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Abstract

When is entry efficient in markets with search and matching frictions? This
paper generalizes the well-known Hosios condition to dynamic search environ-
ments where the expected match output depends on the market tightness. En-
try is efficient when buyers’ surplus share equals the matching elasticity plus
the surplus elasticity (i.e. the elasticity of the expected match surplus with
respect to buyers). This ensures agents are paid for their contribution to both
match creation and surplus creation. In search-theoretic models of the labor
market, for example, vacancy entry is efficient only when firms are compensated
for the effect of job creation on both employment and labor productivity.
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1 Introduction

The well-known “Hosios condition” (Hosios, 1990) characterizes efficient entry in

I 'When there is entry of buyers, this

markets with search and matching frictions.
condition states that entry is efficient only when buyers’ share of the joint match
surplus equals the elasticity of the matching function with respect to buyers.? The
condition has proven to be widely applicable across a broad range of search-and-
matching models. For example, in the labor market, the Hosios condition tells us
when the level of vacancy creation and therefore the unemployment rate is efficient,
e.g. see Rogerson, Shimer, and Wright (2005). In monetary environments with seller
entry, such as Rocheteau and Wright (2005), the Hosios condition determines when
the level of seller entry and therefore the number of trades is efficient.

While the Hosios condition applies to a broad range of search models, it does not
always apply in settings where the expected match output — i.e. the expected value
of the distribution of output across matches — is a function of the market tightness
or buyer-seller ratio.> One example where this may occur is when sellers (or buyers)
face a choice among heterogeneous buyers (or sellers) in many-on-one or multilateral
meetings, e.g. the competing auctions environment in Albrecht, Gautier, and Vroman
(2014). Another example is when there are sequential markets and agents in the first
market face potential gains from trade in the second, e.g. the labor market and goods
market in Berentsen, Menzio, and Wright (2011).

In this paper, we provide a generalization of the Hosios condition that charac-
terizes efficient entry in a wide class of dynamic search-and-matching models where
the expected match output depends on the market tightness. This simple, intuitive
condition provides a unifying lens for understanding the efficiency of entry in a range
of search-and-matching models which may appear quite different on the surface.

Consider an environment with buyer entry. An equilibrium allocation is efficient
only when buyers are paid their marginal contribution to the social surplus. If the
expected match output is exogenous, buyers need only be paid for their effect on

match creation, i.e. on the total number of matches. In such environments, the

! This condition is sometimes called the “Hosios-Mortensen” condition. Early versions of it were
discussed in Mortensen (1982b), Mortensen (1982a), and Pissarides (1986).

2By efficiency, we mean constrained efficiency, i.e. the social planner is constrained by the same
frictions as the decentralized market economy.

3We use the term “match output” because our examples focus mainly on labor markets, but the
term output can be interpreted more broadly.



standard Hosios condition applies. If the expected match output is endogenous,
however, buyers must also be compensated for their effect on surplus creation, i.e. on
the expected value of the joint surplus created by each match. We show that entry
is efficient only when buyers’ surplus share equals the matching elasticity plus the
surplus elasticity (i.e. the elasticity of the expected match surplus with respect to
buyers). We call this the “generalized Hosios condition”.

When the standard Hosios condition obtains, markets internalize the search ex-
ternalities that arise through the frictional matching process. However, when the
expected match output is a function of the market tightness, a novel externality
arises: the output externality. Depending on the environment, this externality may
be either positive or negative. When the standard Hosios condition holds, the output
externality is not internalized and there may be either over-entry or under-entry rel-
ative to the efficient level. For example, in labor markets featuring Nash bargaining,
imposing the standard Hosios condition may lead to inefficiently high unemployment
because firms are not compensated for their effect on labor productivity. Only when
the generalized Hosios condition obtains are both the search externalities and the
output externality fully internalized by a market economy.

In the examples we consider, entry is typically efficient when prices are determined
by directed or competitive search — precisely because the generalized Hosios condition
holds endogenously. Competitive search allows agents to trade off prices against
both the probability of trade and the expected match surplus if trade occurs, thus
internalizing both the search externalities and the output externality.! In markets
where prices are determined by Nash bargaining, however, the generalized Hosios
condition does not hold and entry is generically inefficient. Importantly, efficiency
cannot simply be restored by imposing the generalized Hosios condition through a
particular choice of matching technology and bargaining parameter.® This is because
the expected match surplus is endogenous and we cannot assume the surplus elasticity
is constant. In this way, the generalized Hosios condition highlights the importance

of competitive search as a way of decentralizing the efficient allocation.

4Generally, competitive search is efficient because it enables agents to trade off prices against the
probability of trade. See the survey on directed and competitive search by Wright, Kircher, Julien,
and Guerrieri (2017). It is not always efficient, however, as shown in Guerrieri (2008).

’By contrast, the standard Hosios condition is often imposed when calibrating search models
with Nash bargaining by using a Cobb-Douglas matching technology and setting buyers’ bargaining
parameter equal to the constant matching elasticity, e.g. Shimer (2005).



Overview. In Section 2, we first provide a simple example to build intuition and
motivate our analysis. Next, we formulate the planner’s problem and present two
versions of our key result: the generalized Hosios condition. We first use the ap-
proach of Menzio and Shi (2011) to derive the condition in a discrete-time dynamic
environment. While the proof is simpler using this approach — and the condition
characterizes efficiency for the entire equilibrium path, not just the steady state —
it requires the assumption that match output is bounded. Next, we use an alterna-
tive approach to derive the result in a continuous-time environment. This approach
delivers a steady state version of the generalized Hosios condition that does not re-
quire the assumption that match output is bounded. We also provide a corollary that
determines when there is over- or under-entry under the standard Hosios condition.

Section 3 presents two examples. Section 3.1 considers the efficiency of job creation
in an environment that is inspired by the model of the goods market and labor market
in Berentsen et al. (2011). In this setting, the labor market tightness affects the
expected match “output” because it influences the expected gains from trade in the
goods market by affecting the goods market tightness and thus the probability of
trade. The output externality from vacancy entry is always positive. When wages
are determined by Nash bargaining, job creation is generically inefficient. However,
competitive search (wage posting) can decentralize the efficient allocation by ensuring
that the generalized Hosios condition holds endogenously.®

Section 3.2 discusses two related environments in which meetings are many-on-one
or multilateral. We first consider the efficiency of vacancy creation in the labor market
model of Mangin (2017), in which firms directly compete to hire workers and wages
are determined by auctions. Market tightness affects match output because greater
competition to hire workers allows workers to be more selective, thereby increasing
labor productivity. The output externality from vacancy entry is always positive.
Next, we discuss the efficiency of seller entry in the competing auctions environment
found in Albrecht et al. (2014). Market tightness affects match “output” because it
increases the expected value of the highest valuation among buyers who approach
a given seller. The output externality from seller entry is always negative because

greater seller entry decreases the buyer-seller ratio. In both examples, since prices are

6 Petrosky-Nadeau, Wasmer, and Weil (2018) also study efficiency in sequential labor and goods
markets. Their environment differs in a key respect: the labor market tightness does not directly
affect the expected match surplus in the labor market because buyers in the goods market are not
the same agents as workers.



determined by competitive search (auctions), the generalized Hosios condition holds
endogenously and the equilibrium level of entry is efficient.

The Appendix provides additional examples and extensions that we describe in
Section 3.3. One example, in particular, shows that competitive search does not
always decentralize the efficient allocation in environments where the generalized

Hosios condition is necessary for constrained efficiency.

2 Generalized Hosios Condition

To motivate our question and build intuition, we start with a simple example where
the expected match output depends on the market tightness. In Sections 2.1 and 2.2,
we then derive two general versions of our main results for dynamic economies.

Consider a static environment where firms are ex ante identical and all workers are
initially unemployed. All agents are risk-neutral. The measure of vacancies or firms is
v, the measure of unemployed workers is u, and the labor market tightness is § = v/u.
Meetings are many-on-one or multilateral (i.e. many firms can meet one worker).

Specifically, the probability that n firms meet a given worker is P, (f) and we assume
077,679
n!

the meeting technology is Poisson, i.e. P,(0) = . The matching probabilities for
workers and firms are therefore m(#) = 1 — e~? and m(#)/6 respectively.

After meetings occur, each worker draws an i.i.d. match-specific productivity x for
every firm he meets and then chooses to work for exactly one of them. Match output
re€ X ={xp,xg} C Ry, where z;, < zy and the probability of low productivity is
a € [0, 1]. The value of non-market activity is z > 0 and we assume z > z.

Suppose workers are hired by the firm they meet with the highest match-specific
productivity.” A worker only produces output z;, if all n firms he meets draw x, so
the probability f(zy;0) that a worker produces output =, (conditional n > 1) is

(1) flzr;0) = 27}0_1 ]]D;;((Z))an

"This will be true, for example, if wages are determined by either Nash bargaining or auctions.
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and f(zy;0) =1 — f(z1;0). Since P,(0) = ©2—, we have®
679(1704) 679
) flowit) =

The expected match output, or labor productivity, is
(3) y(0) = v + f(oy;0)(vg — 21).

While the distribution of match-specific productivities is exogenous, the distri-
bution of productivities across realized matches — i.e. matches actually chosen by
workers — is endogenous and depends on the market tightness 6. In the limit as
0 — 0, we have f(z;0) — «. However, for any 6 > 0, the probability f(zy;6) that a
worker produces output xy is strictly increasing in ¢, and the expected match output
y(0) is also strictly increasing 0, i.e. 3/(f) > 0. Intuitively, this is because a higher
number of vacancies per unemployed worker allows workers to be more selective. We
call this the selection channel.

What is the efficient level of vacancy creation in this economy? Suppose the social
planner can create vacancies at cost ¢ > 0. We are interested in constrained efficiency
in the sense that the planner is constrained by both the matching technology m(.) and
the output technology y(.) — or, equivalently, the distribution f(xz;#). Taking both
m(.) and y(.) as given, the planner is restricted to simply choose a market tightness

f to maximize the social surplus per worker, which is given by

(4) Q0) = m(O)y(0) + (1 — m(0))= — 0

Letting s(0) denote the expected match surplus, we have s(0) = y(6) — z and
(5) Q) =m(0)s(0) + z — cb.

Any solution " satisfies the first-order condition

(6) m'(0)s(0) +m(6)s'(0) < ¢

and 67 > 0, with complementary slackness. It can be shown that there exists a unique

8This follows from the fact that e=¢ >°°° (@f)” _ e 0l —1) = 00=0) _ =0,

n=1 n!



solution ¥ > 0 to (6) that maximizes Q(6) provided that ¢ < z;+(1—a)(zg—21)—2.

Let 1,,(0) = m/(6)0/m(0), the matching elasticity, and let n,(0) = s'(0)0/s(0),
the surplus elasticity. Multiplying (6) by 6 and dividing by m(6)s(0), the optimal 6°
satisfies

7 O+ e = —2
" matclfﬁ%ticity surpl%élggticity m(0)s(0)

firms’ surplus share
With free entry of vacancies, the total expected payoff for firms equals cv, and the
total surplus created by all matches is m(0)s(6)u, therefore the term on the right of
(7) is firms’ surplus share.

We call this the “generalized Hosios condition”. Like the original Hosios (1990)
condition, it turns out that this simple condition characterizes efficiency across a wide
range of search-and-matching environments. In general, efficiency requires that buy-
ers’ surplus share equals the matching elasticity plus the surplus elasticity because
this ensures that agents are paid for their contribution to both match creation and
surplus creation. In this example, efficiency requires that firms’ entry decisions in-
ternalize the effects of vacancy creation on both employment and labor productivity.
In the special case where 3/(0) = 0, we recover the standard Hosios condition, which

sets firms’ surplus share equal to the matching elasticity.

2.1 Dynamic economy (bounded output)

We now present two versions of the generalized Hosios condition for dynamic
economies. First, we use the approach of Menzio and Shi (2011) to derive the condi-
tion in a discrete-time dynamic environment where match output is bounded. This
approach delivers a condition that characterizes efficiency across the entire equilibrium
path, not just the steady state. In the next section, we use an alternative approach
to derive a version of the generalized Hosios condition in a continuous-time dynamic
environment. This approach delivers a steady state version of the generalized Hosios
condition that does not require the assumption that match output is bounded.

Consider a discrete-time dynamic environment. In any period ¢t € {0, 1, ...}, there
is measure one of sellers and a large number of potential buyers. All agents are
risk-neutral. The measure of buyers who enter is denoted by v and the measure of

unmatched sellers is denoted by u. The market tightness is § = v/u. Buyer-seller



matches are destroyed at an exogenous rate § € (0, 1].? The flow payoff for unmatched
sellers is z > 0.

Buyers and sellers are matched according to a constant-returns-to-scale matching
function. The matching probabilities for sellers and buyers are denoted respectively
by m(#) and m(#)/6. We call the function m(.) the matching technology.

Assumption 1. The function m(.) satisfies: (i) m'(0) > 0 and m”(0) < 0 for all
6 € Ry, (i) limp_om(f) = 0, (iii) limg_om/(0) = 1, (iv) limp_oom(f) = 1, (v)
limy_,o, m/'(0) = 0, and (vi) m(6)/6 is strictly decreasing for all 6 € R, .

Within each period, the timing is as follows. First, match destruction occurs.
Next, buyers enter and the search and matching process takes place. Finally, produc-
tion occurs.

Match output x € X = {z1,29,...,2xy} C R, where 27 < 29 < ... < zy. We
assume that all matches have positive surplus.! While the distribution used here is
discrete, the results also apply to continuous distributions provided that X is bounded,
i.e. X = [Tmin, Tmax] Where Zyin, Tmax € Ry and xp;, > 2.

Given market tightness 0, the output of a new match is an i.i.d draw from a discrete
probability distribution f : X — [0,1] where ) _ f(z;0) = 1. The distribution
f(z;0) will be determined endogenously by features of the environment. The expected

output of new matches is

(8) y(0) =) af(z;0).
zeX

If the distribution f(x; ) does not depend on the market tightness, i.e. f(z;0) = f(x),
then y(0) = y € R, for all § € R,. In general, however, the expected match output
y(f#) may depend directly on the market tightness. We call the function y(.) the
output technology.

Let g : X — [0,1] be the probability distribution of match output x across all
sellers in the economy. This includes newly matched sellers, unmatched sellers, and
sellers matched in previous periods whose matches have survived. Here, g(x) denotes

the measure of sellers producing output =, where x = 0 for unmatched sellers, so

In the special case § = 1, the economy features non-enduring matches, i.e. all matches are
destroyed at the end of each period. All of the following results therefore apply to economies with
non-enduring matches.

10Tn Appendix C, we provide an example of an environment where not all matches are accepted.



Y rex 9(x) =1 —u. The average match output across all sellers is ) zg(x) and

the average output of matched sellers is

oex 7ge)

1—u

(9) y =
The distribution ¢ is given by the following law of motion:

(10) g(x) =um(0)f(z;0) + (1 — )g(z) forall z € X,

and the measure of unmatched sellers u is given by the standard law of motion:
(11) a=u(l—m(0))+ (1 —u).

Here, g(x) is the distribution of match output across sellers, and @ is the measure of

unemployed workers, at the production stage, i.e. the beginning of the next period.

2.1.1 Planner’s problem

Suppose the planner can create vacancies at cost ¢ > 0 each period. At the start
of a period, the planner observes the aggregate state of the economy, ) = (u, g), and
chooses a market tightness § = v/u where 6 € R, . The planner is restricted to take
both the matching technology m(.) and the distribution f(z;6) as given, and chooses
the market tightness € to maximize the sum of present and future social surplus. The
discount factor is 3 € (0, 1).

Letting {b = (4, g) denote the next period’s state, the Bellman equation for the

planner’s value function W (v) can be written as:

(12) W) = max {F(O}) + BW(D) |
where
(13) F(0]¢) = —cOu + zii+ Y xj(x)

subject to the following laws of motion:

(14) 0 =u(l—m(d))+0(1—u)



and
(15) g(x) =um(0)f(z;0) + (1 — d)g(x) forall z € X.

Our planner’s problem is a generalization of that considered in Menzio and Shi
(2011) to environments where the distribution of output across new matches, given
by f(z;0), is endogenous and may depend directly on the market tightness in that
period. If match output is bounded, i.e. X is bounded, Theorem 1 in Menzio and

Shi (2011) generalizes to our environment.'!

Lemma 1. Assume that X is bounded. (i) The planner’s value function W (1)) is the
unique solution to (12). (ii) W (v) is linear in u and g:

(16) W) = Waut 3 Wala)g(o),

zeX

where W, and W.(x) are the component value functions given by

(17) W, = grel]%f{—c@ + (L =m(0))(z + BWy) +m(0)(y(0) + BWe(0)) }
and

(18) We(z) = (2 + BW.,) + (1 = 0)(z + BWe(x))

where

(19) We(0) =Y Wel) f(;0).

zeX

Proof. Part (i). Letting C(¥) be the set of bounded, continuous functions
R: ¥ — R with the sup norm ||R[| = sup,cq (1)), we can define an operator T' by

~

(20) (TR)(W) = max F(60}v) + R())

subject to (14) and (15), where the return function F is defined by (13).

"'More precisely, the special case of our planner’s problem where f(z;60) = f(x) is a special case
of that considered in Menzio and Shi (2011). This is because the authors incorporate additional
features — such as on-the-job search, aggregate productivity shocks, and signals regarding match-
specific productivity. We abstract from these features to focus attention on what is novel here.

9



We first prove that TR is bounded. Consider any function R € C(¥). Since R is
bounded, there exist Ry and R such that R, < R({ﬁ) < R for all ¢) € U. Therefore,
using (20) and (13), (T'R)(v) is bounded below by min{z,z;} + SRy and bounded
above by max{z,ry} + BR.

Next, we prove that T'R is continuous in . To do this, observe that since X is
bounded we can replace the constraint § € R, with the constraint § € [0, §], where 0

is defined as:
(21) 0 = c 'u{[max{z, xx} — min{z, 2, }] + B[R — Ro]}.

For the modified problem, the maximand is continuous in (¢, §) and the set of feasible
choices for 6 is compact, so it follows from the Theorem of the Maximum that T'R is
continuous in ¢ (Theorem 3.6 in Stokey, Lucas, and Prescott, 1989).

Therefore, T : C(¥) — C(¥), i.e. the operator 7" maps the set of bounded, con-
tinuous functions into itself. It is straightforward to verify that 1" satisfies Blackwell’s
sufficient conditions for a contraction (Theorem 3.3 in Stokey et al., 1989). There-
fore, T' is a contraction mapping and it has exactly one fixed point R* € C(V¥). Since
lim;_, B*R*(¢0) = 0 for all ¢ € ¥, R* is equal to the planner’s function W (Theorem
4.3 in Stokey et al., 1989).

Part (ii). Let C'(¥) C C(V) be the set of bounded, continuous functions R :
U — R that are linear in the measure of unmatched sellers, u, and the measure g(x)
of sellers producing output . We have R € C’'(V) if and only if there exist R, and
R, : X — R such that

(22) R(Y) = Ryu+ 3. Re(z)g().

zeX

Consider any function R € C'(¥). Substituting (14) and (15) into (13), and then

substituting into the maximand in (20) and simplifying, we obtain

(23) (TR)(¥) = Ryu+ 3 Re()g(x)

rzeX

where R, is given by
(24)
R, = max {—09 + (1 —m(8))(z + BR,) +m(h) <y(9) +8 Y Re(x)f(z 9)) } :

0eR 4

10



and y(6) is given by definition (8), and R, (x) is given by

A

(25) Re(z) = 6(z + BR,) + (1 — 0)(x + BR.(x)).

Therefore, we have T': C"(¥) — C'(¥) and, since C'(V) is a closed subset of C(V),
we have W € C’(V) by Corollary 1 to Theorem 3.2 in Stokey et al. (1989). B

We now use Lemma 1 to prove our main result. Proposition 1 says that the
planner chooses to set buyers’ surplus share equal the matching elasticity plus the
surplus elasticity. When this condition holds, the level of buyer entry is efficient
because agents are compensated for their effect on both match creation and surplus
creation. Importantly, this intuitive condition characterizes efficiency along the entire
equilibrium path, not just in steady state. Moreover, in the absence of aggregate

productivity shocks, the optimal market tightness is constant, i.e. §, = 6 for all ¢.

Assumption 2. The function A(.) defined by A(6) = m(0)s(0) satisfies: (i)limg_o A(0) =
0; (i) limg_o A'(0) > ¢; (i) limg_o A'(6) < ¢; and (iwv) A"(0) < 0 for all 0 € R,.

Assumption 2 is sufficient for the existence and uniqueness of the efficient choice

6. If Assumption 2 does not hold, (26) is still a necessary condition for efficiency.

Proposition 1 (Generalized Hosios Condition). Assume X is bounded. There

exists a unique efficient allocation (6F), where 0F = 6F > 0 for allt and 6° satisfies

cl
26 SO+ e = =
(26) () 2:9) m(0)5(0)
matching elasticity — surplus elasticity N———

buyers’ surplus share
An equilibrium allocation (07)2, is efficient if and only if 07 satisfies (26) for all t.

Proof. Rearranging (17), the socially optimal market tightness 0" is given by
(27) 6F = arg max {=cl+ 2+ W, +m(0)(y(0) — 2+ B(W.(0) — W,))}.
+
We can write the expected match surplus as

(28) s(0) = y(0) — z + BWe(0) — W),

11



and thus (27) can be rewritten as

(29) 0F = arg max {—c0 +m(0)s(0) + = + W, }.

Taking the first-order condition for (29), the optimal market tightness 6" satisfies
(30) m'(0)s(0) + m(0)s'(0) < c

and #7 > 0 with complementary slackness. If Assumption 2 holds, there exists a
unique solution # > 0 that satisfies A’(f) = ¢ where A() = m(f)s(d). Therefore,
there exists a unique 8 > 0 that satisfies (30) with equality. Multiplying both sides
of (30) by 8/m(6)s(6), we obtain (26). Since #” is unique, an equilibrium allocation
is efficient if and only if the equilibrium 6} satisfies condition (26) for all ¢t. W

The following provides a useful version of the generalized Hosios condition that is
easier to apply in practice. It tells us that the derivative y'(6) of the expected match

output is key. If 3/(0) = 0, we recover the standard Hosios condition.

Proposition 2. Assume that X is bounded. There exists a unique efficient allocation
(0F)22, where 0F = 07 > 0 for all t and 67 satisfies

AQL __
(31) N (0) + (1—B(1—106))s(h) N m(0)s(6)

An equilibrium allocation (67)2, is efficient if and only if 0 satisfies (31) for all t.

Proof. From (28), we see that s(f) depends on the market tightness € only
through y(0) and W.(6). The component value function W, does not depend on 6

since it is a maximized value given by (17). Differentiating (28), we have
(32) s'(0) = y'(0) + BW(0).

Using (18), we obtain

dz+ W) + (1 —d)x
1—p5(1-9)

(33) We(z) =

12



and, using the fact that W.(0) = > We(z) f(x;6), we obtain

d(z+ W)+ (1 —0)y(9)

(34) w.(0) = R
Differentiating (34) yields
(35) Wie) = 1

Substituting (35) into (32) and simplifying, we obtain

(36) s$(0) = %.

Finally, substituting (36) into (26) yields condition (31). W

While this approach delivers a powerful version of the generalized Hosios condition,
one limitation is that Lemma 1 requires the assumption that match output is bounded.
If match output is not bounded — for example, if the distribution f(z;#0) is continuous
and has unbounded upper support, X = [z, 00) — then Lemma 1 does not apply,
and therefore Propositions 1 and 2 do not apply. Since many important applications
feature unbounded upper support, we provide an alternative approach in the next

section that does not require bounded match output.

2.2 Dynamic economy (unbounded output)

We now use an alternative approach to derive a version of the generalized Hosios
condition in a continuous-time dynamic environment where match output is not nec-
essarily bounded. This approach delivers steady state versions of Propositions 1 and
2 that apply to any distribution of match output f(x;6) with finite mean.

Consider a continuous-time dynamic environment. At any time ¢, there is measure
one of sellers and a large number of potential buyers. As in Section 2.1, all agents
are risk neutral and the measure of buyers who enter is denoted by v;, the measure
of unmatched sellers is denoted by wu;, and market tightness is 6; = v;/u;. Matches
are destroyed at a rate 6 € (0,1] and the flow payoff for unmatched sellers is z > 0.

In continuous time, m(6;) and m(6,)/6, are now arrival rates rather than matching

probabilities for buyers and sellers respectively, so Assumption 1 needs to be amended.

13



Assumption la. The function m(.) satisfies: (i) m'(6) > 0 and m”(0) < 0 for all
0 € Ry, (it) limg_om(0) = 0, (iii) limg_om'(0) = 400, (w) limp_, ;o m(f) = +o0,
(v) limg_.oo m'(0) = 0, and (vi) m(6)/6 is strictly decreasing in 0 for all 0 € R, .

Match output € X = [Tmin, Tmax] € Ry where 2. € Ry U {oo}. We assume
that all matches have positive surplus. At time ¢, the output of a new match is an i.i.d.
draw from a probability distribution with pdf f(z;0;) and a finite mean. We define
y(0,) = f;:l:" xf(x;0;)dx, the expected output for new matches at time t. We assume
a continuous distribution but the results easily extend to discrete distributions.

Let y; denote the average match output across all matched sellers at time ¢. Note
that y; is not equal to y(0;), since y, is a weighted average across all active matches,
i.e. both new matches and existing matches that have survived from earlier times. In

Appendix A, we derive the following law of motion for y;:

m(@t)ut
1— Ug

(37) Y = (?/(et) - yt)
and the law of motion for the measure of unmatched sellers is standard:
(38) 'llt = (5(1 — Ut> — m(@t)ut.

Before solving the planner’s problem, we first derive an expression for the steady
state expected match surplus, s(f) = Vg + Vs —Up — Ug, where Vs and V denote the
steady state asset values for matched sellers and buyers respectively, and Ugs and Upg

denote the steady state asset values for unmatched sellers and buyers respectively.
Lemma 2. With free entry of buyers, the steady state expected match surplus is

y(0) — 2+ b

(39) s(0) = T m0)

Proof. See Appendix A.

2.2.1 Planner’s problem

Suppose the planner can create vacancies at cost ¢ > 0. At any time ¢, the
planner observes the aggregate state of the economy, v, = (us ), and chooses a

market tightness ratio §# = v/u where § € R, . The planner is restricted to take both
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the matching technology m(.) and the output technology y(.) as given, and chooses
the market tightness € to maximize the sum of present and future social surplus. The
discount rate is r > 0.

Given initial conditions uy and ¥, the planner chooses 6, for all ¢ € R, to maximize

(40) 0= / e (1 — up)ys + zup — cOpuy)dt
0

subject to the following laws of motion:

(41) U = 0(1 —uy) — m(0;)uy
and
(42) i = (0(0) — ) T

Propositions 3 and 4 are steady state versions of the generalized Hosios condition
presented in Propositions 1 and 2 that do not require bounded match output.

If Assumption 2 does not hold, (43) is still a necessary condition for efficiency.

Proposition 3 (Generalized Hosios Condition). There exists a unique steady

state efficient allocation 8° > 0 and it satisfies

ct
43 O+ g0 = —
(43) 1m (0) n,(0) m(0)5(0)
matching elasticity surplus elasticity N—

buyers’ surplus share
A steady state equilibrium allocation 6 is efficient if and only if it satisfies (43).

Proof. The current value Hamiltonian for the planner’s problem is
(44)

H = (1= uy)ys + 2uy — cBpug) + X (6(1 — ug) — m(6)uy) + <m(9t)ui (E/(jtt) - yt)) .

The first-order necessary conditions are

0H
(45) a—et = —CUt — )\tm/<0t)ulg + Mt (

m'(0)ur (y(0:) — i) + m(Ht)uty/(Qt)> =0

1—Ut
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i _ m(fy) (y(0) —w)\ _
(46) du, —(ye — 2+ cly) — (6 +m(0y)) + 1y ( (1—ut)2 ) S
(47) Z_Z =1—w—p (?(ftiit) = —f Ty
(48) g%:au—ug_mwm%:m

OH _ m(0n)us (y(Or) —ye) _
= =Yt
Opy 1=

(49)

The transversality conditions are lim; .o, e \yu; = 0 and lim; o e "1,y = 0.
In steady state, we have @, = ¢, = 6, = 0 and therefore y(0;) =y = y(0). Also,

i, = 0 and A\ = 0. Substituting into the first-order conditions, we obtain

(50) —xm/(0)u + pdy'(9) = cu,
B y(0) — z + b

(51) /\__<r+5+m(9)>’

-2

Substituting A and p into (50), then using 6(1 — u) = m(0)u and (39), yields

yoo
(53) M(0) + 5 5@~ m(0)s(0)

where 7,,(0) = m’(0)0/m(0). Again using expression (39) for s(6), we obtain

W'(@)+cf  m'(0)¢ > o
y(@) —z+cl r+5+m(0))  m(

(54) 1 (0) + (

Using Lemma 2, we can write 7,(0) = s'(0)0/s(0) as the elasticity of the numerator
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minus the elasticity of the denominator:

(y'(0) + )0 m'(6)0

(55) ns(0) = y@) —z+c0  r+5+m(0)

Substituting (55) into (54), (53) is equivalent to (43). Both are necessary conditions
for any steady state solutions 8° > 0. Assumption 2 implies there exists a unique
6" > 0 that satisfies A’(d) = ¢ where A(f) = m(#)s(f), and therefore there exists a
unique #” > 0 that satisfies (43).

We can apply Arrow’s Sufficiency Theorem to prove that 6 is indeed a global
maximum.'? To show this, we formulate the current value Hamiltonian in terms of the
state variable Z; = (1 —u;)y:. Using (41) and & = —0%; +m(0;)uy(6;) (see Appendix

A), the current value Hamiltonian as a function of state and control variables is
(56)  H(Z,u,0) =7+ zu — cOu~+ M\ (6(1 —u) — m(0)u) + py(—0% + m(0)uy(6))

and the maximized Hamiltonian is My (%, u) = maxger, H(Z,u,0). Applying Arrow’s
Sufficiency Theorem, the solution #° to (43) is a global maximum provided that
My (Z,u) is jointly weakly concave in u and Z.
To find 6*(Z,u) = argmaxger, H(Z,u,0), we set
OH

(57) 5g = e~ A’ (0)u + pyu(m’ (0)y(0) + m(0)y'(9)) =0

and, differentiating (57), we have

O’H
96°

(58) = —m" (0)u+ pu(m” (0)y(0) + 2m'(0)y' (0) + m(0)y"(0)) <0,

provided that m” (0)y(0)+2m/(8)y' (0)+m(8)y"(#) < 0 and m” () < 0since \; < 0 and
iy > 0. Assumption la states that m”(f) < 0 for all € R, and Assumption 2 says
that A”(0) < 0 for all # € R, where A(0) = m(#)s(0). In particular, in the special case
where s(0) = y(6), Assumption 2 implies m”(8)y(0) + 2m/(0)y'(0) + m(0)y"(0) < 0.

Therefore, 0*(Z,u) is indeed a maximum and we have

(59) My(Z,u) = 7 + 2t — 0w+ M (6(1 — 1) — m(0")u) + py(—6F + m (0% )uy(0))

12 Arrow’s Sufficiency Theorem generalizes Mangasarian’s sufficiency conditions. See Kamien and
Schwartz (1991), p. 221-222.
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where 0* = 60*(Z,u). Since u cancels out in (57) and Z does not appear in (57), 6*
does not depend directly on uw or . Also, it can be verified that neither A\; nor p,
depends on either u or .'® The function My (Z,u) is linear in both Z and w and it is

therefore weakly concave, thus the solution #” to (43) is a global maximum. M

Again, we obtain a useful version of the generalized Hosios condition.

Proposition 4. There exists a unique steady state efficient allocation 87 > 0 and it

satisfies

y@ee o
(r+6)s(6)  m(0)s(6)

(60) 1 (0) +

A steady state equilibrium allocation 0% is efficient if and only if it satisfies (60).

Proof. Condition (60) is derived as an intermediate step in the proof of Propo-

sition 3 as condition (53), which is shown to be equivalent to (43). B

2.3 Discussion

In search-and-matching models with free entry of buyers, there are two standard
externalities related to the frictional matching process: the congestion and thick
market externalities.!* Both of these search externalities are fully internalized by
markets when the Hosios condition holds. In environments where the expected match
output depends on market tightness, however, a novel externality arises. Depending
on the specific environment, a higher buyer /seller ratio may either increase or decrease
the expected match output and this effect may not be internalized by the market.
We call this the output externality.

When the standard Hosios condition holds, buyers’ entry decisions fail to inter-
nalize the output externality and entry may not be efficient. Applying the standard

Hosios condition may therefore result in either over-entry or under-entry of buyers

13Note that the co-state variables A\; and y; for the current value Hamiltonian with state variables
u; and Z; are different to the co-state variables A and p for the current value Hamiltonian with state
variables u; and p;.

4The congestion externality is a negative externality that arises because a higher buyer /seller
ratio reduces the matching probability of each buyer. The thick market externality is a positive
externality that arises because a higher buyer/seller ratio increases the matching probability for
each seller.

18



relative to the efficient level. Corollary 1 tells us that the direction of the inefficiency

depends only on the derivative of the output technology y(.) at the equilibrium 6*.

Corollary 1. A steady state equilibrium allocation features under-entry (over-entry)
of buyers under the standard Hosios condition if and only if ' (6%) > (<) 0.

Proof. Suppose the standard Hosios condition holds, i.e. 1,,(6%) = c0* /m(0")s(6%).
First, we show there is under-entry (over-entry) of buyers if and only if s'(6*) > (<)0.
Second, we show that '(6%) > 0 if and only if 3/(0*) > 0. Letting A(6) = m(6)s(0),
Proposition 3 says there exists a unique efficient #” > 0 that satisfies A’'(9”) = c.
Since the standard Hosios condition holds, m’(6*)s(6*) = ¢ and therefore we have
A7) = m/(0%)s(0%). Now, N'(0) = m/(60%)s(0%) + m(6*)s'(6%), and thus A'(#7) =
N(0%) — m(0)s'(67), so if s'(§*) > 0 then A'(87) < A'(6*). If Assumption 2 holds
then A”(6) < 0 for all # € R, and therefore A’(0”) < A’(6*) implies that 0% < 6,
i.e. there is under-entry of buyers. Similarly, if §'(6") < 0, there is over-entry of
buyers, 0* > 0. Using expression (55) for 7,(6), and rearranging using (39), we have
§'(0*) > 0 if and only if y/(0*) > m/(0")s(6") — c. Finally, since m/(6*)s(0*) = ¢ by
assumption, we have s'(6*) > 0 if and only if ¥/(6*) > 0. B

When 3/ (0*) > 0, the output externality arising from buyer entry is positive and
the standard Hosios condition results in under-entry. Alternatively, if y/(0*) < 0, the
output externality is negative and the standard Hosios condition results in over-entry
of buyers. If ¢/(0*) = 0, there is no output externality and buyer entry is efficient
under the standard Hosios condition.

Returning to our motivating example, the standard Hosios condition would result
in under-entry of vacancies, or inefficiently high unemployment, since 3/(#) > 0 and
the output externality is positive. Intuitively, this is because it does not incorporate
the fact that higher job creation leads not only to lower unemployment for workers,
but also higher labor productivity. In an alternative environment where workers
instead apply to firms, we would have y'(#) < 0. In this case, the output externality
is negative and the standard Hosios rule would result in over-entry of vacancies, or

inefficiently low unemployment.'?

15When workers apply to firms, a greater number of vacancies per unemployed worker implies
fewer applicants per vacancy, which decreases the expected match output because firms can be less
selective. For example, see the model of worker applications in Gavrel (2012), or the model of worker
selection using interviews in Wolthoff (2017).
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Seller entry. When there is seller entry instead of buyer entry, the direction of
the effect of entry is reversed. Since the buyers’ surplus share and the sellers’ surplus

share add to one, an efficient #” > 0 must satisfy

m(0)
61 - 0.0 - g0 = 9
o1 o0 0.09) o
matching elasticity — surplus elasticity N—

sellers’ surplus share

where 7(6) is the expected payoff for sellers. If there is free entry of sellers at cost
k > 0, substituting 7(f) = x into (61) delivers the generalized Hosios condition for

seller entry:

I
62 1-— 0 — 0 = ——
(62 1 0) 1.(0) 50
matching elasticity surplus elasticity
sellers’ surplus share

Corollary 2. A steady state equilibrium allocation features over-entry (under-entry)
of sellers under the standard Hosios condition if and only if /() > (<) 0.

Proof. With seller entry, the direction of Corollary 1 is reversed since 6* < 6%
implies over-entry of sellers because § = v/u. Similarly, 0* > 6" implies under-entry

of sellers relative to the efficient level. B

When ¢/(6*) > 0, the output externality arising from seller entry is negative since
0 = v/u and therefore y(.) is decreasing in the measure of unmatched sellers u. In
this case, the standard Hosios condition results in over-entry of sellers. If y/(6*) < 0,
the output externality from seller entry is positive and the standard Hosios condition
results in under-entry. If /() = 0, there is no output externality and seller entry is

efficient under the standard Hosios condition.

2.3.1 Applying the condition

In any decentralized market, the equilibrium surplus shares of buyers and sell-
ers will depend on the price determination mechanism. Depending on how prices
are determined, the economy may or may not decentralize the efficient allocation —
or, equivalently, the generalized Hosios condition may or may not hold. Efficiency
arises only when the price determination mechanism ensures that both the search

externalities and the output externality are internalized by a decentralized market.
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Competitive search. If prices are determined by directed or competitive search,
the generalized Hosios condition typically (but not always) decentralizes the effi-
cient allocation. For example, we show that competitive search (price posting) can
decentralize the constrained efficient allocation in environments with bilateral meet-
ings such as Example 3.1, where the expected match output depends on the market
tightness (see Appendix B). We will also see in Example 3.2 that competitive search
(auctions) can decentralize the efficient allocation in environments with many-on-one
or multilateral meetings. In both cases, the reason why competitive search delivers
efficiency is precisely because the generalized Hosios condition holds endogenously.
This is because competitive search allows agents to trade off prices against both the
probability of trade and the expected match surplus if trade occurs, thus internalizing

both the search externalities and the output externality.

Nash bargaining. Returning to our motivating example, suppose that wages are
determined by Nash bargaining and workers’ bargaining power is 5 € (0,1). With
probability m(#)/6, firms successfully hire a worker and receive a share 1 — 3 of the
expected match surplus s(f). The equilibrium market tightness 6 > 0 satisfies the
following free entry condition:

m(0)

(63) —g 1=P)s(0) =c,

or, equivalently, the equilibrium 6* > 0 satisfies

ct
64 1-— = —
oy =2 m(6)s(0)
firms’ bargaining power N——

firms’ surplus share

Applying the generalized Hosios condition, and using (64), entry is efficient only if

* *
~—— —— ) ——
matching elasticity surplus elasticity firms’ bargaining power

In the special case where ry = 1, i.e. match output is constant, we have efficiency
if and only if n,,(0") = 1 — (5, a well-known version of the Hosios condition. If the
matching technology is Cobb-Douglas and m(#) has constant elasticity, i.e. n,,(6) =n

for all 8 € R, we can restore efficiency by imposing the Hosios condition. To do so,
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we make the following choice of parameter values: 7 = 1 — 3. This approach, used for
example in Shimer (2005), ensures efficiency in search models with Nash bargaining,
regardless of the value of the equilibrium 6. In environments where the generalized
Hosios condition is necessary for efficiency, however, it will generally not be possible
to impose efficiency in this manner. This is because the surplus elasticity 7,(0")
is endogenous and it will not typically be constant. Instead, competitive search is

necessary for decentralizing the efficient allocation.

3 Examples

We now present two main examples of search-and-matching environments where
the expected match output depends on the market tightness. The Appendix contains

additional examples and extensions, as described in Section 3.3.

3.1 Effect of labor market on goods market

One way in which the expected match output can depend on the labor market
tightness is when there are sequential markets, such as a labor market and a goods
market, and the possibility of trade in the goods market depends on the matching
outcomes in the labor market. A classic example is Berentsen et al. (2011), which fea-
tures both a labor market and a goods market. We present a static, highly simplified
version of that model in order to focus attention.'6

Workers first sell their labor to firms in the labor market and then purchase goods
from firms in the goods market. Importantly, while all workers can search in the goods
market, only active firms (i.e. filled vacancies) can produce and trade in the goods
market. In this way, the labor market tightness affects the goods market tightness
by affecting the measure of firms who search in the goods market. In turn, the goods
market tightness determines the probability of trade for both workers and firms. This
implies that the labor market tightness affects the expected match “output” because
this includes both the direct match output in the labor market and the expected

gains from trade in the goods market.!”

16Tn particular, we simplify the model in Berentsen et al. (2011) by eliminating the third market,
the Arrow-Debreu market, since it is unnecessary in the static model considered here.

17"The environment in Kaplan and Menzio (2016), while different to that found in Berentsen et al.
(2011), shares a similar feature because sellers’ expected revenue in the product market depends on
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The labor market is a standard DMP style environment with bilateral meetings.
The labor market tightness is § = v/u and the matching probabilities for workers and
firms respectively are m(f) and m(#)/0 where m(.) satisfies Assumption 1. There is
free entry of vacancies at cost k > 0 and all matches produce direct output y > z,
where z > 0 is the value of non-market activity for the unemployed.

In the goods market, the probabilities of trade for workers and firms respectively
are m%(¢) and ¢%(¢) = m“(¢)/¢, where ¢ is the ratio of sellers to buyers and m¢(.)
satisfies Assumption 1. Since all workers (including the unemployed) search but
only active firms search (i.e. those that have successfully hired a worker), we have
¢ = (m(0)/0)v/u = m(f). Since the unemployment rate is u(f) = 1 — m(f), we have
o(0) =1 —u(0).

Active firms can produce a single unit of an indivisible good at a production cost
¢ > 0. Unemployed workers value the good at v, > 0 and employed workers value
the good at v, > v, > ¢. We assume, for simplicity, that v, = ¢ (i.e. trades in the
goods market with unemployed workers do not have any surplus).

While there is no heterogeneity here, matches that are formed in the labor market
face different outcomes in terms of the surplus created, depending on whether or not
workers trade in the goods market. Match “output” x € X = [y, 7+ (v, — ¢)] and the

distribution of output across matches is

1—m€(¢(0)) ifr=y

(66) f(z;0) = { mG(¢(9)) if v =4+ (ve —c)

and 0 otherwise. In the first case, the worker does not trade in the goods market and
the match “output” z is just y. In the next case, the worker does trade and x equals
the direct output y plus the total gains from trade in the goods market (for both the
worker and the firm).

The expected match output in the labor market is y(0) = >y xf(z;0) and
the expected match surplus is s(f) = y(f) — z. Taking the expected value of the

distribution f(x;#), we obtain

(67) yo)= g+ m(e(0))(ve —¢) .

-
direct output  expected gains from trade

the unemployment rate and thereby on the labor market tightness.
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A sufficient condition for Assumption 2 to hold is that §—2z > k and W > 2

for all # € R,. Applying Proposition 1, there exists a unique efficient choice 8 > 0

and it satisfies

ct
68 O+ g0 = —
(68) 1 (0) n,(0) (0)5(0)
matching elasticity surplus elasticity N—

firms’ surplus share

Whether or not this condition holds depends on the wage determination mecha-
nism. For example, if wages are determined by Nash bargaining with workers’ bar-
gaining power 5 € (0, 1), then, similarly to (63), we have efficiency only if and only

if the equilibrium 6* satisfies

(69) () +  n0) = 1-5
———" —— . ——
matching elasticity surplus elasticity firms’ bargaining power

With competitive search and wage posting, on the other hand, the generalized Hosios
condition holds endogenously and we always have constrained efficiency. Appendix
B shows how competitive search with wage posting can decentralize the efficient
allocation in environments such as this.

In this example, the output externality is positive, i.e. y'(6*) > 0 or 3/(0*) < 0.
Since ¢'(#) > 0 and %ﬁf‘b) > 0, an increase in the labor market tightness ¢ has
a positive effect on the expected gains from trade in the goods market through an
increase in workers’ probability of trade. This means that imposing the standard
Hosios condition in the labor market would result in under-entry of vacancies and
inefficiently high unemployment. Since Berentsen et al. (2011) use Nash bargaining
to determine wages and impose the standard Hosios condition in the labor market to

calibrate their model, this may be quantitatively important.

3.2 Many-on-one meetings and competing auctions

We now consider two examples of environments that feature many-on-one meetings

(where many buyers may meet one seller) and auctions. In a competing auctions en-

vironment, a large number of sellers compete to attract buyers by posting auctions.!'®

8 Following the seminal work of Peters and Severinov (1997), recent papers using competing
auctions include Albrecht, Gautier, and Vroman (2012); Albrecht et al. (2014); Albrecht, Gautier,
and Vroman (2016); Kim and Kircher (2015); Lester, Visschers, and Wolthoff (2015); Mangin (2017).
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Such an environment features the selection channel because the auction mechanism
enables sellers to “select” the buyer with the highest valuation. The expected match
“output” y(0) is increasing in the market tightness because more buyers per seller

implies a greater expected value of the highest valuation.

3.2.1 Labor market: competing auctions with vacancy entry

Consider the labor market environment in Mangin (2017).!° Workers are identical
sellers who post reservation wages to attract firms and then auction their labor using
second-price auctions. Firms are ex ante identical buyers who pay a cost ¢ > 0 to
enter and search for workers. The labor market tightness is # = v/u, the ratio of
vacancies or firms to unemployed workers. The meeting technology is Poisson and
P,(0) = 6"c" is the probability that n firms approach a given worker. The matching

n!
probability for workers is m(0) =1 — e~".

Firms’ valuations = of workers’ labor are match-specific productivity draws that
are private information. Valuations are drawn ez post (i.e. after meetings) indepen-
dently from a distribution with c¢df G with density ¢ = G’ > 0, finite mean, and
support X = [z9,00) C R,.

It can be shown that the distribution of output across all matches has pdf

eg(x)e_e(l_G(x))
1—e?

(70) fa;0) =

and the expected match output is given by

o0 _o(1-G(z))
_ [ 0g(x)e xdx
1—e? '

(71) y(0)

Mangin (2017) proves that ¢'(6) > 0 for all # € R, if G is well-behaved, i.e. if it
satisfies a mild regularity condition. Therefore, the output externality from vacancy
creation is always positive. Intuitively, a higher number of vacancies per unemployed
worker allows workers to be more selective, increasing labor productivity.

We can now apply Proposition 3. If Eg(z) — z > ¢, Assumption 2 holds and we

YMangin and Sedldcek (2018) extends this model to a dynamic economy with aggregate shocks.
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have constrained efficiency of vacancy entry if and only if the equilibrium 6* satisfies

ct
72 O+ g0 = —
(72) 1 (0) n,(0) (0)5(0)
matching elasticity surplus elasticity N—

firms’ surplus share

Mangin (2017) shows that when wages are determined through auctions, the equilib-
rium 0" satisfies a condition that can be shown to be equivalent to (72). In the limit
as 6 — oo, firms’ surplus share converges to the tail indexr A\g of the distribution G,
where \¢ > 0 only if G has unbounded upper support.?’ In general, the generalized
Hosios condition holds endogenously and we have constrained efficient vacancy entry.

In the special case where y(f) = y € R., we recover the large economy version of
the directed search model found in Julien, Kennes, and King (2000), which is closely
related to Burdett, Shi, and Wright (2001). In this special case, the standard Hosios

condition holds endogenously and we therefore have constrained efficiency.

3.2.2 Business-stealing: competing auctions with seller entry

Albrecht et al. (2014) examines the efficiency of seller entry in a competing auc-
tions environment. The authors consider both ex ante and ex post buyer heterogene-
ity, as well as seller heterogeneity, and they prove that seller entry is always efficient.
In particular, Albrecht et al. (2014) identifies a negative externality from seller entry
called the business-stealing externality. When an additional seller enters, the seller
“steals” potential buyers from existing sellers, thereby reducing the expected sur-
plus for those sellers. Although they do not explicitly identify it, the generalized
Hosios condition applies in their setting and it is the fact that this condition holds
endogenously that ensures efficiency.

Consider a simple version of their model featuring identical sellers with reservation
value z = 0. Buyers are ex ante identical but heterogeneous ex post. Sellers pay a
cost kK to enter and attract buyers by posting second-price auctions with reserve

prices. The buyer-seller ratio is § = Ng/Ng. The meeting technology is Poisson and

P,(0) = ang ® is the probability that n buyers approach a given seller. The matching
0

probability for sellers is m(f) =1 — e ".

Buyers’ valuations x are private information and are drawn ex post (i.e. after

20The fact that G has unbounded upper support is thus important. See Proposition 2 in Mangin
(2017). The tail index is a measure of fatness of the tails of the distribution G.
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meetings) independently from a distribution with edf G, density ¢ = G’ > 0, and
support X = [0, 1].

The distribution of valuations of successful buyers has pdf

Hg(x)efg(lfc(x))
1—e?

(73) fz;0) =

and the expected valuation of a successful buyer is given by

B fol 0g(z)e -G pdy
B 1—e? '

(74) y(0)

We can now directly apply Proposition 1. If Eg(x) > ¢, then Assumption 2 holds
and we have constrained efficiency of seller entry if and only if the equilibrium #*

satisfies the generalized Hosios condition for seller entry:

K

75 1— .0 - o =
(™) 0 .(6) -
matching elasticity  surplus elasticity N——

sellers” surplus share

Albrecht et al. (2014) show that an equivalent condition holds endogenously in this
environment, and we therefore have constrained efficiency of seller entry.?!

The output externality that arises in Example 3.2.1 also appears in Albrecht et al.
(2014) due to the selection channel. Through the auction mechanism, sellers choose
to trade with the buyer who has the highest valuation. From Example 3.2.1, we
know that y'(#) > 0 if the distribution G is well-behaved. Importantly, this is a
negative externality with regard to seller entry since § = Np/Ng and thus y(.) is
decreasing in the number of sellers. When there is a fixed number of buyers, more
seller entry implies fewer buyers for each seller, thereby reducing the power of the
selection channel.

The business-stealing externality is closely related to this negative output external-
ity. Consider the expected surplus per seller, A(f) = m(6)s(#). The business-stealing
externality reflects the fact that A’(#) > 0 and thus the expected surplus per seller is

21Tn Albrecht et al. (2014), the planner maximizes the total social surplus, A()Ng — kNg, where
A(0) is the expected surplus per seller. The social surplus per buyer is Qp(0) = A(0)/0 — k/0
and the first-order condition for the planner’s problem is Q5(0) = A’(6)/6 — A(0)/0* + k/6% = 0.
Rearranging, the efficient #” satisfies 1 — 7, (0) = x/A(f) where 1, (0) = A’(9)8/A(h). Since the
surplus per seller is A(0) = m(0)s(0), we have n,(0) = n,,(0) + n,(0), which is equivalent to (75).
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decreasing in Ng. In fact, since A(0) = m(0)s(#), the “business-stealing” effect can
be decomposed into two effects: the effect on sellers” matching probability m(#), and
the effect on the expected match surplus s(#). Both effects are clearly reflected in the

generalized Hosios condition via the matching elasticity and the surplus elasticity.

3.3 Other examples

Appendix B extends the competitive search (price posting) approach of Moen
(1997) to an environment where the expected match output depends on the market
tightness. Since the generalized Hosios condition holds endogenously in this economy;,
competitive search with price posting provides a way of decentralizing the constrained
efficient allocation in environments where Proposition 1 applies and meetings are
bilateral, such as Example 3.1. (In environments where Proposition 1 applies and
meetings are many-on-one or multilateral, competitive search (auctions) decentralizes
the constrained efficient allocation, as seen in Example 3.2.)

Appendix C presents two related examples. The first example is a Diamond-
Mortensen-Pissarides (DMP) style model with bilateral meetings and job acceptance
decisions. Since the cut-off productivity for accepting a match depends on the market
tightness, labor productivity also depends on the market tightness. It is well known
that the standard Hosios condition characterizes efficient entry in this environment.
We show that, in fact, the generalized Hosios condition applies but it reduces to the
standard Hosios condition simply because the positive effect of vacancy entry on the
expected match surplus and the negative effect of vacancy entry on the job acceptance
probability exactly offset each other.

The second example in Appendix C features firms that are ex ante heterogeneous
with respect to productivity. Since firms’ entry decisions are affected by the probabil-
ity of hiring and therefore the market tightness, labor productivity is also affected by
the market tightness and the generalized Hosios condition is necessary for constrained
efficiency. This example is related to the model of labor force participation found in
Albrecht, Navarro, and Vroman (2010). (In a follow-up paper to the present one,
Julien and Mangin (2017) applies and extends the generalized Hosios condition to
the environment in Albrecht et al. (2010) with labor force participation.)

Appendix D shows that competitive search does not always decentralize the con-

strained efficient allocation in environments that require the generalized Hosios con-
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dition for efficiency. We develop a dynamic model of the market for referrals that
is inspired by the model of word-of-mouth communication in Campbell, Leister, and
Zenou (2017). Consumers cannot directly observe firms’ quality, but they can pur-
chase “referrals”. Proposition 1 does not apply directly in this environment since
there is an additional law of motion for the distribution of traded goods’ quality.
However, we show that the generalized Hosios condition is still necessary for con-
strained efficiency. With competitive search (price posting), the market internalizes
both the search externalities and the direct component of the output externality (i.e.
the impact of referrals on the average quality of goods traded in the current period).
However, there is an additional externality — a dynamic composition externality —
that is not internalized. Consumers do not internalize the effect of their decisions
on future consumers through the impact of referrals on the dynamics of the quality

distribution. As a result, competitive search does not deliver efficiency.??

4 Conclusion

This paper generalizes the well-known Hosios (1990) condition that characterizes
efficient entry in search-and-matching models. We extend this simple rule to dynamic
search environments where the expected match output depends on the market tight-
ness. Such environments give rise to a novel externality — the output externality — that
is not captured by the standard Hosios condition. To ensure constrained efficiency,
markets must internalize the effect of entry on both the number of matches created
and the average value created by each match. We show that this occurs precisely
when buyers’ surplus share equals the matching elasticity plus the surplus elasticity.
We call this intuitive condition the “generalized Hosios condition”. When it holds,
agents are fully compensated for the effect of entry on both match creation and sur-
plus creation. In search-theoretic models of the labor market, for example, vacancy
entry and unemployment are constrained efficient only when firms are compensated

for the effect of job creation on both employment and labor productivity.

22This dynamic externality is similar in flavor to that found in Guerrieri (2008), which develops a
dynamic competitive search model with informational asymmetries. In that paper, the inefficiency
arises because firms do not internalize the effect of their decisions on the outside options of workers
hired in earlier periods. In our example of the market for referrals, consumers do not internalize the
effect of their decisions on consumers that trade in future periods.
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Appendix A: Omitted proofs

Proof of Lemma 2. In steady state, we have the following Bellman equations:

(76) s =+ " v, ),
(77 PV = y(0) = w(0) + 8(Us — Vi),
(78) 1Us = =+ m(8)(Vs — Us),
(79) Vs = w(6) + 3(Us — Vs),

where w(f) is the expected transfer. Using s(f) = Vg + Vg — Up — Us, we obtain
(80) (Ve + Vs) = y(0) — ds(0).

Setting Ugp = 0 and substituting back into s() = Vg + Vg — Ug yields s(6) =
(y(@) —rUs)/(r + 0). Next, using (78) and (79), we find that

z(r+9) +m(0)w(0)
r(r+ 4§ +m(0))

(81) Us =

and, substituting into s(6) = (y(0) — rUs)/(r + ), we obtain

y(0) = =+ m(6) (U242

(82) s(0) = r+0 +m(6) =

Now (76) implies Vg = cf/m(0) when Up = 0. Substituting into (77), we have

y(0) —w(@) b
r+6  m(0)

(83)

Finally, substituting (83) into (82), we obtain expression (39). W
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Derivation of laws of motion in continuous time. The law of motion for

the unemployment rate u; in discrete time is
(84) Uptdt — Ut = (Sdt(l — Ut) — m(@t)dt Ut

and the law of motion for average match output y; is given by

(1 —0dt)(1 — w)ye + m(0y)dt uy(6;)

85 = .
( ) Ytrdt 1— e

Defining 7, = (1 — w;)y;, we have

(86) jt+dt — i’t = —5dti't + m(Qt)dt uty(Ht)

In continuous time (dt — 0), the laws of motion for u; and Z; are

d _
87) =y (T“) — 51— us) — m(B)u
and
. dz . T — X 5
(58) b= (T> — (6% — m(B)uy(0))).

Also, since Z; = (1 — u;)y;, we have
(89) Ty = =gy + (1 — ue)ye

and, rearranging, we have

Ty + Wy
1-— Ut '

(90) =

Substituting in #; and 4, from (88) and (87), and using #; = (1 — w;)y:, leads to:

m(0;)u (y(0:) — Z/t).

91 /=
( ) Ye 1—’U/t
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Appendix B: Competitive search (posting)

It is well-known that competitive search equilibrium is typically (but not always)
constrained efficient in the sense that it decentralizes the planner’s allocation (Shimer,
1996; Moen, 1997). In competitive search models where the expected match output is
constant, agents simply trade off prices against the probability of trade. The fact that
competitive search allows agents to do so is what delivers efficiency. In environments
where the expected match output depends on the market tightness, agents trade off
prices against both the probability of trade and the expected match surplus if trade
occurs. Again, the fact that agents can do so is what delivers efficiency.

Consider a simple competitive search model in the spirit of Moen (1997). There
is a continuum of submarkets indexed by ¢ € [0, 1] and free entry of vacancies at cost
¢ > 0. Workers in submarket ¢ post the same wage w; and face the same market
tightness 6;, the ratio of vacancies to workers in that submarket. Firms’ search is
directed by observing the posted wages and deciding which submarkets to enter.
Within each submarket, workers and firms are matched according to a frictional
meeting technology. Matching probabilities for workers and firms are m(6;) and
m(0;)/6; respectively, where m(.) satisfies Assumption 1.

In any submarket, match output € X = [Zmin, Tmax] € Ry where xp.x € Ry U
{oo}. In submarket i, match output is an i.i.d. draw from a probability distribution
with pdf f(z;6;) and a finite mean. Let y(0;) = f;ﬁ:x xf(x;0;)dx, the expected match
output. The flow payoff for unmatched sellers is z > 0 and we assume that z;, > z.
The expected match surplus in submarket i is s(6;) = y(0;) — z.

The expected payoff for firms in submarket i with wage w; and tightness 6, is

(92) T1(6;, w;) = méfi) (y(0:) — w;),

and the expected payoff for workers in submarket ¢ with market tightness 6, is
Workers in submarket i choose a wage w; and market tightness 67 that solve

(94) max (m(6;)w; + (1 —m(6;))z)

w;,0;ER ¢
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subject to I1(6;,w;) < c and #; > 0 with complementary slackness. To induce partic-

ipation by firms in submarket 7, i.e. 6; > 0, the constraint I1(#;,w;) < c¢ is binding:

m(0;)

(95) ;

(y(0:) — w;) = c.

Solving for w; as a function of ; using (95), we obtain

602‘

(96) w(f;) = y(6:) — (o)

Choosing a wage w; is thus equivalent to choosing a market tightness ¢ where

(97) 07 = arg max (m(6;)w(6;) + (1 —m(0;))z)

0,eRy

and using (96), this is equivalent to

(98) 07 = arg max (m(0;)y(6;) + (1 — m(0;))z — cb;) .

0;€R ¢

The equilibrium 67 satisfies the first-order condition
(99) m'(0;)s(6;) + m(6;)s'(6;) = ¢,

or, equivalently, the equilibrium 6 solves

ct;
100 6+ o) =
(100) W) ¢ o) =
matching elasticity =~ surplus elasticity S———

firms’ surplus share

The generalized Hosios condition holds endogenously within each active submarket
1. If we consider a symmetric equilibrium in which firms are indifferent across sub-
markets and all workers post the same wage, then 0] = 6* for all submarkets 7. If
Assumption 2 holds, then Proposition 1 tells us that the equilibrium level of vacancy
entry is constrained efficient. While we consider only a static model here, the same

result holds in dynamic environments where Proposition 1 applies.??

2 Proof for dynamic economy is available on request.

33



Appendix C: Constrained planner

The expected match output may depend on the market tightness when agents
make a decision about whether or not to enter the market, or whether to accept or
reject a match, and that decision depends on the market tightness. In the next two
examples, we consider such environments. Importantly, we assume that in choosing
the market tightness 6, the planner is constrained not only by the matching frictions
but also by the entry or acceptance decision rules that agents would choose in the
decentralized equilibrium. This is because the function y(.), or equivalently, the dis-
tribution of match output f(z;0), arises as a consequence of these entry or acceptance
decisions. Since the planner is restricted to take both the matching technology m(.)

and the output technology y(.) as given, the planner is constrained by these.?*

Endogenous job acceptance

Consider the steady state of a continuous-time dynamic Diamond-Mortensen-
Pissarides (DMP) style environment with a job acceptance decision.?> Workers and
firms discount future payoffs at a rate » > 0. The market tightness is # = v/u and
workers’ arrival rate for meetings is m(6). After workers and firms meet, a match-
specific productivity x is drawn from a distribution with cdf G and density g = G’
where g(z) > 0 for all z € X = [0,1]. After observing the productivity z, workers
and firms decide whether to accept the match. There is free entry of vacancies at
cost ¢ > 0 and matches are destroyed at an exogenous rate o > 0. The flow value of
non-market activity is z > 0.

A job with match-specific productivity x is acceptable to both worker and firm
if and only if the match surplus S(x) > 0.2° There is a cut-off productivity z* such
that all jobs with productivity x > x* are acceptable to both workers and firms. We
write z*(f) since the cut-off productivity will depend on the value of unemployment
Us and therefore on the market tightness. The probability a match is acceptable is
a(f) =1— G(z*(#)) and the probability a worker is hired is m(6) = a(6)m(0).

24Tn these two examples, the constrained efficiency is “doubly constrained” since the planner’s
problem is solved subject to an additional constraint which is one of the equilibrium conditions.

25 The classic references are Mortensen and Pissarides (1994) and Pissarides (2000).

260The productivity-specific match surplus S(z) is defined by S(z) = Vs(z)+Vp(2)—Us—Up where
the Bellman equations for Vg and Vg found in Appendix A are adjusted to be productivity-specific.
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The distribution of output across all realized (i.e. accepted) matches has pdf

(10) Fai0) = =S

and the expected match output across all (accepted) matches is

! zg(x)
(102) y(0) = /x*(o) mdm,

where the equilibrium cut-off productivity z*(#) is given by equating S(z*) = 0.

With free entry of firms, it can be shown that S(x) = ac::_%]s , so we have z*(0) = rUs.

Clearly, since the cut-off productivity z*(#) depends on the market tightness, the

expected match output y(6) also depends on the market tightness.

The planner chooses 6° to maximize the total social surplus net of entry costs.
Importantly, we assume the planner uses the same cut-off productivity rule as in the
equilibrium, i.e. z*(f) = rUg. Solving the planner’s problem yields the generalized

Hosios condition.?” In particular, the social optimum 67 must satisfy

(103) N7, (0) +ns(0) = ™

where m(0) = a(0)m(#) and 5(0) is the expected match surplus for accepted matches.?®

Now, condition (103) is equivalent to

(104) N (0) + 04 (0) +n05(0) = T 0)300)

where 7,(0) = a/(0)0/a(6). Using Proposition 3 (adjusted), we have

y'(0)0

(105) ns(0) = m7

and differentiating a(f) = 1 — G(x*(0)) yields

g(z) =20

(106) a(0) = —1— Gla™)

2T All of the results for this example can be easily obtained by modifying the proofs of Lemma 2,

as well as Propositions 3 and 4, so that m(0) is replaced by m(0) = a(0)m(¢) throughout.

28The adjusted steady state expected match surplus is given by 5(6) = gfg;ij(gg
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Using (106) and (105), and the fact that

(107) y'(0) = (y(0) — =7(6))
we obtain the following;:

y(0) —2*(0) 1) 9(z") 570

(108 nl6) + 0y(0) = (H ) 1) 25

Combining z*(0) = rUg with the fact that (r + 0)s(0) = y(0) — rUs, we have (r +
5)8(0) = y(6) — x*(6). Substituting into (108), we obtain 7,(f) + n;(6) = 0, and
substituting into (104), an efficient ” > 0 must satisfy

(109) N (0) = —7——s

While the generalized Hosios condition (103) does indeed apply here, the standard
Hosios condition is sufficient for constrained efficiency.?’ Intuitively, this is because
there are two offsetting effects of an increase in the market tightness . First, there
is an increase in the cut-off productivity z*, which decreases the job acceptance
probability a(f) since workers are more selective. Second, the increase in z* leads to
an increase in the expected match surplus §(f) for acceptable matches, since these
matches have higher productivity. The fact that these two effects exactly offset each
other is reflected in the fact that 7,(6) + n;(f) = 0, which implies the generalized

Hosios condition reduces to the standard Hosios condition.

Ex ante heterogeneity and market composition

When there is ex ante heterogeneity among buyers or sellers, dependence of the
expected match output on market tightness can arise naturally through market com-
position. If the market tightness influences the individual entry decisions of buyers
or sellers that are ex ante heterogeneous with respect to characteristics that affect

match output, then average output per match will depend on market tightness.?* We

29 Note that Corollary 1 does not directly apply here since it assumes that all matches are accepted.
30For example, Albrecht et al. (2010) consider an environment where workers are ex ante het-
erogeneous with respect to their market productivity. There is both firm entry and a labor force
participation decision. Related literature includes Albrecht, Navarro, and Vroman (2009), Gavrel

36



call this the composition channel.

Suppose there is a measure u of unemployed workers and a fixed measure M of
firms that may choose to search. Firms’ productivities x are distributed according
to a twice differentiable distribution with cdf G and density g where G(0) = 0 and
g(x) > 0 for all z € X = [0,1]. Firms learn their own productivity before deciding
whether to pay the entry cost ¢ > 0 and search. Expected wages paid by a firm with
productivity z is w(zx,0) < z.

Let v be the measure of searching firms and define § = v/u. Meetings are bi-
lateral and the probabilities of matching for workers and firms are m(6) and m(#)/0
respectively, where we assume m/(.) satisfies Assumption 1.

A firm with productivity x chooses to search for a worker if and only if

m(6)

(110) ;

(x —w(z,0)) > c.

If Ow(x,0)/0x < 1, there is a unique cut-off productivity x*(#) such that firms enter
if and only if x > 2*(6).>! The distribution of output across matches has pdf

(111) f(z;0) = %

and the expected match output, or labor productivity, is given by

b wg(w)
(112) y(0) = /x*(o) mdm.

It can be verified that x* is strictly increasing in 6 provided that dw(z,0)/0x < 1.
This is intuitive: as the market tightness increases, the probability of finding a worker
is lower so only high productivity firms choose to pay the cost ¢ and search. At the
same time, the average match output y(6) is increasing in the cut-off productivity z*.
Therefore, y'(f) > 0 for all # € R, and the output externality is positive.

Suppose the planner chooses a market tightness # to maximize the total social
surplus minus the total entry costs. As in the previous example, we assume the

planner uses the same cut-off productivity rule z*() as in the decentralized economy.

(2011), Charlot, Malherbet, and Ulus (2013), and Masters (2015). In a follow-up paper to the
present one, Julien and Mangin (2017) applies and extends the generalized Hosios condition to the
environment in Albrecht et al. (2010).

31This is true, for example, if wages are determined by Nash bargaining with 3 < 1.
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If Assumption 2 is satisfied, there exists a unique social optimum 6” and we have
constrained efficiency if and only if " satisfies the generalized Hosios condition in
Proposition 1.3 Since 3/(6*) > 0, Corollary 1 implies that there is under-entry of

firms under the standard Hosios condition.

Appendix D: Endogenous quality dynamics

We now present an example that illustrates how competitive search may not always
endogenize the generalized Hosios condition. In the model we present, an endogenous
quality distribution arises through the possibility of “referrals”. The model is closely
related to — but different from — Campbell et al. (2017), which presents a dynamic
model of consumer sales with word-of-mouth communication through social networks.
In our setting, the key variable 6 is the ratio of referrals to consumers and the
endogenous quality distribution is the probability that a traded good is low quality,
i.e. the market share of low-quality firms. We use competitive search to model the
market for referrals (not goods) and consider whether the entry of sellers of referrals
(not firms) is constrained efficient.

There is a fixed measure of consumers who seek to purchase one unit of a durable
good. After purchasing the good, consumers exit the market and are replaced by
new consumers. Goods are produced by a large number of competitive firms of two
types: high quality and low quality. The share of firms that produce low quality
goods is p € (0,1).33 The low-quality good has quality z; and the high-quality good
has quality gy > x. The price of the good is p for both types of firm.

Consumers cannot directly observe firms’ quality, but they can receive referrals. A
single referral tells a consumer about the quality of a good purchased in the previous
period. In each period t € {0, 1, ...}, the expected number of referrals per consumer is
0, (which is endogenous) and P, (6;) is the probability a consumer receives n referrals
at time t. This is a kind of “meeting technology” which matches referrals with con-
sumers. If a consumer receives at least one referral, they pick the “best” referral and

then choose whether to purchase from that firm or instead choose a firm randomly.?*

32For example, if G is uniform on [0, 1] and wages are determined by Nash bargaining, Assumption
2 holds provided that ¢ < 1/2 and 8 < 1/2.

33Since our focus is on the market for referrals, we do not endogenize the entry of low and high
quality firms as in Campbell et al. (2017) but instead assume that p is exogenous.

341f the consumer is indifferent between two referrals, they pick one at random.
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If a consumer receives no referrals, they purchase the good from a random firm, i.e.
they buy a low-quality good with probability .

Let «; denote the market share of low-quality firms, i.e. the probability that a
good traded in period ¢ is low quality. Low-quality goods are purchased only if all n
of a consumer’s referrals are to low-quality firms (which occurs with probability o)
and the consumer picks a low-quality firm when choosing randomly (which occurs

with probability p). We therefore obtain the following law of motion for ay:

(113) a1 =Y Pa(Brir)af

n=0

where o = p € (0,1). If P,(0) is Poisson, i.e., P,(0) = enge, we have
(114) Qg1 = Mefet“(lfat)-

Both the selection channel and an additional channel are present. The selection
channel implies that the average quality of a traded good is increasing in the number
of referrals per consumer #; since consumers can be more selective. An additional
channel, which is a kind of dynamic composition channel, ensures that the quality
distribution o itself evolves over time. This is because the market composition, i.e.
the composition of the pool of referrals, depends on the previous period’s 6; since
referrals are only drawn from traded goods.?

Suppose there is a large number of potential entrants who can pay a cost ¢ >
0 to acquire information about a random good purchased in the previous period.
This information can be sold to consumers as a “referral”. In the market for selling
referrals, consumers post referral fees and commit to paying a single fee for the best
referral they receive. Similarly to the competitive search environment in Appendix

B, consumers form a submarket 7 by choosing a referral fee r and a ratio of referrals

35In terms of our earlier notation, the law of motion for the distribution of quality across “matches”,
i.e. trades which occur when a consumer receives at least one referral, is given by

. Bty Pa(O)af
(115) ft+1(xL7 0t+1) - 1_ P0(0t+1)

Since the distribution f; evolves over time and does not depend only on the current period’s market
tightness 6, Propositions 1 and 2 do not directly apply in this setting. However, we will show that
the generalized Hosios condition is also a necessary condition for efficiency in this environment.
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to consumers ¢ to maximize their expected payoff:

(116) m(0:)(y(0s, ) — ri = p) + (1L = m(6:))(y, — p)

subject to the following condition for sellers of referrals:

(117)

and 6; > 0, with complementary slackness. Here, m(6;) = 1 — e~ is the probability
a consumer receives at least one referral, m(0;)/0; is the probability a seller is paid
a referral fee, y(f;, ) is the expected quality of a good purchased if the consumer
receives at least one referral, and y, = pxy + (1 — p)zy is the expected quality of a
good purchased from a random firm.

Using (117), the choice of a consumer in submarket 7 is equivalent to

(118) 0; = arg max (m(0:)(y(0s, @) — yp) + yp — p — cty)

and 67 satisfies the first-order condition

ay(6;,
(119) m!(6;)s(6;) + m(ei)% =
where the expected match surplus is s(6;) = y(0;, «) — y,, i.e. the difference between
the expected quality in submarket ¢ with and without receiving at least one referral.

In symmetric equilibrium, 67 = §* for all submarkets i and 0" satisfies

ay(ova) 9
—an Ce
120 0, (0)  + 90 = —
(120) n(9) s(0) m(0)s(0)
matching elasticity
direct surplus elasticity surplus share of referral sellers

as well as the steady state condition
(121) o = pe 0017,

If p < %, there exists a unique steady state equilibrium (0*, a*) where a* € (0,1).%6

Now consider a planner who can directly choose the number of referrals per con-

36 A detailed derivation of the steady state equilibrium can be found below.
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sumer #. Importantly, while consumers take the distribution of quality a as given,
the planner takes the effect of # on « into account. In the proof below, we solve
the dynamic planner’s problem subject to the law of motion for a. The resulting
steady state condition is identical to the one obtained when the planner maximizes

the steady state social surplus per consumer,

(122) (0) = m(0)(y(0,a(0)) = Yp) + Y — b,
where «(f) is given by (121) and

(1 — pe—00=0O) gy 4 ye=00=a®) g — =0y

(123)  y(0,0(0) = L

Using s(0) = y(0, «(#)) — y,,, the planner’s first-order condition is equivalent to

120 Wl *op0 -

matching elasticity  surplus elasticity
surplus share of referral sellers

which is just the generalized Hosios condition. Differentiating s(), we obtain

125) o= WOOO) W)
—_— ~ ~ P

direct output externality  indirect output externality

and thus we have efficiency only if 0" satisfies

Wl 20 ()9 cf
(126) n,, (9) + 20 + da ( ) _ o
—— s(0) s(0) m(60)s(0)
matching elasticit ~~ 4
& v surplus elasticity surplus share of referral sellers

Comparing (126) with (120), it is clear that the economy is not efficient. The
decentralized market internalizes both the search externalities and the direct “output
externality”, i.e. the direct effect of # on the quality of traded goods via the selection

channel. However, there is an additional externality arising from the use of referrals.

This is reflected in the term WQ’ (0), which captures the indirect or dynamic

“output externality”, i.e. the indirect effect of f via the dynamic composition channel.

Oy (6,a(0)
Ja

Since ) < 0 and the market share of low-quality firms is decreasing in the

41



number of referrals per consumer at any equilibrium 6%, i.e. o/(6*) < 0, this is a
positive externality that is not internalized by the decentralized economy. Therefore,

the equilibrium number of referrals is inefficiently low.

Proofs for Appendix D

Equilibrium. In period ¢, the expected payoff for a seller of a referral in submar-

ket ¢ with referral fee 7;; and market tightness 0, is

éi t’t)rm e

)

(127) H(@Lt, ’ri,t) =
and the expected payoff for consumers in submarket 7 is

(128) V(0ig,mie) = m(0i)(y(0ie, e1) — 1ip — p) + (1 —m(054))(yu — p))-

Consumers in submarket i choose a referral fee r;, and market tightness 07, that
maximize V'(0;,7;;) subject to I1(0;4,7r;:) < ¢ and 6;; > 0, with complementary
slackness. To induce participation by sellers in submarket 4, i.e. 6;; > 0, the con-

straint I1(6;+,7;+) < c is binding:

m(0i7t)
0

)

(129)

rit = C.
Using (129) to replace r;; in V(6;4,7;,), the choice of a consumer in submarket 7 is

(130) 0;, = arg max (m(0;)(y(0is, 1) — Yu) + Y — 0 — hiy).

Gi,tER.Q_

Differentiating with respect to 0, ,, the first-order condition of this problem is

/ 0y (0; 4, s
13 w00 — )+ m(0) 2 g
it

In symmetric equilibrium, ¢7, = 0} for all submarkets i and ¢; satisfies

(132) ' (0:) (y (O, 1) = yu) + m(9t>ay(eg—e(j“) -

42



In steady state, 0; = 0,1 = 6 and oy = o1 = « and any equilibrium (0", o*) satisfies

8y(0,a) 0
= cl
a0 _
(133) 0  + s =
NP s(0) m(0)s(6)
matching elasticity N——
direct surplus elasticity surplus share of referral sellers

where the expected match surplus is s() = y(0, a) — y,..
To solve for the equilibrium, we use the fact that the average quality of a traded

good in period t is given by

(134) (1—oap)ey + oz = g0, q—1) + (1 —m(6y))y,

where g(0;, ar—1) = m(0:)y(0:, a—1). Using the fact that oy = ,ue_et(l_o‘t—l),

(135) g0y, 1) =xg — pAzebr—a-1) _ e_etyu

where Az = xy — xp. The first-order condition (132) is equivalent to

39(«% O‘t71>

1
(136) a6,

—m'(0)y, —c=0.
Differentiating (135) with respect to 6, this is equivalent to
(137) (1 — oy ) pAze 0= _ ¢ =
and the second-order condition is

(138) —(1 — 1) pAge (- < 0,

Using the fact that oy = pe~%0-%-1) this is equivalent to

(139) (1 - a1)a; = é.

In steady state, ; = 0;,_1 = 6 and oy = a;_1 = « and any equilibrium « satisfies
(140) o ta— =0
Az

as well as a = e 1= Since p € (0,1), there are two solutions o € (0, 1) provided
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1 c

c 1 o if e 1 - _1 _
that ~ <7 and one solution if A~ =1 The two solutions are o = st 1 A

Since a < p for 8 > 0, if p < % we obtain a unique steady state equilibrium:

1 1 c
141 S
(141) @ T3 1 Ar
and
1 %
142 o = 1 (-) .
( ) 1 —« 1 o

Planner. Given oy = p € (0,1), the planner chooses {6,},~, to maximize the

total discounted social surplus per consumer:

(143) Q{0:}:2) Zﬁt y(Or, 1) + (1 — m(01))y, — cby)

subject to 6; > 0 and the law of motion for « :
(144) oy = pefrlimae)

The Lagrangian for this problem is

(145) L= Zﬁt Y(0s, 1) — Y) + Y — c0y) + Ay — pe 0=y,

The first-order conditions are:

(146)
oL Oy(0y, vy —0,(1—-a
OL B4t (0,) (01, 1))+ (0) P02 2D g3 (1 et 0en) g
8«9t 86)t
oL Oy(0r, cv—1)
14 = _ ¢ A N2 Ieat s VA 1 —Qt— 1) —
( 7) a&til )\t 1+ 6 m(@t) aatil )\te ,ue 0
(148) 9k _ ay — pe 007 —

O\
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In steady state, ;.1 = 6; = 0 and o411 = a4 = a, so we have

(149) B! (0)(y(0, ) — y,.) + m(6) 8%99’ Y )= A1 = a)pe 1)
(150) A+ 6tm(9)0y(¢9€;a) — Ape00-0)
(151) a = pe~t1-a)

Rearranging (149), we obtain

=B (0)(y(0, ) — y,) + m() 25 — ¢)
- (1 — a)ue—01-) ’

(152) A

and rearranging (150) delivers

oy (0,
_ w0y

T 1= Quet0-a)"

(153) A

Equating (152) and (153) yields

m/(0)(y(0: @) — y.) + m(0)2FD — ¢ m(6) %5
(1 — a)ue?01-2) 1 — pue00-a)"

(154)

Rearranging, and substituting in (151), we obtain

(155) ! (0)(5(6,0) — ) +m(0) (8y(890,a) B 8yg).§a) <1 :z;a)

= C.

Implicitly differentiating o = pe 1= we have o/(#) = —(1 — a)a/(1 — fa), and
substituting o/(6) into (155) yields

(156) m'(0)s(6) + m(6) (83/5;99, @), 8y((9901a)0/(9)) —c

Rearranging (156), we obtain (126). This is a necessary condition for efficiency.
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