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Abstract

We study a search-and-matching model where heterogeneous agents invest
to acquire skills before entering the market. Agents produce in pairs and must
engage in costly search for partners: in every period, agents incur an addi-
tive search cost, pairs meet at random, and can either accept and bargain over
their joint output or reject and continue searching for a better match. Potential
sources for inefficiencies are the hold-up problem and mismatches between skills.
Despite these, we prove a second welfare theorem: the constrained efficient allo-
cation is an equilibrium. We also establish a general assortative matching result,
equilibrium existence, provide conditions for uniqueness, and derive novel eco-
nomic implications: the efficient outcome can be discriminatory in the marriage
market.

1 Introduction

This paper re-examines classical questions regarding the efficiency and structure of
equilibrium in markets with search frictions. We consider a model where heteroge-
neous agents make costly investments to acquire skills before entering a matching
market. Agents produce in pairs, and their match output depends on the skills that
they have acquired. To form productive matches, agents engage in costly search:
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each agent in the market incurs a per-period search cost, pairs meet at random and
can either accept and bargain over their joint output or reject and continue searching
for a better match. Our main result establishes a new second welfare theorem for
economies with explicit search costs: every constrained efficient allocation, regarding
both the skills acquired and who matches with whom, is obtainable as an equilibrium
outcome. We also prove a general sorting result, establish conditions for a unique
equilibrium, and derive novel economic implications.

To motivate our model, let us mention a few settings where investment and search
play an important role. Individuals in the marriage market make premarital invest-
ments in their education and career before looking for a partner. In the labor market,
workers acquire human capital before searching for jobs, while firms adopt technolo-
gies before hiring workers. A similar situation occurs in other settings: in the real
estate market, developers often build before finding prospective buyers; in a financial
market, entrepreneurs invest time and money developing start-ups prior to seeking
venture capital funding; and in product markets, sellers make investments in quality
before seeking potential buyers.

In such settings, agents are usually heterogeneous, and the payoff from investing
depends on who matches with whom and the search duration. For example, in the
labor market, a worker’s return to schooling depends on which types of firms may
potentially hire her and how long it will take her to find a job. Likewise, a firm’s
benefit from adopting a new technology depends both on the skills of workers it may
potentially hire and how long it will take to fill vacancies. Therefore, search frictions
impact each agent’s matching outcome and the incentive to invest.

Building on the foundational Diamond-Mortensen-Pissarides model, the prevailing
view in the literature is that efficiency fails in decentralized markets with search fric-
tions. First, when investments are sunk by the time agents meet, a hold-up problem
may reduce the incentive to invest (because agents bear the entire cost of investment
and receive only a fraction of the additional output). Second, heterogeneous agents
can mismatch because they fail to internalize how their decisions to accept/reject
partners affects other agents. For instance, a social planner may want an agent to
match with a partner who is not highly productive, but the agent prefers to continue
searching for a more productive match.

In what follows, we will challenge the view that search frictions necessarily create
inefficiencies. We develop a search-and-matching model with transfers between two
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populations of agents, called buyers and sellers, but one can equally consider workers
and firms, men and women, or any other two groups that invest and then match.
What is important is that output is produced by pairs of agents, one from each side
of the market. The model has two key ingredients. First, agents invest in skills
before entering the market. The agents are heterogeneous in their investment costs
and buyer-seller pairs produce output according to their skills. Second, we consider
the standard random search and bargaining process with additive search costs rather
than discounting, as in Atakan [2006].

Specifically, in every period, each agent in the market incurs the same search cost
and randomly meets an agent from the other side. When two agents meet, they can
either agree to match or continue searching. If both agree, they exit the market and
divide their output according to Nash bargaining. A new cohort of agents is born
in every period, acquires skills, and then enters the market. We analyze a steady-
state equilibrium where, for every skill, the inflow of agents to the market equals the
outflow, and so the distribution of skills in the market is in a steady state.

The term skill refers to investments that enhance productivity. For instance, in
the labor market, a worker may acquire some education level which is their skill, and
a firm may adopt a particular technology which is the firm’s skill. In the product
market, a seller’s investment may reduce their production cost, a buyer’s investment
may increase their value, and the output function is the difference between the buyer’s
value and the seller’s cost. In the marriage market, the output function typically de-
pends on the premarital investments of both agents, and we assume ex-ante symmetry
-- men and women can acquire the same skills and have the same cost distribution.

The market is competitive in that every skill has a value and agents optimize
given these values. Thus, each agent invests by comparing the marginal value of each
skill to the agent’s marginal cost of acquiring that skill. In addition, when two agents
meet they will accept (reject) the match if their joint output is greater (smaller) than
the sum of their values. As in standard search and matching models, these values are
endogenously determined in an equilibrium and must be consistent with the steady-
state conditions, the search strategies, and Nash bargaining (see e.g., Burdett and
Coles 1999; Shimer and Smith 2000). An important and novel feature of our model is
that the values serve double duty : creating incentives to invest and to accept matches.
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Despite the potential inefficiencies, we prove that every constrained efficient allo-
cation is an equilibrium outcome.1 The proof constructs market values that satisfy
the standard equilibrium conditions while perfectly aligning the agents’ incentives
with the planner. Strikingly, these values simultaneously solve the investment and
matching problems. This theorem also establishes the existence of equilibrium.

Notice that when agents invest in skills and decide whether to accept/reject a
potential partner, they impose externalities on other agents. Regarding investment,
the social planner must weigh each agent’s marginal investment cost against the
marginal effect on productivity and search costs of all agents. In particular, increasing
the inflow of one skill affects the productivity and search costs of the agents that now
acquire it and their partners, but there is also an indirect effect on other agents via the
change in the steady-state skill composition. Regarding matching, when the planner
decides that two skills should reject rather than accept, the planner forgoes their
match output and incurs a higher search cost to form more productive partnerships,
but must also consider the change in the steady-state skill composition. In contrast, in
equilibrium, each agent invests and accepts or rejects partners simply by their private
incentives, as determined by the value of each skill in the market. Remarkably, the
equilibrium values make the agents internalize the direct and indirect steady-state
search externalities.

Our second main point is that the equilibria have a clear and simple struc-
ture. We prove that there is assortative matching if the production function is su-
per/submodular. Furthermore, if the production function is additively separable, then
the equilibrium is unique and it achieves the first-best allocation. Economies with
non-separable production functions can have multiple equilibria and the agents may
fail to coordinate on the efficient one and so there is scope for policy interventions.2

The tradeoff between investment, search, and matching has important implica-
tions. For example, in the marriage market, a gender gap in skill acquisition not only
arises, but can be efficient, even when the two populations are ex-ante identical. The
key tradeoff is that asymmetric investments induce a higher total investment cost
(due to a misallocation of talent), but the resulting lopsided skill distributions can
facilitate search-and-matching (since it is more likely that agents with opposite skills

1The constrained efficient allocation solves the problem faced by a social planner who controls
the agents’ decisions while respecting the steady-state condition. Since utility is transferable, the
Pareto-optimal outcomes are the constrained efficient ones.

2For example, a no-investment equilibrium may occur if not investing is self-reinforcing: agents
do not invest because all others do not.
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meet). As a result, in the efficient equilibrium, men and women may receive different
payoffs from their investments in the market.

These results have practical implications. For example, in the labor market, we
establish when sorting occurs (high-tech firms match with high-skill workers) and
the model captures how it impacts investment. In product markets, the joint out-
put function is often assumed additively separable, and we show that there exists
a unique equilibrium which achieves the first-best allocation. In the marriage mar-
ket, we establish that a gender gap can occur. Finally, we generalize our model by
incorporating a discount factor and show that the main results are robust to small
modifications in the time costs.

Related Literature
Our paper is the first to provide a general and tractable model incorporating three
components: (i) random search and bargaining, (ii) matching between heterogeneous
agents, and (iii) pre-entry investments. These three components have not been studied
together and have novel implications when studied jointly (e.g., the discrimination
outcome in Section 3). Table 1 summarizes the models and results of the central
papers in the strands of the literature most closely related to our work. We elaborate
on these and other papers below.

Papers Search Matching Investment Results

Cole et al. [2001]
Noldeke and Samuelson [2015]

No Yes Yes Efficiency

Shimer and Smith [2000]
Atakan [2006]

Yes Yes No Sorting (single population)

Shimer and Smith [2001] Yes Yes No Inefficiency
Acemoglu [1996]
Masters [1998]

Acemoglu and Shimer [1999a]
Yes No Yes Inefficiency

Hosios [1990] Yes No No Efficiency
Gale [1987]

Mortensen and Wright [2002]
Lauermann [2013]

Yes No No Convergence to First Best

This paper Yes Yes Yes
Constrained Efficiency +

Sorting (two populations) +
Convergence to Second Best

Table 1: Literature Comparison
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Previous work on two-sided matching with transfers has extended the classical
assignment model of Shapley and Shubik [1971] to settings with ex-ante investments
and perfect frictionless matching (components (ii) and (iii)). These models typically
find that the first-best allocation is a competitive equilibrium outcome, but there
may exist additional inefficient equilibria (see, e.g., Cole et al. 2001, Mailath et al.
2013, Noldeke and Samuelson 2015, Dizdar 2018, Chade and Lindenlaub 2022). We
contribute to this literature by adding search frictions and establishing that the con-
strained efficient allocation is an equilibrium outcome. One novel implication of our
model is that in the marriage market, a gender gap in skill acquisition can be effi-
cient, even when the two populations are ex-ante identical. In contrast, in frictionless
models, the efficient outcome is always symmetric.

An important strand of the literature studies the random search and bargain-
ing model with heterogeneous agents (components (i) and (ii) above, see Burdett
and Coles 1999, Shimer and Smith 2000, and Atakan 2006). As in Atakan [2006],
we consider an additive search cost, whereas most of this literature assumes time
discounting. We extend these models by adding pre-entry investment, which endog-
enizes the skills in the search market. We contribute to this literature by proving a
second welfare theorem and a general sorting result. In particular, our sorting result
applies to two-sided matching markets, whereas the previous results of Shimer and
Smith [2000] and Atakan [2006] establish sorting in a one-population search model
(the one-population model is a special case of our two-population model).3

Building on the foundational Diamond-Mortensen-Pissarides model, the prevailing
view in the search literature is that decentralized markets with search frictions fail
to achieve efficient outcomes regarding matching and investments. First, regarding
matching, Shimer and Smith [2001] consider the random search and bargaining model
with heterogeneous agents but without investments (components (i) and (ii) above)
and show that agents mismatch in the following way: low-types reject too frequently
while high-types accept too often. Second, regarding investments, several papers

3The sorting result is non-trivial and important for applications, as both the labor market and
product markets are two-sided. The Welfare Theorem also establishes the existence of a steady-
state equilibrium. Existence proofs can be tricky in other search models (see, e.g., Manea 2017
and Lauermann et al. 2020). Both results are computationally useful since the planner’s problem is
often more amenable to numerical analysis than the equilibrium conditions, and the sorting result
drastically limits the policy space.
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have studied search models with pre-entry investments but sidestep the matching
problem by assuming homogeneous agents (components (i) and (iii) above) and show
that the equilibrium investments are always inefficient due to the hold-up problem
(Acemoglu 1996, Masters 1998, Acemoglu and Shimer 1999a). In contrast, we prove
a general second welfare theorem in a model with heterogeneous agents and pre-
entry investments. Remarkably, the equilibrium values simultaneously solve both the
investment and the matching problems.

Efficiency fails in those models because when agents discount time, they incur im-
plicit search costs (due to delayed payoffs), which are proportional to the continuation
values and heterogeneous across skills. Thus, acquiring a higher skill also entails a
higher search cost which diminishes the incentive to invest. Furthermore, the implicit
search costs also distort the bargaining splits away from the efficient ones, which leads
to inefficient matching. In our model, all agents incur the same additive search cost
(see Section 2 for details).

Hosios’ [1990] classic paper considers a standard search and bargaining model with
homogeneous agents who choose their search intensity. He proves that the equilibrium
can achieve the constrained efficient outcome, provided that the meeting function
exhibits constant returns to scale and the bargaining weight equals the elasticity
of the meeting function. The underlying point is that with the “right” bargaining
weight, the search externalities that agents impose on each other perfectly offset in
equilibrium. We derive a similar result for an economy with heterogeneous agents
and pre-entry investment (see Proposition 3).

Our paper contributes to the literature on equilibrium convergence in economies
with decentralized exchange initiated by the classic work of Rubinstein and Wolinsky
[1985, 1990] (see also Gale 1987, Mortensen and Wright 2002, and Lauermann 2013).
The previous work in this literature does not consider models with pre-entry invest-
ments or with matching. In the context of the product market, our model accom-
modates heterogeneous goods, whereas those models consider homogeneous goods.
In Section 6.1, we extend our model by adding a discount factor δ and show that
the equilibrium converges, as δ → 1, to our baseline equilibrium and thus to the
constrained efficient allocation.

Finally, we mention several papers which are important but less related to ours.
Burdett and Coles [2001] consider a marriage market with premarital investments,
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but they assume homogeneous investment costs and a very specific form of non-
transferable utility. They show that an equilibrium exists and that it is inefficient.4

In the literature on directed search, sellers post prices to attract buyers, and the
equilibrium can achieve an efficient allocation, overcoming the hold-up and matching
problems (e.g., Acemoglu and Shimer 2000, 1999b, Shi 2001, Jerez 2017). However,
in these models, the matching process and the price-determination mechanism are
substantially different than in random search and bargaining models.

2 The Model

There is a continuum population of buyers β ∼ F b and sellers σ ∼ F s. Each buyer
chooses one skill from a finite set I ⊂ N and each seller chooses one skill from a finite
set J ⊂ N. The cost of skill i to buyer β is Cb(i, β) and the cost of skill j to seller
σ is Cs(j, σ). Output is produced by buyer-seller pairs according to their skills and
is summarized by the matrix G = [gij], where the entry gij ≥ 0 denotes the output
of a pair with skills i, j. Agents have transferable utility and incur a fixed per-period
search cost c > 0.

The type distributions F b and F s are continuous and strictly increasing over
their connected supports: B = supp(F b) ⊆ R and S = supp(F s) ⊆ R. The match
output gij is strictly increasing in skills. The cost functions are non-negative, strictly
increasing, bounded and continuous. Furthermore, they satisfy increasing differences:
the difference Cb(i′, β) − Cb(i, β) is strictly increasing in β whenever i′ > i and the
difference Cs(j′, σ) − Cs(j, σ) is strictly increasing in σ whenever j′ > j. That is, a
higher skill enhances match output, but is more costly to acquire, and higher types
have higher costs and higher marginal costs.

Definition. An economy is a tuple 〈F b, F s, I, J, Cb, Cs, G, c〉 consisting of prior dis-
tributions, skill sets, investment cost functions, the output function, and a search
cost. The economy is symmetric if F b = F s, I = J , Cb = Cs, and gij = gji,∀i, j.

Timing. Search and matching takes place in discrete time periods over an infinite
horizon. In every period, a unit measure of buyers and a unit measure of sellers
are born. Each newborn agent chooses a skill and then enters the matching market.

4In the non-trivial case of high investment costs, agents overinvest to appeal to better partners,
and they search too much in that agents are too selective.
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Each agent in the market incurs the search cost c and randomly meets a partner.
When two agents meet, they can either accept the match or continue searching in the
hope of finding a better partner. If both agents accept the match, then they exit the
market and divide their output according to Nash bargaining. If at least one rejects,
then they both remain in the market. In the next period, a new cohort enters the
market and the process repeats itself. We refer to the agents in the market as the
stock population, the agents entering the market as the inflow population, and the
agents exiting the market as the outflow population.

Steady State. The economy is in a steady state if in the stock population the
measure of agents with each skill is constant over time. Therefore, for each skill,
the inflow of agents equals the outflow. In a steady state, we denote the measures
of skill i buyers and skill j sellers in the stock population by bi and sj. The total
measures of buyers and sellers in the market are B =

∑
i∈I bi and S =

∑
j∈J sj, and

the proportions of skill i buyers and skill j sellers are xi = bi/B and yj = sj/S (notice
that B ≥ 1 and S ≥ 1). The notation (xi) and (yj) denotes the profile of buyer and
seller proportions. We let z = 〈(xi), (yj), B, S〉 be the state variable where the set of
all state variables is Z = ∆(I)×∆(J)× [1,∞)2.

Meetings. An agent can meet at most one partner in each period and pairs meet at
random. The total number of meetings per period is µ(B, S) = min(B, S). Therefore,
if the market is balanced, i.e. B = S, then every agent randomly draws a partner in
each period. For now, we will assume that the market is balanced, and denote the
market size by N = B = S and the state by z = 〈(xi), (yj), N〉. If the market is
unbalanced, agents on the long side of the market would need to be rationed, but this
cannot occur in equilibrium (see Lemma 1). In Section 6.3, we extend the analysis to
consider more general meeting functions.

Strategies. An agent’s strategy specifies their choice of skill and which agents they
accept. We assume Markov strategies. The investment strategy of buyer β is Iβ :

Z → I and that of seller σ is Iσ : Z → J . The acceptance strategy of a buyer
with skill i is Abi : Z × J → [0, 1], which specifies the probability she accepts a seller
with skill j upon meeting. For a seller with skill j, it is Asj : Z × I → [0, 1]. Note
that the acceptance strategies do not depend on the agents’ identities because the
match output depends only on skills. To simplify, we will suppress the state variable
in the strategies. It will be convenient to summarize the acceptance strategies by a
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matching matrix M = [mij], where the element mij = Abi(j) ·Asj(i) is the probability
that buyer i and seller j both agree to match, conditional on meeting.

Remark 1. The search cost c captures in reduced form the wide range of costs people
explicitly incur as they search. These include the opportunity cost of time (think of
the man-hours firms spend screening and interviewing candidates; while candidates
forgo some income, say from driving an Uber, as they go through ads, apply, and
prepare to interview); the flow payments to search intermediaries and online platforms
(such as monthly advertising fees or hiring talent recruiters in-house); cognitive effort
costs (browsing and comparing products online for hours, or the negative mental
health impact of unemployment); or even direct payments (e.g., singles paying per
date). In contrast, in a discount factor model, agents incur an implicit search cost as
their payoffs are delayed. Which costs are more salient depends upon the economic
situation being modeled, but there are certainly situations where additive costs are
predominant.5 In Section 6, we generalize the model by adding a discount factor.

2.1 Equilibrium

Every skill has a value in the market and agents optimize given the values and the
steady state. We denote the values of a skill i buyer by vi, and of a skill j seller by wj.
The profiles of buyer and seller values are (vi) and (wj), respectively. As is standard
in the search and matching literature, we define an equilibrium using the matching
matrix and values, rather than the strategies.

Definition. A steady state equilibrium 〈z,M, (vi), (wj)〉 consists of a state variable,
a matching matrix, and market values satisfying conditions (1), (3), and (4) below.

The first condition is that acceptance decisions are individually optimal. When two
agents with skills i and j meet, the surplus is sij = gij − vi −wj, and the acceptance
decisions satisfies the Efficient Matching condition:

mij =

1 if sij > 0

0 if sij < 0
(1)

5For example, when search transpires over a short period of time and does not affect the consump-
tion date (think of the time spent searching online for a product that will be delivered tomorrow or
college students applying for jobs which they will take after graduation).
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The condition is intuitive because an agent will accept a match precisely when her
payoff from doing so is greater than her continuation value. When the surplus is
negative, i.e. vi + wj > gij, the match is always rejected because both agents cannot
receive at least their value, while when the surplus is positive, the agents will reach a
mutually beneficial agreement. If the surplus is exactly zero, then mij is unrestricted,
i.e. 0 ≤ mij ≤ 1.

When two agents accept each other, each receives their own value and half of
the match surplus. This division rule is the Nash bargaining solution and also is a
subgame perfect equilibrium of a strategic bargaining game (see, e.g., Atakan 2006).
The second condition is that the values are self-consistent, and therefore satisfy the
following recursive equation:

vi =
∑
j∈J

yj
[
mij

(
vi +

sij
2

)
+ (1−mij)vi

]
− c, ∀i (2)

wj =
∑
i∈I

xi
[
mij

(
wj +

sij
2

)
+ (1−mij)wj

]
− c,∀j

That is, in every period, buyer i pays the search cost c and meets seller j with
probability yj. If a match is accepted, the buyer receives her continuation value and
half of the surplus, whereas if the match is rejected, she attains her continuation value
vi. Simplifying, we obtain the Constant Surplus equations:∑

j∈J

yjmijsij = 2c,∀i (3)∑
i∈I

ximijsij = 2c, ∀j

The investment decisions are individually optimal: Iβ ∈ arg maxi∈I vi − C(i, β),∀β
and Iσ ∈ arg maxj∈J wj − C(j, σ),∀σ. Since the cost function satisfies strictly in-
creasing differences, the set of cost types who choose each skill is an interval (and
hence measurable). Furthermore, at most one type can be indifferent between any
two skills,6 and thus the values (vi) and (wj) uniquely determine the inflows (up
to measure zero). Formally, we denote by F b(A) =

∫
A
dF b the measure of set A

according to F b. The measure of buyers who choose skill i is F b
({
β : Iβ = i

})
=

F b
({
β : i ∈ arg maxi′∈I vi′ − Cb(i′, β)

})
, and analogously for sellers.

6If buyer β̂ is indifferent between acquiring skills i and i′, where i′ > i, then all buyers β < β̂
strictly prefer skill i′ to skill i and all buyers β > β̂ strictly prefer skill i to skill i′.
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The final set of conditions is that the economy is in a steady state. We refer to
Equations (4) as the Inflow=Outflow equations:

inflow︷ ︸︸ ︷
F b

({
β : i ∈ arg max

i′∈I
vi′ − Cb(i′, β)

})
=

outflow︷ ︸︸ ︷
Nxi

∑
j∈J

yjmij,∀i ∈ I (4)

F s

({
σ : j ∈ arg max

j′∈j
wj′ − Cs(j′, σ)

})
= Nyj

∑
i∈I

ximij,∀j ∈ J

The inflow is the measure of buyers who choose skill i. The outflow is the measure of
skill i buyers in the market, Nxi, times the probability of exiting (each buyer meets
a skill j with probability, yj, and they accept each other with probability, mij). The
seller Inflow=Outflow equations are analogous.

2.2 Equilibrium Properties

The next two lemmas will be useful. The first states that unbalanced states do not
occur in equilibria.

Lemma 1. (No Rationing) In any equilibrium, B = S.

Proof. WLOG, suppose that B ≥ S. Then, a buyer meets a seller with probability
ρ = S/B, and a seller meets a buyer with probability 1. Therefore, the values satisfy:

∀i : vi =ρ
∑
j∈J

yj

[
mij

(
vi +

sij
2

)
+ (1−mij)vi

]
+ (1− ρ)vi − c⇒

∑
j∈J

yjmijsij =
2c

ρ

∀j : wj =
∑
i∈I

xi

[
mij

(
wj +

sij
2

)
+ (1−mij)wj

]
− c⇒

∑
i∈I

ximijsij = 2c

Therefore, since
∑

i∈I xi =
∑

j∈J yj = 1:

2c

ρ
=
∑
i∈I

xi
∑
j∈J

yjmijsij =
∑
j∈J

yj

(∑
i∈I

ximijsij

)
= 2c⇒ B = S

The next lemma states that, in equilibrium, the agents’ values are increasing and
the marginal values are bounded by the expected marginal productivity.
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Lemma 2. In any equilibrium,∑
j∈J yjmi′j(gi′j − gij)∑

j∈J yjmi′j
≥ vi′ − vi ≥

∑
j∈J yjmij(gi′j − gij)∑

j∈J yjmij

> 0, ∀i′ > i

∑
i∈I ximij′(gij′ − gij)∑

i∈I ximij′
≥ wj′ − wj ≥

∑
i∈I ximij(gij′ − gij)∑

i∈I ximij

> 0, ∀j′ > j

In particular, if mij = 1, ∀i, j, then the marginal value equals the expected marginal
productivity: vi′ − vi =

∑
j∈J yj(gi′j − gij) and wj′ − wj =

∑
i∈I xi(gij′ − gij).

Proof. The Constant Surplus and Efficient Matching conditions imply that:∑
j∈J

yjmijsij = 2c =
∑
j∈J

yjmi′jsi′j ≥
∑
j∈J

yjmijsi′j

Subtracting the RHS from the LHS, and normalizing:

vi′ − vi ≥
∑

j yjmij(gi′j − gij)∑
j yjmij

> 0

The upper bound is derived analogously by switching i and i′.

Lemma 2 also implies that there is a uniform bound on marginal values: maxj gi′j−
gij ≥ vi′ − vi ≥ minj gi′j − gij.

Remark 2. The Constant Surplus equations have two further implications: First,
they determine the values for unchosen (measure 0) skills, and therefore we are not
free to set those values arbitrarily (for instance, to minus infinity). Second, every
agent has at least one partner with whom the surplus is positive. Furthermore, that
partner is not of measure 0, which implies that there are no pathological equilibria
where an agent searches forever.

Remark 3. If 〈z,M, (vi), (wj)〉 is an equilibrium, then so is 〈z,M, (vi+t), (wj−t)〉 for
any transfer t ∈ R. Therefore, there is at least one degree of freedom in the equilibrium
values. We now show that there is in fact exactly one degree of freedom. This is
because the marginal values, i.e. ∆vi, are uniquely pinned down by the investment
decisions and a Constant Surplus equation imposes an additional condition on the
value functions.
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3 Illustrative Examples

We now illustrate the model with two examples. We consider a symmetric economy
with two skills, I = J = {0, 1}. Each agent can either invest and become skilled,
i = j = 1, or not invest and remain unskilled, i = j = 0. The cost of becoming skilled
is the agent’s type, and types are uniformly distributed, β, σ ∼ F = U [a, d]. To
simplify notation, let x ≡ x1 and y ≡ y1, denote the proportion of skilled buyers and
skilled sellers. We consider the following supermodular and submodular production
matrices:

Gsup =

[
g00 g01

g10 g11

]
=

[
1 2

2 4

]
and Gsub =

[
1 3

3 4

]

In both matrices, skilled-skilled pairs produce g11 = 4 and unskilled-unskilled pairs
produce g00 = 1. The first production matrix is supermodular because skilled-
unskilled pairs produce g10 = g01 = 2, so an agent’s marginal productivity is greater
when matched with a skilled agent than when matched with an unskilled agent,
g11−g01 = 2 > 1 = g10−g00. Conversely, the second production matrix is submodular
because g10 = g01 = 3, and so g11 − g01 = 1 < 2 = g10 − g00.

In each case, we will demonstrate the constrained efficient allocation and the
equilibria. The constrained efficient allocation solves the planner’s problem which is
to choose the investment thresholds, matching rule and skill distribution to maximize
per-period welfare7

W (x, y,N, [mij], β1, σ1) =

Productivity︷ ︸︸ ︷
1∑
i=0

1∑
j=0

Nxiyjmijgij −

Search Costs︷︸︸︷
2Nc −

Investment Costs︷ ︸︸ ︷∫ β1

a

βdF (β)−
∫ σ1

a

σdF (σ)

subject to the steady state constraints:

Nx

1∑
j=0

yjm1j = F (β1) and N(1− x)
1∑
j=0

yjm0j = 1− F (β1)

Ny
1∑
i=0

ximi1 = F (σ1) and N(1− y)
1∑
i=0

ximj0 = 1− F (σ1)

7The first term in the welfare function is the per-period output (Nxiyjmij is the measure of
accepted matches between skills i, j and gij is their output), the second term is the search cost, and
the final terms are the investment costs.
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Supermodular Production

In this case, G = Gsup and to simplify, we fix the distribution parameters a = 0.8

and d = 2.8. The planner’s optimal policy depends upon c and the matching rule is
either:

1) All Skills Match: Agents accept any partner (mij = 1,∀i, j). Total per-period
welfare is:

WAll(N, x, y, β1, σ1) =N [4xy + 2y(1− x) + 2x(1− y) + (1− x)(1− y)]

− 2Nc−
∫ β1

a

βdF (β)−
∫ σ1

a

σdF (σ)

and the steady state equations are:

Nx = F (β1) and N(1− x) = 1− F (β1)

Ny = F (σ1) and N(1− y) = 1− F (σ1)

which imply N = 1 and x = F (β1) and y = F (σ1), and so the planner’s optimization
problem is two-dimensional (β1, σ1). The optimal investment thresholds are β1 =

σ1 ≡ β∗ALL, the optimal state x = y ≡ x∗ALL, and they do not depend on c.

2) Positive Assortative Matching (PAM): Same skills accept and opposite skills
reject, that is, M = [m00 m01

m10 m11 ] = [ 1 0
0 1 ] . Total per-period welfare is:

W PAM(N, x, y, β1, σ1) = N [4xy + (1− x)(1− y)]−2Nc−
∫ β1

a

βdF (β)−
∫ σ1

a

σdF (σ)

The steady state equations are:

Nxy = F (β1) and N(1− x)(1− y) = 1− F (β1)

Nyx = F (σ1) and N(1− y)(1− x) = 1− F (σ1)

which imply β1 = σ1 andN = 1
xy+(1−x)(1−y)

, and so the planner’s optimization problem
is three dimensional (β1, x, y). The solution is always symmetric, x = y ≡ x∗PAM and
β1 = σ1 ≡ β∗PAM , but its flows and stocks depend on c.
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Figure 1: Welfare Comparison and Equilibrium Regions for F = U [0.8, 2.8]

Figure 1, Panel (a) depicts the welfare of these two allocations as a function of the
search cost c, assuming that the planner chooses the investment thresholds optimally.
In the All Match allocation (1), the planner’s optimal policy does not depend on c,
and so this curve is linear. In contrast, in the PAM allocation (2), the planner’s
optimal stocks and flows change with c, and thus the PAM curve is convex (though
it is hard to see in this graph). The constrained efficient allocation is the upper
envelope of the PAM and All Match curves. The basic trade-off is between higher
productivity (PAM) versus lower search cost (All Match). Panel (b) depicts the
regions where the PAM and All Match allocations are an equilibrium.8 The figure
visually demonstrates a Second Welfare Theorem: the upper envelope of the two
curves, which is the constrained efficient allocation, is always an equilibrium.

The following bullets explain how the equilibrium regions are derived:

◦ The All Match allocation is an equilibrium if and only if c ≥ 0.08. To see
why: In an equilibrium where all skills match, Lemma 2 implies that the marginal
values must equal the marginal productivities:

∆v = y(g11 − g01) + (1− y)(g10 − g00) = 1 + y

∆w = x(g11 − g10) + (1− x)(g01 − g00) = 1 + x

and the steady state equations are F (∆v) = x and F (∆w) = y. These equations
have a unique solution ∆v = ∆w ≡ ∆v̄ and x = y ≡ x̄, and the candidate state
x̄ induces values (v̄) , (w̄) that must solve: i) the corresponding Constant Surplus
8We depict a certain economy parameterized by F and Gsup, but a similar picture would arise

for most two-skill supermodular symmetric economies.

16



equations (
∑1

i=0 x̄isij = 2c,∀j); and ii) the Efficient Matching conditions so that
all pairs indeed want to match (v̄i + w̄j ≤ gij, ∀i, j). “⇐” On the one hand, if
c < 0.08, the values that solve the Constant Surplus equations are too high and
would violate the Efficient Matching condition because agents with opposite skills
would reject each other (that is, v̄i+w̄j > gij whenever i 6= j), and so there does not
exist an equilibrium where all pairs match. “⇒” On the other hand, if c ≥ 0.08, the
induced values are sufficiently low and so the state x = y = x̄ and marginal values
∆v̄ = ∆w̄ constitute the unique equilibrium where all pairs match. Remarkably,
the equilibrium stocks and flows coincide with the All Match allocation, x̄ = x∗ALL

and ∆v̄ = β∗ALL, and the equilibrium exists whenever this allocation is efficient.

◦ The PAM allocation is an equilibrium if and only if c ≤ c1 ≈ 0.12. To
see why: in an equilibrium with PAM, it must be that ∆v = ∆w (because the
outflow of skilled buyers = the outflow of skilled sellers); and x = y (because of the
Constant Surplus equations xs11 = 2c = ys11); together implying9

F (∆v) =
x2

x2 + (1− x)2
; ∆v =

g11

2
− c

x
−
(
g00

2
− c

1− x

)
The states x that solves these two equations are the only candidates for an equi-
librium with PAM and every candidate x induces values that must solve: i) the
corresponding Constant Surplus equations (xs11 = 2c and (1 − x)s00 = 2c); and
ii) the Efficient Matching conditions so that same skills accept (vi + wj ≤ gij for
i = j ) and opposite skills reject (vi + wj ≥ gij for i 6= j). “⇐” If c > c1, then
the values that solve the Constant Surplus equation are too low and would violate
the Efficient Matching condition because agents with opposite skills would accept
each other (that is, vi + wj < gij when i 6= j), and so the PAM allocation cannot
be supported by an equilibrium. “⇒” If c ≤ c1, then there is a unique candi-
date state x̂ whose induced values (v̂) , (ŵ) satisfy these two conditions. The state
y = x = x̂, size N̂ = 1

x̂2+(1−x̂)2
, and marginal values ∆v̂ = ∆ŵ constitute the unique

equilibrium with PAM. Remarkably, its stocks and flows coincide with the PAM
allocation, x̂ = x∗PAM and ∆v̂ = β∗PAM , and the equilibrium exists whenever this
allocation is efficient.
9To get the first equation, divide the two steady state equations Nx2 = F (∆v) and N(1− x)2 =

1 − F (∆v); and to get the second, subtract the two Constant Surplus equations xs11 = 2c and
(1− x)s00 = 2c and use ∆v = ∆w.
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Notice that in Figure 1, there can be multiple equilibria as the PAM and All Match
regions overlap, but the overlap region is relatively small. In addition, the planner
could implement a wide range of other policies, varying either the investment thresh-
olds or the matching rule, but those other policies would generate lower welfare, and
they cannot be supported by an equilibrium (generically). In this example, for any
c, there are at most three equilibria: the two depicted above and possibly a mixed
one where skilled-unskilled pairs match with a strictly positive probability (which has
lower welfare).

Submodular Production

In this case, G = Gsub and we fix the average cost type to be (a + d)/2 = 1.5. The
constrained efficient allocation is spanned by the following three simple allocations:

1) Negative Assortative Matching (NAM): Agents with below-average costs
invest, those with above-average costs do not, and only opposite skills match, M =

[m00 m01
m10 m11 ] = [ 0 1

1 0 ]. The steady state is x = y = 1/2 and N = 2. Total per-period
welfare is:

WNAM = g10 − 2Nc−
∫ µ

a

βf(β)dβ −
∫ µ

a

σf(σ)dσ = 3− 4c− (3a+ d) /4

2) All Skills Match: The investment thresholds are the same as in the NAM
allocation, but now all pairs match, M = [ 1 1

1 1 ]. Thus the stock population is N = 1,
and x = y = 1/2. Total per-period welfare is:

WAll =
1

4
(g11 + g10 + g01 + g00)− 2Nc−

∫ µ

a

βf(β)dβ −
∫ µ

a

σf(σ)dσ

= 2.75− 2c− (3a+ d) /4

3) Social Norm (one-sided investment): Every buyer invests and becomes skilled
and every seller does not invest and remains unskilled. Agents accept any partner.
Since the market clears in every period, the stock population is N = 1. The total
per-period welfare is:

WSN = g10 − 2Nc−
∫ d

a

βf(β)dβ = 3− 2c− (a+ d) /2
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Figure 2: Equilibrium Regions

Figure 2 illustrates the welfare of these allocations as a function of c:

WNAM = 3 −4c−
(

3
4
a+ 1

4
d
)

WAll =2.75−2c−
(

3
4
a+ 1

4
d
)

WSN = 3 −2c−
(

1
2
a+ 1

2
d
)

The equilibrium regions are shaded blue. Panel (a) depicts the case where the distri-
bution F has small support, l = d − a < 1 and Panel (b) depicts a large support10

l > 1. These three allocations demonstrate the trade-off between productivity, in-
vestment cost, and search cost. Each allocation optimizes two components at the
expense of the third (see Table 2). Notice each allocation is supported by an equilib-
rium whenever it is efficient.

Productivity Search Cost Investment Cost
NAM X × X

All Skills Match × X X
Social Norm X X ×

Table 2: Welfare Comparisons

◦ The NAM allocation is an equilibrium if and only if the search cost
c ≤ 1/8. The argument is similar to the PAM equilibrium in the supermodular case
(see above). This allocation maximizes productivity, but every agent must search
twice (on average) to find the most productive partner.
10The specific parameters illustrated are l = 0.5 and l = 1.5.
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◦ The All Match allocation is an equilibrium if and only if the search cost
c ≥ 1/8. The argument is similar to the All Match equilibrium in the supermodular
case (see above). This allocation benefits from lower search costs but has lower
productivity because agents mismatch (both unskilled-unskilled and skilled-skilled
matches occur).

◦ The Social Norm allocation is an equilibrium if and only if the support11

l ≤ 1. The Social Norm allocation maximizes productivity and minimizes the
search cost but has a higher total investment cost because high-cost buyers invest
while low-cost sellers do not. This talent misallocation problem becomes more
severe as we stretch the support of the cost distribution.

Takeaways

The key takeaways from these two examples are:

1) The Second Welfare Theorem. In each example, the constrained efficient
allocation, depicted by the upper envelope of the lines, is an equilibrium allocation.
In the next section, we establish a general second welfare theorem.

2) Assortative Matching. In the first example, the production function was su-
permodular, and agents with the same skills matched. In the second example, the
production function was submodular, and agents with opposite skills matched. In
Section 5.1, we establish general sorting patterns: if the production function is su-
per/submodular, there is positive/negative assortative matching in equilibrim.

3) Discrimination. When the production function is submodular, the efficient
outcome can be discriminatory. Discrimination induces the two groups to invest
differently and thereby minimizes search costs and enhances productivity, but at the
expense of higher investment costs.

4) Multiple Equilibria: The First Welfare Theorem does not hold as there can be
multiple equilibria. However, the equilibria set is small and tractable.

11“⇐” Suppose l = d − a > 1. By Lemma 2, the marginal values are bounded by the marginal
productivities: 1 ≤ ∆v ≤ 2. Since the average cost-type is 1.5, if l > 1, then a < 1 and the
buyers/sellers with investment costs less than 1 will invest in every equilibrium. “⇒” Suppose l ≤ 1.
The supporting values are: v1 = 2.5 − c, v0 = 0.5 − c, w1 = 1.5 − c, and w0 = 0.5 − c. Since the
average cost-type is 1.5, it follows that 1 < a < d < 2. Therefore, all buyers want to invest because
β ≤ d ≤ 2 = ∆v and no seller wants to invest because ∆w = 1 ≤ a ≤ σ, and the values satisfy the
CS equations.
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4 The Second Welfare Theorem

To simplify notation, we label the skills as I = {0, 1, . . . , |I| − 1} and
J = {0, 1, . . . , |J | − 1}. The constrained efficient allocation is the solution to the
problem of a social planner who chooses the investment and acceptance strategies
and sets the stock in the matching market, in order to maximize per-period total
welfare, subject to the condition that the economy is in a steady state. Without loss
of generality: i) the planner chooses a balanced state,12 B = S = N ; ii) the match-
ing strategies are represented by a matching matrix; and iii) since the investment
cost functions satisfy strictly increasing differences, the planner’s optimal investment
strategies can be defined by thresholds β0 ≥ β1 ≥ . . . ≥ βI and σ0 ≥ σ1 ≥ . . . ≥ σJ , so
that all buyers of type β ∈ (βi+1, βi) choose skill i and all sellers of type σ ∈ (σj+1, σj)

choose skill j. Notice that the thresholds are descending because costs increase with
type, so higher types choose lower skills. The planner chooses a tuple 〈z,M, (βi), (σj)〉
of steady state, matching matrix, and investment thresholds in order to maximize:

W (〈z,M, (βi), (σj)〉) =
∑
i∈I

∑
j∈J

Nxiyjmijgij − 2Nc−
∑
i∈I

∫ βi

βi+1

Cb(i, β)f b(β)dβ (5)

−
∑
j∈J

∫ σj

σj+1

Cs(j, σ)f s(σ)dσ

subject to flowbi :=
(
F b(βi)− F b(βi+1)

)
−Nxi

∑
j∈J

yjmij = 0, ∀i

f lowsj := (F s(σj)− F s(σj+1))−Nyj
∑
i∈I

ximij = 0, ∀j

xi ≥ 0,∀i

yj ≥ 0,∀j

X := 1−
∑
i∈I

xi = 0

Y := 1−
∑
j∈J

yj = 0

1 ≥ mij ≥ 0,∀i, j

F b(β|I|) = F s(σ|J |) = 0

F b(β0) = F s(σ0) = 1

12If B > S, then there exists another state with lower total search cost and identical output and
investment cost.
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The first term in the objective function is per-period total output (the measure of
formed matches between buyer i and seller j is Nxiyjmij and the match output is
gij), the second term is the per-period total search cost, and the last two terms are the
per-period total investment costs. The first constraint is that inflow equals outflow.
The other conditions stipulate that xi, yj are proportions, mij are probabilities, and
that the planner must assign a skill to every agent.

Remark 4. Notice that the maximization problem does not explicitly require that
β0 ≥ β1 ≥ . . . ≥ βI and σ0 ≥ σ1 ≥ . . . ≥ σJ , nor that N > 0, because these conditions
are implied by the other constraints (see proof).

Theorem 1. (Second Welfare Theorem) For every economy 〈F b, F s, I, J, Cb, Cs, G, c〉:
i) There exists an optimal policy 〈z,M, (βi), (σj)〉.
ii) Every optimal policy 〈z,M, (βi), (σj)〉 can be decentralized. That is, there are

values (v∗i ), (w∗j ), and a matching matrix M∗ such that 〈z,M∗, (v∗i ), (w
∗
j )〉 is an equi-

librium, where m∗ij = mij for all i, j such that xi, yj > 0.

The theorem demonstrates that any optimum policy can be decentralized as an
equilibrium. The proof shows that the equilibrium values that decentralize the op-
timal allocation are the shadow values of the flow constraints in the dual problem.
We show that these values are internally self-consistent with the bargaining proce-
dure, that is, they satisfy the Constant Surplus equations; and also motivate the
agents to invest and match efficiently. For instance, if the planner wants buyer
β and seller σ to choose skill i∗ and j∗, then i∗ ∈ arg maxi∈I vi − Cb(i, β) and
j∗ ∈ arg maxj∈J wj − Cs(j, σ); and if the planner wants them to accept (reject) each
other, then vi∗ + wj∗ ≥ gi∗j∗ (vi∗ + wj∗ ≤ gi∗j∗).

Proof. First, we show that the constraints of the problem imply that N > 0, and
βi ≥ βi+1 for all i, and σj ≥ σj+1 for all j. To see this, observe that F b(β|I|) = 0 and
F b(β0) = 1, and so there exists a skill i such that F (βi) > F (βi+1). By constraint
flowbi , it must be that Nxi

∑
j∈J yjmij > 0. Since xi, yj,mij are all non-negative, it

follows that N > 0. Thus, the outflow of every skill is non-negative, and from the
flow conditions, it must be that βi ≥ βi+1 for all i, and likewise σj ≥ σj+1 for all j.

(i) Existence: To demonstrate existence, since the objective is continuous, all we
need to show is that the policy space is compact. First, there is a uniform upper bound
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N so that in any optimum, N ≤ N (recall that N ≥ 0). For the upper bound, notice
that the Inflow=Outflow constraints imply

∑
i∈I
∑

j∈J Nxiyjmij = 1, and therefore
the first term in the welfare expression is a convex combination of gij and therefore
is uniformly bounded by max gij. Thus, limN→∞W = −∞ and so the optimal policy
cannot involve arbitrarily large N . The planner can choose quantiles F (βi) instead
of thresholds βi, and since the objective is also continuous in the quantiles and the
quantile space is bounded, a maximum indeed exists.

(ii) Decentralizing optimal allocations: The dual problem is

L (〈z,M, (βi), (σj)〉) =
∑
i∈I

∑
j∈J

Nxiyjmijgij − 2Nc

−
∑
i∈I

∫
Bi

Cb(i, β)f b(β)dβ −
∑
j∈J

∫
Sj

Cs(j, σ)f s(σ)dσ

+
∑
i∈I

vi · flowbi +
∑
j∈J

wj · flowsj +
∑
i

φixi +
∑
j

ψjyj + γX + λY

+
∑
i∈I

∑
j∈J

(ηijmij + η̂ij(1−mij))

We will first show that a constraint qualification holds and then construct an equi-
librium using the shadow values from the KKT conditions.

1) The Constraint Qualifications: Since the problem is not convex, we use the
constant rank regularity condition, which requires that for each subset of the gradi-
ents of the active inequality constraints and the equality constraints, the rank in the
vicinity of the optimal point is constant (Janin [1984]). The formal proof is given in
Lemma 5 in the Appendix.

2) Deriving values from the KKT conditions: Due to the constraint qualifica-
tion above, the first order conditions (FOC) of the dual problem L are necessary at
any optimum:

FOC(N):
∑
i∈I

∑
j∈J

xiyjmijgij− 2c−
∑
i∈I

vi

(
xi
∑
j∈J

yjmij

)
−
∑
j∈J

wj

(
yj
∑
i∈I

ximij

)
= 0

⇐⇒
∑
i

∑
j

xiyjmij(gij − vi − wj) = 2c
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FOC(xi): N
∑
j

yjmijgij − viN
∑
j

yjmij −N
∑
j

wjmijyj − γ + φi = 0

⇐⇒ N
∑
j

yjmij (gij − vi − wj) = γ − φi

FOC(yj): N
∑
i

ximijgij −N
∑
i

viximij − wjN
∑
i

mijxi − λ+ ψj = 0

⇐⇒ N
∑
i

ximij (gij − vi − wj) = λ− ψj

Complementary slackness: φixi = 0 and yjψj = 0 and φi, ψj ≥ 0.

FOC(mij): Nxiyjgij − viNxiyj − wjNxiyj + ηij − η̂ij = 0

⇐⇒ Nxiyj(gij − vi − wj) = −ηij + η̂ij

Complementary slackness: ηijmij = 0 and η̂ij(1−mij) = 0 and ηij, η̂ij ≥ 0.

FOC(βi): f b(βi)(vi − vi−1) = f b(βi) (C(i, βi)− C(i− 1, βi)) , for i ∈ {1, . . . , I − 1}

FOC(σj): f s(σj)(wj−wj−1) = f s(σj) (C(j, σj)− C(j − 1, σj)) , for j ∈ {1, . . . , J−1}

We now show that the shadow values vi, wj, together with the matching matrix M
and state z, constitute an equilibrium.
Decentralizing the constrained optimal allocation when z is interior (ii):
To verify the Constant Surplus equations, notice that:

N · 2c = N
∑
I

∑
J

xiyjmij(gij − vi − wj) =
∑
I

xiN
∑
J

yjmij(gij − vi − wj)

=
∑
I

xi(γ + φi) =
∑
I

γxi + φixi =
∑
I

γxi = γ

The first line uses FOC(N), while the second line uses FOC(xi), complementary
slackness (φixi = 0), and the condition

∑
I xi = 1. Therefore γ = 2cN . Since z

is interior, φi = 0, and the FOC(xi) is
∑

J yjmij (gij − vi − wj) = 2c, which is the
Constant Surplus equation for skill i. An analogous argument holds for the sellers’
Constant Surplus equations.
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To verify the Efficient Matching conditions, notice that if gij − vi − wj > 0, the
FOC for mij requires that η̂ij > 0 and therefore mij = 1. Similarly, if gij−vi−wj < 0,
the FOC for mij requires that ηij > 0 and therefore mij = 0.

To verify that the investments are incentive compatible, we show that for any type
β ∈ [βi+1, βi], their most preferred skill is i. To see this, for any lower skill, i′ ≤ i, the
FOC for the threshold βi′ is f(βi′)(vi′ − vi′−1) = f(βi′)(C(i′, βi′)− C(i′ − 1, βi′)) and
recall that βi′ ≥ β. Since f > 0 everywhere, this can be simplified to vi′ −C(i′, βi′) =

vi′−1 − C(i′ − 1, βi′). Since type βi′ is indifferent between the skills i′ and i′ − 1, by
single-crossing, type β weakly prefers skill i′ to skill i′−1. Thus, type β weakly prefers
i to any lower skill i′. An analogous argument applies for higher skills.

The case of a non-interior z can be found in the Appendix.

It immediately follows from Theorem 1 that an equilibrium exists.

Corollary 1. An equilibrium exists.

The following proposition demonstrates some comparative statics for welfare.

Proposition 1. The welfare functionW is continuous, strictly decreasing, and convex
in c. Moreover, the population size N is weakly decreasing in c.

The proof is in the Appendix. It relies on the observation that ∂W/∂c = −2N ,
which follows immediately from the envelope theorem, implying that a shock to c has
greater impact on welfare when c is small than when c is large.

Remark 5. (Matching and Values of Unrealized Skills) Theorem 1 proves that any
optimum can be decentralized (modulo matching between unrealized skills). The
planner can match unrealized types in any fashion because they have no impact on
welfare, and thus the optimization problem places no restriction on their matching.
However, the equilibrium conditions (the Constant Surplus equations and Efficient
Matching conditions) apply for all skills, including unrealized ones. In the Appendix,
we construct the matching and values for these unrealized skills.

4.1 Outside Options and Endogenous Entry

We now extend the efficiency result to the case where agents have outside options.
Suppose that every new-born agent can either invest and enter the market or opt out
and receive the outside payoff equal to ub for buyers and us for sellers. In equilibrium,
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buyer β enters the market if and only if maxi vi−C(i, β) ≥ ub, and seller σ enters if and
only if maxwj −C(j, σ) ≥ us. We focus on the interesting case where there are gains
to trade, and so for at least two types, β and σ, maxi∈I,j∈J gij−2c−C(i, β)−C(j, σ) >

ub + us. The only difference from the baseline model is that the planner now also
chooses the entry thresholds β0 and σ0 in order to maximize:

W = N
∑
i∈I

∑
j∈J

xiyjmijgij − 2Nc−
∑
i∈I

∫ βi

βi+1

C(i, β)f b(β)dβ −
∑
j∈J

∫ σj

σj+1

C(j, σ)f s(σ)dσ

+

∫ ∞
β0

ubf b(β)dβ +

∫ ∞
σ0

usf s(σ)dσ

and the boundary conditions F b(β0) = 1 and F s(σ0) = 1 are removed.

Corollary 2. In a model with outside options, the constrained efficient outcome is
an equilibrium.

The proof shows that the shadow values still constitute an equilibrium (see Ap-
pendix). As before, v0 is the shadow value of the skill 0 flow constraint. However, there
is an additional first-order condition since β0 is now endogenous: v0 − C(0, β0) = ub

which is precisely the equilibrium entry condition for buyers. An analogous argument
holds for sellers.

Remark 6. In the baseline model, there is exactly one degree of freedom in the
equilibrium values (see Remark 3). In the model with outside options, there is an
additional entry condition and thus the values are unique.

5 Equilibrium Sorting and Uniqueness

In this section, we show that the equilibria have a clear and simple structure: Section
5.1 shows that every equilibrium exhibits assortative matching if the production func-
tion is super/submodular. Section 5.2 considers an additively separable production
function (product market) and shows that the equilibrium is unique. Furthermore,
these results show that for our second welfare theorem, the efficient allocation is not
caught in a widely cast net.
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5.1 Assortative Matching

Denote the matching set of skill-i buyers by Mi = {j : mij > 0} ⊆ J , this is the
set of seller skills with whom buyer i matches. Similarly, for sellers, Mj = {i :

mij > 0} ⊆ I. The maxima and minima of these sets are denoted mi = maxMi,
mi = minMi, mj = maxMj and mj = minMj. We say that a buyer’s matching set
Mi is convex if mi < j < mi implies that mij = 1 (this is stronger than stating that
the matching sets are intervals because it requires that only boundary types can match
probabilistically). Convexity is defined analogously for sellers. A matching matrix
M exhibits positive assortative matching (PAM) if the matching sets are convex and
the maxima/minima are weakly increasing. Likewise, M exhibits negative assortative
matching (NAM) if the matching sets are convex and the maxima/minima are weakly
decreasing. Finally, we say that All Skills Match if mij = 1 for all i, j.

mij j1 j2 j3 j4 j5

i1
i2
i3
i4
i5

Table 3: A PAM matrix: mij = 1 (blue), 0 < mij < 1 (green), and mij = 0 (blank)

In Table 3, we depict a matching matrix that satisfies PAM. To maintain PAM,
this matrix cannot be modified so that buyer 1 matches with seller 3 (pure or mixed)
because that would violate the convexity condition for buyer 1. Likewise, it cannot
be that buyer 2 matches with seller 5 because that would violate monotonicity.

The production function G is supermodular (submodular) if the marginal produc-
tivity of every skill i, g(i+1)j − gij, is strictly increasing (decreasing) in j, and the
marginal productivity of every skill j, gi(j+1) − gij, is strictly increasing (decreasing)
in i; G is separable if the marginal productivity of every skill i is constant in j, and
the marginal productivity of every skill j is constant in i.

Previous work established sufficient conditions for positive/negative assortative
matching for a single population of agents (Shimer and Smith [2000], Atakan [2006]).
However, the single population model is restrictive and does not cover many important
settings where there are two different populations, such as labor and product markets.
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An open question in the literature is whether assortative matching holds when the
two populations are not identical.13 The next result shows that the answers is a firm
yes. To our knowledge, this is the first paper which establishes assortativity beyond
the single-population framework.

Theorem 2. In equilibrium, there is PAM whenever G is supermodular, NAM when-
ever G is submodular, and All Skills Match whenever G is separable.

To outline the argument, we first show that the surplus function sij inherits su-
per/submodularity from G. We use this observation and Lemma 2 to establish that
the bounds of the matching sets are monotonic. We prove convexity from algebraic
manipulations of the Constant Surplus equations. In contrast, existing proofs rely
heavily on symmetry (Shimer and Smith 2000; Atakan 2006). In the discounting case,
to show that the matching sets are convex, Shimer and Smith [2000] place further
restriction on the production function which imply that the surplus function sij is
convex14 whereas our proof works without further restrictions.

Proof. Demonstrating PAM requires demonstrating two components, that the bounds
of the matching set are weakly increasing and that the matching set is convex.
Throughout, we will use the following key fact: if G is supermodular, then so are
the surpluses [sij].

Increasing Upper Bounds: Fix two buyer skills i2 > i1. Suppose that mi2 < mi1 .
Denote these as j2 = mi2 and j1 = mi1 . By Efficient Matching, it must be that
si1j1 ≥ 0 ≥ si2j1 . By supermodularity, then it must be that for every j < j1 it is the
case that si1j > si2j. This violates the Constant Surplus equations because

2c =
∑
j∈J

yjmi2jsi2j =
∑
j∈Mi2

yjsi2j <
∑
j∈Mi2

yjsi1j ≤
∑
j∈Mi1

yjsi1j =
∑
j∈J

yjmi1jsi1j = 2c

The case for lower bounds and for submodular G are analogous.

Convexity: Suppose not. That is, there is a buyer i and sellers j1 < j < j2 such
that mij < 1, and mij1 ,mij2 > 0. Then, it must be the case that seller j has a strictly

13Furthermore, even when the populations are ex-ante symmetric, their investments may be asym-
metric and hence the equilibrium will not be symmetric (see Example 2).

14In fact, there are examples where G is supermodular and sij is not convex, and yet there is
PAM.
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positive surplus with a lower buyer and that buyer is present with non-zero measure.
Otherwise

2c =
∑
i′>i

xis
+
i′j <

∑
i′>i

xis
+
i′j2
≤ 2c

with the inequality being due to the fact that si′j2 ≥ sij + si′j2 > sij2 + si′j ≥ sij2 for
every i′ > i due to the supermodularity of s. Therefore, there is some i′ < i such that
xi′ > 0 and si′j > 0.

An analogous argument demonstrates that there is:
1. A higher buyer i′ > i such that xi′ > 0 and si′j > 0.
2. A lower seller j′ < j such that yj′ > 0 and sij′ > 0.
3. A higher seller j′ > j such that yj′ > 0 and sij′ > 0.

Let j = argmaxj′≤j sij′ and likewise j = argmaxj′≥j sij′ . Similarly, let i = argmaxi′≤i si′j

and likewise i = argmaxi′≥i si′j. See below for an illustration of the matching matrix.

. . . j . . . j . . . j . . .

. . . 0
i 1

. . .

i 0 1 mij < 1 1 0
. . .

i 1

. . . 0

Define y = yj, y =
∑

j′<j yj′ and y =
∑

j′>j yj′ . Similarly, x = xi, x =
∑

i′<i xi′ ,
and x =

∑
i′>i xi′ . Notice that x, x, y, y > 0 as shown above.

By the supermodularity of s, for any i′ > i, it is the case that si′j + sij > si′j + sij

and since sij ≤ 0, it follows that si′j > si′j + sij. Thus,

2c ≥
∑
i′≥i

xi′si′j >
∑
i′≥i

xi′(si′j + sij) =

(∑
i′≥i

xi′si′j

)
+ (x+ x)sij (6)

The strict inequality use the fact that xi′ > 0 for some i′ > i.
Next, notice that sij ≥ si′j for all i′ < i. Therefore,

xsij =
∑
i′<i

xi′sij ≥
∑
i′<i

xi′si′j (7)
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Adding equations (6) and (7) gives

2c+ xsij >
∑
i′

xi′si′j + (x+ x)sij

And therefore,
xsij > (x+ x)sij (8)

Similarly, it can be observed that:

sij′ > sij′ + sij for all j > j′

sij′ > sij′ + sij for all j′ > j

si′j > si′j + sij for all j′ < j

Repeating the same arguments:

ysij > (y + y)sij (9)

ysij > (y + y)sij (10)

xsij > (x+ x)sij (11)

As shown earlier, all of the surpluses, sij, sij, sij, sij are positive. Taking the
product of Inequalities (8)–(11) and dividing by the surpluses yields:

xxyy > (x+ x)(x+ x)(y + y)(y + y)

which is a contradiction due to the strict inequality.
Separability Implies All Skills Match: By Lemma 2, it is the case that for
any two sellers, wj′ − wj = gj′ − gj. Therefore, the surplus function is constant
sij′ = gi + gj′ − vi − wj′ = gi + gj − vi − wj and by the Constant Surplus equations,
it must be that sij = 2c for all i, j. So, every pair of agents accept their match.

Remark 7. The assortative matching result is useful for numerical analysis. For
example, in the 5 × 5 case depicted in Table 3, there are 225 ≈ 33.6 million pure
matching matrices, but only 2, 762 of them satisfy PAM. In the 5× 7 case, there are
235 ≈ 34 trillion pure matching matrices, of which only 21, 659 satisfy PAM.15

15At 1000 calculations per second, this is the difference between a program taking a millennium
and 21 seconds.
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5.2 Uniqueness: Separable Production

We now demonstrate that when the production function is separable, i.e. gij =

gi + gj, there is a unique equilibrium. To relate to previous work, e.g. Rubinstein
and Wolinsky [1985], Gale [1987], we phrase this subsection in the language of a
product market. Each seller can produce one unit of a homogeneous good and each
buyer desires a single unit. A buyer that invests in skill i receives the payoff αi from
consuming the good and a seller that invests in skill j can produce the good at a
cost κj. The consumption value αi is increasing in i and the cost κj is decreasing
in j. When a buyer and seller meet, their output is gij = αi − κj. This production
function is separable because the marginal productivity gi′j − gij is independent of
j. As in Gale [1987], we allow for endogenous entry, with outside payoffs equal to ub

for buyers and us for sellers. To focus on the interesting case, we ignore the trivial
equilibrium where no agent enters, and we assume that there are gains to trade, and
so for at least two types, β and σ, maxi∈I,j∈J gij − 2c − C(i, β) − C(j, σ) > ub + us

and that not all agents enter, so there are at least two types for which the opposite
inequality holds.

Proposition 2. Any economy with a separable production function (with or without
outside options) has a unique equilibrium and its allocation achieves the first best.

Theorem 2 demonstrates that with a separable production function, in any equi-
librium, All Skills Match. The rest of the proof immediately follows from Lemma
2: since All Skills Match, the marginal values equal marginal productivities, and by
separability, ∆vi = gi and ∆wj = gj. Thus, the flows and stocks are uniquely pinned
down. Moreover, the surpluses sij are constant, and so a law of one price prevails
(all trades occur at one price) and endogenous entry uniquely pins down the price
that equates supply and demand. Finally, the agents’ private incentives to invest are
exactly aligned with the planner, so the equilibrium achieves the first-best. For a
formal proof, see Appendix.

6 Robustness

In this section, we will show that the efficiency and sorting results are robust to small
modifications in the time costs.
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6.1 Discounting

We extend our baseline model to an economy Eδ,c = 〈F b, F s, I, J, Cb, CS, G, c, δ〉 where
agents both incur an additive search cost c and discount time at the rate δ ∈ [0, 1].
Since the agents’ continuation values are now discounted, the match surplus becomes

sij = gij − δvi − δwj

and the surplus equations are now:
vi =

∑
j∈J

yj

[
mij

(
δvi +

sij
2

)
+ (1−mij) δvi

]
− c

⇒
∑
j∈J

yjmijsij = 2 [c+ (1− δ)vi]

Notice that agents incur both an explicit search cost of c and an implicit search
cost of (1 − δ)vi because their payoffs are delayed. The implicit search costs are
increasing in skills which affects the agents’ decisions. First, acquiring a higher skill
entails a higher implicit search cost, which reduces the incentive to invest. Second,
high-skill agent (who have high search costs) may accept too frequently while low-
skill agents (with low search costs) may reject too often [Shimer and Smith, 2001].
Nevertheless, we will demonstrate that our main results are robust: as the discount
factor heads to 1, we prove an equilibrium convergence result, a general sorting result,
and under further conditions, an approximate efficiency result.

The equilibrium conditions for the extended economy are the same except that
the sij are modified: ∑

j∈J

yjmijsij = 2 [c+ (1− δ)vi] ,∀i∑
i∈I

ximijsij = 2 [c+ (1− δ)wj] ,∀j

mij =

1 if sij > 0

0 if sij < 0
, ∀i, j

Fixing c > 0, let Eδ be the set of equilibria of this economy and likewise E1 denote
the equilibria of our baseline model (since c is fixed, we suppress it as an index to
reduce notation).
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Lemma 3. (Upper Hemicontinuity) The equilibrium correspondence Eδ is bounded
and upper hemicontinuous as δ → 1. Thus, every sequence of equilibria eδ ∈ Eδ where
δ → 1 has a subsequence whose limit is e∗ ∈ E1.

The proof is given in the Appendix. It shows that the equilibrium variables N, v, w
are bounded. Upper hemicontinuity then follows by continuity of the equilibrium
conditions.

Upper hemicontinuity states that for δ large enough, any equilibrium from Eδ must
be close to an equilibrium of the baseline model. We now establish lower hemiconti-
nuity: every equilibrium of the baseline model has a nearby equilibrium in Eδ. Lower
hemicontinuity is more difficult to prove because it requires establishing equilibrium
existence. To simplify the problem, we assume that:

A1. There is a single population.

A2. The production function is strictly supermodular.

A3. All equilibria of the baseline model are interior (that is, xi > 0 for all i).16

Lemma 4. (Lower hemicontinuity of the equilibrium set). Under A1-A3, there exists
c∗ > 0 such that for every c < c∗, every equilibrium of the baseline economy is a limit
of equilibria in Eδ as δ → 1.

Proof. The proof applies the implicit function theorem around our baseline equilib-
rium. In order to do so, we will show that there exists a c∗ sufficiently small, so
that for all c < c∗, the Jacobian of the equilibrium conditions are invertible at any
equilibrium evaluated at δ = 1. The implicit function theorem then stipulates that
for δ sufficiently close to 1, there is a nearby Eδ-equilibrium.

We first establish that, for sufficiently low c, the equilibrium matching rule is
M = MPAM .

Claim. There exists c2 > 0 such that for every c < c2, every equilibrium has
M = MPAM , that is, mii = 1 and mij = 0 for every pair i 6= j.

Proof of Claim. By Theorem 4, mii = 1 for every i. Therefore, 2c ≥ xisii ≥ asii

and so vi ≥ gii
2
− c

a
. That is, vi → gii

2
as c → 0, and thus, when i 6= j, it holds that

sij = gij − vi − wj → gij − gii
2
− gjj

2
< 0 where the last inequality is due to strict

16A natural assumption that the investment cost functions are sufficiently rich guarantees that all
equilibria are interior.
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supermodularity. Thus, for every pair i 6= j, there is a c sufficiently small such that i
and j do not match, and so M = MPAM . �

We now write the equilibrium conditions (using the fact that M = MPAM). The

equilibrium conditions are: ∑
i

xi = 1 (12)

Nx2
i = F (βi)− F (βi+1) for i = 0, . . . , n− 1 (13)

xi(gij − 2δvi) = 2 [c+ vi(1− δ)] for i = 0, . . . , n− 1 (14)

C(i, βi)− C(i− 1, βi) = vi − vi−1 for i = 1, . . . , n− 1 (15)

Notice that the Jacobian is a square matrix: there is 1 boundary conditions,
n inflow=outflow conditions, n surplus conditions, and n − 1 optimal investment
conditions, for a total of 3n conditions; furthermore, there are n − 1 thresholds (βi)
for i = 1, . . . , n− 2, and 2n+ 1 state variables (xi, vi, and N).

To simplify notation, we will write the Jacobian in a block form. Define Cii =
∂
∂βi

[C(i, βi)− C(i− 1, βi)] and notice that Cii > 0 because of strictly increasing dif-
ferences. Also, some entries won’t be material for calculating the determinant, so we
simply summarize those blocks with single letters.

N x0 x1 . . . xn−1 β1 β2 . . . βn−1 v0 v1 . . . vn−1∑
xi = 1 0 1 1 . . . 1

0 inflow=outflow x2
0 2Nx0 0 . . . 0

1 inflow=outflow x2
1 0 2Nx1. . . 0 B̂ 0

. . . . . . . . . . . . . . . . . .

n− 1 inflow=outflow x2
n−1 0 0 . . .2Nxn−1

0→ 1 Invest C11 0 . . . 0

1→ 2 Invest 0 C22. . . 0

. . . 0 . . . . . . . . . . . . D

n− 2→ n− 1 Invest 0 0 . . .Cn−1,n−1

0 CS 0 s00 0 . . . 0 −2x0 0 . . . 0

1 CS 0 0 s11 . . . 0 0 −2x1. . . 0

. . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . .

n− 1 CS 0 0 0 . . .sn−1,n−1 0 0 . . .−2xn−1

Table 4: The Jacobian Matrix
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We do algebraic manipulations (which do not affect the rank of the matrix). First, we
change the top section by dividing the inflows by −2Nxi and then add to the first row
and then multiply the first column by -2N . Second, we change the bottom section
by multiplying the CS equations by xi and using the Constant surplus equations
xisii = 2c (recall that we are evaluating at δ = 1). The Jacobian becomes (in block
matrix form):

J =



1 0 0 . . . 0

x0 −1 0 . . . 0

x1 0 −1. . . 0 B 0

. . . . . . . . .. . .. . .

xn−1 0 0 . . .−1

C11 0 . . . 0

0 C22. . . 0

0 . . . . . . . . . . . . D

0 0 . . .Cn−1,n−1

0 2c 0 . . . 0 −2x2
0 0 . . . 0

0 0 2c . . . 0 0 −2x2
1. . . 0

. . . . . . . . .. . .. . . 0 . . . . . . . . . . . .

0 0 0 . . . 2c 0 0 . . .−2x2
n−1



=:

AB 0

0 C D

E 0 F



Notice that if E = 0 then, det(J) = det(A)det(C)det(F ). As c appears linearly in
E, it follows that det(J) = det(A)det(C)det(F )+c∗(additional terms). As A is lower
triangular and C,F are both diagonal, their determinants are the product of their
diagonals. As all parameters are uniformly bounded from 0 for all c, there are uniform
bounds z1 and z2 which are independent of c and satisfy: z1 < |det(A)det(C)det(F )|
and z2 > |additional terms|. That is, the bounds z1, z2 are independent of c. There-
fore, if c < z1/z2, then the above matrix has positive determinant.

3) Since the Jacobian is invertible (as it has non-zero determinant), by the implicit
function theorem for every ε > 0 there is a sufficiently large δ so that there is an
equilibrium candidate eδ,c which satisfy Equations 12-15. For it to be an equilibrium,
it also must satisfy efficient matching condition sii ≥ 0 and sij ≤ 0 for every i, j 6=
i. These conditions are satisfied because the limit equilibrium has strict surpluses:
s∗ii > 0 and s∗ij < 0.
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Remark 8. Previous work analysed the conditions under which search equilibrium
converge to the first-best outcome. However, there are no convergence results for
economies with neither investment nor matching. We established convergence to the
constrained efficient outcome because the limit economy still has the friction c>0.

We now prove a robust version of our efficiency result. Recall that c∗ is the
threshold cost from the previous Lemma.

Theorem 3. (Approximate efficiency) Under A1-A3, for every ε > 0 and c < c∗,
there exists a δc < 1 such that, if δ > δc then there is an equilibrium eδ ∈ Eδ which is
ε-efficient.

Proof. Take c < c∗. Then, by Lemma 4, for sufficiently high δ, there is an equilibrium
in Eδ which is arbitrarily close to the efficient equilibrium from E1. Since the welfare
criterion is also continuous, for δ large enough, the equilibrium in Eδ is also arbitrarily
close to the welfare-optimal allocation for Eδ,c.

Finally, we establish a more general sorting result.

Theorem 4. (Exact Assortativity) If G is strictly supermodular (submodular), then
for sufficiently large δ < 1, every equilibrium in Eδ has positive (negative) assortative
matching.

The formal proof is in the Appendix. The challenge in the proof is that conver-
gence of equilibria is not enough because the limit of non-assortative matrices could
be assortative. To address this, the key insight is that we work directly with the sur-
pluses sij and use the strong convexity of the limit equilibria: the proof of Theorem
2 established that the interior surpluses are strictly positive, and if they are strictly
positive in the limit, then they must be strictly positive for sufficiently large δ.

Remark 9. In single-population models, [Shimer and Smith, 2000] established assor-
tative matching provided that the production function and its partials: g, log gx and
log gxy are supermodular. Theorem 4 shows that in a two-population model (which
includes the one-population setting as a special case) with discounting and additive
search costs, for δ sufficiently large, the latter two conditions are unnecessary.

36



6.2 Asymmetric Search Costs

Our results are robust to changes in other parameters as well. We now return to our
baseline model, but with a modification that buyers and sellers may differ in their
search costs, cb and cs, and bargaining weights, α and 1 − α. When a buyer with
skill i and a seller with skill j accept each other, the buyer receives vi + αsij and the
seller receives wj + (1 − α)sij. In the baseline model, Lemma 1 establishes that the
equilibrium state is balanced, B = S, and the proof turned on the assumptions that
cb = cs = c and α = 1/2. If either assumption does not hold, then the equilibrium
state can be unbalanced. In an unbalanced economy where B > S, every buyer meets
a seller with probability S/B and every seller always meets a buyer (and vice-versa
if S > B).

Proposition 3. Given any bargaining weight α, and search costs cb and cs:

1. An equilibrium exists and the steady state satisfies the balance condition

B

S
=

α

1− α
cs

cb

2. All equilibria exhibit PAM (NAM) whenever G is strictly supermodular (submod-
ular).

3. The constrained efficient allocation is an equilibrium if and only if α = cb

cs+cb

Proof. Define µ = min(B, S). In equilibrium, the values satisfy:

vi = (µ/B)

(∑
j∈J

yj [mij (vi + αsij) + (1−mij)vi]

)
+ (1− µ/B) vi − cb,∀i

wj = (µ/S)

(∑
i∈I

xi [mij (wj + (1− α)sij) + (1−mij)wj]

)
+ (1− µ/S)wj − cs,∀j

Rewriting, we obtain the modified Constant Surplus equations:

∑
j∈J

yjmijsij =
cb

α (µ/B)
,∀i (16)

∑
i∈I

ximijsij =
cs

(1− α) (µ/S)
,∀j
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⇒ cb

α (µ/B)
=
∑
i∈I

xi
∑
j∈J

yjmijsij =
∑
j∈J

yj
∑
i∈I

ximijsij =
cs

(1− α) (µ/S)

⇒ B

S
=

α

1− α
· c

s

cb
(17)

We first note that the tuple 〈B̂, Ŝ, (xi) , (yj) , [mij] , (vi) , (wj)〉 is an equilibrium
of an economy with asymmetric search costs and bargaining parameters (ĉb, ŝs, α̂)

if and only if the tuple 〈N̂ , (xi) , (yj) , [mij] , (vi) , (wj)〉, where N̂ = min{B̂, Ŝ}, is
an equilibrium of a symmetric economy where cb = cs = c = max{ ĉb

2α̂
, ĉs

2(1−α̂)
} and

α = 1/2. This is because the equilibrium conditions are identical.
1. By the above equivalence and Corollary 1, an equilibrium exists.
2. By the above equivalence and Theorem 2, sorting still holds.
3. In the constrained efficient allocation, the state must always be balanced.

Otherwise, the planner can increase welfare by equalizing the state B = S without
affecting productivity or the investment cost. By equation (17) , every equilibrium
state is balanced if and only if α = cb

cs+cb
, and so this condition is necessary for

efficiency. For sufficiency, notice that when α = cb

cs+cb
, it holds that B = S and the

constant surplus equations are identical to those where buyers and sellers have the
same search cost c′ = (cs + cb)/2, and same bargaining weight α′ = 1/2. Moreover,
the two models also have identical constrained efficient allocations and equilibria.
Therefore, applying our second welfare theorem to that model yields equilibrium
values (vi) and (wj) that support the constrained efficient outcome as an equilibrium
of this model.

The above proposition shows that the equilibrium existence and sorting results
still hold. Furthermore, our welfare theorem generalizes for the “right” bargaining
weight, which equals the relative share of total search costs α∗ = cb

cs+cb
.

Remark 10. It is surprising that adjusting only the bargaining weights is sufficient to
achieve efficiency, and the “right” bargaining weight α∗ is the most natural one: each
side’s bargaining power should be their fraction of the search cost (e.g. if cs = 4cb,
then buyers should have 20% weight and sellers have 80%). For any other bargaining
weight, the steady state is unbalanced and the equilibrium is inefficient: there are too
many buyers when they have too much bargaining weight (B > S whenever α > α∗),
and too few when they have too little weight (B < S whenever α < α∗). In the
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online appendix we quantify the maximal welfare loss in equilibria and show that it
is proportional to the search cost difference |cb − cs|.

Remark 11. Whether the welfare result of Proposition 3 is a positive or negative re-
sult is in the eye of the beholder: a positive view would be that the bargaining weights
adjust to the correct ones through some social process, and a negative view is that
they do not. In either case, the result is helpful for designing policies. For instance,
subsidizing the search cost improves welfare only if it targets the disadvanatged side
(which is the short side of the market), that is, if buyer’s bargaining power is too low,
then subsidizing their search costs improves welfare while subsidizing the sellers does
not.

6.3 The Hosios Condition

Finally, we consider a general meeting function where µ(B, S) is the total number
of meetings in a period. In every period, each agent can meet at most one other
agent, and so µ(B, S) ≤ min {B, S}. Meetings are still random and the probability
that a buyer meets a seller is µ(B, S)/B, while the probability that a seller meets a
buyer is µ(B, S)/S. As is standard, we take µ to be homogeneous of degree 1 and
differentiable.

Corollary 3. The constrained efficient allocation is an equilibrium if and only if

α =
B∗cb

B∗cb + S∗cs
=
∂µ(B∗, S∗)/∂B

µ(B∗, S∗)/B∗

where B∗, S∗ are the constrained efficient stock.

In words, the constrained efficient allocation can be decentralized as an equilib-
rium if and only if the bargaining weight of each side equals their share of the overall
search costs, which also equals the elasticity of the meeting function at the optimum
(the Hosios condition). The proof closely follows that of the welfare theorem (see
Appendix). Hosios (1990) shows that when agents are homogeneous the search exter-
nalities that they impose on each other are perfectly offset under the “right” sharing
rule. In contrast, in our model, agents are heterogeneous and they make ex-ante
investments. Remarkably, the same sharing rule still works. This result also provides
a new interpretation to the Hosios’ Condition: the “right” bargaining weight should
give each side their share of the total search cost.
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7 Discussion

This paper developed and analyzed a search-and-matching model with heterogeneous
agents and pre-entry investments. Our main result establishes a second welfare the-
orem: every constrained efficient allocation, regarding both the investment and the
matching rule, is an equilibrium. The result is surprising as the decisions to invest
and to accept/reject partners impose externalities on other agents. In particular,
notice that if the highest productivity agents decide to match more frequently or less
agents acquire the highest skill, then the overall pool of agents’ skills in the market
changes (the number of agents with this skill should diminish and other skills may
increase or decrease). The planner’s solution takes into account these steady-state
search externalities, and the equilibrium values must make agents internalize them.

In addition, we analyzed the equilibrium structure by establishing sufficient con-
ditions for sorting and uniqueness. The sorting result is significant because it applies
to two-sided search markets, whereas previous results applied only to single popu-
lation models (the single population model is a special case of our two population
model). We demonstrated novel economic implications (such as discrimination in the
marraige market or subsidizing search costs on one side) due to the tradeoff between
investment, search, and matching. Finally, we showed that our main results are ro-
bust to small modifications in the time costs (Section 6). First, we added a discount
rate δ and showed that as δ → 1: the equilirum converge to our baseline model, the
sorting result holds exactly for sufficiently large δ < 1 (due to upper hemi-continuity)
and the welfare result holds approximately (under further conditions that we used to
demonstrate the lower hemi-continuity). Second, we showed that the results continue
to hold under appropriate conditions for economies with outside options, asymmetric
search costs and CRS meeting functions.

As previously mentioned, the search cost c captures in reduced form the wide range
of costs people explicitly incur as they search. In contrast, when agents discount time,
they incur implicit search costs as payoffs are delayed. These implicit search costs are
proportional to their continuation values which has consequences. First, acquiring
a higher skill entails a higher implicit search cost, which reduces the incentives to
invest. Second, agents may mismatch in the following way: high-skill agents may
accept too frequently because they have high implicit search costs, while low-skill
agents may reject too often because they have low implicit search costs, as in Shimer
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and Smith [2001]. By severing the implicit link between values and search costs, our
model delivers powerful results: a second welfare theorem, a general sorting result,
existence, and the equilibria have a clear and intuitive structure.

Our analysis shows that inefficiencies are not endemic in markets with search
frictions, but rather depend on the nature of the search costs. For applications, we
believe both types of costs are important, but which is more salient depends upon
the economic situation being modeled.17 Our results have several implications:

Labor Market - A central question regarding sorting in the labor market is when do
high-skill workers match with high-tech firms? The previous one-population sorting
results of Shimer and Smith [2000] and Atakan [2006] do not apply to the labor market
because the agents on opposite sides are different. Our results provide a theoretical
foundation for assortative matching in two-sided markets. In addition, the mismatch
between labor skills and production technologies has been extensively studied, both
theoretically and empirically. However, the skill-technology mismatch also affects
(and is affected by) investment in human and physical capital. For instance, a lower
search cost generally leads to finer sorting, which affects the marginal productivity
of some skills and thereby the incentive to invest. Alternatively, a change in the
investment costs changes the composition of skills in the market, which may further
impact search and matching. Our model provides a general framework to study
investment and matching together and do comparitive statics.

Product and Marriage Markets - In a product market, the joint production func-
tion is typically separable, and we showed that the equilibrium is unique and efficient.
On the other hand, in a marriage market, the joint household production function
typically has complementarities between skills, which can generate multiple equilib-
ria. It is not surprising that a symmetric economy has symmetric equilibria, but we
show that there can also be asymmetric equilibrium, which can even be efficient. The
asymmetric equilibrium is discriminatory in the sense that the return on investment
depends on gender, which generates a gap in skill acquisition. This gender gap can
persist even when it is inefficient (see Section 3) and in some cases can be corrected
by a policy intervention such as an investment subsidy or tax.

17For example, when search transpires over a short period of time and does not affect the con-
sumption date (think of the time spent today searching online for a product that will be delivered
tomorrow or college students applying for jobs which they will take after graduation), the explicit
costs are important.
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Policy Intervention - It immediately follows from our second welfare theorem that
at the efficient equilibrium, any policy intervention causes a harmful distortion. How-
ever, there is still room for policy interventions at inefficient equilibria. For example,
in the marriage market with submodular production, an investment subsidy can boost
welfare by eliminating inefficient discriminatory equilibria without affecting the effi-
cient one.

Applications and Simulations: The welfare and sorting results are also useful tools
for applying and simulating the model. In particular, the planner’s problem is more
amenable to numerical simulations than the equilibrium conditions, as there are less
conditions and values need not be derived. For an n-skill economy, the endogenous
variables (vi), (wj), (xi), (yj), (βi), (σj) are of order n, but the matching matrix [mij]

is of order n2. The assortative matching result facilitates simulations by reducing the
number of matching variables (from n2 to 2n), which brings the whole problem from
O(n2) to O(n). It remains to be seen whether the model can be calibrated to derive
useful empirical predictions, but the theoretical results found here are promising.
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8 Appendix

Remaining Proofs for Theorem 1:

We first prove the non-interior case and then the constant rank constraint qualifica-
tion.

Proof. z is non-interior:
Given any optimal policy 〈z,M, (βi), (σj)〉, the FOCs imply that there are shadow

values (vi), (wj) such that (see proof of Theorem 1 in text):∑
j

yjmij (gij − vi − wj) ≥ 2c with equality when xi > 0∑
i

ximij (gij − vi − wj) ≥ 2c with equality when yj > 0

Nxiyj(gij − vi − wj) = −ηij + η̂ij

where ηijmij = 0 and η̂ij(1−mij) = 0 and ηij, η̂ij ≥ 0.

The above equations demonstrate the Constant Surplus equations for all i where
xi > 0. But, the Constant Surplus equation may not hold for skills i where xi = 0.
Therefore, for any skill i where xi = 0, we define v∗i to be the unique value which
solves

∑
j yjmax {gij − v∗i − wj, 0} = 2c. For any skill i where xi > 0, we define

v∗i = vi. Likewise, for sellers j where yj = 0, define w∗j to be the unique value which
solves

∑
j yjmax

(
gij − vi − w∗j , 0

)
= 2c yj > 0. For sellers j where yj > 0, define

w∗j = wj. Define a matching matrix by m∗ij = 1gij−v∗i−w∗j>0 whenever xi = 0 or yj = 0

and setting m∗ij = mij otherwise.
It now remains to be seen that 〈z,M∗, (v∗i ), (w

∗
j )〉 satisfies the equilibrium con-

straints.
The Constant Surplus Equations hold: For any skill i where xi > 0, from

the above, we have that
∑

j yjm
∗
ij

(
gij − v∗i − w∗j

)
=
∑

j yjmij (gij − vi − wj) = 2c

because v∗i = vi and whenever yj > 0, then mij = m∗ij and wj = w∗j . For any skill i
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where xi = 0,∑
j

yjm
∗
ij

(
gij − v∗i − w∗j

)
=
∑
j

yj max
(
gij − v∗i − w∗j , 0

)
=
∑
j

yj max (gij − v∗i − wj, 0) = 2c

because w∗j = wj whenever yj > 0. The same argument demonstrates the Constant
Surplus equations for the sellers.

Efficient Matching holds: For any two skills i, j where xi = 0 or yj = 0, the
efficient matching condition holds by definition. For any two skills i, j where xi > 0

and yj > 0, then v∗i = vi, w∗j = wj, and m∗ij = mij and the Efficient Matching
condition is a direct consequence of FOC(mij).
Optimal Investments: Regarding optimal investments, just as in the proof in

the main section, here the values (vi) satisfy incentive compatibility for investments.
However, it is not readily evident that the values (v∗i ) satisfy incentive compatibility
because the values for unrealized skills are modified, and may be increased. We now
show that for all unrealized skills vi ≥ v∗i .

Since mijxiyj = m∗ijxiyj for any two skills i, j, the policy 〈z,M∗, (βi), (σj)〉 is ad-
missible and optimal. By the constraint qualifications, there are values (v̂i), (ŵj)

which satisfy the FOCs for 〈z,M∗, (βi), (σj)〉. From FOC(βi), we have that the
marginal values are equal for all i, v̂i − v̂i−1 = C(i, βi) − C(i − 1, βi) = vi − vi−1.
Likewise, for all sellers j, ŵj − ŵj−1 = wj − wj−1. Thus, there is a constant t such
that v̂i + ŵj = vi + wj + t for all i, j. For any skill i such that xi > 0,

2c =
∑
j

yjm
∗
ij(gij − v̂i − ŵj) =

∑
j

yjm
∗
ij(gij − vi − wj − t)

=
∑
j

yjmij(gij − vi − wj − t) = 2c− t
∑
ij

yjmij

Therefore, t = 0 and so v̂i + ŵj = vi + wj for all i, j.
For any unchosen skill i,∑

j

yjm
∗
ij (gij − v∗i − wj) = 2c ≥

∑
j

yjm
∗
ij (gij − v̂i − ŵj) =

∑
j

yjm
∗
ij (gij − vi − wj)
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Therefore, we can conclude that vi ≥ v∗i . This demonstrates incentive compati-
bility. For every skill i, vi ≥ v∗i with equality if xi > 0. As (vi) satisfied incentive
compatibility and (v∗i ) differs by only lowering the value of unrealized skills, the values
(v∗i ) also satisfy incentive compatibility. This establishes that for the values (v∗i ), (w

∗
j ),

no agent wishes to choose any unchosen skill and completes the proof.

Constraint Qualification

Lemma 5. The planner’s optimization problem satisfies the Constant Rank Con-
straint Qualification.

Proof. We show that for each subset of the gradients of the active inequality con-
straints and the equality constraints, the rank in a vicinity of the optimal point is
constant (Janin [1984]).

There is an immediate linear dependency among the gradients:∑
i∈I

α∇flowbi −
∑
j∈J

α∇flowsj = 0

which follows from ∑
i∈I

flowbi −
∑
j∈J

flowsj = 0

We will show that this is the only linear dependency, which suffices for the constant
rank constraint qualification. Suppose that

∑
n αn∇n = 0 where the summation is

over all the active gradients. To simplify notation, we label the skills as I = {0, . . . , k}
and J = {0, . . . , l}. Notice first that (βi) and (σj) appear only in the flow constraints:

∇ β1 β2 β3 . . . βk N
σj, xi,

yj,mij

∇flowb0 −f b(β1) 0 0 0 0 −x0

∑
j∈J yjm0j . . .

∇flowb1 f b(β1) −f b(β2) 0 0 0 −x1

∑
j∈J yjm1j . . .

∇flowb2 0 f b(β2) −f b(β3) 0 0 −x2

∑
j∈J yjm2j . . .

. . . 0 0 . . . . . . . . . . . . . . .

∇flowbk−1 0 0 0 f b(βk−1) −f b(βk) −xk−1

∑
j∈J yjmk−1,j . . .

∇flowbk 0 0 0 0 f b(βk) −xk
∑

j∈J yjmk,j . . .
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Since βi only shows up in up in flowbi , flowbi−1 it must be that

0 =
∑
n

αn
∂fn
∂βi′

=
∑
i∈I

αi
∂flowbi
∂βi′

= f(βi′)αi′ − f(βi′)αi′+1 for all i′

Thus, there is an α such that αi = α for all the coefficients of the constraints ∇flowbi .
Similarly, there is a χ so that αj = χ for all the coefficients of the constraints ∇flowsj .
Furthermore, N only shows up in the flow constraints, so it must be that

−α
∑
i

xi
∑
j

yjmij − χ
∑
j

yj
∑
i

ximij = 0

which implies χ = −α (notice that
∑

i xi
∑

j yjmij = 1/N). Therefore, there is
exactly one linear dependency

∑
αi∇flowbi +

∑
j

αj∇flowsj = α

(∑
i

∇flowbi −
∑
j

∇flowsj

)
= 0

Second, the coefficients on ∇(xi ≥ 0) and ∇X are all zeros. The reason is that xi
appears in the flow constraints and the constraints xi ≥ 0 and X = 0. By the previous
step, in any linear dependence, the flow constraints cancel each other out, so only the
constraints xi ≥ 0 and X = 0 are relevant. . Therefore, if

∑
i ξi∇(xi ≥ 0)+ξ∇X = 0,

then 0 = ξi
∂xi
∂xi

+ ξ ∂X
∂xi

= ξi − ξ, and so ξi = ξ for all i. If ξ 6= 0, then it must be that
every inequality on x is active, so xi = 0 for every i, contradicting 0 = X = 1−

∑
i xi,

which holds in any admissible tuple. The same argument applies to the yj. So
ξi = ξ = ξj = 0 for all i, j.

Third, the coefficients on themij constraints are zeros. The reason is that the vari-
ablemij appears only in the flow equations and the inequality constraints onmij. The
flow constraints cancel each other out. For the mij constraints,
∇(1 ≥ mij ≥ 0) = (0, . . . 0,±1, 0 . . .) and at most one of the mij constraints can
be active where the only non-zero element is in the mij coordinate and therefore
these gradients coefficients must be 0.
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Proof of Proposition 1:

Proof. Consider the economies Γc = 〈F b, F s, I, J, Cb, Cs, G, c〉 indexed by their search
cost c and denote its constrained efficient welfare asWc. Denote an optimal allocation
as xc with associated population Nc (there may be multiple optimal allocations).
Notice that by an imitation argument,Wc ≥ Wc′+2N(c′)(c′−c) because the planner
could implement xc′ when faced with the economy xc. This implies that welfare is
decreasing in c, as expected. Reversing c and c′ gives 2N(c)(c′ − c) +Wc′ ≥ Wc.
Taking c′ > c. this implies that |Wc −Wc′ | ≤ 2N(c)(c′ − c). That is, when N(c)

is unique, it is the case that ∂Wc

∂c
= −2N(c) and otherwise the left-derivative is

sup−2N(c) and the right-derivative is inf −2N(c). To see convexity ofWc, it suffices
to demonstrate that N is increasing in c. Take c′ > c. SinceWc ≥ Wc′+2N(c′)(c′−c),
and similarly Wc′ ≥ Wc + 2N(c)(c − c′). Adding these two equations together gives
0 > 2(N(c′)−N(c))(c′ − c) and therefore N(c) ≥ N(c′).

Proof of Proposition 2:

Proof. The first-best allocation is unique and satisfies:

First-Best Matching: All pairs match. Since the marginal productivity of an agent
is not affected by the skills of her partner, all pairs match to minimize the search cost.

First-Best Investment: Buyer β and seller σ acquire the skills: i∗(β) = arg maxi αi−
Cb(i, β) and j∗(σ) = arg maxj −κj − Cs(j, σ). Denote by Cb∗(β) = Cb(i∗(β), β) the
investment cost buyer β pays to acquire the efficient skill, and likewise Cs∗(σ) =

Cs(j∗(σ), σ).
The social welfare of a match between buyer β and seller σ is ω(β, σ) = αi∗(β) −

Cb∗(β)−κj∗(σ)−Cs∗(σ)− 2c. The assumption before the proof implies that there are
types, β′, σ′, β̂, σ̂ such that ω(β′, σ′) > ub + us > ω(β̂, σ̂). So, in the first-best, some
agents enter and others don’t.18

First-Best Entry: Buyer β and seller σ enter iff β ≤ β0 and σ ≤ σ0. The entry
thresholds are pinned down by19 F b(β0) = F s(σ0) and ω(β0, σ0) = ub + us.

Since g is separable, Lemma 2 implies that in equilibrium, the marginal value
equal the marginal productivity: ∆vi = αi+1 − αi, for every i, and ∆wj = −(κj+1 −

18The case where everyone enters is trivial.
19Since buyers and sellers exit in equal numbers, in a steady state they must also enter in equal

numbers.

49



κj), for every j. Therefore, the match surplus sij = αi − κj − vi −wj is constant. As
a result:

Equilibrium Matching: Theorem 2 demonstrates that in every equilibrium, all
skills match.

Equilibrium Investment: The individually optimal investments satisfy

arg max
i

{
vi − Cb(i, β)

}
= arg max

i

{
αi − Cb(i, β)

}
, for evey β

arg max
j
{wj − Cs(j, σ)} = arg max

j
{−κj − Cs(j, σ)} , for every σ

The maximizers are equal because αi − vi and −κj − wj are constant

Equilibrium Entry: First, we show that there is entry. If not, then vi∗(β)−Cb∗(β) ≤
ub and wj∗(σ)−Cs∗(σ) ≤ us, for all β, σ, and so vi∗(β)−Cb∗(β)+wj∗(σ)−Cs∗(σ) ≤ ub+us.
Substituting in the Constant Surplus equations, it follows that, αi∗(β) − Cb∗(β) −
κj∗(σ) − Cs∗(σ) − 2c ≤ ub + us, which violates the assumption that there are types,
β′, σ′ such that ω(β′, σ′) > ub + us. By a similar argument, it cannot be that all
agents enter. Second, since some agents enter and others do not, denote by β, σ the
threshold types for whom the entry constraints hold with equality, notice that

ub + us = vi∗(β) − C
b∗ (β)+ wj∗(σ) − Cs∗ (σ)

= αi∗(β) − C
b∗ (β)− κj∗(σ) − Cs∗ (σ)− 2c = ω(β, σ)

The second equality follows from the Constant Surplus equation, vi+wj = αi−κj−2c.
In a steady state, the same measure of buyers and sellers enter, F b(β) = F s(σ). These
two equations are the same as the equations that characterized the first-best entry
decisions, and therefore it must be that β = β0 and σ = σ0.

Proof of Proposition 3:

Proof. Boundedness: Take a sequence of equilibria eδ ∈ Eδ where eδ = 〈z,M, (vi), (wj)〉.
The only variables that can be unbounded are the values, and the population size

N . We first establish that the population size is bounded. Suppose the equilibria are
such that limδ→1Nδ → ∞. All equilibrium variables depend upon δ and c, but we
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suppress the subscripts in order to simplify notation.The first step will show that for
some agent i, vi → −∞: The surplus equations imply:∑

j yjmijsij − 2(1− δ)vi= 2c =⇒
∑

i

∑
j xiyjmijsij − 2(1− δ)

∑
i xivi = 2c∑

i ximijsij − 2(1− δ)wj= 2c =⇒
∑

i

∑
j xiyjmijsij − 2(1− δ)

∑
j yjwj= 2c

and thus,
∑

i xivi =
∑

j yjwj. If the sij are bounded above, then

2c =
∑
i

∑
j

xiyjmijsij − 2(1− δ)
∑
i

xivi

≤
∑
i

pi
N
s− 2(1− δ)

∑
i

xivi =
s

N
− 2(1− δ)

∑
i

xivi

(the inequality uses the inflow-outflow condition: Nxi
∑

j yjmij = pi), and so vi →
−∞ for some i. If the sij are not bounded above, then there exists some agent (buyer
or seller, here we suppose buyer without loss of generality) ι for whom vι → −∞.

The second step is to show that if vi → −∞, then for every i′, vi′ → −∞. Notice
that∑

j yjmijsij − 2(1− δ)vi = 2c∑
j yjmi′jsi′j − 2(1− δ)vi′= 2c

}
=⇒

∑
j

yj(mijsij −mi′jsi′j) = 2(1− δ)(vi − vi′)

For any i′, if vi′ 6→ −∞, then sij − si′j →∞ for every j. So any agent who matches
with i′ matches with i∑

j∈M(i′)

yj(sij − si′j) ≤ 2(1− δ)(vi − vi′) ≤ 0

But,
∑

j∈M(i′) yj(sij−si′j) > 0 since sij−si′j →∞, a contradiction. Thus, vi′ → −∞
for all i′.

The third step shows that for all sellers, it must also be that wj → −∞: As shown
earlier, since

∑
i xivi =

∑
j yjwj and vi → −∞ for every i, it follows that wj → −∞

for some j, and then by an analogous argument, wj′ → −∞ for all j′. But, then
sij →∞ for all i, j, and so mij = 1 for all i, j. But, this violates the surplus equation:
2c =

∑
j yjmijsij − 2(1− δ)vi ≥

∑
j yjsij since sij →∞.

The argument that values are bounded is similar. If an agent’s value goes to −∞,
then the argument above can be repeated from the second step. If any agent’s value

51



goes to∞, then a similar argument can be used to show that all values go to∞, then
sij → −∞, and so every mij = 0, a contradiction.

Finally, since the equilibrium values and population size are all bounded, there
exists a converging subsequence.

Upper hemicontinuity: By continuity of the equilibrium conditions.

Proof of Theorem 4:

Proof. Take G strictly supermodular.
Convexity: By contradiction, if there is no sufficiently large δ, then there is a

sequence δn → 1 such that en ∈ Eδn and the matching in en is not convex. Then, for
each n, it must be that there is an i and j1 < j2 < j3 such that mij1 ,mij3 > 0, and
mij2 < 1. But, then sij1 , sij3 ≥ 0 and sij2 ≤ 0. Pass to a subsequence so that the same
indices are used for every element in the subsequence. But, by Proposition 3, there is
a limiting equilibrium e∗ which has s∗ij1 , s

∗
ij3
≥ 0 and s∗ij2 ≤ 0, which contradicts the

proof of Theorem 2 (in that proof, in order to demonstrate assortativity, we showed
that such a surplus configuration cannot occur).

Upper monotonicity: Take any equilibrium e ∈ Eδ and by contradiction, sup-
pose that there are two skills i < i′ such that m̄i = maxMi > maxMi′ . The constant
surplus equations stipulate that:

2c+ 2(1− δ)vi =
∑
j≤m̄i

yjs
+
ij ≥

∑
j<m̄i

yjs
+
ij

2c+ 2(1− δ)vi′ =
∑
j≤m̄i′

yjs
+
i′j =

∑
j<m̄i

yjs
+
i′j

By the above matching, if follows that sim̄i
≥ 0 ≥ si′m̄i

. Since g is supermodular, s is
also supermodular, and so, for lower skills j < m̄i, it holds that sij+si′m̄i

> si′j+sim̄i
,

and so sij > si′j. So 2c + 2(1 − δ)vi > 2c + 2(1 − δ)vi′ and therefore vi > vi′ , a
contradiction.

Lower monotonicity: Upper and lower monotonicity are not the same. Upper
monotonicity holds for any δ, whereas we will only be able to demonstrate lower
monotonicity for sufficiently high δ.

By contradiction, if there is no sufficiently large δ, then there is a sequence δn → 1

such that en ∈ Eδn and the matching in en is not lower monotonic. That is, there are
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two skills i < i′ such that minMi > minMi′ = mi′ . The constant surplus equations
stipulate that:

2c+ 2(1− δ)vi =
∑
j≥mi′

yjs
+
ij =

∑
j>mi′

yjs
+
ij

2c+ 2(1− δ)vi′ =
∑
j≥mi′

yjs
+
i′j ≥

∑
j>mi′

yjs
+
ij

But, since g is strictly supermodular, so is s. Therefore, for any j > z, ∆+sij < si′j for
some ∆ > 0. But, then 2(1−δ)(vi′−vi) ≥

∑
j>mi′

yjmij∆, a contradiction as the LHS
vanishes as δ → 1 and the RHS does not (recall that in the limit

∑
j>mi′

yjmijsij = 2c,
so it holds that

∑
j>mi′

yjmij > 0). An analogous argument applies for the case where
G is strictly submodular.
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9 Online Appendix

We now return to the asymmetric cost setting studied in Section 6.2.
To quantify the inefficiencies, we fix the the production matrix G, type distribu-

tions F b and F s, and the bargaining weight α = 1/2. Let W ∗(cb, cs) and WE(cb, cs)

denote, respectively, the constrained efficient welfare and the maximal equilibrium
welfare for the search costs cb and cs. Let N∗(cb, cs) denote the measure of agents on
each side in the constrained efficient steady state.

Proposition 4. Assume α = 1/2 and cb > cs. The efficiency gap:

N∗(cb, cb)(cb − cs) ≤ W ∗(cb, cs)−WE(cb, cs) ≤ N∗
(
cb+cs

2
, c

b+cs

2

)
(cb − cs)

Thus, as cb → cs,
W ∗(cb, cs)−WE(cb, cs)→ 0

See Proof in Appendix. Since there is a uniform bound on the population N∗, the
above proposition effectively says that the welfare gap is on the order of the search
cost gap cb − cs.

Proof of Proposition 4:

Proof. As cb > cs, it must be that in equilibrium, S > B. Notice that any equilibrium
〈B, S, (xi) , (yj) , [mij] , (vi) , (wj)〉 in the (cb, cs) economy gives rise to a corresponding
equilibrium 〈B,B, x, y,M, v, w〉 in the (cb, cb) economy with the same investments,
matches, and welfare. Thus, WE(cb, cs) = WE(cb, cb) = W ∗(cb, cb) where the last
equality is the welfare theorem. Likewise, any constrained efficient allocation in the
(cb, cs) economy is also constrained efficient in the (c, c) economy where c = cb+cs

2
.

Thus, W ∗(cb, cs) = W ∗(c, c). Together, we have

W ∗(cb, cs)−WE(cb, cs) = W ∗(c, c)−W ∗(cb, cb)

The convexity of the welfare function (Proposition 1) implies the bounds above.

Proof of Corollaries 2 and 3:

We will now prove a more general version of these two corollaries together:
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Generalized Corollary: In a model with outside options, and a CRS meeting func-
tion, the constrained efficient outcome is an equilibrium if and only if

α =
B∗cb

B∗cb + S∗cs
=
∂µ(B∗, S∗)/∂B

µ(B∗, S∗)/B∗

where B∗, S∗ are the constrained efficient stock.

Proof. To simplify, we focus on the case where the state is interior and the proof
repeats that argument with the appropriate modifications. The same could be done
for the boundary case as well. Recall that µ(B, S) is the number of meetings in
every period. The original planner’s problem 5 is modified because the agents have
an outside option and there is a general meeting function, and so the measure of
buyers B need not equal the measure of sellers S. The planner now chooses the state
z = (B, S, (xi), (yj)) instead of z = (N, (xi), (yj)), the investment thresholds, and the
matching rule to maximize

W = µ(B, S)
∑
i∈I

∑
j∈J

xiyjmijgij −Bcb − Scs −
∑
i∈I

∫ βi

βi+1

Cb(i, β)f b(β)dβ

−
∑
j∈J

∫ σj

σj+1

Cs(j, σ)f s(σ)dσ +

∫ ∞
β0

ubf b(β)dβ +

∫ ∞
σ0

usf s(σ)dσ

subject to the steady state conditions,
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flowi =

∫ βi

βi+1

f b(β)dβ − xiµ(B, S)
∑
j∈J

yjmij = 0,∀i

f lowj =

∫ σj

σj+1

f s(σ)dσ − yjµ(B, S)
∑
i∈I

ximij = 0,∀j

B, S ≥ 0

xi ≥ 0, ∀i

yj ≥ 0, ∀j

X = 1−
∑
i∈I

xi = 0

Y = 1−
∑
j∈J

yj = 0

1 ≥ mij ≥ 0, ∀i, j

F b(β|I|) = F s(σ|J |) = 0

Notice that taking weighted sums of the flow conditions implies that F b(β0) = F s(σ0).
The planner’s problem is modified in three ways: i) agents can take an outside option
which is included in the objective function and the conditions F (β0) = 1 and F (σ0) =

1 are removed; ii) the measure of buyers B and sellers S may differ and since we
assumed that the are gains to trade, the conditions B, S ≥ 0 will not bind at the
efficient solution; iii) the Inflow=Outflow equations are modified because the outflow
of buyers and sellers is

(Bxi)

(
µ(B, S)

B

)∑
j∈J

yjmij = xiµ(B, S)
∑
j∈J

yjmij, ∀i

(Syj)

(
µ(B, S)

S

)∑
i∈I

ximij = yjµ(B, S)
∑
i∈I

ximij, ∀j

The KKT conditions regularity conditions continue to hold, by the same arguments
as in Theorem 1 (because the linear dependencies of the gradients do not change).
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The Lagrangian is

L =µ(B, S)
∑
I

∑
j

xiyjmijgij −Bcb − Scs −
∑
I

∫ βi

βi+1

c(i, β)f b(β)dβ

−
∑
J

∫ σj

σj+1

c(j, σ)f s(σ)dσ +

∫ ∞
β0

ubf b(β)dβ +

∫ ∞
σ0

usf s(σ)dσ

+
∑
i∈I

viflowi +
∑
j∈J

wjflowj +
∑
i

φixi +
∑
j

ψjyj + γX + λY

+
∑
i∈I

∑
j∈J

(ηijmij + η̂ij(1−mij))

FOC(B): (∂µ/∂B)

(∑
i∈I

∑
j∈J

xiyjmij (gij − vi − wj)

)
− cb = 0

⇒
∑
i∈I

∑
j∈J

xiyjmijsij =
cb

∂µ/∂B

FOC(xi): µ
∑
j∈J

yjmijgij − viµ
∑
j∈J

yjmij − µ
∑
j∈J

wjyjmij − γ − φi = 0

∑
j∈J

yjmijsij =
γ + φi
µ

and xiφi = 0.
Thus, substituting FOC(xi) into FOC(B), the second into the first, we get γ

µ
=

cb

∂µ/∂B
(because

∑
i∈I xi = 1 and xiφi = 0). Thus

∑
J

yjmijsij =
cb

∂µ/∂B
+
φi
µ

and if φi = 0, then ∑
J

yjmijsij =
cb

∂µ/∂B
(18)

We now do the same for the sellers.

FOC(S):
∑
j∈J

∑
i∈I

xiyjmijsij =
cs

∂µ/∂S

FOC(yj):
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µ
∑
I

ximijgij − wjµ
∑
I

ximij −
∑
I

viµximij − η − ψj = 0

∑
I

ximijsij =
λ+ ψj
µ

and ψjyj = 0. Thus, ∑
I

ximijsij =
cs

∂µ/∂S
(19)

Decentralizing the optimal allocation: we show that the shadow values vi, wj
together with the matching matrixM and state z constitute an equilibrium, provided
that the bargaining weight is α = ∂µ/∂B

µ/B
. To see why, substitute ∂µ/∂B = α (µ/B)

into condition (18) ∑
j∈J

yjmijsij =
cb

α (µ/B)
,∀i

which is the Constant Surplus equation for skill i.
For sellers, since µ is homogeneous of degree 1,20 ∂µ/∂S

µ/S
= 1 − ∂µ/∂B

µ/B
, and thus,

1 − α = ∂µ/∂S
µ/S

. Substituting into equation (19) gives the sellers’ Constant Surplus
equations: ∑

i∈I

ximijsij =
cs

(1− α) (µ/S)
,∀j

The FOC(β0) condition is precisely the equilibrium entry condition, v0−C(0, β0) =

ub, and so the shadow value v0 and threshold β0 satisfy the equilibrium entry con-
dition. Likewise, the seller’s entry condition holds as well. The proofs that the
Efficient Matching conditions and individual optimal investments hold are the same
as in Theorem 1.

Furthermore, by FOC(B) and FOC(S), we have that cs (∂µ/∂B) = cb (∂µ/∂S).
By homogeneity of degree 1,

B (∂µ/∂B) + S(∂µ/∂S) = µ⇒ cb [B (∂µ/∂B) + S(∂µ/∂S)] = cbµ

Substituting in gives:

Bcb (∂µ/∂B) + Scs (∂µ/∂B) = cbµ⇒ ∂µ/∂B

µ
=

cb

Bcb + Scs

20Homogeneity of degree 1 implies B (∂µ/∂B) + S(∂µ/∂S) = µ ⇐⇒ (∂µ/∂B) / (µ/B) +
(∂µ/∂S)/ (µ/S) = 1.
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Therefore, the buyers’ bargaining weight α = ∂µ/∂B
µ/B

= Bcb

Bcb+Scs
and so the seller’s

bargaining weight is 1− α = Scs

Bcb+Scs
.

⇐ Recall that, in an equilibrium, the Constant Surplus equations imply Equation
(17) B

S
= α

1−α ·
cs

cb
. Therefore, if the constrained efficient solution is an equilibrium, it

must be that cs

cb
= (1−α)B

αS
and therefore, it must be that α = Bcb

Bcb+Scs
.
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