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Abstract

We consider a semiparametric multinomial choice model that allows for an arbitrary joint

distribution of choice specific unobservables that are independent of explanatory variables. This

model permits relatively flexible substitution patterns between choices. To minimize computa-

tional diffi culties, we restrict attention on estimators of the model that can be expressed in closed

form. We combine and extend various results from the existing literature to enforce economic

restrictions implied by the model and to attain "as effi cient estimators as we can" - given the

closed form requirement. Some aspects of our estimators achieve the semiparametric effi ciency

bound, while others do not. In Monte-Carlo experiments, we study how various strategies

increase effi ciency, and compare the effi ciency of our best estimators to computationally more

challenging, non-closed form, estimators that are effi cient.

∗daniel.ackerberg@gmail.com, xm_11@txstate.edu, h.xu@austin.utexas.edu. All errors are our own.
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1 Introduction

In this paper we propose and investigate closed-form estimators of the following semiparametric

multinomial discrete choice model where the utility consumer i obtains from choice j is given by

Uij = X ′ijβj + εij (1)

The deterministic component of utility is a linear index of the observables Xij where the coeffi cients

βj are permitted to vary across choices j. Our model is semiparametric in the sense that we allow

for an arbitrary joint distribution of εi = (εi1, ....., εiJ), but we do assume εi is independent of Xi.

We restriction attention to closed form estimators of various aspects of this model because in

an empirical situation, we believe avoiding numeric optimization (or root solving) can be a large

benefit. For example, likelihood functions based on models like (1) are not generally globally

concave. Local minima imply that the numeric optimization needed to maximize the likelihood

function can be time consuming and error prone. Moreover, if one is trying to be flexible with the

joint distribution of the error terms in the context of maximum likelihood estimation, the number

of parameters one needs to numerically maximize over can increase very quickly, likely increasing

these computational costs and the potential for optimization mistakes. Our closed form estimators

avoid this while being completely non-parametric on the joint distribution of the error terms.

However, we do lose something by restricting attention to closed form estimators. In particular, our

estimators will not enforce all the economic restrictions implied by the discrete choice model that,

e.g., a sieve based maximum likelihood estimator would (e.g. Chen (2007)). However, by combining

and extending results across a number of literatures, we are able to propose estimators that we

believe can be helpful in practice (and some aspects of the estimated model will in fact achieve the

semiparametric effi ciency bound). One can think of this paper as an effort to combine different

techniques to determine "the best we can do" given our restriction to closed form estimators.1

Our model (1) can thought of as a generalization of a multinomial probit model with correlated

errors - a model that is already thought to allow fairly flexible substitution patterns. For example,

in a three choice case, εi1 and εi2 might be more highly correlated than εi1 and εi3. This means

that, all else equal, changes in Xi1 have a bigger impact on the probability of choosing alternative 2

than on the probability of choosing alternative 3. In other words, alternatives 1 and 2 are stronger

substitutes than are alternatives 1 and 3. Like the multinomial probit model with correlated errors,

the model we study allows these differential substitution patterns, but in a non-parametric fashion

as we do not assume joint normality. That said, the assumption of independence between εi and Xi

is a restriction, ruling out models with random coeffi cients (e.g. the mixed logit of McFadden and

Train (2000) or Berry, Levinsohn, and Pakes (1995)). But as we detail later, our model is neither

1Because the set of all possible closed-form estimators would be extremely hard to characterize, we are not able
to formally prove that our estimators are the most effi cient within such a set. However, we show in Monte-Carlo’s
that our estimators perform reasonably well compared to non-closed-form, effi cient, parametric estimators.
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more nor less general than the typical random coeffi cients model.

In our goal to construct the best
√
n-consistent, closed-form, estimators for the βj’s in (1) we can,

we combine and extend results in a number of important papers on semiparametric index models

(e.g. Powell, Stock, and Stoker (1989), Klein and Spady (1993), Ahn, Ichimura, Powell, and Ruud

(2018 - henceforth AIPR) and Allen and Rehbeck (2019 - henceforth AR)), results on effi ciency gains

of single Newton-Steps (e.g. Lehmann (1983), Horowitz (1998)), and kernel estimation techniques

that can enforce shape restrictions (e.g. Stone 1977, Cleveland, 1979, Fan, 1992, 1993).2 Focusing

at this point on AIPR and AR, AIPR also propose closed form estimators for a class of multi-index

models similar to the multinomial choice problem in (1). However, the multi-index estimators

proposed by AIPR can only identify each index up to its own scale. As such AIPR only consider

a restricted form of (1), i.e.

Uij = X ′ijβ + εij

where the β is assumed to be the same across alternatives. We are able to estimate the more general

model (1) because we make use of a symmetry condition that AIPR do not use, and our estimator

illustrates how the information in this symmetry condition can be used in a closed form way. On

the other hand, AIPR’s estimator can directly apply when elements of Xij are discrete, while ours

cannot. There are other differences in the estimators - our estimator directly uses derivatives of

choice probabilities, while AIPR looks at variation across level sets of choice probabilities - this

means that our estimator has less tuning parameters than AIPR. In any case, given the tradeoffs

between the two estimators, we advocate a combination of the two that can accomodate both the

more general model with βj’s and discrete Xij’s.

AR (2019) have previously utilized the symmetry condition that we use, showing that it holds in

a very broad set of models, including choice between bundles, matching, and multinomial choice.

However, their focus is on identification and not estimation. We focus on estimation, and in

performing that estimation in closed form. Another difference from both AIPR and AR is that we

consider not only β but also the joint distribution of εi. We show how we can also obtain a closed

form estimator of a function this joint distribution, and how we can enforce some of the restrictions

implied by the choice model on this estimator. This is useful for calculation of counterfactuals,

e.g. elasticities of choice probabilities w.r.t. observables.

After proposing our basic estimators, we illustrate how they can be improved in terms of effi -

2There are other estimators that also treat multinomial models like (1) semiparametrically. In particular maximum
score estimators (see Manski (1985) and Fox (2007)) also do not fully specify the joint distribution of εi. But maximum
score estimators also require numerical optimization, and this is well known to be particularly challenging given that
score functions are not continuous. Maximum score estimators are also not

√
n-consistent without smoothing,

e.g. Horowitz (1992), Yan (2018). While this smoothing can also help with numeric optimization, these objective
functions are still challenging to maximize in practice. Maximum score estimators also require different assumptions
on the joint distribution of εi than we do - maximum score estimators can allow some dependence between εi and Xi
that we cannot (e.g. median independence rather than full independence), but our model allows arbitrary correlations
between the elements of εi while the maximum score estimator needs to restrict this with what are often perceived
as fairly high level assumptions
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ciency. This is done in various ways - using a single Newton-Step to improve effi ciency, leveraging

overidentification effi ciently, and using Local Linear Kernels (Stone (1977)) to impose the AR cross-

derivative restrictions in kernel estimation - all preserve the closed form nature of the estimators.

We illustrate the performance of all these estimators in Monte-Carlo experiments, in particular

assessing 1) how much precision we lose, relative to non-closed form MLE based estimators, and 2)

how much precision our various improvements add to the estimators. This helps inform us about

the tradeoff between potentially more reliable closed form solutions and loss of precision.

2 Model specification

Suppose an individual (decision-maker) i makes a choice Yi among J + 1 alternatives, i.e. J0 ≡
{0, 1, · · · , J}, where J ≥ 2. By convention, alternative 0 refers to the “outside” choice and the

utility of such an option is normalized to zero, i.e. Ui0 = 0. Let further J ≡ J0/{0}. Moreover,
individual i’s utility for option j ∈ J is given by

Uij = X ′ijβj − εij ,

where Xij ∈ Rdj (dj ≥ 2) is a vector of covariates, βj ∈ Rdj is the coeffi cient, and εij ∈ R is an
unobserved shock to utility. For notation simplicity, we denote X ≡ (X ′1, · · · , X ′J) ∈ R

∑
j∈J dj ,

β ≡ (β′1 · · · , β′J)′ ∈ R
∑
j∈J dj , and ε ≡ (ε1, · · · , εJ)′ ∈ RJ . Moreover, we denote the density function

of εi by fε : RJ → R+.

Thus, individual i’s optimal decision on the discrete choice set can be described as

Yi =

{
0, if maxk∈J1 Uik ≤ 0;

j, if Uij ≥ 0 and Uij ≥ maxk∈J1{Uik}.
(2)

In some empirical applications, some of the regressors may not vary over alternatives. See e.g.

Cameron and Trivedi (2005). In such a situation, the utility function for option j can be modeled

as

Uij = Z ′iαj +X ′ijβj − εij ,

where Zi ∈ Rdz is a vector of covariates associated with all the alternatives (e.g. household/individual
demographics), and αj is its coeffi cient. Another natural source of Zi are covariates associated with

the outside option, if the choice probabilities vary with these outside-choice specific variables.3 For

simplicity of the presentation, we first consider our benchmark estimators without common covari-

3Namely, suppose the utility from choosing alternative 0 is given by Ui0 = X ′i0β0 − ui0, where Xi0 ∈ Rk0 is a
vector of covariates, ui0 ∈ R is the error term, and β0 is the coeffi cient. Then if we normalize the utility function at
alternative 0 to zero, i.e., Ũi0 = 0, we also need to specify the utility for alternative j as the difference between the
(original) utilities from alternative j and 0, i.e. Ũij = −X ′i0β0 + X ′ijβj − ũij , where ũij = uij − ui0. Note that Xi0
and β0 are invariant across j ∈ J1.
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ates. Later we extend our techniques to the more general situation. Note that Xij can implicitly

include components that are constant across i. Such components will simply generate alternative

specific constant terms, so can be subsumed into different means of the distribution of the uij across

j.

We do not make parametric distributional assumption on εij - instead we introduce some weak/non-

distributional assumptions on the model specification.

Assumption 1 (i) The distribution of ε be absolutely continuous with respect to the Lebesgue mea-
sure on RJ . Let fε denote its density function which has a full support on RJ ; (ii) The distribution
of X be absolutely continuous with respect to the Lebesgue measure on SX ⊆ R

∑
j∈J dj , with density

denoted by fX ; (iii) There exists no proper linear subspace of R
∑
j∈J dj having probability one under

the probability distribution of X; (iv) Let β11 = 1.

Later we relax Condition (ii) to allow for some (but not all) discrete components in Xj . Condi-

tion (iii) is made to exclude perfect multi-collinearity, which is also a standard assumption in the

semiparametric binary response model literature. See e.g. Manski (1975, 1985). Condition (iv) is

a scale normalization on β. This is necessary with our non parametric treatment of fε(·), because
(β, fε(·)) and (c× β, fε(·/c)/c) are observationally equivalent as long as c > 0.

Assumption 2 The covariates X are independent of the error term ε, i.e. X ⊥⊥ ε.

The independence restriction in assumption4 is strong, but a key aspect of our analysis. This

rules out random coeffi cient models, but since our model allows arbitrary correlation in εj across

j, it permits fairly flexible substitution patterns across the alternatives. Defining Wj = X ′jβj and

W = (W1, · · · ,WJ), we have:

Lemma 1 (Semiparametric Multinomial Model) Suppose Assumption 1 and Assumption 2
hold. Then, the probability distribution of the multinomial choice is given by: for each j ∈ J1,

P(Y = j|X) = ψj(W ),

for some differentiable function ψj : RJ → [0, 1]. Moreover, ψj is monotonically increasing in Wj,

decreasing in Wk for k ∈ J1/{j}, and satisfies

∂ψk
∂Wj

=
∂ψj
∂Wk

< 0. (3)

The first part of Lemma 1 defines ψj as a smooth functional of the density function fε. This will

be a useful alternative representation of the structural parameter. Note that we can invert the
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density function fε out from {ψj : j ∈ J1} under some regularity conditions. To see this, let J = 2

for simplicity. Note that

Pr(ε1 ≥ t1; ε2 ≥ t2) = 1−
∑

j∈{1,2}
ψj(t1, t2).

By taking the second derivatives of the above equation, we have

fε(t) =
∑

j,k,`∈{1,2}

∂2ψj(t1, t2)

∂tk∂t`

The second part of Lemma 1 is a Slutsky symmetry type condition implied by the structure of the

discrete choice “demand" model. We follow Allen and Rehbeck (2019) in using this condition for

identification, and parts of our estimation procedures also rely directly on this condition.

2.1 Discussion

On one hand the assumption of independence between εi and Xi is a strong restriction. On the

other, the model is more flexible than logit and nested logit model, as well as multinomial probit

models that allow arbitrary correlations between the errors of the different alternatives. These

multinomial probit models are already thought to be quite flexible in representing substitution

patterns across alternatives (e.g. McCulloch and Rossi (1994), Imbens and Wooldridge (2007)).

What our independence restriction does rule out is random coeffi cients on the Xi’s (e.g. the mixed

logit of McFadden and Train (2000) or Berry, Levinsohn, and Pakes (1995)). But it is important

to note that the model we study is neither more nor less general than a typical model with random

coeffi cients on product characteristics X plus additive errors εij that are uncorrelated across j (in

such a model εij can be interpreted as including both the εij and the random coeffi cient terms

containing X’s). In a typical random coeffi cients model, unobserved correlations in preferences

across j are a function of the X’s. So, for example, two alternatives with the same value of Xij’s will

have the same unobserved correlation in preferences with respect to a third alternative. The model

we study is more flexible in that it allows completely arbitrary correlations (and thus substitution

patterns) across different alternatives j, even those with the same value of Xij’s.4 On the other

hand, random coeffi cients generate unobserved correlations in preferences across alternatives that

change when Xij’s change. The model we consider does not allow this.

4Of course, if Xij contained a set of dummy variables corresponding to every product j and one allowed a
fully flexible joint distribution of random coeffi cients on those dummy variables, it would encompass our model (as
essentially, those random coeffi cients would correspond to our εi).
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3 Identification and Basic Estimation

In this section, we first briefly establish identification of our model. While this model is already

known to be identified, e.g. Matzkin (1993), our identification proof is useful to reparameterize

and reexpress the model in a way that helps for estimation. It also highlights some overidentified

aspects of the model. We then focus on the main point of the paper, i.e. proposing closed form

estimation procedures for this model that are computationally simple and relatively effi cient.

3.1 Identification

First, reparameterize the model as

βjs = βj1γjs

with the normalizations β11 = 1 and γj1 = 1 ∀j.5 With this parameterization, the γjs’s measure

“within-choice" relative scales, relative to the first X for that choice, i.e. γjs =
βjs
βj1
. For example,

for choice 2, the γ23 measures the marginal effect of increasing Xi23 relative to the marginal effect

of increasing Xi21. The βj1’s measure “across-choice" relative scales, all with respect to the first

Xi for each choice, and relative to the normalized β11 = 1. For example βj3 measures the marginal

effect of increasing Xi31 on the utility of choice 3 relative to the marginal effect of increasing Xi11

on the utility of choice 1.6

We now state a compact theorem that proves identification of the entire β (up to one normalization,

i.e. β11 = 1). We then show explicitly how this result applies to identify the individual elements

of our reparameterization, i.e. the γjs’s and βj1’s. Let βj = (βj1, ...., βjdj ) be the vector of β’s for

choice j.

Theorem 2 Under Assumptions 1 and 2, βj is (over) identified by the following equation system:

βj = −1

2
λkj × E

[∂ Pr(Y = k | X)

∂Xj
fX(X)

]
= λkj × E

[
I(Y = k)

∂fX(X)

∂Xj

]
, ∀ j, k = 1, ..., J,

where λkj is a scalar satisfying λkj = λjk > 0.

5 It is straightforward that the sign (i.e. positive, negative, or zero) of βjs is identified under weak conditions. For
simplicity, we assume that Xjs for some j and s is known to have a strictly positive coeffi cient. We can then reindex
to make this X11 and then normalize its coeffi cient.

6Again, for expositional simplicity, we assume βj1 6= 0 for all j = 1, ..., J .
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Note that the second equality holds because

E
[
∂P(Y = k|X)

∂X
fX(X)

]
+ 2E

[
I(Y = k)

∂fX(X)

∂X

]
=

∫ +∞

−∞

[
∂P(Y = k|X = x)

∂x
f2
X(x)

]
dx+

∫ +∞

−∞

[
P(Y = k|X = x)

∂f2
X(x)

∂x

]
dx

=

∫ +∞

−∞

{
∂
[
P(Y = k|X = x)f2

X(x)
]

∂x

}
dx

= P(Y = k|X = x)f2
X(x)

∣∣∣+∞
−∞

= 0

Using terms of the form E
[
I(Y = k)∂fX(X)

∂X

]
to express the implications of a choice model is common

in the related literature (e.g. Powell, Stock, and Stoker (1989)) because it is a straightforward object

to estimate using kernel techniques.7

Theorem 2 simultaneously encompasses both the index restrictions of our model (which relates the

effects of changingXjs versusXjs′ for the same alternative j) and the Slutzky symmetry restrictions

in Lemma 1 (which relate the the effects of changing Xj versus Xj′ for two different alternatives).

More specifically, with our reparameterization, the theorem first implies that the γjs’s are (over)

identified by

γjs ≡
E
[
I(Y = k)∂fX(X)

∂Xjs

]
E
[
I(Y = k)∂fX(X)

∂Xj1

] ∀ k ∈ J1. (4)

Intuitively, this is leveraging the fact that because of the linear index structure, the ratio of the

derivatives of a choice probability w.r.t. two elements of Xj must be equal to the ratio of the

respective β’s, i.e. γjs =
βjs
βj1
. Note that the overidentification comes from the fact that this is true

for any choice probability, i.e. one could also look at how the probability of choice k varies as the

two elements of Xj vary. As J increases, these cross derivatives may get small, so in practice (e.g.

in our Monte-Carlos), we only use (4) for k = j. Note that this identification result is essentially

equivalent to existing results in the single index literature (e.g. Powell, Stock, and Stoker (1989)).

In contrast, identification of the "across-choice" relative scales, i.e. the βj1’s, rests on the utility

maximizing structure of the multinomial choice model. This identification argument can be in-

terpreted as a special case of the identification results of Allen and Rehbeck (2019), which apply

very generally to index models with restrictions from choice theory. This choice model structure

is key to Lemma 1 and its implication that λkj = λjk in Theorem 2. Intutively, the choice model

implies that ∂P(Y=j|X)
∂X′kβk

= ∂P(Y=k|X)
∂X′jβj

since it is differences in utilities that what determine choice,

7While expressing identification in terms of this representation is useful for us since our eventual goal is estimation,
we should note that identification has been established under weaker assumptions than those necessary for this
representation.
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and locally, it is the same consumers switching from j to k (or vice-versa) that are on each margin.

Formally, Theorem 2 implies

βj1
βk1

=
E
[
I(Y = k)∂fX(X)

∂Xj1

]
E
[
I(Y = j)∂fX(X)

∂Xk1

] , ∀ k 6= j. (5)

Setting k = 1 directly identifies the βj1 for j > 1 with our normalization that β11 = 1.

Given that the γjs’s are identified, Theorem 2 implies one could also identify the model with

equations similar to ((5)) based on differentiating w.r.t. elements of the Xj’s other than the first.

To utilize this overidentification and reduce the dimensionality of the kernel we end up using to

estimate ((5)), define γj ≡ (1, γj2, · · · , γjdj )
′ and W̄j = X ′jγj , and let fW̄ (W̄ ) represent the joint

distribution of these indices. Note that W̄j = Wj/βj1 as the “normalized index”of Wj . We then

can show

βj1
βk1

=
E
[
I(Y = k)

∂fW̄ (W̄ )

∂W̄j

]
E
[
I(Y = j)

∂fW̄ (W̄ )

∂W̄k

] , ∀ k 6= j. (6)

Even when we restrict attention to variation in the indices Wj , note that there are
J(J−1)

2 of such

equations, so these "across-choice" relative scales βj1’s are still over-identified if J ≥ 3. We discuss

how to leverage this over-identification in our identification in the estimation section.

Given that the γjs’s (and βj1’s) are identified, identification of ψj is straightforward. Namely, for

any w ∈ RJ , we have:
ψj(w) = Pr

(
Y = j|W = w

)
. (7)

As we discuss later, estimates of ψj are necessary for many counterfactuals, e.g. derivatives of

choice probabilities w.r.t. X’s. To estimate these derivatives, our estimation method will take into

account the restriction on ψ established in Lemma 1 for effi ciency gains.

3.2 Basic Estimates

We first present very basic closed form estimators for the parameters of the model - i.e. the γjs’s,

βj1’s, and ψj’s. We then present various improvements on some of these estimators intended to

increase effi ciency. Let {(Yi, Xi1, · · · , XiJ) : i ≤ n} be an i.i.d. random sample of (Y,X1, · · · , XJ)

with sample size n.

3.2.1 Within-Choice Relative Scales γjs’s

First, natural kernel estimates for γj ≡ (1, γj2, · · · , γjdj )
′ based on ((4)) are
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γ̃j =

∑N
i=1 I(Yi = j)∂f̂X(Xi)

∂X̃j∑N
i=1 I(Yi = j)∂f̂X(Xi)

∂Xj1

=
1

h
dj−2
j

∑N
i=1

∑N
n=1;n6=i I(Yi = j)

∂Kj(
Xij−Xnj

hj
)

∂ũj

∏
`6=jK`(

Xi`−Xn`
h`

)∑N
i=1

∑N
n=1;n6=i I(Yi = j)

∂Kj(
Xij−Xnj

hj
)

∂uj1

∏
`6=jK`(

Xi`−Xn`
h`

)

(8)

where hj ∈ R+ is a bandwidth, and K` : Rd` → R is a Parzen-Rosenblatt kernel with compact

support, in which u`1 denotes its first component and ũ` is the other d` − 1 arguments. In the

above expression, note that fX(Xi) is estimated by the leave-one-out kernel density estimator, i.e.

f̂X(Xi) =
1

(N − 1)
∏J
`=1 h

d`

N∑
n=1;n 6=i

J∏
`=1

K`(
Xi` −Xn`

h`
).

Following Powell, Stock, and Stoker (1989), under regularity conditions, γ̂j is
√
N consistent and

has a limiting normal distribution. One could think about refining this estimator in a couple of

ways, first based on the observation above that γj is overidentified (i.e. (8) uses own derivatives, but

as noted in the prior section, a similar equation holds using cross derivatives), and the second based

on the possibility of trying to reduce the dimension of the kernels K` using the index restrictions of

the model. However, we do not pursue this further, because in a moment we provide an alternative

refinement to the estimator of γj that will attain the semiparametric effi ciency bound.
8

3.2.2 Across-Choice Relative Scales βj1’s

We next form natural kernel estimates for βj1’s. Theorem 2 and (5) suggests using

β̄j1 =

∑N
i=1 I(Yi = 1)∂f̂X(Xi)

∂Xj1∑N
i=1 I(Yi = j)∂f̂X(Xi)

∂X11

=
h1

hj
×
∑N

i=1

∑N
n=1;n 6=i I(Yi = 1)

∂Kj(
Xij−Xnj

hj
)

∂ũj1

∏
`6=jK`(

Xi`−Xn`
h`

)∑N
i=1

∑N
n=1;n 6=i I(Yi = j)

∂K1(
Xi1−Xn1

h1
)

∂u11

∏
`6=1K`(

Xi1−Xn1
h1

)

.

(9)

However, given the linear index structure and estimates of γ̃j (and thus the indices W̃ij = X ′ij γ̃j
as estimates of W̄ij = X ′ijγj for all observations i), we can reduce the dimensionality of this non-

parametric problem, instead following (6) and using

β̃j1 =

∑N
i=1 I(Yi = 1)∂f̂W (W̃i)

∂Wij∑N
i=1 I(Yi = j)∂f̂W (W̃i)

∂Wi1

=
h̄1

h̄j
×
∑N

i=1

∑N
n=1;n6=i I(Yi = 1)

dK̄j(
W̃ij−W̃nj

h̄j
)

duj

∏
`6=j K̄`(

W̃i`−W̃n`

h̄`
)∑N

i=1

∑N
n=1;n6=i I(Yi = j)

dK̄1(
W̃i1−W̃n1

h̄1
)

du1

∏
`6=1 K̄`(

W̃i`−W̃n`

h̄`
)

(10)

8Obviously linearity of the utility indices over the entire support of X is a strong assumption . But note that
identification and estimation is not reliant on these linear indices holding globally. For example, one could estimate
two different linear indexes - one where, e.g. Xj1 > 0, and another where Xj1 < 0.
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where

f̂W̄ (W̃i) =
1

(N − 1)hJ

N∑
n=1;n6=i

J∏
`=1

K̄`(
W̃i` − W̃n`

h̄`
),

in which K̄` : R→ R are Parzen-Rosenblatt kernels with compact support and h̄` are bandwidths.
Again, under similar conditions in Powell, Stock and Stocker (1989), both β̄j1 and β̃j1 are

√
N

consistent and have a limiting normal distribution. However, β̃j1 only requires a J dimensional

kernel rather than a
∑J

j=1 dj dimensional kernel.

3.2.3 Error Distribution Parameters ψj

With estimates of the γjs’s and βj1’s in hand, we can think about estimating the ψj functions, which

can be thought of as transformations of the joint distribution of the error terms εij . Estimation of

the ψj functions allows us to compute additional counterfactuals, in particular, the effect of changes

in X on choice probabilities. Here we propose very simple kernel based closed form estimator of ψj
based on (7)

ψ̃j(w) =

∑N
i=1 I(Yi = j)

∏J
`=1 K̄`

(w`−X′i`β̃j
h̄`

)
∑N

i=1

∏J
`=1 K̄`

(w`−X′i`β̃j
h̄`

) . (11)

ψ̃j can be used to compute probabilities at any X by evaluating ψ̃j at (X ′1β̃1, ....., X
′
J β̃J).9 Depend-

ing on the precise kernel used, (11) might be analytically differentiated to estimate the derivative

of a choice probability at any X. As well known, whether a particular counterfactual estimand is√
N consistent will depend on its precise form, e.g. average derivatives across the distribution of

X in the data, versus derivatives at a single point.

Like with our closed-form estimates of the γjs’s and βj1’s, there is a tradeoff we have to make

in obtaining these closed form estimates - i.e. we are not fully imposing restrictions of choice

theory. Later we examine alternative estimators of ψj that do utilize some of these economic

restrictions. Also note that these estimates ψ̃j do not depend on the estimates of the across-choice

scale parameters β̃`1. If we multiplied the indices by the β̃`1’s, it would not change anything since we

are treating ψj non-parametrically. This illustrates just one aspect of how our closed-form estimates

ψ̃j are not fully imposing restrictions of choice theory —there are others, like monotonicity implied

by the model and the Slutzky symmetry restriction.10

9Note that the estimation of ψj requires the estimates of βj1. Without the latter, one could alternatively estimate
Pr(Y = j|W̄ = ·), which is closely related but different from our structural function ψj(·) = Pr(Y = j|W = ·).
10Also note that this does not mean that our estimates of β̃j1 are uninteresting, as they help answer different sorts

of counterfactual questions, e.g. how changes in X’s relatively affect utilities of individuals forced to make various
choices.
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4 Improved Estimates

As we have noted, the cost of our closed-form estimators is that we do not fully enforce restric-

tions on the model implied by choice theory. To the best of our knowledge, fully enforcing those

restrictions would generally require a non-closed form estimator and a numeric search over a rela-

tively large dimensional parameter space, e.g. sieve MLE of the multinomial choice model where

the non-parametric joint distribution (εi1, ....., εiJ) is flexibly specified, e.g. a flexible mixture of

normals.

Because we are not fully enforcing these restrictions, we want to do the best we can in terms of

precision. So, continuing to restrict attention to closed form estimators, we next pursue three

distinct directions for providing improved estimators of the γjs’s, βj1’s, and ψj’s to increase effi -

ciency. First, we improve our estimates of γjs’s using the well known result on taking a single

Newton-Step from an initial consistent estimator (Lehmann (1983), Horowitz (1998)). Second, we

show how overidentification of the βj1’s can be leveraged in an optimal way. Lastly, we show how

we can improve our estimates of the ψj’s using local linear kernel approach (e.g. Stone 1977, Cleve-

land, 1979, Fan, 1992, 1993). We show how these kernels can very easily incorporate the Slutsky

symmetry restriction implied by choice theory, i.e. (3). Again, these improved estimators continue

to be in closed form.

4.1 A Newton-Step on the γ̃j’s

We first consider doing a Newton-Step on our initial consistent estimates of the γ̃j’s. Following

Klein and Spady (1993) and Lee (1995), consider the following pseudo-likelihood MLE:

γ̂∗ = arg max
γ∈Γ

1

N

N∑
i=1

J∑
j=0

I(Yi = j) log P̂(Yi = j|Xi; γ),

where Γ ≡
{

(γ1, · · · , γJ) : γj ∈ Rdj with γj1 = 1 for j = 1, · · · , J
}
and

P̂(Yi = j|Xi; γ) =

∑N
n=1;n 6=i I(Yn = j)

∏J
`=1 K̄`(

X′`iγ`−X′`nγ`
h̄`

)∑N
n=1;n6=i

∏J
`=1 K̄`(

X′`iγ`−X′`nγ`
h̄`

)
,

is a nonparametric kernel estimator of P(Yi = j|X ′1iγ1, · · · , X ′JiγJ).

One could estimate γ by maximizing this pseudo likelihood function. In fact, Klein and Spady

(1993) and Lee (1995) show that this produces estimates of the index parameters γ that achieve

the semiparametric effi ciency bound. However, this is not a closed-form estimator. So what

we do instead is perform a Newton-Step using the pseudo likelihood starting from our consistent
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estimator γ̃, i.e.

γ̂ = γ̃ −
[

1

N

N∑
i=1

∂s̃(Yi, Xi; γ̃)

∂γ

]−1

× 1

N

N∑
i=1

s̃(Yi, Xi; γ̃),

where s̃(Yi, Xi; γ) =
∑

k∈J
I(Yi=k)

P̂(Yi=k|Xi;γ)

∂P̂(Yi=k|Xi;γ)
∂γ is the (pseudo) score function. Note that in the

above equation, − 1
N

∑N
i=1

∂s̃(Yi,Xi;γ̃)
∂γ can be replaced by the (pseudo) Fisher information matrix

1

N

N∑
i=1

s̃(Yi, Xi; γ̃)× s̃′(Yi, Xi; γ̃).

For each rj ∈ Rdj and r = (r′1, · · · , r′J)′, let W̄j(rj) = X ′jrj and W̄ (r) =
(
W̄1(r1), · · · , W̄J(rJ)

)
.

Following e.g. Lehmann (1983) and Horowitz (1998), we can show that the proposed one-step-

updating estimator γ̂ is as effi cient as the pseudo MLE, i.e. γ̂∗.

Lemma 3 (i) Let {(Yi, Xi) : i ≤ N} be an i.i.d. random sample. (ii) Let Γ be a compact space and

γ is in the interior of Γ. (iii) There exists a p such that 0 < p < P(Y = k|W̄ (γ)), holding for all k ∈
J and a neighborhood of γ; (iv) Let X be continuously distributed with continuously differentiable

density function fX ; Moreover, let W̄ (γ) be continuously distributed with continuously differentiable

density function fW̄ (γ) for any γ ∈ Γ; (v) Let P[Y = k|W̄ (γ) = w̄] be continuously differentiable

in w̄, with
∣∣∣∂P[Y=k|W̄ (γ)=w̄]

∂w̄

∣∣∣ ≤ c for some constant c > 0; Moreover, let P[Y = k|W̄ (γ) = w̄] be

continuously differentiable in γ; (vi) Suppose γ̃ is
√
N -consistent estimator of γ and

sup
γ̃∈Bε(γ)

sup
i∈{1,··· ,N}

∣∣∣P̂(Yi = k|Wi(γ̃))− P(Yi = k|Wi(γ̃))
∣∣∣ = op(N

−1/4).

Then we have γ̂ − γ̂∗ = op(N
−1/2) and

√
N(γ̂ − γ)

d→ N(0, I−1(γ))

where I(γ) = E[s(Y,X; γ)s′(Y,X; γ)] and s(Y,X; γ) =
∑

k∈J
I(Y=k)

P(Y=k|W (γ))
∂P(Y=k|W (γ))

∂γ .

In Lemma 3, Condition (vi) is a high-level assumption that requires the choice of kernel function

Kw and bandwidth hw to ensure P̂(Yi = k|Xi; γ̃) uniformly converges to P(Yi = k|Wi(γ)) at a rate

suffi ciently fast.11 Note that I(γ) can be estimated by Î(γ) = 1
N

∑N
i=1 s̃(Yi, Xi; γ̂)s̃′(Yi, Xi; γ̂).

Combining this result and the results in Klein and Spady (1993) and Lee (1995), our closed form

estimate γ̂ achieves the semiparametric effi ciency bound. Note that we cannot do a Newton-Step

on the β̃j1’s as those are not identified with the Klein-Spady pseudo-likelihood (for the same reason

that β̃j1 is irrelevant for the estimates of the ψ̃j’s). However, after doing the Newton Step to

11By a similar argument to (? ), we may need to modify P̂(Yi = k|Xi; γ̃) to p if it’s too small. By Assumption (iii),
the probability of such a modification, however, should approach to zero as the sample size increases.
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obtain new estimates γ̂j’s, one would likely want to reestimate βj1’s based on newly constructed

indices Ŵij = Xij γ̂j . Similarly, one would likely want to construct new estimates of ψj’s based on

those new Ŵij indices.

There are some practical issues involved in taking a Newton Step from an initial consistent estimate.

For example, in some cases, the Newton-Step might go to a parameter value with a worse psuedo-

likelihood. If this were the case, choosing not to take the Newton-Step would be an option that

preserves the asymptotic effi ciency result12, but perhaps improves small sample performance. More

problematic is a case where at the initial consistent estimate, the pseudo-likelihood function is not

concave. If this is the case, one should certainly not take a Newton-Step, as this would tend to

minimize the pseudo-likelihood instead of maximizing it. One option would be to try to find a

nearby point where the pseudo-likelihood is at least as high as at the initial point but concave, and

take a Newton-Step from there. This would also preserve effi ciency, but is not closed form (though

it is presumably less computationally taxing than try to find the maximum).

4.2 Leveraging Overidentification of βj1’s

Unlike the γj’s, we cannot take pseudo-likelihood Newton Steps on the βj1’s to obtain (semipara-

metrically) effi cient estimators. This is because the multiple-index pseudo-likelihood function does

not enforce the model restriction ((6)), and it is this restriction that is used for the identification of

these “across-choice”scale parameters βj1’s. Hence, we feel it is important to leverage usable overi-

dentification information on the βj1’s. As noted earlier, when there are more than 3 choices (J > 2),

((6)) implies that the βj1’s are overidentified. More specifically, there are (J −1) parameters of βj1
in J(J − 1)/2 equations (recall that β11 = 1 is the normalization).

To optimally use this information, start by representing these equations in (6) as two set of condi-

tions: First, let k = 1 and j = 2, · · · , J , then we have

E(A)×


β21
...

βJ1

 = E


I(Y = 1)

∂fW̄ (W̄ )

∂W̄2
...

I(Y = 1)
∂fW̄ (W̄ )

∂W̄J


where A = diag

(
I(Y = 2)

∂fW̄ (W̄ )

∂W̄1
, · · · , I(Y = J)

∂fW̄ (W̄ )

∂W̄1

)
, a (J − 1)× (J − 1) matrix. On the RHS,

note that β11 = 1 as a normalization. Thus, βj1’s are identified by the above equation.

12Since one is choosing as one’s estimate that has a higher pseudo-likelihood than the parameter vector from the
Newton-Step.
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Second, choose 2 ≤ k < j ≤ J , then we have

E(B)×


β21
...

βJ1

 = 0 (J−1)(J−2)
2

where B = [B′2, · · · , B′J−1]′ is a (J−1)(J−2)
2 × (J−1) matrix, in which Bj is a (J−j)× (J−1) matrix

defined as

Bj =




−I(Y = j + 1)
∂fW̄ (W̄ )

∂W̄j
I(Y = j)

∂fW̄ (W̄ )

∂W̄j+1
0 · · · 0

−I(Y = j + 2)
∂fW̄ (W̄ )

∂W̄j
0 I(Y = j)

∂fW̄ (W̄ )

∂W̄j+2
· · · 0

0(J−j)×(j−2) · · · · · · · · · · · · · · ·
−I(Y = J)

∂fW̄ (W̄ )

∂W̄j
0 0 · · · I(Y = j)

∂fW̄ (W̄ )

∂W̄J

.

It should be noted that B is degenerated to be void when J = 2. Moreover, it should also be noted

that E(Bj) and E(B) has a rank of J − j and J − 2, respectively.

Combining these two set of conditions together, we obtain

E

[
A
B

]
×


β21
...

βJ1

 = E


I(Y = 1)

∂fW̄ (W̄ )

∂W̄2
...

I(Y = 1)
∂fW̄ (W̄ )

∂W̄J

0 (J−2)(J−1)
2

 .

Therefore, for any (J−1)J
2 × (J−1)J

2 positive definite weight matrix Ω, we have


β21
...

βJ1

 =

{
E

[
A′

B′

]′
Ω E

[
A
B

]}−1

× E
[
A′

B′

]′
Ω E


I(Y = 1)

∂fW̄ (W̄ )

∂W̄2

· · ·
I(Y = 1)

∂fW̄ (W̄ )

∂W̄J

0 (J−2)(J−1)
2

 .

Following the GMM literature, we can choose the following optimal weighting matrix:

Ω∗ = E(ξξ′),

where ξ =


[
A
B

]
×


β21
...

βJ1

−

I(Y = 1)

∂fW̄ (W̄ )

∂W̄2

· · ·
I(Y = 1)

∂fW̄ (W̄ )

∂W̄J

0 (J−2)(J−1)
2




. Because ξ depends on unknown para-

meter {βj1 : j ≥ 2}, therefore we apply the standard two-step approach in which we first choose
Ω = I to estimate {βj1 : j ≥ 2} for estimating the optimal weighting matrix Ω∗ by Ω̂. In the second
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stage we plug Ω̂∗ into the above formula to obtain an estimator of (β21, · · · , βJ1)′, i.e.


β̂21
...

β̂J1

 =

{
Ê

[
A′

B′

]′
Ω̂ Ê

[
A
B

]}−1

× Ê
[
A′

B′

]′
Ω̂ Ê


I(Y = 1)

∂fW̄ (W̄ )

∂W̄2

· · ·
I(Y = 1)

∂fW̄ (W̄ )

∂W̄J

0 (J−2)(J−1)
2


in which E[I(Y = k)

∂fW̄ (W̄ )

∂W̄j
] is estimated again by (? )-type estimator:

Ê
[
I(Y = k)

∂fW̄ (W̄ )

∂W̄j

]
=

1

(N − 1)h̄J+1
j

N∑
i=1

N∑
n=1;n6=i

I(Yi = k)
∏
` 6=j

K̄`(
Ŵi` − Ŵn`

h̄`
)

 dK̄j(
Ŵij−Ŵnj

h̄j
)

duj
.

where Ŵij = X ′ij γ̂j are improved estimates of W̄ij = X ′ijγj for all observations i. Note that K̄ and

h̄ have been introduced above.

4.3 Local Linear Kernels

Lastly, we show how we can potentially improve our estimates of the ψj’s using a local linear kernel

approach (e.g. Stone 1977, Cleveland, 1979, Fan, 1992, 1993). In particular, we show how these

kernels can very easily incorporate the Slutsky symmetry restriction implied by choice theory —

in other words we estimate ψj(W ) = P(Y = j|W ) and its derivatives while imposing the model

restrictions on the cross derivatives of the choice probabilities, i.e.

∂P(Y = j|W )

∂Wk
=
∂P(Y = k|W )

∂Wj
.

The LLK method fits a linear regression line through the observations in a local neighborhood of

W , obtaining a kernel smoothed estimator of the regression function and its (partial) derivatives

in the same time. Such an approach allows us to obtain a closed-form local estimator of ψj(W )

under our model restrictions on the choice probabilities’cross derivatives.

Let β̂j = β̂j1× γ̂j . For w ≡ (w1, · · · , wJ) ∈ Supp◦(W ), let θj0 and θjk (k ∈ J1) be P(Y = j|W = w)

and its partial derivative w.r.t. wk, respectively. In other words, at a given point w, the parameter

θj0 is equal to ψj at that point, and the parameters θjk are equal to the derivatives of ψj w.r.t. the

indexes at that point.

Denote θj = (θj0, θj1, · · · , θjJ)′ ∈ RJ+1 and θ = (θ′1, · · · , θ′J)′ ∈ RJ(J+1). Then, at a given point w,
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our estimator θ̂ is defined as follows:

θ̂(w) = arg min
θ∈RJ(J+1)

1

n
∏J
`=1 h`

n∑
i=1


J∑
j=1

[
I(Yi = j)− θj0 −

J∑
k=1

(X ′ikβ̂k − wk)θjk
]2


J∏
`=1

K`

(
w` −

X ′i`β̂`
h`

)
s.t. θjk − θkj = 0, for all k = J /{J}, j ≥ k + 1.

We now use matrix algebra to rewrite this objective function and obtain its first order condition.

Let Wn(w) = 1
ndiag

[
K
(w1−X′11β̂1

h1
, · · · , wJ−X

′
1J β̂J

hJ

)
, · · · ,K

(w1−X′n1β̂1

h1
, · · · , wJ−X

′
nJ β̂J

hJ

)]
and

Yjn = (I(Y1 = j), · · · , I(Yn = j))′;

Xn(w) =


1 X ′11β̂1 − w1 · · · X ′1J β̂J − wJ
...

...
...

...

1 X ′n1β1 − w1 · · · X ′nJβJ − wJ

 .
Let Ψj be a (J + 1)× (J−1)J

2 matrix, with k—th row defined as

Ψj(k, `) =


0 for k = 1, j;

−I(` = (k−1)k
2 + j − k) for 1 < k < j;

I(` = (j−1)j
2 + k − j) for k > j,

and Ψ = (Ψ′1, · · · ,Ψ′J)′. Let further ∆ be a (J−1)J
2 ×J(J + 1) matrix, with [ (2J−k)(k−1)

2 + `]—th row,

k = 1, · · · , J − 1 and ` = 1, · · · , J − k, defined as

∆
((2J − k)(k − 1)

2
+ `, q

)
=


1 if q = (k − 1)(J + 1) + k + `+ 1;

−1 if q = (k + `− 1)(J + 1) + k + 1;

0 otherwise.

By definition, both Ψ and ∆ are known matrices. Thus, we obtain the Lagrange function of the

above minimization problem as follows:

Ln(θ;w) =
1

2

J∑
j=1

[Yjn − Xn(w)θj ]
′Wn(w)[Yjn − Xn(w)θj ] + λ′∆θ.

where λ = (λ12, · · · , λ1J , λ23, · · · , λ2J , · · · · · · , λJ−1,J) ∈ R
(J−1)J

2 is the Lagrange multiplier. Then,

we obtain the f.o.c.:

Xn(w)′Wn(w)Xn(w)× θ̂j + Ψj λ̂ = Xn(w)′Wn(w)Yjn, for j = 1, · · · , J ;

∆θ̂ = 0.
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Therefore, we express θ̂j(w) in terms of λ̂(w)

θ̂j(w) = θ̃j(w)−
[
Xn(w)′Wn(w)Xn(w)

]−1
Ψj λ̂(w),

where θ̃j(w) = [Xn(w)′Wn(w)Xn(w)]−1Xn(w)′Wn(w)Yjn. Note that θ̃j(w) is the usual local linear

kernel estimator (i.e. without imposing the model restrictions on the cross derivatives). It follows

that

θ̂(w) = θ̃(w)−Diag
{[
Xn(w)′Wn(w)Xn(w)

]−1
, · · · ,

[
Xn(w)′Wn(w)Xn(w)

]−1
}

Ψλ̂(w).

Moreover, we plug θ̂(w) into the f.o.c.:

λ̂(w) =
{

∆×Diag
[(
Xn(w)′Wn(w)Xn(w)

)−1
, · · · ,

(
Xn(w)′Wn(w)Xn(w)

)−1
]
×Ψ

}−1
∆× θ̃(w).

Therefore, we obtain θ̂(w) of closed form:

θ̂(w) = θ̃(w)−Diag
[(
Xn(w)′Wn(w)Xn(w)

)−1
, · · · ,

(
Xn(w)′Wn(w)Xn(w)

)−1
]

Ψ

×
{

∆×Diag
[(
Xn(w)′Wn(w)Xn(w)

)−1
, · · · ,

(
X′n(w)Wn(w)Xn(w)

)−1
]

Ψ
}−1

∆× θ̃(w).

Fan (1992) established the asymptotic properties of θ̃(w), from which we obtain θ̂(w)’s limiting

distribution.

In sum, note that enforcing the cross derivative restrictions on the ψj’s is quite simple to do in

closed form. Of course, this is only a subset of the economic restriction that the choice model

places on the ψj’s. For example, the model also implies that the ψj is weakly increasing inWj , and

weakly decreasing in the Wk’s. However, it is not clear how one can impose these monotonicity

restrictions in closed form estimation.

5 Extensions

5.1 Covariates that are Constant Across Alternatives

The above procedure does not work when an X is constant across alternatives, i.e. X1s = .... =

XJs = Zs for s = 1, · · · , dz. In this case, the derivatives w.r.t. Zs are different since they affect

the utility index for all (or multiple) choices. However, it is straightforward to do adapt our closed

for estimators for this case. Again, the identification result would follow from the general proof of

Allen and Rehbeck (2019), but the estimator and
√
N consistency result are new. Intutively, what

is going on here is that given the existence of one X that varies across alternatives, one can use its

variation to net out the effect of Z on all but one index.
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For notational simplicity, let Z = (Xj1, · · · , Xjdz)
′, X̄j = (Xj,dz+1, · · · , Xjdj )

′, and Xj = (Z ′, X̄ ′j)
′

for j ∈ J . Further, let βzj = (βj1, · · · , βjdz)′ and β◦j = (βj,dz+1, · · · , βjdj )
′. Again, let βjs =

βj,dz+1γjs for j = 1, · · · , dj . Denote γzj = (γ◦j,1, · · · , γ◦jdz)
′ and γ◦j = (γ◦j,dz+1, · · · , γ◦jdj )

′. By

definition, γj,dz+1 = 1. Again, we normalize β1,dz+1 = 1.

By a similar argument to theorem1, we have

γ◦j =
1

2
λkj × E

[
∂P(Y = k|X)

∂X̄j
f(X)

]
= λkj × E

[
I(Y = k)

∂f(X)

∂X̄j

]
which identifies the γ◦j , i.e. the within-choice relative scales for the X’s that do vary across j. Next,

let W̄j = X̄ ′jγ
◦
j and W̄ = (W̄ ′1, · · · , W̄ ′J)′. Then we identify βj,dz+1 as follows

βj,dz+1

βk,dz+1

=
E
[
I(Y = k)∂f̄(W̄ ,Z)

∂W̄j

]
E
[
I(Y = j)∂f̄(W̄ ,Z)

∂W̄k

]
where f̄ is the density of (W̄ , Z).

Now consider the identification and estimation of γzj , i.e. the within-choice relative scales for the

X’s that are constant across j. Note that

∂P(Y = k|X)

∂Z
=

J∑
j=1

∂P(Y = k|W̄ , Z)

∂W̄j
× γzj , k ∈ J .

It follows that

E
[
I(Y = k)

∂f̄(W̄ , Z)

∂Z

]
=

J∑
j=1

E
[
I(Y = k)

f̄(W̄ , Z)

∂W̄j

]
× γzj , k ∈ J .

Let Ckj = E
[
I(Y = k)∂f̄(W̄ ,Z)

∂W̄j

]
and C be a J × J matrix, defined as

C =

 C11 · · · C1J

· · · · · · · · ·
CJ1 · · · CJJ

 .
Thus, the above equation can be rewritten as

C×


γz1
′

...

γzJ
′

 =


E
[
I(Y = 1)∂f̄(W̄ ,Z)

∂Z′

]
...

E
[
I(Y = J)∂f̄(W̄ ,Z)

∂Z′

]

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So γz = (γz1, · · · , γzJ) is identified by

γz ′ = C−1 ×


E
[
I(Y = 1)∂f̄(W̄ ,Z)

∂Z′

]
...

E
[
I(Y = J)∂f̄(W̄ ,Z)

∂Z′

]
 , (12)

provided we have a full rank condition on C.

Applying Powell, Stock and Stocker (1989) just as we did earlier, we can obtain a
√
N -consistent

estimator of both C and E
[
I(Y = k)∂f̄(W̄ ,Z)

∂Z

]
. Since (12) shows that the the parameter of interest

γz is a function of these two quantities, plugging these estimates provides us a
√
N—consistent

estimator. Note that we can use a Newton-Step on this estimator to obtain a more effi cient

estimator of γz (and γ0), just as is illustrated in Section 4.1.

5.2 Discrete Covariates

Since our method requires estimating derivatives of choice probabilities w.r.t. X, it should not be

applied when X is discrete. However, we can combine our estimator with the estimator proposed

by AIPR to deal with this case. We do need at least one continuous X for each alternative, as this

is what allows us to identify the cross-choice relative scales (the βj1’s) that AIPR do not identify.

Before describing the combination of our estimator and AIPR, we first describe how our basic

estimator differs from AIPR. Both estimators, ours based on Powell, Stock and Stocker (1989 -

PSS), and AIPR, can be used to estimate γ in a model with continuous X (though as noted, ours

has problems with discrete X, AIPR cannot identify βj1). How do they differ? Intuitively, both

estimators start by non-parametrically estimating choice probabilities given X. Our PSS based

estimator is based directly on derivatives of those estimated choice probabilities. In contrast, AIPR

do an additional step where they in essence find level sets of those choice probabilities - i.e. sets of

X with the same choice probability (or probabilities). Intutively, e.g. in a binary case with two

X11 and X12, one can think about regressing X11 on X12 conditional on being in a given probability

level set. The coeffi cient tells us, given a change in X12, how much X11 has to change by to "hold

that probability constant". This therefore is an estimate of γ12. While they both can be used to

estimate γ in a model with continuous X, AIPR works with discrete X (while our PSS derivative

based approach does not), while our approach identifies βj1 (while AIPR cannot). This is why we

propose a combination of the two.

More formally describing this, let Xj = (Xjc, Xjd) where Xjc ∈ Rcj and Xjd ∈ Rdj is a vector of
continuous and discrete random variables respectively. Our first step is to apply our PSS based

estimator to estimate the γ’s on the continuous Xjc’s. After this, we can combine those Xjc’s

into an index for each j. Redefine this index as Xj1 = Xjcγj,1:c. The first component of each Xj ,

i.e. Xj1, is now a continuously distributed random variable, with the rest of the components being

21



discrete.

Denote pk(X) ≡ P(Y = k|X) and p(X) = (p1(X), · · · , pJ(X)). Because for each j ∈ J ,

X ′jγj = E[Xj |p(X)]′γj ,

it follows that
1+dj∑
`=2

{Xj` − E[Xj`|p(X)]} γj` = −{Xj1 − E[Xj1|p(X)]} .

Therefore,


γj2
...

γj,1+dj

 = −

E


Xj2 − E[Xj2|p(X)]
...

Xj,1+dj − E(Xj,1+dj |p(X))




Xj2 − E[Xj2|p(X)]
...

Xj,1+dj − E(Xj,1+dj |p(X))


′
−1

×

E


Xj2 − E[Xj2|p(X)]

...

Xj,1+dj − E(Xj,1+dj |p(X))

 [Xj1 − E[Xj1|p(X)]] .

Thus, we can estimate (γj2, · · · , γj,1+dj ) by
13

−


1

N

N∑
i=1


Xij2 − Ê[Xij2|p(Xi)]

...

Xij,cj+dj − Ê(Xij,cj+dj |p(Xi))




Xij2 − Ê[Xij2|p(Xi)]
...

Xij,cj+dj − Ê(Xij,cj+dj |p(X))


′
−1

×


1

N

N∑
i=1


Xij2 − Ê[Xij2|p(Xi)]

...

Xij,cj+dj − Ê(Xij,cj+dj |p(Xi))

[Xij1 − Ê[Xij1|p(Xi)
]′

where

Ê(Xij`|p(Xi)) =

∑
n6=iXnj`Kp(

p̂(Xi)−p̂(Xn)
hp

)∑
n6=iKp(

p̂(Xi)−p̂(Xn)
hp

)
(13)

where hp ∈ R+ is a bandwidth, Kp : RJ → R is a Parzen-Rosenblatt kernel with compact support,
and p̂(Xi) is some kernel estimator of p(Xi). Note that one could alternative use the AIPR procedure

to obtain the entire γ (including the coeffi cients on continuous X’s), then using our approach to

obtain βj1. But one advantage of the hybrid approach to estimating γ is that the our PSS

approach only requires one tuning parameter, while the AIPR approach requires two - one for the

kernel estimates of the probabilities p̂, and then one to compute the expections Ê conditional on
the probability in (13).

13AIPR suggest trimming in practice.
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6 Monte-Carlo

Lastly, we do a simple Monte-Carlo to examine how our estimators work in practice. We are

interested in studying two particular questions. First, we want to examine the extent to which

some of the "improvements" in Section 4 improve the precision of our basic estimators. Second,

we want to compare the precision of our "best" closed-form estimators to alternative, non-closed

form, estimators - estimators that do impose all restrictions from choice theory. This can give us

a sense of the tradeoff between our more robust (but generally ineffi cient) closed form estimators

vs more effi cient (but computationally challenging) non-closed form estimators.

The setup of our experiments are as follows. We consider a model with three choices, j = 0, 1, 2 ,

the first being the outside alternative with "mean" utility normalized to 0. The utility from the

two inside goods each depend on two X variables.

Ui0 = εi0

Ui1 = β10 + β11Xi11 + β12Xi12 + εi1

Ui2 = β20 + β21Xi21 + β22Xi22 + εi2

Normalizing β11 = 1 and reparameterizing the model as in Section 3.1, we use

Ui0 = εi0

Ui1 = β10 +Xi11 + γ12Xi12 + εi1

Ui2 = β20 + β21Xi21 + β21γ22Xi22 + εi2

so the parameters of interest are γ12, γ22, and β21. Note that β10 and β20 are not directly identified

by our methods (though they implicitly enter the model through the ψj’s).

We consider three basic data generating processes for our experiments. In all of them, γ12 = γ22 =

β21 = 1, β10 =β20 = 0, and Xi11, Xi12, Xi21, Xi22 ˜ iid normals with mean 0 and standard deviation

2. In DGP A, we consider a simple logit model, i.e. εi0, εi1, and εi2 are iid Type 1 Extreme Value

unobservables. In DGP B, we add a large amount of correlation between εi1 and εi2, by adding an

additional unobservable νi, normally distributed with mean 0 and standard deviation 3, to both.

In other words, εi1 is an iid Type 1 Extreme value plus νi, and εi2 is an iid Type 1 Extreme value

plus that same νi. In DGP C, we change the shape of the distribution of εi2. In particular, we

assume εi2 comes from a 50/50 mixture of two normals, the first centered around -2 with variance

0.5, and the second centered around 2 with variance 0.5. This is a highly bimodal distribution.

For each specification, we estimate the parameters (and counterfactuals) with 4 different procedures.

As a benchmark, we first estimate using a simple logit model and maximum likelihood. This

produces consistent estimates under DGP A, but inconsistent estimates under DGPs B and C,

since in those specifications, the errors are not iid logit. We then construct 3 estimates of γ12,
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γ22,and β21 using our proposed semi-parametric closed-form methods. The first, "AMXbasic", is

based on (8) and (9). The second, "AMXindex" instead uses (10), utilizing the index restriction

to achieve more precise estimates of β21. The estimates of γ12 and γ22 do not change from

"AMXbasic".14 Lastly, "AMXNewton" takes a single Newton-Step on γ12 and γ22 starting from

the estimates of these parameters in AMXindex. "AMXNewton" also re-estimates β21 using an

index restriction with those improved estimates of γ12 and γ22.

For each of the four estimators, Table 1 reports estimates of the index parameters γ12, γ22,and

β21. Because one is also often interested in estimates of the distributions ψj , we also report

two additional parameters related to these distributions. Specifically, we report estimates of the

following average derivatives

E

[
∂ψ2(wi)

∂Xi22

]
≈ 1

N

∑
i

∂ψ̃2(wi)

∂Xi22
and E

[
∂ψ1(wi)

∂Xi22

]
≈ 1

N

∑
i

∂ψ̃1(wi)

∂Xi22
(14)

where the estimates of ψ̃1 and ψ̃2 are given by (11). Note that the first term is an own-characteristic

derivative, and the second is a cross-characteristic derivative. Since these are averages, these

estimates should be
√
N consistent15. For each of the DGPs we report means, standard deviations,

and root-mean squared error across 5000 monte-carlo replications, for datasets of size N = 3000

and N = 10000.16

For DGP A, the Logit estimates are clearly consistent. Comparing the 3 closed form estimators,

imposing the index restriction in estimating β21 reduces rootMSE considerably - from 0.1299 to

0.0899 with N = 3000 and from 0.0696 to 0.0486 with N = 10000. The Newton-Step improves

estimates of γ12 and γ22 - the rootMSEs of these parameters drop from about 0.057 to 0.042 when

N = 3000, and from 0.031 to 0.022 when N = 10000. Even though β21 is not directly impacted

by the Newton-Step, reestimating it based on the Newton-Step estimates of γ12 and γ22 does seem

to lower its rootMSE by about 5%. Note that the rootMSE estimates of the average derivatives

do not seem to be affected by the Newton-Step - these "parameters" depend much more on the

estimates of the ψ’s (which we work to improve momentarily).

Continuing to examine DGP A, it is particularly interesting to compare the rootMSEs of the

AMXNewton estimator to that of the Logit Estimator. This tells us how much precision we lose

by 1) our closed form estimators not imposing all the theoretical restrictions of the choice model,

and 2) our closed form estimators treating ψ non-parametrically. Interestingly, the loss in rootMSE

for γ12 and γ22 is extremely small - less than 5%. This reflects the fact that the Newton-Step

makes a huge improvement over our basic estimates of γ12 and γ22 . The loss in rootMSE for β21

is significantly higher - for AMXNewton it is about 80% more than the logit rootMSE. This is

14One could utilize the index restriction for γ12 and γ22 as well, but given we are about to do a Newton-Step on
these parameters, we opted not to.
15Appropriate cite?
16Following Hansen (20?), we just use Silverman like optimal bandwidths for estimating derivatives.

24



presumably because the estimate of β21 is not directly benefiting from the Newton-Step. The loss

in rootMSE for the average derivatives is even higher - 2-4 times for the average derivatives. This

also makes sense because the logit model is imposing a (correct) parametric assumption on ψ. To

assess how much of this last difference is due to the parametric assumption, vs how much is due to

imposing the theoretical restrictions of the choice model, it would be constructive to compare to

another estimator - a sieve MLE estimator of the discrete choice model where the joint distribution

of (εi0, εi1, εi2) is modelled as a sieve, e.g. a mixture of normals. This sieve estimator would enforce

the theoretical restrictions of the choice model, but not benefit from parametric assumptions on

ψ. The problem is that this is highly challenging to estimate correctly (e.g. ensure one does

not end up at local minima of the likelihood function) - especially when one needs to do that

thousands of replications. Returning to the AMXNewton estimates, note that there are clearly

some small sample biases in the estimates of the average derivatives - this is not unusual given the

non-parametric treatment of ψ.

Moving to DGP B and DGP C, a first observation is that in these models, the logit estimates

are not consistent, as they are imposing incorrect parametric assumptions. In DGP B, this

inconsistency shows up mainly in the average cross derivative. The logit model underestimates the

cross derivative by about 30% - which makes sense as it is assumes away the positive correlation

between εi1 and εi2, which tends to increase this cross-derivative (e.g. it makes the two choices more

substitutable). Interestingly, the estimates of γ12, γ22,and β21 in the logit model do not appear

biased. This is because in this specification, choices 1 and 2 are completely symmetric (and the X’s

are also distributed symmetrically). In DGP C, which is asymmetric since only εi2 has a bimodal

distribution, β21 is underestimated by about 20% (γ12 and γ22 are still consistently estimated,

but again, this is specific to the case where the X’s are symmetric). Turning to our closed-form

estimates, the patterns follow DGP A fairly closely. Doing the Newton-Step and imposing the

index restriction increase the precision of the estimates of γ12, γ22,and β21 substantially, but do

not do much to the average derivative estimates.

Next we consider the proposal in Section 4.3, to improve the estimates of ψ (and its derivatives,

e.g. (14)) using Local Linear Kernels. As illustrated in that Section, Local Linear Kernels provide

a closed form way to enforce on ψ the cross-derivative restrictions implied by the choice model.

Tables 2, 3, 4, examine various levels and derivatives of ψ, for DGP A, DGP B, and DGP C

respectively. In each table we again consider datasets with both N=3000 and N=10000. For each

dataset, we compare estimates using a LLK where we don’t enforce the cross-derivative restriction

to estimates using a LLK where we do enforce the cross-derivative restriction. This allows us to

assess the effect of imposing the restriction, all else equal. Note that we estimate many different

derivatives. The first two rows are average derivatives with respect to Xi22, corresponding to

what was reported in Table 1. However, we also report derivatives at specific points in (Wi1 =

Xi11 + γ12Xi12,Wi2 = β21Xi21 + β21γ22Xi22) space. For example, rows 3-6 report estimated

derivatives of choice probabilities w.r.t. Xi22, at the point where the indices are (Wi1 = 0,Wi2 = 0),
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as well as the two choice probabilies themselves at that point. The lower columns do this at

other points in a grid on (Wi1,Wi2). Note that since these are values of a non-parametric object

(or derivatives of a non-parametric object) at a point, these estimands are not estimable at the

parametric rate, but they are still things that researchers may be interested in measuring.

Looking at the first two rows of Table 2, one can see that the precision of the estimate of the

average own derivative does not improve when enforcing the cross derivative restriction. The

standard deviation of the estimate of the average cross derivative does decrease, but not by much -

from 0.025 to 0.023 when N = 3000, and from 0.14 to 0.12 when N = 10000. It makes sense that

imposing the cross-derivative restrictions would most benefit estimates of the cross-derivative. The

findings are similar with point derivatives. Imposing the cross-derivative restriction has little effect

on either the estimates of levels of ψ or the own derivatives. It does effect the cross-derivatives,

however, and for the point cross-derivatives, the size of the effect is considerably larger. For

example, at (Wi1 = 0,Wi2 = 0), the standard deviation of the cross derivative estimate decreases

from 0.0127 to 0.0090 with N = 3000, and 0.0092 to 0.0064 for N = 10000. These are substantial

increases in precision. Interestingly, this size of this increase can vary alot across the points - for

example, at (Wi1 = 2,Wi2 = −2) the effect is considerably larger (in percentage terms), but at

(Wi1 = −2,Wi2 = 2) it is quite small. Tables 3 and 4 show similar patterns for DGP B and DGP

C.

7 Conclusion

Numeric optimization of objective functions, especially with many parameters, can be fraught with

error. Hence, we study closed form estimators of a general class of semiparametric multinomial

choice models. We combine and extend various results from the existing literature to enforce

economic restrictions implied by the model and to try to attain estimators that are as effi cient

as possible. These closed form estimators appear to perform quite well in our Monte-Carlo ex-

periments, though the sacrifice in effi ciency relative to non-closed form, more computationally

challenging estimators depends on the parameter or counterfactual of interest.
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A Proofs

A.1 Proof of Lemma 1

Proof: For notational simplicity, Let J = 2. Note that

P(Y = 1|X) =

∫ X′
1β1

−∞

∫ +∞

u1−X′
1β1+X′

2β2

fu(u1, u2)du2du1 ≡ ψj(X ′1β1, X
′
2β2)

which is differentiable in X ′jβj .

We now show (3). W.l.o.g., let k = 1 and j = 2. Note that

∂P(Y = 1|X)

∂X ′2β2

= −
∫ X′

1β1

−∞
fu(u1, u1 −X ′1β1 +X ′2β2)du1 = −

∫ X′
2β2

−∞
fu(ũ1 −X ′2β2 +X ′1β1, ũ1)dũ1,

where in the last step we change the variable by letting ũ1 = u1 −X ′1β1 +X ′2β2. Moreover, we have

∂P(Y = 2|X)

∂X ′1β1

= −
∫ X′

2β2

−∞
fu(u2 −X ′2β2 +X ′1β1, u2)du2 =

∂P(Y = 1|X)

∂X ′2β2

which is strictly negative under assumption2-(i).

A.2 Proof of Theorem 2

Proof: For notational simplicity, we prove this theorem by letting J = 2. Note that

0 =
∂E
[
I(Y = k)fX(X)

]
∂Xj

=
∂E
[
P(Y = k|X)fX(X)

]
∂Xj

= E
[
∂ψk(X ′1β1, X

′
2β2)

∂Xj
fX(X)

]
+ E

[
P(Y = k|X)× ∂fX(X)

∂Xj

]
where the second equality applies the law of iterated expectation and Lemma 1. Thus,

E
[
P(Y = k|X)× ∂fX(X)

∂Xj

]
= −E

[
∂ψk(X ′1β1, X

′
2β2)

∂X ′jβj
fX(X)

]
βj .

Let λkj ≡ −E−1
{[

∂ψk(X′
1β1,X

′
2β2)

∂X′
jβj

]
fX(X)

}
. It follows that

βj = λkjE
[
P(Y = k|X)

∂fX(X)

∂Xj

]
,

and by Lemma 1, λjk = λkj > 0.
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A.3 Proof of Lemma 3

Proof: Let I(γ) = E[s(Y,X; γ) × s′(Y,X; γ)] and Î(γ̂) = 1
N

∑N
i=1[s̃(Yi, Xi; γ̃) × s̃′(Yi, Xi; γ̃)]. By a similar

argument to Lemma 5 of Klein and Spady (1993), it is straightforward to see

Î(γ̃)− I(γ) = op(1),

as long as γ̃
p→ γ. Therefore, it suffi ces to show

1

N

N∑
i=1

s(Yi, Xi; γ̃)− 1

N

N∑
i=1

s̃(Yi, Xi; γ̃) = op(N
− 1

2 ).

Because

1

N

N∑
i=1

s(Yi, Xi; γ̃)− 1

N

N∑
i=1

s̃(Yi, Xi; γ̃)

=
∑
k∈J0

1

N

N∑
i=1

[
I(Yi = k)

P(Yi = k|Xi, γ̃)

∂P(Yi = k|Xi, γ̃)

∂γ
− I(Yi = k)

P̂(Yi = k|Xi, γ̂)

∂P̂(Yi = k|Xi, γ̂)

∂γ

]

=
∑
k∈J

1

N

N∑
i=1

[
I(Yi = k)

P(Yi = k|Xi, γ̃)

∂P(Yi = k|Xi, γ̃)

∂γ
− I(Yi = k)

P̂(Yi = k|Xi, γ̂)

∂P̂(Yi = k|Xi, γ̂)

∂γ

]

−
∑
k∈J

1

N

N∑
i=1

[
I(Yi = 0)

P(Yi = 0|Xi, γ̃)

∂P(Yi = k|Xi, γ̃)

∂γ
− I(Yi = 0)

P̂(Yi = 0|Xi, γ̂)

∂P̂(Yi = k|Xi, γ̂)

∂γ

]

=
∑
k∈J

1

N

N∑
i=1

[I(Yi = k)P(Yi ∈ {0, k}|Xi, γ̃)− I(Yi ∈ {0, k})P(Yi = k|Xi, γ̃)]

P(Yi = k|Xi, γ̃)P(Yi = 0|Xi, γ̃)

∂P(Yi = k|Xi, γ̃)

∂γ

−
∑
k∈J

1

N

N∑
i=1

[I(Yi = k)P̂(Yi ∈ {0, k}|Xi, γ̃)− I(Yi ∈ {0, k})P̂(Yi = k|Xi, γ̃)]

P̂(Yi = k|Xi, γ̃)P̂(Yi = 0|Xi, γ̃)

∂P̂(Yi = k|Xi, γ̃)

∂γ
.

Hence, it suffi ces to show that for any k ∈ J , there is

1

N

N∑
i=1

[I(Yi = k)P(Yi ∈ {0, 1}|Xi, γ̃)− I(Yi ∈ {0, k})P(Yi = k|Xi, γ̃)]

P(Yi = k|Xi, γ̃)P(Yi = 0|Xi, γ̃)

∂P(Yi = k|Xi, γ̃)

∂γ

− 1

N

N∑
i=1

[I(Yi = k)P̂(Yi ∈ {0, 1}|Xi, γ̃)− I(Yi ∈ {0, k})P̂(Yi = k|Xi, γ̃)]

P̂(Yi = k|Xi, γ̃)P̂(Yi = 0|Xi, γ̃)

∂P̂(Yi = k|Xi, γ̃)

∂γ
= op(N

− 1
2 ).

Denote fW̄ (· ; γ) as the density function of W̄ (γ) ≡ (X ′1γ1, · · · , X ′JγJ), which clearly depends on the value
of γ. Moreover, let

f̂W̄ (W̄i(γ); γ) =
1

(N − 1)h̄J

N∑
n=1;n 6=i

K̄
(W̄i(γ)− W̄n(γ)

h̄w

)
.
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be an estimator of fW̄ (W̄i(γ); γ). Next, we rewrite the above condition as:

1

N

N∑
i=1

[I(Yi = k)P(Yi ∈ {0, k}|Xi, γ̃)− I(Yi ∈ {0, k})P(Yi = k|Xi, γ̃)]

fW̄ (W̄i(γ̃); γ̃)× P(Yi = k|Xi, γ̃)P(Yi = 0|Xi, γ̃)
× fW̄ (W̄i(γ̃); γ̃)

∂P(Yi = k|Xi, γ̃)

∂γ

− 1

N

N∑
i=1

[I(Yi = k)P̂(Yi ∈ {0, 1}|Xi, γ̃)− I(Yi ∈ {0, k})P̂(Yi = k|Xi, γ̃)]

f̂W̄ (W̄i(γ̃); γ̃)× P̂(Yi = k|Xi, γ̃)P̂(Yi = 0|Xi, γ̃)
× f̂W̄ (W̄i(γ̃); γ̃)

∂P̂(Yi = k|Xi, γ̃)

∂γ

= op(N
− 1

2 )

holding for all k ∈ J .

Let aki(γ) = fW̄ (W̄i(γ); γ)×P(Yi = k|Xi, γ)P(Yi = 0|Xi, γ) and âki(γ) = f̂W̄ (W̄i(γ); γ)×P̂(Yi = k|Xi, γ)P̂(Yi =
0|Xi, γ). Let further

rki(γ) =
[I(Yi = k)P(Yi ∈ {0, 1}|Xi, γ)− I(Yi ∈ {0, k})P(Yi = k|Xi, γ)]

aki(γ)
,

r̂ki(γ) =
[I(Yi = k)P̂(Yi ∈ {0, 1}|Xi, γ)− I(Yi ∈ {0, k})P̂(Yi = k|Xi, γ)]

âki(γ)
,

wki(γ) = fW̄ (W̄i(γ); γ)
∂P(Yi = k|Xi, γ)

∂γ
, ŵki(γ) = f̂W̄ (W̄i(γ); γ)

∂P̂(Yi = k|Xi, γ)

∂γ
.

Therefore,

1

N

N∑
i=1

[I(Yi = k)P(Yi ∈ {0, k}|Xi, γ̃)− I(Yi ∈ {0, k})P(Yi = k|Xi, γ̃)]

fW̄ (W̄i(γ̃); γ̃)× P(Yi = k|Xi, γ̃)P(Yi = 0|Xi, γ̃)
× fW̄ (W̄i(γ̃); γ̃)

∂P(Yi = k|Xi, γ̃)

∂γ

− 1

N

N∑
i=1

[I(Yi = k)P̂(Yi ∈ {0, 1}|Xi, γ̃)− I(Yi ∈ {0, k})P̂(Yi = k|Xi, γ̃)]

f̂W̄ (W̄i(γ̃); γ̃)× P̂(Yi = k|Xi, γ̃)P̂(Yi = 0|Xi, γ̃)
× f̂W̄ (W̄i(γ̃); γ̃)

∂P̂(Yi = k|Xi, γ̃)

∂γ

=
1

N

N∑
i=1

[rki(γ̃)wki(γ̃)− r̂ki(γ̃)ŵki(γ̃)] =
1

N

N∑
i=1

[rki(γ̃)− r̂ki(γ̃)]wki(γ̃) +
1

N

N∑
i=1

rki(γ̃)[wki(γ̃)− ŵki(γ̃)]

− 1

N

N∑
i=1

[rki(γ̃)− r̂ki(γ̃)][wki(γ̃)− ŵki(γ̃)] ≡ I1 + I2 + I3.

We now apply the Taylor expansion to I1 and obtain

r̂ki(γ̃) = r̂∗ki(γ̃) + op(N
−1/2)

where r̂∗ki(γ) = [I(Yi=k)P̂(Yi∈{0,1}|Xi,γ)−I(Yi∈{0,k})P̂(Yi=k|Xi,γ)]
aki(γ) × [1− âki(γ)−aki(γ)

aki(γ) ]. Let I∗1 be obtained from I1
by replacing r̂ki(γ̃) with r̂∗ki(γ̃). Thus, to establish I1 = op(N

− 1
2 ), it suffi ces to show N ×E[(I∗1)2]→ 0. Note

that

N × E[(I∗1)2] =
1

N

N∑
i=1

Ew2
ki(γ̃)[r̂∗ki(γ̃)− rki(γ̃)]2 +

1

N

N∑
i=1

∑
j 6=i

Ewki(γ̃)wkj(γ̃)[r̂∗ki(γ̃)− ri(γ̃)][r̂∗kj(γ̃)− rkj(γ̃)],

in which the expectation treats γ̃ as a constant (i.e. non-random). It is straightforward that the first term
converges to zero since r̂∗ki(γ)

p→ rki(γ). For the second term, let X = {Xi : i ≤ N} be all the observed
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covariates and V(γ) = {(X ′i1γ1, · · · , X ′iJγJ) : i ≤ N}. Then

Ewki(γ̃)wkj(γ̃)[r̂∗ki(γ̃)− rki(γ̃)][r̂∗kj(γ̃)− rkj(γ̃)]

= E
(
E
{
wki(γ̃)wkj(γ̃)[r̂∗ki(γ̃)− rki(γ̃)][r̂∗kj(γ̃)− rkj(γ̃)]

∣∣X})
= E

(
E
{
wki(γ̃)wkj(γ̃)[r̂∗ki(γ̃)− rki(γ̃)][r̂∗kj(γ̃)− rkj(γ̃)]

∣∣V(γ̃)
})

= E
(
E[wki(γ̃)wkj(γ̃)|V(γ̃)]× E

{
[r̂∗ki(γ̃)− rki(γ̃)][r̂∗kj(γ̃)− rkj(γ̃)]

∣∣V(γ̃)
})

Because γ̃ ∈ B(γ, lnN√
N

) with probability approaching to one and E[wki(γ)|V(γ)] = 0, therefore,

E[wki(γ̃)wkj(γ̃)|V(γ̃)] = E[wki(γ̃)|V(γ̃)]× E[wkj(γ̃)|V(γ̃)] = op(ln
2N/N).

and∣∣E{[r̂∗ki(γ̃)− rki(γ̃)][r̂∗kj(γ̃)− rkj(γ̃)]
∣∣V(γ̃)

}∣∣
≤ E

{
[r̂∗ki(γ̃)− rki(γ̃)]2

∣∣V(γ̃)
}

+ E
{

[r̂∗kj(γ̃)− rj(γ̃)]2
∣∣V(γ̃)

}
= 2E

{
[r̂∗ki(γ̃)− rki(γ̃)]2

∣∣V(γ̃)
}

which converges to zero at a nonparametric rate (faster than ln2N). Thus,

E
{
wki(γ̃)wkj(γ̃)[r̂∗ki(γ̃)− rki(γ̃)][r̂∗kj(γ̃)− rkj(γ̃)]

}
= op(N).

Regarding I2, similarly we have

N × E(I22) =
1

N

N∑
i=1

E
{
r2
ki(γ̃)[ŵki(γ̃)− wki(γ̃)]2

}
+

1

N

N∑
i=1

∑
j 6=i

E {rki(γ̃)rkj(γ̃)[ŵki(γ̃)− wki(γ̃)][ŵkj(γ̃)− wkj(γ̃)]} .

The first term is op(1). For the second term, note that

E[rki(γ̃)rkj(γ̃)ŵki(γ̃)wkj(γ̃)] = E {E[rki(γ̃)|V(γ̃)]E[rkj(γ̃)ŵki(γ̃)wkj(γ̃)|V(γ̃)]}

in which E[rki(γ̃)|V(γ̃)] = E[rki(γ̃)|Xi, γ̃] = 0. Thus, the second term equals to

1

N

N∑
i=1

∑
j 6=i

E [rki(γ̃)rkj(γ̃)ŵki(γ̃)ŵkj(γ̃)]

=
1

N

N∑
i=1

∑
j 6=i

E
[
rki(γ̃)rkj(γ̃)[ŵki(j)(γ̃) + δ̂ki(j)(γ̃)][ŵkj(i)(γ̃) + δ̂kj(i)(γ̃)]

]
where ŵki(j)(γ̃) obtains from ŵki(γ̃) by replacing Yj with 0, and δ̂ki(j)(γ̃) = ŵki(γ̃)− ŵki(j)(γ̃). By the law
of iterated expectation, we have

E[rki(γ̃)rkj(γ̃)δ̂ki(j)(γ̃)ŵkj(i)(γ̃)] = 0,

E[rki(γ̃)rkj(γ̃)ŵki(j)(γ̃)δ̂kj(i)(γ̃)] = 0,

E[rki(γ̃)rkj(γ̃)ŵki(j)(γ̃)ŵkj(i)(γ̃)] = 0.

Thus, the second term in N × E(I22) is also an o(1). Furthermore, it is straightforward that I3 = op(N
− 1

2 ).
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