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Abstract

This paper develops a framework for quantifying student welfare in constrained school

choice problems where admission chances are uncertain and interdependent across al-

ternatives. We propose a strategy to construct an optimal portfolio of schools, that is

appealing both theoretically and computationally, and when confronted with data allows

us to recover individual preferences along with policy-invariant primitives that gener-

ate student choices. Our counterfactual simulations then investigate how uncertainty

and constraints on the number of ranked choices impact student welfare. An applica-

tion using administrative data from Ghana shows that expanding the number of ranked

choices increases welfare and generates substantial redistribution across ability groups.

Moreover, providing additional information that effectively reduces uncertainty delivers

a more efficient allocation of students to schools, with comparable redistribution effects.

Keywords: Optimal portfolio, school choice, uncertainty
JEL Classification: C53, D61, I20
∗We thank Atila Abdulkadiroglu, Attila Ambrus, Pat Bayer, Allan Collard-Wexler, Yingua He,

Kevin Lang, Dilip Mookherjee, and participants at many seminars and conferences for their help-
ful comments and discussions. We also thank the Computerized School Selection and Placement
System Secretariat, Ghana Education Service, and SISCO Ghana for providing data and back-
ground information. Ajayi is grateful for the hospitality of the Department of Economics at Duke
University where a large part of this paper was completed.
†Boston University; kajayi@bu.edu
‡Duke University and CREST; modibo.sidibe@duke.edu

mailto:kajayi@bu.edu
mailto:modibo.sidibe@duke.edu


1 Introduction

Public school systems around the world are undergoing substantial reforms: sev-
eral cities have adopted centralized coordinated assignment mechanisms to im-
prove the matching between students and schools. Despite the prevalence of
these systems, very little is known about the welfare consequences of the various
practical aspects of school choice mechanism design.

Recent empirical research on school choice under centralized assignment fo-
cuses on the welfare gains associated with different assignment procedures.1 In-
troducing student choices into a coherent demand framework for schools is a
required first step toward welfare analysis but turns out to be a difficult under-
taking. The underlying reason is that practical implementation concerns (such as
incomplete information about the preferences of other agents and constraints in
the length of rank ordered lists) prompt agents to strategize over their submit-
ted list. As a consequence, estimates obtained under the assumption of truthful
reporting of individual preferences may have limited validity.2

This paper bridges the gap between theoretical and empirical analyses of
school choice. We provide a framework to estimate individual preferences and
simulate the welfare effects of various policy alternatives in centralized assign-
ment systems with uncertainty and a constrained number of choices. In our
model, students endowed with a pure characteristics indirect utility, uncertain
about their own type (individual test score), and the type of other agents (ag-
gregate uncertainty) form expectations over subjective admission probabilities
and solve a simultaneous search problem to construct an optimal portfolio of
schools. The portfolio choice entails a complex large-scale combinatory optimiza-
tion, which is NP-complete in general when the number of alternatives is large,
and consequently no exact solution is available.

The essential features of our model, uncertainty and constrained choices, are
present in most assignment systems, giving broad applicability to our framework.

1Ergin and Sonmez (2006) and Abdulkadiroglu et al. (2011) consider theoretical properties to
compare alternative mechanisms, which are obtained under stringent conditions namely perfect
information, unidimensional preferences, and unlimited number of ranked choices.

2For example, a popular assignment algorithm is Gale-Shapley’s deferred acceptance (Gale and
Shapley, 1962). It has the desirable property of incentivizing truth telling, but only when students
can rank an unlimited number of choices. In practice, this algorithm is rarely adopted in systems
that allow unlimited choices.
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Uncertainty is a fundamental aspect of school choice – admission is rarely guaran-
teed but instead based on aggregate demand and individual priorities. Similarly,
constraints on choices are a common feature of centralized coordinated assign-
ment mechanisms.3 It is therefore unsurprising that most applicants include some
safety schools in their application set and do not merely apply to their favorite
schools.4

The main methodological contribution of our paper is to propose a tractable
strategy to construct an optimal portfolio of schools when individuals are un-
certain about admission chances, which are interdependent across alternatives.
A crucial assumption in our setting is that agents are sophisticated. The model
is similar to the stochastic portfolio choice problem of Chade and Smith (2006),
with the known difficulty of accounting for all substitution patterns induced by
correlated admission chances. Learning from the failures of existing algorithms,
we develop a strategy to economically expand the choice set, reintroducing the
missing substitutions, and recover an optimal solution in a structure that is inher-
ently sequential and tractable. Specifically, from an initial step where the optimal
portfolio is easy to construct, we select a set of portfolios, that are close in value
to the optimal one, to serve as candidates in the next step. Then, we iterate on
those candidates until reaching the required portfolio size.

The generality of our approach to recover individual portfolio choices is not
costless – we do not explicitly model individual formation of subjective admission
probabilities. Instead, we follow the literature and assume that school admission
is governed by cutoffs that can be imperfectly recovered using historical data. We
allow for two-sided measurement error in these cutoffs that originates from over
time variation in the preferences of other students (aggregate uncertainty), and
limited information about a student’s own test score (individual uncertainty). A
student who receives a low score will have a low admission chance at all schools.

3Within the United States, school choice systems in Denver, Chicago, and New York limit the
number of choices to 5, 6, and 12 respectively. Further afield, other systems also frequently impose
limits such as for preschool choice in Barcelona (10), for secondary school applications in Ghana
(4), Kenya (3), Trinidad and Tobago (4), and for college in Chile (8), Ontario (5), and Spain (8).
Even in cases without explicit limits (e.g., college choice in Hungary), students often still face costs
such as an application fee per listed choice.

4See Pallais (2015) for evidence of binding constraints in college application in the US and
Chade et al. (2014) for an equilibrium analysis of schools and students decisions in a similar
context.
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The same interdependence in admission chances applies to lottery-based systems
in which each student receives one lottery number that determines priority for
admission to all schools.

We estimate this model using administrative data from Ghana’s senior high
school choice system in the year 2008, when students were allowed to rank a
maximum of 6 programs. The assignment mechanism is a student-proposing de-
ferred acceptance algorithm, with student priorities determined by scores on a
standardized test. Our data consist of 128,468 students choosing between 1,933
programs.5 Dimensionality is the major complication of the analysis, and since
the outcome of the matching cannot be mapped when considering the full sam-
ple or a smaller subset of individuals, options are limited. Our empirical strategy,
based on the method of simulated moments, estimates preference parameters that
match the empirical characteristics of students’ ranked choices to the ones pre-
dicted under the optimal portfolio choice model. Moments used in the estimation
include summary characteristics of students as well as chosen programs.

We find that parameter estimates depend crucially on behavioral assumptions
about how individuals construct a portfolio. Specifically, we compare our bench-
mark model of optimal portfolio choice given interdependent admission chances
to two alternatives: i) truth telling, and ii) strategic portfolio choice assuming in-
dependent admission chances (as in Chade and Smith, 2006). Under the optimal
portfolio choice strategy, parameter values are as expected indicating individuals’
preferences for school quality and boarding facilities and a disutility associated
with technical programs. Our benchmark model of strategic behavior generates
a superior fit to a model that assumes truth telling, indicating that students are
indeed likely to be strategic in response to restrictions on the number of choices
they can list, and to alter their behavior as a result of interdependent admission
chances. This comparison suggests that our optimal portfolio choice algorithm
may provide valuable insight into school choice behavior under uncertainty, and
that ignoring these common features of school choice systems may generate mis-
leading predictions about the likely impacts of policy reforms. Our analysis of the
model’s fit also reveals an interesting pattern – the simulated portfolios under the
optimal solution are substantially more selective than observed choices, which is

5By contrast the largest school district in the US is New York, which serves only 90,000 eligible
students (Abdulkadiroglu et al., 2009).
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not the case for the suboptimal, but easier to implement method of Chade and
Smith (2006), suggesting that individuals may not be able to fully internalize the
effects of interdependent admission probabilities.

Having validated the fit of our model, we use the model to understand the
policy implications of school choice design by conducting two counterfactual ex-
periments. Our first experiment investigates the relation between the number
of ranked schools and welfare. Theoretically, the relationship between total wel-
fare and the number of ranked choices is ambiguous. While a large number of
ranked choices may increase overall match quality and hence total welfare, it pre-
vents individuals from signaling the intensity of their preference, which may be
ex-ante inefficient especially when admission chances are uncertain (Abdulka-
diroglu et al., 2011). As a consequence, increasing the number of ranked choices
produces winners and losers. The efficiency trade-off may be even more complex
when students from disadvantaged backgrounds are unable to signal their pref-
erences because of a larger exposure to uncertainty. To quantify the importance
of these mechanisms, we use our estimated preferences to simulate optimal port-
folios for each individual while varying the number of ranked choices. Then, we
run the student-proposing deferred acceptance matching algorithm to determine
admission outcomes, and impute total welfare.

We find that there are substantial welfare improvements from allowing stu-
dents to rank an unlimited number of choices. Total welfare is a concave function
of the number of choices permitted – expanding the number of choices from 1 to
2 increases total welfare by 26.4% and reduces the share of unassigned students
from 72 to 55 percent. Allowing students to submit an unrestricted number of
choices generates approximately 2.4 times as much total welfare as allowing for
a single choice. As expected, increasing the number of choices produces winners
and losers – a redistribution from high performing to low performing students
ensues. While the 10% lowest ability students make up only 3.1% of total welfare
under a single choice, they constitute 8.7% when students are allowed to sub-
mit an unlimited number of choices. Similarly, the 10% highest ability students
comprise 33.7% of total welfare with a single choice, compared to 11.8% with an
unlimited number of choices.

Our second experiment is motivated by the observation that although our
model fits the data well, observed portfolios are less selective than the optimal
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ones, which is not surprising given the complexity of the problem. We propose
a realistic policy intervention that removes individual uncertainty and implies a
simple strategy to construct application portfolios. Specifically, we provide stu-
dents with their test score, and a test score cutoff for admission to each school
(based on admissions in the previous year). Students can apply to a school only
if their test score exceeds the cutoff. We find that there are substantial potential
welfare improvements from providing this additional information – total welfare
increases by 38% when only one choice is allowed, and providing six choices al-
most eliminates administrative assignment. Once again, lower ability students
experience the largest welfare gains.

We extend the existing literature in several directions. First, we introduce a
novel approach to model the decision problem of students, incompletely informed
about the characteristics of other participants in the matching, when faced with a
large set of interdependent choices. Our strategy allows us to handle cases with
large numbers of both students and schools by explicitly modeling the initial
portfolio choice process.

Second, we directly assess the welfare implications of constraints on choices.
Most school choice reforms are motivated by the fact that constraining the num-
ber of choices and forcing students to strategize is costly. The traditional ap-
proach to comparing the efficiency of various assignment mechanisms consists of
running contextual lab experiments (Chen and Sonmez, 2006; Calsamiglia et al.,
2010; Troyan, 2012). By contrast, our policy simulations allow for an analysis of
marketwide changes using data on the observed behavior of agents in a large
school choice system.

Despite the large literature studying individual preferences in centralized as-
signment systems, until very recently little attention has been given to the strate-
gic content of reported rankings of various school options. Existing empirical
studies either identify preferences using rank orderings within a submitted port-
folio, taking the selected portfolio as given (Ajayi, 2013; Abdulkadiroglu et al.,
2015) or consider a narrow set of applicable mechanisms (He, 2012; Calsamiglia
et al., 2014; Agarwal and Somaini, 2014) and a limited set of policy implications
(Fack et al., 2015).

To illustrate the innovation in our approach, we elaborate on how our work
compares to other recent papers addressing strategic behavior. The predominant
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focus in the empirical school choice literature has been on lottery-based admission
and the Boston mechanism.6 He (2012) considers school choice in a neighborhood
of Beijing, where students apply for admission to one of 4 local middle schools
and are assigned using random lotteries and the Boston mechanism. Given the
small number of available choices, his estimation approach relies on being able
to explicitly specify the full set of portfolio alternatives, which is computationally
infeasible in larger markets. Calsamiglia et al. (2014) exploit the main strategic im-
plications of the Boston mechanism to derive feasible choice sets for each round of
the portfolio choice. Agarwal and Somaini (2014) propose an estimation strategy
that applies to a larger class of mechanisms but which nonetheless maintains the
condition that assignment is based on coarse priority types with lotteries used to
break ties. Hence, their methodology does not apply to cases with merit-based
admission. In contrast to these three papers, we provide a more general approach
to estimating student preferences.

The closest paper to ours in terms of its applicability is Fack et al. (2015).
Broadening their scope of analysis, the authors study a case of merit-based admis-
sion under the student-proposing deferred acceptance algorithm, that is similar
to our application. While the paper proposes a menu of approaches to estimate
agents’ preferences under a range of assumptions, the authors do not explicitly
model the portfolio choice process and are thus limited in their ability to perform
counterfactual policy experiments, such as relaxing constraints on choice lists.

In sum, the central purpose of our paper is to provide a tractable model
of optimal portfolio choice for large matching markets that allows us to gener-
ate new insights about the welfare implications of two fundamental features of
school choice mechanism design (uncertainty and constraints on choices); we es-
timate both agents’ preferences and their subjective beliefs about their admission
chances; and we use our parameters to simulate counterfactual policies.

The paper proceeds as follows. Section 2 describes our context and the data
generated by the senior high school admission system in Ghana. We illustrate
the key features of our problem with a stylized example in Section 3. Section
4 introduces our model of optimal portfolio choice and describes our solution
concept. Section 5 outlines our parametric assumptions and estimation strategy.

6Also known as an immediate acceptance algorithm, this mechanism was used for admission
to Boston Public Schools between July 1999 and July 2005 (see Abdulkadiroglu and Sonmez, 2003).
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Sections 6 and 7 present our results and policy simulations. Finally, we conclude.

2 Senior High School Choice in Ghana

2.1 Background

The national school system in Ghana consists of six years of primary school, three
years of junior high school (JHS), and three years of senior high school (SHS).
Duflo et al. (2017) report that under 20% of SHS graduates enroll in tertiary edu-
cation directly after senior high school.7 Students completing junior high school
apply for admission to senior high school through a centralized application sys-
tem. Students apply to specific academic programs within a school and can sub-
mit a ranked list of up to four programs. Available programs include agriculture,
business, general arts, general science, home economics, technical studies, visual
arts, and several occupational programs offered by technical or vocational insti-
tutes. After submitting their ranked lists of choices, students take a standardized
Basic Education Certification Exam (BECE). The application system then allocates
students to schools based on their BECE scores and a deferred acceptance assign-
ment algorithm described in more detail when we discuss our policy experiments
in Section 7.

As in many other coordinated school choice systems, students in Ghana are
uncertain about their admission chances when they select their choices. Students
apply before taking the BECE so they do not know their exam scores when they
submit their ranked lists. Moreover, schools do not specify the required scores
for admission but instead only report the number of vacancies available in each
academic program they offer. Admission cutoffs are therefore endogenously de-
termined by the distribution of vacancies and application choices in a given year.

2.2 Data

We use administrative data on the universe of senior high school applicants in
Ghana’s centralized school choice system for our empirical analysis. The data

7This percentage may be lower than average as their sample consists of a relatively low-income
population – people who didn’t enroll in SHS immediately after JHS because they couldn’t initially
afford it.
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include students’ exam scores, their ranked list of chosen programs, their admis-
sion outcomes, and basic demographics (gender, age, and the junior high school
attended). Our primary estimation sample focuses on the 2008 cohort of senior
high school admits. Students could rank up to six choices from the 1,933 programs
available in over 500 schools that year. We have information on 128,468 students
who submitted a complete list of six programs ranked in order of preference.

Table 1: Student Characteristics

Mean Median Std. Dev. Min. Max. Obs.

Male 0.579 1.000 0.494 0 1 128468
Age 16.609 16.000 1.686 9 54 128468
BECE exam score 292.900 285.000 50.485 185 469 128468
Mean BECE in JHS 292.304 281.812 40.202 199 432 128468
Attended public JHS 0.757 1.000 0.429 0 1 128468
Admitted to first choice 0.268 0.000 0.443 0 1 128468
Admitted to second choice 0.204 0.000 0.403 0 1 128468
Admitted to third choice 0.188 0.000 0.390 0 1 128468
Admitted to fourth choice 0.166 0.000 0.372 0 1 128468
Admitted to fifth choice 0.026 0.000 0.158 0 1 128468
Admitted to sixth choice 0.019 0.000 0.137 0 1 128468
Administratively assigned 0.130 0.000 0.337 0 1 128468

Table 1 summarizes student demographics and admission outcomes. Over
half of the students are male and the median age is 16. Student performance on
the BECE exam ranges from 185 to 469 points out of a possible 600, so students
have very different chances of gaining admission to any given program. We do
not have information on family background, so we use junior high school charac-
teristics as our proxy for students’ socio-economic status. Junior high schools vary
considerably in their average performance and 76 percent of students attended a
public junior high school. Almost 27 percent of students were admitted to their
first choice program, while less than 2 percent were admitted to their sixth choice.
A sizable 13 percent of students were rejected from all six of their chosen schools
and administratively assigned to an undersubscribed program at the end of the
assignment process.

Table 2 summarizes school and program characteristics. There is substantial
variation across programs. As in Abdulkadiroglu et al. (2014) and Pop-Eleches
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Table 2: Program Characteristics

Mean Median Std. Dev. Min. Max. Obs.

Mean BECE of admits 285.528 269.155 51.616 180 446 1933
Number of admits 63.071 49.000 47.187 0 358 1933
Programs offered 4.845 5.000 1.314 1 14 1933
Public 0.998 1.000 0.039 0 1 1933
Boarding facilities 0.602 1.000 0.490 0 1 1933
Pre-independence 0.088 0.000 0.284 0 1 1933
Technical/vocational inst. 0.013 0.000 0.113 0 1 1933
Agriculture 0.162 0.000 0.369 0 1 1933
Business 0.192 0.000 0.394 0 1 1933
General Arts 0.235 0.000 0.424 0 1 1933
General Science 0.130 0.000 0.336 0 1 1933
Home Economics 0.191 0.000 0.394 0 1 1933
Technical Studies 0.070 0.000 0.256 0 1 1933
Visual Arts 0.126 0.000 0.332 0 1 1933

and Urquiola (2013), we measure school quality as the average exam score of
students admitted to each program in the previous year, which ranged from 180
to 446 points, with a mean of 286 and standard deviation of 52 points. The average
program admitted 63 students but this ranged from 0 to 358. Each school offered
an average of 5 programs, with some offering as many as 14 different programs.
99.8 percent of programs were offered by public schools, and 60 percent of them
were in schools with boarding facilities. Only 9 percent of programs were offered
by schools established by the British colonial administration before Ghana gained
independence in 1957. General arts was the most commonly offered program,
accounting for a quarter of available choices.

Figure 1 presents descriptive statistics on students’ ranked program choices.
We begin by examining the distance between a student’s junior high school and
selected senior high school. We do not have exact coordinates for school loca-
tions so we measure the distance between centroids of the 110 administrative
districts in the country. Ghana’s school choice system is truly national and some
students apply to schools as far as 450 miles away (roughly the distance from
Boston to Washington, DC). Preferences for distance are convex. Students’ first
choice programs are on average 35.1 miles away from their junior high schools
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Figure 1: Distribution of variables
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and their second choice programs are 1.3 miles closer to them. Their third and
fourth ranked choices are 31.4 and 27.1 miles away, but their last two choices are
further away at a distance of 31.1 and 31.7 miles on average. Even though there
is no clear gradient, the dispersion in distance decreases over the six choices with
standard deviations of 48.54, 46.48, 44.37, 42.19, 28.35, and 28.30, respectively.

In contrast to preferences for distance, peer quality in ranked programs de-
creases monotonically. The average exam score of a students’ first choice program
is 343 and this falls to 273 for the lowest ranked choice. This is a difference of 1.2
standard deviations in the peer quality distribution. Considering preferences for
distance together with preferences for academic quality, it appears that students
are willing to travel for the opportunity to attend a high quality program but less
willing to travel for their lower ranked, lower quality choices.

The last three panels in Figure 1 examine discrete program characteristics and
reveal more patterns in aggregate choices. Each line plots a hazard rate indicating
the probability that a student lists a program with a particular characteristic given
that they have not listed a program with that characteristic for a previously listed
choice. Students prefer programs in boarding schools and have an increasing
likelihood of selecting mixed schools but a decreasing likelihood of selecting older
schools established before Ghana gained independence – 88 percent of students
choose a program in a boarding school as their first choice and only 59 percent
select one as their lowest ranked choice; 83 percent of students choose programs
in mixed sex schools as a first choice but 98 percent do for their sixth choice; 27
percent of students choose programs in schools constructed before independence
as a first choice but only 2 percent do for a sixth choice.

Finally, we illustrate students’ preferences over academic program tracks. Gen-
eral arts is the most popular program track, with 40 percent of students choosing
this program as their first choice and 43 percent choosing a general arts program
as their sixth choice. General science has the steepest gradient in choices. 14 per-
cent of students choose a general science program as their first choice and only
7 percent choose one as their sixth choice. Preferences for agriculture programs
show the reverse pattern, with 6 percent of students choosing one as their first
choice and 9 percent choosing one as their sixth choice. The remaining programs
are relatively equally represented across choices with an average of 20 percent of
students choosing business programs, 10 percent choosing home economics pro-
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grams, 7 percent choosing visual arts programs, and 4 percent choosing technical
programs.

3 Problem

This section illustrates the problem considered in this paper. For expositional
clarity, we propose an extreme simplification, but still a useful description. We
consider the matching problem of three students 1, 2, and 3 to three schools A, B,
and C with one vacancy each. Without loss of generality, we assume that there is
no idiosyncrasy and schools give the same utility to every student. We maintain
the assumption that allocation is based on a student-proposing deferred accep-
tance algorithm.8

Table 3: Matching table

Students 1 2 3
Test score 10 12 9

Schools A B C
Utility 7.9 10 11.4

Under perfect or imperfect information, and for a given priority structure,
individual choice is easily constructed. In that setting, the length of the rank or-
dered list is not important, as strategic considerations by agents yield an efficient
equilibrium allocation – explicitly, students apply to the single school with high-
est utility given their beliefs about other students’ behavior. To see the roles of
constraints in the number of choices, it is important to consider a setting where
individuals have incomplete information. Specifically, when students are uncer-
tain about their priority (test score or ranking in the distribution of test scores),
the optimal strategy consists of reporting true preferences when there is no con-
straint on the length of the reported list. However, most allocation mechanisms
include a constraint on the length of the rank ordered list. In our current case, al-
lowing students to list only two choices will leave student 3 unmatched (and thus
administratively assigned) if agents report their true preferences and priorities are
based test score. As a consequence, constructing an optimal list of schools that

8Relaxing this assumption in this illustration is trivial, but more complex in a more realistic
example. We discuss this issue further in section 7.
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balances student ambition to get into the best available school with an insurance
against administrative assignment is the goal of the next section.

4 Model

We develop a framework to understand the application behavior of students to
schools. Each student submits an ordered list of choices, after which a planner
assigns students using the deferred acceptance mechanism according to their ap-
plication list, the available capacity of each program, and a predefined priority.

4.1 Definition

A finite set of students I = {1, 2, . . . , I} apply to a finite set of schools J =

{1, 2, . . . , J}.9 Each school has positive capacity, and students can opt out of the
matching system and enjoy an outside utility u0, which we set to 0 for simplicity.
A student is characterized by a set of observed attributes Xi and a test score ψi

which is unknown when they submit their choices. The latter defines individual
admission priorities while the former captures his preferences. Schools have an
observable set of characteristics given by Zj, and a fixed capacity denoted by
Cj. Since all students in our sample submit the required number of choices, we
assume an infinite cost for exceeding the constraint but that there is no application
cost otherwise. The utility for an individual i with characteristics Xi matched
with a school with attributes Zj is given by U(Xi, Zj). We follow Berry and Pakes
(2007), and assume that the indirect utility function includes a disturbance term
ε that is additively separable from observable characteristics (school attributes Z
and student characteristics X).

Uij = γZj − d(li, lj) +
K

∑
k=1

ΓkZk
j Xk

i + εij (1)

where the set of school attributes, Zj, includes quality, size, and indicators for
boarding facilities, old, and program track. These characteristics are summarized
in Table 2. The set of individual characteristics, Xi, consists of individual test

9In our empirical application, we define a choice as a bundle (school,program). We have 517
schools, each offering between 1 and 14 academic programs, which yields a total of 1,933 choices.
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score, gender, age, and middle school average test score, and K = dim(X) ×
dim(Z).10 These characteristics are described in Table 1. And d() provides the
distance between student i’s location li and school j’s location, lj. In addition, we
include interaction terms between distance, school characteristics, and individual
attributes. Finally, εij is an idiosyncratic error term, with εij ∼ N (0, ς). Since over
99 percent of programs are public schools, we use distance as our numeraire, and
measure utilities in terms of willingness to travel.

Under the assumption that students are price takers, we can treat the construc-
tion of a portfolio of schools at the individual level. Denoting by qin the admission
chance for an individual with test score ψi at school with capacity Cn, the optimal
portfolio of an individual i, of size N = ‖S‖, is denoted by Si and satisfies:

sup
Si

f (Si) =
N

∑
n=1
P(qin|qi1, . . . , qi,n−1; X−i)Uin (2)

where P is the probability that student i is admitted to choice n, given his rejection
from all other higher ranked choices (1, . . . , n − 1), and the preferences of other
agents Xi. Obviously when N = J, admission chances do not play any role, and
the problem simplifies to submitting an ordering of schools by utility,

Finally, to close the model, we describe how student i forms beliefs about
his admission chance at school j. There are two sources of uncertainty in our
model. The first, which we refer to as individual uncertainty, comes from the fact
that individuals apply to schools before taking the exam that determines their
ranking in the matching algorithm. The second, which we refer to as aggregate
uncertainty, comes from limited information on the characteristics of other mar-
ket participants. We introduce a cutoff structure that allows us to capture these
elements.

Definition Let Ψj be a cutoff : the minimal test-score required for admission at
school j. There exists a unique vector of market clearing cutoffs Ψ̂ such that

Dj(Ψ̂j) ≤ Cj ∀j ∈ J (3)

Where Dj is the aggregate demand for school j. The former definition is the

10In a previous version, we include additional attributes. We focus in this version on the main
sources of variation in the data.
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standard framework in large matching models (see e.g., Azevedo and Leshno,
2016). We further assume that students can imperfectly forecast these cutoffs us-
ing historical data.11 Yearly heterogeneity in the composition of the student body
and variation in the school level capacities create uncertainty such that optimal
cutoffs Ψ̂j are given by:

Ψ̂j = Ψj + ζ j (4)

where ζ j is an error term, which is left unrestricted for now, and Ψj is the cutoff
observed in previous year. Similarly, since students submit school applications
prior to taking the exam, the real test score ξi is measured with error and given
by:

ψ̂i = ψi + ξi (5)

Given the former definitions, the admission chance for individual i applying
to school j can be written as:

qij = P(ψ̂i > wj) = P(ψi −Ψj > ηij) = 1− F(ψi −Ψj) (6)

where ηij = ζ j − ξi with cumulative distribution function F(.). Since a choice is
observed only when an individual i selects a school j, we can not separately iden-
tify the components of the errors associated with the measurement of individual
test scores and cutoffs. As a consequence, we do not take a stand on the respective
contribution of individual and aggregate uncertainty. Because of the error term,
and in contrast to the standard literature, individuals observe a probabilistic sig-
nal of admission chance which is not a dummy variable.

In the empirical application, we assume that ηij ∼ Φ(0, σi) with the standard
deviation of the error terms parametrized as follows:

σi = exp(σ0 + σ1ψi + σ2ψm) (7)

where ψi is the individual test score, and ψm the quality of the middle school as
measured by the average test score of students. Under this parametrization, we
hope to account for the fact that high achieving students may face less uncertainty

11See Pathak and Shi (2014) for an empirical validation of this strategy.
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regarding their performance on the final exam. Similarly, students from high
quality middle schools are more likely to have teachers or parents who help them
decide which schools to apply to. This strategy allows us to be agnostic about
the content of agents’ information sets at the time of the school choice decision as
well as about the explicit model that generates cutoffs.

Importantly, given this admission probability, the conditional probability of
getting admitted to a school with admission probability qin when the (n− 1) bids
have been unsuccessful is given by:

P(qin|qi1, . . . , qi,n−1) = P(ψi −Ψn > ηin|ψi −Ψ1 < ηi1, . . . , ψi −Ψn−1 < ηin−1)

= F(ψi −Ψn−1)− F(ψi −Ψn) (8)

Note that P(qin|qi1, . . . , qi,n−1) = P(qin|qi,n−1).12

4.2 Solution Method

This section considers the computation of an optimal solution to the problem
described above. In the first part, we review existing methods and document
their limitations. Then, we describe our solution method.

4.2.1 Existing Approach

The problem of constructing an optimal portfolio of schools has been analyzed
in the literature, notably by Chade and Smith (2006), who proposed the Marginal
Improvement Algorithm (MIA). The idea is to construct the global optimum by se-
quentially iterating on a local optimum. Starting from a first local optimum based
on maximizing expected utility, additional optima are sequentially selected using
the choice that yields the highest marginal improvement from an initial portfolio.
The algorithm is detailed in Appendix A.1. Unfortunately, the algorithm does
not reach the optimal solution when there is interdependency between admission
chances. When admission chances are correlated (e.g., one test score used for
admission at all schools – as is the case in Ghana and many other merit-based ad-
mission settings), additional substitution between schools implies that schools not

12Any extension of our model to deal with other allocation systems such as the Boston Mecha-
nism would require a strategy to derive the admission chance probabilities, and the latter property
of conditional probabilities will most certainly be lost. We leave this extension for future research.
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selected in an earlier round might be part of an optimal portfolio in a later round.
This failure can be illustrated using our running example. Suppose student 1
faced the following admission probabilities.

Table 4: Interdependent school choice

Schools A B C
Utility 7.9 10 11.4
Adm Prob 1 0.8 0.7

Given the utilities and admission probabilities, MIA would begin by selecting
school B as the single choice with the highest expected utility of 8 (relative to 7.9
and 7.98 for A and C). The next step would compare the marginal improvement
of adding A or C – effectively comparing {B, A} = 8 + (1 − 0.8)(7.9) = 9.58
to {C, B} = 7.98 + (0.8 − 0.7)(10) = 8.98. This comparison would incorrectly
identify {B, A} as the optimal portfolio when in fact the optimal portfolio in the
case of two permitted choices would be {C, A}, generating an expected utility
of 7.98 + (1− 0.7)(7.9) = 10.35. The key reason why MIA fails is that rejection
from a chosen school affects expected admission chances in subsequently listed
choices.13

Instead consider an initial step that evaluates all possible options, then apply
MIA to all of these initial portfolios and keep iterating. We would in this case
initiate MIA by considering the set of three portfolios {A}, {B}, and {C}, and
proceed by finding the marginal improvement to each, yielding three subsequent
options – {C, A}, {B, A}, and {C, A}. In the final step, selecting between these
three options would correctly yield {C, A} as the optimal one. Because we only
have three schools in this illustrative example, there is no difference between this
alternative approach and the exact solution. However, when the number of alter-
natives increases, this approach would identify the optimal portfolio with fewer
calculations than required to evaluate every possible combination. We describe
our approach more formally in the next section.

13To be explicit, the conditional probability of admission to choice 2 given rejection from choice
1 is qi2 − qi1 for interdependent admission chances and (1− qi1)qi2 for independent admission
chances. Thus, the expected utilities given independent admission chances would be 9.58, 10.38,
and 10.35 for {B, A}, {C, B}, and {C, A}.
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4.2.2 Our Approach

Our problem belongs to the general family of Bandit Problems with Dependent
Arms, which is NP-complete when the number of arms is large (Laporte, 1992). The
NP-completeness comes with failure of all prominent algorithms, and the impossi-
bility of designing an efficient algorithm. The underlying explanation is related
to the same difficulties that require assumptions such as the gross-substitutes as-
sumption in the matching literature (Kelso and Crawford, 1982).14 In the presence
of dependency between alternatives, properties such as the downward-recursive
structure of the optimal solution are lost. As a consequence, any greedy algorithm
will fail to produce an optimal solution. In addition, standard combinatory anal-
ysis, which requires computing all alternative portfolios, and selecting the one
with the highest utility is impraticable when the number of alternatives is large:

choosing 6 schools out of 1, 933 requires evaluating a total of
(

1, 933
6

)
alternative

portfolios for each individual.
To overcome these limitations, we propose an approximation method. The so-

lution is based on the premise that the problem is inherently sequential, and we
exploit its structure while overcoming the limitations of simple greedy algorithms.

Sub Modular Improvement Algorithm (SMIA): Solve
(

N
J

)

Step 1: Set L < J, and compute
(

N
L

)
portfolios, and denote by S = (S1, . . .)

Step 2: For each element of S , find argmaxŜi∈N 6∈Si

Step 3: Iterate until reaching J, and select the portfolio with the highest utility.

When computing the optimal portfolio of size L out of N alternatives, the
algorithm is initialized at L ≤ J, where all portfolios of size L are computed and
stored. Then, for each portfolio, we iteratively construct a size J portfolio using
the MIA. The intuition for the algorithm stems from a direct characterization of
the optimal portfolio. Setting L = 2, the optimal portfolio that consists of (1, 2) is
such that

14The analogy to the setting in Kelso and Crawford (1982) relates to the fact that interdepen-
dence between admission chances acts as an ”externality” on the other components of an initial
choice.
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p1U1 + (p2 − p1)U2 > pmUm + (pn − pm)Un ∀m, n ∈ N (9)

which implicitly defines a deviation term ε

εm,n = p1U1 + (p2 − p1)U2 − pmUm − (pn − pm)Un ∀m, n ∈ N (10)

Moving forward, consider the optimal portfolio at step L = 3. Three potential
motives drive the addition of a choice: expansion (first), diversification (interior),
and back-up (last). For each of these motives, simple calculations define a range
of deviation ε such that a portfolio that was not optimal in step L − 1 becomes
optimal in step L. In other words, a nonoptimal portfolio in step L− 1 becomes
optimal in step L only if it is close enough to the optimal solution in step L− 1.
Because of this simple property, iterating on a large number of previously nonop-
timal portfolios, yields the optimal portfolio. In practice, we may not need to iter-
ate on all portfolios, but the optimal number depends on the level of dispersion in
school utility and admission chances. In contrast to the true problem, where the
number of operations increases at the combination rate, our algorithm requires an
almost-constant number of operations regardless of the number of ranked choices,
as the number of operations decreases with the number of ranked choices. As a
consequence, we are able to cope with problems with a large number of alterna-
tives. The most important parameter of the algorithm is the initial J, as it implies
a trade-off between computation cost and efficiency. When J is equal to N− 1, the
algorithm coincides with the optimal solution but requires as many operations as
the standard brute force approach. On the contrary, when the difference between
J and N increases the algorithm is likely to fail to recover the optimal solution.

Compared to MIA under correlated admission chances, our method yields
portfolios which are substantially more selective. Specifically, once the motive of
diversification is satisfied by a portfolio, average utility choices should be progres-
sively replaced by higher utility choices that come with lower admission chances.
MIA fails to accomodate for the latter as there is no restoring force to consider
better alternatives that were not considered before. This is well illustrated by our
running example.
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4.2.3 Monte Carlo Simulations

Since the SMIA solution method is based on an approximation, we ascertain its
performance using Monte Carlo simulations. Because the exact solution can be
computed only when the number of available options is relatively small, we set
N = 100. Individuals’ utilities are drawn from a normal distribution with mean
10, and standard deviation 3, and admission chances are symmetrically obtained.

Figure 2: Monte Carlo Performance
MIA SMIA
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Simulation based on 100 available options. The algorithm is
initialized at J = 2.

Figure 2 reports the performance of the SMIA and MIA against the exact so-
lution. SMIA performs perfectly in all instances with 100 available options, while
MIA fails. Based on our experience with SMIA, the method has three important
properties: (i) performance increases as the distance between the initialization
step and the number of ranked choices decreases,15 (ii) performance is not af-
fected as the number of available options increases, and (iii) computation time
increases with the number of alternatives but only at an additive rate.

15In our Monte Carlo simulations, the algorithm becomes unstable and sensitive to the initial-
ization step once the number of ranked choices exceeds 10.
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5 Estimation

This section describes our Simulated Methods of Moments (SMM) estimation
method. The goal is to estimate the preferences and admission chances parame-
ters given the optimal portfolio generation process for exogenous state variables
(school capacity and individual observed heterogeneity). The next subsection de-
scribes the SMM technique in more detail. The following subsections describe the
construction of the moments and discuss identification. For inference, we use a
parametric bootstrap using 500 replications.

5.1 Simulated Method of Moments

We estimate the model by Simulated Method of Moments.16 That is, we match
the empirical characteristics of student ranked choices to their theoretical coun-
terparts generated by the model. Formally, let θ denote the set of parameters to
be estimated, the criterion function is given by:

L(θ) = −1
2
(
m̂−m(θ)

)TŴ−1(m̂−m(θ)
)

(11)

where m̂ is a set of empirical moments, Ŵ is the weighting matrix, and m(θ) is
the average of moments constructed from a large number of simulated portfolios.
Specifically, for each draw of the error term, and a guess of preference parameters,
we construct a portfolio of schools, generate the corresponding moments, and
repeat for a large number of error draws.

5.2 Moments

The vector of empirical moments m̂ consists of empirical analogs of three sets of
moments, calculated separately across individuals and then averaged across or-
dered ranked choices. For any simulated portfolio, S = {Sn}6

1, the set of moments
is given by:

16In a previous version, we implemented a Minimum Distance Estimator. However, this crite-
rion function defined as a sum of 0 and 1 turned out to be highly convex, making the minimization
extremely challenging.
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1. Moments of the distribution of schools’ observable characteristics

m̂n =
1
I ∑

i

(
Zij(Si,n))

)
(12)

2. Within ranked choices variance of schools’ observable characteristics

V̂n =
1
I ∑

i

(
Zij(Si,n)− Zj

)2 (13)

3. Moments of the joint distribution of students’ and schools’ observable charac-
teristics

Ĵn =
1
I ∑

i
XiZij(Si,n) (14)

In our final application, we include a total of 6 school characteristics (quality,
boarding, old, general arts, general science, technical), and interactions between
the first 3 of these school characteristics and 4 individual characteristics (male,
testscore, JHS score, JHS public), which yields a total of 21 parameters (includ-
ing the three parameters that characterize admission chances), and numerous
potential moments. To reduce the number of moments, but also to validate the
performance of our moments, we use only moments from the first, third, and last
choices. Moments from the second, fourth and fifth choices are used for external
validity analysis.

5.3 Identification

We consider the identification problem of our parameters of interest. The main
challenge consists of determining whether a student’s choice is driven by tastes
over the attributes of a school or perceived admission chances. In this section, we
show how the theoretical properties of the model can be used to identify these
parameters separately. The proof is constructive, we demonstrate that preferences
and admission parameters enter non-linearly in the value of a portfolio, and in
turn show that we can sequentially pin down these parameters for identification
purposes.

To develop an intuition for the identification, and to ease exposition, consider
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a portfolio that consists of two elements.17 The utility individual i derives from
choosing a school j is given by

Uij = Uij + εij

= W ′ijβ + εij.

where Wij = (Zj, d(li, lj), ZjXi) and β[d(li,lj)]
= −1. The utility individual i derives

from submitting a portfolio S consisting of schools (j, k):

ViS = P(ψi −Ψj > ηij)
(
Uij + εij

)
+
[
P(ψi −Ψk > ηik)− P(ψi −Ψj > ηij)

] (
Uik + εik

)
Denoting by σ, the parameters that govern uncertainty

ViS = pij(σ)
(
Uij + εij

)
+
[
pik(σ)− pij(σ)

] (
Uik + εik

)
After a few steps of algebra, we obtain

ViS = W iS(σ)
′β + εiS(σ) (15)

where

W iS(σ) = pij(σ)Wij +
[
pik(σ)− pij(σ)

]
Wik

εiS(σ) = pij(σ)εij +
[
pik(σ)− pij(σ)

]
εik

pij(σ) = 1− Fη

(
ψi −Ψj

exp(σ0 + σ1ψi + σ2ψm)

)
.

Equation 15 shows that the value of a portfolio is a nonlinear function of
elements that depends on admission chances and preferences parameters. Im-
portantly, preferences and admission chances are linked only through the school
selection mechanism captured by W iS(σ). Note that preferences are identified
up to a scale as the model with β̃ = aβ and ε̃ij = aεij yields the same choice.
The normalization of the coefficient on distance to “-1” serves that purpose and
utilities are measured in terms of willingness to travel.

Now, let’s consider an agent’s decision to select one portfolio S over an al-
ternative portfolio S ′ = (j′, k′). S is preferred over S ′ if and only if ViS > ViS ′ .

17The proof can be generalized to the case with n elements at no cost.
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Hence the probability that agent i chooses the portfolio S is given by

Pr
([

W iS(σ)−W iS ′(σ)
]

β + εiS(σ)− εiS ′(σ) > 0, ∀S ′ 6= S
)

Writing the variance-covariance matrix further confirms that admission prob-
abilities are independent of preference parameters.18 Thus, identification of the
model can be obtained using two layers of variation in the data. First, admission-
probability parameters are identified from variation in school portfolios within
groups of students with similar characteristics. Second, preference parameters
are identified from variation in school portfolios across students with different
observed attributes. We develop these arguments more explicitly in the follow-
ing.

The observed component of the utility from choosing a specific portfolio is
given by

[
W iS(σ)−W iS ′(σ)

]
β, and since unobserved shocks, which enter non-

linearly, depend only on admission-probability parameters σ, it follows that vari-
ation in school portfolios across similar students would indeed identify σ. More
specifically, the constant parameter σ0 is identified from variation in school port-
folios across students with similar characteristics; σ1 from the variation in school
portfolios of students with the same set of observed attributes except individual
test scores, σ2 is identified from variation across students with similar observed
characteristics but who attended different middle schools.

Given admission-probability parameters σ are identified, the decision of agents
will be based on

[
W iS(σ)−W iS ′(σ)

]
β. The identification of preference param-

eters follows from the principle of revealed preferences. Cross-sectional hetero-
geneity in the mapping between individual attributes, school characteristics and
portfolios composition will identify preference parameters β. More precisely, the

18Under the assumption that εij
i.i.d.∼ N(0, 1) and for two alternative portfolios S = (j, k) and

S ′ = (j′, k′). The elements in the variance-covariance matrix of choice-specific unobserved shocks
εi(σ) =

[
εiS (σ)

]
S are given by:

Cov(εiS (σ), εiS ′(σ)) =



pij(σ) +
(

pik(σ)− pij(σ)
)2 if S = S ′

pij(σ) if j′ = j and S ∩ S ′ = {j}[
pik(σ)− pij(σ)

][
pik(σ)− pij′(σ)

]
if k′ = k and S ∩ S ′ = {k}

pij(σ)
[
pij(σ)− pij′(σ)

]
if k′ = j and S ∩ S ′ = {j}

pik(σ)
[
pik′(σ)− pik(σ)

]
if k = j′ and S ∩ S ′ = {k}

0 if S ∩ S ′ = ∅
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set of preference parameters for school attributes is identified with the variation
of school portfolios across all the students, while interaction parameters, {Γk}k,
are identified from variation in the hyper-plane formed by student and school
attributes.

6 Results

The presentation of results is as follows. In the first part, we report our parameter
estimates and the second part analyzes the capacity of our model to fit the data.
We focus on three specifications that correspond to the different solution methods:
SMIA, MIA, and the nonstrategic (truth telling) model. For estimation, we use the
same set of moments allowing us to compare the different models.

6.1 Parameters

The three columns in Table 5 present parameter estimates respectively for SMIA,
MIA, and the nonstrategic model. Although slightly better for SMIA, the moment
criteria for SMIA and MIA are relatively close, 0.103 vs 0.115, indicating that both
solution methods might fit individual behavior well. Contrastingly, the moment
criterion for the nonstrategic model is 7 times higher.

We start by discussing the parameters from the SMIA model in column 1.
The first three parameters characterize the standard deviation of the error term in
students’ beliefs about their admission chances. Consistent with qualitative evi-
dence, our estimates suggest that students with higher test scores and those from
higher quality junior high schools have less uncertainty about their admission
chances. The remaining parameters characterize preferences for school attributes.
On average, students prefer higher quality schools, boarding schools, and older
schools established before Ghana gained independence. They have a significant
preference for general arts and a strong negative taste for technical programs.
Compared to these average preferences, students with higher test scores, those
from higher-performing junior high schools, and those in public schools place
relatively more value on school quality and boarding facilities, but have a weaker
preference for older schools. Finally, male students have a stronger preference for
school quality and older schools relative to females, with a significantly weaker
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preference for boarding schools.
For comparison, column 2 reports estimated parameters under the assumption

that students select their portfolios using the MIA approach. In contrast to our
SMIA estimates, the associated MIA parameters imply that students with higher
test scores face more uncertainty than students with lower test scores. The lat-
ter finding may be explained by the fact that higher ability students are more
likely to diversify their portfolios under interdependent admission chances, and
hence induce more variance in portfolio quality, which may be interpreted as
additional uncertainty in a model that doesn’t account for this correlation in ad-
mission chances. Additionally, the interaction terms with school characteristics
suggest that higher performing students place significantly less weight on school
quality and boarding facilities, but have a stronger preference for attending older
schools.

Finally, we consider a behavioral model in which students are completely
truthful and simply list the six programs that would give them the highest util-
ity. In this model, students do not consider their admission chances but instead
ignore the possibility of being unassigned after exhausting their six choices. Un-
der this specification, several parameters turn out be relatively different in sign
and magnitude to estimates obtained SMIA, and MIA. Additionally, the moment
criterion is extremely high pointing to a poor fit to the data. In particular, the
parameters estimating heterogeneity by JHS background differ most strikingly.

6.2 Model Fit

To further validate our use of SMIA as a solution method, Appendix Table A.1
presents evidence on how well our model fits the data. We use our model to gen-
erate the distribution of attributes for the first, third, and sixth ranked choice in
each portfolio and compare these with the real data. Our model fits the distribu-
tion of distance for each chosen school reasonably well. Both the data and model
suggest that the most and least preferred schools are the farthest away, with the
mid-ranked choices being the closest. The model captures the sharp decline in
school quality over ranked choices. Nonetheless, the fit for average quality of se-
lected choices is overstated, more seriously for lower ranked choices. SMIA thus
generates portfolios that are substantially more selective than observed choices.
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Table 5: Estimation Parameters

Solution Method
SMIA MIA Non-strategic

Admission chances parameters
Constant −1.579∗∗∗ −2.600∗∗∗

(0.003) (0.011)
test score −0.217∗∗∗ 0.392∗∗∗

(0.049) (0.008)
junior school quality −1.559∗∗∗ −1.375∗∗∗

(0.140) (0.006)
Preferences parameters
quality 0.132∗∗∗ 0.275∗∗∗ 1.681∗∗∗

(0.016) (0.011) (0.413)
boarding 0.559∗∗∗ 0.323∗∗∗ 0.221∗∗∗

(0.021) (0.009) (0.047)
old 0.617∗∗∗ −0.196∗∗∗ 0.402∗∗∗

(0.051) (0.010) (0.024)
general arts 0.066∗∗∗ 0.029∗∗∗ 0.010

(0.004) (0.006) (0.023)
general science −0.018 −0.009 −0.043

(0.040) (0.012) (0.044)
technical −0.655∗∗∗ −0.613∗∗∗ −0.461

(0.066) (0.010) (0.361)
quality×testscore 1.152∗∗∗ −1.157∗∗∗ 1.012∗∗∗

(0.024) (0.008) (0.054)
boarding×testscore 0.943∗∗∗ −0.295∗∗∗ 0.029

(0.051) (0.014) (0.018)
old×testscore −1.045∗∗∗ 1.887∗∗∗ −0.754∗∗∗

(0.185) (0.074) (0.027)
quality×male 0.930∗∗∗ 0.579∗∗∗ −0.290∗∗∗

(0.014) (0.012) (0.037)
boarding×male −0.345∗∗∗ −0.232∗∗∗ 0.751∗∗∗

(0.039) (0.006) (0.164)
old×male 1.217∗∗∗ −0.474∗∗∗ −0.872∗∗∗

(0.193) (0.074) (0.049)
quality×juniorschoolscore 0.628∗∗∗ −0.239∗∗∗ −1.047∗∗∗

(0.057) (0.010) (0.383)
boarding×juniorschoolscore 1.015∗∗∗ 0.060∗∗∗ −0.360∗∗∗

(0.052) (0.013) (0.029)
old×juniorschoolscore −1.804∗∗∗ −0.525∗∗∗ 0.571∗∗∗

(0.139) (0.011) (0.012)
quality×juniorschoolpublic 1.509∗∗∗ 0.437∗∗∗ −1.492∗∗∗

(0.026) (0.091) (0.452)
boarding×juniorschoolpublic 0.580∗∗∗ 0.024 −0.487∗∗∗

(0.073) (0.099) (0.043)
old×juniorschoolpublic −1.655∗∗∗ −0.343∗∗∗ −0.467∗∗∗

(0.141) (0.012) (0.080)

Moment criteria 0.103 0.115 0.697

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Beyond distance and quality, the actual and predicted school profiles (namely
availability of boarding facilities and age) are quite close. We also predict the
academic program choice patterns moderately well. General arts is substantially
more popular than general science in both cases, and technical programs attract
very little demand. Panel B of Appendix Table A.1 presents additional evidence
on out-of-sample fit, using data on non-targeted moments (characteristics of the
second, fourth, and fifth ranked choices). The main patterns in the targeted mo-
ments largely hold with the non-targeted moments.

By contrast, Appendix Table A.2 presents evidence on MIA. Although the fit
for targeted moments is rather good, the out of sample fit is noticeably poor. For
example, the pattern of declining school quality does not hold once all six choices
are considered. Appendix Table A.3 reports the fit of the nonstrategic model.
The nonstrategic model underpredicts the distance between students’ junior high
schools and their selected senior high school choices. More importantly, the non-
strategic model either does not generate enough variation (quality), or predicts
too much variation (distance). These patterns are explained by the magnitude of
individual taste for school quality, which can make up to 90% of some individu-
als’ utilities. Additionally, this model does a poor job of matching the relatively
high academic quality of students’ first choice schools versus their lowest ranked
choices.

Ultimately, we find that our optimal portfolio choice model better approxi-
mates actual school choice behavior. As expected, the nonstrategic model ap-
pears better at capturing extreme behaviors such as individuals applying only to
the best schools.

7 Policy Experiments

Having examined the basic implications of our model, we turn to the task of sim-
ulating the welfare effects of two policy experiments – relaxing constraints on the
number of choices students can list and reducing uncertainty about admission
chances. To assess the welfare impacts of each policy, we predict student choices
in a given policy environment and then simulate the assignment process to de-
termine students’ admission outcomes. We then calculate the utility each student
would derive from their assigned school and estimate total welfare under each
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regime. In each case, we assume that the preference parameters estimated from
the sophisticated model (SMIA) reflect students’ true underlying references.

This section proceeds as follows. We first outline the assignment mechanism
and specify our welfare function. We then discuss our simulation of the effects of
increasing the number of choices and reducing uncertainty.

7.1 Assignment Mechanism and Welfare

Ghana’s school choice system uses a student-proposing deferred acceptance algo-
rithm to assign students to schools in the spirit of the matching procedure derived
by Gale and Shapley (1962). The algorithm proceeds as follows:

• Step 1: Each student i applies to the first school in her ordered portfolio of
choices. Each school s tentatively assigns its seats to applicants one at a time
in order of students’ exam scores, and rejects any remaining applicants once
all of its seats are tentatively assigned.

• Step k: Each student who was rejected in round k − 1 applies to the next
school in her ordered portfolio of choices. Each school compares the set
of students it has been holding to the set of new applicants. It tentatively
assigns its seats to these students one at a time in order of students’ exam
scores and rejects remaining applicants once all of its seats are tentatively
assigned.

• The algorithm terminates when no spaces remain in any of the choices se-
lected by rejected students. Each student is then assigned to her final tenta-
tive assignment.

In practice, students who are unassigned at the end of the algorithm are adminis-
tratively assigned to a program with remaining vacancies. In our simulations, we
assign these students the outside option.

We propose a simple utilitarian welfare functionW that aggregates individual
utilities:

W = ∑
i

U∗i (16)
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where U∗i is the utility individual i derives from the school he was assigned. Total
welfare is therefore the sum of individual utilities.

7.2 Expanding the Number of Listed Choices

To evaluate the effects of constraints on choices, we increase the number of choices
students can submit incrementally from 1 to 8 and then allow students to submit
an unlimited number of choices. This counterfactual exercise examines an as-
pect of mechanism design that policymakers often manipulate in practice. For
example, students in Ghana were allowed to submit 6 senior high school choices
in 2008, but the permitted length of ranked lists has fluctuated between 3 and 6
choices since 2005. Pathak and Sonmez (2013) document several similar policy
changes in their review of school admissions reforms.

The effect of expanding the number of listed choices is theoretically ambigu-
ous since the policy change will produce losers and winners on both the intensive
and extensive margins. A student previously administratively assigned can get
admission to a ranked option (extensive gain), while a student previously as-
signed can get administratively assigned (extensive loss). Similarly, a student can
get admitted to a better school (intensive gain) while another one might get ad-
mitted into an inferior option (intensive loss). The final effect depends on the
respective strength of each of these components.

Table 6: Constraints and Welfare

Choices
1 2 3 4 5 6 7 8 J

Unmatched 0.72 0.55 0.45 0.37 0.31 0.15 0.13 0.09 0.00
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.05
1st Qu. 0.90 0.96 0.99 1.00 1.00 1.19 2.05 2.29 3.11
Median 1.00 1.00 2.01 2.47 2.62 2.74 2.86 2.92 3.45
Mean 1.43 1.81 2.08 2.29 2.45 2.58 2.72 2.82 3.49
Sd 1.07 1.24 1.31 1.31 1.30 1.26 1.20 1.15 0.73
3rd Qu. 1.76 2.74 3.01 3.19 3.32 3.39 3.45 3.51 3.86
Max 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59
Total 182675 230964 266277 292125 312678 330223 347589 361073 445484

Note: The first row of this table reports the share of unassigned students. Rows 2-8 report the
distribution of student welfare. The final row reports total student welfare. Column J indicates

unconstrained choices.
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Table 6 displays the change in the distribution of utilities under each regime.
Expanding the number of choices from 1 to 2 reduces the share of unassigned stu-
dents from 72 to 55 percent and increases total welfare by 126 percent. Although
total welfare is a concave function of the number of choices, there are still signif-
icant gains from allowing students to submit an unrestricted number of choices.
All students get assigned to a school and total welfare is almost 2.5 times as high
as with only one choice.

Table 7: Constraints and Redistribution

Choices
1 2 3 4 5 6 7 8 J

0-10 3.1 5.2 4.2 4.4 4.7 4.9 5.7 5.8 8.7
10-20 3.1 4.4 4.9 5.3 5.8 6.3 6.2 6.4 8.9
20-30 4.2 5.2 6.5 6.4 6.7 6.3 6.2 6.1 8.8
30-40 3.1 6.2 6.3 5.6 5.9 6.4 6.5 6.4 9.7
40-50 4.0 5.8 5.8 6.4 6.1 6.1 7.0 8.8 9.6
50-60 5.0 6.1 5.9 7.9 8.1 9.8 11.2 11.6 10.3
60-70 8.5 8.8 11.5 10.7 11.9 12.3 12.5 12.1 10.3
70-80 12.4 10.3 11.1 14.0 14.8 14.6 13.8 13.3 10.7
80-90 22.9 19.1 20.0 18.6 17.2 16.0 14.9 14.2 11.2
90-100 33.7 28.8 23.8 20.7 18.7 17.3 16.0 15.2 11.8

Note: Each row reports the share of total welfare accruing to students in the associated decile of
the test score distribution.

Despite the overall increase in welfare, benefits are not distributed uniformly
across individuals. In Table 7, we decompose welfare gain by student ability.
Students in the bottom decile of the exam score distribution receive only 3 percent
of total welfare when there is only 1 choice, while students from the top decile
enjoy a third of total welfare. With unlimited choices, students from the bottom
decile account for 9 percent of total welfare and students from the top decile enjoy
12 percent. Thus, allowing a larger number of choices predominantly benefits
lower ability students and generates a more equal distribution of welfare.

Figure 3 separately reports welfare changes for winners and losers. We define
losers as students who experience at least a 0.1 mile decline in utility and winners
as those who experience at least a 0.1 mile gain. Less than 0.05 percent of students
are losers, meanwhile a quarter of students benefit each time there is a marginal
expansion in the number of permitted choices, and over 80 percent of students
benefit from going from eight choices to an unrestricted number. Figure 4 further
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decomposes winners and losers based on changes on the extensive margin (going
from being unassigned to assigned) and the intensive margin (gaining admission
to a more preferred school, conditional on being assigned). Moving from 1 to 2
choices, most of the gains and losses result from changes in the extensive margin.
In contrast, expanding from 3 choices onward, most students experience welfare
changes due to intensive margin changes in the welfare derived from the school
to which they are assigned.

Figure 3: Winners and Losers
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7.3 Turkish Experiment

Having analyzed the impact of constraints on the number of ranked choices, we
turn now to consider an alternative policy option. Our model features a major
source of inefficiency: uncertainty, which prompts agents to strategize over the
submitted list of available choices. Since there is no simple strategy to select an
optimal portfolio of schools, uncertainty implies potential strategic mistakes, that
are welfare reducing. In this section, we propose an experiment to quantify the
effect of information on individual choices and welfare.
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Figure 4: Decomposition of intensive and extensive margins
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As explained before, uncertainty in our setting originates from two distinct
sources: individual uncertainty regarding realized test scores and aggregate un-
certainty relating to the application behavior of other agents. While there exist
obvious policy margins to deal with individual uncertainty, there is no easy way
around aggregate uncertainty as participants in any large matching market are
unlikely to have information on the preferences of all other agents. One could
argue that uncertainty is irrelevant when the number of choices is unrestricted
but policy makers have been reluctant to adopt such a policy and many school
choice systems still restrict the number of ranked choices.19 In this experiment, we
effectively consider a compromise between the baseline case where uncertainty in-
duces strategic mistakes and the alternative of unconstrained choices. We propose
a realistic policy experiment, which eliminates individual uncertainty by inform-
ing students about their realized test scores (i.e., waiting for test score results to
come out before students apply to schools). Then, we provide students with a
subset of options that correspond to the programs where the prior year’s admis-
sion cutoffs are lower than their realized test score. It turns out that university

19The few exceptions include school choice in Boston, Seattle, and Hungary.
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admission in Turkey provides a real world example of this simulated mechanism
(Akyol and Krishna, 2017).

Under binding constraints on the number of listed choices, agents may still
be tempted to act strategically and not report true preferences. When these con-
straints are less severe, individual reporting behavior is less obvious, depending
on the joint continuity of cutoffs and individual test scores. Specifically, under
this mechanism strict truth telling is a symetric equilibrium, but not a dominant
strategy, especially when the number of choices is small. As a consequence, we
manipulate the length of the rank ordered list and let individuals report their true
preferences, keeping in mind that truth telling is less likely to prevail when there
is a smaller number of ranked choices.

Table 8: Uncertainty and Welfare

Choices
1 2 3 4 5 6 7 8 J

Unmatched 0.50 0.27 0.18 0.12 0.07 0.04 0.02 0.01 0.00
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.05
1st Qu. 0.98 1.00 1.96 2.17 2.25 2.29 2.30 2.31 3.11
Median 1.05 2.56 2.67 2.70 2.72 2.73 2.73 2.73 3.45
Mean 1.97 2.43 2.62 2.72 2.79 2.84 2.86 2.88 3.49
Sd 1.29 1.23 1.14 1.06 0.98 0.92 0.89 0.86 0.73
3rd Qu. 2.93 3.27 3.35 3.36 3.36 3.36 3.36 3.36 3.86
Max 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59
Total 252071 311102 335279 347663 356889 362870 366094 368302 445484

Note: The first row of this table reports the share of unassigned students. Rows 2-8 report the
distribution of student welfare. The final row reports total student welfare. Column J indicates

unconstrained choices.

As Table 8 indicates, half of students are assigned to a school even when
restricted to listing only one choice. With eight choices, only 1 percent of students
remain unassigned. This is a considerable improvement over the 72 percent and
18 percent respectively unassigned when students are choosing under uncertainty.

Analyzing the distributional consequences of this experiment, Table 9 reveals
that lower ability students predominantly benefit compared to their higher ability
peers – students in the bottom decile of test scores enjoy 6 percent of total welfare
when students can submit only once choice, while students in the top decile
enjoy 17.7 percent of total welfare. Although higher performing students maintain

34



Table 9: Uncertainty and Redistribution

Choices
1 2 3 4 5 6 7 8 J

0-10 6.0 5.7 6.0 6.5 6.7 6.8 6.8 6.9 8.7
10-20 5.8 5.7 5.7 5.7 6.3 6.8 7.3 7.6 8.9
20-30 6.4 6.7 6.8 7.2 7.5 7.7 7.8 7.8 8.8
30-40 7.8 8.7 9.0 9.1 9.1 9.1 9.1 9.1 9.7
40-50 9.4 10.5 9.8 9.8 9.6 9.4 9.4 9.3 9.6
50-60 8.9 7.8 9.5 10.0 10.4 10.6 10.5 10.4 10.3
60-70 11.9 12.7 11.8 11.4 11.1 10.9 10.8 10.8 10.3
70-80 11.5 12.0 12.2 12.1 11.9 11.7 11.6 11.5 10.7
80-90 14.5 14.0 13.8 13.4 13.0 12.8 12.7 12.6 11.2
90-100 17.7 16.3 15.4 14.9 14.5 14.2 14.1 14.0 11.8

Note: Each row reports the share of total welfare accruing to students in the associated decile of
the test score distribution.

their advantage, the distribution is considerably more even than under the case
of incomplete information. Expanding the number of choices students can list
generally increases the welfare of students in the bottom half of the achievement
distribution.

Figure 5 illustrates the distribution of winners and losers. Less than 10 percent
of students lose with the expansion from 1 to 2 choices, and the share of losers
steadily declines with each subsequent increase in the number of ranked choices.
Given that total welfare is higher with only one ranked choice when students have
reduced uncertainty compared to our baseline case, there are relatively fewer
winners as the number of ranked choices increases. Nonetheless, a quarter of
students benefit from the switch from 1 to 2 choices and there is a sizeable but
declining pool of winners from further expansions. Once again, over 80 percent
of students gain from unrestricting the number of ranked choices.

Turning to the decomposition of intensive and extensive margins in Figure
6, we observe losses occurring almost exclusively on the intensive margin while
winners almost exclusively gain on the extensive margin. It is worth noting that
intensive margin losses are relatively small. The lack of intensive margin gain is
explained by inefficiencies within the current allocation system as some prefer-
able schooling options may have remaining vacancies in equilibrium. In a final
exercise, we attempt to introduce additional efficiency by expanding the set of
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Figure 5: Distribution of welfare
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Figure 6: Decomposition of intensive and extensive margins
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schools where individuals can apply.20 In this exercise, we do not manipulate
the number of ranked choices anymore, as the previous result shows that admin-
istrative assignment is less of a concern when students are allowed to submit 8
choices. Instead, we hold the number of permitted choices fixed at 8 and allow
students to be increasingly ambitious in their application behavior.

Table 10: Uncertainty, Efficiency and Welfare

Choices
Benchmark 5% 10% 15% 20% 25% 30% 35% 40%

Unmatched 0.010 0.006 0.002 0.000 0.000 0.004 0.025 0.054 0.090
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1st Qu. 2.308 2.351 2.393 2.431 2.462 2.489 2.486 2.467 2.429
Median 2.730 2.779 2.833 2.895 2.962 3.021 3.042 3.047 3.038
Mean 2.881 2.937 2.990 3.043 3.091 3.127 3.103 3.056 2.988
Sd 0.860 0.866 0.869 0.872 0.877 0.886 0.924 0.978 1.043
3rd Qu. 3.362 3.418 3.478 3.539 3.594 3.646 3.649 3.636 3.609
Max 6.585 6.585 6.585 6.585 6.585 6.585 6.585 6.585 6.585
Total 368302 375365 382217 388933 395092 399672 396644 390622 381999

Note: Benchmark assumes students can submit 8 choices and list their most preferred alternatives
from the set with prior admission cutoffs below their individual test score. In remaining columns,

students chose from the set of alternatives with admission cutoffs below their test score +X%.

Table 10 reports the welfare distribution and share of individuals administra-
tively assigned when we allow students to apply to programs with a cutoff that
is respectively 5%, 10%, 15%, . . . , 40% higher than their test score. Strikingly, the
effect of allowing students to be increasingly ambitious is not monotonic. The
share of administrative assignments falls and total welfare increases as students
apply to programs with cutoffs up to 20% above their test score. Beyond this
point however, administrative assignments begin to increase again and total wel-
fare eventually starts to decline. Essentially, students benefit from being ambitious
but not too ambitious – as the gap between a student’s test score and program
cutoffs becomes too large (in our simulation, at 25% and above), there is a cost
to applying to programs definitively outside of reach. Table 10 also exhibits the
trade-off faced by policymakers. That is, letting students apply to substantially

20We attempted to recover the “long-run” equilibrium of the matching procedure by updating
cutoffs after each iteration. This procedure turns out to be extremely slow – after 10 iterations
the share of administrative assignment was still around 20%, and total welfare is lower than the
benchmark case.
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more selective schools (40% for example) generates more total welfare than the
benchmark case, despite the higher rate of administrative assignment.

8 Conclusion

In this paper, we propose a framework to estimate preferences and simulate the
welfare effects of school choice policies in systems with costly choices and un-
certainty about admission chances. We view students’ ranking of schools as the
solution to a portfolio choice problem and introduce a Submodular Improvement
Algorithm to match theoretical predictions to empirical moments. Consequently,
our estimated parameters are policy-invariant and can be used to ascertain the
welfare implications of several policy experiments.

Our work addresses a longstanding challenge in the school choice literature.
Since the first formalization of the school choice problem, both policymakers and
matching theorists have considered incomplete information a daunting problem.
Under incomplete information, a constrained number of choices leads to diversi-
fication of submitted choices. As such, empirical exercises that assume complete
or imperfect information in a setting where students are uncertain about their
admission chances may misconceive the utility individuals derive from schools,
as illustrated by our estimated parameters.

We find that allowing students to rank an unlimited number of choices gen-
erates multiple benefits. Total welfare increases by a factor of 2.4 compared to
a system where students can list only one choice, and the proportion of stu-
dents who are unassigned falls from 72 percent to zero. This policy also reduces
inequality as lower ability students experience larger improvements in welfare.
Theoretically, expanding the number of choices could have ambiguous effects –
improving match quality for students but eliminating an opportunity to signal
preference intensity. We provide much needed empirical evidence on this open
question. Further, we show that it is possible to design policies to accommodate
uncertainty using simple and appealing strategies: providing information to stu-
dents about their test scores and restricting students from applying to schools
historically more selective than their test scores warrant yield substantial gains
both on the intensive (quality of school) and extensive (probability of being as-
signed) margins.
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The methods used in this paper provide several avenues for future research.
Although our analysis focuses on two common features of coordinated school as-
signment systems, our empirical approach has broad applications. We estimate a
model of optimal portfolio choice that allows us to conduct other experiments re-
lated to changes in mechanism design (such as restricting the categories of schools
students can select from, using a lottery instead of merit-based admissions pro-
cedure, or modifying the assignment algorithm) as well as experiments related to
institutional reforms (such as increasing the capacity of high-performing schools
or constructing new schools in remote areas). We leave this for future work.

Our model rests on the assumption that agents understand the strategic im-
plications of constraints on the number of ranked alternatives and act accordingly
when constructing portfolios of schools. Because not all agents are likely to be so-
phisticated, it may be informative to estimate a model that includes heterogeneity
in both preferences and sophistication. However, identification requires jointly
observing data on preferences and beliefs about admission chances, which we
unfortunately do not have in this context.

39



References

Abdulkadiroglu, A., Agarwal, N., and Pathak, P. (2015). The Welfare Effects of
Coordinated School Assignment: Evidence from the NYC High School Match.
NBER Working Papers 21046, National Bureau of Economic Research, Inc.

Abdulkadiroglu, A., Angrist, J., and Pathak, P. (2014). The Elite Illusion: Achieve-
ment Effects at Boston and New York Exam Schools. Econometrica, 82(1):137–
196.

Abdulkadiroglu, A., Che, Y.-K., and Yasuda, Y. (2011). Resolving Conflicting
Preferences in School Choice: The Boston Mechanism Reconsidered. American
Economic Review, 101(1):399–410.

Abdulkadiroglu, A., Pathak, P. A., and Roth, A. E. (2009). Strategy-Proofness
versus Efficiency in Matching with Indifferences: Redesigning the NYC High
School Match. American Economic Review, 99(5):1954–78.

Abdulkadiroglu, A. and Sonmez, T. (2003). School Choice: A Mechanism Design
Approach. American Economic Review, 93(3):729–747.

Agarwal, N. and Somaini, P. (2014). Demand Analysis using Strategic Reports:
An Application to a School Choice Mechanism. NBER Working Papers 20775,
National Bureau of Economic Research, Inc.

Ajayi, K. F. (2013). School Choice and Educational Mobility: Lessons from Sec-
ondary School Applications in Ghana. Institute for Economic Development
Discussion Paper 259, Boston University.

Akyol, P. and Krishna, K. (2017). Preferences, Selection, and Value Added: A
Structural Approach. European Economic Review, 91:89–117.

Azevedo, E. M. and Leshno, J. D. (2016). A Supply and Demand Framework for
Two-Sided Matching Markets. Journal of Political Economy, 124(5):1235–1268.

Berry, S. and Pakes, A. (2007). The Pure Characteristics Demand Model. Interna-
tional Economic Review, 48(4):1193–1225.

40



Calsamiglia, C., Fu, C., and Guell, M. (2014). Structural Estimation of a Model
of School Choices: the Boston Mechanism vs. Its Alternatives. Working Papers
2014-21, FEDEA.

Calsamiglia, C., Haeringer, G., and Klijn, F. (2010). Constrained School Choice:
An Experimental Study. American Economic Review, 100(4):1860–74.

Chade, H., Lewis, G., and Smith, L. (2014). Student Portfolios and the College
Admissions Problem. Review of Economic Studies, 81(3):971–1002.

Chade, H. and Smith, L. (2006). Simultaneous Search. Econometrica, 74(5):1293–
1307.

Chen, Y. and Sonmez, T. (2006). School Choice: An Experimental Study. Journal
of Economic Theory, 127(1):202–231.

Duflo, E., Dupas, P., and Kremer, M. (2017). The Impact of Free Secondary Educa-
tion: Experimental Evidence from Ghana. Working paper, Stanford University.

Ergin, H. and Sonmez, T. (2006). Games of School Choice under the Boston Mech-
anism. Journal of Public Economics, 90(1-2):215–237.

Fack, G., Grenet, J., and He, Y. (2015). Beyond Truth-Telling: Preference Estima-
tion with Centralized School Choice. CEPR Discussion Papers 10907, C.E.P.R.
Discussion Papers.

Gale, D. and Shapley, L. S. (1962). College Admissions and the Stability of Mar-
riage. American Mathematical Monthly, 69(1):9–15.

He, Y. (2012). Gaming the Boston School Choice Mechanism in Beijing. TSE
Working Papers 12-345, Toulouse School of Economics (TSE).

Kelso, A. S. J. and Crawford, V. P. (1982). Job Matching, Coalition Formation, and
Gross Substitutes. Econometrica, 50(6):1483–1504.

Laporte, G. (1992). The Traveling Salesman Problem: An Overview of Exact and
Approximate Algorithms. European Journal of Operational Research, 59(2):231–
247.

41



Pallais, A. (2015). Small differences that matter: Mistakes in applying to college.
Journal of Labor Economics, 33(2):493–520.

Pathak, P. A. and Shi, P. (2014). Demand Modeling, Forecasting, and Counter-
factuals, Part I. NBER Working Papers 19859, National Bureau of Economic
Research, Inc.

Pathak, P. A. and Sonmez, T. (2013). School Admissions Reform in Chicago
and England: Comparing Mechanisms by Their Vulnerability to Manipulation.
American Economic Review, 103(1):80–106.

Pop-Eleches, C. and Urquiola, M. (2013). Going to a Better School: Effects and
Behavioral Responses. American Economic Review, 103(4):1289–1324.

Troyan, P. (2012). Comparing School Choice Mechanisms by Interim and Ex-Ante
Welfare. Games and Economic Behavior, 75(2):936–947.

42



A Appendix

A.1 Details of MIA

The algorithm proceeds as follows.

Step 1: In the first step, we select the first ranked choice as the school that yields
the maximum expected utility. Formally, we solve the following problem:

S1 = argmax
j

qjUj

Then we store the first optimal portfolio as the school that yields the highest
utility U1 = (U∗1 ) = Uj, and the corresponding admission probability Q1 =

(q∗1) = qj

Step 2: In step 2, the following problem is solved:

S2 = argmax
j∈J 6∈S1

{
q∗1U∗1 + P(qj|q∗1)Uj if U∗1 ≥ Uj

qjUj + P(q∗1 |qj)U∗1 if Uj > U∗1

where P(qj|q∗1) = P(ψ̂ > Ψ̂j|ψ̂ < Ψ̂1) is the probability of being accepted in
school j conditional on not being accepted in the first round choice. Given
the outcome of this optimization problem, the optimal portfolio is updated
U2 = (U∗1 , Uj) = (U∗1 , U∗2 ) with U∗1 > U∗2 . Note that the portfolio is arranged
in descending order of utilities. The corresponding set of admission chances
is given by: Q2 = (q∗1 , q∗2)

Step 3: In the third step, we maximize over all schools that have not been selected
in the previous two steps.

S3 = argmax
j∈J 6∈S2


q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(qj|q∗2)Uj if U∗2 ≥ Uj

q∗1U∗1 + P(qj|q∗1)Uj + P(q∗2 |qj)U∗2 if U∗1 > Uj > U∗2
qjUj + P(q∗1 |qj)U∗1 + P(q∗2 |q∗1)U∗2 if Uj > U∗1

Then store U3 = (U∗1 , U∗2 , Uj) = (U∗1 , U∗2 , U∗3 ) with U∗1 > U∗2 > U∗3 .

Step 4: In the fourth step, we select the school that yields the highest utility
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among all remaining schools.

S4 = argmax
j∈J 6∈S3


q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 + P(qj|q∗3)Uj if U∗3 ≥ Uj

q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗j |q∗2)Uj + P(q∗3 |qj)U∗3 if U∗2 > Uj > U∗3
q∗1U∗1 + P(qj|q∗1)Uj + P(q∗2 |qj)U∗2 + P(q∗3 |q∗2)U∗3 if U∗1 > Uj > U∗2
qjUj + P(q∗1 |qj)U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 if Uj > U∗1

Then store U ∗4 = (U∗1 , U∗2 , U∗3 , Uj) = (U∗1 , U∗2 , U∗3 , U∗4 ) with U∗1 > U∗2 > U∗3 >

U∗4 .

Step 5: The fifth step carries on using the same strategy as before.

S5 = argmax
j∈J 6∈S4



q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗4 |q∗3)U∗4 + P(qj|q∗4)Uj if U∗4 ≥ Uj

q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗j |q∗3)Uj + P(q∗4 |qj)U∗4 if U∗3 > Uj > U∗4
q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗j |q∗2)Uj + P(q∗3 |qj)U∗3 + P(q∗4 |q∗3)U∗4 if U∗2 > Uj > U∗3
q∗1U∗1 + P(qj|q∗1)Uj + P(q∗2 |qj)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗4 |q∗3)U∗4 if U∗1 > Uj > U∗2
qjUj + P(q∗1 |qj)U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗4 |q∗3)U∗4 if Uj > U∗1

Then store U ∗5 = (U∗1 , U∗2 , U∗3 , U∗4 , Uj) = (U∗1 , U∗2 , U∗3 , U∗4 , U∗5 ) with U∗1 >

U∗2 > U∗3 > U∗4 > U∗5 .

Step 6 : Finally, we maximize over the remaining schools to obtain a sixth choice.

S6 = argmax
j∈J 6∈S5



q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗4 |q∗3)U∗4 + P(q∗5 |q∗4)U∗5 + P(qj|q∗5)Uj if U∗5 ≥ Uj

q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗4 |q∗3)U∗4 + P(qj|q∗4)Uj + P(q∗5 |qj)U∗5 if U∗4 > Uj > U∗5
q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗j |q∗3)Uj + P(q∗4 |qj)U∗4 + P(q∗5 |q∗4)U∗5 if U∗3 > Uj > U∗4
q∗1U∗1 + P(q∗2 |q∗1)U∗2 + P(qj|q∗2)Uj + P(q∗3 |qj)U∗3 + P(q∗4 |q∗3)U∗4 + P(q∗5 |q∗4)U∗5 if U∗2 > Uj > U∗3
q∗1U∗1 + P(qj|q∗1)Uj + P(q∗2 |qj)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗4 |q∗3)U∗4 + P(q∗5 |q∗4)U∗5 if U∗1 > Uj > U∗2
qjUj + P(q∗1 |qj)U∗1 + P(q∗2 |q∗1)U∗2 + P(q∗3 |q∗2)U∗3 + P(q∗4 |q∗3)U∗4 + P(q∗5 |q∗4)U∗5 if Uj > U∗1

Then store U6 = (U∗1 , U∗2 , U∗3 , U∗4 , U∗5 , Uj) = (U∗1 , U∗2 , U∗3 , U∗4 , U∗5 , U∗6 ) with
U∗1 > U∗2 > U∗3 > U∗4 > U∗5 >, U∗6 .

A.2 Model Fit

44



Table A.1: Model Fit - SMIA

Panel A: Targeted moments

Data Model

choice 1 choice 3 choice 6 choice 1 choice 3 choice 6

m̂(distance) 0.079 0.07 0.071 0.12 0.099 0.21
V̂(distance) 0.11 0.098 0.063 0.15 0.093 0.19
m̂(quality) 0.62 0.5 0.35 0.8 0.65 0.52
V̂(quality) 0.2 0.18 0.11 0.1 0.14 0.17
m̂(boarding) 0.88 0.77 0.59 1 0.99 0.95
V̂(boarding) 0.32 0.42 0.49 0 0.11 0.21
m̂(old) 0.26 0.11 0.017 0.11 0.11 0.15
V̂(old) 0.44 0.31 0.13 0.31 0.31 0.36
m̂(general arts) 0.4 0.39 0.43 0.3 0.28 0.16
V̂(general arts) 0.49 0.49 0.49 0.46 0.45 0.37
m̂(general science) 0.14 0.09 0.067 0.17 0.27 0.052
V̂(general science) 0.35 0.29 0.25 0.37 0.44 0.22
m̂(technical) 0.0082 0.01 0.00007 0 0 0
V̂(technical) 0.09 0.1 0.0084 0 0 0
Ĵ(quality) 1.3 1 0.74 1.7 1.4 1.1
Ĵ(boarding) 1.9 1.6 1.2 2.1 2.1 2
Ĵ(old) 0.57 0.22 0.037 0.21 0.21 0.3

Panel B: Non targeted moments

Data Model

choice 2 choice 4 choice 5 choice 2 choice 4 choice 5

m̂(distance) 0.075 0.061 0.069 0.11 0.1 0.11
V̂(distance) 0.1 0.094 0.063 0.13 0.093 0.11
m̂(quality) 0.55 0.44 0.37 0.71 0.59 0.53
V̂(quality) 0.19 0.17 0.11 0.13 0.15 0.16
m̂(boarding) 0.83 0.69 0.61 0.99 0.98 0.97
V̂(boarding) 0.38 0.46 0.49 0.078 0.14 0.17
m̂(old) 0.16 0.073 0.026 0.11 0.11 0.1
V̂(old) 0.36 0.26 0.16 0.31 0.31 0.3
m̂(general arts) 0.39 0.39 0.43 0.32 0.36 0.44
V̂(general arts) 0.49 0.49 0.49 0.46 0.48 0.5
m̂(general science) 0.11 0.078 0.078 0.22 0.14 0.11
V̂(general science) 0.31 0.27 0.27 0.42 0.35 0.31
m̂(technical) 0.0088 0.015 0.000086 0 0 0
V̂(technical) 0.093 0.12 0.0093 0 0 0
Ĵ(quality) 1.1 0.93 0.78 1.5 1.3 1.1
Ĵ(boarding) 1.7 1.4 1.3 2.1 2 2
Ĵ(old) 0.33 0.15 0.059 0.21 0.2 0.19

45



Table A.2: Model Fit - MIA

Panel A: Targeted moments

Data Model

choice 1 choice 3 choice 6 choice 1 choice 3 choice 6

m̂(distance) 0.079 0.07 0.071 0.043 0.067 0.13
V̂(distance) 0.11 0.098 0.063 0.055 0.082 0.14
m̂(quality) 0.62 0.5 0.35 0.6 0.48 0.31
V̂(quality) 0.2 0.18 0.11 0.17 0.16 0.14
m̂(boarding) 0.88 0.77 0.59 0.89 0.78 0.55
V̂(boarding) 0.32 0.42 0.49 0.32 0.41 0.5
m̂(old) 0.26 0.11 0.017 0.27 0.12 0.036
V̂(old) 0.44 0.31 0.13 0.44 0.33 0.19
m̂(general arts) 0.4 0.39 0.43 0.54 0.41 0.24
V̂(general arts) 0.49 0.49 0.49 0.5 0.49 0.43
m̂(general science) 0.14 0.09 0.067 0.095 0.1 0.063
V̂(general science) 0.35 0.29 0.25 0.29 0.3 0.24
m̂(technical) 0.0082 0.01 0.00007 0 0 0.021
V̂(technical) 0.09 0.1 0.0084 0 0 0.14
Ĵ(quality) 1.3 1 0.74 1.3 1 0.7
Ĵ(boarding) 1.9 1.6 1.2 1.8 1.6 1.1
Ĵ(old) 0.57 0.22 0.037 0.47 0.23 0.068

Panel B: Non targeted moments

Data Model

choice 2 choice 4 choice 5 choice 2 choice 4 choice 5

m̂(distance) 0.075 0.061 0.069 0.11 0.1 0.11
V̂(distance) 0.1 0.094 0.063 0.13 0.093 0.11
m̂(quality) 0.55 0.44 0.37 0.71 0.59 0.53
V̂(quality) 0.19 0.17 0.11 0.13 0.15 0.16
m̂(boarding) 0.83 0.69 0.61 0.99 0.98 0.97
V̂(boarding) 0.38 0.46 0.49 0.078 0.14 0.17
m̂(old) 0.16 0.073 0.026 0.11 0.11 0.1
V̂(old) 0.36 0.26 0.16 0.31 0.31 0.3
m̂(general arts) 0.39 0.39 0.43 0.32 0.36 0.44
V̂(general arts) 0.49 0.49 0.49 0.46 0.48 0.5
m̂(general science) 0.11 0.078 0.078 0.22 0.14 0.11
V̂(general science) 0.31 0.27 0.27 0.42 0.35 0.31
m̂(technical) 0.0088 0.015 0.000086 0 0 0
V̂(technical) 0.093 0.12 0.0093 0 0 0
Ĵ(quality) 1.1 0.93 0.78 1.5 1.3 1.1
Ĵ(boarding) 1.7 1.4 1.3 2.1 2 2
Ĵ(old) 0.33 0.15 0.059 0.21 0.2 0.19
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Table A.3: Model Fit - Nonstrategic

Panel A: Targeted moments

Data Model

choice 1 choice 3 choice 6 choice 1 choice 3 choice 6

m̂(distance) 0.079 0.07 0.071 0.026 0.031 0.038
V̂(distance) 0.11 0.098 0.063 0.052 0.056 0.058
m̂(quality) 0.62 0.5 0.35 0.51 0.52 0.51
V̂(quality) 0.2 0.18 0.11 0.31 0.27 0.26
m̂(boarding) 0.88 0.77 0.59 0.69 0.69 0.69
V̂(boarding) 0.32 0.42 0.49 0.46 0.46 0.46
m̂(old) 0.26 0.11 0.017 0.12 0.12 0.12
V̂(old) 0.44 0.31 0.13 0.32 0.32 0.32
m̂(general arts) 0.4 0.39 0.43 0.65 0.36 0.33
V̂(general arts) 0.49 0.49 0.49 0.48 0.48 0.47
m̂(general science) 0.14 0.09 0.067 0.14 0.079 0.073
V̂(general science) 0.35 0.29 0.25 0.35 0.27 0.26
m̂(technical) 0.0082 0.01 0.00007 0 0 0
V̂(technical) 0.09 0.1 0.0084 0 0 0
Ĵ(quality) 1.3 1 0.74 0.98 1 1
Ĵ(boarding) 1.9 1.6 1.2 1.6 1.6 1.6
Ĵ(old) 0.57 0.22 0.037 0.12 0.12 0.12

Panel B: Non targeted moments

Data Model

choice 2 choice 4 choice 5 choice 2 choice 4 choice 5

m̂(distance) 0.075 0.061 0.069 0.11 0.1 0.11
V̂(distance) 0.1 0.094 0.063 0.13 0.093 0.11
m̂(quality) 0.55 0.44 0.37 0.71 0.59 0.53
V̂(quality) 0.19 0.17 0.11 0.13 0.15 0.16
m̂(boarding) 0.83 0.69 0.61 0.99 0.98 0.97
V̂(boarding) 0.38 0.46 0.49 0.078 0.14 0.17
m̂(old) 0.16 0.073 0.026 0.11 0.11 0.1
V̂(old) 0.36 0.26 0.16 0.31 0.31 0.3
m̂(general arts) 0.39 0.39 0.43 0.32 0.36 0.44
V̂(general arts) 0.49 0.49 0.49 0.46 0.48 0.5
m̂(general science) 0.11 0.078 0.078 0.22 0.14 0.11
V̂(general science) 0.31 0.27 0.27 0.42 0.35 0.31
m̂(technical) 0.0088 0.015 0.000086 0 0 0
V̂(technical) 0.093 0.12 0.0093 0 0 0
Ĵ(quality) 1.1 0.93 0.78 1.5 1.3 1.1
Ĵ(boarding) 1.7 1.4 1.3 2.1 2 2
Ĵ(old) 0.33 0.15 0.059 0.21 0.2 0.19
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