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Abstract

This paper develops a theory for the expected cost of optimally acquired information when
information can be acquired sequentially. We study the “reduced-form” Indirect Cost functions
for information generated by sequential minimization of a “primitive” Direct Cost function.
The class of Indirect Costs is characterized by a recursive condition called Sequential Learning-
Proofness. This condition is inconsistent with Prior-Invariance: Indirect Costs must depend on
the decision-maker’s prior beliefs.

We show that Sequential Learning-Proofness provides partial optimality foundations for
the Uniformly Posterior Separable (UPS) cost functions used in the rational inattention lit-
erature: a cost function is UPS if and only if it is an Indirect Cost that (i) satisfies a mild
regularity condition or, equivalently, (ii) is generated (only) by Direct Costs for which the op-
timal sequential strategy involves observing only Gaussian diffusion signals. We characterize
the unique UPS cost function that is generated by a Prior-Invariant Direct Cost; it exists only
when there are exactly two states.

We also propose two specific UPS cost functions based on additional optimality principles.
We introduce and characterize Total Information as the unique Indirect Cost that is Process-
Invariant when information can be decomposed both sequentially and “simultaneously”: it is
uniquely invariant to the “merging” and “splitting” of experiments. Under regularity condi-
tions, Mutual Information is the unique Indirect Cost that is Compression-Invariant when as-
pects of the state space can be “freely ignored”: it is uniquely invariant to the to the “merging”
and “splitting” of states. We argue that Total Information and Mutual Information represent
the normatively ideal costs of, respectively, “producing” and “processing” information.
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1 Introduction

1.1 Motivation and Framework

Economic models typically assume that individuals are exogenously endowed with information.
This is plainly an abstraction. When faced with uncertainty, rational individuals choose what in-
formation to acquire by trading off its decision-relevant value against its cost. Consumers expend
effort investigating the quality of products before making purchases. Firms spend billions of dollars
each year in market research and R&D. Financial analysts are paid to conduct fundamental research
on investment opportunities. The view that information is a costly choice variable that responds
to incentives has proven important for understanding a variety of economic phenomena1 and for
designing new economic institutions.2

While the value of information is well-understood and often unambiguous,3 there is little con-
sensus on how to develop a general theory for its cost. This has proved challenging, in part, because
“there is no general way of defining units for information” (Arrow (1996, p. 120)). Consequently, as
Chade and Schlee (2002, p. 443) put it: “Unfortunately, we know precious little about how to choose
functional forms for the production of information.”4

In this paper, we develop a theory for the cost of information based on the premise that individ-
uals flexibly choose not only what information to learn, but also the optimal way in which to acquire it.
We are motivated by the following two desiderata for a general theory of information cost.

First, it should account for individuals’ ability to acquire any given piece of information in a
variety of different ways. For example, a pharmaceutical company aiming to test the efficacy of
a new drug to a pre-specified confidence level has the option to run a single large clinical trial,
multiple smaller trials simultaneously (in batch), or multiple smaller trials run sequentially (with
the results of early trials potentially informing the design of later ones). It is typically optimal to
acquire information in a piecemeal fashion for cost-smoothing purposes, and to do so sequentially for
the option value that sequentiality provides (i.e., early observations are informative about both the
payoff-relevant state and how to economize on continuation costs). This poses a challenge because,
for reasons of tractability and portability, it is often necessary to model information acquisition in
“reduced form” as a one-shot choice.

Second, it should provide a unified language for reasoning about the cost of information across
different contexts. A key challenge is that the technology by which individuals acquire information

1 An incomplete list of applications includes macroeconomic dynamics (Maćkowiak and Wiederholdt (2009); Flynn and Sastry (2020)),
financial portfolio choice (Mondria (2010); Nieuwerburgh and Veldkamp (2010); Kacperczyk et al. (2016)), organizational structure (Des-
sein et al. (2016)), monopoly pricing (Matějka (2015); Ravid (2019, 2020)), oligopoly pricing (Matějka and McKay (2012)), coordination
games (Yang (2015); Morris and Yang (2019); Denti (2019)), beauty contest games (Myatt and Wallace (2012); Hébert and La’O (2020)),
and individuals’ stochastic choice behavior (Matějka and McKay (2015); Caplin et al. (2019a); Köszegi and Matějka (2020)).

2 An incomplete list of applications includes the design of optimal contracts for research and innovation (Yoder (2019); Rappaport and
Somma (2017)), financial contracts (Yang (2020); Yang and Zeng (2019)), allocation mechanisms (Gleyze and Pernoud (2020); Mensch
(2020)), and information disclosure policies (Gentzkow and Kamenica (2014); Bloedel and Segal (2020)).

3 The well-known Blackwell (1951) theorem establishes that one Blackwell experiment is more informative than another if and only
if the former yields higher expected utility in all decision problems. For a Bayesian decision-maker facing a given decision problem, the
value of a Blackwell experiment is the expected utility gain it yields relative to having no information beyond the prior belief (e.g., Azrieli
and Lehrer (2008); Frankel and Kamenica (2019)).

4 This is a long-standing sentiment: Arrow (1985, p. 304) asserts that “it is an important and incompletely explored part of decision
theory in general to formulate reasonable cost functions for information structures,” while Pomatto et al. (2019, p. 1) observe more
recently that “modeling the cost of producing information has remained an unsolved problem.”
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— or even what “acquiring information” means — depends on the context under study. For instance,
to paraphrase Sims (2010, p. 161), the cost of producing new information (e.g., expending physical
resources to conduct a clinical trial) need not bear any relation to the cost of processing already-
available information (e.g., expending mental energy to read a report that summarizes the trial’s
findings).

Our framework considers a Bayesian decision-maker (DM) who aims to acquire information
about an uncertain state distributed according to some prior belief. We view information acquisition
as a two-stage process. In the first stage, DM decides what to learn, modeled as a choice of which
(Blackwell) experiment (i.e., state-contingent distribution of signals) to obtain. In the second stage,
DM decides how to acquire her chosen target experiment. Our central assumption is that information
is available in many forms, so that DM need not acquire her target experiment in one shot; instead,
she may sequentially replicate it through a strategy for sequentially acquiring “sub-experiments” that
each may be less informative than her target, but collectively are sufficient for it. We impose no a pri-
ori parametric restrictions on DM’s strategy space.5 DM optimizes over such Sequential Replications
with the goal of minimizing the total expected cost of replicating the target experiment, given her
prior belief.

We pursue two parallel goals: (i) to characterize the information cost functions (i.e., cost func-
tions over experiments and prior beliefs) that capture the second-stage sequential optimization in
“reduced form,” and (ii) for each such “reduced form” cost function, to characterize the “primitive”
cost functions that could have generated it through sequential optimization.

To the first end, call a cost function Sequential Learning-Proof (SLP) if it cannot be reduced by any
two-step Sequential Replication. We show that SLP cost functions are precisely the “fixed points” of
the full sequential optimization process. Thus, they constitute the maximal class that satisfies our
first desideratum: any non-SLP cost function has features that DM would “optimize away,” and is
therefore not “rationalizable.” In this paper, we characterize the full class of SLP cost functions, as
well as particular functions in this class that have additional normatively appealing properties.

To the second end, call the “primitive” cost function that DM uses at each step of the sequential
optimization her Direct Cost. Given any Direct Cost, sequential optimization gives rise to a value
function that we call DM’s Indirect Cost. Every SLP cost function is its own Indirect Cost and, con-
versely, every Indirect Cost is SLP. However, each SLP cost function can be generated from many
Direct Costs: only certain properties of the latter are preserved under optimization. For specific SLP
cost functions that we consider in this paper, we also characterize the full set of Direct Costs that
could have generated them. By imposing minimal assumptions on DM’s Direct Cost and relying on
the “meta-axiom” of optimality to impose discipline on her Indirect Cost, our framework achieves
the robustness demanded by our second desideratum.

Implications for Rational Inattention. Our approach has implications for ongoing debates con-
cerning the rational inattention (RI) model of Sims (1998, 2003), in which the cost of an experiment
is given by the Mutual Information (i.e., expected reduction of Shannon entropy) between the uncer-
tain state and signal. It is well known that Mutual Information approximates the expected length of

5 However, it is important to note that many of our results do not rely on DM having complete flexibility, and extend to the case in
which her strategy space is restricted. We revisit this point throughout the paper.
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an optimally-encoded sequence of bits (i.e., answers to binary yes/no questions) needed to describe
the observed signal; in our language, it is (approximately) the Indirect Cost generated by the specific
Direct Cost that assigns equal cost to all bits.6 As articulated by Sims (2010, p. 161), this founda-
tion renders the RI model a sensible theory of information processing, but not production, costs. It
therefore satisfies only our first desideratum.

Nonetheless, the RI model has become the benchmark theory of costly information in a range of
applications, including some where its information-theoretic foundations have no clear relevance.7

This has led many authors to critique fundamental aspects of the RI model and, towards our sec-
ond desideratum, to propose a number of alternatives to the Mutual Information cost function (e.g.,
Caplin et al. (2019b); Pomatto et al. (2019); Hébert and Woodford (2020a)). A standing issue is
that many of these proposed alternatives, unlike Mutual Information, do not have clear optimality
foundations, and so may violate our first desideratum.

One contribution of this paper is to systematically provide such optimality foundations where
they exist, and to point out where they do not. This facilitates a “meta-commentary” on the three
leading critiques of the RI model — which we call the Prior-Invariance, Returns-to-Scale, and Percep-
tual Distance critiques — that clarifies the extent to which each is consistent with the idea of optimal
information acquisition in various contexts. In doing so, we identify inherent modeling tradeoffs that
applied researchers must confront.

1.2 Overview of Main Results

The paper consists of three main sets of characterization results, beginning with the most general
and ending with the most specific. The first set provides a general characterization of all SLP cost
functions and studies implications thereof. The second set provides optimality foundations for the
(Uniformly) Posterior Separable cost functions that have become the default for modeling flexible
information acquisition in the literature. The third set proposes two specific (Uniformly) Posterior
Separable cost functions that we argue should be used in particular applied settings.

(1) Characterization of SLP and Indirect Costs. Our first set of results characterizes the full class
of SLP and Indirect Cost functions. We show (Theorem 1) that a cost function is SLP if and only it
satisfies two properties: (i) it is increasing in the Blackwell informativeness of an experiment and (ii)
it exhibits Preference for One-Shot Learning. We also show that the Indirect Cost derived from any
Direct Cost is SLP, and hence satisfies these properties.

Property (i) captures DM’s ability to freely dispose of acquired information. Property (ii), Prefer-
ence for One-Shot Learning, characterizes the additional restrictions imposed by sequential optimal-
ity: for any target experiment and prior belief, it is weakly cheaper to acquire information in one shot
than via any two-step Sequential Replication. This latter condition implies that no SLP cost function
is reducible by engaging in mixed strategies (i.e., is Randomizaton Averse), so that every SLP cost is

6 See Cover and Thomas (2006, Ch. 10). The information-theoretic justification for Mutual Information is premised on the idea that
costs can be averaged (or “amortized”) across a large number of independent copies of the same information acquisition problem solved
together in parallel (known as “block coding”). Due to integer problems arising from the indivisibility of bits, Mutual Information only
approximates the minimum expected bit length in any individual problem.

7 All of the papers cited in footnotes 1 and 2 above employ the RI model or generalizations thereof. Additional applications of the RI
model are surveyed in Maćkowiak et al. (2018).
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in the class of “canonical” cost functions that represent optimal one-shot information acquisition (cf.
de Oliveira et al. (2017)). It also implies that every SLP cost function is linear in the probability of
acquiring a given experiment (i.e., is Dilution Linear), which is a key axiom introduced by Pomatto
et al. (2019). However, unlike these two necessary conditions, Preference for One-Shot Learning also
constrains the cost of a given experiment across different priors.

An important implication (Proposition 1) is that, under suitable regularity conditions, no non-
trivial SLP cost function is Prior-Invariant (i.e., independent of DM’s prior belief). A leading critique
of the RI model and many of its generalizations, which we call the Prior-Invariance Critique, is that
the cost of producing (rather than processing) information should be Prior-Invariant.8 The costs of
information production, the argument goes, should not depend on prior beliefs because they corre-
spond to the expenditure of “physical” or monetary resources. Mutual Information and many of its
generalizations fail this criterion. We show that this reasoning relies on the implicit assumption that
DM is constrained to one-shot information acquisition. Without this constraint, the optimal strategy
is generically sequential and, under the criterion of expected cost minimization, naturally depends on
DM’s prior belief, leading to a prior-dependent Indirect Cost.

(2) Foundations for (Uniform) Posterior Separability. Our second set of results provides opti-
mality foundations for the leading generalizations of the RI model. While the literature has moved
beyond the Shannon entropy functional form, it almost universally maintains the assumption that
the cost of information is measured by the expected reduction of some function of posterior beliefs.

Formally, an experiment is a mapping σ : Θ → ∆(S) from states θ ∈ Θ to distributions over
signals s ∈ S. Each prior belief p ∈ ∆(Θ) and experiment σ induce, via Bayes’ Rule, a distribution over
DM’s random posterior belief q ∈ ∆(Θ) denoted by π〈σ |p〉. A cost function C(σ | p) is called Posterior
Separable if for each (full support) prior belief p there exists a convex potential function F(· | p) on
posterior beliefs such that

C(σ | p) = Eπ〈σ |p〉 [F(q | p)−F(p | p)] , (1)

and is Uniformly Posterior Separable (UPS) if the potential function is independent of the prior (Caplin
et al. (2019b)). Mutual Information is the particular UPS cost function for which F(q) =

∑
θ qθ log(qθ),

the negative of Shannon entropy. For reasons of tractability, (Uniformly) Posterior Separable cost
functions have become the default in applied models of flexible information acquisition.

We produce three characterization results: one for the class of Posterior Separable costs, and two
that provide complementary perspectives on the UPS class. They are based on the familiar idea that,
in continuous time, DM can engage in two main types of Sequential Replication: learning by Poisson
signals, which arrive infrequently but are potentially quite informative, and learning via Gaussian
(diffusion) signals, which arrive frequently but are only incrementally informative (cf. Zhong (2019);
Hébert and Woodford (2020b)).9

Lemma 2 characterizes the class of Posterior Separable cost functions as the Indirect Costs aris-
ing from a restricted optimization problem in which DM is constrained to learn via direct Poisson
signals and in which her Direct Cost function is Locally Linear, meaning that the cost of acquiring

8 Versions of this view are expressed by Woodford (2012), Gentzkow and Kamenica (2014), Mensch (2018), Denti et al. (2020), and
Rustichini (2020), among others. Nimark and Sundaresan (2019) and Ravid (2020) explore the importance of Prior-Invariance in economic
applications.

9 Our framework is cast in discrete time, but allows for taking the continuous-time limit.

4



Figure 1: Characterization of (Uniformly) Posterior Separable cost functions.

infrequently-arriving Poisson signals is approximately Posterior Separable. We show that Local Lin-
earity of corresponds to a standard “local continuous directional differentiability” condition on DM’s
Direct Cost. The constraints on DM’s strategy space are necessary, as the Posterior Separable class is
large enough to include many non-SLP functions. However, an implication of this result (Proposi-
tion 2) is that an SLP cost function is Posterior Separable if and only if it is Locally Linear.

By contrast, every UPS cost function is SLP. Indeed, the UPS class is characterized by the prop-
erty of Indifference to Sequential Learning (Lemma 1): for each target experiment and prior belief,
all Sequential Replications are equally costly. How stringent is this requirement? We provide two
complementary perspectives.

We first establish (Theorem 2) that an SLP cost function is UPS if and only if it is Regular, i.e., Lo-
cally Linear with a suitably differentiable Posterior Separable approximation. While not completely
innocuous, Regularity is a relatively mild smoothness assumption that is satisfied by nearly all infor-
mation cost functions commonly used in applications. If one is willing to adopt such assumptions,
then the SLP and UPS classes exactly coincide. The proof of this result generalizes known character-
izations of the family of “Bregman divergences” (cf. Banerjee et al. (2005)).

However, we then show (Theorem 3) that requiring DM’s Indirect Cost to be UPS amounts to
making strong assumptions on her Direct Cost. Formally, a Direct Cost generates a UPS Indirect
Cost if and only if the former exhibits Preference for Incremental Learning (see Figure 1). This im-
poses two requirements on DM’s Direct Cost: for each target experiment and prior belief, (i) it is
cheaper to sequentially replicate with Gaussian diffusion signals than to acquire information in one
shot, and (ii) DM is indifferent among all such Gaussian replications. Our characterization shows
that this limited form of “superadditivity” precisely counteracts the “subadditivity” of Preference
for One-Shot Learning to achieve the global “additivity” that defines the UPS class. An important
consequence of Theorem 3 is that, under Preference for Incremental Learning, DM’s Indirect Cost
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Figure 2: Hierarchy of SLP cost functions.

is completely characterized by a “local quadratic approximation” of her Direct Cost that represents
the cost of an asymptotically uninformative Gaussian experiment. This quadratic approximation is
simple to derive in many cases of interest, facilitating a tractable description of the family of Direct
Costs consistent with a given UPS cost function.

While we view the main contribution of Theorem 3 as establishing the necessity of Preference for
Incremental Learning, it is noteworthy that the sufficiency direction alone implies related results of
Morris and Strack (2019) and Hébert and Woodford (2020b), which partially characterize UPS cost
functions as Indirect Costs arising from more restricted optimization problems (see Subsection 4.6).

An important implication of Theorem 3 is that, generically, no UPS Indirect Cost is Sequentially
Prior-Invariant, i.e., generated by a Prior-Invariant Direct Cost function. We refer to this strength-
ening of the Prior-Invariance Critique as the Sequential Prior-Invariance Critique of the UPS model.
We provide (Proposition 3) necessary and sufficient conditions for a cost function to be both UPS
and SPI: (i) the state space must be binary and (ii) the cost function must be Total Information with
symmetric coefficients. We also characterize the full set of Prior-Invariant Direct Costs that generate
this function.10

(3) Two Specific (and Mutually Exclusive) Proposals. Our final set of results characterizes two
specific (classes of) SLP cost functions — each of which satisfies a different normatively ideal “in-
variance” property — as well as the Direct Costs that generate them (see Figure 2). An important
implication of our characterizations is that these invariance properties are (generically) mutually ex-
clusive — and also inconsistent with the criterion of Sequential Prior-Invariance — so that applied
researchers must necessarily make substantive tradeoffs when modeling costly information acquisi-

10 The two-state symmetric Total Information cost function is precisely the two-state Wald cost function introduced by Morris and
Strack (2019). Proposition 3 can therefore be viewed as the maximal generalization of their Wald cost characterization.
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tion.

(i) Information Production: Total Information and Process-Invariance. How should one model
the cost of producing new information? We propose that the normative ideal is the new Total Infor-
mation cost function

CT I (σ | p) =
∑
θ,θ′

pθγθ,θ′DKL(σθ | σθ′ ), (2)

whereDKL(σθ | σθ′ ) is the Kullback-Leibler divergence between the θ- and θ′-contingent signal distri-
butions, and γθ,θ′ ≥ 0 is a coefficient representing the marginal cost of distinguishing between states
θ and θ′. Theorem 4 characterizes Total Information as the unique SLP cost function with Constant
Marginal Cost: the cost of acquiring two conditionally independent experiments is the same as the
sum of their costs, holding fixed the prior belief.

To understand this condition, note that there are two distinct ways to replicate a target experi-
ment: sequentially or simultaneously. During Sequential Replication, on which we focus, DM condi-
tions her continuation strategy on earlier signal realizations and uses her updated posterior belief
to evaluate her continuation cost. During Simultaneous Replication, by contrast, DM must run all
sub-experiments at once before observing any signals — hence the sub-experiments must generate
signals that are independent conditional on the state — and evaluates the cost of each under the
same prior belief. Simultaneous Replication is common in practice and, when DM’s cost function is
prior-dependent, may be preferable to Sequential Replication.11

Uniform Posterior Separability captures indifference with respect to Sequential Replication, while
Constant Marginal Cost captures indifference with respect to Simultaneous Replication. Theorem 4
also shows that Total Information is UPS, meaning that it is also uniquely Axiom 13: it assigns the
same cost to all replications of any given experiment. Put differently, “merging” or “splitting” exper-
iments does not affect costs: only the totality of information produced, not the process by which it is
acquired, matters.

Notably, special cases of Total Information have been introduced (in the binary-state case) as the
Wald cost of Morris and Strack (2019) and (in the continuous-state limit) as the Fisher Information
cost of Hébert and Woodford (2020a), albeit with substantively different foundations. Our analysis
provides a unified perspective on, and new justification for, these specific proposals.

Our characterization of Total Information formally builds on Pomatto et al.’s (2019) characteri-
zation of the Log-Likelihood Ratio (LLR) cost function, which has a functional form similar to that
of Total Information, satisfies a version of Constant Marginal Cost, and also aims to represent the
cost of information production.12 However, the LLR cost is Prior-Invariant and fails to be SLP. We
argue that the “meaning” of Constant Marginal Cost is fundamentally different when information
can be acquired sequentially than when it is restricted to be one-shot, as is implicit in Pomatto et al.
(2019). In particular, we show that the Indirect Cost generated by the LLR cost function neither has
Constant Marginal Cost nor is UPS; moreover, under suitable regularity conditions, no Direct Cost

11 Most market research, political polling, and A/B testing is conducted via Simultaneous Replication (e.g., each polled voter can be
viewed as drawing a conditionally independent sample). Simultaneous Replication also takes place in firms when information acquisition
is decentralized among multiple employees.

12 The LLR cost function is obtained by replacing each pθγθ,θ′ term in (2) with a prior-independent coefficient βθ,θ′ .
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with Constant Marginal Cost (except for Total Information itself) generates Total Information as its
Indirect Cost.

Instead, we demonstrate that sufficiently flexible optimal information production generally leads
to an Indirect Cost with Decreasing Marginal Cost: costs are not reducible by Simultaneous Repli-
cation. In an extension of our framework, we show that Unrestricted Learning-Proofness (ULP) —
a condition that implies both SLP and Decreasing Marginal Cost — characterizes the class of cost
functions that are robust to both Sequential Replication and Simultaneous Replication.13 Even when
Simultaneous Replication is not permitted, we show that an SLP cost function necessarily has De-
creasing Marginal Cost if it is Prior-Concave (i.e., concave in DM’s prior belief for each fixed exper-
iment), which represents the ability to “freely dispose of already-available information.” For a UPS
cost function, Decreasing Marginal Cost, ULP, and Prior-Concavity are all equivalent properties. To-
tal Information and Mutual Information satisfy these properties, but many commonly-used UPS cost
functions do not; we fully characterize the set of UPS costs that do.

Our analysis speaks to what we call the Returns-to-Scale Critique of the Mutual Information cost
function, which argues that its Decreasing Marginal Cost leads to unreasonable “corner solutions”
in certain information acquisition problems. We contribute by showing that any sufficiently flexi-
ble optimization procedure necessarily results in an Indirect Cost with strictly Decreasing Marginal
Cost, except in the case of Total Information.

(ii) Information Processing: Mutual Information and Compression-Invariance. How should one
model the cost of processing already-available information? We propose that Mutual Information
represents the normative ideal. Theorem 5 characterizes Mutual Information as the unique Bounded
UPS cost function that is either Weakly Compression-Invariant or Compression Monotone; a fortiori, it
is the unique Bounded and Regular SLP cost function satisfying either of these properties. These
conditions capture the idea that DM is able to “freely ignore” aspects of the state space that she finds
“irrelevant.”

For example, suppose DM aims to learn about a political candidate’s platform, which may be left-
, center-, or right-leaning. Weak Compression-Invariance demands that if DM’s target experiment
is informative only about whether the candidate is right-leaning — e.g., it determines whether the
true state is in {l, c} or {r} — then her cost remains the same when prior probability mass is shifted
within the event {l, c}. Intuitively, “splitting” or “merging” the states l and c should not affect DM’s
cost when her (fixed) target experiment already ignores any distinction between them. Compression
Monotonicity demands that learning about “coarser” events is cheaper. In particular, the cost of
running experiment σ given prior p should be no smaller than the cost of running the experiment σ̂
for which σ̂ (s | l) = σ̂ (s | c) = p(l | {l, c}) · σ (s | l) + p(c | {l, c}) · σ (s | c) and σ̂ (s | r) = σ (s | r) given the same
prior. Intuitively, “merging” states l and c while generating the same information (i.e., conditional
signal distributions) about the events {l, c} and {r} should not increase costs; in any decision problem
where l and c are payoff-equivalent, DM should be able to freely ignore any distinction between

13 More precisely, in Appendix A.1 we extend our baseline framework by allowing DM to engage in Unrestricted Replication in which
information is acquired sequentially but she is able to “freely store and recall” previously-acquired information. What we have called
Sequential Replication corresponds to the case of no storage (i.e., all acquired information is “immediately seen”) while Simultaneous
Replication corresponds to the case of full storage (i.e., no acquired information is “seen” until the end of the acquisition process).
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them.14

Notice that Weak Compression-Invariance involves changing the prior while holding the tar-
get experiment fixed, while Compression Monotonicity does precisely the opposite. Caplin et al.
(2019b) have shown that (the revealed-preference analogue to) the combination of these two condi-
tions uniquely pins down Mutual Information within the UPS class. Perhaps surprisingly, Theorem 5
establishes that either condition separately suffices, while also admitting a comparatively elementary
proof that elucidates the connection between these conditions and a “recursivity” property known to
characterize Shannon entropy (e.g., Fadeev (1956)). We also provide optimality foundations for these
conditions through an augmented optimization problem for DM in which she can freely “pre-garble”
the state in certain ways before running an experiment, as envisioned by Shannon (1958) and is im-
plicit in information-geometric notions of “invariance” (e.g., Amari (2016)). We show how allowing
for richer forms of pre-garbling gives rise to stronger notions of “compression invariance,” including
that considered by Caplin et al. (2019b). Our analysis speaks to the prominent Perceptual Distance
Critique of the Mutual Information cost function, which argues that its implication that it is equally
costly to distinguish between “nearby” states (e.g., l and c in the above example) and “distant” states
(e.g., l and r) runs counter to experimental evidence on human perception and choice.

Outline. The rest of the paper is organized as follows. We survey related literature in Subscetion
1.3. Section 2 presents the framework. Section 3 presents our general characterizations of SLP and
Indirect Cost functions. Section 4 presents our characterization results for (Uniformly) Posterior
Separable cost functions. Sections 5 and 6 present our characterizations of, respectively, Total Infor-
mation and Mutual Information. Section 7 discusses applications and concludes. All omitted proofs,
and a number of omitted results, are contained in the appendices.

1.3 Related Literature

Sequential Sampling Foundations for Cost of Information. As noted above, two related papers,
Morris and Strack (2019) and Hébert and Woodford (2020b), share our focus on providing micro-
foundations for information cost functions as reduced form representations of the expected cost of
optimal sequential sampling. We discuss the relation between these papers and ours in depth in
Subsections 4.6 and 5.2.1.

Axiomatic Foundations for Cost of Information. Several recent papers characterize information
cost functions using normatively appealing axioms. Mensch (2018) and Denti et al. (2020) develop
general theories of Prior-Invariant cost functions, which we show are not SLP. Hébert and Wood-
ford (2020a) characterize a subclass of UPS cost functions called “neighborhood-based” costs with
a set of axioms capturing the idea that “nearby” states are more costly to distinguish that “distant”
states.15 In the continuous-state limit, they show that these cost functions converge to the Fisher
Information cost function, which they propose as an alternative to Sims’ (2003) Mutual Information
cost function. As discussed more fully in Subsection 5.2.1, our Total Information cost function is in

14 Such “pre-garbling” of states does not generally lead to a Blackwell ranking between the experiments σ and σ̂ .
15 Walker-Jones (2020) presents a different axiomatization for a subclass of neighborhood-based cost functions by suitably relaxing the

Shannon (1948) axioms for entropy.
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the neighborhood-based class and generalizes the Fisher Information cost function. Finally, as noted
above, our Total Information cost function is closely related to the LLR cost function introduced by
Pomatto et al. (2019), which is Prior-Invariant and therefore not SLP; our analysis of sequential infor-
mation acquisition leads to a significant re-interpretation of their key Constant Marginal Cost axiom.
We discuss the relation to their paper in depth in Subsection 5.

Dynamic Information Acquisition. Our focus on sequential cost-minimization connects our paper
to the literature that studies the optimal way to dynamically acquire information before taking an
action. However, the goals and methods of this paper differ fundamentally from those of that litera-
ture. While we characterize the implications of sequential optimization for “reduced form” Indirect
Cost functions in settings without delay or discounting costs, that literature aims to explicitly char-
acterize optimal learning dynamics in the presence of time costs and, often, subject to restrictions on
DM’s feasible set of sampling strategies.

In the seminal “sequential sampling” framework of Wald (1945, 1947) and Arrow et al. (1949),
DM controls only the duration of learning by deciding when to stop observing conditionally inde-
pendent draws from a fixed experiment, each with equal cost. In an extension of that framework,
Moscarini and Smith (2001) allow DM to dynamically control the speed of learning by paying a cost
to improve the precision of conditionally independent Gaussian signals. Recent work has studied
settings in which DM dynamically controls the direction of learning by, for instance, choosing the
skewness of Poisson experiments in a binary-state setting (Che and Mierendorff (2019)).16 Woodford
(2016), Zhong (2019, 2017), and Hébert and Woodford (2020b) are closest to the present paper in the
sense that they endow DM with near complete flexibility in her choice of sequential strategy. How-
ever, in contrast to our work, these papers assume that DM’s Direct Cost is derived from a (Uniformly)
Posterior Separable cost function and focus on providing detailed characterizations of the optimal
learning dynamics generated by time discounting, additive delay costs, constraints on the speed of
learning, or inter-temporal cost smoothing (when the Direct Cost is convex in the underlying UPS
measure).17

Revealed Preference. A burgeoning literature characterizes the testable implications of theories
of costly information acquisition using a revealed preference approach. These studies take the per-
spective of an analyst who observes DM’s choice behavior in various decision problems but not her
information acquisition strategy or cost function, which must be identified from choice behavior.
Caplin and Dean (2015) and de Oliveira et al. (2017) characterize behavior that is consistent with
some “canonical” (i.e., Blackwell monotone and Randomizaton Averse) cost function, and show that
a unique such cost function can be identified from sufficiently rich choice data.18 Bloedel (2020a)
characterizes behavior that is consistent with optimal dynamic information acquisition when the

16 Other recent contributions in this vein allow DM to dynamically control which dimension of the state to learn about in settings with a
2×2 state space (Nikandrova and Pancs (2018); Mayskaya (2019); Ke and Villas-Boas (2019)), which of multiple sources to sample from in
a multi-dimensional Gaussian setting (Liang et al. (2020, 2019); Liang and Mu (2020)), or the order in which to consult different sources
in a sequential search setting (Doval (2018)).

17 Without these additional features, DM would be indifferent among all sequential strategies given a UPS Direct Cost. Steiner et al.
(2017) and Ravid (2019) study models in which DM has a Mutual Information Direct Cost function, but in which nontrivial dynamics
emerge because the payoff-relevant state evolves over time.

18 See also Dillenberger et al. (2014), Lu (2016), Ellis (2018), Lin (2018), and Chambers et al. (2019) for related analyses.
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analyst observes both final choices and decision times and, in contrast to the present paper, DM’s
feasible set of experiments need not be separable across time periods and delay can be intrinsically
costly. Most related to the present paper are Denti (2020), de Oliveira (2019), and Caplin et al.
(2019b), which characterize choice behavior that is consistent with DM having a (Uniformly) Pos-
terior Separable cost function. The latter two papers also characterize the Mutual Information cost
function within this class.

The revealed preference approach, which places experimentally testable axioms on DM’s observ-
able choice behavior, is complementary to our approach, which places (not directly testable) axioms
derived from optimality principles directly on DM’s cost function. In particular, the methods of anal-
ysis in this paper are almost completely distinct from those of the revealed preference literature, and
our characterization theorems elucidate complementary aspects of the cost functions under study.

Axiomatic Foundations for Mutual Information. In addition to the work of Caplin et al. (2019b),
which motived our characterization of Mutual Information, several other papers provide foundations
for this cost function based on related notions of “compression” of states. Tian (2019) introduces a
“distraction free” axiom that is equivalent to our notion of Compression Monotonicity and proves
that any Bounded UPS cost function must be Mutual Information, analogous to the equivalence of
points (ii) and (iii) in our Theorem 5. Within information geometry, the work of Jiao et al. (2014a,
2015b) is closest to the equivalence of points (i) and (iii) in our Theorem 5. Bloedel and Segal (2020),
Angeletos and Sastry (2019), and Hébert and La’O (2020) study the implications of these axioms in
economic applications. See Subsection 6.3 for further discussion.

Value of Information. While this paper studies the cost of information, a complementary line of
work studies the (instrumental) value of information for a Bayesian expected utility maximizer. The
most closely related papers characterize value functions over experiment-prior pairs that represent
the expected utility gain (relative to having no information beyond her prior belief) that DM achieves
in a given decision problem by observing the experiment’s signal. When the decision problem that
DM faces is permitted to vary with her prior belief, the class of such value functions consists precisely
of the Bounded Posterior Separable functions (Azrieli and Lehrer (2008)).19 When the decision prob-
lem is fixed independently of DM’s prior belief, the class of such value functions consists precisely of
the Bounded UPS functions. Thus, perhaps surprisingly, (Uniformly) Posterior Separable functions
can be derived as measures of either the value or the cost of information. However, there is a critical
distinction: the structure of expected utility preferences implies that value functions for information
are necessarily Posterior Separable while, as our analysis shows, the Indirect Cost of information is
only Posterior Separable under additional conditions. We discuss this distinction, and an application
of our results to the value of information, in Appendix K.

19 See also Mensch (2018), which obtains an equivalent characterization, and Gilboa and Lehrer (1991), which obtains a similar charac-
terization restricted to the class of partitional information structures. Jakobsen (2020) extends the Azrieli and Lehrer (2008) representa-
tion to settings where, as in Sender-Receiver games, the acquirer and user of information may have different preferences and prior beliefs.
Cabrales et al. (2013) show that Mutual Information characterizes the value of information in a class of financial investment problems.
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2 Framework

This section introduces our main framework. We first present model primitives in Subsection
2.1. In Subsection 2.2, we then introduce the model of sequential cost-minimization. Finally, in
Subsection 2.3 we discuss the role of various model assumptions.

2.1 Primitives

States and Beliefs. A Bayesian decision-maker (DM) acquires information about an uncertain state
θ drawn from a finite state space Θ. Generic states are denoted θ,θ′ ∈ Θ. Let ∆(Θ) and ∆◦ :=
int(∆(Θ)) denote, respectively, the sets of all and full-support probability measures on Θ (or beliefs).
We will let p denote DM’s prior belief and let q denote her posterior belief (conditional on having
observed some information).

Experiments. Following Blackwell (1951), we model DM as acquiring information in the form of
experiments 〈S,σ〉, where S is a Polish signal space and σ : Θ → ∆(S) is a measurable map.20 Let
σθ ∈ ∆(S) denote the distribution of signals conditional on state θ. We will frequently suppress an
experiment’s signal space, denoting 〈S,σ〉 simply by σ .

An experiment σ is bounded if (i) the conditional signal distributions {σθ}θ∈Θ are mutually ab-
solutely continuous, and (ii) there exists a constant B > 0 such that the Radon-Nikodym derivatives
dσθ
dσθ′
∈ [1/B,B] for all θ,θ′ ∈ Θ. In other words, a bounded experiment does not definitively rule

out any state and, moreover, has uniformly bounded likelihood ratios. Unless otherwise noted, we
henceforth restrict attention to bounded experiments. Let E denote the collection of all experiments
and let Eb ⊂ E denote the collection of bounded experiments.

Posterior Distributions. When DM observes the signal drawn from an experiment, she updates her
prior belief to its Bayesian posterior. Thus, from the ex ante perspective before a signal is drawn, DM’s
posterior belief is a random variable. Let q̃ ∼ π〈σ |p〉 denote the random posterior belief induced by
experiment σ and prior p, and call its distribution π〈σ |p〉 ∈ ∆ (∆(Θ)) the induced posterior distribution
(which is short for “distribution over posterior beliefs”). It is well known that, given prior belief
p ∈ ∆(Θ), the posterior distribution π is induced by some experiment (i.e., there exists some σ ∈ E
such that π = π〈σ |p〉) if and only if π ∈ Π(p) := {π ∈ ∆∆(Θ) : Eπ [q̃] = p}, meaning that the random
posterior q̃ averages to the prior p. Let Π :=

⋃
p∈∆Π(p) denote the set of all posterior distributions.

Given a full-support prior belief p ∈ ∆◦, it is easy to see that the experiment σ is bounded if and
only if the induced posterior distribution satisfies supp

(
π〈σ |p〉

)
⊆ ∆δ := {q ∈ ∆ | qθ ≥ δ ∀θ} for some

δ > 0. Let Πδ := {π ∈Π | supp(π) ⊆ ∆δ}. Then Πb :=
⋃
δ>0Πδ denotes the set of posterior distributions

that are inducible by some bounded experiment and full-support prior.
We endow Π with the weak∗ topology, rendering it a compact and separable topological space.

The subsets of Π defined above are endowed with the appropriate relative topologies. Convergence
of a sequence {π(n)}n∈N ⊂Π to the limit point π∗ in this topology is denoted by π(n)→w∗ π∗.

20 A topological space is Polish if it is separable and completely metrizable. We restrict attention to Polish signal spaces without appre-
ciable loss of generality in order to ensure that DM’s posterior beliefs are well-defined in the sense of “regular conditional probabilities.”
A Polish signal space S will always be endowed with its Borel sigma-algebra.
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Cost Functions. An (information) cost function is a map C : Eb ×∆◦ → R+ satisfying the following
conditions:

(i) If σ and τ are Blackwell equivalent, then C(σ | p) = C(τ | p) for all p ∈ ∆◦.
(ii) If σ is uninformative,21 then C(σ | p) = 0 for all p ∈ ∆◦.

(iii) Let {(σ (n),p(n))}n∈N be a sequence of experiment-prior pairs inducing posterior distributions
π(n) := π〈σ (n)|p(n)〉. If π(n) →w∗ π∗ and there exists some δ > 0 such that {π(n)}n∈N ⊂ Πδ, then
C(σ (n) | p(n))→ C(σ ∗ | p∗), where π∗ = π〈σ ∗|p∗〉.

Let C denote the set of information cost functions. Note that cost functions are only defined
(and finite-valued) for bounded experiments and full-support priors. The first two points of this
definition are standard. Point (i) means that the cost of an experiment is fully determined by its
information content (and DM’s prior belief). This is without loss of generality when experiments
are chosen optimally. Point (ii) means that DM has the option to “do nothing,” which has zero cost.
It also implies that DM has free access to mixed strategies, since the outcome of an uninformative
experiment can always be used as a randomization device.

Point (iii) is a continuity condition. A standard way to define continuity for information cost
functions is via weak∗ continuity of the induced cost function over posterior distributions Ĉ : Πb →
R+ defined by Ĉ

(
π〈σ |p〉

)
:= C(σ | p) (which is well-defined by point (i)).22 However, this notion of

continuity is too strong for our purposes, as it is violated by important classes of unbounded cost
functions (see Subsection 2.4 below). The weaker continuity condition in point (iii) of the above
definition allows us to accommodate such cost functions.

2.2 Sequential Replication and Optimality

We model information acquisition as a two-stage process. In the first stage, DM decides what to
learn, modeled as the choice of a target experiment to acquire. However, DM does not need to acquire
this target experiment in one shot. Instead, in the second stage, she chooses the optimal way in which
to acquire this target experiment through a strategy that sequentially replicates it: DM may sequentially
acquire “sub-experiments” that are each less informative than her target experiment, but collectively
are sufficient for it. In this subsection, we present two notions of what it means for an information
cost function to be “rationalizable” with respect to sequential information acquisition of this form.
(Per Theorem 1 below, these two notions are equivalent, but will be independently useful in the
sequel.)

Sequential Learning-Proofness. The first notion of “rationalizability” states that the cost of ac-
quiring a given experiment should not be reducible in expectation by acquiring information in two
steps rather than one. We formalize this a fixed-point condition that a cost function must satisfy.

Given (Polish) signal spaces S ′ ,S ′′, define a two-step sequential experiment as an experiment σ ′′∗σ ′ :
Θ→ ∆(S ′ × S ′′) with marginal distribution σ ′(· | θ) := margS ′ [σ

′′ ∗ σ ′] (· | θ) and conditional marginal

21 That is, σ (· | θ) = σ (· | θ′) for all θ,θ′ ∈Θ or, equivalently, the induced posterior distribution satisfies π〈σ |p〉 = δp for all p ∈ ∆(Θ).
22 Perhaps the most natural way to define continuity is to use the weak∗ topology on E in the following sense: C(σn | p) → C(σ | p)

whenever the experiments {σn} and σ have the same (Polish) signal space S, and σn(· | θ)→w∗ σ (· | θ) for all θ ∈Θ. However, as discussed
by Torgersen (1991, p. 401) and Denti et al. (2020), this continuity requirement is much stronger than weak∗ continuity with respect to
the induced posterior distributions.
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distributions σ ′′s′ (· | θ) := [σ ′′ ∗ σ ′] (· | θ,s′) ∈ ∆(S ′′). Intuitively, σ ′′ ∗ σ ′ represents a two-step sequential
information acquisition strategy where DM first acquires σ ′ and then, conditional on the realized
signal s′, acquires a second experiment σ ′′s′ . At the end of this process, she observes the tuple of
realized signals (s′ , s′′).

Definition 1 (SLP). Cost function C is Sequential Learning-Proof (SLP) if C = ΨC where ΨC : Eb ×
∆◦→R+ is defined by

Ψ (C)(σ | p) := inf
σ ′′∗σ ′%Bσ

C(σ ′ | p) +E〈σ ′ |p〉
[
C (σ ′′s̃′ | q(· | s̃′))

]
(SLP)

Thus, a cost function is SLP if, and only if, it is weakly cheaper (in expectation) to acquire exper-
iment σ in one shot than it is to acquire any two-step sequential experiment σ ′′ ∗ σ ′ that is at least as
informative as σ . This formulation implicitly builds in the assumption that any “extra” information
contained in σ ′′ ∗ σ ′ but not in σ can be freely discarded. Let CSLP denote the set of all SLP cost
functions.

The Direct and Indirect Cost of Information. The second notion of “rationalizability” states that
the “reduced form” cost of information should represent the expected cost-minimizing way to repli-
cate a given experiment when DM is able to optimize over any sequential information acquisition
strategy. We first describe DM’s strategy space, which is completely flexible: she has access to any
sequential information acquisition strategy, including one-shot learning, randomization, and free
disposal of acquired information. We formalize sequential information acquisition as follows:

Definition 2 (Sequential Replication). For T ∈ N, length-2T Sequential Replication of the target
experiment σ consists of:

(i) A collection of (Polish) signal spaces {St}2Tt=1 satisfying S2t−2×S2t−1 ⊆ S2t (and where S0 is singleton),

(ii) A collection of (even period) measurable maps σ (2t) : S2t ×Θ→ ∆(S2t+1), and

(iii) A collection of (odd period) measurable maps γ (2t+1) : S2t × S2t+1→ ∆(S2t+2),

such that σ is Blackwell equivalent to the experiment σR : Θ→ ∆(S2T ) for which σR(· | θ) is defined as the
marginal distribution on S2T of

T−1∏
t=0

σ (2t)(s2t+1 | s2t ,θ)γ (2t+1)(s2t+2 | s2t+1, s2t).

Definition 2 describes a sequential information acquisition process in which information is ac-
quired in even periods (i.e., s2t+1 “adds” information about θ to s2t) and can be disposed of odd
periods (i.e., s2t+2 “discards” information from (s2t+1, s2t)). Point (ii) states that, conditional on ob-
serving the non-discarded information contained in signal s2t, DM acquires the experiment σ (2t)

s2t :

Θ → ∆(S2t+1) defined by σ (2t)
s2t (· | θ) := σ (2t)(· | s2t ,θ). Point (iii) states that, conditional on the non-

discarded information contained in s2t and the newly acquired information contained in s2t+1, DM
“garbles” this information into s2t+2 according to the map γ (2t+1). Point (i) requires that the signal
spaces be nested, which is a richness condition ensuring that it is feasible to choose full memory, i.e.,
let all of the garblings γ (2t+1) be fully informative. Under full memory, we may re-index time peri-
ods to get rid of the disposal rounds and recover the standard definition of a sequential (Blackwell)
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experiment (Greenshtein (1996)). We discuss the role of free disposal of information in Subsection
Section 2.3 below.

The final condition in Definition 2 requires that σR, the conditional distributions over terminal
signals s2t induced by this sequential process, must be Blackwell equivalent to the target experiment
σ . That is, the sequential process must precisely replicate the information contained in the target
experiment. Let 〈σ ,γ〉⇀ σ be shorthand notation for a Sequential Replication (of any length 2T ) of
target experiment σ .

We now describe DM’s cost of information. DM has a Direct Cost function C that represents her
“primitive” technology for acquiring information; we do not impose any assumptions on C other
than requiring that it is a well-defined cost function. If she acquires information in one shot, the
cost is determined by C. If she acquires information via a Sequential Replication, the C serves as
the “flow cost” for each (even period) acquisition round, while the (odd period) disposal rounds are
free. The expected cost of optimally acquired information is represented as an Indirect Cost function
defined as follows:

Definition 3 (Indirect Cost). Cost function C∗ is the Indirect Cost generated by the Direct Cost function
C if C∗ = ΦC, where ΦC is defined by23

ΦC(σ | p) := inf
〈σ ,γ〉

E〈σ ,γ |p〉

T−1∑
t=0

C
(
σ

(2t)
s̃2t

∣∣∣∣ q(· | s̃2t)
) (IC)

s.t. 〈σ ,γ〉⇀σ.

Definition 3 states that ΦC(σ | p) is the minimum expected cost of Sequentially Replicating the
target experiment σ ∈ Eb when the prior belief is p ∈ ∆◦ (implicit in the program (IC) is that DM
optimizes over the length 2T of Sequential Replications). Note that, while ΦC(σ | p) is a well-defined
non-negative number, it is not a priori clear that the mapping ΦC : Eb ×∆◦→ R+ constitutes a well-
defined cost function in the sense of Subsection Section 2.1 (which requires continuity, among other
things). Thus, Definition 3 requires that ΦC be a well-defined cost function as part of the definition
of Indirect Cost. Nonetheless, Theorem 1 below will establish that this additional qualifier is not
needed: under our assumptions, ΦC is, in fact, a well-defined cost function.

Remark 1. Note that the two-step operator Ψ used to define SLP cost functions corresponds to mini-
mization over Sequential Replications with T = 2, and with free disposal of information only in the ter-
minal period. In particular, given target experiment σ , sequential experiment σ ′′ ∗ σ ′ %B σ corresponds
to the Sequential Replication in which (i) S1 = S2 = S ′, S3 = S ′′, and S4 = S ′ × S ′′, (ii) σ (0) = σ ′ and
σ (2)(· | θ,s′) = σ ′′s′ (· | θ), and (iii) γ (1) is fully informative while γ (3) discards the information in σ ′′ ∗ σ ′

that is superfluous for σ . The operator Φ can be equivalently defined by iterating on the Ψ operator (i.e.,
namely, Φ = limT→∞Ψ T ), yielding an equivalent “recursive” characterization of Indirect Cost functions.

2.3 Discussion of Assumptions

Before proceeding with the analysis, we briefly discuss some important aspects of the model
formulation.

23 We implicitly assume in (IC) that C(σ | p) = +∞ whenever σ < Eb , so that only Sequential Replications with bounded experiments in
each acquisition round are feasible at finite cost. Also, in (IC), the expectation operator E〈σ ,γ |p〉 is that induced by the joint probability
measure over states and paths of signals induced by prior p ∈ ∆◦ and Sequential Replication 〈σ ,γ〉⇀σ .
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Cost of Sequential Replication. Our most substantive assumptions concern the cost of Sequential
Replication in (IC), which specifies that (i) the total cost is additively separable across periods, (ii)
there is no intrinsic cost to delay (either in form of additive time costs or time discounting), and (iii)
the cost of information is additively separable from its value (in any un-modeled decision problem
in the background). Assumption (iii) is standard — and also necessary to develop a theory of the cost
of information separately from a theory of its value — so we do not comment on it further.

Assumption (i) is standard in economic and statistical models of sequential information sam-
pling. It also allows for a straightforward comparison between Direct and Indirect Cost cost func-
tions, since they are defined over the same domain of (static) experiments. While one could envision
an alternative formulation in which the cost of Sequential Replication is determined by a (potentially
non-additively separable) cost function over sequential Blackwell experiments, without substantive
assumptions on this cost function the model would have very little predictive power for the Indirect
Cost of information (see Appendix K).

One very literal interpretation of assumption (ii) is that our framework is best suited to settings
in which (a) each round of Sequential Replication corresponds to negligibly short period of “calen-
dar time” and (b) all information is gathered before DM makes a one-time decision. Environments
satisfying these criteria include the experiments on human attention and perception considered in
the mathematical psychology and neuroeconomics literatures, in which information is gathered over
the course of seconds, and the consumer search settings considered in economics and marketing, in
which information is gathered over the course of minutes. However, our favored interpretation of
the framework is much broader. We view Sequential Replication simply as a way to formalize the
idea that information can be acquired in a piecemeal fashion, which is arguably realistic in a wide
range of economic environments — including those that do not fit the above criteria. In this view,
assumption (ii) represents the idealized “frictionless limit” in which DM is not constrained to acquir-
ing information at any particular rate relative to the passage of calendar time, while intrinsic delay
costs would amount to assuming that DM’s strategy space is more restricted in this respect.24 See
Appendix K for a discussion of how our results would change if we were to include additive delay
costs or discounting.

Domain of (Direct) Costs. We assume that cost functions are finite-valued at all bounded experi-
ments and full-support priors. This captures the idea that DM is not a priori restricted to a specific
parametric class of experiments, and so has (essentially) full flexibility in what to learn. However, we
do not require that cost functions be finite-valued — or even well-defined — at unbounded experi-
ments or partial-support priors. There are two reasons for this restriction. First, it allows for a unified
treatment of a very general class of cost functions, including those — such as Total Information and
the LLR cost — that are infinite-valued at the fully informative experiment.25 Second, it allows us to
sidestep the question of how to assign costs starting from partial-support priors, in which case it is
not clear whether costs should be determined by the experiment itself or by the posterior distribu-

24 For instance, Hébert and Woodford (2020b) study a model that is related to ours but, motivated by experiments on human perception,
in which DM is explicitly restricted to acquiring information gradually and pays a delay cost that is linear in the amount of time spent
acquiring information. The idea of studying “frictionless limits” in which actions can be taken frequently with respect to calendar time
and discounting vanishes is familiar from the theory of bargaining, renegotiation, and repeated games.

25 As discussed in Appendix K, all of our results naturally extend, with minor technical qualifications, to larger domains of experiments.
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tion that it induces, with the latter convention tacitly assuming that learning about zero-probability
states has zero cost.26 While some authors have argued that these two modeling conventions are
inherently at odds (e.g., Denti et al. (2020)), we believe that there are compelling reasons to adopt
either one depending on the context. By restricting to bounded experiments and full-support priors,
we are ensured that DM’s posterior beliefs will always have full support, even when information is
acquired in multiple rounds.

Flexibility of Sequential Replication. Our definition of Sequential Replication endows DM with
essentially complete flexibility in designing her sequential strategy; in particular, it does not restrict
to her to any parametric class of sampling strategies, such as those comprised only of Gaussian or
Poisson experiments (cf. Subsections 3.3.2 and 4.4). While our assumptions on cost functions ensure
that DM has full flexibility in what to learn, this assumption on her strategy space captures the idea
that she also has full flexibility in how to acquire the information she chooses to learn. This allows
us to derive predictions that are robust to such restrictions: any SLP cost function function will
remain as such even if such restrictions are imposed. That said, restrictions on the feasible set of
experimentation strategies can be (partially) encoded into the Direct Cost function itself by making
certain types of experiments prohibitively expensive.27 Moreover, some of our results remain valid
even when the strategy space itself is restricted; we note where this is the case throughout the paper.
On the other hand, in Sections 5 and 6 we enlarge DM’s strategy space even further and show how
additional margins of optimization impose further structure on her Indirect Cost.

Free Disposal. Notably, the definition of Sequential Replication also allows for free disposal of
acquired information, both during (in odd periods t < 2T − 1) and at the end of (in period 2T − 1)
the acquisition process. Similarly, the definition of SLP cost functions allows for free disposal at
the end of the two-step acquisition process. These assumptions play two roles. First, allowing for
disposal during the acquisition process allows us to accommodate Direct Cost functions that are
non-monotone (in the sense of Axiom 1 below). Second, allowing for disposal at the end guarantees
that DM’s feasible sets are nested with respect to the Blackwell order: each Sequential Replication of
experiment σ is also a valid Sequential Replication of any less informative experiment σ ′ 4 σ . This is
a standard assumption in models of one-shot information acquisition but takes on added significance
in our sequential model, in which DM may want to acquire “superfluous information” that will be
discarded in some later period.

There are two reasons for this. First, when the Direct Cost is prior-dependent — in particular,
concave in the prior belief (see Subsection A.1.3) — DM may have an intrinsic preference for superflu-
ous information because it decreases her continuation costs holding her continuation strategy fixed.
Second, even when the Direct Cost is independent of the prior (see Subsection 3.4), she may have
an instrumental preference for superfluous information because, by providing more information to
condition on, it allows her access to more (and sometimes cheaper) continuation strategies. The latter
phenomenon is illustrated in Appendix K. One might conjecture that it cannot arise when the Direct

26 For instance, when p = δθ puts full mass on state θ, all experiments induce the degenerate posterior distribution π = δp . Therefore,
in the latter convention, C(· | δθ) ≡ 0. Subsection 3.4 discusses implications of this property.

27 Examples of this appear in Proposition 2 and Theorem 3, which provide conditions on the Direct Cost function under which the
optimal Sequential Replication resembles the acquisition of, respectively, Poisson and Gaussian diffusion signals.
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Cost is monotone with respect to the Blackwell order, but the issue is that even then DM’s induced
cost function over sequential experiments (i.e., Sequential Replications) is generally not monotone
with respect to the sequential Blackwell order (Greenshtein (1996)).

2.4 Specific Cost Functions

Three cost functions play especially important roles in our analysis. Each is based on the notion
of Kullback-Leibler (KL) divergence between probability distributions. Given any (Polish) space X
and probability measures µ,ν ∈ ∆(X), the KL divergence from µ to ν is defined as the expected log-
likelihood ratio

DKL(ν | µ) :=
∫
X

log
(
dν
dµ

(x)
)
dν(x) (KL)

wherever this expression is well-defined and finite.
The first is the familiar Mutual Information cost function on which Sims’ (2003) rational inatten-

tion model of information processing is based, and which has since become widespread in economic
applications of costly information acquisition.

Definition 4 (Mutual Information). The Mutual Information cost function CMI : Eb × ∆◦ → R+ is
defined by

CMI (σ | p) :=
∑
θ

pθDKL (σθ | σ ◦ p) (MI)

= E〈σ |p〉 [H(p)−H(q̃)]

where σ ◦ p ∈ ∆(S) denotes the marginal distribution of signals [σ ◦ p] (·) :=
∑
θ pθσ (· | θ), and H(p) :=

−
∑
θ pθ log(pθ) is Shannon entropy.

Thus, the Mutual Information cost function is defined as the expected KL divergence from the
unconditional distribution of signals to the state-contingent distributions. It is easy to see that Mu-
tual Information depends on DM’s prior belief, which partially determines the unconditional signal
distribution. It is well known that this definition is equivalent to the expected reduction of Shannon
entropy.

The second cost function is the Log-Likelihood Ratio (LLR) cost function recently introduced by
Pomatto et al. (2019) as a cost function for information production.

Definition 5 (LLR). The Log-Likelihood Ratio (LLR) cost function is the Prior-Invariant functionCLLR :
Eb→R+ is defined by

CLLR(σ ) :=
∑
θ,θ′

βθ,θ′DKL
(
σθ | σ ′θ

)
(LLR)

= E〈σ |p〉 [G(q̃ | p)−G(p | p)]

for some vector β ∈R|Θ|(|Θ|−1)
+ of discrimination coefficients, where G(q | p) :=

∑
θ,θ′

qθ
pθ
βθ,θ′ log

(
qθ
qθ′

)
.

The third cost function, which is new to this paper, is a particular prior-dependent variant of the
LLR cost function.
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Definition 6 (Total Information). The Total Information cost function CT I : Eb×∆◦→R+ is defined by

CT I (σ | p) :=
∑
θ

pθ

∑
θ′
γθ,θ′DKL

(
σθ | σ ′θ

) (TI)

= E〈σ |p〉 [G(q̃)−G(p)]

for some vector γ ∈R|Θ|(|Θ|−1)
+ of discrimination coefficients, where G(p) :=

∑
θ,θ′ pθγθ,θ′ log

(
pθ
pθ′

)
.

We discuss the relationship between Total Information and the LLR cost functions further in
Section 5. Special cases of Total Information include the Wald cost function of Morris and Strack
(2019) and the Fisher Information cost function of Hébert and Woodford (2020a).

3 Characterization of SLP and Indirect Cost Functions

In this section, we characterize the full classes of SLP and Indirect Cost functions. Subsection
3.1 presents the main characterization result. Subsection 3.2 then presents leading examples of SLP
cost functions. Finally, Subsections 3.3 and 3.4 present implications of the main characterization
theorem.

3.1 Characterization

Axioms. We present the two axioms that will be used below to characterize the SLP and Indirect
Cost functions. The first axiom is standard:

Axiom 1 (Blackwell monotone). C is Blackwell monotone if C(· | p) is non-decreasing in the Blackwell
order for all priors p ∈ ∆◦.

Axiom 1 states that acquiring more informative experiments is weakly more costly. In the context
of one-shot information acquisition, it is easy to see that DM never benefits from free disposal of
information if and only if her cost function is Blackwell monotone.

The second axiom, which is new, captures the restriction imposed by sequential optimality:

Axiom 2 (Preference for One-Shot Learning). C exhibits Preference for One-Shot Learning if

C(σ | p) ≤ C(σ ′ | p) +E〈σ ′ |p〉
[
C (σ ′′s̃′ | q(· | s̃′))

]
(POSL)

for all σ ′′ ∗ σ ′ ∼B σ and p ∈ ∆◦.

Axiom 2 states that it is cheaper (in expectation) to acquire all information at once rather than
in two steps, without free disposal.28 Mutual Information is the most well-known cost function
that exhibits Preference for One-Shot Learning. As discussed in Subsection 3.2 below, Axiom 2 is
also satisfied by Total Information and, more broadly, by the “uniformly posterior separable” cost
functions used in the rational inattention literature.

28 If the target experiment σ in (POSL) were fully informative, Preference for One-Shot Learning would formally resemble the “prefer-
ence for one-shot resolution of uncertainty” axiom from Dillenberger (2010) and Dillenberger and Raymond (2020) (see also the “pref-
erence for clumped information” condition from Köszegi and Rabin (2009)). However, those papers study the intrinsic (i.e., decision-
irrelevant) value of information for a DM with non-expected utility preferences, so there is little conceptual connection to these properties.
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Characterization Theorem. The following result characterizes the full classes of SLP and Indirect
Cost functions:

Theorem 1. For cost function C∗, the following are equivalent:

(i) C∗ is SLP, i.e., C∗ = ΨC∗.

(ii) C∗ is its own Indirect Cost, i.e., C∗ = ΦC∗.

(iii) C∗ is Blackwell monotone and exhibits Preference for One-Shot Learning.

Moreover, given any Direct Cost C, the Indirect Cost C∗ = Φ(C) is a well-defined cost function and is SLP.
Thus, Φ (C) = CSLP .

Proof. See Appendix C.

Theorem 1 has three takeaways. First, the equivalence of points (i) and (ii) means that SLP cost
functions are, in fact, fixed points of the full sequential minimization process, i.e., not reducible in
expectation by any Sequential Replication. This justifies our focus on SLP cost functions. It is also
natural: any Sequential Replication can be decomposed into a sequence of two-step replications.
Second, point (iii) gives the analyst a way to check whether a given cost function is SLP or not. We
explore further implications of these axioms in Subsections 3.2–3.4 below. Third, Theorem 1 also
establishes that sequential minimization of any Direct Cost generates a well-defined Indirect Cost
function that is SLP. Henceforth, we therefore treat SLP and Indirect Cost functions interchangeably.

3.2 Examples of SLP Cost Functions

Theorem 1(iii) gives us a way to verify whether a given cost function is SLP. Here, we use this
characterization to present examples of SLP cost functions that will be referenced throughout the
paper.

3.2.1 Uniform Posterior Separability

The most important subclass of SLP costs are the “uniformly posterior separable” cost functions
used in the rational inattention literature, which have become the default modeling tool in many
economic applications of costly information acquisition (Caplin et al. (2019b)) and which are studied
in detail in Section 4 below.

Definition 7 (UPS). Cost function C is Uniformly Posterior Separable (UPS) if there exists a convex
potential function F : ∆◦→R such that29

C(σ | p) = E〈σ |p〉 [F(q̃)−F(p)]

for all σ ∈ Eb and p ∈ ∆◦.
29 Convexity of the potential function implies that every UPS cost function is Blackwell monotone. The potential function is unique up

to translation by affine functions, i.e., F(q) represents C if and only if F(q) + g(q) does as well, where g : ∆◦→R is affine.
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Notice that, as is well known, Mutual Information is UPS with the potential function F(q) :=
−H(q) given by the negative of Shannon entropy. Total Information is also UPS, with the potential
function F(q) := G(q) given in (TI). As suggested by the prior-dependence of the function G(q | p) in
(LLR), the LLR cost function is not UPS; Corollary 1.3 below shows that it is not even SLP.

To see that every UPS cost function is SLP, it suffices to observe that the UPS class is characterized
by the following strengthening of Preference for One-Shot Learning, which requires that the expected
cost of two-step replication (without free disposal) is equal to the cost of one-shot learning.

Axiom 3 (Indifference to Sequential Learning). C exhibits Indifference to Sequential Learning if

C(σ | p) = C(σ ′ | p) +E〈σ ′ |p〉
[
C (σ ′′s̃′ | q(· | s̃′))

]
(ISL)

for all σ ′′ ∗ σ ′ ∼B σ and p ∈ ∆◦.

Notice that Indifference to Sequential Learning implies that C is Blackwell monotone because the
expected second-stage cost in (ISL) is non-negative. By induction, it also implies that every Sequen-
tial Replication of a given experiment (without free disposal) is equally costly and, moreover, that it
is without loss of optimality to restrict attention to Sequential Replications without free disposal.

Lemma 1. Cost function C is UPS if and only if it exhibits Indifference to Sequential Learning.

Proof. See Appendix K.

Special cases of Lemma 1 have appeared elsewhere in the literature; we state and prove it here
for completeness.30 Lemma 1 and Theorem 1 together imply that every UPS cost function is SLP.
Conversely, an SLP cost function is UPS if and only if it satisfies the opposite of Preference for One-
Shot Learning, which we call Preference for Sequential Learning:

C(σ | p) ≥ C(σ ′ | p) +E〈σ ′ |p〉
[
C (σ ′′s̃′ | q(· | s̃′))

]
(PSL)

for all σ ′′ ∗σ ′ ∼B σ and p ∈ ∆◦. Section 4 below is devoted to studying precisely how restrictive (PSL)
is within the class of SLP cost functions.

3.2.2 Non-UPS Examples

Distance of Belief Movement. A natural class of cost functions that are SLP but not UPS are those
derived from quasi-metrics d(q,p) on the probability simplex.31 Given a quasi-metric d, we may
define the distance-based cost function

C(σ | p) = E〈σ |p〉 [d(q̃,p)] , (3)

where d(q,p) is interpreted as the cost of a signal that moves DM’s belief from the prior p to the pos-
terior q. All distance-based cost functions exhibit Preference for One-Shot Learning because quasi-
metrics satisfy the triangle inequality, and these functions are Blackwell monotone whenever d(·,p)

30 For instance, Frankel and Kamenica (2019) establish that if C has Full Domain and Posterior Separable, then it is UPS if and only if it
exhibits Indifference to Sequential Learning (which they refer to as “combination invariance”). Zhong (2019) establishes the special case
of Lemma 1 in which C is assumed to have Full Domain.

31 Recall that d : ∆◦ ×∆◦ → R+ is a quasi-metric if (i) d(q,p) = 0 implies that q = p and (ii) it satisfies the triangle inequality d(q,p) ≤
d(q,r) + d(r,p) for all q,p, r ∈ ∆◦.
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is convex for all p ∈ ∆◦. Any quasi-metric derived from a norm satisfies the latter convexity require-
ment (e.g., the total variation distance dT V (q,p) := 1

2
∑
θ |qθ −pθ |). It is easy to see that no non-zero cost

function can be both UPS and distance-based, implying that these two subclasses of SLP costs are
(essentially) disjoint.32

SLP-Preserving Operations. There are SLP cost functions that are neither UPS nor distance-based.
To see this, note that we can always use certain combinations of extant SLP costs to generate new
SLP costs. For instance, if cost functions C1 and C2 are both SLP, then the pointwise maximum
C(σ | p) := max {C1(σ | p),C2(σ | p)} is also SLP.33 However, even if each of C1 and C2 is either UPS or
distance-based, C will generally fall outside of these classes. To see this, note that UPS and distance-
based cost functions both exhibit “indifference to randomization” — i.e., are Randomizaton Averse
but never strictly so (see (IR)) — while the pointwise maximum C will generally be sometimes-
strictly Randomizaton Averse. For another example, the positive linear combination aC1+bC2 (where
a,b ≥ 0) of two SLP cost functions is always SLP; if C1 is UPS and C2 is distance-based, then their
linear combination will generally fall outside of both classes because these classes are disjoint (as
argued above).34

3.3 Properties Implied by Preference for One-Shot Learning

In this subsection, we illustrate that Preference for One-Shot Learning implies two less restrictive
axioms that the literature has used to characterize information cost functions. This exercise both
sheds light on the meaning of Preference for One-Shot Learning and introduces new concepts that
will be used in the sequel.

3.3.1 Randomization Aversion

Our definition of Sequential Replication endows DM with free access to mixed strategies: she
can always use uninformative experiments (which have zero cost) as randomization devices for her
continuation strategy. Naturally, then, SLP cost functions should not be further reducible (in expec-
tation) by engaging in mixed strategies. Corollary 1.1 establishes that this is indeed the case.

To formalize the idea of mixed strategies, given weight α ∈ (0,1), define the mixture of experi-
ments 〈S1,σ1〉 and 〈S2,σ2〉 as the experiment ασ1 ⊕ (1 − α)σ2 with signal space [S1 ∪ S2] × {1,2} and
conditional probabilities

[ασ1 ⊕ (1−α)σ2] ((s, i) | θ) =

ασ1(s | θ) · 1(s ∈ S1), if i = 1

(1−α)σ2(s | θ) · 1(s ∈ S2), if i = 2.

32 If a distance-based cost were UPS, then by Lemma 1 the quasi-metric d must satisfy d(q,p) = d(q,r) + d(r,p) for all q,p, r ∈ ∆◦. But
if p is a convex combination of r and q, we must have d(q,p) ≤ d(q,r) and therefore d(r,p) = 0. By extension, this implies that d ≡ 0. See
Frankel and Kamenica (2019, Corollary 1) for a related observation.

33 The pointwise maximum C is clearly a well-defined cost function and Blackwell monotone. Because both C1 and C2 satisfy Preference
for One-Shot Learning, it is easy to show that C does as well. Thus, C is SLP by Theorem 1.

34 More generally, it may be useful to note that SLP cost functions are analogous to sublinear functions f : Rn → R on Euclidean space,
with Preference for One-Shot Learning corresponding to subadditivity (i.e., f (x + y) ≤ f (x) + f (y)) and the Dilution Linear property corre-
sponding to positive homogeneity (i.e., f (ax) = af (x) for a ∈ R++). Thus, operations that preserve sublinearity can generally be translated
into operations that preserve SLP. Also, recall that every sublinear function admits a variational representation as the supremum over a
convex set of linear functions. Pushing the analogy further, we conjecture that every SLP cost function admits a variational representation
as the supremum over a convex set of UPS cost functions.
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In words, ασ1 ⊕ (1 − α)σ2 corresponds to flipping a (biased) coin, observing the result of this coin
flip, and conditioning the choice of experiment σ1 or σ2 on this result. By construction, this notion
of mixtures of experiments is equivalent to taking mixtures of the induced posterior distributions:
given any prior p ∈ ∆◦, we have π〈ασ1⊕(1−α)σ2|p〉 = απ〈σ1|p〉+ (1−α)π〈σ2|p〉.

35 The following axiom states
that this kind of randomization does not (further) reduce expected costs:

Axiom 4 (Randomizaton Averse). Cost function C is Randomizaton Averse if C(σ | p) ≤ αC(σ ′ | p) +
(1−α)C(σ ′′ | p) for all σ,σ ′′ ,σ ′′ ∈ Eb and α ∈ (0,1) such that ασ ′ ⊕ (1−α)σ ′′ ∼B σ .

Axiom 4 is standard in the literature under different names and, as noted above, is equivalent to
assuming that DM’s cost function is convex in the space of posterior distributions.36

Corollary 1.1. If C∗ is SLP, then it is Randomizaton Averse.

Proof. Let p ∈ ∆◦, σ ∈ Eb, and α ∈ (0,1) be given, and let σ ′ ,σ ′′ ∈ Eb be such that ασ ′ ⊕ (1−α)σ ′′ ∼B σ .
Define the uninformative first-stage experiment 〈{s′ , s′′} ,σ1〉 by σ (s′ | θ) = α and σ (s′′ | θ) = 1−α for all
θ ∈Θ. Define the second-stage experiments σ2,s′ := σ ′ and σ2,s′′ := σ ′′. Because C∗ exhibits Preference
for One-Shot Learning by Theorem 1 and C(σ1 | p) = 0 by definition, we have C(σ | p) ≤ 0 + αC(σ ′ |
p) + (1−α)C(σ ′′ | p), implying that C∗ is Randomizaton Averse.

Axiom 1 and Axiom 4 together characterize the class of “canonical” cost functions (de Oliveira
et al. (2017); Caplin and Dean (2015)) that represent the expected cost of optimally acquired infor-
mation under the restriction that information acquisition is one-shot. In our language, these axioms
characterize the class of Indirect Cost functions generated from optimization over Sequential Repli-
cations with T = 1.

3.3.2 Dilution Linearity

Given an SLP cost function, DM finds it optimal to acquire all information in one shot. However,
this is never a uniquely optimal strategy. Roughly speaking, DM can engage in two distinct types of
Sequential Replication: (i) those in which partial information arrives over multiple periods and (ii)
those in which information arrives “all at once” but not necessarily in the first period t = 0. Preference
for One-Shot Learning states that the former type of replication is never (strictly) optimal, but it
turns out that DM is indifferent among all replications of the latter type. Intuitively, the latter type
of replication is only useful for inter-temporal cost-smoothing purposes, but an SLP cost function
has already “optimized away” all potential gains to cost-smoothing. Thus, SLP cost functions render
DM indifferent to the “speed” of learning.

35 A natural alternative would be to consider component-wise mixtures by defining the experiment ασ1+(1−α)σ2 to be [ασ1 + (1−α)σ2] (s |
θ) = ασ1(s | θ) + (1−α)σ2(s | θ). This would correspond to DM using a randomization device that flips a coin and chooses an experiment
for her, but does not reveal the outcome of the coin flip. It is well known that the ranking ασ1 ⊕ (1−α)σ2 <B ασ1 + (1−α)σ2 always holds,
and that this ranking can be strict when S1 ∩ S2 , ∅ (see, e.g., Lemma 4 and Example 3 of Denti et al. (2020)). Intuitively, this alternative
form of randomization loses information when DM is unsure about which experiment a given signal was drawn from.

36 Caplin and Dean (2015) refer to Axiom 4 as “mixture feasibility” and de Oliveira et al. (2017) refer to it simply as “convexity.” As can
be seen from the definitions, cost function C is Randomizaton Averse if and only if the function Ĉ : Πb→R+ defined by Ĉ(π〈σ |p〉) := C(σ |
p) satisfies C(απ′ + (1 − α)π′′) ≤ αC(π′) + (1 − α)C(π′′) whenever Eπ′ [q] = Eπ′′ [q]. Hébert and Woodford (2020b, Lemma 1) show that,
if C is Blackwell monotone, then Axiom 4 is equivalent to convexity in the space of experiments with respect to the alternative notion of
mixtures described in footnote 35.
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To formalize these ideas, for each experiment σ ∈ Eb and weight α ∈ (0,1], define the α-dilution of
σ as

α · σ := ασ ⊕ (1−α)σ, (4)

where σ is a completely uninformative experiment. In other words, α · σ corresponds to running σ
with probability α and learning nothing with complementary probability 1 − α, which induces the
posterior distribution π〈α·σ |p〉 = απ〈σ |p〉 + (1−α)δp given prior belief p ∈ ∆◦.

Axiom 5 (Dilution Linear). Cost function C is Dilution Linear if C(α · σ | p) = αC(σ | p) for all σ ∈ Eb,
p ∈ ∆◦, and α ∈ (0,1).

Axiom 5 is one of two main axioms that Pomatto et al. (2019) use to characterize the LLR cost
function. While Axiom 4 states that mixed strategies are never strictly optimal, Dilution Linear states
that a particular kind of mixed strategy — in which DM simply randomizes over whether to acquire
a given experiment — is also without loss of optimality. To interpret this condition, notice that DM
can replicate σ by following the length-2T strategy whereby she runs α ·σ in each acquisition period
until success (or until the final period, in which case she runs σ for sure). In the infinite-horizon
(T →∞) limit, this strategy requires an expected number 1/α of acquisition rounds, and so has total
expected cost C(α ·σ | p)/α. We call this direct Poisson learning because in the “continuous-time limit”
in which α→ 0, the flow cost C(α · σ | p)→ 0 and the dynamics of DM’s posterior belief resembles a
Poisson process that stops after the first jump away from the prior.

Direct Poisson learning can be profitable when DM has an incentive to smooth costs over time.
For instance, it is common in applications to model the cost of information as a convex transforma-
tion of some well-known cost function — e.g., by setting C(σ | p) = f (CMI (σ | p)) where f : R+→ R+

is a smooth strictly convex function and CMI is Mutual Information.37 Given such a Direct Cost
function, the cost of following a direct Poisson strategy is f ′(0) · CMI (σ | p) in the continuous-time
limit, which is strictly cheaper than the cost of one-shot learning. It is easy to see that DM is indif-
ferent among all direct Poisson strategies — i.e., has no such cost-smoothing motive — if and only
if her cost function is Dilution Linear. The following lemma shows that SLP cost functions satisfy
this condition; intuitively, the potential gains to such cost-smoothing have already been “optimized
away.”

Corollary 1.2. If C∗ is SLP, then it is Dilution Linear.

Proof. Let 〈S,σ〉 ∈ Eb, p ∈ ∆◦, and α ∈ (0,1] be given. Theorem 1 implies that C∗ satisfies Axiom 2.
Define the uninformative first-stage experiment 〈S ′ ,σ ′〉 by S ′ = {Y ,N } and σ ′(Y | θ) = α for all θ ∈
Θ. Define the second-stage experiments 〈S ′′ ,σ ′′Y 〉 := 〈S,σ〉 and let 〈S ′′ ,σ ′′N 〉 be uninformative. Then
σ ′′∗σ ′ ∼B α·σ and, by Axiom 2, we haveC(α·σ | p) ≤ αC(σ | p). On the other hand, C∗ satisfies Axiom 4
by Corollary 1.1, so that αC(σ | p) ≤ C(α · σ | p). Combining these inequalities yields Axiom 5.

This fact will be important in Subsection 4.2 below.

37 For instance, this kind of convex transformation of Mutual Information is used in Myatt and Wallace (2012) to model effort sub-
stitution across different information sources in a game-theoretic setting, in Dean and Neligh (2019, Section 5) to fit experimental data
on individual’s stochastic choice behavior generated by inattention, and in Zhong (2019) to study optimal cost-smoothing in a dynamic
learning model with time discounting.
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3.4 Incompatibility with Prior-Invariance

The Prior Invariance Critique. A leading critique of the UPS model, which we call the Prior-
Invariance Critique, is that the “physical” or monetary costs of information acquisition should not
depend on DM’s prior beliefs. This property is formalized as follows:

Axiom 6 (Prior-Invariant). Cost function C is Prior-Invariant if the map C(σ | ·) : ∆◦→ R+ is constant
for each σ ∈ Eb.

It is easy to see that no Bounded UPS cost function (such as Mutual Information) is Prior-Invariant.
For instance, under such functions the cost of any experiment vanishes as the prior becomes dog-
matic:

lim
p→δθ

Eπ〈σ |p〉 [F(q)−F(p)] = 0 (5)

for all σ ∈ Eb, where δθ ∈ ∆(Θ) denotes the Dirac measure on state θ.38 The failure of Prior Invari-
ance has led many authors to criticize the UPS model, as exemplified by the following passage from
Gentzkow and Kamenica (2014, p. 459):39

“[The UPS] assumption would be incompatible with many interpretations of signal costs.
In particular, the . . . [UPS] . . . assumption implies that the cost of a particular signal de-
pends on the prior, i.e., on what previous information was observed. Even the answer to
the question of whether one signal or another is more costly could depend on the prior.
Thus, if C(σ | p) represents some fixed cost of resources required to conduct an experi-
ment that generates σ (e.g., a drug trial), the . . . [UPS] . . . assumption is inappropriate.”

Based on this logic, Mensch (2018), Denti et al. (2020), and Pomatto et al. (2019) have developed
theories of Prior-Invariant information cost functions and advocated for their use in place of the UPS
model generally, and Mutual Information in particular.40 This is not merely a philosophical model-
ing debate: whether or not the limit condition (5) holds can have important implications in economic
applications, especially those in which the prior belief is endogenous. For instance, in dynamic envi-
ronments where DM’s prior belief is determined by previous rounds of information acquisition, (5)
is a key determinant of the emergence of belief polarization (Nimark and Sundaresan (2019)). And
in strategic settings where DM acquires information about other agent’s endogenous actions, (5) can
lead to (arguably) counterintuitive pure-strategy equilibria in which DM perfectly monitors others’
actions but pays zero cost (because equilibrium actions are deterministic).41 Indeed, these consid-
erations have led several authors to altogether disavow the use of prior-dependent information cost
functions in strategic (Mensch (2018); Denti et al. (2020)) and dynamic (Rustichini (2020)) settings.

38 The proof is simple. First, any Bounded UPS must have a bounded potential function F, which can be uniquely extended to a
continuous bounded convex function F : ∆→ R by Gale et al. (1968). Then, because the posterior distribution π〈σ |p〉→w∗ δδθ as p→ δθ ,

Portmanteau’s Theorem applied to F directly implies (5). Note that this argument depends crucially on boundedness. A slightly more
general version of this result appears as Denti et al. (2020, Corollary 2).

39 Gentzkow and Kamenica (2014, p. 459) define cost functions over posterior distibutions instead of experiment-prior pairs, and so
write C(π) instead of C(σ | p). We maintain our notational convention here at the cost of slightly misquoting that paper.

40 See Cabrales et al. (2013) and Shorrer (2018) for similar discussions in the context of the value of information.
41 For instance, Mensch (2018) considers a principal-agent example in which DM, the principal, acquires costly information to monitor

an agent’s effort. He observes that first-best effort, full monitoring, and zero monitoring can be sustained under Mutual Information
monitoring costs, which satisfy the limit condition (5). Ravid (2020) and Denti et al. (2020) construct analogous examples in the context
of, respectively, bargaining and zero-sum games.
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Prior-Invariance and SLP are Incompatible. How reasonable is the Prior-Invariance Critique? We
argue that it has significantly less force than suggested by the literature. In particular, under rel-
atively mild conditions, no nontrivial SLP cost functions is Prior-Invariant. We therefore conclude
that the Prior-Invariance Critique implicitly rests on the assumption that DM is either (i) constrained
to acquiring information in one-shot or (ii) does not gather information optimally.

The intuition for this incompatibility is straightforward: when DM acquires information sequen-
tially to minimize her expected costs, her optimal sequential strategy — and thus the Indirect Cost
that it induces — generically depends on her prior beliefs. However, converting this intuition into a
formal proof is somewhat delicate because it is a tall order to characterize the form of DM’s optimal
sequential strategy. In addition, not all SLP cost functions — or even unbounded UPS cost functions,
such as Total Information — satisfy a suitable variant of the limit condition (5), so a different proof
technique is required.

To state the result, we require a few definitions. First, a Full Domain cost function is a map
C : E×∆◦→R+ that satisfies points (i) and (ii) in our definition of cost functions from Subsection 2.1,
plus a slight strengthening of the continuity condition (iii) therein (see Appendix A.2 for details).
The substantive part of this definition is that Full Domain requires all experiments to have finite
cost. Most cost functions considered in the literature, including Mutual Information satisfy this
condition, but Total Information and the LLR cost function do not. Second, call an experiment
nontrivial partitional if it induces a partition of Θ and is not completely uninformative.42 Finally,
given bounded experiments 〈S1,σ1〉 and 〈S2,σ2〉, define the (bounded) product experiment 〈S1×S2,σ1⊗
σ2〉 by

[σ1 ⊗ σ2] (s1, s2 | θ) := σ1(s1 | θ) · σ2(s2 | θ), (6)

which represents running σ1 and σ2 independently and observing the outcomes of both.

Proposition 1. If C∗ is SLP and Prior-Invariant, then the following hold:

(i) If C∗ has Full Domain, then it assigns equal cost to all nontrivial partitional experiments, and there-
fore is not strictly Blackwell monotone.

(ii) If C∗(σ1 ⊗ σ2) = C∗(σ1) +C∗(σ2) for all σ1,σ2 ∈ Eb, then C∗ is identically zero on Eb.43

Proof. See Appendix D.

Most Prior-Invariant cost functions suggested in the literature have Full Domain, including the
“channel capacity” cost function suggested by Woodford (2012) and Nimark and Sundaresan (2019)
and the “normalized” Mutual Information cost function suggested by Gentzkow and Kamenica (2014)
and Denti et al. (2020).44 Proposition 1(i) states that, subject to mild non-triviality condition, no
such cost function is SLP. However, the Full Domain assumption does rule out some interesting and
potentially important cost functions, including the LLR costs. Proposition 1(ii) therefore replaces

42 Formally, σ ∈ E is nontrivial partitional if, for any p ∈ ∆◦, if there exists a partition {Ei }ni=1 of Θ with n ≥ 2 such that supp(π〈σ |p〉) =
{p(· | Ei )}ni=1. Note that nontrivial partitional experiments are not bounded because the conditional signal distributions are not mutually
absolutely continuous.

43 For emphasis, we write C(σ ) instead of C(σ | p) when C is Prior-Invariant.
44 Gentzkow and Kamenica (2014) and Denti et al. (2020) advocate for “normalizing” Mutual Information and other Bounded UPS cost

functions by evaluating these functions at a fixed prior belief p∗ that need not coincide with DM’s actual prior belief p, thereby making
such cost functions Prior-Invariant.
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the Full Domain assumption with an additivity condition, under which the Prior-Invariant and SLP
classes do not have any nontrivial intersection.45 This additivity condition is the second main axiom
that Pomatto et al. (2019) use, in conjunction with Axiom 5, to characterize the LLR cost function.
We explore (a generalization of) this condition in depth in Section 5. For now, simply note that this
condition is implied by Indifference to Sequential Learning when the cost function is Prior-Invariant,
and therefore yields the following corollary:

Corollary 1.3. The following hold:

(i) No non-zero UPS cost function is Prior-Invariant.

(ii) No non-zero LLR cost function is SLP.

Proof. See Appendix K.

Corollary 1.3(i) generalizes the above finding for Bounded UPS cost functions to all UPS cost
functions, including those that violate the limit condition (5), such as Total Information and certain
parameterizations of the “Tsallis cost functions” discussed in Caplin et al. (2019b) and Bloedel and
Segal (2020).46 Point (ii) of the corollary illustrates that the LLR cost function, a leading alternative
to the rational inattention model based on Mutual Information, cannot be rationalized by flexible
cost-minimization.

4 Foundations for (Uniform) Posterior Separability

Since Sims’ (2003) introduction of the rational inattention model based on the Mutual Informa-
tion cost function, a central goal of the subsequent literature has been to extend analyses of informa-
tion acquisition beyond the Mutual Information functional form. The modern rational inattention
literature has adopted the UPS and more general “posterior separable” classes of cost functions as
the default modeling assumption. However, as discussed below, the justifications for focusing on
these cost functions have, to date, remained somewhat ad hoc.

In this section, we apply the framework developed in Sections 2 and 3 to provide micro-foundations
for these classes of cost functions based on sequential cost-minimization. Subsection 4.1 first pro-
vides background and a roadmap for the main analysis. Subsections 4.2–4.4 present our main char-
acterization theorems, implications of which are developed in Subsection 4.5. We conlcude in Sub-
section 4.6 by comparing our results to those of two related papers in the literature.

4.1 Background

The UPS cost functions constitute a sublcass of the more general class of “posterior separable”
cost functions. To define these functions, recall that a divergence is a function D : ∆◦ ×∆◦→ R+ that
satisfies D(p | p) = 0; in this paper, we will also always assume that the maps D(· | p) : ∆◦ → R+ are
convex for each p ∈ ∆◦. The following definition is adapted from Caplin et al. (2019b):

45 We conjecture that Proposition 1 can be strengthened to show that any Prior-Invariant and SLP cost function must be identically zero,
without any additional conditions. However, to our knowledge, Proposition 1 and Corollary 1.3 cover all cost functions of applied interest
in the literature.

46 While it is asserted with some frequency in the literature that no UPS cost function is Prior-Invariant, to our knowledge this fact has
not been formally shown, and certainly does not follow from the same argument used for Bounded UPS costs.
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Definition 8 (Posterior Separable). Cost function C is Posterior Separable if there exists a divergence
D such that47

C(σ | p) ≡ Eπ〈σ |p〉 [D(q̃ | p)] .

All Posterior Separable cost functions are Blackwell monotone because divergences are convex in
the posterior. Also note that any Posterior Separable cost function C can be equivalently represented
as C(σ | p) = Eπ〈σ |p〉 [F(q | p)−F(p | p)], where F(· | p) : ∆◦ → R+ is a prior-dependent (convex) potential
function.48 Thus, every UPS cost function is Posterior Separable. For a UPS cost function with
potential F, the divergence DF(q | p) := F(q) − F(p) − ∇F(p) · (q − p) is called the Bregman divergence
generated by F. However, te Posterior Separable class is quite large, and is not contained in the SLP
class. For instance, it is easy to see from (LLR) that the LLR cost functions are Posterior Separable,
although they are not SLP by Corollary 1.3. Note also that the distance-based cost functions (3) are
Posterior Separable (but not UPS).

The literature has focused on Posterior Separable, and in particular UPS, cost functions for several
reasons. First, they retain much of the structure of the popular Mutual Information cost function
but, by relaxing its specific functional form, are able to generate much richer patterns of behavior
(cf. Caplin et al. (2019b); Dean and Neligh (2019)). Second, they are uniquely tractable: the Posterior
Separable class is the largest class of cost functions for which optimal (one shot) strategies can be
found via the concavification method popularized by the Bayesian persuasion literature (Gentzkow
and Kamenica (2014); Caplin et al. (2019b)). Third, they are normatively appealing: it is well known
that the Posterior Separable class is characterized by the Indifference to Randomization condition

C(ασ1 ⊕ (1−α)σ2 | p) = αC(σ1 | p) + (1−α)C(σ2 | p) (IR)

for all σ1,σ2 ∈ Eb, p ∈ ∆◦, and α ∈ [0,1], which is analogous to the linearity axiom that underlies ex-
pected utility theory (Torgersen (1991, pp. 353-54); Mensch (2018)). Fourth, they uniquely charac-
terize the value of information for a Bayesian expected-utility maximizer (Azrieli and Lehrer (2008);
Frankel and Kamenica (2019)).

Roadmap. This section develops four main results (illustrated schematically in Figure 1). In Sub-
section 4.2, we first characterize the Posterior Separable class as the Indirect Cost functions arising
from a restricted optimization problem in which DM only has access to direct Poisson strategies. A
corollary of this characterization is that every SLP cost function that is “locally once-differentiable”
in the experiment is, in fact, Posterior Separable.

Subsections 4.3 and 4.4 then zoom in on, and provide two complementary characterization the-
orems for, the UPS class. The first characterization, Theorem 2, shows that any SLP cost function
that is “locally once-differentiable” in the experiment and differentiable in the prior is, in fact, UPS.
This suggests that, under standard regularity conditions assumed in applications, the SLP and UPS
classes exactly coincide, i.e., the “preference for sequential learning” condition (PSL) condition au-
tomatically holds. Moreover, this implies sequential optimization wipes out any distinction between

47 The divergence D is unique up to translation by mean-zero linear functions, i.e., D(q | p) represents C if and only if D(q | p) +ζ · (q−p)
does as well, where ζ ∈RΘ .

48 Given a divergence representation as in Definition 8, we may set F(q | p) :=D(q | p). Conversely, given a potential function representa-
tion, D(q | p) := F(q | p)−F(p | p)−∇qF(q | p)|q=p · (q−p) can be used to generate a divergence representation. (If F(· | p) is not differentiable,
∇qF(q | p) denotes a subgradient at q.)
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Posterior Separable and UPS cost functions. However, the second characterization, Theorem 3, shows
that these regularity conditions are economically meaningful: any UPS Indirect Cost is generated
only by Direct Cost functions exhibiting a weaker version of (PSL) called “preference for incremental
learning,” meaning that it is cheaper to acquire information in the form of Gaussian diffusion signals
than it is to acquire information in one shot. In Subsection 4.5, we use this latter characterization
to show that, generically, UPS Indirect Cost functions cannot be generated by Prior-Invariant Direct
Costs.

The relation between UPS cost functions and Gaussian diffusion learning was first discovered in
two related papers, Morris and Strack (2019) and Hébert and Woodford (2020b). The results of this
section build on, but significantly extend and maximally generalize, the results of those papers. We
discuss the relation between those papers and ours in more detail in 4.6.

4.2 Posterior Separable Characterization

First-Order Approximation. Our characterization of Posterior Separable cost functions — as well
as our first characterization of the UPS class in the next subsection — relies on a first-order approx-
imation of DM’s cost function that characterizes the cost of a “small amount of information” that
arrives in the form of Poisson signals. To that end, define the direct Poisson Indirect Cost generated by
Direct Cost function C as

ΦDPC(σ | p) := lim
α→0

CRA(α · σ | p)
α

(DPIC)

where α ·σ is the α-dilution of σ defined in (4) and CRA ∈ C denotes the lower Randomizaton Averse
envelope of C, i.e., the pointwise largest Randomizaton Averse cost function that is majorized by C.49

Thus, ΦDPC represents the Indirect Cost generated by Direct Cost C in the restricted optimization
problem in which DM only has access to mixed and direct Poisson strategies. The appropriate notion
of first-order approximation is then defined as follows:

Definition 9 (Locally Linear). Cost function C is Locally Linear if there exists a divergence D : ∆2
◦→R+

such that
ΦDPC(σ | p) = Eπ〈σ |p〉 [D(q̃ | p)] (LL)

for all (σ,p) ∈ Eb ×∆◦.

A Direct Cost function is Locally Linear if the expected cost of direct Poisson learning is Posterior
Separable. An equivalent way of stating (LL) is that C(α · σ | p) = Eπ〈α·σ |p〉 [D(q | p)] + o(α), meaning
that the cost of acquiring σ with probability α is approximately Posterior Separable as α→ 0. In this
sense, we may interpret the divergence D(q | p) as the cost of an infrequently-arriving Poisson signal
that causes the prior p to jump to the posterior q. Clearly, any smooth transformation of a Posterior
Separable cost function is Locally Linear.

Mathematically, (LL) states that CRA(· | p) is directionally differentiable at the uninformative ex-
periment σ and, moreover, that its directional derivative at this point is continuous and linear.50

49 We show in the appendix that ΦDP C and CRA are well-defined cost functions.
50 Because the spaces of experiments and posterior distributions are infinite-dimensional, continuity of the directional derivative does

not imply that it is linear. For instance, the the pointwise maximum of two Posterior Separable cost functions is always Randomizaton
Averse and Dilution Linear, but is typically not Locally Linear.
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Indeed, we may equivalently view the direct Poisson operator ΦDP as taking the directional deriva-
tive

ΦDPC(σ | p) =
∂
∂ε
CRA(ε(σ − σ )⊕ σ | p)

∣∣∣
ε=0
,

and (LL) states that this directional derivative satisfies the linearity condition (IR), meaning that it
is linear with respect the posterior distribution π〈σ |p〉 induced by the experiment σ at prior p. We
emphasize that Definition 9 only a “local” differentiability condition — it is only required to hold
at the uninformative experiment — and generally has no implications for global properties of a cost
function.

It might seem like this notion of directional differentiability is specifically tailored to generate a
Posterior Separable approximation. However, if we were to restrict attention to experiments that gen-
erate fewer than n ∈N signals, Definition 9 would be implied by the standard notion of continuous
directional differentiability in Euclidean space — without presupposing additive separability with
respect to signals.51 Such a finite-dimensional differentiability condition is quite weak: CRA(· | p)
is convex by construction, and finite-dimensional convex functions are known to be continuously
differentiable almost everywhere. However, since we do not impose such an upper bound on the
allowable number of signals, Definition 9 further requires that the approximation error generated by
the standard differentiability notion be uniform in the number n of signals.

Characterization. The following lemma uses the above notion of first-order approximation to char-
acterize the full Posterior Separable class as Indirect Cost functions from the restricted optimization
problem in which DM only has access to mixed and direct Poisson strategies:

Lemma 2. Given any cost function C∗, the following are equivalent:

(i) C∗ is Posterior Separable.

(ii) C∗ = ΦDPC
∗ and is Locally Linear.

(iii) Every Randomizaton Averse Direct Cost C for which C∗ = ΦDPC is Locally Linear.

Proof. See Appendix K.

How does the Posterior Separable class relate to the SLP class, i.e., when DM is not restricted to
direct Poisson strategies? The intersection is clearly nontrivial, as we have already seen that (a) every
UPS cost function is SLP but not conversely, and (b) there exists a large class of Posterior Separable
cost functions that are not SLP, such as those that are Prior-Invariant (with the LLR costs being a
leading example).

Proposition 2. Given an SLP cost function C∗, the following hold:

(i) C∗ is Posterior Separable if and only if it is Locally Linear.

(ii) Let C be a Direct Cost function. Then C∗ is Posterior Separable and satisfies C∗ = ΦDPC if and only
if (a) C is Locally Linear and (b) ΦDPC exhibits Preference for One-Shot Learning.

Proof. See Appendix K.

51 Recall that an experiment with signal space S satisfying |S | = n can be viewed as a |Θ| ×n-dimensional Markov transition matrix. The

space of such experiments is therefore a convex subset of R|Θ|×n+ .
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Proposition 2(i) states that the intersection of these two classes of cost functions is precisely char-
acterized by Local Linearity. Practically, this means that any mildly smooth SLP cost function must,
in fact, be Posterior Separable. This provides an arguably compelling foundation for the use of Pos-
terior Separable cost functions in applications — at least those that exhibit Preference for One-Shot
Learning.

Proposition 2(ii) partially characterizes the class of Direct Cost functions that could generate a
Posterior Separable Indirect Cost. It states that any Indirect Cost that is Posterior Separable and that
can be attained by direct Poisson strategies must have been generated by a Locally Linear Direct
Cost whose Posterior Separable approximation is itself SLP. In other words, the “first derivative” of a
Direct Cost function is preserved under the full sequential optimization process if and only if direct
Poisson learning is without loss of optimality.

4.3 UPS Characterization 1: Indirect Costs

In this subsection and the next, we characterize the UPS cost functions within the SLP class. Given
Proposition 2(i), one might conjecture that every Locally Linear SLP cost function is not only Poste-
rior Separable, but actually UPS. However, it is easy to construct counterexamples to this conjecture:
witness the distance-based cost functions in (3).

In this subsection, we show that such counterexamples are special: any SLP cost function that is
both Locally Linear and differentiable with respect to the prior (in a suitable sense) must, in fact, be
UPS. This additional smoothness condition is formalized as follows:

Definition 10 (Regular). Cost function C is Regular if it is Locally Linear and the divergence D is con-
tinuously differentiable with respect to the prior, i.e., there exists a continuous vector-valued function
J : ∆◦ ×∆◦→R

Θ , denoted J(q | p), such that

lim
ε↓0

D(q | p+ ε(r − p))−D(q | p)
ε

= J(q | p) · (r − p) (7)

for all p,q, r ∈ ∆◦.

Definition 10 is a fairly weak regularity condition that is satisfied by Total Information, Mutual
Information and, to our knowledge, virtually all other information cost functions commonly used
in economic applications. Under the hypotheses of the following theorem, it implies that the cost
function itself satisfies C∗(σ | ·) ∈ C1 (∆◦) for all σ ∈ Eb.

Theorem 2. Given any cost function C∗, the following are equivalent:

(i) C∗ is SLP and Regular, with divergence D.

(ii) C∗ is UPS with potential F ∈ C2 (∆◦), for which the Bregman divergence DF =D.

Proof. See Appendix E.

Theorem 2 states that any “smooth” SLP cost function must, in fact, be UPS. Thus, under regu-
larity conditions typically assumed in applications, checking that a cost function is SLP is equivalent
to testing that it is UPS. This provides an arguably compelling reason to focus on the UPS cost func-
tions, especially given that Preference for One-Shot Learning may be difficult to verify while UPS is
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easy to verify. In light of Proposition 2, the theorem also implies that, subject to the differentiability
condition (7), the sequential optimization process eliminates all Posterior Separable cost functions
outside of the UPS subclass.

Two aspects of the statement of Theorem 2 warrant emphasis. First, the restriction in point (ii)
to twice continuously-differentiable potential functions, while not completely innocuous, is without
loss of significant generality because such potential functions are dense in the space of all convex
potential functions.52 Second, as witnessed by examples in Subsection 3.2.2, the hypothesis in point
(i) that C∗ is Regular is the near-minimal smoothness condition needed for a result of this sort, even
if we were to weaken the (generic) desideratum that F ∈ C2 (∆◦).

That point (ii) implies point (i) of the theorem is straightforward. The proof of the nontrivial
direction, that point (i) implies point (ii), consists of several steps. First, we use the facts that C∗ is
Posterior Separable (by Proposition 2) and exhibits Preference for One-Shot Learning (by Theorem 1)
to show that the derivative of the divergence in (7) must have the representation J(q | p) = −k(p)(q−p)
for some matrix-valued function k(p), i.e., be linear in the posterior q. This allows us to express
the divergence itself as an integral of this linear form. By successively differentiating this integral
representation of the divergence, we show that D(· | p) is indeed twice continuously differentiable
and, moreover, that its Hessian at q is k(q), and therefore independent of p. This latter fact is used to
establish that D is, in fact, a Bregman divergence.

Relation to Banerjee et al. (2005). Theorem 2 is related to a characterization of Bregman diver-
gences established by Banerjee et al. (2005). They show that, subject to regularity conditions, a
divergence D satisfies Eπ [q] ∈ argminν∈∆◦Eπ [D(q | ν)] for all π ∈Πb if and only if it is a Bregman di-
vergence. By way of comparison, the first step in our proof of Theorem 2 establishes that Preference
for One-Shot Learning implies that ν∗ = Eπ [q] must be a critical point — although not necessarily a
minimizer of — the function Eπ [D(q | ·)]. The proof of Banerjee et al. (2005, Theorem 4) can be used
to establish the following weaker version of our Theorem 2: If an SLP cost function is Locally Lin-
ear with a divergence D that is jointly twice continuously differentiable in (q,p), then it is UPS with
potential function F ∈ C3(∆◦).53 However, our Theorem 2 establishes that many of these smoothness
conditions are superfluous for the result.

4.4 UPS Characterization 2: Direct Costs

Theorem 2 seems to provide compelling foundations for use of UPS cost functions, as is standard
in the rational inattention literature. However, it is important to note that the regularity conditions
used to establish this theorem are placed on DM’s Indirect Cost function, which is the output of the
sequential optimization problem (IC). It is not a priori clear whether we should expect sequential

52 In particular, given any convex potential function F : ∆◦ → R, there exists a sequence {Fn}n∈N of convex potential functions with
Fn ∈ C2 (∆◦) such that Fn → F, and this convergence can be taken to be uniform on each ∆δ . Also recall that every σ ∈ Eb and p ∈ ∆◦
induces posterior distribution π〈σ |p〉 ∈ Πδ for some δ > 0. Thus, the uniform convergence of the potential functions on compact subsets
implies that Cn(σ | p) → C(σ | p) for each σ ∈ Eb and p ∈ ∆◦, where Cn is the UPS cost function induced by Fn and C is the UPS cost
function induced by F.

53 In independent work, Hébert and Woodford (2020b, Lemma 4) establish a result that is equivalent to this weaker version of our
Theorem 2 by appealing to Banerjee et al. (2005, Theorem 4). Aside from being established under more stringent technical conditions,
their result has different conceptual content. Namely, they assume that DM’s Direct Cost function is Posterior Separable and exhibits
Preference for One-Shot Learning, rather than using optimality to derive these as properties of her Indirect Cost.
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optimization to preserve such smoothness conditions and, therefore, what the economic meaning of
Definition 10 actually is. To shed light on this question, in this subsection we characterize the class
of Direct Cost functions that generate UPS Indirect Cost functions. We find that, in fact, Regularity
of the Indirect Cost corresponds to a restrictive condition on the underlying Direct Cost function.

Preview: Gaussian Diffusion Learning. Our characterization is based on the following class of
sequential strategies that arise in the continuous-time limit of our framework. We say that DM
engages in Gaussian diffusion learning if her posterior belief follows a (continuous-time) diffusion
process (qt)t≥0 in the simplex of the form

dqt = vtdWt

where (Wt)t≥0 is a |Θ|-dimensional standard Brownian motion and (vt)t≥0 is a W -adapted matrix-
valued volatility process chosen by DM, where vt ∈ RΘ×Θ satisfies 1>vt = 0> because beliefs must
stay in the simplex. In continuous-time models of sequential sampling, such belief dynamics arise
when DM observes a real-valued signal process that itself follows a diffusion, and can dynamically
control that processes’ state-dependent drift and volatility matrix. In our framework, per the stan-
dard random walk approximation of diffusions, such belief dynamics arise in the limit of Sequential
Replications in which (i) DM does not dispose of any information, (ii) DM acquires vanishingly-
informative Bernoulli (i.e., binary-signal) experiments in each acquisition period, and (iii) the time
horizon T →∞.54

If the Direct CostC is “locally twice differentiable” in the sense thatC(σ | p) ≈ E〈σ |p〉 [(q̃ − p)k(p)(q̃ − p)]
for some matrix-valued function k(p) ∈ RΘ×Θ for experiments that induce posteriors q within an ar-
bitrarily small distance of the prior p, we can use Ito’s Lemma and the Optional Sampling Theorem
to compute the Gaussian Indirect Cost ΦGC generated by C as

ΦGC(σ | p) = inf
(vt)t≥0,τ

E

[∫ τ

0
tr

[
v>t k(qt)vt

]
dt

]
, (GIC)

s.t. qτ ∼ π〈σ |p〉

where minimization is with respect to W -adapted volatility process (vt)t≥0 and W -adapted stopping
times τ , and the expectation is with respect to the induced paths of posterior beliefs. If, moreover,
k(q) = 1

2HF(q) for some potential function F ∈ C2(∆◦), the above expression simplifies to

ΦGC(σ | p) = E
[∫ τ

0

1
2

tr
[
v>t HF(qt)vt

]
dt

]
(8)

= Eπ〈σ |p〉 [F(q)−F(p)]

for any volatility process and stopping time for which qτ ∼ π〈σ |p〉, meaning that the Gaussian Indi-
rect Cost (GIC) is UPS and, moreover, DM is indifferent among all Gaussian replications of a given
experiment.

This calculation (formalized in Lemma 4 below) suggests a close connection between UPS cost
functions and optimization over Gaussian diffusion strategies, versions of which have been discov-
ered by Morris and Strack (2019) and Hébert and Woodford (2020b). In this subsection, we show

54 This approximation is formalized in the proof of Theorem 3(i) (see Appendix F).
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that, in a particular sense, this is the only way to generate a UPS Indirect Cost function. Formally,
subject to mild technical conditions, the Indirect Cost of information is UPS if and only if the Di-
rect Cost of information satisfies two properties: (i) Gaussian diffusion learning dominates one-shot
learning and (ii) DM is indifferent among all Gaussian diffusion replications.

4.4.1 Axioms and Technical Conditions

The statement of our characterization theorem requires two technical conditions and one eco-
nomically substantive axiom. We describe these conditions in turn.

Conditions on Direct Cost. To state our key axiom on the Direct Cost, we must first introduce a
technical condition that formalizes the idea that C is “locally twice continuously differentiable” with
respect to posterior distributions, where “locally” means that this differentiability is imposed only
on posterior distributions supported on some sufficiently small δ-ball Bδ(p) := {q ∈ ∆◦ : |q − p| ≤ δ}
around the prior p. Formally, we require that the Direct Cost admits the following kind of second-
order Taylor expansion:

Definition 11 (Locally Quadratic). Cost function C is Locally Quadratic if there exists continuous matrix
valued function k : ∆◦→R

Θ×Θ such that for each p0 ∈ ∆◦ and ε > 0, there exists some δ > 0 such that∣∣∣∣C(σ | p)−Eπ〈σ |p〉 [(q − p)k(p)(q − p)]
∣∣∣∣ ≤ ε ·Eπ〈σ |p〉[‖q − p‖2] (LQ)

for all σ ∈ Eb and p ∈ Bδ(p0) for which supp(π〈σ |p〉) ⊆ Bδ(p0). We refer to k(p) as the kernel of C(· | p).55

In words, C is Locally Quadratic if the cost of an experiment that only shifts beliefs locally is
approximated by a quadratic form representing the weighted variance of belief movement. Defi-
nition 11 is essentially the minimal smoothness condition that allows us to compute the expected
cost of Gaussian replication using Ito’s lemma. We emphasize that, because we are only concerned
with Gaussian replications and diffusion processes have continuous sample paths, Definition 11 is
only a local condition that generally does not have any implications for global properties of the cost
function.

When C is Posterior Separable, it is easy to check if it is Locally Quadratic:

Lemma 3. The following hold:56

(i) If C is Posterior Separable with divergence D, then it is Locally Quadratic if and only if the map
p 7→ HqD(q | p)|q=p is well-defined and continuous on ∆◦, in which case its kernel is k(q) = 1

2HqD(q |
p)|q=p.

(ii) If C is UPS with potential function F, then it is Locally Quadratic if and only if F ∈ C2(∆◦), in which
case its kernel is k(q) = 1

2HF(q).
55 It is without loss of generality to assume that, for each p ∈ ∆◦, the matrix k(p) is symmetric, satisfies k(p)p = 0, and is positive

semi-definite on the tangent space of the probability simplex (i.e., satisfies yT k(p)y ≥ 0 for all y ∈ RΘ such that y · 1 = 0). Moreover,
continuity of k(·) is in fact equivalent to the seemingly weaker condition that the quadratic form yT k(·)y is continuous for all y · 1 = 0.
Because (q − p) in (LQ) always adds up to 0, we are essentially considering a |Θ| − 1-dimensional subspace, in which the bilinear form
k̃(p) = [I,−1] · k(p) · [I,−1]T ∈ R(|Θ|−1)×(|Θ|−1) is uniquely pinned down. The full matrix k(p) is only unique up to the addition of terms of
the form f(p)1> and 1f(p)>, where f : ∆◦→R

Θ .
56 As in Footnote 55, the Hessian HF(q) of a function F ∈ C2(∆◦) at point q is only unique up the addition of terms that preserve its

value as a quadratic form on the tangent space to the probability simplex.
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Proof. See Appendix K.

For more general cost functions, the form of the Taylor expansion (LQ) might seem restrictive
because (i) there is no first-order term, (ii) the second-order term is additively separable in posterior
beliefs, and (iii) it corresponds to differentiability in the infinite-dimensional space of posterior dis-
tributions. However, we show in the appendix that Definition 11 is implied by the seemingly much
weaker condition that C is locally twice continuously-differentiable with respect to experiments with
(i) finitely-many signals and (ii) uniformly vanishing likelihood ratios, and that the approximation
error induced by this second derivative is uniform in the number of signals. Except for the latter
uniformity requirement, this alternative condition is equivalent to the standard definition of local
twice differentiability in Euclidean space. At least when C is Randomizaton Averse, this is a weak re-
quirement because finite-dimensional convex functions are known to be twice differentiable almost
everywhere (Alexandrov’s theorem). For future reference, we note that the local second derivative of
C in experiment space is given by the “normalized kernel”

k(p) := Diag(p)k(p)Diag(p), (9)

where k is the kernel defined above and Diag(p) is the matrix with diagonal entries determined by
p and all other entries zero. As shown in Appendix K, the “normalization” of k(p) by these diagonal
matrices corresponds to a change of variables from posterior distributions to experiments.

We may now state our main condition on the Direct Cost:

Axiom 7 (Preference for Incremental Learning). Suppose that C is Locally Quadratic with kernel k. We
say that C exhibits Preference for Incremental Learning if:

(i) The kernel satisfies k(p) ≡ 1
2HF(p) for some potential function F ∈ C2 (∆◦).

(ii) The cost function C satisfies
C(σ | p) ≥ Eπ〈σ |p〉 [F(q)−F(p)] . (PIL)

for all σ ∈ Eb and p ∈ ∆◦.

We can understand the two conditions in Axiom 7 as follows. First, point (i) is an “integrability”
condition on the kernel of C. This may seem like a technical condition. However, it has an intuitive
economic characterization, which maximally generalizes Morris and Strack’s (2019) characterization
of UPS cost functions in the |Θ| = 2 case:

Lemma 4. Given a Locally Quadratic Direct Cost C with kernel k, the following are equivalent:

(i) The kernel satisfies k(q) ≡ 1
2HF(q) for potential function F ∈ C2 (∆◦).

(ii) The Gaussian Indirect Cost ΦGC is UPS with potential F ∈ C2 (∆◦).

(iii) For each σ ∈ Eb and p ∈ ∆◦, all Gaussian replications of π〈σ |p〉 have the same expected cost.

Proof. See Appendix K.

Second, point (ii) of Axiom 7 states that the expected cost of Gaussian replication is always weakly
lower than the cost of one-shot learning. This naturally suggests that Gaussian learning is the opti-
mal form of Sequential Replication, as any individual step in a non-Gaussian replication could be re-
placed with its Gaussian replication (the proof of Theorem 3 formalizes this intuition). Thus, in sum,
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Preference for Incremental Learning represents a restricted form of the “preference for sequential
learning” condition (PSL) according to which (i) DM is indifferent among all Gaussian replications
and (ii) weakly prefers Gaussian replication to one-shot learning. However, unlike (PSL), it does not
directly restrict her preferences over other kinds of Sequential Replication.

Conditions on Indirect Cost. Before stating the theorem, we require one additional technical con-
dition, which will be imposed on DM’s Indirect Cost function:

Definition 12 (Locally Strongly Convex). C is Locally Strongly Convex if there exists δ > 0 and m > 0
such that C(σ | p) ≥m ·Eπ〈σ |p〉

[
‖q − p‖2

]
for all (σ,p) ∈ Eb ×∆◦ such that supp(π〈σ |p〉) ⊆ Bδ(p).

Intuitively, C is Locally Strongly Convex if the marginal cost of sampling from a Gaussian dif-
fusion for an additional instant is strictly positive. The above definition formalizes this intuition by
requiring that the “unit cost” of (sufficiently small) belief variance is bounded below by m > 0. As
discussed in Appendix K, Definition 12 can be equivalently formulated in terms of the kernel k when
C is Locally Quadratic, which makes it easy to check for Posterior Separable cost functions by virtue
of Lemma 3. We note here that Mutual Information, Total Information, and LLR cost functions are
all Locally Strongly Convex.57

4.4.2 Characterization

Characterization Theorem. We may now state our characterization theorem. It states that, subject
to the aforementioned technical conditions, an Indirect Cost function is UPS if and only if every
Direct Cost that generates it exhibits Preference for Incremental Learning:

Theorem 3. Let the Direct Cost function C be Locally Quadratic with kernel k. The following hold:

(i) If C exhibits Preference for Incremental Learning, then Φ(C) is UPS with potential F ∈ C2 (∆◦) where
HF(q) ≡ 2k(q).

(ii) Let the Direct Cost function C also be Blackwell monotone. If Φ(C) is UPS and Locally Strongly
Convex with potential F, then F ∈ C2 (∆◦) and C exhibits Preference for Incremental Learning with
k(q) ≡ 1

2HF(q) and is Locally Strongly Convex.

Proof. See Appendix F.

Economically, Theorem 3 says that UPS Indirect Cost functions are generated only by Direct Costs
for which it is always optimal to acquire information using only Gaussian diffusion signals. This is a
stringent condition on the Direct Cost, for it rules out any strict cost savings from acquiring chunks
of information.

The sufficiency direction, point (i), is a small conceptual step away from Lemma 4. That lemma
tells us that Gaussian replication generates a UPS Indirect Cost when the Direct Cost satisfies the
integrability condition Axiom 7(i). To establish Theorem 3(i), it therefore suffices to invoke the Pref-
erence for Incremental Learning inequality (PIL) to show that the restriction to Gaussian learning is
without loss of optimality when DM’s strategy space is not exogenously restricted (which includes

57 An example of a cost function violating this condition is the Posterior Separable cost with divergence D(q | p) = ||q − p||4.
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showing that free disposal is never optimal). The formal proof requires some technical work to, in
effect, take a continuous-time limit of our discrete-time notion of Sequential Replication so as to
approximate Gaussian diffusion signals.

As discussed further in Subsection 4.6 below, this sufficiency result generalizes (a) the aforemen-
tioned result of Morris and Strack (2019) by allowing for |Θ| ≥ 3 and by dropping the assumption
that DM is exogenously restricted to Gaussian strategies, and (b) a related result of Hébert and Wood-
ford (2020b) by, among other things, relaxing the technical conditions imposed on the Direct Cost
function.

However, we view the necessity direction, point (ii), as the main contribution of Theorem 3. This
necessity result, which has no parallels in the aforementioned papers, does two things. Most directly,
it tells us that the optimality of Gaussian learning is the only way to generate an Indirect Cost in the
UPS class. Indirectly, in conjunction with the sufficiency direction Theorem 3(i), it also provides a
way to characterize the full set of (Locally Quadratic) Direct Costs that could have generated a given
UPS Indirect Cost. We provide examples below.

In essence, the proof of the necessity direction, point (ii), shows that the kernel k of the Direct
Cost C is preserved under sequential optimization whenever ΦC is UPS. To show this, we show
that both the Direct and Indirect Cost of an incrementally informative experiment that only moves
posterior beliefs locally away from the prior can be quadratically approximated (in the sense of Def-
inition 11) by the same kernel k. A subtle technical difficulty arises from the fact that, in principle,
the possibility of free information disposal means that DM’s optimal Sequential Replication of such
an incrementally informative experiment may involve acquiring superfluous information that moves
posterior beliefs far away form the prior, but is ultimately discarded. The hypothesis that the Indi-
rect Cost is Locally Strongly Convex allows us to place an upper bound on the amount of information
that is discarded in an (approximately) optimal Sequential Replication.

Stronger Version of Necessity. The above discussion suggests that Preference for Incremental Learn-
ing is actually much more powerful than stated in Theorem 3(ii), the proof of which only utilizes the
invariance of second derivatives under Φ but not this operator’s fine details. In fact, the proof of
Theorem 3(ii) yields the following stronger necessity result:

Corollary 3.1. Let C be Locally Quadratic and Blackwell monotone. For any operator Φ ′ such that Φ ≤
Φ ′ ≤ Id: If Φ ′(C) is UPS and Locally Strongly Convex, then C exhibits Preference for Incremental Learning.

Proof. See Appendix K.

The function Φ ′(C) in Corollary 3.1 represents the Indirect Cost from a more restricted optimiza-
tion problem than (IC), for which we only assume that DM is able to do at least weakly better than
acquiring information in one-shot. Therefore, Corollary 3.1 states that Preference for Incremental
Learning is a necessary condition for a Direct Cost function to generate a UPS Indirect Cost almost
independently of the underlying optimization problem. Thus, our standing assumption that DM’s
strategy space is fully flexible is not needed for the result.

Characterization of Rationalizing Direct Costs. We now show how Theorem 3 and Lemma 3 can
be used to characterize the full set of (Locally Quadratic) Direct Cost functions that rationalize par-
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ticular UPS Indirect Cost functions of interest.

Lemma 5. Let C be a Locally Quadratic and Blackwell monotone Direct Cost function with kernel k. Then:

(i) The Indirect Cost ΦC is Mutual Information if and only if C majorizes Mutual Information and k is
equivalent to58 the “Fisher information matrix”

g(p) := Diag(p)−1 − 11>. (10)

(ii) The Indirect Cost ΦC is Total Information if and only if C majorizes Total Information and k is
equivalent to Diag(p)−1kT I (p)Diag(p)−1, where the normalized kernel kT I is defined componentwise
by [

kT I (p)
]
θ,θ′

:=

pθ
∑
θ′′,θ γθ,θ′′ +

∑
θ′′,θ pθ′′γθ′′ ,θ , if θ = θ′

−pθγθ,θ′ − pθ′γθ′ ,θ , if θ , θ′

Proof. See Appendix K.

4.4.3 Special Case: Locally Linear Direct Cost

Preference for Incremental Learning is a global property of the Direct Cost function that may be
difficult to verify in practice. But when the Direct Cost is Locally Linear, it can be equivalently stated
in a “local” form that is easier to check:

Lemma 6. Let the Direct Cost C be Locally Linear with divergence D and Locally Quadratic with kernel
k. If k = 1

2HF for some convex function F, then the following are equivalent:

(i) C exhibits Preference for Incremental Learning.

(ii) The Bregman divergence DF generated by F satisfies

D(q | p) ≥DF(q | p) (PGL)

for all q,p ∈ ∆◦.

Proof. See Appendix G.

Recall from Subsection 4.2 that the divergence D(q | p) in a Locally Linear approximation rep-
resents the cost of an infrequently-arriving Poisson signal that moves the prior p to the posterior q.
Thus, we can interpret (PGL) as stating that it is always weakly cheaper to diffuse from p to q than
it is to directly jump there. In a related setting (discussed further below), Hébert and Woodford
(2020b) refer to the condition (PGL) as a Preference for Gradual Learning and provide an analogous
interpretation.59

One might conjecture that, when the Direct Cost C is Locally Linear, the Indirect Cost is UPS if
and only if the divergence approximation D of C is a Bregman divergence. Indeed, Proposition 2(ii)
implies that D being a Bregman divergence is sufficient for the Indirect Cost to be UPS. Lemma 6

58 In the sense that y>k(p)y = y>g(p)y for all p ∈ ∆◦ and all y ∈RΘ such that y · 1 = 0.
59 The definition of Preference for Gradual Learning in Hébert and Woodford (2020b) allows for the kernel k to violate the integrability

condition in Axiom 7(i), but reduces to PGL when integrability holds.
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also helps to elucidate that this conjecture is false: it is the kernel k of the Direct Cost — not its diver-
gence approximation D — that determines whether the Indirect Cost is UPS. Namely, the following
examples60 show that the inequality (PGL) is strict for natural classes of Direct Cost functions:

Example 1 (Convex Transformation of Bregman Divergence). Let DF(q | p) denote the Bregman di-
vergence generated by F ∈ C2 (∆◦). Let C be the Posterior Separable cost function with divergence
D(q | p) := f (DF(q | p)), where f : R+ → R+ is strictly increasing, convex, is twice differentiable at 0,
and satisfies f (0) = 0 and f ′′(0) = 1. It is then immediate that HF(p) = HqD(q | p) |q=p, so that by
Lemma 3 C is Locally Quadratic with kernel k(p) = 1

2HF(q). Moreover, the divergences D and DF
satisfy PGL because f is convex, and satisfy PGL with strict inequality when f is strictly convex.

Example 2 (f -divergence). The divergence Df is called an f -divergence if there exists a convex
function f :R++→R+ with f (1) = 0 such that

Df (q | p) =
∑
θ

f

(
pθ
qθ

)
qθ .

A cost function is called f -based if it is Posterior Separable with an f -divergence. By Lemma 3, it is
easy to see that an f -based cost function is Locally Quadratic if and only if f ′′(0) exists. It is well
known that all Locally Quadratic f -based costs have the same kernel, namely, the Fisher information
matrix (10) (Amari (2016, Lemma 3.5)). As shown above in Lemma 5, the Fisher information matrix
is the Hessian of Shannon entropy, so that for any f -based cost PGL reduces to Df (q | p) ≥DKL(q | p).

4.5 Sequential Prior-Invariance

In this subsection, we apply the preceding characterization results to revisit the Prior-Invariance
Critique of the UPS model discussed in Subsection Section 3.4. Recall that Proposition 1 and Corol-
lary 1.3 establish that essentially no Indirect Cost can be Prior-Invariant. While we conclude from
this that Prior-Invariant is prima facie too strong of a property to demand of an Indirect Cost func-
tion, arguments in favor of Prior-Invariance are still compelling in some contexts when information
costs are based on some “physical” device or process. A natural way to resolve this tension is to re-
quire that the Direct Cost of information be Prior-Invariant, even though the sequential optimization
process will generate a prior-dependent Indirect Cost. This desideratum leads to the following class
of Indirect Cost functions:

Definition 13 (Sequentially Prior-Invariant). Cost function C∗ is Sequentially Prior-Invariant if there
exists a Prior-Invariant direct cost C such that C∗ = Φ(C).

Note that the general theory developed in Sections 2 and 3 made no restrictions on DM’s Direct
Cost. Theorem 1 therefore implies that every Sequentially Prior-Invariant cost function is SLP. This
raises two natural questions. First, to what extent is the weaker desideratum of Sequential Prior-
Invariance consistent with the UPS model? Second, what properties define the Sequentially Prior-
Invariant cost functions within the SLP class? We address the first question below. We return to the
second question, the answer to which requires concepts introduced later, in Subsection A.1.4.

60 Versions of these examples also appear in Hébert and Woodford (2020b).
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A Sequential Prior-Invariance Critique. The main result of this subsection is the complete char-
acterization of the Indirect Cost functions that are both Sequentially Prior-Invariant and UPS. We
find that, generically, these two criteria are mutually exclusive. This finding can be interpreted as
a Sequential Prior-Invariance Critique of the UPS model, which is stronger than the Prior-Invariance
Critique common in the literature.

Proposition 3. Let the Direct Cost function C be Prior-Invariant, Locally Quadratic, and nonzero. The
following are equivalent:

(i) C∗ = ΦC is UPS and Locally Strongly Convex.

(ii) The state space Θ = {θ1,θ2} is binary and there exists some α > 0 such that

C(σ ) ≥ C(σ ) := αmax
{
DKL(σθ1

| σθ2
),DKL(σθ2

| σθ1
)
}

(11)

for all σ ∈ Eb,
ΦC(σ | p) ≡ α

[
pθ1

DKL(σθ1
| σθ2

) + pθ2
DKL(σθ2

| σθ1
)
]
, (Wald)

and the kernels of C and ΦC coincide.

Moreover, when |Θ| = 2, the Direct Cost C satisfies the above conditions.

Proof. See Appendix H.

The main message of Proposition 3 is that — subject to the technical condition that the Direct
Cost be Locally Quadratic — the UPS and Sequentially Prior-Invariant classes of Indirect Costs inter-
sect only when |Θ| = 2. Thus, these classes are disjoint in all but the most stylized economic settings.
A secondary message is that the unique such cost function, given in display (Wald), is the Total In-
formation cost function with symmetric coefficients (γθ1,θ2

= γθ2,θ1
). The theorem also establishes, as

a corollary to Theorem 3, that the only Prior-Invariant Direct Costs that could generate this Indirect
Cost are those that majorize it for all prior beliefs (as stated in display (11)). This has immediate
implications for our cost functions of primary interest:

Corollary 3.2. The following hold:

(i) If C is Prior-Invariant, Locally Quadratic, and Blackwell monotone, and if |Θ| ≥ 3, then ΦC is not
Regular and exhibits sometimes-strict Preference for One-Shot Learning.

(ii) If C is Prior-Invariant, Locally Quadratic, and Blackwell monotone, and if |Θ| ≥ 3, then ΦC is not
Total Information.

(ii) If C is Prior-Invariant, Locally Quadratic, and Blackwell monotone, then ΦC is not Mutual Infor-
mation.

(iv) The Indirect LLR cost function ΦCLLR is not UPS.

Proof. For point (i), ΦC cannot be UPS, because this would contradict Proposition 3. Thus, ΦC

cannot be Regular by Theorem 2 and must exhibit sometimes-strict Preference for One-Shot Learning
by Theorem 1 and Lemma 1. Points (ii) and (iii) are immediate from point (i) and the facts that Total
Information and Mutual Information are UPS. Point (iv) is immediate from point (i) and the fact that
the LLR cost function is Locally Quadratic (see Lemma 10).
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The proof of Proposition 3 builds directly on the necessity direction (point (ii)) of Theorem 3,
which allows us to characterize the set of (Locally Quadratic) Prior-Invariant Direct Costs generating
any Sequentially Prior-Invariant UPS Indirect Cost. For a Prior-Invariant Direct Cost, it can be shown
that the second derivative with respect to experiments — the normalized kernel k(p) in (9) — must
also be independent of the prior and, therefore, a constant matrix. When |Θ| > 3, we show that this is
inconsistent with k(p) being the Hessian of some potential function, and so violates the integrability
condition Axiom 7(i). Notably, by Lemma 4, this implies that when |Θ| > 3 the intersection between
the Sequentially Prior-Invariant and UPS classes is empty even if DM is restricted to acquire only
Gaussian diffusion signals.

By contrast, when |Θ| = 2, the integrability condition Axiom 7(i) has no bite: any kernel satisfying
the Taylor expansion (LQ) can be written as the Hessian of a convex potential function. The symmet-
ric Total Information cost function in (Wald) arises from solving for the unique potential function
that has a prior-independent Hessian, and the majorization condition (11) follows from (PIL).

4.6 Relation to Morris and Strack (2019) and Hébert and Woodford (2020b)

As noted above, our Theorem 3 and Proposition 3 build on — and maximally generalize — the
results of two related papers, Morris and Strack (2019) and Hébert and Woodford (2020b). Here, we
describe the relation between these results in more detail.

Relation to Morris and Strack (2019). Morris and Strack (2019) study a continuous-time variant
of the Wald (1945) sequential sampling model, in which DM acquires information by choosing how
long to observe an exogenous Gaussian diffusion signal process and pays a flow cost c(qt)dt at each
instant before stopping. The key difference from our model is that their DM chooses only when to
stop acquiring information, but not what information to acquire before stopping.61

The main result of that paper establishes that, when |Θ| = 2: (i) every (bounded) experiment
can be replicated by some stopping strategy and (ii) the expected cost of such replication is UPS
with potential function F ∈ C2 (∆◦) whose second derivative is proportional to the flow cost c(q).
Aside from inessential notational differences, this finding is precisely the |Θ| = 2 special case of our
Lemma 4. When |Θ| ≥ 3, only a non-generic class of (bounded) experiments can be replicated by
the sampling process considered in Morris and Strack (2019). They show that the expected cost
of replication is UPS on that restricted domain of implementable experiments. By allowing DM to
flexibly control the volatility of her posterior beliefs, our Lemma 4 extends that characterization
to the full class of bounded experiments. More substantively, our Theorem 3 establishes that the
connection between Gaussian learning and UPS is general, even when DM can undertake arbitrary
Sequential Replication strategies.

Morris and Strack (2019) place particular emphasis on the special case of their model in which
DM’s flow cost of sampling is constant (i.e., is Prior-Invariant in our language). When |Θ| = 2,
they characterize the expected cost of sampling as the symmetric Total Information cost function
in (Wald), which they refer to as the Wald cost function due to its connection to the Wald (1945)

61 The flow cost c(q) in Morris and Strack’s (2019) model can be written in our notation as c(q) = 1
2 tr

[
v>(q)HF(q)v(q)

]
, as in (GIC), where

v(q) is the volatility of their DM’s belief at posterior q, which is determined by parameters of her signal process and standard filtering
formulae.
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model. When |Θ| ≥ 3, that papers shows that: (i) only a non-generic subset of (bounded) experiments
can be replicated by some stopping strategy in their model and (ii) the expected cost of any feasible
experiment is a Total Information cost function with coefficients

γθ,θ′ =
1

(|Θ| − 1)(mθ −mθ′ )2 , (12)

where m ∈ RΘ is the vector of (fixed) state-dependent drifts of the diffusion signal process from
which their DM samples.62

Our Proposition 3 maximally generalizes Morris and Strack’s (2019) findings for Prior-Invariant
flow costs in two respects. First, it shows that, when |Θ| = 2, the Wald cost function is still Se-
quentially Prior-Invariant and, moreover, is the unique Sequentially Prior-Invariant and UPS cost
function — even when DM’s strategy space is fully flexible. Second, it shows that no Sequentially
Prior-Invariant and UPS cost function exists when |Θ| ≥ 3, implying that Morris and Strack (2019)
representation for this case cannot be extended to the full class of bounded experiments. In this
sense, our Proposition 3 shows that their restriction to |Θ| = 2 and Gaussian learning is actually
without loss of generality. Importantly, none of these findings can be deduced from results in Morris
and Strack (2019).

Relation to Hébert and Woodford (2020b). Hébert and Woodford (2020b) study a model of se-
quential sampling in which DM’s strategy space is more flexible than in Morris and Strack (2019) but
less flexible than in our model. They allow DM to acquire any type of experiment in each discrete
time period, but impose an intertemporal constraint on her strategy space that bounds the average
per-period cost that she can expend;63 in the continuous-time limit on which they focus, DM is effec-
tively constrained to optimizing over jump-diffusion belief processes under which she expends the
same infinitesimal Direct Cost at each instant (i.e., perfectly smooths costs over time). To character-
ize their DM’s optimal choice among Poisson and diffusion signals in continuous time, Hébert and
Woodford (2020b) assume that their DM’s Direct Cost satisfies slightly stronger versions of both our
Locally Linear and Locally Quadratic conditions (the case discussed in Subsection 4.4.3).

Hébert and Woodford (2020b) introduce the “preference for gradual learning” condition PGL as
a sufficient condition under which their DM finds Gaussian learning cheaper than Poisson learning.
Our Lemma 6 slightly strengthens this observation by showing that PGL is (i) sufficient to render
Gaussian learning optimal among all strategies, and (ii) also necessary for the optimality of Gaussian
learning.

Hébert and Woodford (2020b, Theorem 8) establish a special case of our sufficiency result, The-
orem 3(i). They show that when their DM’s Direct Cost satisfies PGL, her optimal state-contingent
choice probabilities in any decision problem with fewer actions than states64 will be the same as
would arise under one-shot information acquisition given the UPS Indirect Cost described in our

62 Following Pomatto et al. (2019, Proposition 3), we could alternatively derive the coefficients (12) by requiring that the Total Informa-
tion cost of standard Gaussian experiments is (i) independent of the prior belief and (ii) independent of the number of states.

63 While we use sequential cost-minimization as a way to formalize DM’s strategic flexibility, Hébert and Woodford (2020b) are primarily
motivated by findings from neuroscience and mathematical psychology that human perception and attention allocation are gradual,
dynamic processes. Consequently, much of Hébert and Woodford (2020b) is concerned with providing detailed characterizations of
optimal learning dynamics in decision problems with delay costs and possibly time discounting, results that have no parallel in our work.
For ease of comparison, we focus here on the special case of their model without discounting.

64 Recall that a decision problem (A,u) consists of an action set A and state-dependent Bernoulli utility function u : A×Θ→ R. Hébert
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Theorem 3(i). Given Lemma 6, their result can be (almost) equivalently restated in our language as
follows: for Direct Cost functions that are both Locally Linear and Locally Quadratic, PGL is suf-
ficient to guarantee that the Indirect Cost of experiments with m ≤ |Θ| signal realizations is UPS.65

However, this is not sufficient to pin down the entire Indirect Cost function.66 Our Theorem 3(i)
therefore strengthens their result by showing that PGL remains sufficient even when DM’s strategy
space is not restricted, dispensing with superfluous technical conditions on the Direct Cost function,
and characterizing the Indirect Cost of all experiments.

Importantly, Hébert and Woodford (2020b) do not present any analogue to our necessity result,
Theorem 3(ii). Without this necessity result, it is not possible to (i) characterize the full class of
Direct Costs that generate UPS Indirect Cost functions, (ii) conclude that the restriction to Gaussian
learning is without loss of generality for characterizing such Indirect Cost functions, or (iii) study
the intersection of the Sequentially Prior-Invariant and UPS classes.

5 Foundations for Total Information

This section has two main purposes. First, we characterize Total Information as the unique SLP
cost function exhibiting (a slight generalization of) the Constant Marginal Cost axiom recently in-
troduced by Pomatto et al. (2019) to characterize the LLR cost function. Second, we argue that the
meaning of Constant Marginal Cost is fundamentally different for Direct and Indirect Cost functions,
and that sequential optimization tends to generate Indirect Cost functions with Decreasing Marginal
Cost.

5.1 Simultaneous Replication and Marginal Cost

Many strategies for acquiring information used in practice involve two features. First, informa-
tion is acquired in the form of multiple conditionally independent copies of a fixed experiment, with
the precision of information determined by the number of copies (i.e., “sample size”). Second, these
experiments are run “simultaneously,” with the signals from each experiment observed only after all
experiments have been run. These features are common, for instance, in political polling, market
research, and A/B testing (e.g., Azevedo et al. (2019)), as well as within firms when information-
gathering activities are decentralized among multiple employees. The following definition formal-
izes these kinds of information acquisition strategies, generalized to allow for conditionally indepen-
dent but not necessarily identical experiments (recall the definition of the product experiment σ1⊗σ2

from (6)):

and Woodford (2020b) assume that |A| ≤ |Θ| and rely on this assumption when constructing a Markovian (in the posterior belief) sequential
replication for DM’s optimal target experiment.

65 Formally, there exists a convex function F such that C(σ | p) = Eπ〈σ |p〉 [F(q)−F(p)] for all σ ∈ Eb and p ∈ ∆◦ such that |supp(π〈σ |p〉)| ≤
|Θ|. Given any UPS cost function and decision problem (A,u), there always exists an optimal information acquisition strategy with no
more than min {|A|, |Θ|} signal realizations; if the cost function is strictly Blackwell monotone, then every optimal strategy has no more
than |A| signal realizations. Thus, the assumption that |A| ≤ |Θ| nearly implies that DM will only choose experiments with m ≤ |Θ| signals,
and this implication is exact under strict Blackwell monotonicity. That every experiment with m ≤ |Θ| signal realizations is optimal for
some decision problem (A,u) with |A| ≤ |Θ| actions follows from a simple extension of the duality arguments used to prove de Oliveira
et al. (2017, Theorem 2).

66 This can be shown to follow from de Oliveira et al. (2017, Theorem 2) or Denti (2020, Proposition 1).
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Definition 14 (Simultaneous Replication). The set of experiments {σi}ni=1 constitute a Simultaneous
Replication of the target experiment σ if σ1 ⊗ σ2 ⊗ · · · ⊗ σn %B σ .

The defining feature of Simultaneous Replication is that all “sub-experiments” σi must be con-
ditionally independent. This captures the idea that, since each of these experiments is run “at the
same time,” DM cannot condition her strategy on the signals that they generate. A leading example
of Simultaneous Replication is the acquisition of conditionally independent Gaussian experiments,
for which the posterior precision varies linearly with the sample size n.

Formally, Simultaneous Replication is a special case of Sequential Replication, because in the
latter DM can always choose to run a deterministic sequence of experiments. The distinction arises
from the way that costs are assigned: because DM observes all signals at once, in a Simultaneous
Replication must evaluate the cost of each σi under the same prior belief. In particular, we define
DM’s problem of choosing the optimal Simultaneous Replication given Direct Cost C as

ΦsimC(σ | p) := inf
σ1⊗···⊗σn%Bσ

n∑
i=1

C(σi | p), (SIC)

and refer to ΦsimC as the Simultaneous Indirect Cost function. It is worth noting that there exist cost
functions C for which ΦsimC is not pointwise larger than ΦC (cf. Example 5 below).

The idea of Simultaneous Replication leads naturally to the following notions of the “marginal
cost” of information.

Axiom 8 (Decreasing Marginal Cost). Cost function C exhibits Decreasing Marginal Cost if

C(σ ⊗ τ | p) ≤ C(σ | p) +C(τ | p) (DMC)

for all σ,τ ∈ Eb and p ∈ ∆◦.

A cost function exhibits Decreasing Marginal Cost if it is cheaper to acquire information together
than via any two-experiment Simultaneous Replication without disposal. It is easy to see that De-
creasing Marginal Cost is the “simultaneous learning” analogue to Preference for One-Shot Learning:
ΦsimC(σ | p) = C(σ | p) for all σ ∈ Eb and p ∈ ∆◦ if and only if C is Blackwell monotone and exhibits
Decreasing Marginal Cost.

Axiom 9 (Constant Marginal Cost). Cost function C exhibits Constant Marginal Cost if

C(σ ⊗ τ | p) = C(σ | p) +C(τ | p) (CMC)

for all σ,τ ∈ Eb and p ∈ ∆◦.

By induction, a cost function exhibits Constant Marginal Cost if and only if the cost of all Si-
multaneous Replications (without disposal) of a given experiment are equally costly. In this sense,
it is the “simultaneous learning” analogue to Indifference to Sequential Learning. From a different
perspective, Constant Marginal Cost is the natural generalization of the assumption, common in sta-
tistical decision theory, that the cost of information is linear in sample size.67 Clearly, any non-zero
cost function exhibiting Constant Marginal Cost must be unbounded.

67 This is the standard assumption, for instance, in Wald (1945), Arrow et al. (1949), and various models of Gaussian sampling in which
costs are linear in the precision of Gaussian experiments (see Veldkamp (2011) for discussion).
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Pomatto et al. (2019) introduce the special case of Axiom 9 for Prior-Invariant cost functions,
based on an analogy to “constant returns to scale” in producer theory, and characterize the LLR
cost functions as the unique Prior-Invariant and Dilution Linear cost functions exhibiting Constant
Marginal Cost.

The Returns-to-Scale Critique. A leading critique of the Mutual Information cost function, which
we call the Returns-to-Scale Critique, is based on the following observation:

Lemma 7. Mutual Information exhibits sometimes-strictly Decreasing Marginal Cost.

Proof. See Appendix K.

It is easy to see that Mutual Information must exhibit Decreasing Marginal Cost “asymptotically”
in the following sense. Consider the n-fold product of σ , denoted σ (n), which generates n condi-
tionally independent draws from σ . Since Mutual Information is Bounded, the marginal cost of an
additional draw CMI (σ (n) | p)−CMI (σ (n−1) | p)→ 0 as n→∞. Various authors have suggested that this
property is inappropriate in many contexts and leads to counterintuitive predictions. For instance,
Pomatto et al. (2019, p. 18) write:

“Under LLR cost, the additivity axiom implies that the cost of observing k coin flips is
linear in k. Hence the cost of observing a sequence of k flips goes to infinity with k. Un-
der Mutual Information cost . . . the cost of observing infinitely many coin flips is only
approximately 3.6 times the cost of observing a single coin flip. The low — and arguably
in many applications unrealistic — cost of acquiring perfect information is caused by
the sub-additivity of Mutual Information as a cost-function . . . These simple calculations
suggest that using Sims’ Mutual Information cost as a model of information production
rather than information processing (as originally intended by Sims) may lead to counter-
intuitive predictions.”

This difference between Decreasing Marginal Cost and Constant Marginal Cost can have impor-
tant implications in economic applications. For instance, in a portfolio choice setting with Gaussian
uncertainty, Nieuwerburgh and Veldkamp (2010) show that Mutual Information leads to “corner
solutions” in which the investor learns about only one asset and consequently chooses an under-
diversified portfolio, while with Constant Marginal Cost cost functions she learns about all assets
and chooses a diversified portfolio (see also Morris and Strack (2019) for a related example). In
strategic settings, it is known that Mutual Information cost functions can lead to multiple equilib-
ria, even in settings where Constant Marginal Cost learning technologies induce unique equilibria
(Myatt and Wallace (2012)).

Constant Marginal Cost and Sequential Replication. The Returns-to-Scale Critique is based on
a particular vision of information acquisition that, evidently, does not account for the possibility
of sequential optimization. For instance, the classical information-theoretic foundation for Mutual
Information views this cost function as the expected cost of an optimal iterative search procedure
in which DM sequentially asks binary yes/no questions about the state, and each such question has
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equal cost. The optimal search procedure takes the form of a generalized “bisection” algorithm,
which inevitably induces Decreasing Marginal Cost (cf. Veldkamp (2011)).

How general is the above logic? A main lesson of this section is that it is quite general: Constant
Marginal Cost is generally not preserved under sequential optimization and, moreover, sufficiently
rich strategy spaces for information acquisition inevitably lead to Indirect Cost functions with De-
creasing Marginal Cost (see Subsection A.1 below). The following lemma illustrates an important
special case of this lesson:

Lemma 8. Every non-zero Indirect LLR cost function ΦCLLR exhibits sometimes-strictly Decreasing Marginal
Cost.

Proof. See Appendix K.

Lemma 8 illustrates that Constant Marginal Cost is generally not preserved under sequential
optimization. Consequently, arguments in favor of or against Constant Marginal Cost that are rele-
vant in contexts of one-shot information acquisition (i.e., for DM’s Direct Cost function) may not be
relevant when information can be acquired sequentially (i.e., for DM’s Indirect Cost function).

The Case for Decreasing Marginal Cost. In Appendix A.1, we develop an extension of our frame-
work that allows DM to engage in a general form of Unrestricted Replication that encompasses both
our main notion of Sequential Replication and the above notion of Simultaneous Replication. We
show that the resulting Unrestricted Indirect Cost necessarily exhibits Decreasing Marginal Cost, sug-
gesting that this property is a necessary condition of optimality.

5.2 Total Information: Characterization

The following characterization of Total Information is the main result of this section. For techni-
cal reasons, we restrict attention to Extensible cost functions that can, in a suitable sense, be contin-
uously extended to a class of experiments E◦ that is strictly larger than Eb, but strictly smaller than
E (see Appendix I for formal details). We note that Mutual Information, Total Information, Mutual
Information, and all other commonly-used cost functions that we know of are Extensible.

Theorem 4. For an Extensible cost function C∗, the following are equivalent:

(i) C∗ is SLP and exhibits Constant Marginal Cost.

(ii) C∗ is a Total Information cost function.

Moreover, if C is an Extensible and Dilution Linear Direct Cost function exhibiting Constant Marginal
Cost, then ΦC is a Total Information cost function if and only if C = ΦC.68

Proof. See Appendix I.

Theorem 4 has two main takeaways. First, it characterizes Total Information as the unique SLP
cost function exhibiting Constant Marginal Cost. Because Total Information is UPS, a notable —
and perhaps surprising — implication of this result is that, within the SLP class, Constant Marginal

68 Equation (55) in Appendix I notes that this result can, in fact, be generalized to a somewhat larger class of Direct Cost functions.
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Cost automatically implies Indifference to Sequential Learning. This suggests that Total Informa-
tion is uniquely “process invariant,” in the sense that the expected cost of acquiring a given target
experiment is the same no matter whether it is acquired in one shot, via Sequential Replication, or
via Simultaneous Replication. Indeed, Corollary 6.2 in Appendix A.1shows that Total Information
uniquely satisfies an even stronger Process Invariance condition. This explains why Total Informa-
tion is named as such: “merging” or “splitting” experiments either sequentially or simultaneously
does not affect costs. Put differently, costs depend only the totality of information produced, not the
process by which it is acquired. No other cost function satisfies this property.

Second, the theorem also states that, within the Dilution Linear class, no Direct Cost function
exhibiting Constant Marginal Cost — aside from Total Information itself — generates an Indirect
Cost that also exhibits Constant Marginal Cost. Because DM’s Direct Cost function is necessarily
Dilution Linear if she has access to mixed and direct Poisson strategies before engaging in any more
complicated form of Sequential Replication, this covers a broad class of Direct Cost functions. Thus,
Theorem 4 significantly strengthens the messages of Lemma 8, namely, that Constant Marginal Cost
is generally not preserved under sequential optimization. We therefore conclude that the meaning of
Constant Marginal Cost is fundamentally different when it is imposed on the Indirect Cost, rather
than the Direct Cost, of information.

Relation to Pomatto et al. (2019). The proof of Theorem 4 builds on Pomatto et al.’s (2019) char-
acterization of the LLR cost function. In particular, by applying that paper’s characterization prior-
by-prior, under the hypotheses of the theorem we are able to restrict attention to cost functions
resembling (LLR), but in which the discrimination coefficients βθ,θ′ are replaced by prior-dependent
functions β̂θ,θ′ : ∆◦ → R+. The combination of Preference for One-Shot Learning and Constant
Marginal Cost implies that these prior-dependent coefficients must satisfy a series of linear inequal-
ities, given which a linear separation argument implies that the coefficients must take the linear
form β̂θ,θ′ (p) = pθγθ,θ′ characteristic of Total Information. However, in light of Lemma 8 and the
final clause of Theorem 4, we conclude that the relation between Total Information and the LLR cost
function is purely formal.

5.2.1 Special Cases of Total Information

Two recently proposed alternatives to the Mutual Information cost function — the ex ante Wald
cost of Morris and Strack (2019) and the Fisher information cost of Hébert and Woodford (2020a)
— are, in fact, special cases of the Total Information cost function. Our characterization of Total
Information unifies and provides new foundations for these special cases. Conversely, economic
applications considered in those and subsequent papers (e.g., Hébert and La’O (2020)) illustrate that
Total Information is amenable to use in applied economic settings.

Wald Cost Function. In Subsection 4.5, we observed that the (essentially) unique Sequentially
Prior-Invariant and UPS cost function, which exists only when |Θ| = 2, is Total Information with
symmetric coefficients. As noted in Subsection 4.6, this special case of what Morris and Strack (2019)
call the Wald cost function. When |Θ| ≥ 3, Morris and Strack (2019) derive a variant of the Total In-
formation with the coefficients in (12) from a Prior-Invariant Direct Cost when DM is constrained
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to acquiring information in the form of exogenously-given Gaussian signals. Importantly, these re-
strictions on DM’s strategy space imply that the cost function derived in that paper is only defined
over a non-generic subset of bounded experiments. Thus, our Total Information cost function with
the coefficients in (12) is the natural extension of Morris and Strack’s (2019) cost function to the full
domain of bounded experiments.

Fisher Information Cost Function. In recent work, Hébert and Woodford (2020a) axiomatize a
particular class of UPS cost functions called the Neighborhood-Based Costs (NBCs).69 Relative to our
setup, Hébert and Woodford (2020a) also take as primitive a finite collection {N`} of non-emtpy
neighborhoods Ni ⊆Θ, with the idea that it is costly to distinguish between states within each neighb-
horhood. A UPS cost function C with potential function F is an NBC if there exists a corresponding
collection {F`} of neighborhood-specific (bounded and twice continuously-differentiable) potential
functions F` : ∆(N`)→R such that

F(q) =
∑
`

∑
θ∈N`

qθ

F` (q(· |N`)) (NBC)

where q(· | N`) ∈ ∆(N`) denotes the conditional posterior on the neighborhood N` induced by q ∈
∆(Θ). Hébert and Woodford (2020a, Proposition 1) show that a UPS cost function (with potential
F ∈ C2(∆◦)) is an NBC if and only if it satisfies two axioms (their Assumptions 2-3) capturing the
idea that it is costly to distinguish between states θ,θ′ ∈N` within a common neighborhood, but not
costly to distinguish between states that do not share any such common neighborhood.

This axiomatization of NBCs has no obvious connection to our characterization of Total Infor-
mation. Yet, technical qualifiers aside, it is easy to see that every Total Information cost function is
an NBC and, conversely, that an NBC is a Total Information cost function if and only if it exhibits
Constant Marginal Cost within each neighborhood.70 In this sense, our definition and derivation of
Total Information bridges the gap between the distinct approaches of Hébert and Woodford (2020a)
— who restrict to UPS costs and emphasize neighborhood structures — and Pomatto et al. (2019) —
who emphasize Constant Marginal Cost and whose LLR cost functions are not UPS.

Hébert and Woodford (2020a) place particular emphasis on a specific limit of NBCs called the
Fisher Information cost function. To derive this function, they assume that (i) the state space Θ ⊂R
is linearly ordered with θ1 < θ2 < · · · < θ|Θ|, (ii) the collection of neighborhoods consists of pairs
{θi ,θi+1} of “adjacent” states, (iii) each neighborhood-specific potential function is identical up to a
neighborhood-specific scaling factor, and (iv) the number of states becomes unbounded (i.e., |Θ| →
∞). Under suitable technical conditions, they show that this limiting procedure yields the Fisher
Information cost function over the continuous state space

(
θ,θ

)
⊆R, defined as

CFisher(σ̂ | p) :=
∫ θ

θ

∑
s∈S

(
∂
∂θ σ̂ (s | θ)

)2

σ̂ (s | θ)
p̂(θ)dθ, (Fisher Information)

69 The Neighborhood-Based Costs were first introduced, without axiomatic foundation, in the earlier working paper Hébert and Wood-
ford (2017). The axiomatization discussed here, which first appeared in Hébert and Woodford (2020a), was obtained contemporaneously
to and independently of the results in this paper.

70 To see that Total Information is an NBC, let each pair of distinct states
{
θ,θ′

}
define a neighborhood with neighborhood-specific

potential function F{θ,θ′ }(q) := q (θ |
{
θ,θ′

}
) log

(
q(θ|{θ,θ′})
q(θ′ |{θ,θ′ })

)
+ q (θ′ |

{
θ,θ′

}
) log

(
q(θ′ |{θ,θ′})
q(θ|{θ,θ′ })

)
.
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where p̂ :
(
θ,θ

)
→ R+ is the density (with respect to Lebesgue measure) of DM’s absolutely continu-

ous prior belief p, and the domain of CFisher is restricted to ELip, the set of finite-support experiments
σ̂ :

(
θ,θ

)
→ ∆(S) such that for each signal s the map θ 7→ σ̂ (s | θ) has Lipschitz continuous derivative.

This cost function gets its name from the fact that it is the expected value of

I (σ̂ | θ) :=
∑
s

(
∂
∂θ

log(σ̂ (s | θ))
)2

σ̂ (s | θ), (13)

the Fisher information of the signal at state θ. Notably, Hébert and Woodford (2020a) and Hébert
and La’O (2020) show that the Fisher Information cost function (suitably extended to experiments
without finite support) is highly tractable in canonical Gaussian-Quadratic environments, where it
leads to significantly different predictions than Mutual Information.

Importantly, Total Information is the natural discrete-state analogue to, and generalization of, the
Fisher Information cost function. There are two ways to see this. First, observe that a near-defining
feature of the Fisher Information cost function is that it is UPS and exhibits Constant Marginal Cost,
the latter of which follows from the well-known additivity of the Fisher information I (· | θ) with
respect to conditionally independent distributions.71 While this property is not noted by Hébert
and Woodford (2020a), it plays an important role in their characterization of optimal strategies in
Gaussian-Quadratic environments. It is also curious that none of the finite-state NBCs that Hébert
and Woodford (2020a) use to approximate the Fisher Information cost in the continuous-state limit
exhibit Constant Marginal Cost.72 In other words, that paper obtains Constant Marginal Cost of the
Fisher Information cost function only in the continuous-state limit.

Second, we may heuristically derive the Fisher Information cost function as a particular limit of
Total Information cost functions as follows. Suppose that the state space has the linear structure
assumed by Hébert and Woodford (2020a), whereby Θ =

{
θ1, . . . ,θ|Θ|

}
⊂ (θ,θ). Also assume that the

discrimination coefficients in (TI) satisfy γθi ,θj = 1(j = i + 1)/(θi − θi+1)2. For any σ̂ ∈ ELip mapping

σ̂ : (θ,θ)→ ∆(S), define its restriction to Θ by σ : Θ→ ∆(S). Finally, recall the well-known character-
ization of Fisher information as the Hessian of the KL divergence, wherebyDKL(σθ | σθ′ ) = (θ−θ′)2

2 I (σ |
θ) + o

(
(θ −θ′)2

)
for any σ ∈ ELip and θ,θ′ ∈ (θ,θ). Then in the continuous-state limit where |Θ| → ∞

and |θi −θi+1| → 0, we have the approximation

CT I (σ | p) =
|Θ|−1∑
i=1

[
pθi

(θi −θi+1)2DKL(σθi | σθi+1
) +

pθi+1

(θi −θi+1)2DKL(σθi+1
| σθi )

]

≈
|Θ|−1∑
i=1

(pθi + pθi+1

2

)
· I (σ | θi)

→ CFisher(σ̂ | p),

assuming that the sequence of priors p ∈ ∆(Θ) converges a probability measure with density p̂ on
the limiting state space (θ,θ). In our view, his approximation (suitably formalized) provides an
appealing alternative to Hébert and Woodford’s (2020a) derivation of the Fisher Information cost

71 Formally, I (σ ⊗ τ | θ) = I (σ | θ) +I (τ | θ) for all σ,τ ∈ ELip , which implies that CFisher (σ ⊗ τ | p) = CFisher (σ | p) +CFisher (τ | p) as well.
72 Hébert and Woodford (2020a) primarily focus on the case in which the approximating NBCs are proportional to Mutual Information

within each neighborhood.
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function because it (a) highlights the well-known fact that Fisher information arises as the Hessian
of KL divergence, (b) makes more transparent the fact that Fisher Information costs exhibit Constant
Marginal Cost, and (c) relates Fisher Information costs to our characterization of Total Information
in Theorem 4. We believe that this connection to Total Information provides a compelling reason
— independent of those discussed in Hébert and Woodford (2020a) — for focusing on the Fisher
Information cost in continuous-state models. Of course, Total Information is well-defined also for
finite-state settings and allows for a more general structure of the discrimination coefficients than
used in this approximation, and so is not wedded to the interpretation that only adjacent states are
costly to distinguish.

6 Foundations for Mutual Information

This section characterizes Mutual Information as the unique (subject to regularity conditions)
SLP cost function consistent with the idea that DM is able to “freely ignore” aspects of the state
space that she finds “irrelevant.”73

The Perceptual Distance Critique. A common criticism of the Mutual Information cost function,
which we call the Perceptual Distance Critique, is that this cost function treats all states symmetrically.
For instance, Maćkowiak et al. (2018, p. 10) write that:

“[E]ntropy does not depend on a metric, i.e., the distance between states does not matter.
With entropy, it is as difficult to distinguish the temperature of 10◦C from 20◦C, as 1◦C
from 2◦C. In each case the agent needs to ask one binary question, resolve the uncertainty
of one bit. If, however, the agent needed to use a thermometer with inherent additive
noise of a given size, then it is clear that distinguishing the more distant states 10◦C and
20◦C would be easier — reduction of entropy is not a good measure of information in that
case.”

Many authors have argued that this property is inappropriate for cost functions representing the
cost of information production, for which the “distance” between states naturally affects costs (cf.
examples in Pomatto et al. (2019)). This symmetry property is also known to have implications for
equilibrium selection in coordination games with endogenous information choice (Morris and Yang
(2019)), and is sometimes rejected in experimental tests of human attention allocation (Dean and
Neligh (2019); Dewan and Neligh (2018)).

However, when it is costly for DM to “process” already-available information, it is natural to
expect that she would learn how to “optimally encode” states before processing information about
them. This idea underlies the classical information-theoretic foundations for Mutual Information
(Cover and Thomas (2006, Ch. 10)). Consider, for instance, the problem of a DM who does not
learn directly about the state, but rather from news outlets that generate information on her behalf.
DM has limited attention and finds it costly to process the information presented by a news outlet.
Which outlet will she choose to learn from? In general, if her cost function does not satisfy the
same symmetry properties of Mutual Information, DM will find it more or less costly to learn from

73 The material in this section is preliminary and subject to updates.
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different outlets that present news in different “languages,” even if the information that they convey
about the payoff-relevant state is identical. Consequently, DM may choose to learn from an outlet
that provides Blackwell inferior information about the state of interest, simply because she finds
its language easier to process. As formalized and discussed further in Bloedel and Segal (2020), this
kind of behavior appears to be inconsistent with standard notions of Bayesian rationality. The Mutual
Information cost function does not suffer from this problem; below, we show that it the essentially
unique SLP cost function with this property.

6.1 Axioms

Our characterization of Mutual Information is based on two key axioms, which formalize the
idea that information costs are reduced under certain forms of compression of the state space. (In
Appendix K, we interpret these axioms in terms of an extended optimization problem for DM.)

Definition 15. A compression of Θ is a mapping κ : Θ→ 2Θ\∅ such that:

(i) The collection {κ(θ)}θ∈Θ defines a partition of Θ.

(ii) θ ∈ κ(θ) for all θ ∈Θ.

Let K denote the set of all coarsenings of Θ.

The first axiom captures the idea that compressing states that DM’s target experiment treats iden-
tically should not affect the cost of that experiment.

Axiom 10 (Weakly Compression Invariant). Cost function C is Weakly Compression Invariant if

C(σ | p) = C(σ | p′) (14)

for all experiments σ ∈ Eb measurable with respect to compression κ ∈ K,74 and priors p′ ∈ ∆◦ for which
p′(κ(θ)) = p(κ(θ)) for all θ ∈Θ.

Another way to view this axiom is that Weakly Compression Invariant cost functions exhibit a
restricted form of Prior-Invariance, whereby the cost of an experiment σ is not affected by shifting
probability mass within σ -measurable events, but may be affected by shifting probability mass across
these events. In other words, Axiom 10 states that DM’s prior affects her cost of information only to
the extent that it determines the probabilities of the events that she learns about.

For a simple example, suppose DM aims to learn about a political candidate’s platform, which
may be left-, center-, or right-leaning. Axiom 10 demands that if DM’s target experiment is informa-
tive only about whether the candidate is right-leaning — e.g., it determines whether the true state is
in {l, c} or {r}— then her cost remains the same when prior probability mass is shifted within the event
{l, c}. For instance, the red and blue posterior distributions in the left-hand panel of Figure 3 have
equal cost under a Weakly Compression Invariant cost function. Intuitively, “splitting” or “merging”
the states l and c should not affect DM’s cost when her (fixed) target experiment already ignores any
distinction between them.

The second axiom captures the idea that DM finds it cheaper to learn about coarser events.

74 Formally, σ (· | θ) = σ (· | θ′) whenever κ(θ) = κ(θ′).
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Figure 3: Illustrations of Axiom 10 (left) and Axiom 11 (right).

Definition 16. Given coarsening κ and prior p ∈ ∆◦, the 〈κ | p〉-compression of experiment σ ∈ Eb,
denoted by σ〈κ|p〉, is the bounded experiment defined by

σ〈κ|p〉(s | θ) :=

∑
θ′∈κ(θ)σ (s | θ′)pθ′∑

θ′∈κ(θ)pθ′
(15)

For each state θ in a given cell of the compression κ, the compressed experiment σ〈κ|p〉 replaces
the conditional distribution of signals σ (·θ) with the average distribution of signals given the prior,
conditional on the state being in that cell of κ. Intuitively, this operation captures the idea that DM
“forgets” the distinction between all states within a given cell.

Axiom 11 (Compression Monotone). Cost function C is Compression Monotone if

C(σ | p) ≥ C(σ〈κ|p〉 | p) (16)

for all experiments σ ∈ Eb, coarsenings κ ∈ K, and priors p ∈ ∆◦.

An equivalent “distraction free” axiom is studied in Tian (2019). Returning to the above example,
Compression Monotonicity demands that the purple posterior distribution in the right-hand panel
of Figure 3 costs less than either the red or blue posterior distributions. Intuitively, “merging” states
l and c while generating the same information (i.e., conditional signal distributions) about the events
{l, c} and {r} should not increase costs; in any decision problem where l and c are payoff-equivalent,
DM should be able to freely ignore any distinction between them.

Notice that the experiments σ and σ〈κ|p〉 are generally not Blackwell comparable. This is illus-
trated in the right-hand panel of Figure 3, in which the red and blue posterior distributions share
the same compression with respect to the coarsening {l, c} and {r}, namely, the purple posterior dis-
tribution. However, none of these posterior distributions are mean-preserving spreads of the others
because the convex hulls of their supports are not nested. Conversely, no garbling of the purple
posterior distribution is a compression of the red or blue posterior distributions. Thus, a cost func-
tion that is Blackwell monotone may not be Compression Monotone, and vice versa. Intuitively,
Blackwell monotone corresponds to monotonicity with respect to garblings of the signal space, while
Compression Monotone corresponds to monotonicity with respect to garblings of the state space.
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6.2 Mutual Information: Characterization

With the preceding definitions in hand, we may state our main characterization theorem for
Mutual Information, which characterizes this cost function within the UPS class.

Theorem 5. Let the cost function C∗ be UPS and Bounded. If |Θ| ≥ 3, then the following are equivalent:

(i) C∗ is Weakly Compression Invariant.

(ii) C∗ is Compression Monotone.

(iii) C∗ is a Mutual Information cost function.

Proof. See Appendix J.

The equivalence between points (ii) and (iii) was first noted in Tian (2019) and proved using
methods very similar to ours. An immediate corollary of Theorem 5 is that, subject to regularity
conditions, Mutual Information is also the unique such cost function within the larger SLP class.

Corollary 5.1. Let the cost function C∗ be SLP and Bounded. If |Θ| ≥ 3, then he following are equivalent:

(i) C∗ is Regular and either (a) Weakly Compression Invariant or (b) Compression Monotone.

(ii) C∗ is a Mutual Information cost function.

Proof. Immediate from Theorems 2 and 5.

The requirement that there are at least three states is needed to rule out trivial cases: when |Θ| = 2,
every cost function is Weakly Compression Invariant and every Blackwell monotone cost function is
Compression Monotone. It is also worth noting that the boundedness qualifier is necessary for parts
of both Theorem 5 and Corollary 5.1, and that the Regularity qualifier is necessary for Corollary 5.1.
The follow examples illustrate this:

Example 3 (Symmetric Total Information). Consider the Total Information cost function with sym-
metric coefficients: γθ,θ′ = c > 0 for all pairs of states. It is then easy to see from (TI) that this cost
function is Weakly Compression Invariant, in particular, because it is linear in prior beliefs. However,
it is not Compression Monotone.

Example 4 (Total Variation Cost). Recall from Subsection 3.2.2 the class of distance-based cost func-
tions (3), which are SLP but not UPS and, hence, not Regular by Theorem 2. The distance-based cost
function generated by the total variation distance dT V (q | p) := 1

2
∑
θ |qθ − pθ | is both Weakly Com-

pression Invariant and Compression Monotone. This follows from the well-known fact that the total
variation distance is, in fact, an f -divergence (see, e.g., Amari (2016, Section 3.2)).

The proof of Theorem 5 is based on Shannon’s (1948) and Fadeev’s (1956) classic characteriza-
tions of the Shannon entropy function H(p) := −

∑
θ pθ log(pθ).75 Building on those classic charac-

terizations, we show that any function F : ∆(Θ)→ R that is continuous and satisfies the recursivity
condition

F(p) = F (p+ pθ′ (δθ − δθ′ )) + (pθ + pθ′ )F
(

pθ
pθ + pθ′

δθ +
pθ′

pθ + pθ′
δθ′

)
(R)

75 See Csiszár (2008) for a survey of functional equation characterizations of Shannon entropy.
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for all θ,θ′ ∈ Θ must be proportional to Shannon entropy. To understand the meaning of (R), it
is convenient to interpret F(p) as a measure of the “uncertainty” contained in the belief p. Roughly
speaking, the recursivity condition (R) states that the total uncertainty in belief p is equal to the “total
expected uncertainty” from first merging states θ,θ′ into the event {θ,θ′}, and then differentiating
between θ and θ′ within that event. Note that, while (R) is in some sense analogous to Indifference to
Sequential Learning, the former is a recursivity property of the potential function F while the latter
is a recursivity property of the cost function C, so that these conditions are not directly comparable.
In essence, the proof of Theorem 5 establishes that, given the existence of a UPS representation with
potential F, either Weakly Compression Invariant or Compression Monotone imply that (the unique
continuous extension of F to the entire simplex) satisfies (R).

6.3 Related Characterizations of Mutual Information

Relation to Caplin et al. (2019b). Theorem 5 is inspired, in large part, by a related characterization
of Mutual Information due to Caplin et al. (2019b). In essence, that paper establishes that Mutual
Information is the unique Bounded UPS cost function satisfying both Axioms 10 and 11. However,
a major difference is that Caplin et al. (2019b) take a revealed preference approach, wherein the an-
alyst observes (only) DM’s optimal choice of experiment in every decision problem and must draw
inferences about her cost function (which is unobserved). CDL therefore impose their key “invari-
ance under compression” (IUC) axiom on DM’s choice behavior, whereas we impose our axioms on
the cost function itself. Roughly speaking, Caplin et al.’s (2019b) IUC axiom states that DM’s opti-
mal state-contingent action probabilities (i) are identical in all payoff-relevant states and (ii) do not
change when probability mass is shifted within payoff-equivalent events. Clearly, Axiom 11 implies
the former property, while the conjunction of Axioms 10 and 11 implies the latter property.

The marginal contributions of Theorem 5 are twofold. First, we show that Axioms 10 and 11 are
each sufficient to characterize Mutual Information within the UPS class, while Caplin et al.’s (2019b)
IUC axiom combines (the revealed preference analogous of) these two properties, which are logically
distinct. In fact, it can be shown that our Theorem 5 implies CDL’s characterization. Second, by
working directly with the cost function rather than the optimal choice behavior that it induces, our
Theorem 5 is amenable to a comparatively elementary proof that elucidates the connection between
invariance conditions of DM’s information cost function and Fadeev’s (1956) classic characterization
of Shannon entropy. We believe that these innovations relative to Caplin et al.’s (2019b) have both
conceptual and pedagogical value.

Information Theory and Geometry. Since the pioneering work of Shannon (1948), a large literature
has provided axiomatic foundations for Shannon entropy, mutual information, and their generaliza-
tions using tools from the theory of functional equations. Csiszár (2008) and Ebanks et al. (1998)
survey these contributions. To our knowledge, the closest result in this literature to our Theorem 5
is the recent characterization of mutual information by Jiao et al. (2015a).76 In our language, that
paper establishes that any Full Domain UPS cost function that is “invariant to sufficient statistics”
— i.e., both Weakly Compression Invariant and invariant to permutations of the state space — must

76 See also the closely related characterization of KL divergence in Jiao et al. (2014b).
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be a Mutual Information cost function. Their result, which is proved via more sophisticated func-
tional equation techniques than we use, is implied by the equivalence of points (i) and (iii) in our
Theorem 5.

The related information geometry literature initiated by Čencov (1982) (see also Amari (2016))
studies the differential geometric structure of the probability simplex. Čencov (1982, Chapter 11)
(see also Amari (2016, Section 3.5)) characterizes the metric induced by the Fisher information matrix
(10) as the essentially unique “invariant” metric on (the tangent space to) the probability simplex,
meaning roughly that the distance between two probability distributions p and q with fixed support
size |supp(p)| = |supp(q)| = n does not depend on (a) the size |Θ| ≥ n of the state space over which they
are defined, or (b) the precise states over which they are supported. As discussed in Amari (2016,
Section 3), this notion of invariance is closely related to versions of Axioms 10 and 11 studied in the
information theory literature. In independent work, Hébert and Woodford (2020a, Proposition 2) use
this characterization of the Fisher information matrix to characterize Mutual Information within the
class of Full Domain UPS cost functions that (a) have smooth potentials F ∈ C2 (∆◦) and (b) satisfy a
strong monotonicity condition that implies both Axiom 10 and Axiom 11, as well as invariance with
respect to permutations of the state space. Their result is therefore implied by our Theorem 5.77

7 Concluding Remarks

Summary. This paper develops a theory for the cost of optimally acquired information when in-
formation can be acquired sequentially. It makes three main contributions. First, we introduce and
characterize the class of SLP information cost functions, which are precisely the cost functions that
are “rationalizable” by an underlying sequential optimization process. Second, we show that every
SLP cost function satisfying mild regularity conditions is a UPS cost function, of the sort used in the
rational inattention literature. However, these regularity conditions are economically meaningful:
any UPS cost function must have been generated by a Direct Cost for which it is optimal to learn
only by Gaussian diffusion signals. Third, within the SLP (and UPS) class, we characterize the new
Total Information and the familiar Mutual Information cost functions as the unique cost functions
satisfying additional normatively appealing properties. These cost functions are tractable for use in
economic applications.

Open Questions. Aside from the obvious possibilities of (i) exploring economic applications of the
Total Information cost function and (ii) relaxing various regularity conditions used to obtain our
characterization results, our analysis leaves open three main questions for future research.

First, our analysis leaves open the question of how, in general, to compute the Indirect Cost ΦC
generated by an arbitrary Direct Cost C. Proposition 2(ii) shows that ΦC is characterized by the
“first derivative” (i.e., Locally Linear approximation) of C if and only if direct Poisson learning is an
optimal strategy. More subtly, Theorem 3 shows that ΦC is characterized by the “second derivative”
(i.e., Locally Quadratic approximation) of C if (and under additional conditions only if) Gaussian

77 A technical difference is that Čencov’s (1982) theorem requires considering probability simplices with arbitrarily high dimension,
which means that this result cannot be directly applied to our setting with a fixed finite state space. Consequently, Hébert and Woodford
(2020a) assume that the state space is uncountably infinite and consider prior beliefs with (partial) finite support, assuming that it is
costless to learn about zero-probability states (cf. Subsections 2.3 and 3.4). Caplin et al. (2019b) make similar assumptions.
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diffusion learning is always optimal. It would clearly be desirable to have an algorithmic approach
for characterizing ΦC when neither of these (stringent) conditions are met.

Second, our analysis leaves open the full characterization of the Sequentially Prior-Invariant class
of cost functions. Given the importance attributed to Prior-Invariance in the literature, it would be
highly desirable to have such a characterization, as well as specific and tractable functional forms
for use in applications. Proposition 3, Corollary 3.2, and Corollary 6.4 take important initial steps in
this direction, but perhaps the main takeaway from these results is that a complete characterization
is likely to be quite difficult because, given a Prior-Invariant Direct Cost, one cannot restrict attention
to either direct Poisson or Gaussian diffusion strategies. Moreover, while Corollary 3.2(i) establishes
that (generically) no Sequentially Prior-Invariant cost function is Regular — which, in our view,
suggests that there is little hope for analytically tractable Sequentially Prior-Invariant cost functions
— it remains to be seen whether the Sequentially Prior-Invariant and Posterior Separable classes
intersect.

Finally, it would be useful to characterize the testable revealed preference implications of SLP
information costs, and Total Information in particular, so that our theory can be taken to economic
data. This would complement recent advances studying the revealed preference implications of the
Posterior Separable and UPS models (Caplin et al. (2019b); Denti (2020)) and of more general models
of sequential information sampling (Bloedel (2020a)).
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Maćkowiak, B. and Wiederholdt, M. (2009). Optimal sticky prices under rational inattention. Amer-
ican Economic Review, 99(3):769–803.

Matějka, F. (2015). Rigid pricing and rationally inattentive consumer. Journal of Economic Theory,
158:656–678.
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Appendix

A Material Omitted from the Main Text

A.1 A Theory of Unrestricted Replication

The analysis of Section 5 leaves open two questions. First, is Mutual Information somehow special
in exhibiting Decreasing Marginal Cost, or is that property the norm under sequential optimization
? Second, is there a general optimization framework that encompasses both sequential and simulta-
neous replication?

Example 5 (Residual Variance). Consider the UPS cost function based on the potential function
F(q) =

∑
θ qθ(1−qθ), which Ely et al. (2015) and Frankel and Kamenica (2019) refer to as the “residual

variance” of belief q. The associated Bregman divergence is DF(q | p) = ||q−p||2, meaning that the cost
function is simply the variance of belief movement. In Appendix K, we show that this cost function
strictly satisfies (DMC) for certain pairs of experiments and strictly satisfies the opposite “increasing
marginal cost” inequality for others.

Unrestricted Replication. As noted above in Subsection 5.1, the notion of Simultaneous Replica-
tion (paired with the cost specification (SIC)) that underlies Axioms 8 and 9 lies outside the scope of
our main framework based on Sequential Replication. The reason for this is that Sequential Repli-
cation requires that DM observe the outcome from her first experiment before running a second
experiment, whereas Simultaneous Replication allows DM to run two experiments simultaneously
without observing the outcomes of either until the end. However, it is natural to argue that Simul-
taneous Replication should be permitted in a sufficiently flexible model of sequential information
acquisition, because DM should have the ability to “ignore” signals from early experiments until
they are used.

Here, we introduce a notion of “unrestricted replication” that allows DM to do precisely this,
thereby nesting the natural notions of simultaneous and sequential information gathering. The for-
mal definition largely mirrors the formal definition of Sequential Replication. To state it, given a se-
quence of signal spaces {St}2Tt=1, denote the set of length-2t histories by S2t−1 :=

∏2t−1
τ=1 Sτ with generic

element s2t−1 ∈ S2t−1.

Definition 17 (Unrestricted Replication). For T ∈N, length-2T Unrestricted Replication of the tar-
get experiment σ consists of:

(i) A collection of (Polish) signal spaces {St}2Tt=1 satisfying S2t−1 ⊆ S2t (and where S0 is singleton),

(ii) A collection of (even period) measurable maps σ (2t) : S2t ×Θ→ ∆(S2t+1), and

(iii) A collection of (odd period) measurable maps γ (2t+1) : S2t+1→ ∆(S2t+2),

such that σ is Blackwell equivalent to the experiment σR : Θ→ ∆(S2T ) for which σR(· | θ) is defined as the
marginal distribution on S2T of

T−1∏
t=0

σ (2t)(s2t+1 | s2t ,θ)γ (2t+1)(s2t+2 | s2t+1, s2t).
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The only difference between Definition 17 and the definition of Sequential Replication is that
point (iii) of the former allows the “garblings” γ (2t+1) to provide information about the entire his-
tory s2t+1 of signals, while the latter requires that γ (2t+1) provides information only about the past
two signals (s2t , s2t+1).78 Intuitively, in a Sequential Replication, DM can choose to discard some
previously-acquired information in period 2t + 1 and, once she does so, that information is gone for-
ever. By contrast, in an Unrestricted Replication, DM can choose to store some previously-acquired
information in period 2t + 1, which can be recalled at some later period 2t′ + 1 (where t′ > t). DM
does not “observe” stored information before it is recalled, meaning that in the interim periods (a)
she cannot condition her strategy on it and (b) also does not incorporate it into her updated beliefs.

It is therefore clear that any valid Sequential Replication is also a valid Unrestricted Replication.
Similarly, Simultaneous Replication is the special case of Unrestricted Replication in which all infor-
mation is stored and only recalled at the end of the acquisition process (i.e., only the final garbling
γ (2T−1) is informative), which forces all experiments to be conditionally independent and leads to
total cost (SIC).

In analogy to the notion of an Indirect Cost function, the following definition formalizes the
expected cost of optimally acquired information when DM optimizes over all Unrestricted Replica-
tions. Let 〈σ ,γ〉 ⇀U σ be shorthand notation for a Unrestricted Replication (of any length 2T ) of
target experiment σ .

Definition 18 (Unrestricted Indirect Cost). Cost function C∗ is the Unrestricted Indirect Cost gener-
ated by the Direct Cost function C if C∗ = ΦC, where ΦUC is defined by

ΦUC(σ | p) := inf
〈σ ,γ〉

E〈σ ,γ |p〉

T−1∑
t=0

C
(
σ

(2t)
s̃2t

∣∣∣∣ q(· | s̃2t)
) (UIC)

s.t. 〈σ ,γ〉⇀U σ.

As illustrated by Example 5, the additional flexibility to store and recall acquired information
afforded by Unrestricted Replication can lead to strict cost reductions even for natural SLP cost
functions. Thus, even when C is SLP, we may have ΦUC < C.

Unrestricted Learning-Proofness. We can similarly formulate “rationalizabilty” with respect to
Unrestricted Replication via a fixed-point condition that resembles Sequential Learning-Proofness.
Given (Polish) signal spaces S ′ ,R′ ,S ′′, define a two-step augmented sequential experiment as an experi-
ment σ ′′ ∗ γ ∗ σ ′ : Θ → ∆(S ′ ×R′ × S ′′) with marginal distribution σ ′(· | θ) := margS ′ [σ

′′ ∗γ ∗ σ ′] (· | θ),
garbling function γ(· | s′) := margR′ [σ

′′ ∗γ ∗ σ ′] (· | θ,s′) for all θ ∈Θ, and conditional marginal distri-
butions σ ′′r ′ (· | θ) := margS ′′ [σ

′′ ∗γ ∗ σ ′] (· | θ,r ′) ∈ ∆(S ′′). Intuitively, σ ′′ ∗ γ ∗ σ ′ represents a two-step
sequential information acquisition strategy where DM first acquires σ ′, garbles the realized signal s′

into r ′, and conditional on r ′ updates her beliefs and acquires a second experiment σ ′′r ′ . At the end of
this process, she observes the entire tuple of realized signals (s′ , r ′ , s′′), meaning that she “recalls” s′

at the end of the acquisition process.

78 Point (i) of Definition 17 requires that S2t−1 ⊆ S2t , but this is actually equivalent (by induction) to Point (i) of Definition 2 which
requires that S2t−2 × S2t−1 ⊆ S2t . We make this notational change in Definition 17 to emphasize the history-dependence in point (iii).
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Definition 19 (ULP). Cost function C is Unrestricted Learning-Proof (ULP) if C = ΨUC where ΨUC

is the cost function defined by

ΨU (C)(σ | p) := inf
σ ′′∗γ∗σ ′%Bσ

C(σ ′ | p) +E〈γ◦σ ′ |p〉
[
C (σ ′′r̃ ′ | q(· | r̃ ′))

]
(ULP)

Thus, a cost function is ULP if, and only if, it is weakly cheaper (in expectation) to acquire exper-
iment σ in one shot than it is to acquire any two-step augmented sequential experiment σ ′′ ∗ γ ∗ σ ′

that is at least as informative as σ . This formulation implicitly builds in the assumption that any “ex-
tra” information contained in σ ′′ ∗γ ∗σ ′ but not in σ can be freely discarded. The difference between
(ULP) and (SLP) is that the former allows DM to manipulate her second-step beliefs by garbling some
information acquired in the first step, which is then recalled after the second acquisition step. Let
CULP denote the set of all ULP cost functions.

A.1.1 Characterization of ULP and Unrestricted Indirect Cost Functions

In analogy to the characterization of SLP and Indirect Cost functions in Subsection 3.1, we
may characterize the ULP and Unrestricted Indirect Cost functions via Axiom 1 and the following
strengthening of Preference for One-Shot Learning.

Axiom 12 (Robust POSL). C exhibits Robust POSL if

C(σ | p) ≤ C(σ ′ | p) +E〈γ◦σ ′ |p〉
[
C (σ ′′r̃ ′ | q(· | r̃ ′))

]
for all σ ′′ ∗γ ∗ σ ′ ∼B σ and p ∈ ∆◦.

Axiom 12 states that it is cheaper (in expectation) to acquire all information at once rather than
via any Unrestricted Replication with T = 2 and without free disposal.

Theorem 6. For cost function C∗, the following are equivalent:

(i) C∗ is ULP, i.e., C∗ = ΨUC
∗.

(ii) C∗ is its own Unrestricted Indirect Cost, i.e., C∗ = ΦUC
∗.

(iii) C∗ is Blackwell monotone and exhibits Robust POSL.

Moreover, given any Direct Cost C, the Unrestricted Indirect Cost ΦU (C) is a well-defined cost function
that is Blackwell monotone and exhibits Robust POSL. Thus, ΦU (C) = CULP .

Proof. See Appendix K.

Theorem 6 is the “unrestricted learning” analogue to Theorem 1. The intuitions for and interpre-
tations of these results are similar, so we refrain from commenting further here.

The main importance of Theorem 6 vis a vis the Returns-to-Scale Critique is that every ULP cost
function exhibits Decreasing Marginal Cost:

Corollary 6.1. Every ULP cost function is SLP and exhibits Decreasing Marginal Cost.

Proof. Immediate from the definitions: (SLP) is implied by (ULP) when the garbling γ is fully infor-
mative, while (DMC) is implied by (ULP) when the garbling γ is completely uninformative.

Thus, the expected cost of optimally acquired information necessarily exhibits Decreasing Marginal
Cost when DM’s space of information acquisition strategies is sufficiently rich. Moreover, we show
below that, except in the case of Total Information, this Decreasing Marginal Cost is sometimes-strict.
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A.1.2 Process-Invariance and Total Information

We may now formalize the idea, suggested by Theorem 4, that Total Information is uniquely “pro-
cess invariant.” We formalize “process invariance” via the following strengthening of Robust POSL,
which requires that the expected cost of two-step unrestricted replication (without free disposal at
the end) is equal to the cost of one-shot learning.

Axiom 13 (Process-Invariant). C is Process-Invariant if

C(σ | p) = C(σ ′ | p) +E〈γ◦σ ′ |p〉
[
C (σ ′′r̃ ′ | q(· | r̃ ′))

]
(PI)

for all σ ′′ ∗γ ∗ σ ′ ∼B σ and p ∈ ∆◦.

The relationship between Process-Invariant and ULP cost functions is analogous to the relation-
ship between UPS and SLP cost functions, but with Unrestricted Replication replacing Sequential
Replication. Indeed, by analogy to Corollary 6.1, it is easy to see that any Process-Invariant cost
function is both UPS (by letting γ in (PI) be fully informative and invoking Lemma 1) and exhibits
Constant Marginal Cost (by letting γ in (PI) be completely uninformative).

Corollary 6.2. Total Information is the unique Process-Invariant cost function.

Proof. See Appendix K.

As discussed in Subsection Section 5.2, we believe that Corollary 6.2 provides a normatively
compelling foundation for the Total Information cost function.

A.1.3 Relation to Sequential Replication

We have seen above (e.g., in Example 5) that the Unrestricted Indirect Cost generated by a given
Direct Cost function can, in general, be strictly lower than its Indirect Cost. However, in this subsec-
tion, we show that the restriction to Sequential Replication is without loss of optimality under the
following condition on the Direct Cost:

Axiom 14 (Prior-Concave). Cost function C is Prior-Concave if for each σ ∈ Eb the map C(σ | ·) : ∆◦→
R+ is concave.

We interpret Axiom 14 as capturing DM’s ability to “freely dispose of freely-available informa-
tion.” In particular, suppose DM is freely endowed with an experiment τ , either from some external
source or from prior rounds of acquisition (the costs of which are already sunk), and can acquire fur-
ther information after observing the realized signal generated by τ . This extra information has instru-
mental value because it allows DM to tailor her continuation strategy on the observed signal. When
DM’s cost function is prior-dependent, this extra information may also have an intrinsic value or cost
because it alter’s DM’s continuation costs even when her continuation strategy does not condition on
the realized signal from τ , simply by changing her beliefs. DM’s cost function is Prior-Concave if
and only if such extra information is never intrinsically costly, namely, E〈τ |p〉 [C(σ | q̃)] ≤ C(σ | p) for
all σ,τ ∈ Eb and p ∈ ∆◦. The following examples illustrate why this condition may be normatively
desirable:
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Example 6 (Value of Information Before Acquisition). Suppose that DM faces a standard (one-shot)
information acquisition problem

V (p) := sup
σ∈Eb

[
Eπ〈σ |p〉 [U (q)]−C(σ | p)

]
(17)

where U (q) := maxa∈AEq [u(a,θ)] for some decision problem (A,u) and C is an information cost func-
tion. What is the value of DM to freely observing the outcome of an experiment τ before solving
(17)? DM assigns positive value to all such τ if and only if the value function V (p) is convex in her
belief p. We show in Appendix K that V (p) is guaranteed to be convex if C is Prior-Concave and that,
conversely, violations of Prior-Concavity can lead to V (p) being non-convex. Thus, Axiom 14 is a
tight sufficient condition for a Bayesian DM to have a globally positive value of information before
solving a standard information acquisition problem.

Example 7 (Prior-Invariance). Every Prior-Invariant cost function is Prior-Concave by definition. As
we shall see below (Corollary 6.4), all Sequentially Prior-Invariant cost functions are also Prior-
Concave. Thus, any cost function that is not Prior-Concave cannot be reconciled with a Prior-
Invariant Direct Cost, for which freely-available information has no intrinsic value or cost. This
suggests that violations of Axiom 14 correspond to non-instrumental motives for information avoid-
ance.

The following lemma uses Axiom 14 to bridge the gap between SLP and ULP costs:

Lemma 9. For cost function C, the following hold:

(i) If C is Prior-Concave, then so is the Indirect Cost Φ(C).

(ii) If C is SLP and Prior-Concave, then it is ULP and, hence, exhibits Decreasing Marginal Cost.

(iii) IfC is UPS, then the following are equivalent: (a)C is ULP, (b)C is Prior-Concave, and (c)C exhibits
Decreasing Marginal Cost.

Proof. See Appendix K.

Taken together, points (i) and (ii) of Lemma 9 establish that the Indirect Cost ΦC is, in fact,
ULP when the underlying Direct Cost function C is Prior-Concave. Meanwhile, point (iii) states that
Prior-Concavity is a necessary and sufficient condition for a UPS cost function to be ULP or to exhibit
Decreasing Marginal Cost.

Thus, if one accepts the desideratum that “reduced form” information cost functions should be
ULP, then one should use (only) those UPS cost functions that are Prior-Concave. The following
result, which echoes Theorem 2, shows that every Regular ULP cost function is, in fact, of this form:

Corollary 6.3. Given any cost function C∗, the following are equivalent:

(i) C∗ is ULP and Regular, with divergence D.

(ii) C∗ is UPS and Prior-Concave with potential F ∈ C2 (∆◦), for which the Bregman divergence DF =D.

Proof. Immediate from Corollary 6.1, Theorem 2, and Lemma 9(iii).
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It is easy to see that Total Information is Prior-Concave because it is, in fact, linear in prior beliefs.
Note also that Lemmas 7 and 9 imply that Mutual Information is sometimes-strictly Prior-Concave.
However, other seemingly natural UPS cost functions (such as the residual variance cost function
from Example 5) violate this condition.

In general, it may be difficult to determine whether a given cost function is Prior-Concave be-
cause, even for a fixed experiment, the induced posterior distribution varies with the prior. However,
for UPS cost functions with potentials F ∈ C2 (∆◦), Prior-Concavity can be equivalently formulated
as a checkable concavity condition on the Hessian of F (see Appendix K). The following example
illustrates this Hessian condition in the simplest case of binary states:

Example 8 (Binary States). When Θ = {θ1,θ2}, we may parameterize the belief q = (qθ1
,qθ2

) by the
probability qθ1

∈ [0,1] and re-write the potential function F(q) as F̂(qθ1
) = F

(
(qθ1

,qθ2
)
)
. In this

case, provided that F ∈ C2 (∆◦), the cost function is Prior-Concave if and only if the map qθ1
7→

q2
θ1

(
1− qθ1

)2
F̂′′(qθ1

) is concave. Notice that this quantity is the marginal cost of sampling from a
Gaussian diffusion for an additional instant (cf. Section 4.4 and Morris and Strack (2019)).

In Appendix K, we apply Lemma 9(iii) to characterize the marginal value of information for a
Bayesian DM.

A.1.4 Sequential Prior-Invariance Revisited

Proposition 3 from Subsection 4.5 establishes that, aside from the |Θ| = 2 case, Sequentially Prior-
Invariant cost functions are the UPS and Sequentially Prior-Invariant classes do not intersect. How-
ever, that result leaves open the question of how to characterize the Sequentially Prior-Invariant cost
functions within the larger SLP class. The following result uses concepts from this subsection to
provide a partial characterization of this class:

Corollary 6.4. If C∗ is an Sequentially Prior-Invariant cost function, then:

(i) C∗ is Prior-Concave and ULP.

(ii) If C∗ = ΦC for a Locally Quadratic and Prior-Invariant Direct Cost C, then unless |Θ| = 2 and
C∗ is the Wald cost function, it exhibits sometimes-strictly Preference for One-Shot Learning and
Decreasing Marginal Cost

Proof. SinceC∗ is Sequentially Prior-Invariant and every Prior-Invariant cost function is Prior-Concave,
Lemma 9(i) implies that C∗ is Prior-Concave, given which Lemma 9(ii) implies that it is also ULP.
This proves point (i). Under the hypotheses of point (ii), Proposition 3 and Corollary 3.2(iii) imply
that C∗ is not a Total Information cost function. It then follows from Theorem 4 that C∗ does not
exhibit Constant Marginal Cost and, hence, exhibits sometimes-strictly Decreasing Marginal Cost by
Corollary 6.1. This proves point (ii).

Note, however, that the necessary conditions in Corollary 6.4(i) are not sufficient to characterize
the Sequentially Prior-Invariant class of cost functions; in particular, both Mutual Information and
Total Information satisfy these conditions, but are not Sequentially Prior-Invariant. We leave a full
characterization of the Sequentially Prior-Invariant class to future work.
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A.2 Omitted Definitions

Definition 20 (Bounded). Cost function C is Bounded if sup(σ,p)∈Eb×∆◦C(σ | p) <∞.

Definition 21 (Full Domain). A Full Domain cost function is a map C : E ×∆◦→R+ such that:

(i) If σ and τ are Blackwell equivalent, then C(σ | p) = C(τ | p) for all p ∈ ∆(Θ).

(ii) If σ is uninformative, then C(σ | p) = 0 for all p ∈ ∆(Θ).

(iii) Let {(σ (n),p(n))}n∈N be a sequence of experiment-prior pairs inducing posterior distributions π(n) :=
π〈σ (n)|p(n)〉 ∈ Π◦. If π(n) →w∗ π∗ ∈ Π(p∗) and p∗ ∈ ∆◦, then C(σ (n) | p(n)) → C(σ ∗ | p∗), where π∗ =
π〈σ ∗|p∗〉.

A.3 Auxilliary Lemmas

Lemma 10. The LLR cost function (LLR) is Locally Quadratic with normalized kernel kLLR(p) from (9)
defined componentwise by

[
kLLR(p)

]
θ,θ′

:=


∑
θ′′,θ

(
βθ,θ′′ + βθ′′ ,θ

)
, if θ = θ′

−βθ,θ′ − βθ′ ,θ , if θ , θ′
(18)

Proof. Follows from straightforward calculation given the definition of the normalized kernel in (9),
Lemma 3(i), and the potential function G(q | p) in Definition 5.

Lemma 11. For Locally Quadratic Direct Cost function C with kernel k:

(i) The kernel k is positive semidefinite on the tangent space to the simplex, i.e., y>k(p)y ≥ 0 for all
y · 1 = 0 and p ∈ ∆◦.

(ii) There exists a kernel k̂ of C that is symmetric and satisfies k(p)p = 0 for all p ∈ ∆◦.
(iii) A continuous matrix-valued function k̂ : ∆◦ → R

Θ×Θ satisfies (LQ) for C if and only if there exist
continous functions f ,g : ∆◦→R

Θ such that k̂(p) ≡ k(p) + f (p)1> + 1g(p)>.

Proof. See Appendix K.

Lemma 12. Given any Direct Cost function C, the map ΦDPC : Eb × ∆◦ → R+ defined in (DPIC) is a
well-defined cost function.

Proof. See Appendix K.

B An Equivalent Belief-Based Formulation

Now we consider the sequential minimization of information cost. ∀π ∈ ∆2(X), we first define the
belief processes that replicate the information structure π.

Definition 22. ∀π ∈ ∆2(X), A 2T -period Markov chain 〈qt〉 (define on (Ω,F ,P )) replicates π if 1)
q2T ∼ π, 2) E[q2t+1|q2t] = q2t and 3) E[q2t−1|q2t] = q2t.
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The first condition means 〈qt〉 eventually replicates π. The second condition means from any
period 2t to 2t + 1, information is acquired and belief is updated according to Bayes rule. The third
condition means from any period 2t − 1 to 2t, information is “discarded” and belief contracts. By
defining 〈qt〉 as in Definition 22, it is implicitly assumed that 1) acquiring information only measur-
able to belief and time is sufficient (for optimality, which will be defined and proved later) and 2)
information is freely disposable. The conditions in Definition 22 are denoted by 〈qt〉⇀π.

The we define the indirect cost of information:

Definition 23. C∗ : ∆2(X)→ R
+ is an indirect information cost function if ∃ direct information cost

C : ∆2(X)→R
+ s.t ∀π ∈ ∆2(X):

C∗(π) = inf
〈qt〉

E

T−1∑
t=0

C(π2t(q2t+1|q2t))

 (19)

s.t. 〈qt〉⇀π

where π2t(q2t+1|q2t) denotes the conditional distribution of q2t+1 on q2t.

Equation (19) defines a program that searches for a cost minimizing belief process that replicates
the target information structure π. In the objective function, only in even periods the cost of belief
change is counted because by definition in even periods information is acquired and in odd periods
information is freely discarded. The optimization over 〈qt〉 implicitly allows T to be chosen as well.
The integrability of Equation (19) is in general not guaranteed, but for C ∈ C the expression is well
defined. ∀C ∈ C, Equation (19) is a well defined non-negative real number, and hence a map φ can
be defined as Φ(C) = C∗ indicating that Φ(C) is the indirect information cost derived from solving
Equation (19) with direct information cost C.

In the appendix, I prove Lemma 16 which shows that we can consider a more complicated se-
quential signal structure which is not necessarily Markovian. However, the terminal belief distribu-
tion can always be replicated by a process satisfying Definition 22 and with weakly lower total cost.
Therefore, Equation (19) could be thought as the maximal flexibility benchmark.

B.0.1 Key Lemmas

Lemma 13. Given cost function C, the map CRA : Πb→R+ defined by

CRA(π) := inf
P ∈∆(Πb)

EP [C(π̃)] (RA)

s.t. EP [π̃] = π

is (i) a well-defined Randomizaton Averse cost function, and (ii) the pointwise largest Randomizaton Averse
cost function that is majorized by C.

Proof. See Appendix K.

Lemma 14. Given any cost function C, we have ΦC = ΦCRA.

Proof. See Appendix K.
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Lemma 15. If C is a Locally Quadratic cost function, then its lower random-averse envelope CRA is also
Locally Quadratic and has the same kernel as C.

Proof. See Appendix K.

Lemma 16. For all Randomizaton Averse Direct Cost functions C, ∀ 2T -period signal process 〈st〉 defined
as before, there exists 2T -period 〈qt〉 satisfying Definition 22 s.t. the posterior induced by s2t is distributed
as q2T and:

T−1∑
t=0

Eq2t
[C(πt(q2t+1|q2t))] ≤

T−1∑
t=0

Es2t [C(ν(s2t+1|s2t))]

Proof. Given any process 〈st〉, it induces a joint probability measure m (q0,q1, · · · ,q2T ), where each q2t

is the conditional measure of x on s2t and each q2t+1 is the conditional measure of x on (s2t , s2t+1).
Now we convert this measure to get a process 〈q̂t〉 satisfying Definition 22. Define the conditional
marginals of joint probability measure m̂ by:m(q2t ,q2t+1) =m(q2t)m̂(q2t+1|q2t)

m(q2t+1,q2t+2) =m(q2t+1)m̂(q2t+2|q2t+1)

Then let m̂(q0,q1, · · · ,q2t) =
∏
m̂(q2t+1|q2t)m̂(q2t+2|q2t+1). It is easy to verify by induction that m̂(q2t) =

m(q2t). Now we verify that the process 〈q̂t〉 defined according to m̂ satisfies the conditions in Defini-
tion 22.

First, by definition 〈m̂t〉 is Markov — the distribution of qt+1 solely depends on qt. Second, we
verify the martingale property. By definition:

Em̂[q2t+1|q2t] · m̂(q2t) =
∫
m̂(q2t+1,q2t)q2t+1dq2t+1

=
∫
m(ν,q2t)νdν

=
∫ (∫

(s2t ,s2t+1)→(q2t ,ν)
f (s2t , s2t+1)

q2t(·)f (s2t+1|s2t , ·)
f (s2t , s2t+1)

ds2t , s2t+1

)
dν

=
∫
s2t→q2t

∫
q2t(·)f (s2t+1|s2t , ·)ds2t+1ds2t

=q2t ·m(q2t) = q2t · m̂(q2t)

Notation s→ qmeans q is the posterior belief induced by signal s. The second equality is by definition
of m̂. The third equality is by the Bayes rule that determines q2t+1. The forth equality is by 1) s2t
determines q2t 2) Fubini theorem. The last equality is straight forward.

Em̂[q2t+1|q2t+2] · m̂(q2t+2)

=
∫
m̂(q2t+1,q2t+2)q2t+1dq2t+1

=
∫
m(q2t ,q2t+1) ·

m(q2t+1,q2t+2)
m(q2t+1)

q2t+1dq2t ,q2t+1

=
∫
m(ν,q2t+2)νdν
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=
∫ (∫ (∫

(s2t ,s2t+1,s2t+2)→(q,ν,q2t+2)
f (s2t , s2t+1, s2t+2) ·

q(·)f (s2t+1|s2t , ·)
f (s2t , s2t+1)

ds2t , s2t+1, s2t+2

)
dq

)
dν

=
∫ (∫ (∫

(s2t ,s2t+1,s2t+2)→(q,ν,q2t+2)
f (s2t , s2t+1, s2t+2) · q2t+2ds2t , s2t+1, s2t+2

)
dq

)
dν

=q2t+2 · m̂(q2t+2)

The second equality is by definition of m̂. The forth equality is by the Bayes rule that determines q2t+1.
The fifth equality is by the Bayes rule that determines q2t+2. The last equality is straight forward.
Moreover, by definition m̂ always has the same marginal distributions as m. So the distributions of
induced belief at period 2T are the same. Therefore, m̂ defines a process 〈q̂t〉 satisfying Definition 22.

Now we show that the cost of 〈q̂t〉 is weakly lower than that of 〈st〉:

Es2t [C(ν(s2t+1|s2t))] =Eq2t

[
Es2t [C(ν(s2t+1|s2t))|q2t]

]
≥Eq2t

[
C

(
Es2t [ν(s2t+1|s2t)|q2t]

)]
=Eq2t

[C(m̂(·|q2t))]

The first equality is law of iterated expectation. The inequality is because C is Randomizaton Averse.

C Proof of Theorem 1

C.1 Proof that Points (i)–(iii) are Equivalent

The implications (i) =⇒ (iii) and (ii) =⇒ (i) are immediate from the definitions. Thus, it suffices
to show that (iii) =⇒ (ii). Thus, suppose that C∗ is Blackwell monotone and exhibits Preference
for One-Shot Learning. Fix any p ∈ ∆◦, σ ∈ Eb, and length-2T Sequential Replication 〈σ ,γ〉 ⇀ σ .
Suppose that the t = 1 garbling γ (1) is not fully informative. Then because C∗ is Blackwell monotone,
it is weakly cheaper to replace σ (0) and γ (1) with σ̃ (0) := γ (1) ◦ σ (0) : Θ→ ∆(S2) and fully informative
γ̃ (1) : S2 → ∆(S2), while leaving the rest of the Sequential Replication unchanged. Then, because C∗

satisfies Preference for One-Shot Learning, it is weakly cheaper to acquire σ (2) ∗σ̃ (1) in one shot rather
than in two steps. Proceeding inductively in this manner, it is easy to see that

C∗(σ | p) ≤ E〈σ ,γ |p〉

T−1∑
t=0

C∗
(
σ

(2t)
s̃2t

∣∣∣∣ q(· | s̃2t)
) .

Since this holds for all 〈σ ,γ〉⇀ σ , it follows that C∗(σ | p) ≤ ΦC∗(σ | p) ≤ C∗(σ | p), where the second
inequality is by definition of the Φ operator. Thus, C∗ = ΦC∗, as desired.

C.2 Proof that Φ(C) = CSLP
By the equivalence of points (i) and (iii) in the present Theorem 1, it suffices to show that C∗ := ΦC

is a well-defined cost function that satisfies Axioms 1 and 2.
We do so in a series of lemmas. In fact, we prove a slightly stronger set of results that pertain

to Full Domain Direct and Indirect Cost functions. As the reader can verify, the corresponding
statements for cost functions defined on Eb ×∆◦ follow from the same arguments by restricting all
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posterior distributions to be supported on some ∆δ with δ > 0. By Lemmas 13 and 14, it is without
loss of generality to assume that the Direct Cost function C is Randomizaton Averse. We do so
throughout the proof, which uses the belief-based notation laid out in Appendix B.

Lemma 17. For any Full Domain Direct Cost C, the map C∗ : Π → R+ is a well-defined Indirect Cost
function.

Proof. It suffices to establish continuity; the other two properties are automatic. By Prokhorov’s
theorem, ∆2(Θ) is a compact and separable metric space equipped with the Lévy-Prokhorov metric
(henceforth, l-p metric). Wlog, we consider the open set of generic information structures in ∆2(Θ).
The analysis applies to any generic subspace. ∀π, since the set of generic information structures is
open, there exists an interior closed ball Bδ0

(π). Then, Heine-Cantor theorem implies that C(π) is
uniformly continuous on Bδ0

(π). ∀ε > 0, ∀π ∈ ∆2(x), let δ < δ0 be the uniform continuity parameter
of C w.r.t. ε′ < ε.

Upper semi-continuity: ∀π and π′ ∈ Bδ(π). Let q0 = Eπ[ν] and q′0 = Eπ′ [ν]. Then ‖q0 − q′0‖ < 2δ.79

Since Bδ0
(π) is interior, δ can be picked small enough s.t. ∀π′, there exists ν s.t. q′0 = αν + (1 −α)q0

and α < ε′. Now pick 〈qt〉⇀π with total cost lower than C∗(π) + ε. We construct a sequential learn-
ing strategy replicating π′: 1) acquire some information and get posterior q0 and ν, 2) conditional
on q0, follow 〈qt〉; conditional on ν, stays. The terminal belief q2T is exactly π with (1 − α) prob-
ability and ν with α probability. Let π′′ be its distribution, then π′′ has the same mean as π′ and
dl−p(π′ ,π′′) ≤ dl−p(π,π′) + dl−p(π,π′′) < 2δ +α. 3) Denote π′ −π′′ = m+ −m− where both are positive
measures, bounded by 2δ + α and satisfy Em+[ν] = Em−[ν]. Contract m− and then acquire posterior
according to m+. By construction, we replicated π′ through 1)-3). Count the total cost: step 1) ac-
quires information structure within B2δ+ε′ (δq0

); step 2) incurs cost weakly less than C∗(π) + ε; step 3)
acquires some information with less than 2δ +α probability. By Lemma 16, this process can always
be modified to satisfy Definition 22, replicate π and has weakly lower cost. Therefore, if we choose
ε′ sufficiently small, the total cost is bounded above by C∗(π) + 3ε, hence limπ′→πC

∗(π′) ≤ C∗(π).
lower semi-continuity: δ can be picked sufficiently small that ∀q0, there also exists ν′ and α′ s.t.

q0 = αν′ + (1−α)q′0. Then previous argument also shows that C∗(π) ≤ limπ′→πC
∗(π′).

Therefore, since C∗(π) is both upper semi-continuous and lower semi-continuous, C∗(π) is con-
tinuous at any generic π. Since 0 ≤ C∗(π) ≤ C(π), C∗(π) is bounded.

Lemma 18. For any Full Domain Direct Cost C, the Full Domain Indirect Cost function C∗ is Blackwell
monotone.

Proof. ∀π,π′ ∈ ∆2(Θ) and π ≤BW π′, by definition, there exists π′′(ν|q) s.t. π′(ν) = E[π(q)π′′(ν|q)]
and E[π′′(ν|q)] = q. From joint distribution π(q)π′′(ν|q), we can obtain marginal distribution π̂(q|ν).
Now ∀ 2T-period 〈qt〉 replicating π′, define 2T -period 〈q̂t〉 replicating π: q̂t = qt when t < 2T and
q̂2T |̂q2T−1 ∼ E [π̂(q̂2T |q2T )|̂q2T−1]. It is easy to verify that 〈q̂t〉 satisfies the conditions in Definition 22
and hence 〈q̂t〉 replicates π. Noticing that

∑
C(πt(q2t+1|q2t)) =

∑
C(πt(q̂2t+1 |̂q2t)) and thereforeC∗(π) ≤

C∗(π′). Axiom 1 is verified.

79 π′ −π can be written as m+ −m− where both are positive measure and bounded by δ by the definition of l −p metric. Then ‖q0 −q′0‖ =
‖
∫
ν(dm+ −dm−)‖ ≤ 2δ.
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Lemma 19. For any Full Domain Direct Cost C, the Full Domain Indirect Cost function C∗ is Random-
izaton Averse.

Proof. For any p ∈ ∆◦, Π(p) is a compact and separable subset of Π. ∀ε, there exists a finite ε-net of
Π(p). Now ∀P ∈ ∆(Π(p)), discretizing P on the ε-net gives finite distribution P̂ ε-close to P (under
l − p metric). Therefore, there exists finite distributions P̂ converging to P . Now given P̂ , ∀ε, there
exists a uniform upper-bound T for all π in supp(P̂ ) such that 〈qt〉2Tt=0 replicates π and the total cost is
lower than C∗(π) +ε. This implies C∗(EP̂ ) ≤ EP̂ [C∗(π)] +ε. By continuity of C∗ (shown in Lemma 17),
EP̂ [C∗(π)]→ EP [C∗(π)] and C∗(EP̂ [π])→ C∗(EP [π]). To sum up, C∗(EP [π]) ≤ EP [C∗(π)].

Lemma 20. For any Full Domain Direct Cost C, the Full Domain Indirect Cost function C∗ satisfies
Preference for One-Shot Learning.

Proof. ∀π(q),π′(ν|q) and π′′(ν) = Eπ[π′(ν|q)]. ∀ε > 0. Pick any δ > 0 and take the closures of δ-interior
points of all ∆(Θ)’s, denote it by Dδ. Then open set ∆(Θ) \Dδ is shrinking to an empty set and hence
there exists δ s.t. π(Dδ) > 1−ε. Now we construct a sequence of information structures that replicates
π′′.

First, let q0 = Eπ[ν]. Let q′0 = Eπ[ν|ν ∈ Dδ] and q′′0 = Eπ[ν|ν < Dδ]. Then q0 = π(Dδ)q′0 +π(∆(Θ) \
Dδ)q′′0 . Define information structure πδ0 with support

{
q′0,q

′′
0

}
and the corresponding probabilities.

Define information structures π′δ0 (ν) = π(ν|ν ∈ ∆(Θ) \Dδ). Now partition Dδ to finite Borel subsets

each of diameter η < δ, denote the partition by
{
D
δ,η
i

}
. Define π̃δ,η with support

{
νi = Eπ[ν|ν ∈Dδ,ηi ]

}
and distribution π̃δ,η(νi) = π(D

δ,η
i ). Define π̃′i

δ,η = Eπ

[
π′(ν|q)|q ∈Dδ,ηi

]
. Now consider the following

sequential information structure: 1) acquire πδ0. 2) acquire π′δ0 conditional on q′′0 ; acquire π̃δ,η con-
ditional on q′0. 3) acquire π′ following π′0

δ; following π̃δ,η , acquire π̃′i
δ,η conditional on νi . Now we

verify that the sequential information structure replicates π′′: ∀ Borel set U ⊂ ∆(Θ),

Prob(U ) =Prob(U |q′0)πδ0(q′0) + Prob(U |q′′0 )πδ0(q′′0 )

=
∑
i

Prob(U |νi ,q′0)π̃δ,η(νi)π
δ
0(q′0) +Eπ′0δ [π

′(U |q)]πδ0(q′′0 )

=
∑
i

π̃′i
δ,η(U )π̃δ,η(νi)π

δ
0(q′0) +Eπ

[
π′(U |q)|q ∈ ∆(Θ) \Dδ

]
π(∆(Θ) \Dδ)

=
∑
i

Eπ

[
π′(U |q)|q ∈Dδ,ηi

]
π(D

δ,η
i )π(Dδ) +Eπ

[
π′(U |q)|q ∈ ∆(Θ) \Dδ

]
π(∆(Θ) \Dδ)

=Eπ[π′(ν|q)] = π′′(U )

By definition, when δ,η → 0, πδ0
w−∗−−−→ δq0

, π̃δ,η
w−∗−−−→ π. By continuity of C and C∗, C(πδ0) → 0 and

C∗(π̃δ,η)→ C∗(π). Now we calculate the cost of π̃′i
δ,η . ∀i, ∀q ∈Dδ,ηi , by definition of δ and η, ‖q−νi‖ ≤ η

and there exists q′ ∈ ∆(Θ) s.t. ‖q − q′‖ ≥ δ and νi is a linear combination of q,q′. Define information
structure π′i,q(·) = ‖q′−νi‖

‖q′−q‖ π
′(·|q) + ‖νi−q‖‖q′−q‖δq′ . Then dl−p(π′(·|q),π′i,q(·)) ≤

η
η+δ . Now consider information

structure π̂′i
δ,η = Eπ[π′i,q(ν)|q ∈ Dδ,ηi ], then dl−p(π̃′i

δ,η , π̂′i
δ,η) ≤ η

η+δ (because conditional on each q ∈

D
δ,η
i , the measure on any Borel set differs by at most η

η+δ ). Since C∗ is continuous on Dδ, and hence

uniformly continuous by Heine-Cantor, there exists η s.t. η
η+δ is the uniform continuity parameter
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w.r.t. ε for C∗. Therefore:

Eπ

[
C∗(π′(ν|q))|q ∈Dδ,ηi

]
≥Eπ

[
C∗(π′i,q(ν))|q ∈Dδ,ηi

]
− ε

≥C∗
(
Eπ

[
π′i,q(ν)|q ∈Dδ,ηi

])
− ε

≥C∗
(
π̃′i
δ,η

)
− 2ε

The two ε each comes from the distance between π′ ,π′i,q and π̃′i
δ,η , π̂′i

δ,η . The second inequality is
implied by the fact that C∗ is Randomizaton Averse, which is verified before.

Now we construct a belief process replicating π′′ and satisfy Definition 22. ∀π̃′i
δ,η , there exists a

2Ti process 〈qit〉⇀ π̃′i
δ,η such that

∑
C(πt(q

i
2t+1|q

i
2t)) ≤ C∗(π̃

′
i
δ,η) + ε. There also exists a 2T0 process

〈q0
t 〉⇀ π̃δ,η s.t.

∑
C(πt(q

0
2t+1|q

0
2t)) ≤ C∗(π̃δ,η) + ε. Let T = max {Ti}+ T0 + 1.

First, let q1 ∼ πδ0, q2 = q1. If q2 = q′′0 , q3 ∼ Eπ′0δ [π′(ν|q)] and all qt ≡ q3 for t > 3. If q2 = q′0, qt+2 ≡ q0
t ,

and qt+T0+2 ≡ qit conditional on qT0+2 = νi . The total direct cost of this process is:

C(πδ0) +πδ0(q′′0 )C
(
Eπ′0

δ [π′(ν|q)]
)

+πδ0(q′0)

 2T0∑
t=0

C(πt(q
0
2t+1|q

0
2t)) +

∑
i

π̃δ,η(νi)

 2Ti∑
t=0

C(πt(q
i
2t+1|q

i
2t))




≤C(πδ0) + (1−π(Dδ))C
(
Eπ′0

δ [π′(ν|q)]
)

+π(Dδ)

C∗(π̃δ,η) + ε+
∑
i

π(D
δ,η
i |D

δ)C∗(π̃′i
δ,η) + ε


≤C(πδ0) + (1−π(Dδ))C

(
Eπ′0

δ [π′(ν|q)]
)

+π(Dδ)

C∗(π̃δ,η) +
∑
i

π(D
δ,η
i |D

δ)Eπ[C∗(π′(ν|q))|q ∈Dδ,ηi ] + 4ε


→C∗(π) +Eπ[C∗(π′(ν|q))] when δ→ 0&

η

δ
→ 0

By Lemma 16, the process 〈qt〉 can always be transformed to one satisfying Definition 22 with lower
total direct cost. This suggests that C∗(π′′) ≤ C∗(π) +Eπ[C∗(π′(ν|q))].

D Proof of Proposition 1

D.1 Proof of Point (i)

Let |Θ| = n. If n = 2, the result is trivial because the fully informative experiment σ is the unique
nontrivial partitional experiment. We therefore focus on the case n ≥ 3.

Let E (Θ be some event with |E| ≥ 2, which we may without loss (by relabelling states appropri-
ately) take to be E = {θ1, . . . ,θm} for some m satisfying 1 < m < n. Let 〈SE ,σE〉 denote the partitional
experiment that identifies E, i.e., SE := {0,1} and σE(1 | θ) := 1(θ ∈ E). Let S2 ≡ {φ,θ1, . . . ,θm}, and for
each s ∈ {0,1} define the partitional experiments 〈S2,σ2|i〉 by

σ2|i(· | θ) =

δφ(·), if i = 0

δθ(·), if i = 1.
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That is, σ2(· | 1) = σ and σ2(· | 0) = σ . Let σ := σ2 ∗σE . Because C is SLP and has Full Domain, it follows
from Theorem 1 that C exhibits the Preference for One-Shot Learning inequality

C (σ ) ≤ C(σE) + p(E)C(σ ) + (1− p(E))C(σ )

= C(σE) + p(E)C(σ )

for all p ∈ ∆◦, where where the equality follows from the fact that C(σ ) = 0. Thus, we have

C (σ ) ≤ inf
p∈∆◦

[C(σE) + p(E)C(σ )] = C(σE).

Because C is Blackwell monotone, we also have C(σE) ≤ C(σ ). It follows that C(σ ) = C(σE). The
remainder of the proof proceeds by induction on the size of E.

D.2 Proof of Point (ii)

Let the state space be Θ = {1, . . . ,n}. Let C∗ be SLP, Prior-Invariant, and satisfy Constant Marginal
Cost. By Corollary 1.2, C∗ is also Dilution Linear. Then by Pomatto et al. (2019, Theorem 1), C∗ is a
LLR cost function. If C∗ is non-zero, then there exists at least one coefficient βij > 0. Without loss of
generality, suppose that β12 > 0. Let E1 ⊆ Eb denote the collection of bounded experiments for which
σi = σj for all i, j , 1. That is, σ ∈ E1 is informative only about whether the state is θ1 or not. Then for
any σ ∈ E1, we have

C∗(σ ) = B12DKL(σ1 | σ2) +B21DKL(σ2 | σ1)

where B12 :=
∑n
j=2β1j > 0 and B21 :=

∑n
j=2βj1 ≥ 0. By Lemma 10 and Proposition 3, it can be shown

that the Gaussian Indirect Cost (GIC) induced by C∗

ΦGC
∗(σ | p) = (B12 +B21) · [p1DKL (σ1 | σ2) + (1− p1)DKL (σ2 | σ1)] .

By Lemma 29, it can be shown that there exit p ∈ ∆◦ and σ ∈ E1 for which ΦGC
∗(σ | p) < C∗(σ ). Since

ΦC∗ ≤ ΦGC
∗, it follows that C∗ , ΦC∗. Thus, by Theorem 1, C∗ is not SLP. Contradiction. Therefore,

any such C∗ must be identically zero.

E Proof of Theorem 2

E.1 Proof that (ii) =⇒ (i)

(i) =⇒ (ii). Let C∗(σ | p) ≡ Eπ〈σ |p〉 [DF(q | p)], where DF(q | p) := F(q) − F(p) − ∇F(p) · (q − p) is the
Bregman divergence generated by F ∈ C2(∆◦). C∗ is clearly Locally Linear. To see that it is Regular,
we compute

∇pDF(q | p) = −∇F(p) +∇F(p)−HF(p) · (q − p)

= −HF(p) · (q − p),

which is continuous.
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E.2 Proof that (i) =⇒ (ii)

Let C be SLP and Locally Linear. The first property implies C is Dilution Linear. This and the
second property imply that C is Posterior Separable.

Step 1: Integral Representation. Because C is SLP, it satisfies POSL. Take any p ∈ ∆◦ and π ∈Π◦(p)
with binary support supp(π) = {q′ ,q′′} ⊂ ∆◦. Take any finite-support π′ ∈Π◦(q′) and let π′′ ∈Π◦(q′′)
be defined by π′′ := δq′′ . Define π̂ ∈Π◦(p) by π̂(·) := π(q′)π′(·) +π(q′′)π′′(·). Then

Ĉ(π̂) = π(q′′)D(q′′ | p) +π(q′)Eπ′ [D(ν | p)] (20)

≤ Ĉ(π) +π(q′′)D(q′′ | q′′) +π(q′)Eπ′
[
D(ν | q′)

]
(21)

= π(q′)D(q′ | p) +π(q′′)D(q′′ | p) +π(q′)Eπ′
[
D(ν | q′)

]
, (22)

where (20) is by definition of π̂, (21) is by POSL, and (22) is by definition of π and the fact that
D(q′′ | q′′) = 0. Combining (20) and (22) yields

0 ≤D(q′ | p) +Eπ′
[
D(ν | q′)−D(ν | p)

]
. (23)

Note that the RHS of (23) and D(q′ | p), viewed as functions of p, are both minimized (and equal to
0) at p = q′. Differentiating (23) with respect to p at p = q′ in direction y := p − q′ therefore delivers

∂
∂ε
Eπ′

[
D(ν | q′ + εy)

]
= Eπ′

[
J(ν | q′) · y

]
= 0, (24)

where passing the derivative through the expectation operator is permitted because π′ has finite and
interior support. Note that the preceding argument works for all p ∈ ∆◦ holding q′ ∈ ∆◦ fixed, which
implies that (24) holds for all y ∈ T (∆). It follows that

Eπ′
[
J(ν | q′)

]
= α1 (25)

for some α ∈ R. Note that for any θ ∈ Θ the function Ĵ(ν | q′) := J(ν | q′) − Jθ(ν | q′)1 is also a valid
derivative of D(ν | q′) (i.e., satisfies Definition 10). This fact combined with (25) implies that

Eπ′
[
Ĵ(ν | q′)

]
= 0. (26)

Note that (25) holds for all finite-support π′ ∈ Π(q′) and that Ĵ(· | q′) is continuous on ∆◦ by Defi-
nition 10. Thus, Lemma 21 (stated and proved below) applied to J(· | q′) implies that there exists a
matrix-valued function q′ 7→ k(q′) ∈R|Θ|×|Θ| such that Ĵ(ν | q′) = −k(q′)(ν − q′).

An application of the Gradient Theorem then yields

D(ν | q′) = −
∫ b

a
A (r(x)) (ν − r(x)) · r ′(x)dx (27)

for any smooth curve r : [a,b] → ∆◦ for which r(0) = ν and r(1) = q′, where a,b ∈ R. Note that
r ′(x) ∈ T (∆).
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Step 2: Continuous Differentiability. Fix y ∈ T (∆). Consider any smooth curve r : [0,1]→ ∆◦ for
which (i) r(0) = ν − δy and r(1) = q′, (ii) r(t∗) = ν and r(t∗ + ε) = ν + ηy for some t∗ ∈ (0,1) and all
η ∈ [−δ,δ], and (iii) r(·) is uniformly bounded away from bd(∆), the boundary of the simplex. It is
clear that such curves exist whenever δ > 0 is sufficiently small because ν,q′ ∈ ∆◦, i.e., are interior.
Note that the truncated curve r |[t∗,1] serves as a smooth path from ν to q′, for which the representation
(27) applies. We have

∂
∂ε
D(ν + εy | q′)

∣∣∣
ε=0

=
d
dt
D(r(t) | q′)

∣∣∣
t=t∗

(28)

= − d
dt

[∫ 1

t
A (r(x)) (r(a)− r(x)) · r ′(x)dx

] ∣∣∣∣
t=t∗

(29)

= k(r(t∗))(ν − r(t∗)) · r ′(t∗)−
∫ 1

t∗
k(r(x))r ′(t∗) · r ′(x)dx (30)

= −
∫ 1

t∗
k(r(x))y · r ′(x)dx, (31)

where (28) is by definition of the curve r, (29) follows from (27), (30) follows from the standard
Leibniz rule,80 and (31) follows from the facts that r(t∗) = ν and r ′(t∗) = y.

The preceding argument establishes that the (two-sided) directional derivative of D(· | q) at ν in
direction y exists and is finite, for any ν ∈ ∆◦ and y ∈ T (∆). By a simple adaptation of Theorem 25.2
and Corollary 2.5.5.1 of Rockafellar (1970), this implies that D(· | q′) is continuously differentiable
on ∆◦. That is, there exists a continuous function D(· | q′) : ∆◦→R

Θ such that

∂
∂ε
D(ν + εy | q′)

∣∣∣
ε=0

= ∇νD(ν | q′) · y

for all y ∈ T (∆).

Step 3: Twice Continuous Differentiability. Differentiating D(· | q) at ν in direction y a second
time, we obtain

∂2

∂ε′∂ε
D(ν + εy + ε′y | q′)

∣∣∣
ε=ε′=0

= − d
dt

[∫ 1

t
k(r(x))y · r ′(x)dx

] ∣∣∣∣
t=t∗

(32)

= k(r(t∗))y · r ′(t∗) (33)

= y>k(ν)y (34)

where (32) follows from (31), (33) follows from the fact that r ′(t + η) = y for all η ∈ (−δ,δ) and the
Leibniz rule, and (34) is by definition of the curve r (namely that r(t∗) = ν and r ′(t∗) = y).

Step 4: UPS Representation. We now show that C has a UPS representation. Let p∗ ∈ ∆◦ be given
and define the convex function F : ∆◦→ R+ by F(q) := D(q | p∗). Letting L(q,p) := D(q | p)−D(q | p∗),
we have D(q | p) = F(q) +L(q,p).

80 Note that the Leibniz rule applies because the derivative of the integrand in (30), namely the function (x,a) 7→ A (r(x))r′(a) · r′(x) ∈ R,
is continuous by construction.
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We claim that F(·,p) is affine. To see this, first note that displays (32)–(34) imply that, for each
y ∈ T (∆), the map

p 7→ ∂2

∂ε′∂ε
D(q+ εy + ε′y | p)

∣∣∣
ε=ε′=0

is constant, which in turn implies that

∂2

∂ε′∂ε
L(q+ εy + ε′y,p) = 0. (35)

Given any q1,q2 ∈ ∆◦, it is then easy to see that (35) applied at all q ∈ [q1,q2] and with y := q − q′

implies that F(αq1 + (1−α)q2,p) = αF(q1,p) + (1−α)F(q2,p). That is, F(·,p) is affine, as claimed.
Because L(·,p) is affine, we have Eπ [L(q,p)] = Eδp [L(q,p)] = L(p,p) for all π ∈ Πb(p). Therefore,

Ĉ(π) = Eπ [F(q) +L(q,p)] = Eπ [F(q)] + L(p,p) for all π ∈ Πb(p). Because Ĉ(δp) = 0, it must be that
L(p,p) = −F(p). This establishes the desired UPS representation Ĉ(π) = Eπ [F(q)−F(p)]. Finally, it is
easy to see that F ∈ C2 (∆◦).

E.3 Supporting Lemmas

Lemma 21. Let f : ∆◦ → R
n be continuous. Let p ∈ ∆◦ be given. If Eπ [f (q)] = 0 for all π ∈ Π◦(p) with

|supp(π)| ≤ 3, then there exists a matrix k ∈Rn×Θ such that f (q) = k · (q − p).

Proof. Towards a contradiction, suppose that there exist ν,µ ∈ ∆◦, α ∈ (0,1), and i ∈ [n] such that
fi(αν+(1−α)µ) > αfi(ν)+(1−α)fi(µ). If αν+(1−α)µ = p, then we are done: letting π := αδν+(1−α)δµ,
we have π ∈Π◦(p) and Eπ [fi(q)] < fi(p), which contradicts the hypothesis of the lemma.

Suppose instead that αν + (1 − α)µ , p. Define π := αδν + (1 − α)δµ as above. Define p̂ :=
p + ε [p − (αν + (1−α)µ)], where ε > 0 is taken small enough that p̂ ∈ ∆◦. Define π′ := 1

1+εδp̂ +
ε

1+εδαν+(1−α)µ, which satisfies π′ ∈ Π◦(p) by construction. Define π′′ := 1
1+εδp̂ + ε

1+επ, which is an
MPS of π′ and satisfies π′′ ∈Π◦(p). It follows that

Eπ′′ [fi(q)]−Eπ′ [fi(q)] =
ε

1 + ε
[αfi(ν) + (1−α)fi(µ)− fi(αν + (1−α)µ)] < 0

by our supposition, which again violates the hypothesis of the lemma.
A symmetric argument establishes that fi(αν+(1−α)µ) < αfi(ν)+(1−α)fi(µ) is also impossible. It

follows that f (αν+(1−α)µ) = αf (ν)+(1−α)f (µ) for all ν,µ ∈ ∆◦ and α ∈ (0,1). By standard arguments,
this implies the existence of k ∈Rn×Θ and z ∈Rn such that f (q) = kq+ z; because Eδp [f (q)] = f (p) = 0,
it must be that z = −kp.

Lemma 22. If cost function C∗ satisfies the conditions of Theorem 2 (i.e., is SLP and Regular), then for
every σ ∈ Eb it satisfies C∗(σ | ·) ∈ C1(∆◦).

Proof. See Appendix K.

F Proof of Theorem 3

By Lemmas 13, 14 and 15, it is without loss of generality to assume that the Direct Cost function
C is Randomizaton Averse. We do so throughout the proof, which uses the belief-based notation laid
out in Appendix B.
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F.1 Proof of Point (i)

Suppose that the Direct Cost function C is Locally Quadratic and exhibits Preference for Incre-
mental Learning with kernel k. Define the UPS cost function C by

C(π) := Eπ[F(ν)]−F(Eπ[ν]) ≤ C(π)

where the convex function F(q) has Hessian matrix 2k(q). By Lemma 1 and Theorem 1, we have
C = ΦC. Therefore, because Φ : C → C is an increasing map, it is sufficient to show that Φ(C) ≤ C.

First, we show that Φ(C)(π) ≤ C(π) for π ∈Πb have binary support. We prove this by finding π′

arbitrarily close to π under L−P metric and 〈qt〉⇀π′ with cost arbitrarily close toC. Since |supp(π)| =
2, denote the two posterior beliefs by ν1,ν2. Pick M ∈N, ∀i ∈N, i ≤M define λi = i

M . Consider the
subspace {qi = λiν1 + (1−λi)ν2}. Let qm0

be the closest point to Eπ[ν]. Define information structure
π̂ to be with prior qm0

and posteriors q0,qM . Then limM→∞d(π,π̂)lp = 0 By continuity of Φ(C) and C,
∀ε > 0, ∃M large enough that |Φ(C)(π)−Φ(C)(π̂)| ≤ ε and |C(π)−C(π̂)| ≤ ε.

Now consider the following process 〈qt〉, defined as follows: q0 = qm0
, πt(qt+1|qi) = 1

2δqi+1
+ 1

2δqi−1

when i ∈ [1,M − 1]. πt(qt+1|q0) = δq0
and πt(qt+1|qM ) = δqM . In other words, 〈qt〉 is a standard random

walk in {qi} stopped at absorbing boundary {q0,qM}. Let T ∈N be the length of the process 〈qt〉. Then
it is easy to verify that prob(qT ∈ {q0,qM})→ 1 when T →∞.81 Therefore, ∃T large enough, s.t. if we
let qT ∼ π′, then |Φ(C)(π′)−Φ(C)(π̂)| ≤ ε and |C(π′)−C(π̂)| ≤ ε. By definition, finite process 〈qt〉⇀π′.
Notice that 〈qt〉 does not have the information disposal periods. The cost of 〈qt〉 is:∑

C(πt(qt+1|qt)) ≤E
[∑

(F(qt+1)−F(qt))
]

(36)

+E
[∑∣∣∣∣∣(F(qt+1)−F(qt))−

1
M2 (ν2 − ν1)T k(qt)(ν2 − ν1)

∣∣∣∣∣] (37)

+E
[∑∣∣∣∣∣ 1

M2 (ν2 − ν1)T k(qt)(ν2 − ν1)−C(πt(qt+1|qt))
∣∣∣∣∣] (38)

The first term (36) is exactly Eπ′ [F(ν)] − F(Eπ′ [ν]) = C(π′). Now consider the second term (37). ∀qi ,
let f (α) = F(qi + α

M (ν2 − ν1)). Then:

1
2

inf
α∈[0,1]

f ′′(α) ≤ f (1)− f (0)− f ′(0) ≤ 1
2

sup
α∈[0,1]

f ′′(α)

⇐⇒ inf
α∈[0,1]

1
2

1
M2 (ν2 − ν1)THF(qi +

α
M

(ν1 − ν1))(ν2 − ν1)

≤ F(qi+1)−F(qi)−
1
M
∇F(qi)(ν2 − ν1)

≤ sup
α∈[0,1]

1
2

1
M2 (ν2 − ν1)THF(qi +

α
M

(ν2 − ν1))(ν2 − ν1)

=⇒
∣∣∣∣∣F(qi+1)−F(qi)−

1
M
∇F(qi)(ν2 − ν1)− 1

M2 (ν2 − ν1)T k(qi)(ν2 − ν1)
∣∣∣∣∣

≤ 1
M2 ‖ν2 − ν1‖2 · sup

q′∈[qi−1,qi+1]
‖k(q′)− k(q)‖

81 Let PT be such probability, then i) PT is increasing, ii) PT+M ≥ PT + (1− PT ) 1
2M

.
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Since the kernel k(q) is continuous on ∆◦, it is uniformly continuous on [q0,qm]. Therefore, M can be
picked large enough that supq′∈[qi−1,qi+1] ‖k(q′)− k(q)‖ ≤ ε. This implies

(37) ≤ ε ·E
[∑
‖qt+1 − qt‖2

]
= ε ·Eπ′ [‖ν − qm0

‖2]

Now consider (38). Since [q0,qM ] is compact, there exists uniform δ satisfying (LQ). Therefore,
when M is picked larger than 1

δ , qt+1 is always within Bδ(qt) and:

(38) ≤ε ·E
[∑
‖qt+1 − qt‖2

]
= ε ·Eπ′ [‖ν − qm0

‖2]

To sum up: ∑
C(πt(qt+1|qt)) ≤(36) + (37) + (38)

≤C(π′) + 2ε ·Eπ′ [‖ν − qm0
‖2]

=⇒ Φ(C)(π′) ≤C(π′) + 2ε ·Eπ′ [‖ν − qm0
‖2]

=⇒ Φ(C)(π) ≤C(π′) + 2ε ·Eπ′ [‖ν − qm0
‖2] + 2ε

≤C(π) + 2ε ·Eπ′ [‖ν − qm0
‖2] + 4ε

Since ε can be arbitrarily small, Φ(C)(π) ≤ C(π). Therefore, Φ(C)(π) = C(π).
Next, we prove the statement for general π ∈ Πb. ∀ε > 0, let δ be the continuity parameter of

Φ(C) and C at π. First consider any finite (Borel) partition ∪Mi=1Di of ∆(Θ) where the diameter of any
Di is bounded by δ. Without loss of generality, we consider the case π(Di) > 0 and M ≥ 3. Let qi =
Eπ[ν|ν ∈ Di]. Define π′(q) =

∑
i π(Di) · δqi (q). Then d(π,π′)lp ≤ δ and hence |Φ(C)(π)−Φ(C)(π′)| ≤ ε.

Let q0 = Eπ[ν]. Now we consider a decomposition of π′:
π1 = π(D1)δq1

+ (1−π(D1))δ
Eπ[ν|ν<D1]

πi(·|q) =
π(Di)∑
j≥i π(Dj )

δqi (·) +

∑
j>i π(Dj )∑
j≥i π(Dj )

δ
Eπ[ν|ν∈∪j>iDi ](·) when q = Eπ[ν|ν ∈ ∪j>iDj ]

πi(·|q) = q otherwise

By definition π′(ν) = E[
∏M−1
i=1 πi]. Therefore by recursively applying Axiom 2:

Φ(C)(π′) ≤E
[∑

Φ(C)(πi)
]

=π(D1)F(q1) +
∑
j>1

π(Dj )F(Eπ[ν|ν ∈ ∪j>1Dj ])−F(q0)

+

∑
j>1

π(Dj )


(

π(D2)∑
j>1π(Dj )

F(q2) +

∑
j>2π(Dj )∑
j>1π(Dj )

F(Eπ[ν|ν ∈ ∪j>2Dj ])−F(Eπ[ν|ν ∈ ∪j>1Dj ])
)

+ · · ·

+

∑
j>1

π(Dj )

M−2∏
i=1

∑
j>i π(Dj )∑
j≥i π(Dj )

 π(DM−1)
π(DM−1) +π(DM )

F(qM−1) +
π(DM )

π(DM−1) +π(DM )
F(qM )

−F(Eπ[ν|ν ∈DM−1 ∪DM ])
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=
∑

π(Di)F(qi)−F(q0)

=C(π′)

The first equality utilizes the result with binary support information structures. The second equality
is from cancelling out terms. Since ε can be chosen arbitrarily, supp(π′) ⊆ co[supp(π)] for all δ > 0,
and π′→w∗ π as δ→ 0, we have Φ(C)(π) ≤ C(π).

F.2 Proof of Point (ii)

Let C be Locally Quadratic and C∗ = ΦC be UPS and Locally Strongly Convex. We begin with an
important auxiliary lemma.

Lemma 23. For any π ∈Πb and ε > 0, if 〈qt〉⇀π is ε-optimal in the belief-based problem (19), then

E

[∑
‖q2t+2 − q2t+1‖2

]
≤ ε
m

(39)

Proof. Let 〈qt〉⇀π satisfy the hypothesis of the lemma. Using the fact that C∗ is UPS, we have

E

[∑
C∗(π2t(q2t+1|q2t))

]
=E

[∑
Eπ2t

[F(q2t+1)−F(q2t)|q2t]
]

=E
[∑

Eπt [F(qt+1)−F(qt)|qt]
]
−E

[∑
Eπ2t+1

[F(q2t+2)−F(q2t+1)|q2t+1]
]

=E
[∑

(F(qt+1)−F(qt))
]
−E

[∑
Eπ2t+1

[F(q2t+2)−F(q2t+1)|q2t+1]
]

=E [F(q2T )−F(q0)]]−E
[∑

Eπ2t+1
[F(q2t+2)−F(q2t+1)|q2t+1]

]
≥E

[∑
C(π2t(q2t+1|q2t))

]
− ε −E

[∑
Eπ2t+1

[F(q2t+2)−F(q2t+1)|q2t+1]
]

By definition C∗ ≤ C, therefore this implies:

E

[∑
(F(q2t+1)−F(q2t+2))

]
≤ ε

Moreover, because C∗ is Locally Strongly Convex, it can be shown that

C∗(Dist(q2t+1|q2t+2)) ≥mE
[
‖q2t+1 − q2t+2‖2

]
where Dist(q2t+1|q2t+1) denotes the conditional distribution of q2t+1 on q2t+2. Combining the two
inequalities above yields (39).

Lemma 23 provides an upper bound for the amount of “discarded” information. Its total variance
must be bounded above by ε

m , which can be arbitrarily small when we choose ε small. The key
intuition here is that because C∗ is Locally Strongly Convex, all information is costly, including that
which is discarded in the end. Moreover, because C∗ is UPS, those costs on discarded information
are avoidable—if we replace each information structure in the sequence with a replicating process.
Therefore, the total amount of discarded cost is bounded above by the approximation error of the
replicating processes.

We now show that for any replicating process that approximates C∗, the probability of a path
leaving a small neighbourhood around q0 is bounded. ∀π ∈ Πb, let q0 = Eπ[ν]. Suppose the di-
ameter of supp(π) is less than δ0. Pick an arbitrary ε > 0 and consider 〈qt〉 ⇀ π and C∗(π) ≥
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E [
∑
C(π2t(q2t+1|q2t))] − ε. The previous analysis implies (39): E

[∑
‖q2t+2 − q2t+1‖2

]
≤ ε

m . Now take
any path of 〈qt〉, denoted by qt[ω], such that qt0[ω] first leaves Bδ1

(q0) at period t (here we choose
δ1 > δ0). In other words, ∀t < t0, qt[ω] ∈ Bδ1

(q0) and qt0[ω] < Bδ1
(q0). Collect all paths qt[ω′] s.t.

qt[ω′] = qt[ω] when t ≤ t0. Let Ω0 denote the set of events corresponding to theses paths.
Now we construct a process 〈q̂t〉 in R|X |, satisfying

∑
x q̂t(x) ≡ 1. The process is defined on event

space Ω0 (with corresponding sigma algebra F0 and probability measure P0 restricted to Ω0). For
notational simplicity, I label 〈q̂t〉 using t from t0 to 2T . If t0 is even, let T0 = T + t0

2 :q̂t0+s+1[ω]− q̂t0+s[ω] = qt0+2s+1[ω]− qt0+2s[ω]

q̂T0+s+1[ω]− q̂T0+s[ω] = qt0+2s+2[ω]− qt0+2s+1[ω]

where s is from 0 to T − t02 − 1. If t0 is odd, let T0 = T + t0−1
2 :q̂t0+s+1[ω]− q̂t0+s[ω] = qt0+2s[ω]− qt0+2s−1[ω]

q̂T0+s+1[ω]− q̂T0+s[ω] = qt0+2s+1[ω]− qt0+2s[ω]

where s is from 0 to T − t0−1
2 . 〈q̂t〉 essentially reorders the belief changes of 〈qt〉 by grouping all even

periods (acquisition periods) together and then all odd periods (disposal periods) together. Now we
verify that 〈q̂t〉 is a martingale up to period T0. We only show the case with even t0 and the case with
odd t0 follows:

E[q̂t0+s+1 − q̂t0+s |̂qt0 , · · · , q̂t0+s]

=
∫
q̂t0+s+1[ω]− q̂t0+s[ω]dP0(ω|(q̂t0 , . . . , q̂t0+s)[ω] = q̂t0 , · · · , q̂t0+s)

=
∫

(qt0+2s+1[ω]− qt0+2s[ω])dP0(ω|(q̂t0 , . . . , q̂t0+s)[ω] = q̂t0 , · · · , q̂t0+s)

=
∫

(qt0+2s+1[ω]− qt0+2s[ω])dP0(ω|qt0+2s′+1[ω]− qt0+2s′ [ω] = q̂t0+s′+1 − q̂t0+s′ )

=
∫ (∫

qt0+2s+1[ω]− qt0+2s[ω]dP0(ω)
∣∣∣(qt0 , · · · ,qt0+2s)[ω] = qt0 , · · · ,qt0+2s

)
dP0((qt0 , · · · ,qt0+2s)[ω] = qt0 , · · · ,qt0+2s

∣∣∣qt0+2s′+1[ω]− qt0+2s′ [ω] = q̂t0+s′+1 − q̂t0+s′ )

=0

The last equality is by the Markov property of 〈qt〉 and martingale property of 〈qt〉 at even t’s. There-
fore, 〈q̂t〉t=t0,...,T0

is a martingale process.
Since the previous analysis is done in the event space Ω0 where qt first crosses Bδ1

(q0) at qt0 . Ω

can actually been partitioned into Ωα
0 ’s plus Ω1, where each α indexes a path first crossing Bδ1

(q0),82

and Ω1 contains events when the path never crosses Bδ1
(q0). Let t0(α) denote the first crossing time

of each α.
Now we calculate the total amount of information discarded in event space Ω0. Again we only

show the case for t0 even.

E

 T∑
t=0

‖q2t+2 − q2t+1‖2
 =E


∥∥∥∥∥∥∥
T∑
t=0

(q2t+2 − q2t+1)

∥∥∥∥∥∥∥
2

82 Ωα
0 ’s are clearly disjoint since a path can only first cross Bδ1 (q0) once.
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≥E


∥∥∥∥∥∥∥
T∑
t=0

(q2t+2 − q2t+1)

∥∥∥∥∥∥∥
2 ∣∣∣∣∣∣∪Ωα

0

 · P (ω ∈ ∪Ωα
0 )

=E

∥∥∥q̂2T − q̂T0

∥∥∥2
∣∣∣∣∣∣∪Ωα

0

 · P (ω ∈ ∪Ωα
0 )

≥E
E1

3

(∥∥∥q̂T0
− q̂t0

∥∥∥2
+
∥∥∥q̂t0 − q0

∥∥∥2
+ ‖q̂2T − q0‖2

) ∣∣∣∣∣∣Ωα
0

 ∣∣∣∣∣∣∪Ωα
0

 · P (ω ∈ ∪Ωα
0 )

≥
(1

3
E

[
E

[∥∥∥q̂T0
− q̂t0

∥∥∥2
∣∣∣∣Ωα

0

] ∣∣∣∣∪Ωα
0

]
+

1
3
δ2

1 +
1
3
δ2

0

)
· P

(
ω ∈ ∪Ωα

0

)
=

1
3
E

E
 ∑

2t≥t0(α)

‖q2t+1 − q2t‖2
∣∣∣∣Ωα

0

 ∣∣∣∣∪Ωα
0

+
1
3
δ2

1 +
1
3
δ2

0

 · P (
ω ∈ ∪Ωα

0

)
The first equality is by E [q2t+1|q2t+2] = q2t+2 from Definition 22. The first inequality is from the
non-negativity of norm. The second equality is by definition of 〈q̂t〉. The second inequality is from
Cauchy-Schwarz inequality. The last inequality is from qt0 < Bδ1

(q0) and definition of δ0. The last
equality is by definition of 〈q̂t〉. Combining the result with (39), we obtain:E


∥∥∥∥∥∥∥∥

∑
2t≥t0(α)

(q2t+1 − q2t)

∥∥∥∥∥∥∥∥
2 ∣∣∣∣∣∣∪Ωα

0

+ δ2
1 + δ2

0

 · P (ω ∈ ∪Ωα
0 ) ≤ 3ε

m
(40)

Now we state the main proof for Theorem 3. ∀q0 ∈ ∆◦, ∀η, let δ be the parameter pinned down
in Definition 11. Pick δ0 < δ1 < δ. Consider arbitrary π ∈ Πb s.t. supp(π) ⊂ Bδ0

(q0) and Eπ[ν] = q0.
Since k(q) is continuous, let ξ be sup‖k(q) − k(q0)‖ when q ∈ Bδ1

(q0). Now we show that C∗(π) is
differentiable at q0 and:∣∣∣∣∣C∗(π)−

∫
(ν − q0)T k(q0)(ν − q0)dπ(ν)

∣∣∣∣∣ ≤ η∫
‖ν − q0‖2dπ(ν) (41)

where k(q) locally characterize C(π). Consider any 〈qt〉⇀π and E[
∑
C(q2t+1|q2t)] ≤ C∗(π)+ε (ε is for

now a free parameter that we will pin down later in the proof). The total cost of 〈qt〉 can be written
as:

E[
∑
t

C(q2t+1|q2t)] =E

∑
t

C(q2t+1|q2t)1∀t′≤2t,qt′ [ω]∈Bδ1 (q0)

 (I)

+E

∑
t

C(q2t+1|q2t)1∀t′<2t,qt′ [ω]∈Bδ1 (q0)&q2t<Bδ1 (q0)

 (II)

+E

∑
t

C(q2t+1|q2t)1∃t′<2t,qt′ [ω]<Bδ1 (q0)

 (III)

In words, we partition paths of 〈qt〉 into three groups. (I) includes paths that never leaves Bδ1
(q0)

until 2t for each t. (II) includes paths that first leaves Bδ2
(q0) at 2t for each t. (III) includes paths that

have left Bδ1
(q0) before 2t for each t. We bound the total cost of the three groups separately.

We first study (I):

(I) =E

∑
t

C(q2t+1|q2t)1∀t′≤2t,qt′ [ω]∈Bδ1 (q0)&supp(q2t+1|q2t)∈Bδ1 (q0)

 (I-a)
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+E

∑
t

C(q2t+1|q2t)1∀t′≤2t,qt′ [ω]∈Bδ1 (q0)&supp(q2t+1|q2t)<Bδ1 (q0)

 (I-b)

We further partition group (I) into two sub-groups. In group (I-a), the paths never leaves Bδ1
(q0)

until 2t + 1 and in group (I-b) the paths first leaves Bδ1
(q0) in period 2t + 1.

(I − a) =E

∑
t

∫ (q2t+1 − q2t)
T k(q0)(q2t+1 − q2t) + (q2t+1 − q2t)

T (k(q2t)− k(q0))(q2t+1 − q2t)

+C(q2t+1|q2t)− (q2t+1 − q2t)
T k(q2t)(q2t+1 − q2t)dπ2t(q2t+1|q2t)


× 1∀t′≤2t,qt′ [ω]∈Bδ1 (q0)&supp(q2t+1|q2t)∈Bδ1 (q0)


≥E

∑
t

∫ (q2t+1 − q2t)
T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)− (η + ξ)

∫
‖q2t+1 − q2t‖2dπ2t(q2t+1|q2t)


× 1∀t′≤2t,qt′ [ω]∈Bδ1 (q0)&supp(q2t+1|q2t)∈Bδ1 (q0)


The inequality is implied by the differentiability condition of C and definition of continuity param-
eter ξ.

To calculate (I-b), we modify the distribution of q2t+1 for any event that satisfies the restriction,
namely q2t ∈ Bδ1

(q0) but there exists q2t+1 < Bδ1
(q0). For any such q2t, let π2t still be the distribution

of q2t+1. Now let q′ = Eπ2t
[ν|ν < Bδ1

(q0)]. Let π′′(ν|q′) = π2t(ν|ν < Bδ1
(q0)) and π′′(ν|q) = δν otherwise.

Let π′(ν) = 1ν∈Bδ1 (q0)π2t(ν) + π2t(∆(X) \ Bδ1
(q0))δq′ . It is easy to verify that π2t(ν) = Eπ′ [π′′(ν|q)].

Suppose q′ < Bδ(q0), let q′′ be a linear combination of q2t and q′ that is on the boundary of Bδ(q0).
Then we construct π̃′ by shifting q′ to q′′. Let q′1 = Eπ2t

[ν|ν ∈ Bδ1
(q0)]. Define:

π̃′(ν) = 1ν∈Bδ1 (q0)π2t(ν) ·
‖q′ − q′1‖
‖q′ − q2t‖

·
‖q′′ − q2t‖
‖q′′ − q′1‖

+
‖q′1 − q2t‖
‖q′′ − q′1‖

δq′′ (ν)

By definition, Eπ̃′ [ν] = q2t and π̃′ ≤BW π′. When q′ ∈ Bδ(q0), let π̃′ = π′. Now we calculate the cost of
π2t:

C(π2t) ≥C(π′) ≥ C(π̃′)

≥
∫

(ν − q2t)
T k(q0)(ν − q2t)dπ̃

′(ν)− (η + ξ)
∫
‖ν − q2t‖2dπ̃′(ν)

≥
∫

(ν − q2t)
T k(q0)(ν − q2t)dπ̃

′(ν)− (η + ξ)
∫
‖ν − q2t‖2dπ2t(ν)

=
∫

(ν − q2t)
T k(q0)(ν − q2t)dπ2t(ν) +

∫
(ν − q2t)

T k(q0)(ν − q2t)d(π̃′ −π2t)(ν)

− (η + ξ)
∫
‖ν − q2t‖2dπ2t(ν)

=
∫

(ν − q2t)
T k(q0)(ν − q2t)dπ2t(ν)− (η + ξ)

∫
‖ν − q2t‖2dπ2t(ν)

+
∫
ν∈Bδ(q0)

(ν − q2t)
T k(q0)(ν − q2t)d(π̃′ −π2t)(ν)
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+
∫
ν<Bδ(q0)

(ν − q2t)
T k(q0)(ν − q2t)d(π̃′ −π2t)(ν)

≥
∫

(ν − q2t)
T k(q0)(ν − q2t)dπ2t(ν)− (η + ξ)

∫
‖ν − q2t‖2dπ2t(ν)

−
(
1− δ − δ1

δ+ δ1

)
(ν − q2t)

T k(q0)(ν − q2t)dπ2t(ν)

−π2t(∆(X) \Bδ1
(q0))

(∫
(ν − q2t)k(q0)(ν − q2t)dπ

′′(ν|q′) + (q′ − q2t)
T k(q0)(q′ − q2t)

)
The first two inequalities are by π2t ≥BW π′ ≥BW π̃′ and Axiom 1. The third inequality is by Defi-
nition 11. The forth inequality: ‖q

′−q′1‖
‖q′−q2t‖

< 1; ‖q
′′−q2t‖
‖q′′−q′1‖

≥ δ−δ1
δ+δ1

bounds the second line, the third line is
calculated by ignoring the weakly positive term provided by π̃′. Finally, since k(q0) is fixed, there
exists M = supq,ν∈∆(X)(ν − q)T k(q0)(ν − q) <∞. To sum up:

C(π2t) ≥
∫

(ν − q2t)
T k(q0)(ν − q2t)dπ2t(ν)−

(
η + ξ +

2δ1

δ+ δ1

)∫
‖ν − q2t‖2dπ2t(ν) (42)

−π2t(∆(X) \Bδ1
(q0))M

Plug (42) into (I-b), we get:

(I − b) ≥E
∑

t

∫ (q2t+1 − q2t)
T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)

−
(
η + ξ +

2δ1

δ+ δ1

)∫
‖q2t+1 − q2t‖2dπ2t(q2t+1|q2t) +π2t

(
∆(X) \Bδ1

(q0)|q2t

)
·M


× 1∀t′≤2t,qt′ [ω]∈Bδ1 (q0)&supp(q2t+1|q2t)<Bδ1 (q0)


=E

∑
t

∫ (q2t+1 − q2t)
T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)

−
(
η + ξ +

2δ1

δ+ δ1

)∫
‖q2t+1 − q2t‖2dπ2t(q2t+1|q2t)


× 1∀t′≤2t,qt′ [ω]∈Bδ1 (q0)&supp(q2t+1|q2t)<Bδ1 (q0)


− P (∪Ωα

0 ) ·M

≥E
∑

t

∫ (q2t+1 − q2t)
T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)

−
(
η + ξ +

2δ1

δ+ δ1

)∫
‖q2t+1 − q2t‖2dπ2t(q2t+1|q2t)


× 1∀t′≤2t,qt′ [ω]∈Bδ1 (q0)&supp(q2t+1|q2t)<Bδ1 (q0)

]
− 3ε

(δ2
1 + δ2

0)m
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The equality is by rewriting the event space at which some path first crosses Bδ1
(q0), The last inequal-

ity is implied by (42).
Now we study (II) and (III):

(II) + (III)

≥E
∑
t

(∫
(q2t+1 − q2t)

T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)
)

1∃t′≤2t,qt′ [ω]<Bδ1 (q0)


−E

∑
t

(∫
(q2t+1 − q2t)

T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)
)

1∃t′≤2t,qt′ [ω]<Bδ1 (q0)


≥E

∑
t

(∫
(q2t+1 − q2t)

T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)
)

1∃t′≤2t,qt′ [ω]<Bδ1 (q0)


−E

∑
t

∑
s≥t

∫
(q2s+1 − q2t)

T k(q0)(q2s+1 − q2t)dπ2t(q2s+1|q2s)

1∀t′<2t,qt′ [ω]∈Bδ1 (q0)&q2t[ω]<Bδ1 (q0)


=E

∑
t

(∫
(q2t+1 − q2t)

T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)
)

1∃t′≤2t,qt′ [ω]<Bδ1 (q0)


−E

 ∑
2s≥t0(α)

∫
(q2s+1 − q2t)

T k(q0)(q2s+1 − q2t)dπ2t(q2s+1|q2s)
∣∣∣∣∪Ωα

0

P (∪Ωα
0 )

≥E
∑
t

(∫
(q2t+1 − q2t)

T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)
)

1∃t′≤2t,qt′ [ω]<Bδ1 (q0)


− ‖k(q0)‖E

 ∑
2s≥t0(α)

∫
‖q2s+1 − q2s‖2dπ2t(q2s+1|q2s)

∣∣∣∣∪Ωα
0

P (∪Ωα
0 )

≥E
∑
t

(∫
(q2t+1 − q2t)

T k(q0)(q2t+1 − q2t)dπ2t(q2t+1|q2t)
)

1∃t′≤2t,qt′ [ω]<Bδ1 (q0)


− ‖k(q0)‖3ε

m
The first inequality is by definition of M. The second equality is by definition any path which ever
crosses Bδ1

(q0) must have first crossed it at some history. The equality is rewriting the second term
in the language of Ωα

0 and t0(α). The last inequality is implied by (40).
Now combine (I), (II), and (III) together and we get:

E[
∑
t

C(q2t+1|q2t)] ≥E
∑
t

∫
(q2t+1 − q2t)

T k(q0)(q2t+1 − q2t)dq2t(q2t+1|q2t)


−
(
η + ξ +

2δ1

δ+ δ1

)
E

∑
t

∫
‖q2t+1 − q2t‖2dπ2t(q2t+1|q2t)


−
(

1

δ2
1 + δ2

0

+ ‖k(q0)‖
)

3ε
m

≥
∫

(ν − q0)T k(q0)(ν − q0)dπ(ν)

−
(
η + ξ +

2δ1

δ+ δ1

)
E

∑
t

∫
‖q2t+1 − q2t‖2dπ2t(q2t+1|q2t)
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−
(

1

δ2
1 + δ2

0

+ ‖k(q0)‖
)

3ε
m

≥
∫

(ν − q0)T k(q0)(ν − q0)dπ(ν)

≥
∫

(ν − q0)T k(q0)(ν − q0)dπ(ν)

−
(
η + ξ +

2δ1

δ+ δ1

)(∫
‖ν − q0‖2dπ(ν) +

ε
m

)
−
(

1

δ2
1 + δ2

0

+ ‖k(q0)‖
)

3ε
m

Fix all other parameters and let ε→ 0 (ε is the approximation error defined in (19)), then this implies:

C∗(π) ≥
∫

(ν − q0)T k(q0)(ν − q0)dπ(ν)−
(
η + ξ +

2δ1

δ+ δ1

)(∫
‖ν − q0‖2dπ(ν)

)
Therefore, ∀ε > 0, let δ be its corresponding parameter define in Definition 11, we can pick δ0,δ1

small enough such that η +ξ + 2δ1
δ+δ1

< ε.83 Hence we proved that we find δ0 s.t. ∀π s.t. Eπ[ν] = q0 and
supp(π) ⊂ Bδ0

(q0):

C∗(π) ≥
∫

(ν − q0)T k(q0)(ν − q0)dπ(ν)− ε
(∫
‖ν − q0‖2dπ(ν)

)
On the other hand:

C∗(π) ≤ C(π) ≤
∫

(ν − q0)T k(q0)(ν − q0)dπ(ν) + ε
(∫
‖ν − q0‖2dπ(ν)

)
Therefore, ∣∣∣∣∣C∗(π)−

∫
(ν − q0)T k(q0)(ν − q0)dπ(ν)

∣∣∣∣∣ ≤ ε (∫ ‖ν − q0‖2dπ(ν)
)

We verified the twice differentiability of C∗(π) and (41). By definition, if C∗(π) = Eπ[F(ν)]−F(Eπ[ν]),
then 2k(q) ≡HF(q) is the Hessian matrix of F(q). In other words, k(q) also locally characterizes C∗(q).
Therefore C(π) ≥ C∗(π) = Eπ[F(ν)]−F(Eπ[ν]), which completes the proof.

G Proof of Lemma 6

We begin with a preliminary lemma.

Lemma 24. Let C1 and Ĉ be Posterior Separable cost functions with divergences D1 and D2, respectively.
The following are equivalent:

(i) C1(σ | p) ≥ C2(σ | p) for all σ ∈ Eb and p ∈ ∆◦.
(ii) D1(q | p) ≥D2(q | p) for all q,p ∈ ∆◦.
83 Here we recycled symbol ε, now it is used to denote the parameter defining the differentiability condition of C∗.
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Proof of Lemma 24. That (ii) implies (i) is immediate. We prove that (i) implies (ii) by contraposition.
Suppose that there exist p,ν ∈ ∆◦ such that D2(ν | p) > D1(ν | p). For each ε > 0, define r(ε) :=
p + ε(p − ν). Henceforth, we take ε > 0 to be sufficiently small that r(ε) ∈ ∆◦. Define the posterior
distribution π(ε) ∈Π(p) by

π(ε) :=
1

1 + ε
δr(ε) +

ε
1 + ε

δν .

We then have

Eπ(ε) [D1(q | p)−D2(q | p)] =
1

1 + ε
[D1(r(ε) | p)−D2(r(ε) | p)] +

ε
1 + ε

[D1(ν | p)−DF(ν | p)] .

Dividing through by ε > 0 and sending ε→ 0 yields

lim
ε→0

Eπ(ε) [D1(q | p)−D2(q | p)]

ε
=
∂
∂ε
D1(r(ε) | p) |ε=0 −

∂
∂ε
D2(r(ε) | p) |ε=0 +D1(ν | p)−D2(ν | p)

=D1(ν | p)−D2(ν | p)

< 0,

where the first equality follows from the definition of directional derivative, the second equality
follows from the fact that D1(· | p) and D2(· | p) are minimized at q = p and the inequality follows
from the supposition that D2(ν | p) > D1(ν | p). Consequently, for ε′ > 0 sufficiently small, we have
that Eπ(ε′) [D1(q | p)−D2(q | p)] < 0. Let σ ′ be such that π〈σ ′ |p〉 = π(ε′). Then C1(σ ′ | p) < C2(σ ′ | p), as
desired.

We may now prove Lemma 6 itself.

Proof of Lemma 6. We first show that (i) =⇒ (ii) by contraposition. Suppose that PGL does not hold.
Then by Lemma 24 below, there exist p ∈ ∆◦ and σ ∈ Eb such that G := Eπ〈σ |p〉 [DF(q | p)−D(q | p)] >
0. Because C is Locally Linear, there exists an α ∈ (0,1) sufficiently small that CRA(α · σ | p)/α −
Eπ〈σ |p〉 [D(q | p)] < G. It follows that

Eπ〈σ |p〉 [DF(q | p)] > Eπ〈σ |p〉 [D(q | p)] +G >
CRA(α · σ | p)

α
. (43)

Because Eπ〈α·σ |p〉 [DF(q | p)] = α ·Eπ〈σ |p〉 [DF(q | p)], rearranging (43) yields

CRA(α · σ | p) < Eπ〈α·σ |p〉 [DF(q | p)] ,

which implies that there exists some τ ∈ Eb for which C(τ | p) < Eπ〈τ |p〉 [DF(q | p)]. This witnesses that
Preference for Incremental Learning does not hold.

Next, we show that (ii) =⇒ (i). Let p ∈ ∆◦ and σ ∈ Eb be given. Recall that the map α 7→ CRA(α ·σ |
p)/α is non-increasing on (0,1] because CRA is Randomizaton Averse by definition. Therefore,

C(σ | p) ≥ CRA(σ | p) ≥ lim
α→0

C(α · σ | p)
α

= Eπ〈σ |p〉 [D(q | p)] ≥ Eπ〈σ |p〉 [DF(q | p)] ,

where the first equality is from the definition of C being Locally Linear and the second equality is
immediate from PGL.
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H Proof of Proposition 3

We proceed via a series of lemmas.

Lemma 25. If the Direct Cost function C be Prior-Invariant and Locally Quadratic with kernel k, then the
normalized kernel k : ∆◦→R

Θ×Θ is a constant matrix (denoted simply by k ∈RΘ×Θ).

Proof. See Appendix K.

Lemma 26. Let the Direct Cost function C be Prior-Invariant, Locally Quadratic, and nonzero. If the
Indirect Cost function C∗ = ΦC is UPS, then |Θ| ≤ 2.

Proof. Let Θ = {1, . . . ,n} and parametrize p ∈ ∆◦ by its first n−1 elements, so that p = (p1,p2, · · · ,pn−1,1−∑n−1
i=1 pi). Let k(p) be the kernel of C and define its (n−1)×(n−1) dimensional projection k̃(p1, . . . ,pn−1)

as

k̃(p1, · · · ,pn−1) :=
[
In−1 −1

]
· k(p) ·

In−1

−1T


=

 kijpipj
− kin
pi(1−Σn−1

`=1p`)
−

kjn

pj(1−Σn−1
`=1p`)

+
knn

(1−Σn−1
`=1p`)

2


ij

where In−1 ∈ R(n−1)×(n−1) is the identity matrix, 1 ∈ Rn−1 is a vector consisting of all 1’s, and the
second line in the display represents k̃ by its ijth element. The normalized kernel k is constant by the
hypotheses of the lemma and Lemma 25.

Let F be a potential function in the UPS representation of C∗, which satisfies F ∈ C2 (∆◦) by
Theorem 3. Let F̃(p1, . . . ,pn−1) := F(p). Again by Theorem 3, we have k̃ ≡ 1

2HF̃. Because each ijth

element of k̃(p1, . . . ,pn−1) is C∞ smooth, it follows that F̃ is also C∞ smooth.
Suppose, towards contradiction, that n ≥ 3. Then we may calculate the higher order cross-partial

derivatives of F̃ as follows. For any i , j, by symmetry of cross-partials for smooth functions, we
have:

∂3

∂p2
i ∂pj

F̃(p1, · · · ,pn−1) =
∂
∂pi

k̃(p1, · · · ,pn−1)ij =
∂
∂pj

k̃(p1, · · · ,pn−1)ii

⇐⇒ ∂
∂pi

 kijpipj
− kin
pi(1−

∑n−1
`=1 p`)

−
kjn

pj(1−
∑n−1
`=1 p`)

+
knn

(1−Σpk)2

 =
∂
∂pj

kiip2
i

− 2
kin

pi(1−
∑n−1
`=1 p`)

+
knn

(1−
∑n−1
`=1 p`)

2


⇐⇒ −

kij

p2
i pj
−

kjn

(1−
∑n−1
`=1 p`)

2pj
+

kin
p2
i (1−

∑n−1
`=1 p`)

= − kin
pi(1−

∑n−1
`=1 p`)

2

⇐⇒ kijp
2
n + kjnp

2
i − kin(pi + pn)pj = 0

By varying p over ∆◦, it is easy to see that this final equality holds only when kij = kin = kjn =
0. This implies k is a diagonal matrix, which is not permitted by the condition k · 1 = 0 (which
must hold without loss of generality by Lemma 11). Therefore there does not exist a non-trivial
normalized kernel k such that the corresponding kernel k(p) is a Hessian matrix, which is the desired
contradiction.
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Lemma 27. Let the Direct Cost function C be Prior-Invariant, Locally Quadratic, and nonzero. If |Θ| = 2,
the Indirect Cost function C∗ = ΦC is UPS, then it is a Total Information cost function with symmetric
coefficients, as described in (Wald).

Proof. Let the state space be Θ = {1,2}. Let k denote the normalized kernel of C, which is constant by
Lemma 25. Because we may without loss of generality let k be PSD and satisfy k1 = 0 by Lemma 11,
it follows that there exists some α > 0 such that

k =

 α −α
−α α


=⇒ k(p1,p2) =


α
p2

1
− α
p1p2

− α
p1p2

α
p2

2


Parametrizing p = (p1,1− p1) by p1 ∈ (0,1), we may define the scalar projection k̃(p1) of k(p) by

k̃(p1) =[1 − 1]

 α
p2

1

−α
p1(1−p1)

−α
p1(1−p1)

α
(1−p1)2


 1
−1


=

α

p2
1(1− p1)2

It is then easy to verify that k̃(p1) = 1
2F
′′(p1) for the convex function F : (0,1)→R defined by

F(p1) := 2α ·
(
p1 log

(
p1

1− p1

)
+ (1− p1) log

(
1− p1

p1

))
This is precisely the potential function in the UPS representation of the cost function (Wald) with
α := 2α.

Lemma 28. The cost function C(σ ) := αmax
{
DKL(σθ1

| σθ2
),DKL(σθ2

| σθ1
)
}

is Locally Quadratic and has
the same kernel as the Wald cost function.

Proof. We may define Prior-Invariant cost functions C1(σ ) := DKL(σθ1
| σθ2

) and C2(σ ) := DKL(σθ2
|

σθ1
). Note that C1 is the LLR cost function with β12 = α and β21 = 0. Symmetrically, C2 is the LLR

cost function with β12 = 0 and β21 = α. Thus, C1 and C2 are both Posterior Separable with respective
prior-dependent potential functions F1,F2 : (0,1)→R defined by

F1(q1 | p1) := α
q1

p1
log

(
q1

1− q1

)
F2(q1 | p1) := α

1− q1

1− p1
log

(
1− q1

q1

)
By direct calculation, we see that

∂2

∂q2
1

F1(q1 | p1) |q1=p1
=
∂2

∂q2
1

F2(q1 | p1) |q1=p1
=

α

p2
1(1− p1)2

.

Thus, Lemma 3(i) implies that C1 and C2 are both Locally Quadratic and, without loss of generality,
have the same kernel k, which also coincides with the kernel of the Wald cost function. It is then easy
to verify that k is also a valid kernel of C, which proves the lemma.
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I Proof of Theorem 4

The main proof invokes Pomatto et al.’s (2019) characterization of the LLR cost function. That
paper’s result pertains to cost functions that (i) are defined on a slightly larger domain of experiments
than Eb and (ii) satisfy a continuity condition that, by itself, is neither weaker nor stronger than
what we have assumed (in Subsection 2.1). Below, we first present definitions from Pomatto et al.
(2019) and then introduce a suitable notion of extensibility for cost function that allows us to apply
that paper’s result. We emphasize that these definitions are purely technical and, consistent with a
conjecture in Pomatto et al. (2019, Appendix A), we believe that these additional conditions could be
dispensed with.

Let E◦ ⊂ E denote the collection of experiments σ satisfying the following two properties:

(i) The measures (σθ)θ∈Θ are mutually absolutely continuous.

(ii) The log-likelihood ratios L(s) :=
(
Lθ,θ′ (s)

)
θ,θ′∈Θ , where θ,θ′ (s) := log

(
dσθ
dσθ

(s)
)
, have finite mo-

ments: For every θ ∈Θ and α ∈NΘ ,

Mσ
θ (α) :=

∫
S

∏
θ′,θ

∣∣∣Lθ,θ′ (s)α′θ ∣∣∣dσ (s | θ) <∞.

It is easy to see that Eb ( E◦ ( E. Define the measures Λ(σ )
θ ∈ ∆(R|Θ|(|Θ|−1)) by Λ

(σ )
θ (B) := σθ ({s ∈ S : L(s) ∈ B}).

That is, Λ(σ )
θ denotes the distribution of the vector of log-likelihood ratios generated by experiment

σ conditional on state θ. For each N ∈N, define the pseudo-metric d(N )
P ST : E◦ ×E◦→R+ by

d
(N )
P ST (σ,τ) := max

θ∈Θ
dT V

(
Λ

(σ )
θ ,Λ

(τ)
θ )

)
+ max
θ∈Θ

max
α∈{0,...,N }Θ

|Mσ
θ (α)−Mτ

θ(α)|

where dT V
(
Λ

(σ )
θ ,Λ

(τ)
θ )

)
:= supB∈B(R|Θ|(|Θ|−1)) |Λ

(σ )
θ (B)−Λ(τ)

θ (B)| is the total variation distance on ∆(R|Θ|(|Θ|−1)).

We say that a function f : E◦→R is PST-continuous if it is uniformly continuous with respect to d(N )
P ST

for some N .
The preceding definitions all appear in Pomatto et al. (2019), albeit with slightly different nota-

tion. The following definition allows us to suitably bridge the gap between cost functions defined on
the domain Eb of bounded experiments and cost functions defined on the larger domain E◦.

Definition 24 (Extensible). Cost function C : Eb × ∆◦ → R+ is Extensible if there exists a mapping
C : E◦ ×∆◦→R+ such that:

(i) The restriction C |Eb×∆◦= C.

(ii) For each σ ∈ E◦ and p ∈ ∆◦, if a sequence
{
σ (n)

}
⊂ Eb satisfies (a) σ (n) %B σ

(n−1) for all n and (b)

π〈σ (n)|p〉→w∗ π〈σ |p〉 as n→∞, then limn→∞C(σ (n) | p) = C(σ | p).

(iii) For each p ∈ ∆◦, C(· | p) is PST-continuous.

In Definition 24, point (i) states that C(· | p) indeed extends C(· | p) from Eb to E◦. Given our
standing assumption that C(· | p) assigns equal cost to Blackwell equivalent experiments, point (ii)
implies that C(· | p) also satisfies this property. Notably, this equal-cost property is also implied by
point (iii).
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More generally, point (ii) says that the cost of any (monotonic) sequence of bounded experiments
whose posterior distributions converge weakly to that of σ ∈ E◦ converges to the cost of σ . As shown
below, this allows us to extend properties of C, such as Constant Marginal Cost, to the larger domain
on which C is defined. When C is Blackwell monotone, so that C(σ (n) | p) ≥ C(σ (n−1) | p), it can be
viewed as a mild lower semi-continuity requirement on the cost function.

Point (iii) is a technical condition required by Pomatto et al. (2019). Note that for sequences of
(uniformly) bounded experiments, PST-continuity is much less demanding than the weak∗ continuity
on posterior distributions that we have assumed. However, PST-continuity has implications for the
cost function along sequences of experiments that are not uniformly bounded, for which our standing
continuity assumption has no such implications.

We note that Mutual Information, Total Information, and the LLR cost functions are all Extensi-
ble. Indeed, we do not know of any cost functions used in applications that are not Extensible.

I.1 Preliminary Lemmas

Define the map DKL : Eb → R
|Θ|(|Θ|−1)
+ by DKL (σ ) := (DKL(σθ | σθ′ ))θ,θ′∈Θ . That is, DKL(σ ) denotes

the vector of KL divergences between state-contingent signal distributions generated by experiment
σ . Let D := DKL [Eb] ⊆ R

|Θ|(|Θ|−1)
+ denote the image of this map. In the sequel, we will appeal to the

following lemmas, which are due to Pomatto et al. (2019).

Lemma 29. R|Θ|(|Θ|−1)
++ ⊆ D.

Proof. This fact is established during the proof of Pomatto et al. (2019, Lemma 2).

Lemma 30. Let C be an Extensible and Dilution Linear cost function. Then C exhibits Constant Marginal
Cost if and only if there exists a continuous coefficient function β : ∆◦→R

|Θ|(|Θ|−1)
+ such that

C(σ | p) =
∑
θ,θ′

βθ,θ′ (p)DKL(σθ | σθ′ ), (44)

for all σ ∈ Eb and p ∈ ∆◦, in which case C is Posterior Separable with prior-dependent potential function F
defined by

F(q | p) :=
∑
θ,θ′

qθ
pθ
βθ,θ′ (p) log

(
qθ
qθ′

)
. (45)

Proof. Let σ ∈ E◦ and p ∈ ∆◦. Let π := π〈σ |p〉. For each n ∈ N, let {Di} denote a (Borel) partition
of ∆(Θ) such that diam(Di) ≤ 1/n for all i. Define the posterior distribution πn via supp(πn) :=
{qi = Eπ [q̃ | q̃ ∈Di]} and πn(Di) := π(Di). Because π (∆\∆◦) = 0, it is easy to see that for each n there
exists a δn > 0 such that supp(πn) ⊂ ∆δn . Thus, any experiment σn for which π〈σ (n)|p〉 = πn satisfied
σn ∈ Eb. We also have σ (n) %B σ

(n−1) by construction. Therefore, every σ ∈ E◦ can be approximated in
this manner by a sequence of bounded experiments. It is then easy to see that, because C is Dilution
Linear and Constant Marginal Cost, C inherits these properties (on all of E◦) by Definition 24(ii).

Therefore, in conjunction with Definition 24(iii), for each p ∈ ·◦ the function C(σ | p) satisfies the
hypotheses of Pomatto et al. (2019, Theorem 1). Applying that result prior-by-prior delivers that
C(σ | p) =

∑
θ,θ′ βθ,θ′ (p)DKL(σθ | σθ′ ) for all σ ∈ E◦ and p ∈ ∆◦. The representation (44) then follows

from Definition 24(i). Continuity of the function β can then be shown to follow from continuity of

93



C(σ | ·) : ∆◦→ R+ for each σ ∈ Eb and Lemma 29. Finally, the Posterior Separable representation (45)
can be shown by direct calculation.

I.2 Proof that (i) ⇐⇒ (ii)

The fact that (ii) =⇒ (i) is immediate from the facts that Total Information is UPS and is a special
case of the representation in Lemma 30. It therefore suffices to prove that (ii) =⇒ (i). To that end,
let C∗ be Extensible, SLP, and exhibit Constant Marginal Cost. By Corollary 1.2 and Lemma 30, C∗ is
Posterior Separable with the prior-dependent potential function F(q | p) given in (45).

For notational ease in what follows, for any p ∈ ∆◦ let (q̃, ν̃) ∼ π ∈ ∆ (∆◦ ×∆◦), with marginal
posterior distributions q̃ ∼ π′ ∈ Π(p) and ν̃ ∼ π′′ ∈ Π and conditional posterior distributions ν̃ |
q ∼ π(· | q) ∈ Π(q). Suppose also that each of these posterior distributions is induced by a bounded
experiment. In words, π corresponds to the joint distribution of first- and second-stage posterior
beliefs induced by a sequential experiment σ ′′ ∗ σ ′ ∼B σ , where π〈σ |p〉 = π′ and there is no extraneous
randomization (i.e., the second stage experiment is Markov in the first-stage belief, as in Appendix B).

Then by Theorem 1, C∗ satisfies the Preference for One-Shot Learning inequality:

Eπ′′ [F(ν̃ | p)−F(p | p)] ≤ Eπ′ [F(q̃ | p)−F(p | p)] +Eπ [F(ν̃ | q̃)−F(q̃ | q̃)] (46)

The LHS of (46) may be expanded as

Eπ′′ [F(ν̃ | p)−F(p | p)] = Eπ′ [F(q̃ | p)−F(p | p)] +Eπ [F(ν̃ | p)−F(q̃ | p)] ,

which upon substitution into (46) yields:

Eπ [F(ν̃ | p)−F(q̃ | p)] ≤ Eπ [F(ν̃ | q̃)−F(q̃ | q̃)] (47)

Define the functions β̂,` : ∆◦→R
|Θ|(|Θ|−1)
+ by

β̂(p) :=
(
βθ,θ′ (p)
pθ

)
θ,θ′∈Θ

and `(q) :=
(
qθ log

(
qθ
qθ′

))
θ,θ′∈Θ

Note that we may write the potential function as F(q | p) := β̂(p) · `(q). Substituting this into (47)
yields

0 ≥ Eπ [(F(ν̃ | p)−F(ν̃ | q̃)) + (F(q̃ | q̃)−F(q̃ | p))]

= Eπ
[
`(ν̃) ·

(
β̂(p)− β̂(q̃)

)
+ `(q̃) ·

(
β̂(q̃)− β̂(p)

)]
= Eπ

[
(`(ν̃)− `(q̃)) ·

(
β̂(p)− β̂(q̃)

)]
(48)

Let σ (q) ∈ Eb satisfy π〈σ (q)|q〉(·) = π(· | q). Now, for any pair of states θ , θ′, we may calculate:

Eπ(·|q)
[
`θ,θ′ (ν̃)− `θ,θ′ (q)

]
=

∫
S

νθ(s) log

 qθqθ′ dσ
(q)
θ

dσ
(q)
θ′

(s)

− qθ log
(
qθ
qθ′

)d
 ∑
θ′′∈Θ

qθ′′σ
(q)(s | θ′′)

 (49)

= Eπ(·|q)

[
(ν̃θ − qθ) log

(
qθ
qθ′

)]
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+
∫
S

qθdσ
(q)(s | θ)

d
(∑

θ′′∈Θ qθ′′σ
(q)(s | θ′′)

) log

dσ (q)
θ

dσ
(q)
θ′

(s)

d
 ∑
θ′′∈Θ

qθ′′σ
(q)(s | θ′′)

 (50)

= 0 + qθ

∫
S

log

dσ (q)
θ

dσ
(q)
θ′

(s)

dσ (q)(s | θ) (51)

= qθDKL
(
σ

(q)
θ | σθ′

)
(52)

The equality in (49) is by a change of variables from posteriors to signals, and by Bayes’ rule in the
first logarithm term. Then (50) is from regrouping terms and another change of variable back to
posteriors in the first term. Next, (51) follows from the martingale condition Eπ(·|p) [ν̃θ] = qθ and
from a change of measure in the second integral. Finally, (52) is by the definition of KL divergence.

Therefore, define the vector D(q)
KL(σ ) := (qθDKL (σθ | σθ′ ))θ,θ′∈Θ ∈ R

|Θ|(|Θ|−1)
+ . By (49)–(52) and the

Law of Iterated Expectation, we may equivalently rewrite (48) as

0 ≥ Eπ
[
D

(q̃)
KL(σ ) ·

(
β̂(p)− β̂(q̃)

)]
(53)

Suppose, towards a contradiction, that there exist p,q ∈ ∆◦ such that β̂(q) , β̂(p); in particular,
suppose without loss of generality that β̂θ,θ′ (q) > β̂θ,θ′ (p). (If β̂(q) � β̂(p), then we may simply in-
terchange the role of p and q in the subsequent argument.) Pick any α ∈ (0,1) and q′ ∈ ∆◦ such that
p = αq+(1−α)q′. Construct a joint distributionπ ∈ ∆ (∆◦ ×∆◦) as follows. First, letπ′ := αδq+(1−α)δq′ .

Then let π(· | q′) := δq and let π(· | q) := π〈σ (q)|q〉 for some σ (q) ∈ Eb for whichDKL(σ (q)
θ | σ

(q)
θ′ ) =M > 0 and

DKL(σ (q)
θ′ | σ

(q)
θ ) =DKL(σ (q)

θ̂
| σ (q)
θ̂′

) =m > 0 for all θ̂, θ̂′ < {θ,θ′}. The existence of such an experiment for
any choice of M,m > 0 is guaranteed by Lemma 29. For this choice of joint distribution, (53) reduces
to

0 ≥ αD(q)
KL(σ (q)) ·

(
β̂(p)− β̂(q̃)

)
=Mqθ

(
β̂θ,θ′ (q)− β̂θ,θ′ (p)

)
+Km (54)

where K := qθ
(
β̂θ′ ,θ(q)− β̂θ′ ,θ(p)

)
+

∑
θ̂,θ̂′<{θ,θ′} qθ̂

(
β̂θ̂,θ̂′ (q)− β̂θ̂,θ̂′ (p)

)
. Because qθ > 0 by q ∈ ∆◦ and

β̂θ,θ′ (q)− β̂θ,θ′ (p) > 0 by assumption, there existsM > 0 large enough andm > 0 small enough that the
inequality in (54) is violated, which is the desired contradiction.

Consequently, there exists some γ ∈ R|Θ|(|Θ|−1)
+ such that β̂(·) ≡ γ . But this is equivalent to

βθ,θ′ (p) ≡ pθγθ,θ′ , so that C is a Total Information cost function, as desired.

I.3 Remainder of Proof

Let C be an Extensible and Dilution Linear Direct Cost function exhibiting Constant Marginal
Cost. If ΦC is a Total Information cost function with coefficient vector γ , then Theorem 3 and the
representation (44) of C in Lemma 30 imply that we must have the (PIL) inequality∑

θ,θ′

(
βθ,θ′ (p)− pθγθ,θ′

)
DKL(σθ | σθ′ ) ≥ 0 (55)

for all σ ∈ Eb and p ∈ ∆◦.
Suppose there exists some p ∈ ∆◦ and some pair of states θ , θ′ for which βθ,θ′ (p) − pθγθ,θ′ < 0.

Then by Lemma 29, for every M,m > 0 there exists some σ ∈ Eb for which DKL(σθ |θ′ ) = M and all
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other KL divergences are equal to m. By the supposition, there exist M sufficiently large and m

sufficiently small that (55) is violated. Thus, it follows that we must have

βθ,θ′ (p)− pθγθ,θ′ ≥ 0 (56)

for all p ∈ ∆◦ and all θ , θ′.
Now, Theorem 3 and Lemma 6 also demand that HqF(q | p)|q=p =HG(p), where F is the potential

function in the Posterior Separable representation (45) of C and G is the Total Information potential
function from (TI). This implies that Diag(p)HqF(q | p)|q=pDiag(p) = Diag(p)HG(p)Diag(p). Direct
computation shows that, for θ , θ′, the (θ,θ′)th entry of this matrix equation is

βθ,θ′ (p) + βθ′ ,θ(p) = pθγθ,θ′ + pθ′γθ′ ,θ . (57)

Combining (56) with (57) yields βθ,θ′ (p) = pθγθ,θ′ for all θ,θ′ and p ∈ ∆◦, which is equivalent to
C = ΦC, completing the proof.

Remark 2. Notice that Lemma 30 implies that any Extensible and Dilution Linear Direct Cost function
exhibiting Constant Marginal Cost is, in fact, Posterior Separable. A weaker requirement on the Direct
Cost function, therefore, would be that it is Locally Linear, and that its Locally Linear approximation
is Extensible and exhibits Constant Marginal Cost. The same proof would then go through by applying
Lemma 30 to the Direct Cost’s Locally Linear approximation and using Lemma 6 to derive the inequality
(55) from (PGL).

J Proof of Theorem 5

We omit a formal proof of the necessity direction of the theorem — that Mutual Information is
Weakly Compression Invariant and Compression Monotone — which follows from the well-known
fact that Mutual Information satisfies the “data processing inequality” (e.g., Cover and Thomas
(2006, Theorem 2.8.1)). Below, we show that these properties are sufficient for Mutual Information,
i.e., points (i) and (ii) each imply point (iii) of the theorem.

J.1 Preliminary Lemmas

In Appendix J.1.1, we first show that any Bounded UPS cost function can be continuously ex-
tended to a “full domain” UPS cost function that is defined on the full domain E×∆(Θ) of experiment-
prior pairs. In Appendix J.1.2, we then present a characterization of Shannon entropy in terms of
a “recursivity” condition for “full domain” potential functions. The bulk of the proof, in Appen-
dices J.2 and J.3 below, shows that C being Weakly Compression Invariant or Compression Mono-
tone implies that the “full domain” potential function in the continuous extension of C satisfies the
“recursivity” condition and is therefore proportional to Shannon entropy, which implies that C itself
is a Mutual Information cost function. A proof method very similar to ours, based on the recursivity
condition (R) and its relation to Fadeev (1956) (Lemma 33), as well as the geometric argument from
Lemma 41 (illustrated in Figure 6), was first provided in Tian (2019, Lemmas 2’,3,4, Figure 1).
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J.1.1 Extension

Towards the first extension step, we begin with the following definition:

Definition 25 (Full Domain UPS). A Full Domain cost function C is Full Domain UPS if there exists a
(convex) potential function F : ∆(Θ)→R such that

C(σ | p) = Eπ〈σ |p〉 [F(q̃)−F(p)] (FD-UPS)

for all σ ∈ E and p ∈ ∆(Θ).

We note that the literature typically refers to Full Domain UPS simply as “Uniformly Posterior
Separable.” However, it can be shown that the restriction of a Full Domain UPS cost function to
Eb × ∆◦ is necessarily Bounded (cf. Gale et al. (1968)), which is strictly less general than our UPS
definition. The following lemma shows a converse of this fact:

Lemma 31. Let C : Eb ×∆◦→R+ be a Bounded UPS cost function with potential F : ∆◦→R. There exists
a continuous convex function F : ∆(Θ)→R of F, which generates (via (FD-UPS)) a Full Domain UPS cost
function C : E ×∆(Θ)→R+ such that:

(i) F(δθ) = 0 for all θ ∈Θ.84

(ii) The restriction C |Eb×∆◦= C.

(iii) C is weak∗ continuous: If (a) {πn} ⊂Π satisfies πn→w∗ π∗ and (b) {(σn,pn)} ⊆ E×∆(Θ) and (σ ∗,p∗) ∈
E ×∆(Θ) satisfy π〈σn|pn〉 = πn and π〈σ ∗|p∗〉 = π∗, the limn→∞C(σn | pn) = C(σ ∗ | p∗).

(iv) If σ,τ ∈ E and p ∈ ∆(Θ) satisfy π〈σ |p〉 = π〈τ |p〉, then C(σ | p) = C(σ | p).

Proof. We first show that F admits a convex continuous extension F : ∆(Θ) → R (which need not
satisfy point (i) of the lemma). If F is bounded, then the existence (and uniqueness) of such an
extension follows from Gale et al. (1968), so it suffices to show that F is bounded, i.e., supp∈∆◦ |F(p)| <
∞. To that end, let p ∈ ∆◦ be given and let ∇F(p) denote a subgradient of F at p. Define the convex
function F̃ : ∆◦→R+ by F̃(q) := F(q)−F(p)−∇F(p) · (q−p), which is non-negative because F is convex.
Because F̃(q) differs from F(q) by only an affine term, F̃ is also a valid potential function for C.
Also, it is clear that F̃ is bounded if and only if F is bounded, so it suffices to show the former.
Suppose, towards contradiction, there exists a sequence {qn} ⊂ ∆◦ such that limsupn→∞ F̃(qn) = +∞.
We may assume without loss of generality that qn → q∗ ∈ ∆(Θ)\∆◦. Pick any α ∈ (0,1), and define
rn := αqn + (1 − α)p ∈ ∆◦. Let σn ∈ Eb satisfy π〈σn|rn〉 = αδqn + (1 − α)δp. Note that supn∈N F̃(rn) < ∞
because, by construction, there exists some δ > 0 such that {rn} ⊂ ∆δ and F̃ is continuous on the
compact set ∆δ. Therefore, limsupn→∞C(σn | rn) = limsupn→∞

[
αF̃(qn) + (1−α)F̃(p)− F̃(rn)

]
= ∞,

contradicting that C is Bounded.
Now let C denote the Full Domain UPS cost function corresponding to F. Define f ∈ RΘ by

fθ := F(δθ). Then F̂(q) := F(q)−f ·q satisfies property (i) and is continuous by construction. Moreover,
because F and F̂ differ by an affine term, they are both valid potentials for C. So simply re-define F
as F̂, so that point (i) of the lemma holds. Point (ii) of the lemma is immediate. Point (iii) follows
from the continuity of F and the Portmanteau Theorem. Point (iv) follows from the definition of Full
Domain UPS.

84 Frankel and Kamenica (2019) refer to this property of potential functions as “null uncertainty.”
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For completeness, we note that the following lemma, which is a slight variant of Lemma 1 from
the main text, provides an equivalent characterization of the class of Full Domain UPS cost functions:

Lemma 32. The Full Domain cost function C is Full Domain UPS if and only if it satisfies

C(σ | p) = C(σ | p) +Eπ〈σ |p〉 [C(σ | q̃)] , (58)

in which case F(p) := −C(σ | p) is convex and satisfies (FD-UPS).

Proof. The “only if” direction is trivial. Suppose that C satisfies (58) and define F(p) := −C(σ | p). De-
fine the Full Domain cost function Ĉ by Ĉ(σ | p) = Eπ〈σ |p〉 [F(q̃)−F(p)]. It is easy to see from (FD-UPS)
that Ĉ = C. It remains to show that F is convex, which in turn implies that Ĉ and hence C is Full
Domain UPS. But this follows immediately from the fact that C ≥ 0 and an argument analogous to
that in the proof of Lemma 21.

J.1.2 Recursivity

The following definition is a variant of the recursivity axiom introduced in Shannon’s (1948)
characterization of Shannon entropy, and which has appeared repeatedly in the subsequent literature
(see Csiszár (2008) and Ebanks et al. (1998, Ch. 3) for surveys).

Definition 26 (Recursive). The function F : ∆(Θ)→R is Recursive if

F(p) = F (p+ pθ′ (δθ − δθ′ )) + (pθ + pθ′ )F
(

pθ
pθ + pθ′

δθ +
pθ′

pθ + pθ′
δθ′

)
(R)

for all p ∈ ∆(Θ) and θ,θ′ ∈Θ with pθ + pθ′ > 0.

The following lemma constitutes a key step in the proof of Theorem 5:

Lemma 33. Suppose that |Θ| ≥ 3. Let F : ∆(Θ)→ R be continuous. If F is Recursive, then there exists a
constant α ∈R such that F(p) ≡ αH(p), where H(p) := −

∑
θ pθ log(pθ) is Shannon entropy.

Lemma 33 is closely related to Shannon’s (1948) characterization of entropy. It illustrates that
Shannon’s (1948) second axiom, which requires that F is monotone increasing in the support size
of uniform distributions, is needed only to ensure that α > 0. We establish Lemma 33 as a corol-
lary to Fadeev’s (1956) celebrated characterization of Shannon entropy, which replaces Shannon’s
(1948) monotonicity axiom with a symmetry assumption (and adopts a slightly weaker recursivity
assumption):

Lemma 34. Suppose that |Θ| ≥ 3. Consider a collection {Fk}
|Θ|
k=2 of functions Fk : ∆ ({1, . . . , k})→ R satisfy-

ing the following properties:

(i) The function F2 is continuous.

(ii) The functions F2 and F3 are symmetric.

(iii) For all k ∈ {2, . . . , |Θ|} and (p1, . . . ,pk) ∈ int∆ ({1, . . . , k}), we have:

Fk(p1, . . . ,pk) = Fk−1(p1 + p2,p3, . . . ,pk) + (p1 + p2)F2

((
p1

p1 + p2
,

p2

p1 + p2

))
(59)
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Then there exists a constant α ∈R such that Fk(p1, . . . ,pk) = −α
∑k
i=1pi log(pi).

Proof. See Fadeev (1956), or the more general results of Tverberg (1958) and Lee (1964).

There are three main differences between the statements of Lemmas 33 and 34. First, Lemma 33
assumes the recursivity condition (R), which applies to all pairs of states, whereas Lemma 34 as-
sumes the recursivity condition (59), which applies only to a single predetermined pair of indices.
Second, Lemma 34 works with the collection of functions {Fk}, where Fk is defined over all proba-
bility distributions with a given support size without specifying which states those probabilities are
assigned to. Third, Lemma 34 also assumes that F2 and F3 are symmetric, while Lemma 33 does not
assume symmetry. Thus, relative to Fadeev’s (1956) result, Lemma 33 assumes a stronger version of
recursivity but does not assume any form of symmetry. The content of Lemma 33 is that, in fact, this
stronger recursivity property implies symmetry. However, once symmetry is established, Lemma 33
follows directly from Lemma 34.

Proof of Lemma 33. Let F satisfy the hypotheses of Lemma 33. Suppose for now that it is also sym-
metric (this will proved separately below). Let

{
θ1, . . . ,θ|Θ|

}
be an enumeration of Θ. For each

k ∈ {2, . . . , |Θ|}, let ∆(k) := {p ∈ ∆(Θ) : supp(p) = {θ1, . . . ,θk}} and define the function Fk : ∆(k)→R by the
restriction Fk := F |∆(k) , which inherits continuity and (assumed) symmetry from F. Thus, Lemma 34
implies that Fk(p1, . . . ,pk) = −α

∑k
i=1pi log(pi) for all such k. Because F is (assumed) symmetric, it is

then easy to see that F(p) = −αH(p) for all p ∈ ∆(Θ).
To prove the lemma, it therefore suffices to show that F being Recursive implies that it is symmet-

ric. We first observe that F(δθ) = 0 for all θ ∈Θ. Take any θ , θ′ and p ∈ ∆(Θ) with supp(p) = {θ,θ′},
for which the equation (R) is equivalent to F(p) = F(δθ) + F(p). This implies that F(δθ) = 0, as de-
sired.85

The proof of symmetry is then by induction on |supp(p)| ≥ 2. For the base step, take any p ∈ ∆(Θ)
with supp(p) = {θ,θ′}. Let θ′′ < {θ,θ′}. By the recursivity condition (R) applied to the pair of states
(θ′′ ,θ), we have

F(p) = F (p+ pθ(δθ′′ − δθ)) + pθF(δθ)

= F (p+ pθ(δθ′′ − δθ))

= F(p ◦λθ↔θ′′ )

where the second line is because F(δθ) = 0 for all θ ∈ Θ and, in the third line, λθ↔θ′′ denotes the
transposition that switches (only) the states θ,θ′′. The same argument applies to the pair of states
(θ′ ,θ′′). Hence, F is symmetric with respect to transpositions λ for which λ (supp(p)) , supp(p) (at
beliefs p with binary support). But by the same logic, we also have

F (p ◦λθ↔θ′′ ) = F ([p ◦λθ↔θ′′ ] ◦λθ↔θ′ )

= F ([[p ◦λθ↔θ′′ ] ◦λθ↔θ′ ] ◦λθ′↔θ′′ )

= F (p ◦λθ↔θ′ ) ,

where the first equality follows from the fact that supp(p ◦λθ↔θ′′ ) = {θ′ ,θ′′}, the second equality
follows from the fact that supp([p ◦λθ↔θ′′ ] ◦λθ↔θ′ ) = {θ,θ′′}, and the final equality follows from

85 Note that when |Θ| = 2, this is the only implication of Definition 26. Thus, the |Θ| ≥ 3 hypothesis is necessary for Lemmas 33 and 34.
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composing the various transpositions. This establishes that F is also symmetric with respect to trans-
positions λ for which λ (supp(p)) = supp(p) (at beliefs p with binary support). Thus, F is symmetric
with respect to all transpositions (at beliefs p with binary support). Since every permutation can be
achieved as the composition of transpositions, this proves that F is symmetric at beliefs p with binary
support.

For the inductive step, take k ∈ {2, . . . , |Θ| − 1} and suppose that F(p) = F(p◦λ) for all permutations
λ and all p ∈ ∆(Θ) with |supp(p)| ≤ k. Let p ∈ ∆(Θ) with |supp(p)| = k + 1 be given, and take any
θ,θ′ ∈ supp(p). For any permutation λ, we have:

F(p ◦λ) = F
([
p+ [p ◦λ]λ(θ′)(δθ − δθ′ )

]
◦λ

)
(60)

+
(
[p ◦λ]λ(θ) + [p ◦λ]λ(θ′)

)
F

([
[p ◦λ]λ(θ)

[p ◦λ]λ(θ) + [p ◦λ]λ(θ′)
δθ +

[p ◦λ]λ(θ′)

[p ◦λ]λ(θ) + [p ◦λ]λ(θ′)
δθ′

]
◦λ

)
= F ([p+ pθ′ (δθ − δθ′ )] ◦λ) + (pθ + pθ′ )F

([
pθ

pθ + pθ′
δθ +

pθ′

pθ + pθ′
δθ′

]
◦λ

)
(61)

= F (p+ pθ′ (δθ − δθ′ )) + (pθ + pθ′ )F
(

pθ
pθ + pθ′

δθ +
pθ′

pθ + pθ′
δθ′

)
(62)

= F(p) (63)

where (60) (the first two lines) is (R) applied at belief p ◦λ to the pair of states λ(θ) and λ(θ′), (61) is
by the identify [p◦λ]λ(θ′′) ≡ pθ′′ , (62) is by the assumed symmetry of F at beliefs with support size ≤ k,
and (63) is (R) applied at belief p to the pair of states θ and θ′. Therefore, F is symmetric for beliefs
with support size k + 1. This completes the inductive step and thus the proof of the lemma.

J.2 Proof that (i) =⇒ (iii)

Lemma 35. Let C be a Full Domain UPS cost function with continuous potential F : ∆(Θ) → R. If
the restriction C |Eb×∆◦ is Weakly Compression Invariant, then C satisfies the following strengthening of
Axiom 10:

C(σ | p) = C(σ | p′) (FD-WCI)

all experiments σ ∈ E measurable with respect to coarsening κ ∈ K, and priors p′ ∈ ∆(Θ) for which
p′(κ(θ)) = p(κ(θ)) for all θ ∈Θ.

Proof. Immediate from the weak∗ continuity of C established in Lemma 31(iii), the fact that for every
σ ∈ E and prior p ∈ ∆(Θ) there exits a sequence {σn} ⊂ Eb with limn→∞π〈σn|p〉 = π〈σ |p〉, and the fact
that for every σ ∈ E the mapping p 7→ π〈σ |p〉 is weak∗ continuous.

The following lemma (which is illustrated in Figure 4) constitutes the bulk of the proof:

Lemma 36. Suppose that |Θ| ≥ 3. Let C be a Full Domain UPS cost function with continuous potential
F : ∆(Θ)→R that satisfies F(δθ) = 0 for all θ ∈Θ. If C satisfies (FD-WCI), then F is Recursive.

Proof. Let C and F satisfy the hypotheses of the lemma. Let p ∈ ∆(Θ) and θ,θ′ ∈Θ with pθ+pθ′ > 0 be
given. Define the experiment 〈S,σ〉 by S = {1, . . . , |Θ| − 1} and σ (1 | θ) = σ (1 | θ′) = 1 and σ (k | θk) = 1
for all k ∈ {2, . . . , |Θ| − 1}, where {θk}

|Θ|−1
k=2 is any enumeration of Θ\{θ,θ′}. Thus, σ is measurable with
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Figure 4: Illustration of Lemma 36 when |Θ| = 3, θ = θ1, and θ′ = θ2.

respect to the compression κ defined by κ(θ) = κ(θ′) = {θ,θ′} and κ(θ′′) = {θ′′} otherwise. Given any
prior p ∈ ∆(Θ), σ induces the posterior distribution

π〈σ |p〉 =
∑

θ′′,θ,θ′
pθ′′δθ′′ + (pθ + pθ′ )

(
pθ

pθ + pθ′
δθ +

pθ′

pθ + pθ′
δθ′

)
. (64)

Because C satisfies Lemma 35, we have C(σ | p) = C (σ | p+ pθ′ (δθ − δθ′ )) (see the right-hand panel of
Figure 4). By the assumed Full Domain UPS form of C, (64), and the assumption that F(δθ) = 0 for
all θ ∈Θ, we have:

C(σ | p) =
∑

θ′′,θ,θ′
pθ′′F(δθ′′ ) + (pθ + pθ′ )F

(
pθ

pθ + pθ′
δθ +

pθ′

pθ + pθ′
δθ′

)
−F(p)

= (pθ + pθ′ )F
(

pθ
pθ + pθ′

δθ +
pθ′

pθ + pθ′
δθ′

)
−F(p) (65)

and

C (σ | p+ pθ′ (δθ − δθ′ )) =
∑

θ′′,θ,θ′
pθ′′F(δθ′′ ) + (pθ + pθ′ )F(δθ)−F (p+ pθ′ (δθ − δθ′ ))

= −F (p+ pθ′ (δθ − δθ′ )) (66)

Equating (65) and (66) yields the recursivity condition (R), which proves that F is Recursive.

Now, to prove this portion of Theorem 5, it suffices to apply Lemma 36 to the continuous exten-
sions of the cost function:

Proof that (i) =⇒ (iii) in Theorem 5. Suppose that |Θ| ≥ 3. Let C : Eb ×∆◦ → R+ be a Bounded UPS
cost function with potential F Suppose that C is Weakly Compression Invariant. Let C and F denote
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Figure 5: Illustration of Lemma 38 (left) and Lemma 39 (right) when |Θ| = 3, θ = θ1, and θ′ = θ2.

the (continuous) extensions of C and F from Lemma 31. Lemma 36 establishes that F is Recursive.
Then Lemma 33 implies that there exists some α ∈ R such that F(q) ≡ αH(p) (it must be that α < 0
because F is convex and H is concave). By definition of C, we have C |Eb×∆◦= C, implying that C is a
Mutual Information cost function, as desired.

J.3 Proof that (ii) =⇒ (iii)

Lemma 37. Let C be a Full Domain UPS cost function with continuous potential F : ∆(Θ)→ R. If the
restriction C |Eb×∆◦ is Compression Monotone, then C satisfies the following strengthening of Axiom 11:

C(σ | p) ≥ C(σ〈κ|p〉 | p) (FD-CM)

for all compressions κ, experiments σ ∈ E, and priors p ∈ ∆(Θ).

Proof. Immediate from the weak∗ continuity of C established in Lemma 31(iii) and the fact that for
any experiment σ ∈ E and compression κ, the map p 7→ π〈σ〈κ|p〉|p〉 is weak∗ continuous.

Lemma 38. Suppose that |Θ| ≥ 3. Let C be a Full Domain UPS cost function with continuous potential
F : ∆(Θ)→ R. Let θ , θ′, ν ∈ ∆(Θ) with νθ′ > 0, t ∈ (0,vθ′ ], µ ∈ ∆(Θ) with θ,θ′ < supp(µ), and α ∈ (0,1)
be given. Define the beliefs q, q̂, ν̂,p∗ ∈ ∆(Θ) as follows:

q := ν + t (δθ − δθ′ ) , q̂ := αq+ (1−α)µ, ν̂ := αν + (1−α)µ, p∗ :=
( α

1 +α

)
ν +

(
1− α

1 +α

)
q̂

Also define the maps r, r̂ : [0, t]→ ∆(Θ) by r(x) := ν + x (δθ − δθ′ ) and r̂(x) := αr(x) + (1 − α)µ. Then the
family of posterior distributions

{
π(x)

}
x∈[0,t]

defined by

π(x) :=
( α

1 +α

)
δr(x) +

(
1− α

1 +α

)
δr̂(t−x) (67)

satisfies π(x) ∈ Π(p∗) for all x ∈ [0, t]. Thus, there exists a family of experiments
{
σ (x)

}
x∈[0,t]

⊂ E such that

π〈σ (x)|p∗〉 = π(x) for all x ∈ [0, t].
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Proof. For all x ∈ [0, t], we have( α
1 +α

)
r(x) +

(
1− α

1 +α

)
r̂(t − x) =

( α
1 +α

)
[ν + x (δθ − δθ′ )] +

(
1− α

1 +α

)
[α(ν + (t − x) (δθ − δθ′ )) + (1−α)µ]

=
( α

1 +α

)
ν +

(
1− α

1 +α

)
[α (ν + t (δθ − δθ′ )) + (1−α)µ]

=
( α

1 +α

)
ν +

(
1− α

1 +α

)
[αq+ (1−α)µ]

which is the definition of p∗, as desired. (See the left-hand panel of Figure 5 for illustration.)

Lemma 39. Suppose that |Θ| ≥ 3. Let C be a Full Domain UPS cost function with continuous potential
F : ∆(Θ)→R, and suppose that C satisfies (FD-CM). Define the maps f , f̂ : [0, t]→R by

f (x) :=
( α

1 +α

)
F(r(x))

f̂ (x) :=
(
1− α

1 +α

)
F (r̂(x)) ,

where α,r(·),µ are as defined in Lemma 38 above. Then these functions are absolutely continuous and, at
almost every x ∈ [0, t], are differentiable and satisfy f ′(x) = f̂ ′(x).

Proof. By construction, supp(r(x)) = supp(r̂(x)) for all x ∈ (0, t). Since f , f̂ are convex and continuous
by construction, it follows that each is absolutely continuous, and hence almost-everywhere differ-
entiable, on [0, t]. Let D denote the (full measure) set of points in (0, t) at which both functions are
differentiable. Let x ∈ D be given. For all ε ∈ (−x, t − x), define the posterior distribution ρ(ε) ∈Π by

ρ(ε) :=
( α

1 +α

)
δr(x+ε) +

(
1− α

1 +α

)
δr̂(x−ε).

By direct calculation, we see that Eρ(ε) [q̃] =
(
α

1+α

)
r(x) +

(
1− α

1+α

)
r̂(x) =: ζ for all ε ∈ (−x, t − x). Thus,

for every such ε there exists an experiment τ (ε) ∈ E for which π〈τ (ε)|ζ〉 = ρ(ε).
Let κ denote the compression for which κ(θ) = κ(θ′) = {θ,θ′} and κ(θ′′) = {θ′′} otherwise. A short

calculation delivers that τ (0) ∼B τ
(ε)
〈κ|ζ〉 for all ε ∈ (−x, t − x). (See the right-hand panel of Figure 5 for

illustration.) Now consider the minimization problem

inf
ε∈(−x,t−x)

C(τ (ε) | ζ) = inf
ε∈(−x,t−x)

[
f (x+ ε) + f̂ (x − ε)

]
, (68)

where the equality follows from the Full Domain UPS hypothesis on C and the definitions of f , f̂ .
The fact that C satisfies (FD-CM) implies that ε = 0 is a solution to the program (68). Since x ∈ D, the
necessary first-order condition

d
dε

[
f (x+ ε) + f̂ (x − ε)

] ∣∣∣∣
ε=0

= f ′(x)− f̂ ′(x) = 0

holds, delivering the lemma.

Lemma 40. Suppose that |Θ| ≥ 3. Let C be a Full Domain UPS cost function with continuous potential
F : ∆(Θ) → R. Let the belief p∗ ∈ ∆(Θ) and experiments σ (0),σ (t) ∈ E be defined as in Lemma 38. If C
satisfies (FD-CM), then C

(
σ (0) | p∗

)
= C

(
σ (t) | p∗

)
.
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Figure 6: Illustration of Lemma 41 when |Θ| = 3, θ = θ1, and θ′ = θ2.

Proof. Define the function c : [0, t]→R by c(x) := C
(
σ (x) | p∗

)
, where σ (x) ∈ E is as defined in Lemma 38.

Because C is Full Domain UPS and by (67), we have c(x) := f (x)+ f̂ (t−x). By Lemma 39, f (·), f̂ (·), and
hence c(·) are absolutely continuous on (0, t) and, by hypothesis, are continuous on [0, t]. Therefore:

c(t)− c(0) =
∫ t

0

[
f ′(x) + f̂ ′(t − x)

]
dx (69)

=
∫ t

0
f ′(x)dx −

∫ t

0
f̂ ′(y)dy where y = t − x (70)

=
∫ t

0

[
f ′(x)− f̂ ′(x)

]
dx (71)

= 0 (72)

where (69) follows from continuity of c(x) and the Fundamental Theorem of Calculus, (70) is a
standard change of variable, and (72) follows from the fact that the integrand in (71) is almost-
everyone zero by Lemma 39. Thus, by definition of c(·), we obtain the desired equality C

(
σ (0) | p∗

)
=

C
(
σ (t) | p∗

)
.

Lemma 41. Suppose that |Θ| ≥ 3. Let C be a Full Domain UPS cost function with continuous potential
F : ∆(Θ)→R that satisfies F(δθ) = 0 for all θ ∈Θ. If C satisfies (FD-CM), then F is Recursive.

Proof. Let θ , θ′ be given. Notice that because F(δθ) = 0, the Recursive condition (R) is vacuously
satisfied when pθ′ = 0. Thus, it suffices to consider p ∈ ∆(Θ) with pθ′ > 0. Consider the setting of
Lemmas 38, 39 and 40 in which ν̂ := p, ν :=

(
pθ

pθ+pθ′

)
δθ +

(
pθ′

pθ+pθ′

)
δθ′ , q := δθ, and p̂ = p+ pθ′ (δθ − δθ′ ).

This corresponds to t := pθ′ and α := pθ+pθ′ ; the choice of µ does not matter as long as θ,θ′ < supp(µ).
(See Figure 6 for illustration.) By the assumed Full Domain UPS form of C and the assumption that
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F(δθ) = 0 for all θ ∈Θ, we have

C(σ (0) | p∗) =
(
pθ + pθ′

1 + pθ + pθ′

)
F

((
pθ

pθ + pθ′

)
δθ +

(
pθ′

pθ + pθ′

)
δθ′

)
+
(

1
1 + pθ + pθ′

)
F (p+ pθ′ (δθ − δθ′ ))−F(p∗)

(73)

C(σ (pθ′ ) | p∗) =
(
pθ + pθ′

1 + pθ + pθ′

)
F(δθ) +

(
1

1 + pθ + pθ′

)
F(p)−F(p∗)

=
(

1
1 + pθ + pθ′

)
F(p)−F(p∗) (74)

and by Lemma 40 we have C(σ (0) | p∗) = C(σ (pθ′ ) | p∗). Equating (73) and (74) yields the recursivity
condition (R), which proves that F is Recursive.

Finally, to prove this portion of Theorem 5, it suffices to apply Lemma 41 to the continuous
extensions of the cost function:

Proof that (ii) =⇒ (iii) in Theorem 5. Suppose that |Θ| ≥ 3. Let C : Eb ×∆◦ → R+ be a Bounded UPS
cost function with potential F Suppose that C is Weakly Compression Invariant. Let C and F denote
the (continuous) extensions of C and F from Lemma 31. Lemma 41 establishes that F is Recursive.
Then Lemma 33 implies that there exists some α ∈ R such that F(q) ≡ αH(p) (it must be that α < 0
because F is convex and H is concave). By definition of C, we have C |Eb×∆◦= C, implying that C is a
Mutual Information cost function, as desired.

K Auxiliary Results and Proofs

[Additional material to be posted soon. Click here for most recent version.]
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