, on average, in our LPs without controls
when yt is an AR(1) with ρ = 0.95.
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Figure 5: θ̂BC and θ̂BCC are closer than θ̂LS to θ, on average, in our LPs with controls when
yt is an AR(1) with ρ = 0.95.

4 Extension to panel data

In this section, we demonstrate that LPs can be severely biased with sample sizes in the time
dimension commonly found in the empirical macroeconomic literature even when researchers
have access to a large cross-section (i.e. panel data). Of course, parameter bias in dynamic
panel data models has been studied since at least Nickell (1981). We illustrate the bias in
LPs using the expansion of the OLS estimator that is similar to one in the previous section.
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As before, the bias for an LP at horizon h is linked directly to the LP population coefficients
at other horizons. In all of our derivations, we maintain the assumptions from the previous
section, and, for algebraic simplicity, we assume that the panel is balanced.

4.1 Bias in LPs with panel data using the AR(1) example

To demonstrate that LPs can be severely biased in small samples with panel data, we generate
data, {yi,t}Tt=1 for each entity i = 1, . . . , I, using the data generating process specified in
equations (1). For simplicity, we assume that all the data are independent across entities,
but our derivations for the approximate bias do not depend on this assumption. We show
results for panels containing I = 10, 25, and 50 entities. As in the previous section, we
assume ρ = 0.95.

In panel settings, the LP model is the set of regression models indexed by the impulse
response horizon h,

yi,t+h = αi,h + β′
hxi,t + ui,t,h, h = 0, . . . , H. (9)

where xi,t ≡ [εi,t, c
′
i,t]

′.7 The first element of the coefficient vectors {βh}Hh=0 trace out the
impulse response of interest, which we denote {θh}Hh=1. Note that we incorporate fixed
effects in this panel setting.

Figure 6 displays the Monte-Carlo mean of LP estimators with and without controls for
T = 100 and different numbers of entitites in the panels. As was the case without panel
data, the LP estimates of the impulse responses are severely biased. Notably, the bias does
not approach zero as the number of entities in the panel grows large (see Nickell (1981)).

As in the non-panel setting, the inclusion of controls is less effective at reducing the bias
in LP estimators as h increases. The reason that controls are less effective at reducing the
bias as h increases is that they are less effective at forecasting yi,t+h. Thus, for large h, the
bias is similar to the LP estimator without controls. Papers like Acemoglu et al. (2019) have
argued that T as small as 40 should make the bias in panel LP estimators relatively small.
While the bias documented by Nickell (1981) is small at h = 1 when controls are included,
that bias can be large at h = 10 even when T is relatively large. In general, impulse responses
are most of interest at moderate-to-large values of h.
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Figure 6: LP estimators without controls are biased in empirically-relevant samples when
yi,t is an AR(1) with ρ = 0.95.

4.2 Understanding bias in LPs with panel data

In this subsection we derive an approximate bias function for the LP estimator in the context
of panel data with entity fixed effects. We do our expansions under the assumption that
the time series is growing, but that the number of entities in the panel is constant. This
seems like the most relevant setting for macroeconomic applications, where panels generally
consists of countries, states, or even counties. We analyze the implications of having a larger
number of entities in a panel for the size of the bias.

Throughout this sub-section, we maintain the following assumption.

Assumption 5. Either εi,t ⊥ εj,t for j ̸= i, or if εi,t and εj,t are correlated then E[εi,t(yj,t+h−
αj,h − βhεj,t)] = 0.

This assumption says that either the shocks are independent or they are valid instruments
for one another.

Analytical Result 3 (Bias in Panel LPs without controls.). Under the maintained assump-
tions from this and the previous sections, the series expansion of the OLS estimator without
controls implies

E
[
θ̂h,LS

]
− θh = − 1

T − h

T−h−1∑
j=1

(
1− j

T − h

)
(θh+j + θh−j) +O

(
T−3/2

)
. (10)
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Equation (10) is identical to equation (4), meaning that the expression for the bias in
a panel setting is identical to the expression without panel data.13 As a result, without
controls the bias-corrected estimator from the previous section could be applied to the panel
data setup we analyze here, where T is used as the number of relevant observations rather
than I × T .

When controls are included, the bias calculation becomes more complicated, although
the intuition about the size and scope of bias is essentially unchanged. Define covariance of
the εs between panelists as

σj,k = E [(εj,t − µj,ε) (εk,t − µk,ε)] .

Next, write the covariance of t− u and t controls of panelists j and k as

Σj,k,u = E
[
(cj,t−u − µc,j)

(
c′k,t − µ′

k,z

)]
.

Then, the average of the variance of the controls is given by

Σ̄0 =
1

I

I∑
j=1

Σj,j,c,0.

Analytical Result 4 (Bias in Panel LPs with controls.). Under the maintained assumptions
from this and the previous sections, the series expansion of the OLS estimator with controls
implies

E
[
θ̂h,LS

]
− θh = − 1

T − h

h∑
u=1

(
1− u

T − h

)
[1 + ωu] θh−u +O

(
T−3/2

)
(11)

where

ωu =
1

I2

I∑
i=1

I∑
k=1

tr
{
Σ̄−1

0 Σk,i,c,u

}
σi,k,ε

1
I

∑I
j=1 σj,j,ε

and Σj,k,c,u = E
[
(cj,t−u − µc,j)

(
c′k,t − µ′

k,z

)]
.

13The moment conditions with and without controls are given by

E



(y1,t+h − α1,t − βx1,t)

(y2,t+h − α2,t − βx2,t)
...

(yI,t+h − αI,t − βxI,t)

1
I

∑I
i=1 xi,t (yi,t+h − αi,t − βxi,t)


= 0.

17



A few comments are in order regarding equation (11). First, as was the case without
panel data and because the OLS estimator is consistent, the bias goes to zero as the sample
size goes to infinity. Second, the cross-autocovariance of the control variables plays a role
in the bias. Notably, if the controls are not correlated, the bias is smaller than if they
are correlated. Third, as was the case without panel data, if the controls are positively
autocorrelated, or if unnecessary positively autocorrelated controls are included in the LP,
the bias is larger. Fourth, even with controls that are independent across entities or over
time, the bias does not go to zero as the number of panelists increases.

5 Beyond point estimation: bias in standard errors

Since Jordà (2005), the conventional wisdom has been that heteroskedasticity and autocor-
relation robust (HAR) standard errors are necessary because the regression residuals of LPs
are autocorrelated. That is the reason that most practioners use the HAR standard errors of
Newey-West or more recent ones detailed in Sun (2014) and Lazarus et al. (2018). However,
under Assumption 2 in the LP with controls, the regression score—the product of the εt and
the regression residuals—is serially uncorrelated.14 Thus, in large samples HAR standard
errors are not necessary; instead, Huber-White (heteroskedasticity-robust) standard errors
are valid.

In an LP without controls, under the AR(1) DGP, one can show that the autocovariance
function of the regression score, rt = εt(yt+h − θhεt), is given by

cov[rt, rt−τ ] =

ρ
2h (σ2

ε)
2

τ = 1, . . . , h

0 τ > h.
(12)

Thus, unless εt is uncorrelated with yt, the regression score will be serially correlated, as
suggested by the early LP literature. However, in an LP without controls, researchers are
generally interested in rejecting the null hypothesis that θh is zero. Under the null hypothesis
that the θh = 0 for all h, the regression score is uncorrelated in population, and Huber-White
standard errors are asymptotically valid for the purposes of hypothesis testing.

14Olea and Plagborg-Møller (2020) use lag augmentation to achieve (population) residualized regressors,
whereas our setup does not require this step because of Assumption 2.
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HAR standard errors are often justified by researchers as being somehow more conserva-
tive than standard errors that do not control for autocorrelation. While HAR standard errors
are asymptotically valid even when Huber-White will do, using popular HAR estimators, like
the Newey-West estimator, can dramatically reduce the size of the estimated standard errors.
The reason is that these estimators rely on estimators of the long-run variance (LRV) of the
regression score that are functions of the autocovariance of the regression score. In a linear
regression like an LP, standard errors are typically a function of the LRV and an estimator
of E[xtx′t]. In fact, when one has εt ⊥ ct, it is enough to focus on the estimator of the LRV
to analyze the size of the standard errors. In finite samples, estimates of the autocovariance
of the regression score are typically downward biased. Thus, when the actual autocorrelation
function is zero, the bias in the autocorrelation function makes it negative, on average, in
finite samples. We derive a simple expression for this downward bias in the case of an LP
without controls in Appendix B.

In the case of LP with controls, where the autocovariance function of the regression score
is zero in population, the downward bias means that increasing the bandwidth of a Newey-
West estimator, on average, reduces the size of the estimated LRV. In the case of LP without
controls, the downward bias means increasing the bandwidth reduces the size of the standard
errors, on average, even though the regression score is autocorrelated. Thus, HAR standard
errors based on estimated autocovariances of the regression score will tend to underestimate
the uncertainty associated with θ̂h,LS.

To explore the effects of the downward bias in standard errors, we consider Monte Carlo
evidence using our AR(1) example. Figure 7 shows the true values of the LRV for the
regression score in an LP without controls (panels (a) and (b)) and in an LP with controls
(panels (c) and (d)). The horizon of the LP is h = 5. The figures also show the Monte
Carlo average of Newey-West estimators that use a bandwidth u. The left panels (panels (a)
and (c)) show the estimators in the case when θh = 0 for all h—that is, the shock is noise
uncorrelated with yt—which is typically the maintained null hypothesis to reject. The right
panels (panels (b) and (d)) show the estimators in the case when the shock is correlated with
yt, so θh = ρh.15

Several features of these figures are woth noting. First, in all cases the Newey-West
estimators dramatically under-estimate the long-run variance. Second, increasing the band-

15We keep the variance of yt fixed across all of our specifications.
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(c) With controls, θh = 0
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Figure 7: Estimators of standard errors in an LP with h = 5 are biased in empirically-relevant
samples when yt is an AR(1) with ρ = 0.95.

width of the Newey-West estimator tends to reduce the estimate of the LRV. Third, even
when there is autocorrelation in the population regression score (panel (b)), in empirically
relevant sample sizes, increasing the bandwidth of the the Newey-West estimator does little
to improve the estimate of the long-run variance and can reduce that estimate. Fourth,
the Huber-White estimators, which are given by the Newey-West estimator with u = 0,
are also downward biased. However, the Huber-White estimator is not further attenated
by the estimates of the autocovariances of the regression score included in the Newey-West
estimator.
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Often, standard errors are interpreted as providing a credible region around the estimated
impulse response without reference to a null hypothesis. To this end, it is also useful to
consider the implications of bias in point estimates and standard errors under the maintained
assumption that θh ̸= 0. We analyze this issue using Monte Carlo analysis and an AR(1)
generating process for yt. The OLS estimator of the impulse response function is biased
down and typical estimators of standard errors are also biased down. Both sources of bias
may make confidence intervals fail to contain the true impulse response function.

Using Huber-White and Newey-West standard errors, Table 1 displays the percentage
of confidence sets with 95% nominal coverage probability (based on the asymptotic normal
approximation) that contain the true impulse response function at horizon h in a Monte
Carlo simulation of an LP without controls where yt is an AR(1) with ρ = 0.95 and a sample
size of T = 50.16 Several features of these results are worth noting. First, implementing
our proposed bias correction and using controls can increase coverage probabilities. Second,
even with our bias correction and controls, the coverage probabilities are markedly lower
than 95%. Third, the Huber-White standard errors appear to perform better than the
Newey-West standard errors.

Overall, our analysis of standard errors indicates that bias in LPs is an important prob-
lem to address when conducting inference. In small samples, Huber-White standard errors
are preferable to HAR standard errors when using critical values from the normal asymp-
totic limiting distribution. When researchers are interested in credible regions around point
estimates, implementing our bias adjustment to θ̂h,LS can improve the coverage probabilities.

16When constructing the Newey-West estimator, we use a bandwidth of 0.7 (T − h)
1/3. We use this

bandwidth as the “textbook” choice from Lazarus et al. (2018). When one uses the fixed-b critical values
suggested by Lazarus et al. (2018), the performance of the Newey-West estimator improves somewhat (see
our Appendix), though the coverage probabilities are not uniformly better than those from the Huber-White
standard errors. Fixed-b asymptotics involve using a larger bandwidth for the Newey-West estimator and
larger critical values than those implied by the asymptotic normal approximation. It turns out that the
bandwidth is not that much larger in sample sizes typically found in the literature. As a result, it is not
surprising that using a larger critical value improves the coverage probabilities given that the confidence
intervals are too small.

21



Table 1: Coverage probability of different estimators of standard errors for θ̂h in LP when
yt is an AR(1) with ρ = 0.95 and T = 50

θ̂h,LS, no controls θ̂h,BCC , no controls θ̂h,BCC , controls
h HW NW HW NW HW NW

0 0.87 0.82 0.86 0.82 0.92 0.91
1 0.83 0.80 0.82 0.80 0.90 0.88
2 0.80 0.77 0.79 0.78 0.87 0.86
3 0.78 0.75 0.76 0.75 0.85 0.83
4 0.76 0.73 0.75 0.73 0.83 0.81
5 0.75 0.72 0.74 0.72 0.81 0.79
6 0.75 0.72 0.73 0.71 0.80 0.78
7 0.74 0.70 0.73 0.70 0.78 0.76
8 0.74 0.71 0.73 0.70 0.77 0.75
9 0.74 0.71 0.73 0.70 0.76 0.74
10 0.74 0.71 0.73 0.70 0.75 0.74

Note: HW stands for Huber-White standard errors, NW stands for Newey-West standard
errors.

6 Application to monetary policy shocks

In this section we provide empirical examples of estimated bias in LPs and also show the
sensitivity of inference to the construction of standard errors. We highlight three examples
from the literature on the effect of monetary policy shocks on the macroeconomy. These
shocks are constructed using either the narrative approach of Romer and Romer (2004) or
through asset prices as pioneered by Kuttner (2001).

6.1 The effects of monetary policy shocks on output and inflation

Using a setup similar to Gorodnichenko and Lee (2019), we estimate the effects of Romer
and Romer (2004) monetary policy shocks on output and inflation.17 The data sample runs
from 1969:Q1-2008:Q4. We estimate LPs of the form in equation (2) on real output growth

17The shock series was extended to 2008 by Coibion et al. (2017).
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Figure 8: The effect of monetary policy shocks.

and annualized inflation. We include controls consisting of four lags of real output growth,
inflation, the federal funds rate, and the monetary policy innovation.18

The estimated impulse responses of inflation and output to a monetary policy shock
are displayed in Figure 8. As in Gorodnichenko and Lee (2019), we cumulate the impulse
response of output growth. Figure 8 also shows the bias-corrected estimate of the impulse
response. To focus attention on the difference between the two impulse responses in this
illustrative example, we omit confidence bands.

The estimated inflation impulse response roughly accords with Gorodnichenko and Lee
(2019): a contractionary 100 basis-point monetary policy shock causes inflation to be little
changed for the first few periods after the shock and then eventually decline persistently.
The bias-corrected impulse response indicates that inflation responds somewhat more to a
monetary policy shock than under the conventional estimates. On average, the response of
inflation is about 15 basis points lower in the bias-corrected impulse response, a moderate
but nontrivial difference. The bias-corrected estimator is lower than the least-squares LP
estimator because the estimated least-squares impulse response is negative for almost hori-

18The LPs here are slightly different from the ones in Gorodnichenko and Lee (2019) in two ways. First,
we use yt+h rather than yt+h−yt−1. The bias discussed in this paper is still present under the latter formula.
Second, we omit TFP innovations because the objective here is not to study relative variance contributions.
Taken together, these differences lead to only minor changes in the estimated LPs.
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zons, and the bias-correction is a weighted average of the impulse responses at all previous
horizons.

The estimated output impulse response also broadly accords with the results in Gorod-
nichenko and Lee (2019): a contractionary 100 basis-point monetary policy shock causes the
level of output to contract by about 4 percent after two and half years, after which effects of
the shock slowly dissipate. Notably, the bias-corrected estimator implies the output decline
is about 1/2 percentage point larger. Essentially, this is because the bias-correction at, say,
horizon h = 15 is influenced by the LP coefficients at previous horizons.

For both inflation and output, the corrections are moderate but economically meaning-
fully. The corrections are larger at longer horizons, a consequence of the single-sided nature
of our bias correction, given in equation (8).19 It is perhaps not surprising that the bias
correction is moderate given that the sample size used here is markedly larger than those
typically found in the LP literature.

6.2 State dependence in the effects of monetary policy shocks

One of the key advantages of LPs, relative to other popular methods in macroeconomics,
are their ability to handle nonlinearities. Tenreyro and Thwaites (2016) use a “smoothly
transitioning local projection model” to investigate whether monetary policy has larger effects
during recessions or expansions. The LP specification is given by

yt+h = τt+ F (zt)(α
b
h + θbhεt + γb

′
ct) + (1− F (zt))(α

r
h + θrhεt + γr

′
ct) + ut. (13)

Here yt+h is the endogenous variable of interest (output), ct is a vector of controls and F (zt)
is a smooth increasing function of an indicator of the state of the economy zt. The value
of F (zt) is exogenous from the perspective of the regression. The shock εt is once again a
variant of the Romer and Romer (2004) measure. The coefficients of interest are θbh and
θrh, the effects of a monetary policy shock at horizon h in a boom (b) and recession (r),
respectively.

19An earlier working paper version of this paper presented a slightly different formula for the bias correction
in the case of LP with controls. While both are valid, the correction in the previous version for horizon h was
influenced by estimates of impulse responses at all horizons. The current formula depends only on horizons
j ≤ h. This is much easier to implement in practice.
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Since F (zt) is exogenous, we can estimate this LP model by OLS. We proceed by first
removing the trend and estimate (13) and then omit the linear trend in the regression
specification.20 We estimate the model on quarterly data using a sample that runs from
1969:Q1 to 2002:Q4. Following, Tenreyro and Thwaites (2016), the control variables ct are
one lag of detrended output and the federal funds rate.

Table 2: State-Dependent Effects of Monetary Policy Shocks

Horizon β̂b
LS β̂r

LS Diff. β̂b
BC β̂r

BC Diff.
Point Est. -1.27 -0.70 -0.58 -1.36 -0.80 -0.56

h = 9 NW SE ( 0.39) ( 0.29) ( 0.59) ( 0.39) ( 0.29) ( 0.58)
HW SE ( 0.45) ( 0.64) ( 0.89) ( 0.46) ( 0.65) ( 0.90)

Point Est. -1.49 -0.41 -1.08 -1.61 -0.52 -1.09
h = 10 NW SE ( 0.37) ( 0.25) ( 0.53) ( 0.37) ( 0.28) ( 0.55)

HW SE ( 0.50) ( 0.74) ( 1.01) ( 0.51) ( 0.75) ( 1.02)
Point Est. -1.10 -0.38 -0.73 -1.26 -0.49 -0.77

h = 11 NW SE ( 0.38) ( 0.34) ( 0.64) ( 0.39) ( 0.39) ( 0.67)
HW SE ( 0.60) ( 0.72) ( 1.05) ( 0.60) ( 0.73) ( 1.06)

Point Est. -0.64 -0.47 -0.17 -0.81 -0.58 -0.23
h = 12 NW SE ( 0.45) ( 0.44) ( 0.80) ( 0.46) ( 0.49) ( 0.85)

HW SE ( 0.65) ( 0.62) ( 1.01) ( 0.64) ( 0.64) ( 1.02)

Notes: Table shows the LS and BC estimates of βb and βr with Newey-West (NW) and
Huber-White (HW) standard errors.

Table 2 shows the LS and BC estimates of with βb and βr, along with with Newey-
West and Huber-White standard errors in parenthesis, for h = 9, . . . , 12. The coefficient
estimates can be interpreted as the percentage point effect on real output in period t + h

of a 100 point monetary policy shock at time t when the economy is definitely in either a
boom or recession, respectively. The point estimates under both LS and BC indicate that
positive shocks occuring during booms are more contractionary than identically-sized shocks
occuring during recessions, consistent with Tenreyro and Thwaites (2016). Relative to the
LS estimates, the bias-corrected estimates are more negative for both βb

h and βr
h, consistent

20Results are similar under alternative ways of detrending output.
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with the earlier simulation study.
The difference between the coefficients for booms and recessions is larger when using the

bias-corrected estimators. That is, there is moderately more evidence for differential effects
of monetary policy shocks depending on the state of the business cycle. As in Tenreyro and
Thwaites (2016), the uncertainty surrounding these estimates is large. Notably, the Huber-
White standard errors are markedly larger than the Newey-West standard errors, consistent
with our analysis in Section 5. For a number of the entries in Table 2, conclusions about
statistical significance would be different using the Huber-White standard errors as compared
to the Newey-West standard errors.

6.3 Time dependence in the effect of monetary policy shocks

Our final example assesses the evidence for a change in transmission of monetary policy over
the early part of the 2000s. Lunsford (2020) identifies two monetary policy shocks from high
frequency movements in assets in prices. The first shock is to the level of current federal
funds rate and the second shock, the forward guidance shock, is to the market’s expected path
of federal funds rate beyond the current month. Lunsford (2020) argues that the responses
of asset prices and macroeconomic aggregates to forward guidance shocks changed in 2003,
as the policy statement issued by the Federal Open Market Committee (FOMC) following
monetary policy decisions shifted to emphasize future policy inclinations rather than risks to
the economic outlook. Using the identified federal funds rate (εFFR

t ) and forward guidance
εFG
t shocks, Lunsford (2020) effectively estimates LPs of the form

yt+h − yt = αh + θFFR
h εFFR

t + θFG
h εFG

t + ut,t+h, h = 1, . . . , H. (14)

where yt+h is a macroeconomic aggregate. The focus here will be on estimates of the coeffi-
cient θFG

h and whether they have changed over two samples of monthly data from February
2000 to June 2003 and August 2003 to May 2006. Following Lunsford (2020), the horizon of
interest is h = 12, so θFG

12 measures the effect of a forward guidance shock one year after its
realization (after netting the contemporaneous effect). The size of the two samples deserves
emphasis as they are 28 and 23 observations, respectively. These are extremely small—about
half of the smallest sample considered in the Monte Carlo simulations in this paper.21

21For ease of exposition, the paper assumes that the econometrician observes T total observations of both
yt and εt (and potentially controls.) So there are T−h observations for the hth horizon LP. In some practical
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Before describing the regression results, we note two things about the LP model in (14).
First, subtracting yt from the dependent variables tends to the reduce the parameter bias
substantially. The model in equation (14) is essentially an LP without controls. One can
see, either from the trajectories in Figure 2 or the expression in equation (4), that in an LP
without controls a sizable portion of the bias associated with least squares estimate of θh at
horizons greater than zero is accounted for by the bias in θ0. Informally, subtracting yt from
yt+h out removes this portion of the bias.

Table 3 displays θ̂FG
12,LS from the LP model in equation (14) along with Newey-West

and Huber-White standard errors over the two samples for three dependent variables: the
growth in real personal consumption expenditures (PCE), unemployment rate changes, and
the growth in industrial production (IP). The Newey-West standard errors are computed
using u = 10 lags. The point estimates, as mentioned above, are computed using least
squares, as the bias correction would likely be minor when using yt+h − yt as the dependent
variable.

The point estimates indicate that while contractionary–i.e, positive—forward guidance
shocks were associated with increases in real PCE growth and a fall in the unemployment
rate in the first sample, they were associated with a fall in consumption growth and an
increase in unemployment over the second sample. The point estimates associated with IP
are both negative. Consistent with standard practice, Lunsford (2020) uses Newey-West
standard errors, which are replicated in Table 3; when using the fixed-b asymptotic critical
values from Sun (2014), which Table 3 employs, the coefficients associated with PCE growth
and the unemployment rate are moderately statistically significant. Table 3 also displays the
Huber-White standard errors. With one exception—the unemployment rate in the August
to May 2006 sample—these are larger than the Newey-West standard errors, sometimes
substantially so. The standard error estimates associated with PCE growth and IP growth
in the second sample increases from 3.82 to 6.15 and 4.37 to 10.90, respectively.22

applications, the econometrician is limited only by the observations of shock. That is, they observe a sample
of size T +H of yt and a sample of size T of εt, where H is the maximum horizon considered. In this case,
there are T observations for each of the hth horizon LPs–this is the case in Lunsford (2020). Using a constant
rather than shrinking sample size results in extremely minor modifications of the analytic expressions and
essentially no changes to the Monte Carlo simulations in this paper.

22In this case, whether the critical values used to assess statistical significance should change depending
on the construction of the standard errors is complicated and requires an explicit statement of the null
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Table 3: Response to Forward Guidance Shock

Feb. 2000 to Jun. 2003 Aug. 2003 to May 2006
PCE Growth Results

Point Estimate 2.88 -10.51
NW SE (2.26) (3.82)
HW SE (2.61) (6.15)

Unemployment Results
Point Estimate -4.01 3.49
NW SE (1.13) (1.24)
HW SE (2.45) (1.04)

IP Growth Results
Point Estimate -9.87 -10.10
NW SE ( 8.53) ( 4.37)
HW SE (12.03) (10.90)

Notes: The Table shows θ̂FG
12,LS from the LP model in (14) along with Newey-West (NW)

and Huber-White (HW) standard errors. The NW standard errors are computed using a
bandwidth of u = 10.

As argued in Section 5, in small samples, even when appropriate, HAC standard errors
tend to underestimate the long-run variance relative to the Huber-White estimator. Note
that this is true even when the estimate of the coefficient of interest exhibits little bias itself,
as we have argued is plausible in this case. The Huber-White standard errors indicate that
the uncertainty surrounding these regression coefficients is considerably larger than implied
the Newey-West standard errors.

7 Conclusion

We have shown that LPs can be severely biased in sample sizes commonly found in the related
literature. We derived an approximate bias function that shows that LPs are intimately

hypothesis. In any event, given such small sample sizes, relying on critical values associated with limiting
distributions could be problematic.
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linked across horizons in small samples. The bias of LPs persists even when researchers have
access to a large cross-section (panel data).

We used our approximate bias function to bias correct LPs. In Monte Carlo, analysis our
bias correction does not completely correct for the bias in LPs. These results suggest that
other time series models with well-understood, effective methods for bias correction (such
as VARs) may be better alternatives for estimated impulse responses if researchers have
data samples in the time dimension that are similar to those typically found in empirical
macroeconomic research. In particular, specifying time series models that are generative for
the time series of interest would allow researchers to use likelihood methods.

We also analyzed bias in standard errors computed for estimated impulse response func-
tions from LPs. We showed that, in small samples, standard errors that rely on estimated
autocovariances of the regression score, like the Newey-West estimator, typically understate
the amount of uncertainty surrounding the estimated impulse response functions. We argued
that, in LPs similar to those we consider, researchers should prefer standard errors that are
heteroskedasticity consistent, but not autocorrelation robust.

Recent work on standard errors in time series regression has focused on limiting distribu-
tions other than the normal distribution (see Sun (2014) and Lazarus et al. (2018)). However,
with samples typically found in the LP literature, it is difficult to appeal to limiting critical
values as accurate approximations. As a result, if researchers are going to use HAR standard
errors, they may want to check to see if Huber-White standard errors would lead to different
conclusions. If the Huber-White standard errors are larger than the HAR standard errors,
researchers should consider what might lead to the apparent negative autocovariance in the
regression score. Without another reasonable theory, it may be that the negative estimates
of the autocovariance of the regression score are the result of small sample bias.
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A Derivations of approximate bias
In this appendix, we derive our expressions for the bias of the LP estimators studied in our paper. To do
so, we employ the framework proposed by Rilstone et al. (1996) and extended to time series models by Bao
and Ullah (2007). These papers derive expressions for finite-sample moments for a wide class of estimators
via an approximation of an estimator β̂ of the form:

β̂ − β = a−1/2 + a−1 +Op(T
−3/2). (A.1)

It can be verified that under Assumption 1, combined with the least squares estimation framework, satisfies
the necessary assumptions of Rilstone et al. (1996). Assumptions 2 and 3 allow one to obtain tractable
expressions.

In our derivation, we use the notation of Bao and Ullah (2007) where possible. For each derivation, we
will cast the OLS estimator as a GMM problem with moment conditions given by q(β;wt), where the data
vector wt = [yt, x

′
t]
′ for the LP models with and without controls. For panel settings, the data vector is

expanded to include the additional observables. The objective function is thus given by:

ψT−h(β;W1:T ) =
1

T − h

T−h∑
t=1

q(β;wt).

Let ▽iA(β) be the matrix of ith order partial derivatives of A with respect to β. In what follows, write
ψT−h(β;W1:T ) as ψT−h and q(β;wt) as qt. Define the series of matrices

Hi = ▽iψT−h and Hi = E [Hi] with Q = H
−1

1 , V = H1 −H1 and W = H2 −H2.

Bao and Ullah (2007) show that the expressions for the terms in (A.1) are given by:

a−1/2 = −QψT−h and a−1 = −QV a−1/2 −
1

2
QH2

[
a−1/2 ⊗ a−1/2

]
.

We are interested in computed in the bias, that is E
[
β̂ − β

]
. It is obvious that E

[
a−1/2

]
= 0. Moreover,

because the moment conditions associated with the LP estimator are linear in β, we have H2 = H2 = 0. It
can be verified that the expression for the bias to O(T−1) thus simplifies considerably to

E
[
β̂ − β

]
≈ E [QH1QψT−h] := B. (A.2)

Our objective is to derive the element of the vector B that is associated with the shock of interest ε for the
LP model with and without controls. Before proceeding with introduce notation to define first and second
moments of the shocks, εt, and controls, ct:

µε = E [εt] , σ2
ε = E

[
(εt − µε)

2
]
, µc = E [ct] , and Σc = E

[
(ct − µc) (ct − µc)

′]
.

A.1 LP without controls
For the LP without controls, the moment conditions associated with the OLS estimator are defined as

qt ≡

 yt+h − αh − θhεt

εt (yt+h − αh − θhεt)

 ,
1



where we have departed slightly from the notation of Bao and Ullah (2007) in defining the parameter vector.
Before constructing the matrices of derivatives, note that we can rearrange the moment conditions to deduce:

θh =
E [(εt − µε)(yt+h − αh)]

E [(εt − µε)2]
=

E [(εt − µε)(yt+h − αh)]

σ2
ε

Additionally for s < t, we have

θh =
E [(εt − µε)(yt+h − Es[yt+h] + Es[yt+h]− αh)]

σ2
=

E [(εt − µε)(yt+h − Es[yt+h]− αh)]

σ2
(A.3)

Where the second equality follows from the fact that Es[εt] = µ for all s < t. It is easy to see that:

H1 =
1

T − h

T−h∑
t=1

 −1 −εt
−εt −ε2t

 , H1 =

 −1 −µε

−µε −
(
σ2
ε + µ2

ε

)
 , and Q =

 −
(
1 +

µ2
ε

σ2
ε

)
µε

σ2
ε

µε

σ2
ε

− 1
σ2
ε

 .
Tedious algebra yields:

QH1Q =
1

T − h

T−h∑
t=1

 −
(
1− 2µε

σ2
ε
(εt − µε) +

(
µε

σ2
ε

)2
(εt − µε)

2

)
−
(

1
σ2
ε
(εt − µε)− µε

(σ2
ε)

2 (εt − µε)
2
)

− 1
σ2
ε
(εt − µε) +

µε

(σ2
ε)

2 (εt − µε)
2 − 1

(σ2
ε)

2 (εt − µε)
2

 .
Recall that we only need to obtain the second element of B which corresponds with the bias associated with
θ̂h. Thus, we only need to calculate [QH1Q]2,·ψT−h. This is given by:

[QH1Q]2,·ψT−h =
1

(T − h)2

T−h∑
t=1

(
− 1

σ2
ε

(εt − µε) +
µε

(σ2
ε)

2 (εt − µε)
2

)
T−h∑
t=1

(yt+h − αh − θhεt)

− 1

(T − h)2

T−h∑
t=1

1

(σ2
ε)

2 (εt − µε)
2
T−h∑
t=1

εt (yt+h − αh − θhεt)

=
1

(T − h)2

T−h∑
t=1

T−h∑
s=1

− 1

σ2
ε

(εt − µε) (ys+h − αh − θhεs)−
1

(σ2
ε)

2 (εt − µε)
2
(εs − µε) (ys+h − αh − θhεs)

=
1

(T − h)2

T−h∑
t=1

T−h∑
s=1

(ϕI(t, s) + ϕII(t, s))

Consider the expectation of the term ϕI . We have:

E[ϕI(t, s)] =

0 if t = s

−θh+s−t otherwise .

Now consider the expectation of the term ϕII ,

E[ϕII(t, s)] =
1

(σ2
ε)

2E[(εt − µε)
2
(εs − µε) (ys+h − αh − θhεs)]

=
1

(σ2
ε)

2E[(εt − µε)
2 E[(εs − µε) (ys+h − αh − θhεs) |εt]]

=
1

(σ2
ε)

2E

(εt − µε)
2 E

(εs − µε)

ys+h − αh−(t−s) − θh−(t−s)εt︸ ︷︷ ︸
δI(t,s)

+αh−(t−s) + θh−(t−s)εt − αh − θhεs︸ ︷︷ ︸
δII(t,s)

 |εt


 .

2



By Assumption 2, εt does not enter into δI(t, s). Moreover, under Assumption 2, conditioning on it does not
convey any useful information about εs or other components of yt+s.

E [(εs − µε)δI(t, s)|εt] = E [(εs − µε)δI(t, s)] . (A.4)

Direct calculation yields:

E [(εs − µε)δI(t, s)] =

0 if t = s

θhσ
2
ε otherwise.

Consider now the term involving δII(t, s). By direct calculation:

E [(εs − µε)δII(t, s)|εt] =

0 if t = s

−θhσ2
ε otherwise.

Thus E [ϕII(t, s)] = 0 for all t and s. Combining these results, we have:

E [[QH1Q]2,·ψT−h] =
1

(T − h)2

T−h∑
t=1

T−h∑
s=1

−θh+s−t1{t ̸=s}.

Tedious arithmetic confirms that:

B = − 1

T − h

T−h−1∑
j=1

(
1− j

T − h

)
(θh+j + θh−j) .

This delivers equation (4).

A.2 LP with controls
In the case of controls, we have xt = [εt, ct]

′, so the moment conditions associated with the OLS estimator
are defined so that

qt ≡

 yt+h − αh − x′tβh

xt (yt+h − αh − x′tβh)

 =


yt+h − αh − x′tβh

εt (yt+h − αh − x′tβh)

ct (yt+h − αh − x′tβh)

 .
Recall the object of interest, θh, is the first element of βh. We have that

H1 =
1

T − h

T−h∑
t=1


−1 −εt −c′t−1

−εt −ε2t −εtc′t−1

−ct−1 −εtct−1 −ct−1c
′
t−1

 , H1 =


−1 −µε −µ′

c

−µε −
(
σ2
ε + µ2

ε

)
−µεµ

′
c

−µc −µεµc − (Σc + µcµ
′
c)

 ,

and Q =


−
(
1 +

µ2
ε

σ2
ε
+ µ′

cΣ
−1
c µc

)
µε

σ2
ε

µ′
cΣ

−1
c

µε

σ2
ε

− 1
σ2
ε

0

Σ−1
c µc 0 −Σ−1

c

 .
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As with previous deriviation, we need only calculate the second row of QH1Q. Direct calculation yields

[QH1Q]2,· =
1

T − h

T−h∑
t=1

1

σ2
ε

(εt − µε)


1− µε

σ2
ε
(εt − µε)− µ′

cΣ
−1
c (ct−1 − µc)

1
σ2
ε
(εt − µε)

Σ−1
c (ct−1 − µc)


′

.

Then the second element of QH1QψT−h is given by

[QH1QψT−h]2 =
1

T − h

T−h∑
t=1

1

σ2
ε

(εt − µε)


1− µε

σ2
ε
(εt − µε)− µ′

cΣ
−1
c (ct−1 − µc)

1
σ2
ε
(εt − µε)

Σ−1
c (ct−1 − µc)


′

× 1

T − h

T−h∑
s=1


ys+h − αh − x′sβh

εs (ys+h − αh − x′sβh)

cs (ys+h − αh − x′sβh)

 .
Explicit calculation of this object yields:

[QH1QψT−h]2 = − 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

1

σ2
ε

(εt − µε) (ys+h − αh − x′sβh)

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

[
1

σ2
ε

(εt − µε)

]2
(εs − µε) (ys+h − αh − x′sβh)

− 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

1

σ2
ε

(εt − µε) (ct−1 − µc)
′
Σ−1

c (cs−1 − µc) (ys+h − αh − x′sβh)

= − 1

(T − h)2

T−h∑
t=1

T−h∑
s=1

ϕI(t, s) + ϕII(t, s) + ϕIII(t, s).

Consider first E[ϕI(t, s)]. Direct calculation yields:

E[ϕI(t, s)] =

θh−(t−s) if s < t ≤ s+ h

0 otherwise.

Note, unlike the no controls case, for t < s, E[ϕI(t, s)] = 0 as a direct consequence of Assumption 3. By
similar argument to the previous section, E[ϕII(t, s)] = 0 for all t and s. Consider the expection of ϕIII(t, s):

E [ϕIII(t, s)] = E
[
1

σ2
ε

(εt − µε) (ct−1 − µc)
′
Σ−1

c (cs−1 − µc) (ys+h − αh − x′sβh)

]
By direct calculation, we have:

E[ϕIII(t, s)] =

θh−(t−s)E
[
(ct−1 − µc)

′
Σ−1

c (cs−1 − µc)
]

if s < t ≤ s+ h

0 otherwise.

Plugging these expectations into the expression for B delivers equation (8).

4



B Derivation of bias in standard errors
We are going to consider a case where a researcher uses an LP without controls and wants to estimate the
standard error of the estimator. To do so, the researcher needs to compute the variance of the regression
score, which is composed of terms of the form

γh,u ≡ E
[
εt (yt+h − αh − εtβh) (yt+h−u − αh − εt−uβh) εt−u

]
.

The researcher wants to report standard errors under the null hypothesis that the coefficient on the shock of
interest is zero. If this hypothesis is maintained at all horizons, then the researcher’s maintained assumption
is that

εt ⊥ ys

for all t and s. We will use this maintained assumption. In addition, we assume that E[ε8t ] <∞ in order to
satisfy the assumptions in Rilstone et al. (1996). In this section, for ease of exposition, we assume E [εt] = 0,
but this is without loss of generality. Notably, typical HAC estimators of the standard error of β̂h,LS are
functions only of γh,u, the sample size, and a bandwidth parameter.

When researchers calcluate γh,u (for example, when computing Newey-West standard errors), they typi-
cally use plug-in estimators derived from the empirical regression scores. To understand how this procedure
affects the small-sample properties of γ̂h,u, it is useful to think about estimating the regression coefficients
and and γh,u jointly. In this case

qt =


(yt+h − αh − εtβh)

εt (yt+h − αh − εtβh)

εt (yt+h − αh − εtβh) εt−u (yt+h−u − αh − εt−uβh)− γh,u

 .
Unlike our previous derivations, because of the βhβ′

h term in qt, the matrix H2 is not a matrix of zeros.

E (▽qt) =


−1 0 0

0 −σ2
ε 0

0 0 −1



Q =


−1 0 0

0 − 1
σ2
ε

0

0 0 −1



QψT−h−u = − 1

T − h− u

T−h∑
t=u+1


(yt+h − αh − εtβh)

εt
σ2
ε
(yt+h − αh − εtβh)

εt (yt+h − αh − εtβh) εt−u (yt+h−u − αh − εt−uβh)− γh,u



5



QV QψT−h−u =


1 0 0

0 1
σ2
ε

0

0 0 1

× 1

T − h− u

T−h∑
t=1+u

▽qt

× 1

T − h− u

T−h∑
s=1+u


(ys+h − αh − εsβh)

εs
σ2
ε
(ys+h − αh − εsβh)

εs (ys+h − αh − εsβh) εs−u (ys+h−u − αh − εs−uβh)− γh,u


We care about the third row of QV QψT−h−u. Fix s and t, the terms in the third row are of the form

[−εtεt−u (yt+h − αh − εtβh)− εtεt−u (yt+h−u − αh − εt−uβh)] (ys+h − αh − εsβh)

+
[
−εtε2t−u (yt+h − αh − εtβh)− ε2t εt−u (yt+h−u − αh − εt−uβh)

] εs
σ2
ε

(ys+h − αh − εsβh)

− εs (ys+h − αh − εsβh) εs−u (ys+h−u − αh − εs−uβh) + γh,u

Clearly, E [−εs (ys+h − αh − εsβh) εs−u (ys+h−u − αh − εs−uβh) + γh,u] = 0 for all s. Consider

− [εtεt−u (yt+h − αh − εtβh) + εtεt−u (yt+h−u − αh − εt−uβh)] (ys+h − αh − εsβh)

If u > 0 and εt ⊥ ys, then this is zero in expectation for all t and s. If u = 0, then the expectation is

−2σ2
εE
[
(yt − µy)

2
]

Consider

−
[
εtε

2
t−u (yt+h − αh − εtβh) + ε2t εt−u (yt+h−u − αh − εt−uβh)

] εs
σ2
ε

(ys+h − αh − εsβh)

If u > 0 and εt ⊥ ys, then this is zero in expectation if s ̸= t and s ̸= t− u. If s = t or s = t− u, then this
equals

−σ2
εE (yt − µy) .

If u = 0, then the expectation is

−E
{[

2ε3t (yt+h − αh − εtβh)
] εs
σ2
ε

(ys+h − αh − εsβh)

}
.

If s ̸= t and εt ⊥ ys, then the expectation is zero. If s = t, the the expectation is

−2
E
(
ε4t
)

σ2
ε

E (yt − µy) .

Note that

▽2qt =


0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2εtεt−u εtε
2
t−u + ε2t εt−u 0 ε2t εt−u + ε2t−uεt 2ε2t ε

2
t−u 0 0 0 0

 ,

H2 = E
(
▽2qt

)
=


0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 2
(
σ2
ε

)2
0 0 0 0

 ,
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−1

2
QH2 =


0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0
(
σ2
ε

)2
0 0 0 0

 .
To compute

−1

2
QH2E [QψT−h−u ⊗QψT−h−u]

we need to evaluate

E

[
1

T − h− u

T−h∑
t=1+u

εt
σ2
ε

(yt+h − αh − εtβh)
1

T − h− u

T−h∑
s=1+u

εs
σ2
ε

(ys+h − αh − εsβh)

]
.

If t ̸= s and εt ⊥ ys, then

E
[
εt
σ2
ε

(yt+h − αh − εtβh)
εs
σ2
ε

(ys+h − αh − εsβh)

]
= 0.

If t = s and εt ⊥ ys, then

E

[
ε2t

(σ2
ε)

2 (yt+h − αh)
2

]
= E

[
1

σ2
ε

(yt+h − αh)
2

]
.

Putting all of this together, if u > 0, the bias is

− 1

T − h− u

T − h− 2u

T − h− u
σ2
εE
[
(yt − µy)

2
]
.

If u = 0, the bias is

− 1

T − h− u
2
E
(
ε4t
)

σ2
ε

E (yt − µy)−
1

T − h− u
σ2
εE
[
(yt − µy)

2
]

In the case of normal variation, this is

− 1

T − h− u
7σ2

εE (yt − µy)

Notice that under the null hypothesis,

γh,0 = σ2
εE
[
(yt − µy)

2
]
.

Under the null hypothesis that εt ⊥ ys and under normal variation,

E (γ̂h,0) = γh,0

(
1− 7

T − h

)
+O

(
T−3/2

)
E (γ̂h,u) = γh,u − 1

T − h
γh,0 +O

(
T−3/2

)
.

Clearly, when T is small, these distortions can be substantial, which explains why increasing the bandwidth

of a Newey-West estimator makes the standard errors even smaller in expectation.

C Additional figures for the AR(1) example

In this appendix, we show figures analogous to those in the text for different values of ρ
in the AR(1) example. In the main text, we set ρ = 0.95. Here, we consider ρ = 0.9 and
ρ = 0.99.
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C.1 ρ = 0.9

(a) Without Controls
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(b) With Controls
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Figure C.1: LP estimators are biased in empirically-relevant samples when yt is an AR(1)
with ρ = 0.90.
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Figure C.2: The bias approximation is accurate in our LPs.
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(a) T = 50
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(b) T = 100
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Figure C.3: θ̂BC and θ̂BCC are closer than θ̂LS to θ, on average, in our LPs without controls
when yt is an AR(1) with ρ = 0.90.

(a) T = 50
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(b) T = 100
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Figure C.4: θ̂BC and θ̂BCC are closer than θ̂LS to θ, on average, in our LPs with controls
when yt is an AR(1) with ρ = 0.90.
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C.2 ρ = 0.99

(a) Without Controls
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(b) With Controls
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Figure C.5: LP estimators are biased in empirically-relevant samples when yt is an AR(1)
with ρ = 0.99.
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Figure C.6: The bias approximation is accurate in our LPs.
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(a) T = 50

0 1 2 3 4 5 6 7 8 9 10
h

0.0

0.2

0.4

0.6

0.8

1.0
True 

E[ BCC]
E[ BC]
E[ LS]

(b) T = 100
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Figure C.7: θ̂BC and θ̂BCC are closer than θ̂LS to θ, on average, in our LPs without controls
when yt is an AR(1) with ρ = 0.99.

(a) T = 50
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(b) T = 100
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Figure C.8: θ̂BC and θ̂BCC are closer than θ̂LS to θ, on average, in our LPs with controls
when yt is an AR(1) with ρ = 0.99.
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D An AR(2) example

In this appendix, we show figures analogous to those in the text for an AR(2) example. We
specify the example so that

yt = (ρ+ ψ)yt−1 − ψρyt−2 + εt + νt.

This process delivers hump-shaped impulse response functions. We set ρ = 0.95 and ψ = 0.4.
When we include controls, we set ct = [yt−1, yt−2]

′.

(a) Without Controls
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Figure D.1: LP estimators are biased in empirically-relevant samples when yt is an AR(2)
with ρ = 0.95 and ψ = 0.4.
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Figure D.2: The bias approximation is accurate in our LPs.
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(a) T = 50
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Figure D.3: θ̂BC and θ̂BCC are closer than θ̂LS to θ, on average, in our LPs without controls
when yt is an AR(1) with ρ = 0.95 and ψ = 0.4.
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(b) T = 100
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Figure D.4: θ̂BC and θ̂BCC are closer than θ̂LS to θ, on average, in our LPs with controls
when yt is an AR(2) with ρ = 0.90 and ψ = 0.4.
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E Newey-West standard errors and fixed-b asymp-
totics

Sun (2014) and Lazarus et al. (2018) suggest that researchers should use fixed-b asymptotics
when conducting inference using HAR estimators. For the Newey-West estimator, they
suggest using a bandwidth of 1.3

√
T − h. The asymptotic limiting distribution of the test

statistic is not standard.
Table 1 shows results that are analogous to the results shown in Table 1, but using the

bandwidth for the Newey-West estimator suggested by Lazarus et al. (2018) and the non-
standard critical values to construct confidence sets using the Newey-West standard error.
When one uses the fixed-b critical values, the performance of the Newey-West estimator
improves somewhat, though the coverage probabilities are not uniformly better than those
from the Huber-White standard errors.

Fixed-b asymptotics involve using a larger bandwidth for the Newey-West estimator
and larger critical values than those implied by the asymptotic normal approximation. It
turns out that the bandwidth is not that much larger in sample sizes typically found in the
literature. As a result, the bias is not that much larger when the larger bandwidth is used.
It is then not surprising that using a larger critical value improves the coverage probabilities
given that the confidence intervals are too small.
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Table 1: Coverage probability of different estimators of standard errors for θ̂h in LP without
controls when yt is an AR(1) with ρ = 0.95 and T = 50 using fixed-b critical values

θ̂h,LS, no controls θ̂h,BCC , no controls θ̂h,BCC , controls
h Huber-White Newey-West Huber-White Newey-West Huber-White Newey-West

0 0.87 0.82 0.86 0.85 0.92 0.93
1 0.83 0.81 0.82 0.83 0.90 0.90
2 0.80 0.80 0.79 0.82 0.87 0.89
3 0.78 0.77 0.76 0.79 0.85 0.86
4 0.76 0.76 0.75 0.78 0.83 0.85
5 0.75 0.75 0.74 0.78 0.81 0.83
6 0.75 0.75 0.73 0.77 0.80 0.82
7 0.74 0.73 0.73 0.76 0.78 0.82
8 0.74 0.74 0.73 0.77 0.77 0.82
9 0.74 0.75 0.73 0.77 0.76 0.81
10 0.74 0.75 0.73 0.78 0.75 0.81
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F Bias and the block bootstrap

An alternative approach to achieve bias correction in LPs is through bootstrapping.1 Boot-
strap methods construct approximation to the distribution of an estimator (for example),
by resampling observables or the errors from a parametric model. In a time series context,
where the dynamic relationship between observables or errors is important to preserve, block
bootstrapping techniques—in which the resampling scheme seeks to preserve some of the cor-
relation in the original data set—are typically used, as in Kilian and Kim (2011). We revisit
the Monte Carlo simulations in Section 3.1 and attempt to correct for the finite-sample bias
in LPs using the block bootstrap.2 Figure F.1 displays the bias correction from the block
bootstrap when yt is our AR(1) example.

Similar to results reported by Kilian and Kim (2011), the block bootstrap offers little in
the way of LP bias correction. As in Kilian and Kim (2011), we set the block length to 4.3

Given equation (4), it is not surprising that with a short block length the block bootstrap
does little to bias correct. The block bootstrap works by maintaining the autocorrelation
structure of the data in LPs within a given block, but by destroying the autocorrelation
across blocks. By destroying the autocorrelation across blocks, the block bootstrap destroys
some of the autocorrelation information needed to adjust the estimates. As a result, the
block bootstrap underestimates the bias in LPs, rendering bias correction based on the
block bootstrap relatively ineffective.

Longer block lengths make the block bootstrap more effective at bias correcting, but they
reduce the number of non-overlapping blocks in a dataset. Kilian and Kim (2011) report
that longer block lengths lead to worse coverage probabilities.

1See Hall (1992) for a textbook treatment.
2We use the same block length as Kilian and Kim (2011).
3Results are similar when we set the block length to (T − h)1/3, as suggested by Hall et al. (1995).
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Figure F.1: β̂Bootstrap provides little bias correction in our LPs yt is an AR(1) with ρ = 0.95.
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G Lag augmentation in the AR(1) example

In this section, we consider the effects of lag augmentation in our AR(1) example. Olea
and Plagborg-Møller (2020) argue that lag augmentation improves the performance of LPs.
There are some important differences between the LP setting we consider and the setting
in Olea and Plagborg-Møller (2020). First, we consider an LP in which a constant must be
estimated, while Olea and Plagborg-Møller (2020) do not. Second, we consider LP estimates
of impulse responses to identified shocks that that the researcher brings to the LP, rather
than identifying the shock as a part of the LP system. Here, we consider the effects of lag
augmentation in our setup. The main example in Olea and Plagborg-Møller (2020) is an
AR(1) without a constant, so the example from our paper has few other differences than the
two important differences identified above.

(a) LP estimators are biased
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(b) The bias approximation is accurate
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Figure G.1: LP with lag augmentation when yt is an AR(1) with ρ = 0.95.

Figure G.1 shows the Monte Carlo mean of θ̂LS in our AR(1) example when ρ = 0.95. The
bias in the impulse response estimator is essentially the same as without lag augmentation.

Figure G.2 shows the Monte Carlo mean of θ̂LS, θ̂BC , and θ̂BCC in our AR(1) example
when ρ = 0.95. The mean bias correction is essentially the same as without lag augmentation.

Table 2 shows the coverage probabilities for confidence intervals constructed using Huber-
White and Newey-West standard errors in our AR(1) example with lag agumentation when
ρ = 0.95. The coverage probabilities are similar to their values without lag augmentation.
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(a) T = 50
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Figure G.2: Bias correction in an LP with lag augmentation when yt is an AR(1) with
ρ = 0.95.

Table 2: Coverage probability of different estimators of standard errors for θ̂h in LP with lag
augmentation when yt is an AR(1) with ρ = 0.95 and T = 50

θ̂h,LS θ̂h,BCC

h Huber-White Newey-West Huber-White Newey-West

0 0.92 0.91 0.92 0.91
1 0.89 0.87 0.90 0.88
2 0.85 0.83 0.87 0.85
3 0.83 0.80 0.84 0.82
4 0.80 0.77 0.82 0.80
5 0.77 0.74 0.80 0.78
6 0.76 0.73 0.78 0.76
7 0.74 0.71 0.77 0.75
8 0.73 0.69 0.76 0.74
9 0.71 0.68 0.75 0.73
10 0.70 0.67 0.74 0.72
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H Derivation of bias in an LP without controls using
differences in yt

Some authors use yt+h − yt−1 or yt+h − yt as the left hand side variable for their LP. If controls are included
and the researcher uses yt+h − yt−1 as the left-hand side variable, it has no effect on our earlier derivations.
If θ0 = 0 and controls are included, it will also have no effect on our earlier derivation if the researcher
uses yt+h − yt as the left-hand-side variable. If controls are not included in the regression, then using the
difference of yt reduces the bias. Intuitively, using the difference of yt removes much of the persistence in
the dependent variable, and for near-unit-root processes is almost well-specified so that the regression errors
are nearly MA(h+1) processes. Lunsford (2020) uses an LP without controls and yt+h − yt, so we focus on
this setup. Given that Lunsford (2020) works with high-frequency monetary policy and forward guidance
shocks, along with monthly macroeconomic data, it is reasonable to assume that θ0 = 0. The algebra for
the case when yt+h − yt−1 is the left-hand-side variable is similar.

To show that using yt+h − yt as the left-hand-side variable reduces bias, consider that the moment
conditions associated with the OLS esitmator are

E[qt] = 0

where

qt ≡

 yt+h − yt − αh − βhεt

εt (yt+h − yt − αh − βhεt)

 .
We have that

▽1qt =

 −1 −εt
−εt −ε2t


H1 =

1

T − h

T−h∑
t=1

 −1 −εt
−εt −ε2t


H1 =

 −1 −µε

−µε −
(
σ2
ε + µ2

ε

)


▽2qt = H2 = H2 =

 0 0

0 0


V =

1

T − h

T−h∑
t=1

 0 − (εt − µε)

− (εt − µε) −
(
ε2t −

(
σ2
ε + µ2

ε

))


Q =

 −
(
1 +

µ2
ε

σ2
ε

)
µε

σ2
ε

µε

σ2
ε

− 1
σ2
ε


Because H2 is a matrix of zeros,

B = E {QV QψT−h} .
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Note that

B = E
{
Q
(
H1 −H1

)
QψT−h

}
= E {QH1QψT−h} .

Also,

QH1 =
1

T − h

T−h∑
t=1

 −
(
1 +

µ2
ε

σ2
ε

)
µε

σ2
ε

µε

σ2
ε

− 1
σ2
ε

 −1 −εt
−εt −ε2t


=

1

T − h

T−h∑
t=1

 (1− µε

σ2
ε
(εt − µε)

) (
1− µε

σ2
ε
(εt − µε)

)
εt

1
σ2
ε
(εt − µε)

1
σ2
ε
(εt − µε) εt


and

QH1Q =
1

T − h

T−h∑
t=1

 (1− µε

σ2
ε
(εt − µε)

) (
1− µε

σ2
ε
(εt − µε)

)
εt

1
σ2
ε
(εt − µε)

1
σ2
ε
(εt − µε) εt

 −
(
1 +

µ2
ε

σ2
ε

)
µε

σ2
ε

µε

σ2
ε

− 1
σ2
ε


=

1

T − h

T−h∑
t=1

 −
(
1− 2µε

σ2
ε
(εt − µε) +

(
µε

σ2
ε

)2
(εt − µε)

2

)
−
(

1
σ2
ε
(εt − µε)− µε

(σ2
ε)

2 (εt − µε)
2
)

− 1
σ2
ε
(εt − µε) +

µε

(σ2
ε)

2 (εt − µε)
2 − 1

(σ2
ε)

2 (εt − µε)
2


Then

QH1QψT−h =
1

T − h

T−h∑
t=1

 −
(
1− 2µε

σ2
ε
(εt − µε) +

(
µε

σ2
ε

)2
(εt − µε)

2

)
−
(

1
σ2
ε
(εt − µε)− µε

(σ2
ε)

2 (εt − µε)
2
)

− 1
σ2
ε
(εt − µε) +

µε

(σ2
ε)

2 (εt − µε)
2 − 1

(σ2
ε)

2 (εt − µε)
2


× 1

T − h

T−h∑
s=1

 ys+h − ys − αh − βhεs

εs (ys+h − ys − αh − βhεs)


We only need the expectation of the second row of this expression. To calculate it, fix t and consider

E

{
−

(
1

σ2
ε

(εt − µε)−
µε

(σ2
ε)

2 (εt − µε)
2

)
(ys+h − ys − αh − βhεs)−

1

(σ2
ε)

2 (εt − µε)
2
εs (ys+h − ys − αh − βhεs)

}
=

E

{
− 1

σ2
ε

(εt − µε) (ys+h − ys − αh − βhεs)−
1

(σ2
ε)

2 (εt − µε)
2
(εs − µε) (ys+h − ys − αh − βhεs)

}
=

E
{
− 1

σ2
ε

(εt − µε) (ys+h − ys − αh − βhεs)

}
=

E
{
− 1

σ2
ε

(εt − µε) (ys+h − yt + yt − ys − αh − βhεs)

}
If s = t, or s < t− h, then this expression is zero. If t− h ≤ s < t, then this expression is equal to −βs+h−t.
If t < s, this expression is equal to

−βs+h−t + βs−t

The existence of the second term mitigates the bias relative to the case where the difference is not taken.
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