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Abstract

When is entry e¢ cient in markets with search and matching frictions? This
paper generalizes the well-known Hosios condition to dynamic search environ-
ments where the expected match output depends on the market tightness. En-
try is e¢ cient when buyers�surplus share equals the matching elasticity plus
the surplus elasticity (i.e. the elasticity of the expected match surplus with
respect to buyers). This ensures agents are paid for their contribution to both
match creation and surplus creation. In search-theoretic models of the labor
market, for example, vacancy entry is e¢ cient only when �rms are compensated
for the e¤ect of job creation on both employment and labor productivity.
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1 Introduction

The well-known �Hosios condition�(Hosios, 1990) characterizes e¢ cient entry in

markets with search and matching frictions.1 When there is entry of buyers, this

condition states that entry is e¢ cient only when buyers� share of the joint match

surplus equals the elasticity of the matching function with respect to buyers.2 The

condition has proven to be widely applicable across a broad range of search-and-

matching models. For example, in the labor market, the Hosios condition tells us

when the level of vacancy creation and therefore the unemployment rate is e¢ cient,

e.g. see Rogerson, Shimer, and Wright (2005). In monetary environments with seller

entry, such as Rocheteau and Wright (2005), the Hosios condition determines when

the level of seller entry and therefore the number of trades is e¢ cient.

While the Hosios condition applies to a broad range of search models, it does not

always apply in settings where the expected match output �i.e. the expected value

of the distribution of output across matches �is a function of the market tightness

or buyer-seller ratio.3 One example where this may occur is when sellers (or buyers)

face a choice among heterogeneous buyers (or sellers) in many-on-one or multilateral

meetings, e.g. the competing auctions environment in Albrecht, Gautier, and Vroman

(2014). Another example is when there are sequential markets and agents in the �rst

market face potential gains from trade in the second, e.g. the labor market and goods

market in Berentsen, Menzio, and Wright (2011).

In this paper, we provide a generalization of the Hosios condition that charac-

terizes e¢ cient entry in a wide class of dynamic search-and-matching models where

the expected match output depends on the market tightness. This simple, intuitive

condition provides a unifying lens for understanding the e¢ ciency of entry in a range

of search-and-matching models which may appear quite di¤erent on the surface.

Consider an environment with buyer entry. An equilibrium allocation is e¢ cient

only when buyers are paid their marginal contribution to the social surplus. If the

expected match output is exogenous, buyers need only be paid for their e¤ect on

match creation, i.e. on the total number of matches. In such environments, the

1This condition is sometimes called the �Hosios-Mortensen�condition. Early versions of it were
discussed in Mortensen (1982b), Mortensen (1982a), and Pissarides (1986).

2By e¢ ciency, we mean constrained e¢ ciency, i.e. the social planner is constrained by the same
frictions as the decentralized market economy.

3We use the term �match output�because our examples focus mainly on labor markets, but the
term output can be interpreted more broadly.
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standard Hosios condition applies. If the expected match output is endogenous,

however, buyers must also be compensated for their e¤ect on surplus creation, i.e. on

the expected value of the joint surplus created by each match. We show that entry

is e¢ cient only when buyers�surplus share equals the matching elasticity plus the

surplus elasticity (i.e. the elasticity of the expected match surplus with respect to

buyers). We call this the �generalized Hosios condition�.

When the standard Hosios condition obtains, markets internalize the search ex-

ternalities that arise through the frictional matching process. However, when the

expected match output is a function of the market tightness, a novel externality

arises: the output externality. Depending on the environment, this externality may

be either positive or negative. When the standard Hosios condition holds, the output

externality is not internalized and there may be either over-entry or under-entry rel-

ative to the e¢ cient level. For example, in labor markets featuring Nash bargaining,

imposing the standard Hosios condition may lead to ine¢ ciently high unemployment

because �rms are not compensated for their e¤ect on labor productivity. Only when

the generalized Hosios condition obtains are both the search externalities and the

output externality fully internalized by a market economy.

In the examples we consider, entry is typically e¢ cient when prices are determined

by directed or competitive search �precisely because the generalized Hosios condition

holds endogenously. Competitive search allows agents to trade o¤ prices against

both the probability of trade and the expected match surplus if trade occurs, thus

internalizing both the search externalities and the output externality.4 In markets

where prices are determined by Nash bargaining, however, the generalized Hosios

condition does not hold and entry is generically ine¢ cient. Importantly, e¢ ciency

cannot simply be restored by imposing the generalized Hosios condition through a

particular choice of matching technology and bargaining parameter.5 This is because

the expected match surplus is endogenous and we cannot assume the surplus elasticity

is constant. In this way, the generalized Hosios condition highlights the importance

of competitive search as a way of decentralizing the e¢ cient allocation.

4Generally, competitive search is e¢ cient because it enables agents to trade o¤ prices against the
probability of trade. See the survey on directed and competitive search by Wright, Kircher, Julien,
and Guerrieri (2017). It is not always e¢ cient, however, as shown in Guerrieri (2008).

5By contrast, the standard Hosios condition is often imposed when calibrating search models
with Nash bargaining by using a Cobb-Douglas matching technology and setting buyers�bargaining
parameter equal to the constant matching elasticity, e.g. Shimer (2005).
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Overview. In Section 2, we �rst provide a simple example to build intuition and

motivate our analysis. Next, we formulate the planner�s problem and present two

versions of our key result: the generalized Hosios condition. We �rst use the ap-

proach of Menzio and Shi (2011) to derive the condition in a discrete-time dynamic

environment. While the proof is simpler using this approach � and the condition

characterizes e¢ ciency for the entire equilibrium path, not just the steady state �

it requires the assumption that match output is bounded. Next, we use an alterna-

tive approach to derive the result in a continuous-time environment. This approach

delivers a steady state version of the generalized Hosios condition that does not re-

quire the assumption that match output is bounded. We also provide a corollary that

determines when there is over- or under-entry under the standard Hosios condition.

Section 3 presents two examples. Section 3.1 considers the e¢ ciency of job creation

in an environment that is inspired by the model of the goods market and labor market

in Berentsen et al. (2011). In this setting, the labor market tightness a¤ects the

expected match �output�because it in�uences the expected gains from trade in the

goods market by a¤ecting the goods market tightness and thus the probability of

trade. The output externality from vacancy entry is always positive. When wages

are determined by Nash bargaining, job creation is generically ine¢ cient. However,

competitive search (wage posting) can decentralize the e¢ cient allocation by ensuring

that the generalized Hosios condition holds endogenously.6

Section 3.2 discusses two related environments in which meetings are many-on-one

or multilateral. We �rst consider the e¢ ciency of vacancy creation in the labor market

model of Mangin (2017), in which �rms directly compete to hire workers and wages

are determined by auctions. Market tightness a¤ects match output because greater

competition to hire workers allows workers to be more selective, thereby increasing

labor productivity. The output externality from vacancy entry is always positive.

Next, we discuss the e¢ ciency of seller entry in the competing auctions environment

found in Albrecht et al. (2014). Market tightness a¤ects match �output�because it

increases the expected value of the highest valuation among buyers who approach

a given seller. The output externality from seller entry is always negative because

greater seller entry decreases the buyer-seller ratio. In both examples, since prices are

6Petrosky-Nadeau, Wasmer, and Weil (2018) also study e¢ ciency in sequential labor and goods
markets. Their environment di¤ers in a key respect: the labor market tightness does not directly
a¤ect the expected match surplus in the labor market because buyers in the goods market are not
the same agents as workers.
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determined by competitive search (auctions), the generalized Hosios condition holds

endogenously and the equilibrium level of entry is e¢ cient.

The Appendix provides additional examples and extensions that we describe in

Section 3.3. One example, in particular, shows that competitive search does not

always decentralize the e¢ cient allocation in environments where the generalized

Hosios condition is necessary for constrained e¢ ciency.

2 Generalized Hosios Condition

Tomotivate our question and build intuition, we start with a simple example where

the expected match output depends on the market tightness. In Sections 2.1 and 2.2,

we then derive two general versions of our main results for dynamic economies.

Consider a static environment where �rms are ex ante identical and all workers are

initially unemployed. All agents are risk-neutral. The measure of vacancies or �rms is

v, the measure of unemployed workers is u, and the labor market tightness is � � v=u:

Meetings are many-on-one or multilateral (i.e. many �rms can meet one worker).

Speci�cally, the probability that n �rms meet a given worker is Pn(�) and we assume

the meeting technology is Poisson, i.e. Pn(�) = �ne��

n!
. The matching probabilities for

workers and �rms are therefore m(�) = 1� e�� and m(�)=� respectively.

After meetings occur, each worker draws an i.i.d. match-speci�c productivity x for

every �rm he meets and then chooses to work for exactly one of them. Match output

x 2 X = fxL; xHg � R+; where xL < xH and the probability of low productivity is

� 2 [0; 1]. The value of non-market activity is z � 0 and we assume xL > z.

Suppose workers are hired by the �rm they meet with the highest match-speci�c

productivity.7 A worker only produces output xL if all n �rms he meets draw xL, so

the probability f(xL; �) that a worker produces output xL (conditional n � 1) is

(1) f(xL; �) =

P1
n=1 Pn(�)�

n

1� P0(�)

7This will be true, for example, if wages are determined by either Nash bargaining or auctions.
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and f(xH ; �) = 1� f(xL; �). Since Pn(�) = �ne��

n!
, we have8

(2) f(xL; �) =
e��(1��) � e��

1� e��
:

The expected match output, or labor productivity, is

(3) y(�) = xL + f(xH ; �)(xH � xL):

While the distribution of match-speci�c productivities is exogenous, the distri-

bution of productivities across realized matches � i.e. matches actually chosen by

workers � is endogenous and depends on the market tightness �. In the limit as

� ! 0, we have f(xL; �)! �. However, for any � > 0, the probability f(xH ; �) that a

worker produces output xH is strictly increasing in �, and the expected match output

y(�) is also strictly increasing �, i.e. y0(�) > 0. Intuitively, this is because a higher

number of vacancies per unemployed worker allows workers to be more selective. We

call this the selection channel.

What is the e¢ cient level of vacancy creation in this economy? Suppose the social

planner can create vacancies at cost c > 0. We are interested in constrained e¢ ciency

in the sense that the planner is constrained by both the matching technologym(:) and

the output technology y(:) �or, equivalently, the distribution f(x; �). Taking both

m(:) and y(:) as given, the planner is restricted to simply choose a market tightness

� to maximize the social surplus per worker, which is given by

(4) 
(�) = m(�)y(�) + (1�m(�))z � c�:

Letting s(�) denote the expected match surplus, we have s(�) = y(�)� z and

(5) 
(�) = m(�)s(�) + z � c�:

Any solution �P satis�es the �rst-order condition

(6) m0(�)s(�) +m(�)s0(�) � c

and �P � 0; with complementary slackness. It can be shown that there exists a unique
8This follows from the fact that e��

P1
n=1

(��)n

n! = e��(e�� � 1) = e��(1��) � e��:
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solution �P > 0 to (6) that maximizes 
(�) provided that c < xL+(1��)(xH�xL)�z.
Let �m(�) � m0(�)�=m(�); the matching elasticity, and let �s(�) � s0(�)�=s(�),

the surplus elasticity. Multiplying (6) by � and dividing by m(�)s(�), the optimal �P

satis�es

(7) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z } :
�rms� surplus share

With free entry of vacancies, the total expected payo¤ for �rms equals cv; and the

total surplus created by all matches is m(�)s(�)u, therefore the term on the right of

(7) is �rms�surplus share.

We call this the �generalized Hosios condition�. Like the original Hosios (1990)

condition, it turns out that this simple condition characterizes e¢ ciency across a wide

range of search-and-matching environments. In general, e¢ ciency requires that buy-

ers�surplus share equals the matching elasticity plus the surplus elasticity because

this ensures that agents are paid for their contribution to both match creation and

surplus creation. In this example, e¢ ciency requires that �rms�entry decisions in-

ternalize the e¤ects of vacancy creation on both employment and labor productivity.

In the special case where y0(�) = 0, we recover the standard Hosios condition, which

sets �rms�surplus share equal to the matching elasticity.

2.1 Dynamic economy (bounded output)

We now present two versions of the generalized Hosios condition for dynamic

economies. First, we use the approach of Menzio and Shi (2011) to derive the condi-

tion in a discrete-time dynamic environment where match output is bounded. This

approach delivers a condition that characterizes e¢ ciency across the entire equilibrium

path, not just the steady state. In the next section, we use an alternative approach

to derive a version of the generalized Hosios condition in a continuous-time dynamic

environment. This approach delivers a steady state version of the generalized Hosios

condition that does not require the assumption that match output is bounded.

Consider a discrete-time dynamic environment. In any period t 2 f0; 1; :::g, there
is measure one of sellers and a large number of potential buyers. All agents are

risk-neutral. The measure of buyers who enter is denoted by v and the measure of

unmatched sellers is denoted by u. The market tightness is � � v=u. Buyer-seller
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matches are destroyed at an exogenous rate � 2 (0; 1]:9 The �ow payo¤ for unmatched
sellers is z � 0.
Buyers and sellers are matched according to a constant-returns-to-scale matching

function. The matching probabilities for sellers and buyers are denoted respectively

by m(�) and m(�)=�. We call the function m(:) the matching technology.

Assumption 1. The function m(:) satis�es: (i) m0(�) > 0 and m00(�) < 0 for all

� 2 R+, (ii) lim�!0m(�) = 0, (iii) lim�!0m
0(�) = 1; (iv) lim�!1m(�) = 1, (v)

lim�!1m
0(�) = 0, and (vi) m(�)=� is strictly decreasing for all � 2 R+.

Within each period, the timing is as follows. First, match destruction occurs.

Next, buyers enter and the search and matching process takes place. Finally, produc-

tion occurs.

Match output x 2 X � fx1; x2; :::; xNg � R+ where x1 < x2 < ::: < xN . We

assume that all matches have positive surplus.10 While the distribution used here is

discrete, the results also apply to continuous distributions provided thatX is bounded,

i.e. X = [xmin; xmax] where xmin; xmax 2 R+ and xmin > z.

Given market tightness �, the output of a new match is an i.i.d draw from a discrete

probability distribution f : X ! [0; 1] where
P

x2X f(x; �) = 1. The distribution

f(x; �) will be determined endogenously by features of the environment. The expected

output of new matches is

(8) y(�) �
X
x2X

xf(x; �):

If the distribution f(x; �) does not depend on the market tightness, i.e. f(x; �) = f(x),

then y(�) = �y 2 R+ for all � 2 R+. In general, however, the expected match output
y(�) may depend directly on the market tightness. We call the function y(:) the

output technology.

Let g : X ! [0; 1] be the probability distribution of match output x across all

sellers in the economy. This includes newly matched sellers, unmatched sellers, and

sellers matched in previous periods whose matches have survived. Here, g(x) denotes

the measure of sellers producing output x, where x = 0 for unmatched sellers, so

9In the special case � = 1, the economy features non-enduring matches, i.e. all matches are
destroyed at the end of each period. All of the following results therefore apply to economies with
non-enduring matches.
10In Appendix C, we provide an example of an environment where not all matches are accepted.
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P
x2X g(x) = 1 � u. The average match output across all sellers is

P
x2X xg(x) and

the average output of matched sellers is

(9) y =

P
x2X xg(x)

1� u
:

The distribution g is given by the following law of motion:

(10) ĝ(x) = um(�)f(x; �) + (1� �)g(x) for all x 2 X;

and the measure of unmatched sellers u is given by the standard law of motion:

(11) û = u(1�m(�)) + �(1� u):

Here, ĝ(x) is the distribution of match output across sellers, and û is the measure of

unemployed workers, at the production stage, i.e. the beginning of the next period.

2.1.1 Planner�s problem

Suppose the planner can create vacancies at cost c > 0 each period. At the start

of a period, the planner observes the aggregate state of the economy,  = (u; g), and

chooses a market tightness � = v=u where � 2 R+. The planner is restricted to take
both the matching technology m(:) and the distribution f(x; �) as given, and chooses

the market tightness � to maximize the sum of present and future social surplus. The

discount factor is � 2 (0; 1).
Letting  ̂ = (û; ĝ) denote the next period�s state, the Bellman equation for the

planner�s value function W ( ) can be written as:

(12) W ( ) = max
�2R+

n
F (�j ) + �W ( ̂)

o
where

(13) F (�j ) = �c�u+ zû+
X
x2X

xĝ(x)

subject to the following laws of motion:

(14) û = u(1�m(�)) + �(1� u)
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and

(15) ĝ(x) = um(�)f(x; �) + (1� �)g(x) for all x 2 X:

Our planner�s problem is a generalization of that considered in Menzio and Shi

(2011) to environments where the distribution of output across new matches, given

by f(x; �), is endogenous and may depend directly on the market tightness in that

period. If match output is bounded, i.e. X is bounded, Theorem 1 in Menzio and

Shi (2011) generalizes to our environment.11

Lemma 1. Assume that X is bounded. (i) The planner�s value function W ( ) is the

unique solution to (12). (ii) W ( ) is linear in u and g:

(16) W ( ) =Wuu+
X
x2X

We(x)g(x);

where Wu and We(x) are the component value functions given by

(17) Wu = max
�2R+

f�c� + (1�m(�))(z + �Wu) +m(�)(y(�) + �We(�))g

and

(18) We(x) = �(z + �Wu) + (1� �)(x+ �We(x))

where

(19) We(�) �
X
x2X

We(x)f(x; �):

Proof. Part (i). Letting C(	) be the set of bounded, continuous functions

R : 	! R with the sup norm kRk = sup 2	R( ), we can de�ne an operator T by

(20) (TR)( ) = max
�2R+

F (�j ) + �R( ̂)

subject to (14) and (15), where the return function F is de�ned by (13).
11More precisely, the special case of our planner�s problem where f(x; �) = f(x) is a special case

of that considered in Menzio and Shi (2011). This is because the authors incorporate additional
features � such as on-the-job search, aggregate productivity shocks, and signals regarding match-
speci�c productivity. We abstract from these features to focus attention on what is novel here.
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We �rst prove that TR is bounded. Consider any function R 2 C(	): Since R is
bounded, there exist R0 and �R such that R0 � R( ̂) � �R for all  ̂ 2 	. Therefore,
using (20) and (13), (TR)( ) is bounded below by minfz; x1g + �R0 and bounded

above by maxfz; xNg+ � �R.

Next, we prove that TR is continuous in  . To do this, observe that since X is

bounded we can replace the constraint � 2 R+ with the constraint � 2 [0; ��]; where ��
is de�ned as:

(21) �� = c�1u�1f[maxfz; xNg �minfz; x1g] + �[ �R�R0]g:

For the modi�ed problem, the maximand is continuous in ( ; �) and the set of feasible

choices for � is compact, so it follows from the Theorem of the Maximum that TR is

continuous in  (Theorem 3.6 in Stokey, Lucas, and Prescott, 1989).

Therefore, T : C(	) ! C(	), i.e. the operator T maps the set of bounded, con-

tinuous functions into itself. It is straightforward to verify that T satis�es Blackwell�s

su¢ cient conditions for a contraction (Theorem 3.3 in Stokey et al., 1989). There-

fore, T is a contraction mapping and it has exactly one �xed point R� 2 C(	). Since
limt!1 �

tR�( ) = 0 for all  2 	, R� is equal to the planner�s function W (Theorem

4.3 in Stokey et al., 1989).

Part (ii). Let C 0(	) � C(	) be the set of bounded, continuous functions R :

	! R that are linear in the measure of unmatched sellers, u; and the measure g(x)
of sellers producing output x. We have R 2 C 0(	) if and only if there exist Ru and

Re : X ! R such that

(22) R( ) = Ruu+
P
x2X

Re(x)g(x):

Consider any function R 2 C 0(	). Substituting (14) and (15) into (13), and then

substituting into the maximand in (20) and simplifying, we obtain

(23) (TR)( ) = R̂uu+
P
x2X

R̂e(x)g(x)

where R̂u is given by

(24)

R̂u = max
�2R+

�
�c� + (1�m(�))(z + �R̂u) +m(�)

�
y(�) + �

P
x2X

R̂e(x)f(x; �)

��
;
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and y(�) is given by de�nition (8), and R̂e(x) is given by

(25) R̂e(x) = �(z + �R̂u) + (1� �)(x+ �R̂e(x)):

Therefore, we have T : C 0(	) ! C 0(	) and, since C 0(	) is a closed subset of C(	);

we have W 2 C 0(	) by Corollary 1 to Theorem 3.2 in Stokey et al. (1989). �

We now use Lemma 1 to prove our main result. Proposition 1 says that the

planner chooses to set buyers�surplus share equal the matching elasticity plus the

surplus elasticity. When this condition holds, the level of buyer entry is e¢ cient

because agents are compensated for their e¤ect on both match creation and surplus

creation. Importantly, this intuitive condition characterizes e¢ ciency along the entire

equilibrium path, not just in steady state. Moreover, in the absence of aggregate

productivity shocks, the optimal market tightness is constant, i.e. �t = � for all t.

Assumption 2. The function �(:) de�ned by �(�) � m(�)s(�) satis�es: (i) lim�!0 �(�) =

0; (ii) lim�!0 �
0(�) > c; (iii) lim�!1 �

0(�) < c; and (iv) �00(�) < 0 for all � 2 R+:

Assumption 2 is su¢ cient for the existence and uniqueness of the e¢ cient choice

�P . If Assumption 2 does not hold, (26) is still a necessary condition for e¢ ciency.

Proposition 1 (Generalized Hosios Condition). Assume X is bounded. There

exists a unique e¢ cient allocation (�Pt )
1
t=0 where �

P
t = �P > 0 for all t and �P satis�es

(26) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z } :
buyers� surplus share

An equilibrium allocation (��t )
1
t=0 is e¢ cient if and only if �

�
t satis�es (26) for all t.

Proof. Rearranging (17), the socially optimal market tightness �P is given by

(27) �P = argmax
�2R+

f�c� + z + �Wu +m(�)(y(�)� z + �(We(�)�Wu))g :

We can write the expected match surplus as

(28) s(�) = y(�)� z + �(We(�)�Wu);
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and thus (27) can be rewritten as

(29) �P = argmax
�2R+

f�c� +m(�)s(�) + z + �Wug :

Taking the �rst-order condition for (29), the optimal market tightness �P satis�es

(30) m0(�)s(�) +m(�)s0(�) � c

and �P � 0 with complementary slackness. If Assumption 2 holds, there exists a

unique solution �P > 0 that satis�es �0(�) = c where �(�) � m(�)s(�). Therefore,

there exists a unique �P > 0 that satis�es (30) with equality. Multiplying both sides

of (30) by �=m(�)s(�), we obtain (26). Since �P is unique, an equilibrium allocation

is e¢ cient if and only if the equilibrium ��t satis�es condition (26) for all t. �

The following provides a useful version of the generalized Hosios condition that is

easier to apply in practice. It tells us that the derivative y0(�) of the expected match

output is key. If y0(�) = 0, we recover the standard Hosios condition.

Proposition 2. Assume that X is bounded. There exists a unique e¢ cient allocation

(�Pt )
1
t=0 where �

P
t = �P > 0 for all t and �P satis�es

(31) �m(�) +
y0(�)�

(1� �(1� �))s(�)
=

c�

m(�)s(�)
:

An equilibrium allocation (��t )
1
t=0 is e¢ cient if and only if �

�
t satis�es (31) for all t.

Proof. From (28), we see that s(�) depends on the market tightness � only

through y(�) and We(�). The component value function Wu does not depend on �

since it is a maximized value given by (17). Di¤erentiating (28), we have

(32) s0(�) � y0(�) + �W 0
e(�):

Using (18), we obtain

(33) We(x) =
�(z + �Wu) + (1� �)x

1� �(1� �)
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and, using the fact that We(�) �
P

x2XWe(x)f(x; �), we obtain

(34) We(�) =
�(z + �Wu) + (1� �)y(�)

1� �(1� �)
:

Di¤erentiating (34) yields

(35) W 0
e(�) =

(1� �)y0(�)

1� �(1� �)
:

Substituting (35) into (32) and simplifying, we obtain

(36) s0(�) � y0(�)

1� �(1� �)
:

Finally, substituting (36) into (26) yields condition (31). �

While this approach delivers a powerful version of the generalized Hosios condition,

one limitation is that Lemma 1 requires the assumption that match output is bounded.

If match output is not bounded �for example, if the distribution f(x; �) is continuous

and has unbounded upper support, X = [xmin;1) �then Lemma 1 does not apply,
and therefore Propositions 1 and 2 do not apply. Since many important applications

feature unbounded upper support, we provide an alternative approach in the next

section that does not require bounded match output.

2.2 Dynamic economy (unbounded output)

We now use an alternative approach to derive a version of the generalized Hosios

condition in a continuous-time dynamic environment where match output is not nec-

essarily bounded. This approach delivers steady state versions of Propositions 1 and

2 that apply to any distribution of match output f(x; �) with �nite mean.

Consider a continuous-time dynamic environment. At any time t, there is measure

one of sellers and a large number of potential buyers. As in Section 2.1, all agents

are risk neutral and the measure of buyers who enter is denoted by vt, the measure

of unmatched sellers is denoted by ut, and market tightness is �t � vt=ut. Matches

are destroyed at a rate � 2 (0; 1] and the �ow payo¤ for unmatched sellers is z � 0.
In continuous time, m(�t) andm(�t)=�t are now arrival rates rather than matching

probabilities for buyers and sellers respectively, so Assumption 1 needs to be amended.

13



Assumption 1a. The function m(:) satis�es: (i) m0(�) > 0 and m00(�) < 0 for all

� 2 R+, (ii) lim�!0m(�) = 0, (iii) lim�!0m
0(�) = +1; (iv) lim�!+1m(�) = +1,

(v) lim�!1m
0(�) = 0, and (vi) m(�)=� is strictly decreasing in � for all � 2 R+.

Match output x 2 X = [xmin; xmax] � R+ where xmax 2 R+ [ f1g. We assume
that all matches have positive surplus. At time t, the output of a new match is an i.i.d.

draw from a probability distribution with pdf f(x; �t) and a �nite mean. We de�ne

y(�t) �
R xmax
xmin

xf(x; �t)dx, the expected output for new matches at time t. We assume

a continuous distribution but the results easily extend to discrete distributions.

Let yt denote the average match output across all matched sellers at time t. Note

that yt is not equal to y(�t), since yt is a weighted average across all active matches,

i.e. both new matches and existing matches that have survived from earlier times. In

Appendix A, we derive the following law of motion for yt:

(37) _yt = (y(�t)� yt)
m(�t)ut
1� ut

and the law of motion for the measure of unmatched sellers is standard:

(38) _ut = �(1� ut)�m(�t)ut:

Before solving the planner�s problem, we �rst derive an expression for the steady

state expected match surplus, s(�) � VB+VS�UB�US; where VS and VB denote the
steady state asset values for matched sellers and buyers respectively, and US and UB
denote the steady state asset values for unmatched sellers and buyers respectively.

Lemma 2. With free entry of buyers, the steady state expected match surplus is

(39) s(�) =
y(�)� z + c�

r + � +m(�)
:

Proof. See Appendix A.

2.2.1 Planner�s problem

Suppose the planner can create vacancies at cost c > 0. At any time t, the

planner observes the aggregate state of the economy,  t = (ut; yt), and chooses a

market tightness ratio � = v=u where � 2 R+. The planner is restricted to take both
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the matching technology m(:) and the output technology y(:) as given, and chooses

the market tightness � to maximize the sum of present and future social surplus. The

discount rate is r > 0.

Given initial conditions u0 and y0, the planner chooses �t for all t 2 R+ to maximize

(40) 
 =

Z 1

0

e�rt((1� ut)yt + zut � c�tut)dt

subject to the following laws of motion:

(41) _ut = �(1� ut)�m(�t)ut

and

(42) _yt = (y(�t)� yt)
m(�t)ut
1� ut

:

Propositions 3 and 4 are steady state versions of the generalized Hosios condition

presented in Propositions 1 and 2 that do not require bounded match output.

If Assumption 2 does not hold, (43) is still a necessary condition for e¢ ciency.

Proposition 3 (Generalized Hosios Condition). There exists a unique steady
state e¢ cient allocation �P > 0 and it satis�es

(43) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z } :
buyers� surplus share

A steady state equilibrium allocation �� is e¢ cient if and only if it satis�es (43).

Proof. The current value Hamiltonian for the planner�s problem is

(44)

H = ((1� ut)yt + zut� c�tut) + �t(�(1� ut)�m(�t)ut) + �t
�
m(�t)ut (y(�t)� yt)

1� ut

�
:

The �rst-order necessary conditions are

(45)
@H

@�t
= �cut � �tm

0(�t)ut + �t

�
m0(�t)ut (y(�t)� yt) +m(�t)uty

0(�t)

1� ut

�
= 0
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(46)
dH

dut
= �(yt � z + c�t)� �t(� +m(�t)) + �t

�
m(�t) (y(�t)� yt)

(1� ut)
2

�
= � _�t + r�t

(47)
@H

@yt
= 1� ut � �t

�
m(�t)ut
1� ut

�
= � _�t + r�t

(48)
@H

@�t
= �(1� ut)�m(�t)ut = _ut

(49)
@H

@�t
=
m(�t)ut (y(�t)� yt)

1� ut
= _yt:

The transversality conditions are limt!1 e
�rt�tut = 0 and limt!1 e

�rt�tyt = 0:

In steady state, we have _ut = _yt = _�t = 0 and therefore y(�t) = yt = y(�). Also,

_�t = 0 and _�t = 0. Substituting into the �rst-order conditions, we obtain

(50) ��m0(�)u+ ��y0(�) = cu;

(51) � = �
�
y(�)� z + c�

r + � +m(�)

�
;

(52) � =
1� u

r + �
:

Substituting � and � into (50), then using �(1� u) = m(�)u and (39), yields

(53) �m(�) +
y0(�)�

(r + �)s(�)
=

c�

m(�)s(�)

where �m(�) � m0(�)�=m(�): Again using expression (39) for s(�), we obtain

(54) �m(�) +

�
(y0(�) + c)�

y(�)� z + c�
� m0(�)�

r + � +m(�)

�
=

c�

m(�)s(�)
:

Using Lemma 2, we can write �s(�) � s0(�)�=s(�) as the elasticity of the numerator
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minus the elasticity of the denominator:

(55) �s(�) =
(y0(�) + c)�

y(�)� z + c�
� m0(�)�

r + � +m(�)
:

Substituting (55) into (54), (53) is equivalent to (43). Both are necessary conditions

for any steady state solutions �P > 0. Assumption 2 implies there exists a unique

�P > 0 that satis�es �0(�) = c where �(�) � m(�)s(�), and therefore there exists a

unique �P > 0 that satis�es (43).

We can apply Arrow�s Su¢ ciency Theorem to prove that �P is indeed a global

maximum.12 To show this, we formulate the current value Hamiltonian in terms of the

state variable ~xt � (1�ut)yt: Using (41) and _xt = ��~xt+m(�t)uty(�t) (see Appendix
A), the current value Hamiltonian as a function of state and control variables is

(56) H(~x; u; �) = ~x+ zu� c�u+ �1(�(1� u)�m(�)u) + �1(��~x+m(�)uy(�))

and the maximized Hamiltonian isMH(~x; u) � max�2R+ H(~x; u; �). Applying Arrow�s
Su¢ ciency Theorem, the solution �P to (43) is a global maximum provided that

MH(~x; u) is jointly weakly concave in u and ~x:

To �nd ��(~x; u) � argmax�2R+ H(~x; u; �), we set

(57)
@H

@�
= �cu� �1m

0(�)u+ �1u(m
0(�)y(�) +m(�)y0(�)) = 0

and, di¤erentiating (57), we have

(58)
@2H

@�2
= ��1m00(�)u+ �1u(m

00(�)y(�) + 2m0(�)y0(�) +m(�)y00(�)) < 0;

provided thatm00(�)y(�)+2m0(�)y0(�)+m(�)y00(�) < 0 andm00(�) < 0 since �1 < 0 and

�1 > 0: Assumption 1a states that m
00(�) < 0 for all � 2 R+ and Assumption 2 says

that �00(�) < 0 for all � 2 R+ where �(�) � m(�)s(�). In particular, in the special case

where s(�) = y(�), Assumption 2 implies m00(�)y(�) + 2m0(�)y0(�) +m(�)y00(�) < 0:

Therefore, ��(~x; u) is indeed a maximum and we have

(59) MH(~x; u) = ~x+ zu� c��u+ �1(�(1� u)�m(��)u) + �1(��~x+m(��)uy(��))

12Arrow�s Su¢ ciency Theorem generalizes Mangasarian�s su¢ ciency conditions. See Kamien and
Schwartz (1991), p. 221-222.
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where �� � ��(~x; u). Since u cancels out in (57) and ~x does not appear in (57), ��

does not depend directly on u or ~x: Also, it can be veri�ed that neither �1 nor �1
depends on either u or ~x.13 The function MH(~x; u) is linear in both ~x and u and it is

therefore weakly concave, thus the solution �P to (43) is a global maximum. �

Again, we obtain a useful version of the generalized Hosios condition.

Proposition 4. There exists a unique steady state e¢ cient allocation �P > 0 and it
satis�es

(60) �m(�) +
y0(�)�

(r + �)s(�)
=

c�

m(�)s(�)
:

A steady state equilibrium allocation �� is e¢ cient if and only if it satis�es (60).

Proof. Condition (60) is derived as an intermediate step in the proof of Propo-
sition 3 as condition (53), which is shown to be equivalent to (43). �

2.3 Discussion

In search-and-matching models with free entry of buyers, there are two standard

externalities related to the frictional matching process: the congestion and thick

market externalities.14 Both of these search externalities are fully internalized by

markets when the Hosios condition holds. In environments where the expected match

output depends on market tightness, however, a novel externality arises. Depending

on the speci�c environment, a higher buyer/seller ratio may either increase or decrease

the expected match output and this e¤ect may not be internalized by the market.

We call this the output externality.

When the standard Hosios condition holds, buyers�entry decisions fail to inter-

nalize the output externality and entry may not be e¢ cient. Applying the standard

Hosios condition may therefore result in either over-entry or under-entry of buyers

13Note that the co-state variables �1 and �1 for the current value Hamiltonian with state variables
ut and ~xt are di¤erent to the co-state variables � and � for the current value Hamiltonian with state
variables ut and pt.
14The congestion externality is a negative externality that arises because a higher buyer/seller

ratio reduces the matching probability of each buyer. The thick market externality is a positive
externality that arises because a higher buyer/seller ratio increases the matching probability for
each seller.
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relative to the e¢ cient level. Corollary 1 tells us that the direction of the ine¢ ciency

depends only on the derivative of the output technology y(:) at the equilibrium ��.

Corollary 1. A steady state equilibrium allocation features under-entry ( over-entry)
of buyers under the standard Hosios condition if and only if y0(��) > (<) 0:

Proof. Suppose the standard Hosios condition holds, i.e. �m(�
�) = c��=m(��)s(��):

First, we show there is under-entry (over-entry) of buyers if and only if s0(��) > (<)0:

Second, we show that s0(��) > 0 if and only if y0(��) > 0: Letting �(�) = m(�)s(�);

Proposition 3 says there exists a unique e¢ cient �P > 0 that satis�es �0(�P ) = c.

Since the standard Hosios condition holds, m0(��)s(��) = c and therefore we have

�0(�P ) = m0(��)s(��). Now, �0(��) = m0(��)s(��) +m(��)s0(��); and thus �0(�P ) =

�0(��) � m(��)s0(��); so if s0(��) > 0 then �0(�P ) < �0(��). If Assumption 2 holds

then �00(�) < 0 for all � 2 R+ and therefore �0(�P ) < �0(��) implies that �� < �P ,

i.e. there is under-entry of buyers. Similarly, if s0(��) < 0, there is over-entry of

buyers, �� > �P . Using expression (55) for �s(�), and rearranging using (39), we have

s0(��) > 0 if and only if y0(��) > m0(��)s(��) � c: Finally, since m0(��)s(��) = c by

assumption, we have s0(��) > 0 if and only if y0(��) > 0. �

When y0(��) > 0, the output externality arising from buyer entry is positive and

the standard Hosios condition results in under-entry. Alternatively, if y0(��) < 0; the

output externality is negative and the standard Hosios condition results in over-entry

of buyers. If y0(��) = 0, there is no output externality and buyer entry is e¢ cient

under the standard Hosios condition.

Returning to our motivating example, the standard Hosios condition would result

in under-entry of vacancies, or ine¢ ciently high unemployment, since y0(�) > 0 and

the output externality is positive. Intuitively, this is because it does not incorporate

the fact that higher job creation leads not only to lower unemployment for workers,

but also higher labor productivity. In an alternative environment where workers

instead apply to �rms, we would have y0(�) < 0. In this case, the output externality

is negative and the standard Hosios rule would result in over-entry of vacancies, or

ine¢ ciently low unemployment.15

15When workers apply to �rms, a greater number of vacancies per unemployed worker implies
fewer applicants per vacancy, which decreases the expected match output because �rms can be less
selective. For example, see the model of worker applications in Gavrel (2012), or the model of worker
selection using interviews in Woltho¤ (2017).
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Seller entry. When there is seller entry instead of buyer entry, the direction of

the e¤ect of entry is reversed. Since the buyers�surplus share and the sellers�surplus

share add to one, an e¢ cient �P > 0 must satisfy

(61) 1� �m(�)| {z }
matching elasticity

� �s(�)| {z }
surplus elasticity

=
�(�)

m(�)s(�)| {z }
sellers� surplus share

where �(�) is the expected payo¤ for sellers. If there is free entry of sellers at cost

� > 0, substituting �(�) = � into (61) delivers the generalized Hosios condition for

seller entry:

(62) 1� �m(�)| {z }
matching elasticity

� �s(�)| {z }
surplus elasticity

=
�

m(�)s(�)| {z }
sellers� surplus share

:

Corollary 2. A steady state equilibrium allocation features over-entry (under-entry)
of sellers under the standard Hosios condition if and only if y0(��) > (<) 0:

Proof. With seller entry, the direction of Corollary 1 is reversed since �� < �P

implies over-entry of sellers because � = v=u. Similarly, �� > �P implies under-entry

of sellers relative to the e¢ cient level. �

When y0(��) > 0, the output externality arising from seller entry is negative since

� = v=u and therefore y(:) is decreasing in the measure of unmatched sellers u. In

this case, the standard Hosios condition results in over-entry of sellers. If y0(��) < 0;

the output externality from seller entry is positive and the standard Hosios condition

results in under-entry. If y0(��) = 0, there is no output externality and seller entry is

e¢ cient under the standard Hosios condition.

2.3.1 Applying the condition

In any decentralized market, the equilibrium surplus shares of buyers and sell-

ers will depend on the price determination mechanism. Depending on how prices

are determined, the economy may or may not decentralize the e¢ cient allocation �

or, equivalently, the generalized Hosios condition may or may not hold. E¢ ciency

arises only when the price determination mechanism ensures that both the search

externalities and the output externality are internalized by a decentralized market.
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Competitive search. If prices are determined by directed or competitive search,

the generalized Hosios condition typically (but not always) decentralizes the e¢ -

cient allocation. For example, we show that competitive search (price posting) can

decentralize the constrained e¢ cient allocation in environments with bilateral meet-

ings such as Example 3.1, where the expected match output depends on the market

tightness (see Appendix B). We will also see in Example 3.2 that competitive search

(auctions) can decentralize the e¢ cient allocation in environments with many-on-one

or multilateral meetings. In both cases, the reason why competitive search delivers

e¢ ciency is precisely because the generalized Hosios condition holds endogenously.

This is because competitive search allows agents to trade o¤ prices against both the

probability of trade and the expected match surplus if trade occurs, thus internalizing

both the search externalities and the output externality.

Nash bargaining. Returning to our motivating example, suppose that wages are

determined by Nash bargaining and workers�bargaining power is � 2 (0; 1). With
probability m(�)=�, �rms successfully hire a worker and receive a share 1� � of the

expected match surplus s(�). The equilibrium market tightness �� > 0 satis�es the

following free entry condition:

(63)
m(�)

�
(1� �)s(�) = c;

or, equivalently, the equilibrium �� > 0 satis�es

(64) 1� �| {z }
�rms�bargaining power

=
c�

m(�)s(�)| {z }
�rms�surplus share

:

Applying the generalized Hosios condition, and using (64), entry is e¢ cient only if

(65) �m(�
�)| {z }

matching elasticity

+ �s(�
�)| {z }

surplus elasticity

= 1� �| {z }
�rms�bargaining power

:

In the special case where xH = xL; i.e. match output is constant, we have e¢ ciency

if and only if �m(�
�) = 1 � �; a well-known version of the Hosios condition. If the

matching technology is Cobb-Douglas andm(�) has constant elasticity, i.e. �m(�) = �

for all � 2 R+, we can restore e¢ ciency by imposing the Hosios condition. To do so,
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we make the following choice of parameter values: � = 1��. This approach, used for
example in Shimer (2005), ensures e¢ ciency in search models with Nash bargaining,

regardless of the value of the equilibrium ��. In environments where the generalized

Hosios condition is necessary for e¢ ciency, however, it will generally not be possible

to impose e¢ ciency in this manner. This is because the surplus elasticity �s(�
�)

is endogenous and it will not typically be constant. Instead, competitive search is

necessary for decentralizing the e¢ cient allocation.

3 Examples

We now present two main examples of search-and-matching environments where

the expected match output depends on the market tightness. The Appendix contains

additional examples and extensions, as described in Section 3.3.

3.1 E¤ect of labor market on goods market

One way in which the expected match output can depend on the labor market

tightness is when there are sequential markets, such as a labor market and a goods

market, and the possibility of trade in the goods market depends on the matching

outcomes in the labor market. A classic example is Berentsen et al. (2011), which fea-

tures both a labor market and a goods market. We present a static, highly simpli�ed

version of that model in order to focus attention.16

Workers �rst sell their labor to �rms in the labor market and then purchase goods

from �rms in the goods market. Importantly, while all workers can search in the goods

market, only active �rms (i.e. �lled vacancies) can produce and trade in the goods

market. In this way, the labor market tightness a¤ects the goods market tightness

by a¤ecting the measure of �rms who search in the goods market. In turn, the goods

market tightness determines the probability of trade for both workers and �rms. This

implies that the labor market tightness a¤ects the expected match �output�because

this includes both the direct match output in the labor market and the expected

gains from trade in the goods market.17

16In particular, we simplify the model in Berentsen et al. (2011) by eliminating the third market,
the Arrow-Debreu market, since it is unnecessary in the static model considered here.
17The environment in Kaplan and Menzio (2016), while di¤erent to that found in Berentsen et al.

(2011), shares a similar feature because sellers�expected revenue in the product market depends on

22



The labor market is a standard DMP style environment with bilateral meetings.

The labor market tightness is � = v=u and the matching probabilities for workers and

�rms respectively are m(�) and m(�)=� where m(:) satis�es Assumption 1. There is

free entry of vacancies at cost � > 0 and all matches produce direct output �y > z;

where z � 0 is the value of non-market activity for the unemployed.
In the goods market, the probabilities of trade for workers and �rms respectively

are mG(�) and qG(�) � mG(�)=�, where � is the ratio of sellers to buyers and mG(:)

satis�es Assumption 1. Since all workers (including the unemployed) search but

only active �rms search (i.e. those that have successfully hired a worker), we have

� = (m(�)=�)v=u = m(�): Since the unemployment rate is u(�) = 1�m(�), we have

�(�) = 1� u(�).

Active �rms can produce a single unit of an indivisible good at a production cost

c > 0. Unemployed workers value the good at vu > 0 and employed workers value

the good at ve > vu � c. We assume, for simplicity, that vu = c (i.e. trades in the

goods market with unemployed workers do not have any surplus).

While there is no heterogeneity here, matches that are formed in the labor market

face di¤erent outcomes in terms of the surplus created, depending on whether or not

workers trade in the goods market. Match �output�x 2 X = [�y; �y+(ve� c)] and the
distribution of output across matches is

(66) f(x; �) =

(
1�mG(�(�)) if x = �y

mG(�(�)) if x = �y + (ve � c)

and 0 otherwise. In the �rst case, the worker does not trade in the goods market and

the match �output�x is just �y. In the next case, the worker does trade and x equals

the direct output �y plus the total gains from trade in the goods market (for both the

worker and the �rm).

The expected match output in the labor market is y(�) =
P

x2X xf(x; �) and

the expected match surplus is s(�) = y(�) � z. Taking the expected value of the

distribution f(x; �), we obtain

(67) y(�) = �y|{z}
direct output

+ mG(�(�))(ve � c)| {z }
expected gains from trade

:

the unemployment rate and thereby on the labor market tightness.
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A su¢ cient condition for Assumption 2 to hold is that �y�z > � and �m00(�)m(�)
(m0(�))2 > 2

for all � 2 R+. Applying Proposition 1, there exists a unique e¢ cient choice �P > 0
and it satis�es

(68) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z } :
�rms� surplus share

Whether or not this condition holds depends on the wage determination mecha-

nism. For example, if wages are determined by Nash bargaining with workers�bar-

gaining power � 2 (0; 1), then, similarly to (63), we have e¢ ciency only if and only
if the equilibrium �� satis�es

(69) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

= 1� �| {z }
�rms�bargaining power

.

With competitive search and wage posting, on the other hand, the generalized Hosios

condition holds endogenously and we always have constrained e¢ ciency. Appendix

B shows how competitive search with wage posting can decentralize the e¢ cient

allocation in environments such as this.

In this example, the output externality is positive, i.e. y0(��) > 0 or y0(��) < 0:

Since �0(�) > 0 and dmG(�)
d�

> 0, an increase in the labor market tightness � has

a positive e¤ect on the expected gains from trade in the goods market through an

increase in workers�probability of trade. This means that imposing the standard

Hosios condition in the labor market would result in under-entry of vacancies and

ine¢ ciently high unemployment. Since Berentsen et al. (2011) use Nash bargaining

to determine wages and impose the standard Hosios condition in the labor market to

calibrate their model, this may be quantitatively important.

3.2 Many-on-one meetings and competing auctions

We now consider two examples of environments that feature many-on-one meetings

(where many buyers may meet one seller) and auctions. In a competing auctions en-

vironment, a large number of sellers compete to attract buyers by posting auctions.18

18Following the seminal work of Peters and Severinov (1997), recent papers using competing
auctions include Albrecht, Gautier, and Vroman (2012); Albrecht et al. (2014); Albrecht, Gautier,
and Vroman (2016); Kim and Kircher (2015); Lester, Visschers, and Woltho¤ (2015); Mangin (2017).
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Such an environment features the selection channel because the auction mechanism

enables sellers to �select�the buyer with the highest valuation. The expected match

�output� y(�) is increasing in the market tightness because more buyers per seller

implies a greater expected value of the highest valuation.

3.2.1 Labor market: competing auctions with vacancy entry

Consider the labor market environment in Mangin (2017).19 Workers are identical

sellers who post reservation wages to attract �rms and then auction their labor using

second-price auctions. Firms are ex ante identical buyers who pay a cost c > 0 to

enter and search for workers. The labor market tightness is � � v=u; the ratio of

vacancies or �rms to unemployed workers. The meeting technology is Poisson and

Pn(�) =
�ne��

n!
is the probability that n �rms approach a given worker. The matching

probability for workers is m(�) = 1� e��.

Firms�valuations x of workers�labor are match-speci�c productivity draws that

are private information. Valuations are drawn ex post (i.e. after meetings) indepen-

dently from a distribution with cdf G with density g = G0 > 0, �nite mean, and

support X = [x0;1) � R+.
It can be shown that the distribution of output across all matches has pdf

(70) f(x; �) =
�g(x)e��(1�G(x))

1� e��

and the expected match output is given by

(71) y(�) =

R1
x0
�g(x)e��(1�G(x))xdx

1� e��
:

Mangin (2017) proves that y0(�) > 0 for all � 2 R+ if G is well-behaved, i.e. if it

satis�es a mild regularity condition. Therefore, the output externality from vacancy

creation is always positive. Intuitively, a higher number of vacancies per unemployed

worker allows workers to be more selective, increasing labor productivity.

We can now apply Proposition 3. If EG(x) � z > c, Assumption 2 holds and we

19Mangin and Sedláµcek (2018) extends this model to a dynamic economy with aggregate shocks.
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have constrained e¢ ciency of vacancy entry if and only if the equilibrium �� satis�es

(72) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z } :
�rms� surplus share

Mangin (2017) shows that when wages are determined through auctions, the equilib-

rium �� satis�es a condition that can be shown to be equivalent to (72). In the limit

as � ! 1, �rms�surplus share converges to the tail index �G of the distribution G,
where �G > 0 only if G has unbounded upper support.20 In general, the generalized

Hosios condition holds endogenously and we have constrained e¢ cient vacancy entry.

In the special case where y(�) = �y 2 R+, we recover the large economy version of
the directed search model found in Julien, Kennes, and King (2000), which is closely

related to Burdett, Shi, and Wright (2001). In this special case, the standard Hosios

condition holds endogenously and we therefore have constrained e¢ ciency.

3.2.2 Business-stealing: competing auctions with seller entry

Albrecht et al. (2014) examines the e¢ ciency of seller entry in a competing auc-

tions environment. The authors consider both ex ante and ex post buyer heterogene-

ity, as well as seller heterogeneity, and they prove that seller entry is always e¢ cient.

In particular, Albrecht et al. (2014) identi�es a negative externality from seller entry

called the business-stealing externality. When an additional seller enters, the seller

�steals� potential buyers from existing sellers, thereby reducing the expected sur-

plus for those sellers. Although they do not explicitly identify it, the generalized

Hosios condition applies in their setting and it is the fact that this condition holds

endogenously that ensures e¢ ciency.

Consider a simple version of their model featuring identical sellers with reservation

value z = 0: Buyers are ex ante identical but heterogeneous ex post. Sellers pay a

cost � to enter and attract buyers by posting second-price auctions with reserve

prices. The buyer-seller ratio is � � NB=NS. The meeting technology is Poisson and

Pn(�) =
�ne��

n!
is the probability that n buyers approach a given seller. The matching

probability for sellers is m(�) = 1� e��.

Buyers�valuations x are private information and are drawn ex post (i.e. after

20The fact that G has unbounded upper support is thus important. See Proposition 2 in Mangin
(2017). The tail index is a measure of fatness of the tails of the distribution G.
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meetings) independently from a distribution with cdf G, density g = G0 > 0; and

support X = [0; 1].

The distribution of valuations of successful buyers has pdf

(73) f(x; �) =
�g(x)e��(1�G(x))

1� e��

and the expected valuation of a successful buyer is given by

(74) y(�) =

R 1
0
�g(x)e��(1�G(x))xdx

1� e��
:

We can now directly apply Proposition 1. If EG(x) > c, then Assumption 2 holds

and we have constrained e¢ ciency of seller entry if and only if the equilibrium ��

satis�es the generalized Hosios condition for seller entry:

(75) 1� �m(�)| {z }
matching elasticity

� �s(�)| {z }
surplus elasticity

=
�

m(�)s(�)| {z }
sellers� surplus share

:

Albrecht et al. (2014) show that an equivalent condition holds endogenously in this

environment, and we therefore have constrained e¢ ciency of seller entry.21

The output externality that arises in Example 3.2.1 also appears in Albrecht et al.

(2014) due to the selection channel. Through the auction mechanism, sellers choose

to trade with the buyer who has the highest valuation. From Example 3.2.1, we

know that y0(�) > 0 if the distribution G is well-behaved. Importantly, this is a

negative externality with regard to seller entry since � = NB=NS and thus y(:) is

decreasing in the number of sellers. When there is a �xed number of buyers, more

seller entry implies fewer buyers for each seller, thereby reducing the power of the

selection channel.

The business-stealing externality is closely related to this negative output external-

ity. Consider the expected surplus per seller, �(�) = m(�)s(�). The business-stealing

externality re�ects the fact that �0(�) > 0 and thus the expected surplus per seller is

21In Albrecht et al. (2014), the planner maximizes the total social surplus, �(�)NS � �NS , where
�(�) is the expected surplus per seller. The social surplus per buyer is 
B(�) = �(�)=� � �=�
and the �rst-order condition for the planner�s problem is 
0B(�) = �0(�)=� � �(�)=�2 + �=�2 = 0:

Rearranging, the e¢ cient �P satis�es 1 � ��(�) = �=�(�) where ��(�) � �0(�)�=�(�). Since the
surplus per seller is �(�) = m(�)s(�), we have ��(�) = �m(�) + �s(�), which is equivalent to (75).
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decreasing in NS. In fact, since �(�) = m(�)s(�), the �business-stealing�e¤ect can

be decomposed into two e¤ects: the e¤ect on sellers�matching probability m(�); and

the e¤ect on the expected match surplus s(�): Both e¤ects are clearly re�ected in the

generalized Hosios condition via the matching elasticity and the surplus elasticity.

3.3 Other examples

Appendix B extends the competitive search (price posting) approach of Moen

(1997) to an environment where the expected match output depends on the market

tightness. Since the generalized Hosios condition holds endogenously in this economy,

competitive search with price posting provides a way of decentralizing the constrained

e¢ cient allocation in environments where Proposition 1 applies and meetings are

bilateral, such as Example 3.1. (In environments where Proposition 1 applies and

meetings are many-on-one or multilateral, competitive search (auctions) decentralizes

the constrained e¢ cient allocation, as seen in Example 3.2.)

Appendix C presents two related examples. The �rst example is a Diamond-

Mortensen-Pissarides (DMP) style model with bilateral meetings and job acceptance

decisions. Since the cut-o¤productivity for accepting a match depends on the market

tightness, labor productivity also depends on the market tightness. It is well known

that the standard Hosios condition characterizes e¢ cient entry in this environment.

We show that, in fact, the generalized Hosios condition applies but it reduces to the

standard Hosios condition simply because the positive e¤ect of vacancy entry on the

expected match surplus and the negative e¤ect of vacancy entry on the job acceptance

probability exactly o¤set each other.

The second example in Appendix C features �rms that are ex ante heterogeneous

with respect to productivity. Since �rms�entry decisions are a¤ected by the probabil-

ity of hiring and therefore the market tightness, labor productivity is also a¤ected by

the market tightness and the generalized Hosios condition is necessary for constrained

e¢ ciency. This example is related to the model of labor force participation found in

Albrecht, Navarro, and Vroman (2010). (In a follow-up paper to the present one,

Julien and Mangin (2017) applies and extends the generalized Hosios condition to

the environment in Albrecht et al. (2010) with labor force participation.)

Appendix D shows that competitive search does not always decentralize the con-

strained e¢ cient allocation in environments that require the generalized Hosios con-
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dition for e¢ ciency. We develop a dynamic model of the market for referrals that

is inspired by the model of word-of-mouth communication in Campbell, Leister, and

Zenou (2017). Consumers cannot directly observe �rms�quality, but they can pur-

chase �referrals�. Proposition 1 does not apply directly in this environment since

there is an additional law of motion for the distribution of traded goods� quality.

However, we show that the generalized Hosios condition is still necessary for con-

strained e¢ ciency. With competitive search (price posting), the market internalizes

both the search externalities and the direct component of the output externality (i.e.

the impact of referrals on the average quality of goods traded in the current period).

However, there is an additional externality �a dynamic composition externality �

that is not internalized. Consumers do not internalize the e¤ect of their decisions

on future consumers through the impact of referrals on the dynamics of the quality

distribution. As a result, competitive search does not deliver e¢ ciency.22

4 Conclusion

This paper generalizes the well-known Hosios (1990) condition that characterizes

e¢ cient entry in search-and-matching models. We extend this simple rule to dynamic

search environments where the expected match output depends on the market tight-

ness. Such environments give rise to a novel externality �the output externality �that

is not captured by the standard Hosios condition. To ensure constrained e¢ ciency,

markets must internalize the e¤ect of entry on both the number of matches created

and the average value created by each match. We show that this occurs precisely

when buyers�surplus share equals the matching elasticity plus the surplus elasticity.

We call this intuitive condition the �generalized Hosios condition�. When it holds,

agents are fully compensated for the e¤ect of entry on both match creation and sur-

plus creation. In search-theoretic models of the labor market, for example, vacancy

entry and unemployment are constrained e¢ cient only when �rms are compensated

for the e¤ect of job creation on both employment and labor productivity.

22This dynamic externality is similar in �avor to that found in Guerrieri (2008), which develops a
dynamic competitive search model with informational asymmetries. In that paper, the ine¢ ciency
arises because �rms do not internalize the e¤ect of their decisions on the outside options of workers
hired in earlier periods. In our example of the market for referrals, consumers do not internalize the
e¤ect of their decisions on consumers that trade in future periods.
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Appendix A: Omitted proofs

Proof of Lemma 2. In steady state, we have the following Bellman equations:

(76) rUB = �c+
m(�)

�
(VB � UB);

(77) rVB = y(�)� w(�) + �(UB � VB);

(78) rUS = z +m(�)(VS � US);

(79) rVS = w(�) + �(US � VS);

where w(�) is the expected transfer. Using s(�) = VB + VS � UB � US; we obtain

(80) r(VB + VS) = y(�)� �s(�):

Setting UB = 0 and substituting back into s(�) = VB + VS � US yields s(�) =

(y(�)� rUS)=(r + �): Next, using (78) and (79), we �nd that

(81) US =
z(r + �) +m(�)w(�)

r(r + � +m(�))
;

and, substituting into s(�) = (y(�)� rUS)=(r + �), we obtain

(82) s(�) =
y(�)� z +m(�)

�
y(�)�w(�)

r+�

�
r + � +m(�)

:

Now (76) implies VB = c�=m(�) when UB = 0. Substituting into (77), we have

(83)
y(�)� w(�)

r + �
=

c�

m(�)
:

Finally, substituting (83) into (82), we obtain expression (39). �
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Derivation of laws of motion in continuous time. The law of motion for
the unemployment rate ut in discrete time is

(84) ut+dt � ut = �dt(1� ut)�m(�t)dt ut

and the law of motion for average match output yt is given by

(85) yt+dt =
(1� �dt)(1� ut)yt +m(�t)dt uty(�t)

1� ut+dt
:

De�ning ~xt � (1� ut)yt, we have

(86) ~xt+dt � ~xt = ��dt~xt +m(�t)dt uty(�t):

In continuous time (dt! 0), the laws of motion for ut and ~xt are

(87) _ut �
dut
dt
= lim

dt!0

�
ut+dt � ut

dt

�
= �(1� ut)�m(�t)ut

and

(88) _xt �
d~xt
dt
= lim

dt!0

�
~xt+dt � ~xt

dt

�
= �(�~xt �m(�t)uty(�t)):

Also, since ~xt � (1� ut)yt, we have

(89) _xt = � _utyt + (1� ut) _yt

and, rearranging, we have

(90) _yt =
_xt + _utyt
1� ut

:

Substituting in _xt and _ut from (88) and (87), and using ~xt � (1� ut)yt; leads to:

(91) _yt =
m(�t)ut(y(�t)� yt)

1� ut
:
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Appendix B: Competitive search (posting)

It is well-known that competitive search equilibrium is typically (but not always)

constrained e¢ cient in the sense that it decentralizes the planner�s allocation (Shimer,

1996; Moen, 1997). In competitive search models where the expected match output is

constant, agents simply trade o¤prices against the probability of trade. The fact that

competitive search allows agents to do so is what delivers e¢ ciency. In environments

where the expected match output depends on the market tightness, agents trade o¤

prices against both the probability of trade and the expected match surplus if trade

occurs. Again, the fact that agents can do so is what delivers e¢ ciency.

Consider a simple competitive search model in the spirit of Moen (1997). There

is a continuum of submarkets indexed by i 2 [0; 1] and free entry of vacancies at cost
c > 0: Workers in submarket i post the same wage wi and face the same market

tightness �i, the ratio of vacancies to workers in that submarket. Firms�search is

directed by observing the posted wages and deciding which submarkets to enter.

Within each submarket, workers and �rms are matched according to a frictional

meeting technology. Matching probabilities for workers and �rms are m(�i) and

m(�i)=�i respectively, where m(:) satis�es Assumption 1.

In any submarket, match output x 2 X = [xmin; xmax] � R+ where xmax 2 R+ [
f1g. In submarket i, match output is an i.i.d. draw from a probability distribution

with pdf f(x; �i) and a �nite mean. Let y(�i) �
R xmax
xmin

xf(x; �i)dx, the expected match

output. The �ow payo¤ for unmatched sellers is z � 0 and we assume that xmin > z.

The expected match surplus in submarket i is s(�i) = y(�i)� z.

The expected payo¤ for �rms in submarket i with wage wi and tightness �i is

(92) �(�i; wi) =
m(�i)

�i
(y(�i)� wi);

and the expected payo¤ for workers in submarket i with market tightness �i is

(93) V (�i; wi) = m(�i)wi + (1�m(�i))z:

Workers in submarket i choose a wage w�i and market tightness �
�
i that solve

(94) max
wi;�i2R+

(m(�i)wi + (1�m(�i))z)
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subject to �(�i; wi) � c and �i � 0 with complementary slackness. To induce partic-
ipation by �rms in submarket i, i.e. �i > 0, the constraint �(�i; wi) � c is binding:

(95)
m(�i)

�i
(y(�i)� wi) = c:

Solving for wi as a function of �i using (95), we obtain

(96) w(�i) = y(�i)�
c�i
m(�i)

:

Choosing a wage w�i is thus equivalent to choosing a market tightness �
�
i where

(97) ��i = arg max
�i2R+

(m(�i)w(�i) + (1�m(�i))z)

and using (96), this is equivalent to

(98) ��i = arg max
�i2R+

(m(�i)y(�i) + (1�m(�i))z � c�i) :

The equilibrium ��i satis�es the �rst-order condition

(99) m0(�i)s(�i) +m(�i)s
0(�i) = c;

or, equivalently, the equilibrium ��i solves

(100) �m(�i)| {z }
matching elasticity

+ �s(�i)| {z }
surplus elasticity

=
c�i

m(�i)s(�i)| {z }
�rms�surplus share

:

The generalized Hosios condition holds endogenously within each active submarket

i. If we consider a symmetric equilibrium in which �rms are indi¤erent across sub-

markets and all workers post the same wage, then ��i = �� for all submarkets i. If

Assumption 2 holds, then Proposition 1 tells us that the equilibrium level of vacancy

entry is constrained e¢ cient. While we consider only a static model here, the same

result holds in dynamic environments where Proposition 1 applies.23

23Proof for dynamic economy is available on request.

33



Appendix C: Constrained planner

The expected match output may depend on the market tightness when agents

make a decision about whether or not to enter the market, or whether to accept or

reject a match, and that decision depends on the market tightness. In the next two

examples, we consider such environments. Importantly, we assume that in choosing

the market tightness �, the planner is constrained not only by the matching frictions

but also by the entry or acceptance decision rules that agents would choose in the

decentralized equilibrium. This is because the function y(:), or equivalently, the dis-

tribution of match output f(x; �), arises as a consequence of these entry or acceptance

decisions. Since the planner is restricted to take both the matching technology m(:)

and the output technology y(:) as given, the planner is constrained by these.24

Endogenous job acceptance

Consider the steady state of a continuous-time dynamic Diamond-Mortensen-

Pissarides (DMP) style environment with a job acceptance decision.25 Workers and

�rms discount future payo¤s at a rate r > 0. The market tightness is � = v=u and

workers�arrival rate for meetings is m(�). After workers and �rms meet, a match-

speci�c productivity x is drawn from a distribution with cdf G and density g = G0

where g(x) > 0 for all x 2 X = [0; 1]. After observing the productivity x, workers

and �rms decide whether to accept the match. There is free entry of vacancies at

cost c > 0 and matches are destroyed at an exogenous rate � > 0. The �ow value of

non-market activity is z � 0:
A job with match-speci�c productivity x is acceptable to both worker and �rm

if and only if the match surplus S(x) � 0:26 There is a cut-o¤ productivity x� such
that all jobs with productivity x � x� are acceptable to both workers and �rms. We

write x�(�) since the cut-o¤ productivity will depend on the value of unemployment

US and therefore on the market tightness. The probability a match is acceptable is

a(�) = 1�G(x�(�)) and the probability a worker is hired is m̂(�) � a(�)m(�).

24In these two examples, the constrained e¢ ciency is �doubly constrained� since the planner�s
problem is solved subject to an additional constraint which is one of the equilibrium conditions.
25The classic references are Mortensen and Pissarides (1994) and Pissarides (2000).
26The productivity-speci�c match surplus S(x) is de�ned by S(x) � VS(x)+VB(x)�US�UB where

the Bellman equations for VS and VB found in Appendix A are adjusted to be productivity-speci�c.
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The distribution of output across all realized (i.e. accepted) matches has pdf

(101) f(x; �) =
g(x)

1�G(x�(�))

and the expected match output across all (accepted) matches is

(102) y(�) =

Z 1

x�(�)

xg(x)

1�G(x�(�))
dx;

where the equilibrium cut-o¤ productivity x�(�) is given by equating S(x�) = 0.

With free entry of �rms, it can be shown that S(x) = x�rUS
r+�

, so we have x�(�) = rUS.

Clearly, since the cut-o¤ productivity x�(�) depends on the market tightness, the

expected match output y(�) also depends on the market tightness.

The planner chooses �P to maximize the total social surplus net of entry costs.

Importantly, we assume the planner uses the same cut-o¤ productivity rule as in the

equilibrium, i.e. x�(�) = rUS. Solving the planner�s problem yields the generalized

Hosios condition.27 In particular, the social optimum �P must satisfy

(103) �m̂(�) + �ŝ(�) =
c�

m̂(�)ŝ(�)
:

where m̂(�) � a(�)m(�) and ŝ(�) is the expected match surplus for accepted matches.28

Now, condition (103) is equivalent to

(104) �m(�) + �a(�) + �ŝ(�) =
c�

m̂(�)ŝ(�)

where �a(�) � a0(�)�=a(�). Using Proposition 3 (adjusted), we have

(105) �ŝ(�) =
y0(�)�

(r + �)ŝ(�)
;

and di¤erentiating a(�) = 1�G(x�(�)) yields

(106) �a(�) = �
g(x�)dx

�

d�
�

1�G(x�)
:

27All of the results for this example can be easily obtained by modifying the proofs of Lemma 2,
as well as Propositions 3 and 4, so that m(�) is replaced by m̂(�) = a(�)m(�) throughout.
28The adjusted steady state expected match surplus is given by ŝ(�) = y(�)�z+c�

r+�+m̂(�) :
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Using (106) and (105), and the fact that

(107) y0(�) = (y(�)� x�(�))
g(x�)dx

�

d�
�

1�G(x�)
;

we obtain the following:

(108) �a(�) + �ŝ(�) =

�
y(�)� x�(�)

(r + �)ŝ(�)
� 1
�
g(x�)dx

�

d�
�

1�G(x�)
:

Combining x�(�) = rUS with the fact that (r + �)ŝ(�) = y(�) � rUS, we have (r +

�)ŝ(�) = y(�) � x�(�). Substituting into (108), we obtain �a(�) + �ŝ(�) = 0, and

substituting into (104), an e¢ cient �P > 0 must satisfy

(109) �m(�) =
c�

m̂(�)ŝ(�)
:

While the generalized Hosios condition (103) does indeed apply here, the standard

Hosios condition is su¢ cient for constrained e¢ ciency.29 Intuitively, this is because

there are two o¤setting e¤ects of an increase in the market tightness �: First, there

is an increase in the cut-o¤ productivity x�, which decreases the job acceptance

probability a(�) since workers are more selective. Second, the increase in x� leads to

an increase in the expected match surplus ŝ(�) for acceptable matches, since these

matches have higher productivity. The fact that these two e¤ects exactly o¤set each

other is re�ected in the fact that �a(�) + �ŝ(�) = 0; which implies the generalized

Hosios condition reduces to the standard Hosios condition.

Ex ante heterogeneity and market composition

When there is ex ante heterogeneity among buyers or sellers, dependence of the

expected match output on market tightness can arise naturally through market com-

position. If the market tightness in�uences the individual entry decisions of buyers

or sellers that are ex ante heterogeneous with respect to characteristics that a¤ect

match output, then average output per match will depend on market tightness.30 We

29Note that Corollary 1 does not directly apply here since it assumes that all matches are accepted.
30For example, Albrecht et al. (2010) consider an environment where workers are ex ante het-

erogeneous with respect to their market productivity. There is both �rm entry and a labor force
participation decision. Related literature includes Albrecht, Navarro, and Vroman (2009), Gavrel
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call this the composition channel.

Suppose there is a measure u of unemployed workers and a �xed measure M of

�rms that may choose to search. Firms�productivities x are distributed according

to a twice di¤erentiable distribution with cdf G and density g where G(0) = 0 and

g(x) > 0 for all x 2 X = [0; 1]. Firms learn their own productivity before deciding

whether to pay the entry cost c > 0 and search. Expected wages paid by a �rm with

productivity x is w(x; �) � x.

Let v be the measure of searching �rms and de�ne � � v=u. Meetings are bi-

lateral and the probabilities of matching for workers and �rms are m(�) and m(�)=�

respectively, where we assume m(:) satis�es Assumption 1.

A �rm with productivity x chooses to search for a worker if and only if

(110)
m(�)

�
(x� w(x; �)) > c:

If @w(x; �)=@x < 1, there is a unique cut-o¤ productivity x�(�) such that �rms enter

if and only if x � x�(�).31 The distribution of output across matches has pdf

(111) f(x; �) =
g(x)

1�G(x�(�))

and the expected match output, or labor productivity, is given by

(112) y(�) =

Z 1

x�(�)

xg(x)

1�G(x�(�))
dx:

It can be veri�ed that x� is strictly increasing in � provided that @w(x; �)=@x < 1.

This is intuitive: as the market tightness increases, the probability of �nding a worker

is lower so only high productivity �rms choose to pay the cost c and search. At the

same time, the average match output y(�) is increasing in the cut-o¤ productivity x�.

Therefore, y0(�) > 0 for all � 2 R+ and the output externality is positive.
Suppose the planner chooses a market tightness � to maximize the total social

surplus minus the total entry costs. As in the previous example, we assume the

planner uses the same cut-o¤ productivity rule x�(�) as in the decentralized economy.

(2011), Charlot, Malherbet, and Ulus (2013), and Masters (2015). In a follow-up paper to the
present one, Julien and Mangin (2017) applies and extends the generalized Hosios condition to the
environment in Albrecht et al. (2010).
31This is true, for example, if wages are determined by Nash bargaining with � < 1.
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If Assumption 2 is satis�ed, there exists a unique social optimum �P and we have

constrained e¢ ciency if and only if �� satis�es the generalized Hosios condition in

Proposition 1.32 Since y0(��) > 0, Corollary 1 implies that there is under-entry of

�rms under the standard Hosios condition.

Appendix D: Endogenous quality dynamics

We now present an example that illustrates how competitive search may not always

endogenize the generalized Hosios condition. In the model we present, an endogenous

quality distribution arises through the possibility of �referrals�. The model is closely

related to �but di¤erent from �Campbell et al. (2017), which presents a dynamic

model of consumer sales with word-of-mouth communication through social networks.

In our setting, the key variable � is the ratio of referrals to consumers and the

endogenous quality distribution is the probability that a traded good is low quality,

i.e. the market share of low-quality �rms. We use competitive search to model the

market for referrals (not goods) and consider whether the entry of sellers of referrals

(not �rms) is constrained e¢ cient.

There is a �xed measure of consumers who seek to purchase one unit of a durable

good. After purchasing the good, consumers exit the market and are replaced by

new consumers. Goods are produced by a large number of competitive �rms of two

types: high quality and low quality. The share of �rms that produce low quality

goods is � 2 (0; 1).33 The low-quality good has quality xL and the high-quality good
has quality xH > xL. The price of the good is p for both types of �rm.

Consumers cannot directly observe �rms�quality, but they can receive referrals. A

single referral tells a consumer about the quality of a good purchased in the previous

period. In each period t 2 f0; 1; :::g, the expected number of referrals per consumer is
�t (which is endogenous) and Pn(�t) is the probability a consumer receives n referrals

at time t. This is a kind of �meeting technology�which matches referrals with con-

sumers. If a consumer receives at least one referral, they pick the �best�referral and

then choose whether to purchase from that �rm or instead choose a �rm randomly.34

32For example, if G is uniform on [0; 1] and wages are determined by Nash bargaining, Assumption
2 holds provided that c < 1=2 and � < 1=2.
33Since our focus is on the market for referrals, we do not endogenize the entry of low and high

quality �rms as in Campbell et al. (2017) but instead assume that � is exogenous.
34If the consumer is indi¤erent between two referrals, they pick one at random.
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If a consumer receives no referrals, they purchase the good from a random �rm, i.e.

they buy a low-quality good with probability �.

Let �t denote the market share of low-quality �rms, i.e. the probability that a

good traded in period t is low quality. Low-quality goods are purchased only if all n

of a consumer�s referrals are to low-quality �rms (which occurs with probability �nt )

and the consumer picks a low-quality �rm when choosing randomly (which occurs

with probability �). We therefore obtain the following law of motion for �t:

(113) �t+1 = �

1X
n=0

Pn(�t+1)�
n
t

where �0 = � 2 (0; 1). If Pn(�) is Poisson, i.e., Pn(�) = �ne��

n!
, we have

(114) �t+1 = �e��t+1(1��t):

Both the selection channel and an additional channel are present. The selection

channel implies that the average quality of a traded good is increasing in the number

of referrals per consumer �t since consumers can be more selective. An additional

channel, which is a kind of dynamic composition channel, ensures that the quality

distribution �t itself evolves over time. This is because the market composition, i.e.

the composition of the pool of referrals, depends on the previous period�s �t since

referrals are only drawn from traded goods.35

Suppose there is a large number of potential entrants who can pay a cost c >

0 to acquire information about a random good purchased in the previous period.

This information can be sold to consumers as a �referral�. In the market for selling

referrals, consumers post referral fees and commit to paying a single fee for the best

referral they receive. Similarly to the competitive search environment in Appendix

B, consumers form a submarket i by choosing a referral fee r�i and a ratio of referrals

35In terms of our earlier notation, the law of motion for the distribution of quality across �matches�,
i.e. trades which occur when a consumer receives at least one referral, is given by

(115) ft+1(xL; �t+1) =
�
P1

n=1 Pn(�t+1)�
n
t

1� P0(�t+1)
:

Since the distribution ft evolves over time and does not depend only on the current period�s market
tightness �t, Propositions 1 and 2 do not directly apply in this setting. However, we will show that
the generalized Hosios condition is also a necessary condition for e¢ ciency in this environment.
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to consumers ��i to maximize their expected payo¤:

(116) m(�i)(y(�i; �)� ri � p) + (1�m(�i))(y� � p)

subject to the following condition for sellers of referrals:

(117)
m(�i)

�i
ri � c;

and �i � 0, with complementary slackness. Here, m(�i) = 1� e��i is the probability

a consumer receives at least one referral, m(�i)=�i is the probability a seller is paid

a referral fee, y(�i; �) is the expected quality of a good purchased if the consumer

receives at least one referral, and y� = �xL + (1 � �)xH is the expected quality of a

good purchased from a random �rm.

Using (117), the choice of a consumer in submarket i is equivalent to

(118) ��i = arg max
�i2R+

(m(�i)(y(�i; �)� y�) + y� � p� c�i)

and ��i satis�es the �rst-order condition

(119) m0(�i)s(�i) +m(�i)
@y(�i; �)

@�i
= c

where the expected match surplus is s(�i) = y(�i; �)� y�, i.e. the di¤erence between
the expected quality in submarket i with and without receiving at least one referral.

In symmetric equilibrium, ��i = �� for all submarkets i and �� satis�es

(120) �m(�)| {z }
matching elasticity

+
@y(�;�)
@�

�

s(�)| {z }
direct surplus elasticity

=
c�

m(�)s(�)| {z }
surplus share of referral sellers

as well as the steady state condition

(121) � = �e��(1��):

If � < 1
2
, there exists a unique steady state equilibrium (��; ��) where �� 2 (0; 1).36

Now consider a planner who can directly choose the number of referrals per con-

36A detailed derivation of the steady state equilibrium can be found below.
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sumer �: Importantly, while consumers take the distribution of quality � as given,

the planner takes the e¤ect of � on � into account. In the proof below, we solve

the dynamic planner�s problem subject to the law of motion for �. The resulting

steady state condition is identical to the one obtained when the planner maximizes

the steady state social surplus per consumer,

(122) 
(�) = m(�)(y(�; �(�))� y�) + y� � c�;

where �(�) is given by (121) and

(123) y(�; �(�)) =
(1� �e��(1��(�)))xH + �e��(1��(�))xL � e��y�

1� e��
:

Using s(�) = y(�; �(�))� y�, the planner�s �rst-order condition is equivalent to

(124) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z };
surplus share of referral sellers

which is just the generalized Hosios condition. Di¤erentiating s(�), we obtain

(125) s0(�) =
@y(�; �(�))

@�| {z }
direct output externality

+
@y(�; �(�))

@�
�0(�)| {z }

indirect output externality

and thus we have e¢ ciency only if �� satis�es

(126) �m(�)| {z }
matching elasticity

+
@y(�;�)
@�

�

s(�)
+

@y(�;�)
@�

�0(�)�

s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z }
surplus share of referral sellers

:

Comparing (126) with (120), it is clear that the economy is not e¢ cient. The

decentralized market internalizes both the search externalities and the direct �output

externality�, i.e. the direct e¤ect of � on the quality of traded goods via the selection

channel. However, there is an additional externality arising from the use of referrals.

This is re�ected in the term @y(�;�(�))
@�

�0(�), which captures the indirect or dynamic

�output externality�, i.e. the indirect e¤ect of � via the dynamic composition channel.

Since @y(�;�(�))
@�

< 0 and the market share of low-quality �rms is decreasing in the
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number of referrals per consumer at any equilibrium ��, i.e. �0(��) < 0, this is a

positive externality that is not internalized by the decentralized economy. Therefore,

the equilibrium number of referrals is ine¢ ciently low.

Proofs for Appendix D

Equilibrium. In period t, the expected payo¤ for a seller of a referral in submar-
ket i with referral fee ri;t and market tightness �i;t is

(127) �(�i;t; ri;t) =
m(�i;t)

�i;t
ri;t � c

and the expected payo¤ for consumers in submarket i is

(128) V (�i;t; ri;t) = m(�i;t)(y(�i;t; �t�1)� ri;t � p) + (1�m(�i;t))(y� � p)):

Consumers in submarket i choose a referral fee r�i;t and market tightness �
�
i;t that

maximize V (�i;t; ri;t) subject to �(�i;t; ri;t) � c and �i;t � 0; with complementary

slackness. To induce participation by sellers in submarket i, i.e. �i;t > 0, the con-

straint �(�i;t; ri;t) � c is binding:

(129)
m(�i;t)

�i;t
ri;t = c:

Using (129) to replace ri;t in V (�i;t; ri;t), the choice of a consumer in submarket i is

(130) ��i;t = arg max
�i;t2R+

(m(�i;t)(y(�i;t; �t�1)� y�) + y� � p� c�i;t):

Di¤erentiating with respect to �i;t, the �rst-order condition of this problem is

(131) m0(�i;t)(y(�i;t; �t�1)� y�) +m(�i;t)
@y(�i;t; �t�1)

@�i;t
� c = 0:

In symmetric equilibrium, ��i;t = ��t for all submarkets i and �
�
t satis�es

(132) m0(�t)(y(�t; �t�1)� y�) +m(�t)
@y(�t; �t�1)

@�t
= c:
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In steady state, �t = �t�1 = � and �t = �t�1 = � and any equilibrium (��; ��) satis�es

(133) �m(�)| {z }
matching elasticity

+
@y(�;�)
@�

�

s(�)| {z }
direct surplus elasticity

=
c�

m(�)s(�)| {z }
surplus share of referral sellers

where the expected match surplus is s(�) = y(�; �)� y�.

To solve for the equilibrium, we use the fact that the average quality of a traded

good in period t is given by

(134) (1� �t)xH + �txL = g(�t; �t�1) + (1�m(�t))y�

where g(�t; �t�1) � m(�t)y(�t; �t�1). Using the fact that �t = �e��t(1��t�1),

(135) g(�t; �t�1) = xH � ��xe��t(1��t�1) � e��ty�

where �x = xH � xL. The �rst-order condition (132) is equivalent to

(136)
@g(�t; �t�1)

@�t
�m0(�t)y� � c = 0:

Di¤erentiating (135) with respect to �t, this is equivalent to

(137) (1� �t�1)��xe
��t(1��t�1) � c = 0

and the second-order condition is

(138) �(1� �t�1)
2��xe��t(1��t�1) < 0.

Using the fact that �t = �e��t(1��t�1), this is equivalent to

(139) (1� �t�1)�t =
c

�x
:

In steady state, �t = �t�1 = � and �t = �t�1 = � and any equilibrium � satis�es

(140) ��2 + �� c

�x
= 0

as well as � = �e��(1��): Since � 2 (0; 1), there are two solutions � 2 (0; 1) provided
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that c
�x

< 1
4
and one solution if c

�x
= 1

4
. The two solutions are � = 1

2
�
q

1
4
� c

�x
:

Since � < � for � > 0, if � < 1
2
we obtain a unique steady state equilibrium:

(141) �� =
1

2
�
r
1

4
� c

�x

and

(142) �� =
1

1� �
ln
��
�

�
:

Planner. Given �0 = � 2 (0; 1), the planner chooses f�tg1t=1 to maximize the
total discounted social surplus per consumer:

(143) 
(f�tg1t=1) =
1X
t=1

�t (m(�t)y(�t; �t�1) + (1�m(�t))y� � c�t)

subject to �t � 0 and the law of motion for �t :

(144) �t = �e��t(1��t�1)

The Lagrangian for this problem is

(145) L =
1X
t=1

�t (m(�t)(y(�t; �t�1)� y�) + y� � c�t) + �t(�t � �e��t(1��t�1)):

The �rst-order conditions are:

(146)
@L
@�t

= �t(m0(�t)(y(�t; �t�1)�y�)+m(�t)
@y(�t; �t�1)

@�t
�c)+�t(1��t�1)�e��t(1��t�1) = 0

(147)
@L
@�t�1

= �t�1 + �tm(�t)
@y(�t; �t�1)

@�t�1
� �t�t�e

��t(1��t�1) = 0

(148)
@L
@�t

= �t � �e��t(1��t�1) = 0
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In steady state, �t+1 = �t = � and �t+1 = �t = �, so we have

(149) �t(m0(�)(y(�; �)� y�) +m(�)
@y(�; �)

@�
� c) = ��(1� �)�e��(1��)

(150) �+ �tm(�)
@y(�; �)

@�
= ���e��(1��)

(151) � = �e��(1��)

Rearranging (149), we obtain

(152) � =
��t(m0(�)(y(�; �)� y�) +m(�)@y(�;�)

@�
� c)

(1� �)�e��(1��)
;

and rearranging (150) delivers

(153) � =
��tm(�)@y(�;�)

@�

1� ��e��(1��)
:

Equating (152) and (153) yields

(154)
m0(�)(y(�; �)� y�) +m(�)@y(�;�)

@�
� c

(1� �)�e��(1��)
=

m(�)@y(�;�)
@�

1� ��e��(1��)
:

Rearranging, and substituting in (151), we obtain

(155) m0(�)(y(�; �)� y�) +m(�)

�
@y(�; �)

@�
� @y(�; �)

@�

(1� �)�

1� ��

�
= c:

Implicitly di¤erentiating � = �e��(1��), we have �0(�) = �(1 � �)�=(1 � ��); and

substituting �0(�) into (155) yields

(156) m0(�)s(�) +m(�)

�
@y(�; �)

@�
+
@y(�; �)

@�
�0(�)

�
= c:

Rearranging (156), we obtain (126). This is a necessary condition for e¢ ciency.
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