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Abstract

What should researchers do when their baseline model is refuted? We provide four construc-
tive answers. First, researchers can measure the extent of falsification. To do this, we consider
continuous relaxations of the baseline assumptions of concern. We then define the falsification
frontier: The smallest relaxations of the baseline model which are not refuted. This frontier
provides a quantitative measure of the extent of falsification. Second, researchers can present
the identified set for the parameter of interest under the assumption that the true model lies
somewhere on this frontier. We call this the falsification adaptive set. This set generalizes the
standard baseline estimand to account for possible falsification. Importantly, it does not require
the researcher to select or calibrate sensitivity parameters. Third, researchers can present the
identified set for a specific point on this frontier. Finally, as a sensitivity analysis, researchers can
present identified sets for points beyond the frontier. To illustrate these four ways of salvaging
falsified models, we study overidentifying restrictions in two instrumental variable models: a
homogeneous effects linear model, and heterogeneous effect models with either binary or con-
tinuous outcomes. In the linear model, we consider the classical overidentifying restrictions
implied when multiple instruments are observed. We generalize these conditions by considering
continuous relaxations of the exclusion restrictions. By sufficiently weakening the assumptions,
a falsified baseline model becomes non-falsified. This lets us derive the falsification adaptive set,
which has a simple closed form expression that depends only on a few 2SLS regression coeffi-
cients. We obtain similar results in the heterogeneous effect models, where we derive identified
sets for marginal distributions of potential outcomes, falsification frontiers, and falsification
adaptive sets under continuous relaxations of the instrument exogeneity assumptions. We apply
our results to four different empirical studies: Duranton, Morrow, and Turner (2014), Alesina,
Giuliano, and Nunn (2013), Acemoglu, Johnson, and Robinson (2001), and Nevo (2001). We
show how our results, especially the falsification adaptive set, can help researchers go beyond the
binary pass/fail outcome of a specification test and instead summarize the variation in estimates
obtained from alternative non-falsified models.
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1 Introduction

Many models used in empirical research are falsifiable, in the sense that there exists a population

distribution of the observable data which is inconsistent with the model. We equivalently call these

overidentified or refutable models.1 With finite samples, researchers often use specification tests to

check whether their baseline model is refuted. A well known example is the overidentifying restric-

tions test in linear instrumental variable models (Anderson and Rubin 1949, Sargan 1958, Hansen

1982). Abstracting from sampling uncertainty2, the population versions of such specification tests

have a persistent problem: What should researchers do when their baseline model is refuted?

One option is to ignore the finding and report some point estimand, like the 2SLS estimand in

an overidentified linear instrumental variable model. There are two problems with this approach.

First, it is often justified by appealing to large sample sizes. For example, Nevo (2001) refers to

this justification on page 325: “It is well known that with a large enough sample a chi-squared test

will reject essentially any model.” If we are willing to relax assumptions, however, this common

justification is not true: There always exist assumptions which are sufficiently weak that they

are not refuted. Second, such point estimands can be highly misleading. For example, Heckman

and Hotz (1989) compare estimates from observational data with those from experimental data. In

their data, they show that the observational estimates from models which fail specification tests are

much farther from the experimental estimates than observational estimates from models which pass

specification tests. Essentially, parameters like the 2SLS estimand are motivated by arguments that

they deliver a causal effect of interest under a set of baseline assumptions. When those assumptions

are known to be false, there is no reason for the corresponding estimand to be close to the causal

effect of interest. In appendix B we discuss five other responses to baseline falsification from the

literature. We review the related literature in appendix A.

Instead of ignoring findings from specification tests, we provide four constructive ways for

researchers to salvage a falsified baseline model. First, researchers can measure the extent of

falsification. To do this, we consider continuous relaxations of the baseline assumptions of concern.

We then define the falsification frontier: The smallest relaxations of the baseline model which are

not refuted. This frontier provides a quantitative measure of the extent of falsification. Second,

researchers can present the identified set for the parameter of interest under the assumption that

the true model lies somewhere on this frontier. We call this the falsification adaptive set (FAS). This

set collapses to the baseline identified set or point estimand when the baseline model is not refuted.

When the baseline model is refuted, this set expands to include all parameter values consistent with

the data and a model which is relaxed just enough to make it non-refuted. This set generalizes the

1Keep in mind that falsifiability is a property of a model, not a parameter. It is nonetheless common for researchers
to discuss “overidentified parameters.” These are parameters whose identified sets are either empty (when the model
is falsified) or a singleton (when the model is not falsified). Thus such parameters are point identified when the model
is not falsified. To avoid confusion between properties of a parameter and properties of a model, we only use the
terms falsifiable and refutable when describing models.

2We study population level identification and falsification in this paper. We briefly discuss finite sample estimation
and inference in sections 2.5 and 3.4, but this is not the focus of the paper.
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standard baseline estimand to account for possible falsification. Importantly, researchers do not

need to select or calibrate sensitivity parameters to compute the falsification adaptive set. While

this set is agnostic about the direction of relaxation, our third suggestion is that researchers present

the identified set for a specific minimally relaxed model. Finally, as a further sensitivity analysis,

researchers can present identified sets for points beyond the falsification frontier. We discuss a

complementary Bayesian approach in appendix D.

To illustrate these four constructive ways to salvage a falsified baseline model, we study a clas-

sic source of overidentification: observation of several instrumental variables. We do this in two

different models. The first is the classical constant coefficients linear model with multiple instru-

ments. This model imposes homogeneous treatment effects, but allows for continuous treatments.

We generalize the usual overidentifying restrictions by allowing the instruments to have some direct

effect on outcomes. We use this result to characterize the falsification frontier, which trades off

bounds on the magnitudes of these direct instrument effects. We then characterize the identified

set along the falsification frontier. This leads to a particularly simple closed form expression for the

falsification adaptive set, depending only on the value of a handful of 2SLS regression coefficients.

We also show how to use these identified sets to do sensitivity analysis for non-falsified models

beyond the frontier.

It is well known that the classical overidentifying conditions may not hold when treatment

effects are heterogeneous, even if all instrument exogeneity and exclusion restrictions hold. We

therefore also study a second model, which allows for heterogeneous treatment effects and multiple

instruments. In this model we focus on binary treatments. We consider both binary and continuous

outcomes. Although this model allows for heterogeneous treatment effects, it is nonetheless falsi-

fiable. We relax statistical independence between each instrument and potential outcomes using

a latent propensity score distance from our previous work, Masten and Poirier (2018a). Under

these relaxations, we derive the identified set for the marginal distributions of potential outcomes.

We show how to quickly compute the falsification frontier and the falsification adaptive set using

convex optimization. We then discuss how to use these identified sets to do sensitivity analysis

regardless of whether the baseline model is refuted.

We show how to use our results in four previously published empirical studies: Duranton,

Morrow, and Turner (2014, The Review of Economic Studies), Alesina, Giuliano, and Nunn (2013,

The Quarterly Journal of Economics), Acemoglu, Johnson, and Robinson (2001, The American

Economic Review), and Nevo (2001, Econometrica). Each paper reports 2SLS estimates using

multiple instrumental variables and each paper discusses concerns about instrument validity. All

four papers run overidentification tests, which sometimes fail. Even when they do not fail, the

authors sometimes express a concern that this could simply be due to low sample size. We show

that the falsification adaptive set is an informative complement to these traditional tests: Rather

than focusing on null hypothesis significance testing, the FAS summarizes the range of estimates

obtained from alternative models which which are not falsified by the data. Thus the FAS reflects

the model uncertainty that arises from a falsified baseline model: Relying on different instruments
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to different degrees yields different results. The FAS gives this range of results.

Finally, it is important to distinguish between two kinds of falsifiable models. The first kind

is falsified because of an assumption made directly on observed random variables. For example,

suppose we observe a scalar random variable. Consider the model which assumes that this variable is

normally distributed. At the population level, we can simply check whether the observed variable

is actually normally distributed. If not, the model is refuted. When the model is refuted, it

can be salvaged by removing the normality assumption. A massive literature in statistics and

econometrics on semi- and non-parametrics is largely concerned with salvaging refuted models by

relaxing parametric assumptions on observed random variables. For example, see the survey by

Spanos (2018). The second kind of model is falsified because of an assumption made on unobserved

random variables, or unobserved structural parameters. Salvaging these models is delicate because,

even at the population level, the data themselves do not tell us the correct alternative assumptions.

We study this second kind of falsifiable model in this paper.

2 Salvaging Falsified Models

In this section we consider a general falsifiable model. We use this model to precisely define our four

recommended responses to baseline falsification. In particular, we formally define the falsification

frontier and falsification adaptive set. In sections 3 and 5 we illustrate these general concepts in

two specific instrumental variable models. We discuss some interpretation issues in section 2.2. In

section 2.4 we discuss the relationship between the falsification frontier and the breakdown frontier

we studied in our previous work (Masten and Poirier 2019). We discuss estimation and inference

in section 2.5.

2.1 Measuring the Extent of Falsification

Let W be a vector of observed random variables. Let F denote the set of all cdfs on the support

of W , supp(W ). A model is a set of underlying structural parameters which generate the observed

distribution FW and restrictions on those structural parameters. This definition of a model suffices

for our purposes. See section 2 of Matzkin (2007), for example, for a more formal definition. A

given model M is falsifiable if there are some observed distributions FW which could not have

been generated by the model. If such a cdf is observed, we say the model is falsified (equivalently,

refuted). For a given model, let Ff denote the set of cdfs FW which falsify the model. Let Fnf

denote the set of cdfs FW which do not falsify the model. Falsifiable models are often said to have

testable implications. We prefer the terms ‘falsifiable’ or ‘refutable’, to distinguish this population

level feature from issues arising in statistical hypothesis testing.3

3Informally, it is possible that for every non-falsified distribution of observables there exists a falsified distribution
of observables which is arbitrarily close. Thus hypothesis tests in finite samples have a difficult time distinguishing
the two cases, even though we can distinguish them at the population level. In this case we say the model is falsifiable
but not testable. Canay, Santos, and Shaikh (2013) study an example of this; also see Freyberger (2017).
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Suppose we begin with a falsifiable baseline model M(0L). Let Fnf(0L) denote the set of joint

distributions of the data which are not falsified by this model. Hence Fnf(0L) is a strict subset of F .

L denotes the number of assumptions which we believe may be the reason the model is falsifiable.

For each assumption ` ∈ {1, . . . , L}, we define a class of assumptions indexed by a parameter δ`

such that the assumption is imposed for δ` = 0, the assumption is not imposed for δ` = 1, and

the assumption is partially imposed for δ` ∈ (0, 1).4 These assumptions must be nested in the

sense that for δ′` ≥ δ`, assumption δ′` is weaker than assumption δ`. Let M(δ) denote the model

which imposes assumptions δ = (δ1, . . . , δL). Let Fnf(δ) denote the set of joint distributions of the

data which are not falsified by this model. Suppose further that the model M(1L) which does not

impose any of the L assumptions is not falsifiable.

Recall that FW denotes the observed distribution of the data. Suppose FW /∈ Fnf(0L), so that

the baseline model is falsified. We first consider the case where we only relax a single assumption.

Definition 1. Suppose L = 1. The falsification point is

δ∗ = inf{δ ∈ [0, 1] : FW ∈ Fnf(δ)}.

That is, the falsification point is the smallest relaxation of the baseline assumption such that the

model is not falsified by the observed data FW . For any δ < δ∗, the model is falsified. For any δ > δ∗,

the model is not falsified. Under mild conditions, we can show that the set {δ ∈ [0, 1] : FW ∈ Fnf(δ)}
is closed, and hence the model is not falsified at δ∗.

The falsification frontier is the multi-dimensional version of the falsification point. To formally

define it, partition [0, 1]L into the set of all assumptions which are falsified,

Df = {δ ∈ [0, 1]L : FW /∈ Fnf(δ)}

and the set of all assumptions which are not falsified,

Dnf = {δ ∈ [0, 1]L : FW ∈ Fnf(δ)}.

Definition 2. The falsification frontier is the set

FF = {δ ∈ [0, 1]L : δ ∈ Dnf and for any other δ′ < δ, we have δ′ ∈ Df }

where δ′ < δ means that δ′` ≤ δ` for all ` ∈ {1, . . . , L} and δ′m < δm for some m ∈ {1, . . . , L}.

That is, the falsification frontier is the set of assumptions which are not falsified, but if strength-

ened in any component, leads to a refuted model. In the one dimensional case, this corresponds

to the smallest relaxation δ such that the model is not refuted. For example, suppose L = 2. For

each δ1 ∈ [0, 1] define

δ∗2(δ1) = inf{δ2 ∈ [0, 1] : FW ∈ Fnf(δ1, δ2)}.
4More generally, the range of δ could be [0, δmax] for some value δmax ≥ 0, possibly +∞.

5



R
e
la

x
a
ti
o
n
 o

f
a
s
s
u
m

p
ti
o
n
 2

Relaxation of assumption 1

Model is False

Model Not Falsified

Figure 1: An example falsification frontier, partitioning the space of assumptions into the set for
which the model is falsified and the set for which the model is not falsified.

This function δ∗2(·) plots the falsification frontier in the two-dimensional case. Figure 1 shows

an example of such a function. Our baseline model is refuted and we have picked two different

assumptions to focus on as possible explanations. The horizontal axis measures the relaxation of

the first assumption. The vertical axis measures the relaxation of the second assumption. The origin

at the lower left represents the baseline model. The point at the top right of the box represents

the model where neither of the two baseline assumptions are imposed. First, look at the top left

and lower right corners. We see that if we completely drop one assumption while maintaining the

other, the model is no longer falsified. However, we can learn more by studying the points at which

the model becomes non-refutable—that is, by examining the falsification frontier. This is shown as

the boundary between the two regions. Consider its vertical and horizontal intercepts. Supposing

the units are comparable, then the model continues to be refuted even for large relaxations of

assumption 1, while maintaining assumption 2. Conversely, the model is not refuted if we allow

moderate relaxations of assumption 2, while maintaining assumption 1. Looking along the frontier,

strengthening assumption 2 by some amount requires relaxing assumption 1 by even more, if we

want to avoid falsification. Thus the falsification frontier gives the trade-off between different

assumptions’ ability to falsify the model.

2.2 Interpreting Falsified and Non-Falsified Models

In this section we discuss two well-known points that are nevertheless important to keep in mind

when discussing falsification. First, although a falsified model cannot be true, a non-falsified model

is not necessarily true. This asymmetry underlies Popper’s (1934) philosophy of falsification. In the

classical linear instrumental variables model of section 3, this is discussed in Kadane and Anderson

(1977), Newey (1985), Breusch (1986), Small (2007), Parente and Santos Silva (2012), and Guggen-

berger (2012). They noted that the classical overidentifying conditions are really constraints that
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the instruments are consistent with each other. Thus it is possible that the instrument exogeneity

assumptions fail in such a way that all instruments yield the same biased estimand for the true

parameter. In this case, the baseline model is not refuted even though it is false. This is often

explained by saying that the classical overidentification test is “not consistent against all alterna-

tives.” This is why the falsification frontier is not a partition of true and false assumptions, but

rather of falsified and non-falsified assumptions. We discuss this point further in appendix I.

Second, when the baseline model is falsified, it could be due to any combination of our baseline

assumptions. Importantly, this is true regardless of the shape of the falsification frontier. The

falsification frontier does not tell us why the baseline assumptions were refuted. For example,

consider figure 1. This figure does not tell us that ‘assumption 1 is probably the reason the baseline

model was refuted’. Instead, it tells us about the robustness of falsification to certain relaxations

from the baseline assumptions. It tells us that, maintaining assumption 2, we must substantially

relax assumption 1 in order to prevent falsification.

2.3 The Falsification Adaptive Set

In section 2.1, we formalized our first recommendation: Measure the extent of falsification. When

the falsification frontier is far from the origin in all directions, researchers may wish to stop there. In

other cases, researchers may want to proceed and present identified sets for non-falsified relaxations

of the baseline model.

Let ΘI(δ) denote the identified set for a parameter of interest θ ∈ Θ, given the model which

imposes the assumptions δ. When δ ∈ Df, δ is below the falsification frontier. In this case, the

identified set ΘI(δ) is empty. When δ ∈ Dnf, δ is on or above the falsification frontier. In this case,

the identified set ΘI(δ) is nonempty.

The set of δ’s on the falsification frontier are minimally non-falsified, in the sense that they

are the closest to the baseline model while still not leading to a falsified model. These δ’s, along

with the δ’s beyond the frontier, are consistent with the data. As discussed in section 2.2, the data

alone cannot tell us which of these models are true. It only tells us that δ’s below the falsification

frontier are not true. Indeed, the same remark is true when the baseline model is not falsified. Yet

in that case, it is common to present identified sets or point estimands under the baseline model.

To generalize this practice to the case where the baseline model is falsified, consider the following

definition.

Definition 3. Call ⋃
δ∈FF

ΘI(δ)

the falsification adaptive set.

The falsification adaptive set is the identified set for the parameter of interest under the assump-

tion that the true model lies somewhere on the frontier. When the baseline model is not refuted,

this set collapses to the ΘI(0L), the baseline identified set (which may be a singleton). This is what

7



researchers typically report when their baseline model is not refuted. When the baseline model

is refuted, however, the falsification adaptive set expands to account for uncertainty about which

assumption along the frontier is true. Hence this set generalizes the standard baseline estimand to

account for possible falsification. We recommend that researchers report this set.

In some cases, researchers may have a prior belief over the relative role of the various assumptions

in falsification. In this case, researchers may also want to present ΘI(δ) for a specific δ on the

falsification frontier. For example, consider figure 1. Two natural relaxations of the baseline model

are the horizontal intercept (δ∗1 , 0) and the vertical intercept (0, δ∗2). These correspond to fully

maintaining one assumption while sufficiently relaxing the other. The corresponding identified sets

are ΘI(δ
∗
1 , 0) and ΘI(0, δ

∗
2). Presenting sets like these for specific points on the frontier is our third

recommendation.

Cautious Optimism

Although the points on the falsification frontier are consistent with the data, this does not mean one

of them is true. For this reason, the falsification adaptive set—although it represents uncertainty

due to the nature of the misspecification—is nonetheless an optimistic set. It assumes that, although

the model is misspecified, it is only minimally misspecified. Since this may not be true, our fourth

and final recommendation is that researchers present identified sets ΘI(δ) for points δ beyond

the falsification frontier, as a sensitivity analysis. We discuss this recommendation in the next

subsection.

The widespread practice in existing empirical work is to first present results from a usually

optimistic baseline model—which typically point identifies a parameter of interest—and then to

present results from various sensitivity analyses. Our recommendations directly generalize this

standard practice to falsified baseline models: First present the falsification adaptive set and then

present identified sets for further relaxations.

2.4 Breakdown Frontier Analysis

Our fourth recommendation is to present identified sets ΘI(δ) for δ’s beyond the falsification fron-

tier. To guide this analysis, researchers can use the breakdown frontier concept which we previously

studied in Masten and Poirier (2019). In this subsection we briefly summarize this concept and

relate it to the falsification frontier. Consider the model M(δ) from section 2.1. As above, let

ΘI(δ) ⊆ Θ be the identified set for some parameter of interest θ ∈ Θ. Let C ⊆ Θ. Suppose we are

interested in the conclusion that θ ∈ C. For example, if our parameter is the average treatment

effect, then we may be interested in the conclusion that the average treatment effect is positive,

ATE ≥ 0. Then C = [0,∞). Define the robust region

RR = {δ ∈ [0, 1]L : ΘI(δ) ⊆ C,ΘI(δ) 6= ∅}.

8
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Relaxation of assumption 1

Inconclusive Evidence

Model is False

Conclusion 

Holds and Model

not Falsified

Figure 2: An example of using the falsification frontier jointly with a breakdown frontier for a
specific conclusion of interest. Here there is a band of assumptions which are sufficiently weak that
the model is not falsified, but are sufficiently strong that the conclusion of interest holds. This
band is the robust region.

The conclusion of interest holds for all assumptions in this set. That is, for all assumptions such

that all elements of the identified set are also elements of C. We also restrict the set to assumptions

such that the model is not refuted. The breakdown frontier is the boundary between the robust

region and its complement:

BF = RR ∩ RRc.

In the two dimensional case, we can write the breakdown frontier as the function

BF(δ1) = sup{δ2 ∈ [0, 1] : ΘI(δ1, δ2) ⊆ C,ΘI(δ1, δ2) 6= ∅}.

It is possible for the robust region to be empty. This happens when the baseline model is

falsified, but as soon as the model is not falsified, the identified set ΘI(δ) contains values of θ

outside of C. When the robust region is not empty, so that the breakdown frontier is not empty,

the breakdown frontier will always be weakly larger than the falsification frontier. This follows

since the identified set is empty for all points below the falsification frontier.

Figure 2 depicts an analysis combining both the falsification frontier and the breakdown frontier.

Here the robust region is a band between the falsification frontier and the breakdown frontier. It is

the region of assumptions which are weak enough that the model is not falsified, but strong enough

that our conclusion of interest holds.

A key difference between the breakdown and falsification frontiers is that the falsification frontier

does not depend on (a) the parameter of interest or (b) the conclusion of interest. For a given class of

relaxations from the baseline assumptions, there is only one falsification frontier. In contrast, there

are many different breakdown frontiers, depending on the parameter and conclusion of interest.

This difference is important since there have been extensive debates in the literature regarding
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what parameters researchers should study (for example, see Imbens 2010 and Heckman and Urzua

2010). Thus one’s opinions on this issue do not affect the problem of measuring the extent of

falsification.

2.5 Estimation and Inference

In this paper we focus on population level analysis. In this section we briefly discuss how to imple-

ment our recommendations with finite sample data. First, to measure the extent of falsification, one

can estimate and do inference on the falsification frontier. The basic idea is similar to our analysis

of inference on breakdown frontiers (Masten and Poirier 2019). For the breakdown frontier, we

recommended constructing lower confidence bands. For the falsification frontier, we recommend

constructing upper confidence bands, since this provides an outer confidence set for the area under

the falsification frontier—the set of models which are refuted. When doing a combined analysis, we

recommend constructing an inner confidence set for the robust region; that is, for the area above

the falsification frontier but below the breakdown frontier. This will require constructing two-sided

confidence bands, whereas one only needs to construct one-sided confidence bands when considering

each frontier separately.

When there are closed form expressions for the identified sets ΘI(δ)—like in our analysis below—

the falsification adaptive set can be estimated by sample analog:

F̂AS =
⋃
δ∈F̂F

Θ̂I(δ).

In the linear instrumental variable model of section 3, we provide a particularly simple character-

ization of the falsification adaptive set which does not require pre-estimation of the falsification

frontier. In that case, estimation and inference is straightforward. Recall that, by definition, the

falsification adaptive set simplifies to the standard estimand when the baseline model is not re-

futed. Thus there is no need to do a specification pre-test—researchers can just always present the

estimated falsification adaptive set with accompanying confidence intervals. However, note that

in finite samples the estimated falsification adaptive set will generally always be an interval. This

situation is similar to Haile and Tamer (2003, page 10), who note that their population bounds

collapse to a single point in a special case, although in finite samples their estimator still generally

gives an interval.

3 The Classical Linear Model with Multiple Instruments

In this section and section 5, we illustrate our recommendations using two variations of instrumental

variable models. While many kinds of refutable assumptions have been considered in the literature,

we focus on the classical case where variation from two or more instruments is used to falsify a

model. In this section we consider the classical linear model with homogeneous treatment effects

and continuous outcomes. In section 5 we consider a model with heterogeneous treatment effects.

10



3.1 Model and Identification

We thus begin with the classical constant coefficient model

Y (x, z) = x′β + z′γ + U (1)

where Y (x, z) are potential outcomes defined for values (x, z) ∈ RK+L and U is an unobserved

random variable. β is an unknown constant K-vector. γ is an unknown constant L-vector. Let

X be an observed K-vector of endogenous variables. Throughout we suppose X does not contain

a constant. Hence U absorbs any nonzero constant intercept. Let Z be an observed L-vector of

potentially invalid instruments. For simplicity we have omitted any additional known exogenous

covariates W in equation (1). In appendix F we show how to easily include them via partialling

out.

We observe the outcome Y = Y (X,Z). Thus our equation for observed outcomes is

Y = X ′β + Z ′γ + U.

Equation (1) imposes homogeneous treatment effects since the difference between two potential

outcomes

Y (x1, z)− Y (x0, z) = (x1 − x0)′β

is constant across the population. We consider a model with heterogeneous treatment effects in

section 5.

Remark 1. In this section we present the linear model with homogeneous treatment effects. It

is well known, however, that linear model analysis can be generalized to allow for heterogeneous

treatment effects under some assumptions. For example, suppose β is a random coefficient. Heck-

man and Vytlacil (1998) and Wooldridge (1997, 2003, 2008) showed that if the causal effect of

Z on X is homogeneous, then the 2SLS estimand equals E(β). Alternatively, we can allow for

heterogeneous instrument effects if we assume these are independent of β; for example, see the

discussion following equation (11) in Card (2001, page 1142). Under these kinds of assumptions,

all of our results in this section extend to allow for heterogeneous treatment effects. Our analysis of

heterogeneous treatment effects in section 5 applies when we are not willing to impose assumptions

that restrict the nature of the heterogeneous instrument effects. Conley, Hansen, and Rossi (2012,

page 261) make a similar observation.

In addition to this homogeneous treatment effect assumption, we maintain the following rele-

vance and sufficient variation assumptions throughout this section.

Assumption A1 (Relevance). The L×K matrix cov(Z,X) has rank K.

Assumption A2 (Sufficient variation). The L× L matrix var(Z) is invertible.

A1 implies the order condition L ≥ K. When there is just one endogenous variable (K = 1),

A1 only requires cov(X,Z`) 6= 0 for at least one instrument. Other instruments may have zero
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correlation. In this case, these other instruments provide additional falsifying power. We discuss

this further below. A2 simply requires that the instruments are not degenerate and are not affine

combinations of each other.

The classical model imposes two more assumptions:

Assumption A3 (Exogeneity). cov(Z`, U) = 0 for all ` ∈ {1, . . . , L}.
Assumption A4 (Exclusion). γ` = 0 for all ` ∈ {1, . . . , L}.

A1–A4 imply that the coefficient vector β is point identified and equals the two-stage least

squares (2SLS) estimand. Furthermore, these assumptions imply well-known overidentifying con-

ditions. The following proposition gives these conditions when there is just a single endogenous

variable.

Proposition 1. Consider model (1). Suppose A1–A4 hold. Suppose K = 1. Suppose the joint

distribution of (Y,X,Z) is known. Then the model is not refuted if and only if

cov(Y, Zm) cov(X,Z`) = cov(Y,Z`) cov(X,Zm) (2)

for all m and ` in {1, . . . , L}.
When all instruments are relevant, so that cov(X,Z`) 6= 0 for all ` ∈ {1, . . . , L}, equation (2)

can be written as
cov(Y,Zm)

cov(X,Zm)
=

cov(Y,Z`)

cov(X,Z`)
.

That is, the linear IV estimand must be the same for all instruments Z`. This result is the basis for

the classical test of overidentifying restrictions (Anderson and Rubin 1949, Sargan 1958, Hansen

1982). Suppose the distribution of (Y,X,Z) is such that the model is refuted. This happens when

at least one of our model assumptions fails: (a) homogeneous treatment effects, (b) linearity in X,

(c) instrument exogeneity, or (d) instrument exclusion.

In this section we maintain the homogeneous treatment effects assumption and focus on instru-

ment exclusion or exogeneity as an explanation for refutation. We consider heterogeneous treatment

effects in section 5. We also maintain linearity of potential outcomes in X. In principle our analysis

can be extended to allow for relaxations of the linearity assumption, but we leave this to future

work. Note that linearity holds automatically when X is binary.

We thus focus on failure of (c) instrument exogeneity or (d) instrument exclusion as reasons

for refuting the baseline model. These are two different substantive assumptions. Mathematically,

however, we can use the same analysis to relax both assumptions. For simplicity, here we formally

maintain the exogeneity assumption A3 and focus on failure of the exclusion assumption A4. In

appendix G we explain how to use our results to relax either or both assumptions.

We relax exclusion as follows.

Assumption A4′ (Partial exclusion). There are known constants δ` ≥ 0 such that

|γ`| ≤ δ`

12



for all ` ∈ {1, . . . , L}.

This kind of relaxation of the baseline instrumental variable assumptions was previously con-

sidered by Small (2007) and Conley et al. (2012); also see Angrist and Krueger (1994) and Bound,

Jaeger, and Baker (1995). For continuous instruments one may want to standardize the instruments

to have variance one, to make the magnitudes of the components in δ = (δ1, . . . , δL) comparable.

We discuss interpretation of δ` further in section 3.6 of Masten and Poirier (2018b); our empirical

analysis in section 4 does not require us to select or calibrate this parameter.

Under partial exclusion, the instruments may have a direct causal effect on outcomes. For

sufficiently small values of the components in δ, the model may nonetheless continue to be refuted.

For sufficiently large values, however, the model will not be refuted. To characterize the falsification

frontier, we begin by deriving the identified set for β as a function of δ.

Theorem 1. Suppose A1–A3 and A4′ hold. Suppose the joint distribution of (Y,X,Z) is known.

Then

B(δ) =
{
b ∈ RK : −δ ≤ var(Z)−1(cov(Z, Y )− cov(Z,X)b) ≤ δ

}
(3)

is the identified set for β. Here the inequalities are component-wise. The model is refuted if and

only if this set is empty.

The identified set B(δ) depends on the data via two terms:

ψ
(L×1)

≡ var(Z)−1 cov(Z, Y ) and Π
(L×K)

≡ var(Z)−1 cov(Z,X).

ψ is the reduced form regression of Y on Z. Π is the first stage of X on Z. If we demeaned (Y,X,Z)

then we would have ψ = E(ZZ ′)−1E(ZY ) and Π = E(ZZ ′)−1E(ZX ′). Theorem 1 shows that the

identified set is the intersection of L pairs of parallel half-spaces in RK . When δ = 0, this identified

set becomes the intersection of L hyperplanes in RK . In this case, β is point identified when

cov(Z, Y ) = cov(Z,X)b

for a unique b ∈ RK . If cov(Z, Y ) 6= cov(Z,X)b for all b ∈ RK , then the baseline model δ = 0 is

refuted.

Increasing the components of δ leads to a weakly larger identified set. Furthermore, there always

exists a δ with large enough components so that B(δ) is nonempty. We characterize the set of such

δ below. Before that, we show that the identified set can be written as simple intersection bounds

when there is a single endogenous variable.

Corollary 1. Suppose the assumptions of theorem 1 hold. Suppose K = 1. Then

B(δ) =
L⋂
`=1

B`(δ`)
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is the identified set for β, where

B`(δ`) =



[
ψ`
π`
− δ`
|π`|

,
ψ`
π`

+
δ`
|π`|

]
if π` 6= 0

R if π` = 0 and 0 ∈ [ψ` − δ`, ψ` + δ`]

∅ if π` = 0 and 0 /∈ [ψ` − δ`, ψ` + δ`].

(4)

Here π` is the `th component of Π, which is an L-vector.

To interpret this result, first consider an instrument Z` with a zero first stage coefficient, π` = 0.

If Z` has a sufficiently large covariance with the outcome, so that ψ` ± δ` does not contain zero,

then the model is refuted. Furthermore, in this case falsification can be solely attributed to the

assumption that |γ`| ≤ δ`. This is similar to what is sometimes called the ‘zero first-stage test’ (for

example, see Slichter 2014 and the references therein). When this covariance with the outcome is

sufficiently small, however, Z` unsurprisingly has no falsifying or identifying power for β.

Next consider a relevant instrument Z`; so π` 6= 0. To interpret corollary 1 in this case, we use

the following lemma.

Lemma 1. Suppose K = 1. Let X̃` = (Z1, . . . , Z`−1, X, Z`+1, . . . , ZL). Let e` be the L× 1 vector

of zeros with a one in the `th component. Suppose π` 6= 0. Suppose cov(Z, X̃`) is invertible. Then

ψ`
π`

= e′` cov(Z, X̃`)
−1 cov(Z, Y ).

This lemma shows that ψ`/π` is the population 2SLS coefficient on X using Z` as the excluded

instrument and Z−` as controls. Thus the identified set B(δ) is the intersection of intervals around

these 2SLS coefficients using one relevant instrument at a time and controlling for the rest.

Finally, consider the baseline case where δ = 0. Corollary 1 implies that B(0) is nonempty if

and only if
ψm
πm

=
ψ`
π`

for any m, ` ∈ {1, . . . , L} with πm, π` 6= 0. Moreover, in this case B(0) is a singleton equal to this

common value. In this case—when the baseline model is not refuted—we also have

ψ`
π`

=
cov(Y,Z`)

cov(X,Z`)
(5)

for all ` ∈ {1, . . . , L}. That is, ψ`/π` equals the population 2SLS coefficient on X using Z` as an

instrument and not including Z−` as controls. This equality of single instrument 2SLS coefficients

with and without controls for the other instruments is an alternative characterization of the classic

overidentifying conditions from proposition 1.
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3.2 The Falsification Frontier

So far we have characterized the identified set for β given a fixed value of δ, the upper bound on

the violation of the exclusion restriction. We now consider the possibility that this identified set

is empty when δ = 0, so that the baseline model is falsified. Our next result characterizes the

falsification frontier, the minimal set of δ’s which lead to a non-empty identified set. Here we focus

on the single endogenous regressor case. We extend this result to multiple endogenous regressors

in section 3.6.

Proposition 2. Suppose A1–A3 hold. Suppose the joint distribution of (Y,X,Z) is known. Sup-

pose K = 1. Then the falsification frontier is the set

FF =

{
δ ∈ RL≥0 : δ` = |ψ` − bπ`|, ` = 1, . . . , L, b ∈

[
min

`=1,...,L:π` 6=0

ψ`
π`
, max
`=1,...,L:π` 6=0

ψ`
π`

]}
. (6)

In the proof we show that this set satisfies our definition 2 of the falsification frontier. Specifi-

cally: Any δ ∈ FF maps to a non-empty identified set, and strengthening any of the assumptions

for a given δ ∈ FF leads to an empty identified set.

If we knew a priori that some instruments are valid, then we could obtain the falsification

frontier for relaxing the potentially invalid instrument assumptions by simply setting δ` = 0 for the

valid instruments `.

To better understand proposition 2, consider the two instrument case. In this case, the following

corollary characterizes the falsification frontier.

Corollary 2. Suppose A1–A3 hold. Suppose the joint distribution of (Y,X,Z) is known. Suppose

K = 1 and L = 2. Suppose π1 6= 0 and π2 6= 0. Then the falsification frontier is the set

FF =

{
(δ1, δ2) ∈ R2

≥0 : δ2 =

∣∣∣∣ψ1

π1
− ψ2

π2

∣∣∣∣ |π2| −
∣∣∣∣π2

π1

∣∣∣∣ δ1

}
.

Thus, in the two instrument case, the falsification frontier is simply the line with horizontal

intercept (δ∗1 , 0) and vertical intercept (0, δ∗2), where

δ∗1 =

∣∣∣∣ψ1

π1
− ψ2

π2

∣∣∣∣ |π1| and δ∗2 =

∣∣∣∣ψ1

π1
− ψ2

π2

∣∣∣∣ |π2|.

The classical overidentifying restrictions (proposition 1) state that the baseline model is refuted if

and only if |ψ1/π1 − ψ2/π2| is nonzero. A key aspect of our analysis is that not all refuted models

are equivalent. Specifically, two dgps can have the same value of this difference but have different

falsification frontiers. Figure 3 illustrates this point. It shows three example falsification frontiers,

corresponding to three different distributions of (Y,X,Z1, Z2). All three dgps have∣∣∣∣ψ1

π1
− ψ2

π2

∣∣∣∣ = 4.
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Figure 3: Three example falsification frontiers. Middle: Instruments are equally strong. Right: Z1

is two times stronger than Z2. Left: Z1 is half as strong as Z2.

The relative strength of the two instruments differs across the dgps, however. Specifically, we set

|π1/π2| to be either 0.5, 1, or 2. That is, the middle dgp has two instruments with exactly the

same first stage coefficient. Hence there is a one-to-one trade off in the falsification frontier. If

we weaken Z1 relative to Z2, however, the falsification frontier rotates inwards as the horizontal

intercept δ∗1 gets smaller. Conversely, if we strengthen Z1 relative to Z2, the falsification frontier

rotates outwards, as the horizontal intercept δ∗1 gets larger. That is, a false baseline model is harder

to save by relaxing instrument exclusion for a strong instrument, relative to a weak one.

3.3 The Falsification Adaptive Set

Thus far we have characterized the identified set for β given any assumption δ ∈ RL≥0 as well as the

falsification frontier. Next we characterize the falsification adaptive set, which is the identified set

for β under the assumption that one of the points on the falsification frontier is true. Here we again

focus on the single endogenous regressor case. We generalize to multiple endogenous regressors in

section 3.6.

Theorem 2. Suppose A1–A3 hold. Suppose the joint distribution of (Y,X,Z) is known. Suppose

K = 1. Then ⋃
δ∈FF

B(δ) =

[
min

`=1,...,L:π` 6=0

ψ`
π`
, max
`=1,...,L:π` 6=0

ψ`
π`

]
(7)

is the falsification adaptive set.

We first sketch the proof of this result and then discuss its implications. It follows from two main

steps: First, the identified set B(δ) is a singleton for any δ ∈ FF (see lemma 2 in the appendix).

Second, each of these singleton sets corresponds to an element in the interval on the right hand

side of equation (7) (follows using proposition 2). Thus we obtain the entire interval by taking the

union over all of these singletons.
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Figure 4: These plots simultaneously show the three key objects in our analysis: The identified set
B(δ), the falsification frontier, and the falsification adaptive set. See the text for a full description.

One of our main recommendations is that researchers report the falsification adaptive set.

Theorem 2 shows that, in the classical linear model we consider here, this set has an exceptionally

simple form. Most importantly, no δ’s appear on the right hand side of equation (7). This implies

that we can obtain the falsification adaptive set without pre-computing the falsification frontier or

selecting any sensitivity parameters. Furthermore, it is very simple to compute, since it just requires

running L different 2SLS regressions. In appendix H we show that the baseline 2SLS estimand using

all instruments does not have to be inside the falsification adaptive set. In fact, the baseline 2SLS

estimand can be arbitrarily far from the FAS.

In finite samples, researchers can present sample analogs or bias-corrected versions of equation

(7), along with corresponding confidence sets (e.g., Chernozhukov, Lee, and Rosen 2013). We

further discuss finite sample practice in section 3.4.

In this model, we can also immediately see how this set adapts to falsification of the baseline

model. When the baseline model is not false, ψm/πm = ψ`/π` for all m, ` ∈ {1, . . . , L} with

nonzero πm and π`. In this case, the falsification adaptive set collapses to the singleton equal to

the common value. This is the same point estimand researchers would usually present when their

baseline model is not refuted. As the baseline model becomes more refuted, the values of ψ`/π`

become more different, and the falsification adaptive set expands. Thus the size of this set reflects

the severity of baseline falsification.

17



To show how all of the concepts we have discussed fit together, we return to the earlier two

instrument numerical illustration discussed earlier. Figure 4 extends figure 3 by adding a third

dimension: Values of β. Specifically, each column in figure 4 is a different dgp. Within a column,

the top and bottom row are just different viewing angles. For each plot, the horizontal plane shows

different values of (δ1, δ2). The solid line in that plane shows the falsification frontier, as in figure 3.

The vertical axis shows the identified set B(δ) as a function of δ. For δ values sufficiently close to

zero, this identified set is empty. But for δ’s beyond the falsification frontier, this set is nonempty.

For any point δ on the falsification frontier, this set is a singleton. But the set grows as both δ1 and

δ2 increase. Finally, the falsification adaptive set is shown as the solid line segment on the vertical

axis. It is the union over over the identified sets B(δ) as δ varies over the falsification frontier.

Since B(δ∗1 , 0) = {ψ2/π2}, B(0, δ∗2) = {ψ1/π1}, and B(δ) varies monotonically as we traverse the

falsification frontier, the falsification adaptive set is simply the interval between the points ψ1/π1

and ψ2/π2. In this illustration, these points are 1 and 5 for all three dgps and hence the falsification

adaptive set is the interval [1, 5].

With more than two instruments, we cannot draw the space of δ’s and β at the same time.

Nonetheless, theorem 2 shows that we can compute the falsification adaptive set by simply taking

the convex hull of the L different 2SLS estimands ψ`/π`.

3.4 Estimation

In section 2.5 we discussed estimation and inference in general. Here we discuss the specific case

given in theorem 2. This characterization of the falsification adaptive set requires that we first

screen for weak instruments. It is not clear how to best do this. We present a first pass approach,

but leave a detailed analysis to future work. Let

L = {` ∈ {1, . . . , L} : π` 6= 0}

be the set of indices corresponding to relevant instruments. Estimate this set by

L̂ = {` ∈ {1, . . . , L} : F` ≥ Cn}.

F` is the first stage F -statistic when considering Z` as an instrument and Z−` as controls. Cn is

a cutoff that converges to zero as the sample size grows. Specifying the cutoff to shrink ensures

that asymptotically we only discard instruments whose coefficients are exactly zero, so that L̂ is

consistent for L.

We then estimate the falsification adaptive set by

F̂AS =

[
min
`∈L̂

ψ̂`
π`
, max

`∈L̂

ψ̂`
π`

]

where ψ̂`/π` is the estimated 2SLS coefficient on X using Z` as the excluded instrument and Z−`
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as controls. We use this estimator in our empirical analysis of section 4. There we use Cn = 10 as

our default, although we sometimes consider other cutoffs, or a sequence of cutoffs.

3.5 Directional Falsification Points

Beyond presenting the falsification frontier and the falsification adaptive set, researchers may want

to also present B(δ) for specific choice of model relaxation. We consider the case where the re-

searcher specifies the direction of δ a priori and then chooses the smallest magnitude ‖δ‖ such that

B(δ) 6= ∅.
Let δ = m · d for m ∈ R and known d = (d1, . . . , dL)′ ∈ (0,∞)L. For example, when all

the instruments are continuous, one reasonable direction may be d = (
√

var(Z1), . . . ,
√

var(ZL))′.

Given this fixed direction d, our assumptions are now parameterized by a single scalar, m. The

following proposition shows that there is a unique falsification point m∗.

Proposition 3. Suppose A1–A3 hold. Suppose the joint distribution of (Y,X,Z) is known. Sup-

pose δ = m · d for known d = (d1, . . . , dL)′ ∈ (0,∞)L. Suppose π` 6= 0 for all ` ∈ {1, . . . , L}.
Then

m∗ = max
`,`′∈{1,...,L}

ψ`
π`
− ψ`′

π`′
d`
|π`|

+
d`′

|π`′ |

(8)

is the falsification point. That is, B(m∗ · d) 6= ∅ and B(m · d) = ∅ for all m < m∗.

The following corollary characterizes the identified set at the point on the falsification frontier

in the direction d.

Corollary 3. Suppose the assumptions of proposition 3 hold. Define m∗ by equation (8) and let

(`∗, `′∗) be the argmax in that equation. Let δ∗ = m∗ · d. Then B(δ∗) is the singleton equal to

B(δ∗) =

{
ψ`∗

π`∗
− m∗ · d`∗
|π`∗ |

}
=

{
ψ`′∗

π`′∗
+
m∗ · d`′∗
|π`′∗ |

}
.

3.6 The FF and FAS for K Endogenous Variables

Theorem 1 characterizes the identified set for the vector of coefficients on the endogenous variables,

as a function of the exclusion restriction relaxation. Our subsequent characterizations of the fal-

sification frontier and the falsification adaptive set, however, restricted attention to the case with

just one endogenous variable—see proposition 2 and theorem 2. In this section, we extend these

two results to the general case with K ≥ 1 endogenous variables. These results can be used in at

least three different cases: (1) If there are multiple ‘basic’ endogenous variables. For example, in

our empirical application in section 4.4, one could allow both price and advertising spending to be

endogenous. (2) If the outcome equation has interactions of one basic endogenous variable with
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covariates. (3) If the outcome equation is nonlinear in one basic endogenous variable. For example,

it could be a quadratic function.

Recall our notation for the reduced form and first stage regressions:

ψ
(L×1)

≡ var(Z)−1 cov(Z, Y ) and Π
(L×K)

≡ var(Z)−1 cov(Z,X).

L denotes the number of instruments while K denotes the number of endogenous variables. Let π′`
denote the `th row of the matrix Π. When K = 1, this is a scalar and π′` = π`.

When there is a single endogenous variable, theorem 2 shows that the falsification adaptive set

is the interval [
min

`=1,...,L:π` 6=0

ψ`
π`
, max
`=1,...,L:π` 6=0

ψ`
π`

]
.

This interval can be interpreted as follows: Pick any set of K instruments. Impose the exclusion

restriction for those instruments. For the remaining instruments, completely drop the exclusion

restriction. This yields a non-refutable model that is weaker than the original model which imposed

exclusion for all of the instruments. But this weaker model is still strong enough that β is point

identified (ignoring the possibility of irrelevant instruments, which we discuss below). Moreover, in

this weaker model β equals the population 2SLS coefficient on X using the chosen K instruments as

the excluded instruments and the remaining instruments as controls. Collect all of these different

2SLS estimands, as we vary which set of K instruments we pick. Then take their convex hull.

When K = 1, this convex hull is precisely the interval above: We pick a single relevant instru-

ment to exclude, and include the others as controls. This gives us a single just-identified 2SLS point

estimand. By cycling through which instrument we exclude, we obtain a variety of different point

estimands. Since K = 1, these estimands are scalars. So their convex hull is simply the interval

between the smallest and largest values.

When K > 1 and L = K + 1, the falsification adaptive set is precisely the convex hull of

just-identified 2SLS estimands that we’ve just described. For L > K + 1, it is somewhat more

complicated. We discuss these general results next.

In the K = 1 case we allowed for irrelevant instruments. For K > 1 we focus on the case

where all instruments are relevant for simplicity. Specifically, we impose assumption A1′ below. To

state this assumption, we consider submatrices of Π. Let L ⊆ {1, . . . , L}. Let ΠL be the |L| ×K
submatrix of Π formed by removing all rows ` /∈ L.

Assumption A1′ (Relevance). The following hold:

1. For all L ⊆ {1, . . . , L} with |L| = K, ΠL has full rank.

2. For all L ⊆ {1, . . . , L} such that |L| = K + 1, {π` : ` ∈ L} are affinely independent. That is,(
1 1 . . . 1

π`1 π`2 . . . π`K+1

)
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has full rank, where L = {`1, . . . , `K+1}.

A1.1′ is equivalent to the following:

• Pick any K components of the instrument vector Z = (Z1, . . . , ZL). Let ZL denote this

subvector of instruments. Let Z−L denote the remaining instruments. Then the population

2SLS coefficient on X using ZL as excluded instruments and Z−L as controls is well-defined

and unique. Moreover, it equals

β2sls
L = Π−1

L ψL

where ψL equals the subvector of ψ after removing all components ` /∈ L.

For example, suppose L = K+1. Then dropping the exclusion restriction for any single instrument

returns us to a non-refutable model. Here we simply assume that β is still point identified regardless

of which exclusion restriction we choose to drop. Finally, note that A1.1′ implies our earlier

relevance assumption A1. A1.2′ means that there does not exist a hyperplane that passes through

all of the π` vectors. It is equivalent to linear independence of (πL − π1, . . . , π2 − π1).

Let

FAS∗ = conv
({
β2sls
L : L ⊆ {1, . . . , L}, |L| = K

})
. (9)

denote the polytope defined by the convex hull of the set of just-identified 2SLS estimands.

Proposition 4. Suppose A1′, A2, and A3 hold. Suppose the joint distribution of (Y,X,Z) is

known. Suppose L = K + 1. Then the falsification frontier is the set

FF = {δ ∈ RL≥0 : δ` = |ψ` − π′`b|, ` = 1, . . . , L, b ∈ FAS∗}. (10)

Theorem 3. Suppose A1′, A2, and A3 hold. Suppose the joint distribution of (Y,X,Z) is known.

Suppose L = K + 1. Then FAS∗ is the falsification adaptive set.

To illustrate theorem 3, consider the two endogenous variables (K = 2) and three instruments

(L = 3) case. Since there are two endogenous variables, there are two coefficients we’re interested in.

Consider the left plot in figure 5. This plot shows possible values (b1, b2) for these two coefficients.

The exclusion restriction from instrument ` imposes a single linear constraint ψ` = π′`b. These

constraints are simply lines in R2. Since there are three instruments, there are three constraints.

When these three lines do not intersect at a common point, the baseline model is refuted. This

case is shown in the figure. Suppose we drop the exclusion restriction for instrument 1. Then two

linear constraints remain, β is point identified, and it equals the intersection point β2sls
{2,3} in the

lower right of the figure. A similar interpretation applies to the other two intersection points β2sls
{1,3}

and β2sls
{1,2}. The falsification adaptive set is then simply the convex hull of these three points in R2,

which is shown as the shaded triangular region.

Next consider the case with K > 1 and L > K + 1. We handle this case by reducing it to the

case we just studied where L = K + 1. Let

PL = conv
({
β2sls
L\{`} : ` ∈ L

})
.
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Figure 5: Example with K = 2 endogenous variables. Left: L = 3 instruments. Right: L = 4
instruments. In both plots, the falsification adaptive set for (β1, β2) is the shaded region. In the
right plot, the falsification adaptive set for β1 is shown as the projection onto the first component.
See text for additional explanation.

In the following proposition, we consider subsets of indices L ⊆ {1, . . . , L} such that |L| = K + 1.

Thus |L\{`}| = K. So β2sls
L\{`} is a just-identified 2SLS estimand. We form K+1 different estimands

by cycling through which exclusion restriction to drop. We then take their convex hull. This set

is similar to the set defined in equation (9). The key difference is that here we only look at the

estimands which use all but one index from a reference set L.

Proposition 5. Suppose A1′, A2, and A3 hold. Suppose the joint distribution of (Y,X,Z) is

known. Then the falsification frontier is the set

FF =
{
δ ∈ RL≥0 : δ` = |ψ` − π′`b|, b ∈ PL, L ⊆ {1, . . . , L}, |L| = K + 1

}
.

Theorem 4. Suppose A1′, A2, and A3 hold. Suppose the joint distribution of (Y,X,Z) is known.

Let

P =
⋃

L⊆{1,...,L}:|L|=K+1

PL.

Then P is the falsification adaptive set.

We use Farkas’ lemma and Caratheodory’s theorem from convex analysis to prove these results.

As in the previous cases, P can be computed by just running a variety of 2SLS regressions. Next

note that, although each PL is convex, their union generally is not. Nonetheless, we are often only

interested in linear functionals of the coefficient vector β. For example, we often care about just

one component of β. The following corollary shows that the falsification adaptive set for a linear

functional of β again has a simple form. For this result, recall the definition of FAS∗ from equation

(9).
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Corollary 4. Suppose A1′, A2, and A3 hold. Suppose the joint distribution of (Y,X,Z) is known.

Then FAS∗ contains the falsification adaptive set for β. Moreover, for any α ∈ RK the falsification

adaptive set for α′β is [
min

L⊆{1,...,L},|L|=K
α′β2sls
L , max

L⊆{1,...,L},|L|=K
α′β2sls
L

]
.

This result shows that we can simply cycle through all possible just identified models, compute

the corresponding 2SLS estimand, take the convex hull, and project it onto one component to get

the FAS for that component.

The right plot in figure 5 illustrates the L > K + 1 case. Here we have K = 2 and L = 4.

There are 6 different just-identified 2SLS estimands. The falsification adaptive set is no longer a

convex set. Nonetheless, the projection of the convex hull of all just-identified 2SLS estimands

onto the first component still gives the falsification adaptive set for β1. Moreover, this projection

can be computed by simply taking the largest and smallest estimated values of β1, among the

just-identified 2SLS estimands. In this sense, corollary 4 directly generalizes theorem 2 to the case

K > 1.

We conclude this subsection by briefly discussing estimation and inference. Corollary 4 shows

that the FAS for a linear functional of β has an intersection bounds form. As in the K = 1 case,

researchers can present sample analog estimators or bias-corrected versions, along with correspond-

ing confidence sets (see Chernozhukov et al. 2013). Our discussion of weak instruments in section

3.4 applies here as well. More generally, researchers may want to do estimation and inference on

the FAS for the entire vector β. Theorem 4 shows that this set is defined by a finite set of uncondi-

tional linear moment inequalities. Note that here we have omitted covariates. Depending on how

covariates enter the model, the FAS may continue to depend only on unconditional linear moment

inequalities, or it may also depend on conditional linear moment inequalities. See appendix F for

details. While there is a large literature on inference in general moment inequality models—see

Canay and Shaikh (2017) and Molinari (2019) for surveys—there is now a growing literature on

the linear case. This includes Hsieh, Shi, and Shum (2017), Andrews, Roth, and Pakes (2019), Cho

and Russell (2019), and Gafarov (2019). We conjecture that some of these results can be applied

to do inference on the FAS for β, the FAS for subvectors of β with two or more components, and

the FAS for nonlinear functionals of β. We leave a full analysis for future work, however.

4 Empirical Applications

In this section we apply our results from section 3 to four different empirical studies: Duranton,

Morrow, and Turner (2014, The Review of Economic Studies), Alesina, Giuliano, and Nunn (2013,

The Quarterly Journal of Economics), Acemoglu, Johnson, and Robinson (2001, The American

Economic Review), and Nevo (2001, Econometrica). Each paper reports 2SLS estimates using

multiple instrumental variables and each paper discusses concerns about instrument validity. In
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particular, all four papers run overidentification tests, which sometimes fail. Even when they do

not fail, the authors sometimes express a concern that this could simply be due to low sample

size. To address these concerns, we estimate falsification adaptive sets and compare them with the

results reported in the original papers. We argue that the FAS is an informative complement to

traditional overidentification test p-values: Rather than focusing on the null hypothesis that the

instruments are consistent with each other, the FAS summarizes the range of estimates obtained

from alternative models which which are not refuted by the data.

4.1 Roads and Trade: Duranton, Morrow, and Turner (2014)

Duranton et al. (2014) study the relationship between roads and trade. Specifically, they consider

a dataset of 66 regions (‘cities’) in the United States. Their treatment variable is the log number

of kilometers of interstate highways within a city, in 2007. This variable directly affects the cost of

leaving a city, and therefore the cost of exporting from a city: It is easier to export from a city with

many kilometers of interstate highways passing through it. Their outcome variable is a measure of

how much that city exports. They consider two different ways of measuring exports: Weight (in

tons) and value (in dollars). We focus on the weight measure for brevity. We discuss the value

measure in appendix J. They begin by estimating a gravity equation relating the weight of a city’s

exports to other cities with the highway distance between those cities, both measured in 2007. This

equation includes a fixed effect for the exporting city. The estimate of this fixed effect is their main

outcome variable. They call this variable the “propensity to export weight.” Thus their main goal

is to estimate the causal effect of within city highways on the propensity to export weight.

We cannot learn this causal effect by simply regressing the propensity to export weight on within

city highways since there is a classic simultaneity problem. We expect that building highways within

the city will boost exports. But high export cities may also build more highways to facilitate their

existing exports. The authors solve this problem by instrumenting for the number of kilometers of

within city highways. They consider three different instruments:

1. Railroads: The log number of kilometers of railroads in the city, in 1898.

2. Exploration: A measure of the quantity of historical exploration routes that passed through

the city. Specifically, they digitized five maps of exploration routes between 1528 and 1850.

For each map, they counted the number of 1 × 1 km pixels crossed by an exploration route

in the city, summed over all five maps, and took logs.

3. Plan: The log number of kilometers of highway in the city, according to a planned highway

construction map approved by the federal government in 1947. This map was written following

the 1944 Federal Aid Highway Act. Baum-Snow (2007) had previously used this instrument,

and provides a detailed history.

We first summarize their arguments for validity of these instruments. We then review their analysis

and present our new results.
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Arguments for Instrument Validity

Instrument relevance can be directly assessed from the first stage results in the data. We discuss

this later. Still, there are a priori reasons to believe the instruments will be correlated with treat-

ment. Building railroad tracks requires leveling ground. So does building roads. Thus old unused

railroad tracks can be easily converted to highways. Exploration routes were easy to travel on foot,

horseback, or wagon. Such routes are also likely to be good for cars. Finally, most of the highways

on the 1947 plan were ultimately built, although additional highways not on the plan were built as

well.

Next consider instrument exogeneity and exclusion. Exogeneity concerns the presence of omitted

variables that affect the instrument and the outcome, or of simultaneity between the instrument

and the outcome. Exclusion concerns the direct causal effect of the instrument on outcomes. We

consider each instrument in turn:

1. Railroads. Consider exogeneity. First they argue that simultaneity is not a concern, as

railroads were “constructed by private companies expecting to make a profit from railroad

operations in a not too distant future,” rather than over 100 years later. Moreover, in 1898

the U.S. was primarily agricultural, and railroads were built “to transport grain, livestock

and lumber as well as passengers over long distances”. This suggests that omitted variables

may not be a concern, since modern manufactured goods trade in 2007 is quite different

from agricultural and commodities trade in 1898. There are, however, three specific omitted

variables they are worried about:

(a) City population in 1898 affects the present of railroads in 1898. It also affects 2007

population, which affects trade in 2007. To address this, they control for population in

1920, the closest data they have to 1898.

(b) Certain geographical features may make some cities more attractive for both railroad

construction in 1898, as well as for trade in 2007. Thus they control for census region

fixed effects, slope, and distance to the nearest body of water.

(c) Time-invariant city productivity may affect 1898 railroads and trade in 2007. They argue

that this can be controlled for by including population in 1950 and 2000 as controls.

Next consider exclusion. Here they are worried about two direct paths from 1898 railroads

to trade in 2007:

(a) Railroads may cause a city to specialize in manufacturing, which may then persist

through the present. They address this by controlling for the log share of manufac-

turing employment in 1956 and in 2003. They also control for the weight of a city’s

exports in 1956.

(b) Railroads may affect the socioeconomic characteristics of cities, which then affects pat-

terns of trade in 2007. They address this by controlling for log income per capita and

log share of the population with at least a college degree.
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2. Exploration. Consider exogeneity. First they argue that simultaneity is not a concern, as

exploration routes were forged for a variety of reasons, including the search for the fountain

of youth, expanding U.S. territory to the Pacific Ocean, and finding emigration routes to

Oregon. Moreover, this also suggests that omitted variables may not be a concern, since

the variables affecting choice of exploration route are related to these motives like the search

for the fountain of youth, rather than modern manufacturing. That said, there is one set of

omitted variables they are concerned about: Geographical features. These could affect both

exploration routes and trade patterns in 2007. They address this concern via the same set

of geographic controls mentioned above in our discussion of the railroad instrument. Finally,

they do not discuss any specific concerns regarding the exclusion restriction.

3. Plan. Consider exogeneity. As with the other two instruments, they first argue that simul-

taneity is not a concern: The plan was explicitly drawn to “connect population centers [in

1947], not to anticipate future population levels and trade patterns.” However, because pop-

ulation is persistent, this could be an omitted variable. Hence they control for population in

1950 and 2007 as before. As with the exploration instrument, they do not discuss any specific

concerns regarding the exclusion restriction.

Overall, the authors raise concerns about validity of all three instruments. Although they address

these concerns with various controls, these controls may still not perfectly fix failures of exogeneity,

exclusion, or both. Hence the authors lean on overidentification, stating that

“Using different instruments, for which threats to validity differ, allows for informative

over-identification tests.” (page 700)

With this motivation, we next present the results.

Results

First consider table 1. In this and all other tables, the non-highlighted parts reproduce results

from the original paper. The highlighted parts are new computations which we have added. Panel

A reproduces columns 1–4 of table 5 in Duranton et al. (2014). These are their main results. In

particular, they are interested in the coefficient on log highway km, the log number of highway

kilometers within the city. This coefficient represents their estimate of the causal effect of roads

on trade. Here it is estimated by 2SLS, using railroads, exploration, and plan as instruments.

As mentioned above, we are concerned about possible invalidity of the instruments. Thus they

implement the standard test of overidentifying restrictions. At conventional sizes, it easily passes

in the longest specification, fails in the second specification, and marginally passes in the first

specification. Also note that these specifications do not include all of the controls discussed above;

the authors include those in separate analyses, which we discuss later (our table 3).

We add the falsification adaptive set to these baseline results. This is the last row of panel A.

There are two things to notice: First, except for the last specification, none of the 2SLS estimates
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Table 1: Baseline 2SLS results for Duranton et al. (2014): The effect of highways on export
weight. Non-highlighted parts reproduce results from their paper. Highlighted parts are new.
Panel A reproduces columns 1–4 of their table 5. It also shows the estimated falsification adaptive
set. Panel B uses only two of their instruments, controlling for the other. See text for discussion.

Dependent variable: Export weight

(1) (2) (3) (4)

Panel A. Plan, exploration, and railroads used as instruments

log highway km 1.13*** 0.57*** 0.47*** 0.39***
(0.14) (0.16) (0.14) (0.12)

log employment 0.52*** 0.69* 0.47
(0.11) (0.39) (0.33)

Market access (export) -0.45*** -0.65*** -0.63***
(0.14) (0.14) (0.11)

log 1920 population -0.38 -0.29
(0.25) (0.23)

log 1950 population 1.00** 0.65*
(0.39) (0.38)

log 2000 population -0.74 -0.20
(0.48) (0.45)

log % manuf. emp. 0.64***
(0.12)

First-stage F stat. 97.5 90.3 80 84.8

Overid. p-value 0.10 0.043 0.15 0.31

FAS [0.49, 0.86] [-0.32, 0.28] [-0.26, 0.31] [0.18, 0.42]

Panel B. Plan and exploration used as instruments, controlling for railroads

log highway km 0.79*** 0.17 0.21 0.23
(0.24) (0.20) (0.15) (0.14)

log 1898 railroad km 0.33** 0.33*** 0.25** 0.16
(0.15) (0.12) (0.12) (0.10)

First-stage F stat. 61.1 65.4 77.8 82.2

Overid. p-value 0.64 0.51 0.48 0.72

Notes: 66 observations per column. All specifications include a constant. Het-
eroskedasticity robust standard errors in parentheses. ***, **, *: statistically
significant at 1%, 5%, 10%.

are within the FAS. We knew this was possible, given our theoretical results in appendix H (which

relate the 2SLS estimand to the FAS). Second, the FAS magnitudes are all generally smaller than

the 2SLS point estimates.

To better understand how we computed the FAS, and how to interpret it, next consider table 2.

Columns 1–3 include the same baseline controls as column 3 in table 1 while columns 4–6 include

the same baseline controls as column 4 in table 1. The only difference is that we no longer use

all three variables (plan, railroad, exploration) as instruments. Instead, in panel A, we use only

one of these variables as an instrument and we ignore the other two variables. Panel A reproduces

columns 4–6 from table 6 in Duranton et al. (2014). The authors used these results as their main

robustness check. They argue that the three estimates 0.38, 0.64, and 0.34 from columns 4–6, panel

A, table 2 are consistent with their baseline estimates of 0.47 and 0.39 from columns 3 and 4, panel
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Table 2: The effect of controlling for unused instruments. Non-highlighted parts reproduce results
from their paper. Highlighted parts are new. All columns have employment, market access, and
past populations as controls. Columns 4-6 also have manufacturing share of employment as controls.
Compare to table 6 of Duranton et al. (2014).

(1) (2) (3) (4) (5) (6)
Plan Railroad Exploration Plan Railroad Exploration

Panel A. Without controlling for other instruments

log highway km 0.49*** 0.83*** 0.12 0.38*** 0.64*** 0.34*
(0.15) (0.25) (0.31) (0.13) (0.22) (0.19)

log % manuf. emp. 0.64*** 0.60*** 0.65***
(0.12) (0.13) (0.13)

First stage F stat. 141 45.2 14.8 130 40.8 23.8

Panel B. Controlling for other instruments

log highway km 0.31 4.09 -0.26 0.18 3.65 0.42
(0.22) (4.09) (0.71) (0.21) (4.16) (0.52)

log % manuf. emp. 0.63*** 0.36 0.61***
(0.12) (0.38) (0.12)

log 1898 railroad km 0.21* 0.24** 0.18 0.16
(0.12) (0.11) (0.11) (0.11)

log 1528-1850 exploration -0.053 -0.40 0.025 -0.32
(0.077) (0.36) (0.065) (0.40)

log 1947 highway km -2.09 0.32 -1.90 -0.13
(2.50) (0.46) (2.48) (0.36)

First stage F stat. 59.6 1.54 29.1 54.8 1.27 27

FAS for this specification [-0.26, 0.31] [0.18, 0.42]

Notes: 66 observations per column. All specifications include a constant. Heteroskedasticity robust
standard errors in parentheses. ***, **, *: statistically significant at 1%, 5%, 10%.

A, table 1.

However, as we have discussed, omitting an invalid instrument can lead to omitted variable

bias. In this application we are concerned that some of the instruments may be invalid. Thus the

alternative models of interest are those where one of the instruments is valid but the others are not.

When computing results in these alternative models, the invalid instruments should be included

as controls. Panel B shows these results. Here we use one instrument while controlling for the

other two. For example, in column 1 we use plan as an instrument and control for railroad and

exploration.

For brevity, here we only describe the results in columns 4–6. These results use the full baseline

specification. Consider column 5, panel B. This result uses railroad as an instrument, controlling for

plan and highway. Unlike the uncontrolled result from panel A, railroad is a very weak instrument.

Hence we ignore the result using railroad alone, as discussed in section 3.4. Next consider column

4. Here we use plan as the instrument, controlling for the other two. Despite these controls, plan

is still a strong instrument. The estimated effect 0.18 is roughly half as large as the estimate from

panel A, 0.38. It is also no longer statistically significant at any conventional level. Next consider
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column 6. Here we use exploration as the instrument, controlling for the other two. Exploration

continues to be a strong instrument with these controls. The estimated effect 0.42 in panel B is

similar to the effect from panel A, 0.34. It is no longer statistically significant, however.

Putting these coefficient estimates together gives us the estimated FAS, [0.18, 0.42]. The end-

points of this set correspond to point estimates from alternative models which maintain validity of

only one instrument at a time. The interior of this set corresponds to alternative models which re-

lax validity of all instruments at once, but just enough to avoid falsification. Thus the FAS reflects

model uncertainty: Relying on different instruments to different degrees yields different results.

This range of results is given by the FAS.

In panel B of table 2 we found that railroad is a weak instrument when controlling for the

other two, and hence it yields the largest point estimates. Given this finding, one may also wonder

how removing railroads as an instrument affects the baseline analysis. This is shown in panel

B of table 1. All of the coefficients on log highway km are smaller, to the point that they are

no longer statistically significant for all but the shortest specification. Moreover, the standard

overidentification tests are now all easily passed. (Note that these tests are only comparing results

using plan and exploration as instruments.) However, the coefficients on railroads are statistically

significant for all but the fourth column. This suggests that the full baseline model using all three

instruments could be rejected, and also explains the source of the relatively small overidentification

test p-values in panel A.

Thus far we have focused on the baseline results, which do not include all of the possible control

variables discussed earlier. Table 3 shows results with these controls. We begin with the full set

of baseline control variables, as used in column 4 of table 1. We then add just one control. Each

row corresponds to a different control. The last row shows the results that add all controls at

once. Unlike the main baseline result, column 4 of table 1, here we only use one instrument at a

time. Columns 1–3 use a single instrument, without controlling for the other two. These results

reproduce appendix table 6 of Duranton et al. (2014). Based on these results, the authors argue

that

“None of our main results is affected by these controls, even when we use our instruments

individually.” (page 708)

They also argue that using one instrument at a time is an “even more demanding exercise” than

examining the effect of additional controls when using all three instruments (not shown here; see

their appendix table 5). As we’ve discussed, however, omitting the invalid instruments may cause

omitted variable bias. So in columns 4–6, we replicate columns 1–3, except now controlling for the

other two instruments.

There are three main differences between the results with the instrument controls and those

without. First, the railroad instrument is again very weak, leading to large coefficients. This informs

our understanding of the results from columns 1–3, since there we observed that the coefficients in

column 2 are always larger than those in columns 1 and 3, and are often substantially larger. Second,

none of the results are statistically significant at conventional levels. Finally, the coefficients using
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Table 3: The effect of controlling for unused instruments, continued. Non-highlighted parts
reproduce results from their paper. Highlighted parts are new. This table extends the analysis
of table 2 to consider specifications with additional control variables. Columns 1–3 reproduce the
results in appendix table 6 of Duranton et al. (2014). Columns 4–6 just add controls for the other
instruments.

Without other IV controls With other IV controls

(1) (2) (3) (4) (5) (6)

Added variable Plan Railroad Exploration Plan Railroad Exploration FAS

Water
log highway km 0.34** 0.66** 0.24 0.13 3.96 0.30 [0.13, 0.30]

(0.16) (0.26) (0.29) (0.21) (4.56) (0.49)

F stat. 126 25.3 10.9 67.6 1.17 26.2

Slope
0.39*** 0.57*** 0.46** 0.20 3.86 0.66 [0.20, 0.66]
(0.14) (0.20) (0.19) (0.21) (5.86) (0.50)

133 44.5 22.6 60.3 0.65 25.6

Census
regions

0.32** 0.62*** 0.36* -0.012 3.68 0.40 [-0.012, 0.40]
(0.14) (0.12) (0.20) (0.24) (3.24) (0.64)

122 58.3 22.6 39.4 1.59 10.7

Percent
college

0.29** 0.56** 0.41** 0.013 3.64 0.78 [0.013, 0.78]
(0.13) (0.23) (0.18) (0.19) (4.13) (0.49)

116 36.6 29.5 47.9 1.16 25.2

Income
per

capita

0.35** 0.63*** 0.35* 0.079 3.42 0.54 [0.079, 0.54]
(0.14) (0.22) (0.18) (0.21) (3.42) (0.47)

123 36.8 26.4 47.8 1.70 24.9

Percent
wholesale

0.41*** 0.59*** 0.49*** 0.22 2.71 0.75 [0.22, 0.75]
(0.12) (0.21) (0.12) (0.19) (3.29) (0.49)

136 39.3 23.2 54.4 1.38 25.4

Traffic
0.42** 1.00* 0.34 0.23 5.57 0.40 [0.23, 0.40]
(0.18) (0.52) (0.23) (0.25) (9.60) (0.51)

79 13.4 44.6 44.3 0.43 26

All
0.39** 0.73** 0.58** 0.18 2.43 0.69 [0.18, 0.69]
(0.18) (0.35) (0.28) (0.26) (3.01) (0.67)

52.6 19.9 15.5 32.1 0.88 6.53

66 observations per column. All specifications include a constant. Heteroskedasticity robust standard errors in parentheses.
***, **, *: statistically significant at 1%, 5%, 10%.

plan as the instrument all become smaller once the other instruments are controlled for (column 4

versus column 1), while the coefficients using exploration as the instrument all become larger once

the other instruments are controlled for (column 6 versus column 3). Thus, ignoring the results

using railroads, the overall range of point estimates is larger. This is reflected in the falsification

adaptive sets, which are presented in the final column.

Overall, there are two main conclusions from our analysis: First, the evidence suggests that

the railroad instrument is the most questionable, and should be used only as a control. Thus the

estimates in panel B of table 1 are arguably the most appropriate baseline results. Second, there is

substantially more uncertainty in the magnitude of the causal effect of roads on trade than suggested

by the original results of Duranton et al. (2014). This is reflected in the various falsification adaptive
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sets we present. In particular, the FAS for the longest specification is [0.18, 0.69]; see table 3.

Accounting for sampling uncertainty only increases this range. That said, these results do not

change the overall qualitative conclusions of the paper: All points in the estimated FAS for the

longest specification are still positive, suggesting that the number of within city highways appears

to positively affect propensity to export weight.

4.2 The Origin of Gender Roles: Alesina, Giuliano, and Nunn (2013)

Alesina et al. (2013) study the relationship between traditional agricultural practices and modern

gender norms. Specifically, following Boserup (1970) they distinguish between two kinds of tradi-

tional agriculture: shifting cultivation, which “is labor intensive and uses handheld tools like the

hoe and the digging stick,” and plough cultivation, which “is much more capital intensive, using

the plough to prepare the soil.” They note that “unlike the hoe or digging stick, the plough re-

quires significant upper body strength, grip strength, and bursts of power.” Hence “when plough

agriculture is practiced, men have an advantage in farming relative to women.” Consequently, in

societies that used plough agriculture, “men tended to work outside the home in the fields, while

women specialized in activities within the home.” Boserup hypothesized that, as Alesina et al.

(2013) put it, “this division of labor then generated norms about the appropriate role of women in

society” which persist today.

Alesina et al. (2013) consider a variety of datasets and methods to test this hypothesis. We

focus on their cross country instrumental variable analysis. Their dataset includes 160 countries.

Their treatment variable is the “estimated proportion of citizens with ancestors that traditionally

used the plough in pre-industrial agriculture.” They explain how they construct this variable in

section 3. For this analysis they consider three different outcome variables: The female labor force

participation rate in 2000, the share of a country’s firms with some female ownership (measured

using data between 2005–2011), and the share of political positions held by women in 2000. Their

appendix A2 gives further details on the definition of these variables. They also consider a composite

outcome variable, called the average effect size (AES). This is constructed by first dividing each

outcome variable by its standard deviation and then averaging the three variables.

Any correlation between treatment and outcomes is not necessarily causal for a few reasons.

First, there may be reverse causality: Countries with less equal gender norms may have actively

adopted innovations like the plough which conformed with these norms. Second, there may be

omitted variables: Areas that were economically more developed may have been more likely to

both adopt the plough and to have more equal gender norms today. This would tend to mask

any causal effect of the plough on gender norms. To address these concerns, the authors use an

instrumental variable approach.

The authors use properties of countries’ ancestral land geography as instruments. Specifically,

Pryor (1985) classifies crops as either plough positive or plough negative. Plough positive crops

benefit from the use of the plough while plough negative crops generally do not. The authors focus

on cereal crops only, since they are similar except for how much they benefit from the plough.
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Table 4: Country level 2SLS results from Alesina et al. (2013). Non-highlighted parts reproduce
results from their paper. Highlighted parts are new. This table reproduces panels A and C of their
table 8. It also shows the estimated falsification adaptive set, which here is a singleton since one
of the two instruments is weak.

Female labor force
participation in

2000

Share of firms with
female ownership,

2005–2011

Share of political
positions held by
women in 2000

Average effect size
(AES)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Second stage 2SLS estimates

Traditional plough use -21.6*** -25.0*** -17.5*** -22.7*** -6.46*** -9.73*** -0.92*** -1.31***
(5.25) (7.51) (5.53) (7.62) (2.33) (3.75) (0.23) (0.39)

Continent fixed effects Y Y Y Y

Overid. p-value 0.00091 0.00012 0.41 0.25 0.72 0.86 0.048 0.027

FAS -14.3*** -18.0*** -15.3** -18.9** -7.08** -9.99** -0.73*** -1.08***
(5.41) (6.78) (6.18) (8.11) (3.00) (4.11) (0.23) (0.38)

Observations 160 160 122 122 140 140 104 104

Panel B. First stage estimates. Dependent variable: Traditional plough use

Plough-pos. environment 0.74*** 0.63*** 0.86*** 0.67*** 0.82*** 0.68*** 0.87*** 0.72***
(0.084) (0.089) (0.078) (0.10) (0.082) (0.10) (0.089) (0.12)

Plough-neg. environment 0.12 0.18 0.100 0.12 0.13 0.19 0.13 0.14
(0.12) (0.13) (0.17) (0.17) (0.13) (0.14) (0.18) (0.19)

F -stat (both) 40.2 25.1 66.8 21.9 52 21.9 49.5 18.5

F -stat (pos. only) 80 57.7 123 42.8 101 43.6 95.6 36.6

F -stat (neg. only) 0.58 1.55 0.36 0.45 1.03 1.76 0.51 0.57

Notes: These results include a variety of historical and contemporary controls. See the table 8 notes in Alesina et al.
(2013) along with their discussion in the text for details. Heteroskedasticity robust standard errors in parentheses. ***,
**, *: statistically significant at 1%, 5%, 10%.

Given this classification, they construct instruments as follows: Consider a large piece of land.

First measure the area of land that is suitable for growing crops in general. Pick a single plough

positive cereal. Within this area of overall suitability, compute the area of land suitable for growing

this specific plough positive cereal. Do this for each plough positive cereal. Note that some land is

suitable for growing multiple crops, so there will be overlap in these areas. So take the average area

across all plough positive cereals. Divide by the area that is suitable for growing crops overall. That

is their measure of plough positive share. Next do the same for plough negative crops. Thus we have

a procedure for defining suitability of a single piece of land. Using this procedure, the authors define

the country level variable plough positive environment as the “average fraction of ancestral land

that was suitable for growing [plough positive cereals] divided by the fraction that was suitable for

any crops.” They use the same procedure as in their definition of the treatment variable, described

in their section 3. They define the country level variable plough negative environment analogously.

Their main concern with validity of these instruments is failure of exogeneity due to geographical

variables which affect the instruments and also modern gender norms. In their baseline results (table

8) they include a variety of geographical controls to account for this. They consider more extensive

geographical controls in appendix table A14. They consider many other controls in appendix table
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A15. Finally, they also use the presence of two instruments to conduct overidentification tests.

Table 4 reproduces their main instrumental variable results. As in our analysis of Duranton et al.

(2014), the non-highlighted parts reproduce results from the original paper. The highlighted parts

are new computations which we have added. First focus on their results. The overidentification test

fails at the conventional 5% level for columns 1 and 2, as well as for the average effect size, columns

7 and 8.5 The authors do not comment on this finding. To provide a constructive response to this

rejection, we compute the falsification adaptive set. To do this, we must first check instrument

relevance. As shown in panel B, plough positive environment satisfies the relevance assumption.

Plough negative environment, however, does not. The authors commented on this, since they did

present the first stage coefficients on both instruments, although they did not present the separate

F -test statistics as we do. Despite this relevance failure, the authors used both instruments in their

main results.

In panel A, we present the estimated falsification adaptive set. Since there are only two in-

struments, one of which fails relevance, this set is simply a singleton. Specifically, this is the point

estimate from the model using plough positive environment as an instrument, controlling for plough

negative environment. Overall, the authors’ qualitative findings all continue to hold using the FAS:

All point estimates are still negative and statistically significant at conventional levels. Quanti-

tatively, however, the FAS point estimates all have smaller magnitudes than the original baseline

findings, except for columns 5 and 6. Excluding those columns, the point estimates are an average

of 22% smaller. Finally, note that the columns where the estimates changed the least—columns 5

and 6—are those with the largest overidentification test p-values. Likewise, the columns where the

estimates changed the most—columns 1 and 2—are the ones with the smallest overidentification

test p-values. This is to be expected, given how the overidentification test is constructed. Our point

is that the FAS is an informative complement to these p-values, since it directly summarizes the

range of estimates corresponding to non-refuted alternative models. As in our analysis of Duranton

et al. (2014), here it also highlighted the weakness of the plough negative instrument, suggesting

that the FAS point estimates we present in panel A of table 4 are more appropriate baselines than

those originally presented by the authors.

4.3 Colonial Origins of Development: Acemoglu, Johnson, and Robinson (2001)

Acemoglu et al. (2001) study the relationship between institutions and economic development.

Since this paper is exceptionally well known, here we only briefly summarize it and then present

our results. They consider a cross section of about 60 countries. Their treatment variable is the

average protection against expropriation risk between 1985 and 1995, a measure of the strength of

property rights in the country. Their outcome variable is log GDP per capita in 1995. Their primary

instrument measures mortality rates faced by early settlers in the country. Their main results (table

5The authors report overidentification test p-values of 0.31 in column 4 and 0.06 in column 8. These differ slightly
from the p-values we report in table 4. The reason is that we use heteroskedasticity robust standard errors for all
calculations, including columns 4 and 8. The authors used homoskedastic standard errors for their columns 4 and 8
overidentification test (but not for the standard errors reported under their point estimates).
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Table 5: Results from Acemoglu et al. (2001). Non-highlighted parts reproduce results from
their paper. Highlighted parts are new. Panel B reproduces panel D of their table 8. Panel A is
analogous to their panel A of table 8, except that we also use log settler mortality as an instrument.
Columns 2, 3, 7, and 8 include a control for the number of years since independence. All other
columns do not include controls, except as indicated in the table.

Dependent variable: Log GDP per capita in 1995

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. 2SLS estimates using two instruments at a time: log settler mortality paired with each of the other five instruments

0.89*** 0.81*** 0.80*** 0.67*** 0.63*** 0.95*** 0.83*** 0.82*** 0.70*** 0.65***Average protection
against expropriation
risk, 1985–1995

(0.13) (0.13) (0.12) (0.11) (0.11) (0.17) (0.17) (0.16) (0.14) (0.12)

Latitude -0.60 -0.30 -0.21 -0.75 -0.51
(1.16) (1.08) (1.04) (0.88) (0.81)

Observations 63 60 59 60 59 63 60 59 60 59

First-stage F stat. 17.4 12.1 13.3 9.97 11.4 10.5 7.26 7.98 7.45 8.79

Overid. p-value 0.70 0.25 0.28 0.45 0.20 0.79 0.27 0.30 0.42 0.18

FAS [0.81,0.99] [0.45,1.03] [0.51,1.03] [0.48,0.77] [0.40,0.85] [0.88,1.02] [0.42,1.06] [0.48,1.04] [0.49,0.84] [0.41,0.93]

Panel B. 2SLS estimates using one of the other five instruments, controlling for log settler mortality

Average protection
against expropriation
risk, 1985–1995

0.81*** 0.45* 0.51** 0.48** 0.40** 0.88*** 0.42 0.48* 0.49** 0.41**
(0.22) (0.24) (0.22) (0.22) (0.17) (0.28) (0.29) (0.27) (0.24) (0.18)

Log settler mortality -0.067 -0.25 -0.21 -0.14 -0.19 -0.050 -0.26 -0.22 -0.14 -0.19
(0.16) (0.16) (0.15) (0.15) (0.12) (0.18) (0.16) (0.16) (0.14) (0.12)

Latitude -0.52 0.38 0.28 -0.38 -0.17
(1.11) (0.86) (0.83) (0.81) (0.70)

First-stage F stat. 9.34 3.66 4.87 3.56 5.88 6.58 2.50 3.21 3.25 5.36

Panel C. 2SLS estimates using log settler mortality, controlling for one of the other five instruments

0.99*** 1.03*** 1.03*** 0.77*** 0.85*** 1.02*** 1.06*** 1.04*** 0.84*** 0.93***Average protection
against expropriation
risk, 1985–1995

(0.32) (0.29) (0.31) (0.19) (0.25) (0.34) (0.34) (0.33) (0.25) (0.32)

-0.0039 -0.0029European settlements in
1900 (0.011) (0.012)

-0.10 -0.099Constraint on executive
in 1900 (0.11) (0.11)

Democracy in 1900 -0.074 -0.071
(0.086) (0.085)

-0.043 -0.050Constraint on executive
in first year of
independence

(0.064) (0.071)

-0.058 -0.064Democracy in first year
of independence (0.057) (0.064)

Latitude -0.55 -0.57 -0.30 -1.07 -1.08
(1.25) (1.39) (1.30) (1.12) (1.22)

First-stage F stat. 6.51 7.69 6.91 8.60 6.38 6.15 5.86 5.88 6.22 4.71

Notes: Homoskedastic standard errors in parentheses. ***, **, *: statistically significant at 1%, 5%, 10%.
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4) use just this one instrument. In table 8, however, they consider five more instruments. We focus

on that analysis.

They use the additional instruments as follows: First, they only ever consider pairs of instru-

ments. As they say in footnote 29, they do this to avoid the many instruments problem. We follow

them and also only consider two instruments at a time. For each of the five additional instruments,

they estimate the coefficient on the treatment variable using either (a) that instrument alone (their

panel A) or (b) that instrument alone but also including settler mortality as a control variable (their

panel D). They test overidentification by using a Hausman test to compare these two coefficient

estimates (their panel C). They also present the estimated coefficient on settler mortality when it is

included as a control, noting that it is not statistically indistinguishable from zero at conventional

levels (their panel D).

In our table 5 we replicate and extend those results. Whereas Acemoglu et al. (2001) focused on

using these additional instruments to perform overidentification tests, we instead focus on the point

estimates themselves. Thus in our panel A we present a new set of baseline results, which use two

instruments at a time. Acemoglu et al. (2001) did not present these results. Here we include the

classical overidentification test p-value; the authors had instead presented a Hausman test result.

Columns 1–5 present results with no control variables (except for 3 and 4, which include a single

control: years since independence) while columns 6–10 add a control for latitude.

The overidentification tests do not reject at conventional levels in each column. Nonetheless,

it is informative to ask: What estimates would we obtain from alternative non-refutable models?

The last line of panel A answers this question by presenting the FAS. This set is computed from

the estimated coefficients on the treatment variable in panels B and C. The authors had originally

computed one of the endpoints of this set, although they focused on the coefficient on the controlled

instrument. Here we compute the other endpoint of the FAS. First note that none of the instruments

are particularly strong. This is a well known problem in this specific empirical application (for

example, see pages 3072–3073 of Albouy 2012). Since we have not formally studied inference

on the FAS, we leave the question of how to accurately measure sampling uncertainty in this

application to future work. Here we will simply focus on the point estimates. For these estimates,

we use a small F -statistic cut-off for inclusion in the FAS, so that the FAS is an interval for all

specifications. For every specification, the estimated FAS always lies above zero. Hence the FAS

supports the qualitative conclusion of this paper: Increasing property rights causes an increase

in GDP. That said, for some of the specifications the length of the FAS is quite large, indicating

substantial variation in the estimated magnitude of this effect.

As in our previous examples, the authors used multiple instruments to assess validity of the

exogeneity and exclusion restrictions. They did this by focusing on a variety of statistical tests of

overidentification. Here we illustrated the value of using the falsification adaptive set to go beyond

the binary pass/fail outcome of a specification test and to instead summarize the substantive

variation in estimates obtained from alternative non-refutable models.
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4.4 Discrete Choice Demand Estimation: Nevo (2001)

In our final example, we study a classical application of instrumental variables: estimation of

consumer demand. In a series of papers Aviv Nevo estimated the demand for ready-to-eat cereal

as a first step to answering several important economic questions: How can we predict the welfare

effects of a merger (Nevo 2000)? How can we test for collusion (Nevo 2001)? How can we construct

price indices that account for new products and quality changes (Nevo 2003)? Answering these

questions requires reliable estimates of price elasticities of demand. If one’s baseline model of

consumer demand is refuted, however, it is not clear whether the estimated elasticities from this

known-to-be misspecified model are relevant for these questions. For this reason, we recommend

computing falsification adaptive sets. These sets show the range of estimates consistent with non-

refuted models.

Since all three of the papers Nevo (2000, 2001, 2003) use essentially the same data and demand

estimation, we focus on Nevo (2001). First we briefly summarize his analysis, focusing on falsi-

fication. We then discuss our results. Here we assume familiarity with standard discrete choice

demand models. See Nevo (2011) for a survey.

Analysis from Nevo (2001)

Nevo begins by estimating a variety of logit demand models; see his table 5. In 9 out of the 10

specifications, the overidentification test rejects the model. Commenting on this, he says “it is

unclear whether the large number of observations is the reason for the rejection or that the IV’s

are not valid” (page 325). He notes that the most flexible specification, column 10, passes the test.

This specification added city fixed effects, and hence he concludes that it is important to flexibly

control for demographics. In our results below, however, the specification with city fixed effects is

strongly rejected.

In logit demand models estimated using overidentified 2SLS, the model can be refuted for two

distinct reasons: (1) The instruments are inconsistent with each other or (2) the logit functional

form is incorrect. The second issue is well known and is commonly addressed by using more flexible

models of demand, like the random coefficients logit model. Nevo presents estimates from this

model in table 6. Using these estimates he notes that the logit model “is easily rejected” (footnote

28 on page 332).

The random coefficients logit model itself, however, is falsifiable. Nevo does not report the

overidentification test result for his full model. He does report the GMM objective function value

in table 6, but it is not clear if this objective function uses the optimal weighting matrix, as required

to compute the J-test statistic. If it does, and assuming the statistic has not already been scaled

by the sample size, then the overidentification test based on the reported value easily rejects the

random coefficients logit model as well. Regardless, we also estimated the random coefficients logit

model using our data (not reported here), and it is easily rejected.

As with the baseline logit model, this could be either because (1) the instruments are invalid
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Table 6: Brands used for estimating demand

All Family / Basic Segment Taste Enhanced Wholesome
Segment

Simple Health Nutrition
Segment

Kids Segment

K Rice Krispies P Raisin Bran P Grape Nuts P Fruity Pebbles
K Corn Flakes P Honey Bunches of Oats K Special K Red Berry K Frosted Flakes
GM Cheerios K Raisin Bran Crunch K Special K K Froot Loops

K Raisin Bran GM Multigrain Cheerios K Corn Pops
K Frosted Mini-Wheats K Apple Jacks

Q Life
Q Cinnamon Life

Q Cap’n Crunch Crunch
Berries

Q Cap’n Crunch
GM Reese’s Puffs

GM Lucky Charms
GM Honey Nut Cheerios

GM Cinnamon Toast
Crunch

Table 7: Volume market shares

Firm 2012 Q4 2013 Q4 2014 Q4 2015 Q4 2016 Q4

Kellogg 28.23 28.18 27.76 29.00 29.89
General Mills 31.03 31.03 30.48 30.74 28.92
Post 10.46 11.26 11.73 11.56 12.21
Quaker Oats 6.59 6.50 7.08 6.82 7.25
Malt-O-Meal 3.99 4.62 4.49 4.00 4.51
Kashi 2.69 2.65 2.09 2.12 1.92
C3 69.72 70.47 69.97 71.30 71.01
C6 83.00 84.24 83.64 84.24 84.70
Private Label 15.19 13.74 13.78 13.10 12.35

or (2) the random coefficients logit functional form is incorrect. One response is to use even more

flexible models of demand. For recent work along these lines, see Compiani (2018) and Tebaldi,

Torgovitsky, and Yang (2019). An alternative approach is to maintain the random coefficients logit

functional form, but relax the exogeneity and exclusion restrictions on the instruments. Or one

could relax both assumptions simultaneously. Here we focus only on the instrument assumptions.

Moreover, we also focus only on the baseline logit demand model. Our characterization of the

falsification adaptive set (theorem 2) can be extended to the random coefficients logit model, but

since this is a substantial extension we leave it to separate work.

Finally, recall that Berry (1994, pages 252–254) shows how the nested logit model can be written

as a linear instrumental variable model with multiple endogenous variables. This result combined

with our multiple endogenous variable results in section 3.6 allows us to immediately study the

nested logit model with endogenous price. Moreover, nested logit has been used as the baseline

model in previous studies of the demand for ready-to-eat cereal—see Cotterill and Haller (1997).

We omit a full empirical study of the nested logit baseline for brevity, however.
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Table 8: Prices and market shares of brands in sample

Variation (percentage)

Description Mean Median Std Min Max Brand City Quarter

Prices 10.38 9.56 2.45 5.01 18.02 85 6.7 0.8

(¢ per serving)

Advertising 5.92 4.98 5.15 0 23.76 53.6 – 3.5

(M$ per quarter)

Share within Cereal 2.8 2.47 1.73 0.22 10.95 77.6 4.5 1.2

Market (%)

Table 9: Sample statistics

Description Mean Median Std Min Max

Total Calories 136 120 35.59 100 200

Fat Calories (/100) .11 .1 .08 0 .3

Sodium (% RDA/100) .07 .07 .03 0 .12

Fiber (% RDA/100) .1 .08 .09 0 .31

Sugar (g/100) .09 .09 .05 .01 .2

Mushy (=1 if cereal gets soggy in milk) .56 1 .51 0 1

Serving weight (g) 35.96 30 11.62 26 61

Income ($) 12,659 9,052 14,453 0 791,777

Age (years) 34.92 34 21.96 0 85

Child (=1 if age < 16) .25 0 .43 0 1

Data

Unlike our previous three applications, here the original data is not publicly available. We instead

construct a new dataset, following the details of Nevo (2001) as closely as possible. We consider a

panel dataset of 53 cities between 2012 and 2016. Nevo’s data covered 1988 to 1992. We obtained

quarterly data on price and quantity of each cereal sold in these cities from Nielsen scanner data.

We focus on the top 25 cereal brands, shown in table 6. Table 7 shows the volume market shares

(pounds sold) for the top 6 firms, for the last quarter of each year. Comparing this to table 1 from

Nevo (2001), we see that firm market shares are relatively stable over time. The industry continues

to be highly concentrated, with the top 3 firms having around 70% of the market and the top 6

having around 84%. The market share of private label cereals has increased somewhat, ranging

from 12 to 15% in our data, whereas it ranged from 3 to 8% between 1988 and 1992.

We obtained quarterly advertising spending from Kantar Media. Table 8 shows summary

statistics for advertising, along with price and market shares. Compared to Nevo’s table 4, we see

that prices are generally substantially lower, with less variation over time. Advertising spending

has increased substantially.

We gathered nutrition data for each cereal by examining cereal boxes. For each city we obtained

demographic information by sampling individuals from the March Current Population Survey.

Table 9 provides summary statistics for nutrition and demographics.
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Table 10: Logit demand parameter estimates. The specifications here are similar to those in table
5 of Nevo (2001).

(1) (2) (3) (4)

Panel A. OLS

Price -2.45 -1.49 -2.41 -14.97
(0.62) (0.59) (0.53) (0.34)

Adjusted R2 0.34 0.48 0.56 0.92

Panel B. 2SLS with per-quarter Hausman instruments

Price -6.67 -8.85 -6.89 -15.15
(0.84) (0.93) (0.79) (1.12)

First-stage F stat. 730.13 391.52 378.66 65.49

Overid. test stat. 2467.31 1038.85 874.62 1085.28

Overid. p-value 0.00 0.00 0.00 0.00

Panel C. 2SLS with aggregated Hausman instruments

Price -7.50 -11.21 -10.60 -16.23
(0.76) (0.82) (0.73) (0.58)

First-stage F stat. 6574.61 3715.17 3578.36 2134.16

Overid. test stat. 83.34 143.45 78.08 30.13

Overid. p-value 0.00 0.00 0.00 0.00

FAS (F ≥ 10) -21.27 -15.99 -16.93 -17.97
(1.71) (1.59) (1.48) (0.66)

FAS (F ≥ 5) -21.27 [-332.10, -15.99] [-182.92, -16.93] [-58.96, -17.97]

Advertising Y Y Y Y
Time fixed effects Y Y Y Y
Product characteristics Y
Brand dummies Y Y Y
Demographics Y
City fixed effects Y

Heteroskedasticity robust standard errors in parentheses.

Results

Nevo considered two kinds of instruments:

1. Cost shifter instruments: (1) annual average wages paid in the supermarket sector in each

city and (2) city density, which is viewed as a proxy for the cost of rent. In our data, these

instruments are very weak. We do not use them in our main analysis.

2. Hausman instruments: “Regional quarterly average prices (excluding the city being instru-

mented) in all twenty quarters.” Taken together, these instruments are very strong. Our

falsification adaptive set analysis, however, requires us to consider the strength of each in-

strument conditional on the others. In this case, most of these instruments become very weak.

For this reason we also consider aggregated versions of the Hausman instruments: (1) The

regional average lagged price, (2) the regional average contemporaneous price, and (3) the

regional average lead price. For all three instruments we exclude the city being instrumented.

Table 10 shows our main results. We consider four specifications. All specifications include

advertising and time fixed effects. Column 1 includes product characteristics as controls. Columns
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2–4 replace these with brand dummies. Column 3 adds demographic controls: log of median income,

log of median age, and median household size. Column 4 replaces this with city fixed effects. Panel

A shows the OLS results. Panel B shows 2SLS results using the per-quarter Hausman instruments

while panel C uses the aggregated Hausman instruments.6

First consider panel A. In the first three columns, the OLS point estimates are much smaller

in magnitude than the 2SLS point estimates. In column 4 the OLS and 2SLS estimates are quite

similar. However, notice that the overidentification test easily rejects all specifications (columns

1–4, panels B and C). This suggests that the instruments may not be valid. There has in fact been

substantial debate over the validity of these instruments. See Bresnahan’s comment on Hausman

(1996).

To address this concern, we next estimate the falsification adaptive set. As discussed above, we

only do this for panel C. We consider two different cut-offs for the definition of a weak instrument:

F ≥ 10 and F ≥ 5 (see section 3.4). With the stricter cut-off, only one of the three 2SLS estimates

is not weak, and thus the estimated FAS is a singleton. All the point estimates are larger in

magnitude than the corresponding baseline estimates. The coefficients are also more stable across

specifications. With the weaker cut-off, the FAS is an interval for columns 2–4. The length of

this interval shrinks substantially as we move from column 2 to 3 to 4. Consider the FAS in

column 4: [−58.96,−17.97]. All elements of this interval are larger in magnitude than the estimate

−16.23 from the refuted baseline model. They are also larger than the OLS estimate of −14.97.

In the logit model the price elasticities are proportional to the coefficient on price. So the lower

bound on the FAS in column 4 suggests that the price elasticities could be as much as about three

times larger than those suggested by the refuted baseline estimate. Thus ignoring the result of the

overidentification test and using the baseline estimates anyway could lead to a large under-estimate

of these elasticities. The falsification adaptive set is a constructive and informative tool researchers

can use when their baseline model is rejected.

We conclude this section by briefly comparing our analysis with that of Nevo and Rosen (2012),

who also study discrete choice demand models. They derive identified sets under a discrete relax-

ation of the classical instrument exogeneity and exclusion restrictions. They do not discuss the

general problem of salvaging a falsified model. In particular, their identified sets can be empty.

They do not discuss what researchers should do in this case. Furthermore, we relax instrument

validity in a different and non-nested way. Hence our analysis is complementary to theirs. Using

our data, we estimated the Nevo and Rosen identified set for the coefficient on price. Under their

assumptions 3 and 4, and for the specification in column 4 of table 10, this set is (−∞,−16.727].

This set is unbounded from below and strictly contains the estimated FAS [−58.96,−17.97]. In

their proposition 5 they discuss an additional assumption which can sometimes be used to obtain

a bounded identified set. They only consider the two instrument case, and hence we cannot apply

6In panel A: Column 1 corresponds to column 1 of Nevo’s table 5, Column 2 to his column 2, and column 3 to
his column 3. He did not present the specification in our panel A, column 4. In panel B: Column 3 corresponds to
Nevo’s column 9, and column 4 to his column 10. He did not present the specifications in our panel B, columns 1
and 2. He also did not present any of the specifications in panel C.
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their result here. Moreover, this result requires choosing a sensitivity parameter γ a priori. By

definition, the FAS does not require choosing any sensitivity parameters.

5 Heterogeneous Treatment Effect Models

Even when both instrument exogeneity and exclusion assumptions hold, the classical overidentifying

restrictions (2) may fail when the homogeneous treatment effects assumption fails. Hence we next

consider models with heterogeneous treatment effects. In section 5.1 we consider binary outcomes

while in section 5.2 we consider continuous outcomes. As earlier, we omit additional covariates for

simplicity.

5.1 Binary Outcomes

Unlike the baseline model in section 3 using zero-correlation conditions, the baseline model we

study here using statistical independence assumptions is falsifiable even with a single instrument.

Thus we begin with the case where a single binary instrument is available. This allows us to explain

the main ideas and results while keeping the notation simple. After this, we consider the general

case where multiple discrete instruments are available.

Let X ∈ {0, 1} denote the observed treatment variable. Let Y1, Y0 ∈ {0, 1} denote binary

potential outcomes. We observe

Y = Y1X + Y0(1−X). (11)

Let Z ∈ {0, 1} denote an observed instrument. As mentioned above, we consider multiple discretely

supported instruments later. Thus we observe the joint distribution of (Y,X,Z). Consider the

following assumption.

Assumption B1 (Instrument exogeneity). Z ⊥⊥ Y1 and Z ⊥⊥ Y0.

In this model, Manski (1990) derived the identified set for P(Yx = 1) for x ∈ {0, 1} as well as

the identified set for the average treatment effect

ATE = P(Y1 = 1)− P(Y0 = 1)

under B1.7 Balke and Pearl (1997) showed these identified sets can be empty, and hence that this

model is falsifiable. Consequently, researchers whose model is falsified face the same question we

discussed earlier: What should they do? We answer this question using the four recommendations

provided in section 2. To do this, we must first define continuous relaxations of the instrument

exogeneity assumption B1. We do this using the following concept from Masten and Poirier (2018a).

7Manski’s (1990) analysis considered a general case which does not require outcomes, treatment, or instruments
to be binary. In this general setting, he used a mean independence assumption. When outcomes are binary, mean
independence of Yx from Z is equivalent to statistical independence of Yx and Z.

41



Definition 4. Let x ∈ {0, 1}. Let c be a scalar between 0 and 1. Say Z is c-dependent with Yx if

sup
yx∈supp(Yx)

|P(Z = 1 | Yx = yx)− P(Z = 1)| ≤ c. (12)

When c = 0, c-dependence is equivalent to Z ⊥⊥ Yx. When c ≥ max{P(Z = 1),P(Z = 0)},
c-dependence does not constrain the stochastic relationship between Z and Yx. c ∈ (0, 1) partially

constrains the stochastic relationship between Z and Yx. Specifically, while it allows the probability

of Z = 1 given Yx = yx to vary with yx, it must be within a band around the unconditional

probability:

P(Z = 1 | Yx = yx) ∈
[
P(Z = 1)− c, P(Z = 1) + c

]
∩ [0, 1]

for all yx ∈ supp(Yx). Masten and Poirier (2018a) give additional discussion of how to interpret

c-dependence.

Thus we relax B1 as follows.

Assumption B1′ (Instrument partial exogeneity). Z is c-dependent with Y1 and with Y0.

Under this relaxation, we will derive identified sets for various parameters of interest. We use

these identified sets to characterize the falsification point and the falsification adaptive set. We can

also use these identified sets to do sensitivity analysis beyond the falsification point.

Let pZ = P(Z = 1). The following assumption rules out trivial cases.

Assumption B2. Suppose pZ ∈ (0, 1). Suppose P(X = 1 | Z = z) ∈ (0, 1) for z ∈ {0, 1}.

First we set up some notation. Then we state and discuss the main theorem. For z ∈ {0, 1},
define

kz(c) =
P(Z = z) max{P(Z = 1− z)− c, 0}
P(Z = 1− z) min{P(Z = z) + c, 1} . (13)

Note that kz(0) = 1, kz(1) = 0, and kz(·) is weakly decreasing on c ∈ [0, 1]. Using this function,

define the set

D(c) = {(a0, a1) ∈ [0, 1]2 : a1 ∈ [a0k0(c), 1−k0(c)+a0k0(c)], a0 ∈ [a1k1(c), 1−k1(c)+a1k1(c)]}, (14)

which depends only on c and the marginal distribution of Z. For x ∈ {0, 1}, define

Hx = [P(Y = 1, X = x | Z = 0), P(Y = 1, X = x | Z = 0) + P(X = 1− x | Z = 0)] (15)

× [P(Y = 1, X = x | Z = 1), P(Y = 1, X = x | Z = 1) + P(X = 1− x | Z = 1)],

which depends on the joint distribution of (Y,X,Z). Let

Θx(c) = D(c) ∩Hx

denote the intersection of these two sets.
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Figure 6: Example identified sets for (P(Yx = 1 | Z = 1),P(Yx = 1 | Z = 0)). Here pZ = 0.5. Left:
c = 0. Middle: c = 0.1. Right: c = 0.4.

Theorem 5. Consider the binary outcome, binary treatment model (11). Suppose the joint dis-

tribution of (Y,X,Z) is known, where Z is binary. Suppose B1′ and B2 hold. Then the identified

set for (
P(Y0 = 1 | Z = 0),P(Y0 = 1 | Z = 1),P(Y1 = 1 | Z = 0),P(Y1 = 1 | Z = 1)

)
is Θ0(c)×Θ1(c). Consequently, the model is falsified if and only if this set is empty.

The identified sets in theorem 5 are defined via two kinds of constraints: the set D(c) and the

sets Hx for x ∈ {0, 1}. The set Hx is simply the identified set for

(
P(Yx = 1 | Z = 0), P(Yx = 1 | Z = 1)

)
without imposing any assumptions on the stochastic relationship between Yx and Z, as derived by

Manski (1990). This set can be thought of as the intersection of two pairs of parallel half-spaces.

The shaded boxes in figure 6 show one example of this set.

The set D(c) imposes the c-dependence constraint. For example, if c = 0, it imposes that

P(Yx = 1 | Z = 0) = P(Yx = 1 | Z = 1)

for x ∈ {0, 1}. This is simply the statistical independence assumption B1 studied by Manski (1990).

Thus the identified sets in theorem 5 simplify to those derived by Manski when c = 0. As c gets

larger, we no longer require the values P(Yx = 1 | Z = z) for z ∈ {0, 1} to exactly equal each other,

but we do require them to be sufficiently close, as defined by the set D(c). Specifically, it constrains

the pairs (P(Yx = 1 | Z = 0),P(Yx = 1 | Z = 1)) to lie inside a diamond-shaped parallelogram,

as shown in figure 6. As c gets larger, this parallelogram gets larger, eventually approaching the

entire square [0, 1]2 as c→ max{pZ , 1− pZ}. Thus, for c ≥ max{pZ , 1− pZ}, theorem 5 simplifies

to the no assumption bounds derived by Manski (1990). Thus theorem 5 continuously connects the

no assumption bounds with the bounds under the statistical independence assumption B1.

While the no assumption bounds (c ≥ max{pZ , 1 − pZ}) are never empty, the bounds under
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Figure 7: Example identified set for (P(Yx = 1 | Z = 1),P(Yx = 1 | Z = 0)). Here pZ = 0.5. Left:
c = 0. We see that the baseline model is falsified. Middle: c = c∗ = 0.1, the falsification point. Here
we have relaxed the assumption just enough that the model is no longer falsified. Right: c = 0.3.
Relaxing independence even further increases the size of the identified set.

statistical independence (c = 0) can be empty, and hence the baseline statistical independence

assumption can be falsified. This happens when, for some x ∈ {0, 1}, the no assumption bounds

Hx have an empty intersection with the statistical independence constraint set D(0). Graphically,

this happens when the box defined by the no assumption bounds does not intersect the 45-degree

line. This is shown in figure 7. The falsification point is simply the smallest c such that the

parallelogram defined by D(c) has a nonempty intersection with the no assumption bounds Hx for

each x ∈ {0, 1}. This intersection is illustrated in the middle plot of figure 7.

We next state some useful properties of the identified set given in theorem 5.

Proposition 6. Suppose the assumptions of theorem 5 hold. Then:

1. There is a value c∗ ∈ [0, 1] such that Θ0(c)×Θ1(c) is empty for all c ∈ [0, c∗) and is non-empty

for all c ∈ [c∗, 1]. The value c∗ is point identified.

2. For each c ∈ [c∗, 1], the set Θ0(c)×Θ1(c) is a closed, convex polytope in [0, 1]4.

3. The correspondence φ : [c∗, 1] ⇒ [0, 1]2 defined by φ(c) = Θ0(c)×Θ1(c) is continuous.

The value c∗ is the falsification point. In the simple model with a single binary instrument it is

possible to give a closed form expression for the falsification point, but we omit it for brevity. For

part 2, recall that a polytope in [0, 1]4 is a set that can be written as the intersection of finitely many

half-spaces. We use continuity of the correspondence φ below to show that bounds on functionals

like ATE are continuous in c.

We next show how to use theorem 5 to get identified sets for the counterfactual probabilities

P(Yx = 1) and for the average treatment effect. By the law of total probability,

P(Yx = 1) = P(Yx = 1 | Z = 0)P(Z = 0) + P(Yx = 1 | Z = 1)P(Z = 1).
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The weights P(Z = 0) and P(Z = 1) are point identified. The joint identified set for P(Yx = 1 |
Z = 0) and P(Yx = 1 | Z = 1) is given by Θx(c). Thus we can simply minimize and maximize the

above convex combination over this set to obtain the identified set for P(Yx = 1). Hence we define

P x(c) = sup
(a0,a1)∈Θx(c)

(
a0P(Z = 0) + a1P(Z = 1)

)
and

P x(c) = inf
(a0,a1)∈Θx(c)

(
a0P(Z = 0) + a1P(Z = 1)

)
.

These are both finite dimensional linear programs and hence can be computed easily.

Corollary 5. Suppose the assumptions of theorem 5 hold. Then:

1. Let c ∈ [c∗, 1]. The identified set for (P(Y0 = 1),P(Y1 = 1)) is I0(c) × I1(c) where Ix =

[P x(c), P x(c)] for x ∈ {0, 1}.

2. For x ∈ {0, 1}, the functions P x(c) and P x(c) are continuous and monotonic over c ∈ [c∗, 1].

3. Let c ∈ [c∗, 1]. The identified set for ATE is [ATE(c),ATE(c)] where

ATE(c) = P 1(c)− P 0(c) and ATE(c) = P 1(c)− P 0(c).

The falsification adaptive set for P(Yx = 1) is [P x(c∗), P x(c∗)]. This will be a singleton for one

x ∈ {0, 1} and will typically be an interval with a nonempty interior for the other value of x. This

can be seen in figure 7. In the middle plot, P(Yx = 1) is point identified since Θx(c∗) is a singleton.

There is an analogous plot, however, for P(Y1−x = 1 | Z = z). In this plot, the box Hx will typically

not also have a singleton intersection with the diamond D(c∗). Thus P(Y1−x = 1) will typically

be partially identified. This discussion implies that ATE will typically be partially identified at

the falsification point. That is: The falsification adaptive set for ATE, [ATE(c∗),ATE(c∗)], will

generally be an interval with a nonempty interior.

Generalization to Multiple Discrete Instruments

We next consider the case where there are multiple discrete instruments. We relax each instrument

exogeneity condition separately. We derive identified sets for a given relaxation of the instrument

exogeneity conditions. As before, this allows us to derive the falsification frontier and the falsifica-

tion adaptive set.

Suppose we observe L ≥ 1 instruments, Z = (Z1, . . . , ZL) ∈ RL. Let supp(Z`) = {z1
` , . . . , z

J`
` }

for some constant J`. For notational simplicity we only consider the case J` = J for all ` ∈
{1, . . . , L}. As in theorem 5, we will derive the joint identified set for the probabilities

P(Yx = 1 | Z` = zj` )
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for x ∈ {0, 1}, ` ∈ {1, . . . , L}, and j ∈ {1, . . . , J}. For each x ∈ {0, 1}, there are LJ conditional

probabilities. As in the single binary instrument case, we make the following assumption to rule

out trivial cases.

Assumption B2′ For all ` ∈ {1, . . . , L} and j ∈ {1, . . . , J},

1. P(Z` = zj` ) ∈ (0, 1).

2. P(X = 1 | Z` = zj` ) ∈ (0, 1).

Let Z−` denote the vector of instruments without Z`. Z has JL support points while Z−` has

JL−1 support points. Let supp(Z−`) = {z1
−`, . . . , z

JL−1

−` }. By the law of total probability,

P(Yx = 1 | Z` = zj` )

= P(Y = 1 | X = x, Z` = zj` )P(X = x | Z` = zj` )

+
JL−1∑
k=1

P(Yx = 1 | X = 1− x, Z` = zj` , Z−` = zk−`)P(X = 1− x, Z−` = zk−` | Z` = zj` )

= P(Y = 1, X = x | Z` = zj` )

+
JL−1∑
k=1

P(Yx = 1 | X = 1− x, Z` = zj` , Z−` = zk−`)
P(X = 1− x, Z` = zj` , Z−` = zk−`)

P(Z` = zj` )
. (16)

The terms

P(Y = 1, X = x | Z` = zj` ) and
P(X = 1− x, Z` = zj` , Z−` = zk−`)

P(Z` = zj` )

are observed directly in the data. In contrast, the probabilities

P(Yx = 1 | X = 1− x, Z` = zj` , Z−` = zk−`)

are not observed. We do know that they must lie in the interval [0, 1], however. For each x ∈ {0, 1},
there are JL of these unknown probabilities. Thus for each x ∈ {0, 1} the LJ probabilities P(Yx =

1 | Z` = zj` ) are determined by a system of LJ known linear functions of JL unknowns which are

all bounded between 0 and 1. Denote this set by

Hx =
{

a ∈ [0, 1]LJ : a = bx + Axq for some q ∈ [0, 1]J
L
}

(17)

where bx ∈ RLJ is defined by

[bx](`−1)J+j = P(Y = 1, X = x | Z` = zj` )
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for ` ∈ {1, . . . , L}, j ∈ {1, . . . , J} and Ax ∈ RLJ×JL is defined by

[Ax](`−1)J+j,m =
P(X = 1− x, Z = zm)

P(Z` = zj` )
1
(
[zm]` = zj`

)
for ` ∈ {1, . . . , L}, j ∈ {1, . . . , J}, m ∈ {1, . . . JL}. Here we use zm to denote the mth element of

the support of Z.

Although this notation is a bit complicated, it is simply the vector description of equation (16)

above: The elements of bx are the intercepts, while the non-zero elements of the matrix Ax are

elements of the form

P(X = 1− x, Z−` = zk−` | Z` = zj` )

for some ` ∈ {1, . . . , L}, j ∈ {1, . . . , J}, and k ∈ {1, . . . , JL−1}.
As in the single instrument case, this set Hx is the identified set for the joint vector of P(Yx =

1 | Z` = zj` ) probabilities with no assumption on the dependence between Yx and each instrument

Z`. We next consider constraints on this dependence. As before, we relax independence using

c-dependence. Specifically, we make the following assumption.

Assumption B1′′ (Instrument partial exogeneity). For each ` ∈ {1, . . . , L}, let c` be a scalar

between 0 and 1. Then

|P(Z` = zj` | Yx = yx)− P(Z` = zj` )| ≤ c`

for each j ∈ {1, . . . , J}, ` ∈ {1, . . . , L}, yx ∈ supp(Yx), and x ∈ {0, 1}.

This assumption generalizes c-dependence to allow for multiple discrete instruments. As in the

single binary instrument case, c` = 0 implies Yx ⊥⊥ Z`, while c` > 0 allows for some dependence.

Importantly, we allow c` to vary across instruments. Let c = (c1, . . . , cL).

As shown in theorem 6 below, the set

D(c) =
L∏
`=1

D`(c`)
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where

D`(c`) =

{
a ∈ [0, 1]J : For all j = 1, . . . , J, (18)

P(Z` = zj` )aj −min{P(Z` = zj` ) + c`, 1}
J∑
k=1

P(Z` = zk` )ak ≤ 0,

P(Z` = zj` )aj −max{P(Z` = zj` )− c`, 0}
J∑
k=1

P(Z` = zk` )ak ≥ 0,

P(Z` = zj` )(1− aj)−min{P(Z` = zj` ) + c`, 1}
J∑
k=1

P(Z` = zk` )(1− ak) ≤ 0,

P(Z` = zj` )(1− aj)−max{P(Z` = zj` )− c`, 0}
J∑
k=1

P(Z` = zk` )(1− ak) ≥ 0

}

characterizes the constraints that B1′′ imposes on the probabilities P(Yx = 1 | Z` = zj` ). This set

D(c) generalizes the parallelogram defined by equation (14). As in the single binary instrument

case, it is defined by a finite number of linear inequalities.

Let

Θx(c) = D(c) ∩Hx

denote the intersection of these generalized diamond and box sets.

Theorem 6. Consider the binary outcome, binary treatment model (11). Suppose the joint dis-

tribution of (Y,X,Z) is known. Suppose B1′′ and B2′ hold. For x ∈ {0, 1}, let

px =
{
P(Yx = 1 | Z` = zj` ) : ` ∈ {1, . . . , L}, j ∈ {j, . . . , J}

}
.

Then the identified set for (p0, p1) is Θ0(c)×Θ1(c). Consequently, the model is falsified if and only

if this set is empty.

This result is a direct generalization of theorem 5. All of the discussion and interpretation there

applies here as well. One new issue arises: The baseline model, c = (0, . . . , 0), is falsifiable even if

none of the instruments are falsifiable themselves. That is, consider the model that imposes Yx⊥⊥Z`
but no constraints on the statistical dependence between the other instruments Z−` and Yx. We

can obtain this model by setting c = ι − e` where ι is a vector of 1’s and e` is the unit vector.

Suppose this model is not falsified, regardless of which instrument ` we choose to impose exogeneity

on. Despite this, it is nonetheless possible that the baseline model c = (0, . . . , 0) is falsified. In this

case the instruments are incompatible with each other.

As in proposition 6 in the single binary instrument case, we next state some useful properties

of the identified set given in theorem 6.

Proposition 7. Suppose the assumptions of theorem 6 hold. Then:
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1. There is a closed set C ⊆ [0, 1]L such that Θ0(c)×Θ1(c) is non-empty for all c ∈ C. The set

C is point identified.

2. For each c ∈ C, the set Θ0(c)×Θ1(c) is a closed, convex polytope.

3. The correspondence φ : C ⇒ [0, 1]2LJ defined by φ(c) = Θ0(c) × Θ1(c) is continuous at any

c ∈ C such that int(Hx) ∩ int(D(c)) 6= ∅ for x ∈ {0, 1}.

The set C is the set of all instrument partial exogeneity assumptions which do not refute the

model. The complement of this set is the set of all instrument partial exogeneity assumptions which

are refuted. The falsification frontier in this case is defined as follows. Let

S<c = {c̃ ∈ [0, 1]L : c̃ < c}

be the set of points which are smaller than c. Then

FF = {c ∈ [0, 1]L : S<c ⊆ ([0, 1]L \ C)}. (19)

This is the set of all points c such that any points smaller than c are not in C. This frontier is

identified from the data since C is defined implicitly by {Θ0(c)×Θ1(c) : c ∈ [0, 1]L}, which is point

identified.

We next show how to use theorem 6 to get identified sets for counterfactual probabilities P(Yx =

1) and for the average treatment effect. Define

P x(c) = sup
a∈Θx(c)

J∑
j=1

L∑
`=1

a(`−1)J+jP(Z` = zj` )

and

P x(c) = inf
a∈Θx(c)

J∑
j=1

L∑
`=1

a(`−1)J+jP(Z` = zj` ).

As in the single binary instrument case, these are both finite dimensional linear programs and hence

can be computed easily.

Corollary 6. Suppose the assumptions of theorem 6 hold. Then:

1. Let c ∈ C. The identified set for (P(Y0 = 1),P(Y1 = 1)) is I0(c) × I1(c) where Ix =

[P x(c), P x(c)].

2. For x ∈ {0, 1}, the functions P x(c) and P x(c) are continuous at any c ∈ C such that int(Hx)∩
int(D(c)) 6= ∅. Moreover, they are monotonic in each component of c.

3. Let c ∈ C. The identified set for ATE is [ATE(c),ATE(c)] where

ATE(c) = P 1(c)− P 0(c) and ATE(c) = P 1(c)− P 0(c).
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In the single binary instrument case, there is a simple closed form expression for the falsification

point c∗. Consequently, computing the falsification adaptive set for ATE can be done easily by using

linear programming to compute P x(c∗) and P x(c∗). In the multiple discrete instrument case, there

is not a simple closed form expression for the falsification frontier. Nonetheless, it can be computed

by a sequence of convex optimization problems. Specifically, the sets D(c) and Hx are polytopes

in RLJ . Define the ‘distance’ between these polytopes as

dist(D(c),Hx) = inf
(v1,v2)∈D(c)×Hx

‖v1 − v2‖.

The model is refuted if and only if dist(D(c),Hx) > 0 for some x ∈ {0, 1}. For any c, the distance

between these polytopes can be computed via convex optimization. Thus one can do a grid search

over c and collect all values where the distance is zero for both x ∈ {0, 1}, and hence the model is not

refuted. This is a numerical approximation to the set C. We can then use this set to approximate

the falsification frontier.

Given this approximate falsification frontier, we can compute the falsification adaptive set for

ATE as follows. For any c, we can compute P x(c) and P x(c) via linear programming, since the

objective function is linear and the constraint set is a polytope in RLJ . Thus we can simply compute

these bounds for all c ∈ FF. The union of those bounds is the falsification adaptive set. Identified

sets for ATE at values of c beyond the falsification frontier can be computed similarly.

5.2 Continuous Outcomes

In section 5.1 we considered binary outcomes, binary treatment, and multiple discrete instruments.

In this case, the joint distribution of the data is characterized by a finite dimensional vector. It

is well known that with discretely distributed data identified sets can often be computed using

linear programming; see our literature review in appendix A. There are two advantages, however,

to deriving analytical results like those of theorems 5 and 6. First, they can explain the role of

identifying assumptions, as illustrated in figures 6 and 7. Second, they allow us to generalize the

results to cases where brute force computation is costly or impossible. In this section, we show that

the analytical results we derived under binary outcomes generalize to continuous outcomes. This

leads us to a relatively simple and feasible approach for computing identified sets, falsification fron-

tiers, and the falsification adaptive set under relaxations of instrument exogeneity with continuous

outcomes.

We begin by assuming that outcomes are continuously distributed.

Assumption C1. For any x, x′ ∈ {0, 1} and z ∈ {0, 1}L, the distribution of Yx | X = x′, Z = z is

continuous with respect to the Lebesgue measure.

Assumption C1 supposes that, conditional on the treatment and instruments, potential out-

comes are continuously distributed. It implies that, conditional on the treatment and instruments,

observed outcomes are also continuously distributed. We also suppose there are L binary instru-
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ments Z = (Z1, . . . , ZL). We can allow for discrete instruments as in section 5.1, but we only

consider binary instruments to simplify the notation.

Let P(A) denote the set of densities (with respect to the Lebesgue measure) with support

contained in A. This set can be written as

P(A) =

{
p :

∫
A
p(y) dy = 1, p(y) ≥ 0 for all y ∈ R

}
.

We begin by considering the baseline case where the instruments are exogenous. When there is just

a single instrument, this setting was studied in Kitagawa (2009). The following result is essentially

his proposition 3.1.

Proposition 8. Let L = 1. Suppose C1 (continuous outcomes) and B1 (instrument exogeneity)

hold. For each x ∈ {0, 1}, let Yx be a known set and suppose supp(Yx) ⊆ Yx. Then the identified

set for (fY1 , fY0) is{
f1 ∈ P(Y1) : f1(·) ≥ max

z=0,1
fY,X|Z(·, 1 | z)

}
×
{
f0 ∈ P(Y0) : f0(·) ≥ max

z=0,1
fY,X|Z(·, 0 | z)

}
.

Consequently, the model is refuted if∫
Yx

max
z=0,1

fY,X|Z(y, x | z) dy > 1

for some x ∈ {0, 1}.

The assumption that supp(Yx) ⊆ Yx is not restrictive since we can let Yx = R, but this notation

allows us to impose bounds on the support if they are known.

We generalize proposition 8 in two ways. First, we consider an arbitrary number L of binary

instruments. Second, we relax instrument exogeneity B1 to instrument partial exogeneity B1′′.

As discussed above, our proof strategy generalizes the result in section 5.1. Independence of each

instrument with each potential outcome requires that

fYx|Z`(y | 1) = fYx|Z`(y | 0)

for all y ∈ R and ` ∈ {1, . . . , L}. This constraint is analogous to the diagonal constraint in the

left plots of figures 6 and 7. The c-dependence assumption B1′′ does not require the densities

fYx|Z`(· | z) to be the same for all z ∈ {0, 1}, but it bounds the variation across z by a magnitude

determined by the vector c of sensitivity parameters. We make this constraint precise below.

Analogously to section 5.1, we will derive the joint identified set for the conditional densities

{
fYx|Z`(· | z) : x ∈ {0, 1}, z ∈ {0, 1}, ` ∈ {1, . . . , L}

}
under instrument partial exogeneity. We define the following notation for these densities. For all
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` ∈ {1, . . . , L} and x ∈ {0, 1}, let

fYx|Z` =

(
fYx|Z`(· | 0)

fYx|Z`(· | 1)

)
∈ P(supp(Yx | Z` = 0))× P(supp(Yx | Z` = 1))

and

(fYx|Z`)all ` =


fYx|Z1

...

fYx|ZL

 ∈ L∏
`=1

(
P(supp(Yx | Z` = 0))× P(supp(Yx | Z` = 1))

)
.

Thus we will derive the joint identified set for the vectors (fY0|Z`)all ` and (fY1|Z`)all `.

This identified set has a structure analogous to that in section 5.1. Thus we first define the

continuous outcome generalization of the set D(c) defined in equations (14) and (18). To do this,

define

k`z(c`) =
P(Z` = z) max{P(Z` = 1− z)− c`, 0}
P(Z` = 1− z) min{P(Z` = z) + c`, 1}

for ` ∈ {1, . . . , L} and z ∈ {0, 1}. This function generalizes equation (13). For each x ∈ {0, 1},
let Yx be a known set. We assume this set contains the support of Yx | X,Z for all values of the

conditioning variables. Define

Dx,`(c`) =
{

(f(· | 0), f(· | 1)) ∈ P(Yx)2 : f(· | 0)k`0(c`) ≤ f(· | 1) and f(· | 1)k`1(c`) ≤ f(· | 0)
}

for ` ∈ {1, . . . , L} and x ∈ {0, 1}. This set generalizes equations (14) and (18). It depends on

x ∈ {0, 1} only via the possibility that Yx might depend on x. Finally, take the product to get

Dx(c) =
L∏
`=1

Dx,`(c`)

We will show that Dx(c) is the set of densities (fYx|Z`)all ` consistent with c-dependence (B1′′). Note

that setting c` = 0 implies that fYx|Z` = fYx , as required by the baseline model.

Next we generalize the set Hx defined in equations (15) and (17). With continuous outcomes

this will be the set of proper densities (fYx|Z`)all ` consistent with the observed data. Let Ax be the

2L× 2L matrix such that for ` ∈ {1, . . . , L} and m ∈ {1, . . . , 2L}:

[Ax](`−1)2+1,m =
P(X = 1− x, Z = zm)

P(Z` = 0)
1
(
[zm]` = 0

)
and

[Ax](`−1)2+2,m =
P(X = 1− x, Z = zm)

P(Z` = 1)
1
(
[zm]` = 1

)
.
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Here we use zm to denote the mth element of the support of Z. Let

fY,X|Z`(·, x) =

(
fY,X|Z`(·, x | 0)

fY,X|Z`(·, x | 1)

)
and (fY,X|Z`(·, x))all ` =


fY,X|Z1

(·, x)
...

fY,X|ZL(·, x)

 .

These are vectors of observed densities of outcomes and treatment conditional on different instru-

ments. Define

Hx =
{

fx ∈ P(Yx)2L : fx = (fY,X|Z`(·, x))all ` + Axq for some q ∈ P(Yx)2L
}
.

This set generalizes equation (17). Finally, let

Θx(c) = Dx(c) ∩Hx.

Theorem 7. Consider the continuous outcome, binary treatment model (11). Suppose the joint

distribution of (Y,X,Z) is known. Suppose C1, B1′′, and B2′ hold. For each x ∈ {0, 1}, let Yx be

a known set and suppose supp(Yx | X = x′, Z = zm) ⊆ Yx for all x′ ∈ {0, 1} and m ∈ {1, . . . , 2L}.
Then the identified set for ((fY0|Z`)all `, (fY1|Z`)all `) is

Θ0(c)×Θ1(c).

Consequently, the model is falsified if and only if this set is empty.

As in proposition 8, knowledge of the set Yx is not restrictive since we can let Yx = R, but this

notation allows us to impose bounds on its support if they are known. We could also generalize

this set to allow it to vary with x′ and zm, at the cost of additional notation.

The identified set Θ0(c) × Θ1(c) is a convex set of functions defined by linear equality and

inequality constraints. It weakly expands as components of c increase. It nests the identified set

under the baseline independence assumption (c = 0) and the identified set under no assumptions

on the dependence between potential outcomes and instruments (c = ιL, an L-vector of ones).

For a given c, this identified set can be empty, which implies the model at that c is falsified.

Define

C = {c ∈ [0, 1]L : Θ0(c)×Θ1(c) 6= ∅}.

This is the set of all partial exogeneity assumptions which are not refuted. It has the property

that c ∈ C and c′ ≥ c implies c′ ∈ C. Using this set, we can compute the falsification frontier as in

equation (19).

As in section 5.1, we can obtain the identified set for functionals of the densities fYx|Z` via

53



convex optimization. For example, the identified set for (fY0(·), fY1(·)) is I0(c)× I1(c) where

Ix(c) = {f ∈ P(Yx) : f(·) = fYx|Z1
(· | 0)P(Z1 = 0) + fYx|Z1

(· | 1)P(Z1 = 1)

where (fYx|Z1
(· | 0), fYx|Z1

(· | 1)) is the first component of some (fYx|Z`)all ` in Θx(c) }.

Given this identified set, suppose we are interested in a linear functional

Γ(f1, f0) =

∫
Y1
ω1(y1)f1(y1) dy1 +

∫
Y0
ω0(y0)f0(y0) dy0

where ω1 and ω0 are known weight functions. For example, with ω1(y) = y and ω0(y) = −y,

Γ(f1, f0) equals the average treatment effect. Let

Γ(c) = sup
f1∈I1(c)

∫
Y1
ω1(y1)f1(y1) dy1 + sup

f0∈I0(c)

∫
Y0
ω0(y0)f0(y0) dy0

and

Γ(c) = inf
f1∈I1(c)

∫
Y1
ω1(y1)f1(y1) dy1 + inf

f0∈I0(c)

∫
Y0
ω0(y0)f0(y0) dy0.

Then [Γ(c),Γ(c)] is the closure of the identified set for Γ(fY1 , fY0). This follows by convexity of

the identified set in theorem 7. These bounds are weakly increasing in each component of c. We

discuss computation next.

Computation

The identified set Θ0(c)×Θ1(c) is infinite dimensional, since it is a set of nonparametric densities.

Suppose we are interested in linear functionals Γ(f1, f0). Even though the corresponding identified

set—when it is nonempty—is an interval, we have characterized it via optimization over the infinite

dimensional spaces Θx(c). Here we discuss one approach to computing these identified sets in

practice. When the baseline model is falsified, this will also allow us to compute approximations

to the falsification frontier and the falsification adaptive set. Specifically, we will approximate

the infinite dimensional space of densities of interest by a finite dimensional sieve space. Similar

approximations of identified sets have been used in Mogstad, Santos, and Torgovitsky (2018), for

example. Alternatively, it is likely that the computational approach developed in Christensen and

Connault (2019) could be adapted to our setting. Unlike the sieve based approach we consider

below, the dimension of their optimization problem does not depend on the precision of the density

approximation. We leave the application of their approach to our problem to future work.

For simplicity, let Yx = [0, 1] for x ∈ {0, 1}. This restriction can be relaxed by transforming the

outcome variable to have support in the unit interval. We also assume that for any x, x′ ∈ {0, 1}
and z ∈ {0, 1}L the density fYx|X,Z(· | x′, z) is continuous on [0, 1]. Let P̃([0, 1]) denote this set of
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continuous pdfs. Let

FM =

{
fM (y) =

M∑
m=0

ambm(y) : (a1, . . . , aM ) = aM ∈ AM
}

=
{
fM (y) = aM ′bM (y) : aM ∈ AM

}
where AM ⊆ RM and {bm(·)} are known basis functions. We assume that every element of P̃([0, 1])

can be approximated by a sequence of elements in FM as M → ∞. For example, FM could be a

set of Bernstein polynomials, which can uniformly approximate any continuous function on [0, 1].

For Bernstein polynomials,

AM =

{
aM : am ≥ 0,

M∑
m=0

am = 1

}
.

Hence AM is a closed, bounded, and convex subset of RM .

To approximate Θx(c) = Dx(c) ∩ Hx, we approximate each of the sets Dx(c) and Hx. We first

consider a finite dimensional approximation to the set Dx(c). Since Yx = [0, 1] does not depend on

x, we let D(c) = Dx(c). Let

DM` (c`) =

{
(f(· | 0), f(· | 1)) =

(
aM (0)′bM (·), aM (1)′bM (·)

)
: aM (0),aM (1) ∈ AM ,(

aM (0)k`0(c`)− aM (1)
)′

bM (y) ≤ 0 and(
aM (1)k`1(c`)− aM (0)

)′
bM (y) ≤ 0 for all y ∈ [0, 1]

}
.

Define the set

AM` (c`) =

{(
aM (0),aM (1)

)
∈ AM ×AM :

(
aM (0)k`0(c`)− aM (1)

)′
bM (y) ≤ 0 and

(
aM (1)k`1(c`)− aM (0)

)′
bM (y) ≤ 0 for all y ∈ [0, 1]

}
.

Then

DM` (c`) =
{

(f(· | 0), f(· | 1)) =
(
aM (0)′bM (·),aM (1)′bM (·)

)
:
(
aM (0),aM (1)

)
∈ AM` (c`)

}
.

The set AM` (c`) is closed and convex since it is defined by a finite number of weak inequalities. There

are a continuum of inequalities, however. In practice, we also approximate AM` (c`) as follows. Pick

a grid of points {y1, . . . , yN} ⊆ [0, 1] that becomes dense in [0, 1] as N → ∞. Then let AM,N
` (c`)
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be the set of coefficients aM (0) and aM (1) satisfying(
aM (0)k`0(c`)− aM (1)

)′
bM (yn) ≤ 0

and (
aM (1)k`1(c`)− aM (0)

)′
bM (yn) ≤ 0

for all n ∈ {1, . . . , N}. This is a finite set of linear inequalities. We keep the N implicit in the

notation from here on.

Approximate the overall set D(c) by the product

DM (c) =
L∏
`=1

DM` (c`).

This set is characterized by

AM (c) =
L∏
`=1

AM` (c`),

a closed, convex, and bounded set in R2ML.

We similarly approximate Hx by a finite dimensional set. Let

fY |X,Z`(· | x) =

(
fY |X,Z`(· | x, 0)

fY |X,Z`(· | x, 1)

)
and (fY |X,Z(· | x))all ` =


fY |X,Z1

(· | x)
...

fY |X,ZL(· | x)

 .

These conditional pdfs are point identified directly from the data. For each z ∈ {0, 1}, we approx-

imate fY |X,Z`(· | x, z) by

fMY |X,Z`(· | x, z) =

M∑
m=0

ξ`(x, z)mbm(·)

= ξ`(x, z)
M ′bM (·)

where {bm(·)} are known basis functions. When these basis functions are orthonormal, so that∫ 1

0
bm(y)bn(y) dy = 1(m = n),

this approximation can be obtained choosing

ξ`(x, z)m =

∫ 1

0
fY |X,Z`(y | x, z)bm(y) dy.
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More concretely, if we use a Bernstein polynomial approximation, then

ξ`(x, z)m = fY |X,Z`

(m
M
| x, z

)
.

Here we have approximated the conditional distribution of Y | X,Z. But Hx is defined in terms of

distributions of (Y,X) | Z. We can write the vector (fY,X|Z(y, x))all ` as

(fY,X|Z(y, x))all ` = Bx(fY |X,Z(y | x))all `

where

Bx =


P(X = x | Z1 = 0) 0 . . . 0

0 P(X = x | Z1 = 1) . . . 0
...

...
. . .

...

0 0 . . . P(X = x | ZL = 1)

 .

Hence its approximation can be written as

(fY,X|Z(y, x))all ` = BxΞMbM (y)

where

ΞM =



ξ1
1(x, 0) ξ2

1(x, 0) . . . ξM1 (x, 0)

ξ1
1(x, 1) ξ2

1(x, 1) . . . ξM1 (x, 1)
...

...
. . .

...

ξ1
L(x, 0) ξ2

L(x, 0) . . . ξML (x, 0)

ξ1
L(x, 1) ξ2

L(x, 1) . . . ξML (x, 1)


.

Next, approximate P(Yx)2L by

{
f(·) = ΓbM (·) : γM1 , . . . , γM2L ∈ AM

}
where

Γ =


γM ′1

...

γM ′
2L


is a 2L ×M matrix of coefficients. Thus we approximate Hx by

HMx =
{
f(y) = (BxΞM + AxΓ)bM (y) : γ1, . . . , γ2L ∈ AM

}
= {f(y) = EMbM (y) : EM ∈ BxΞM + AxA2L

M }.

If AM is closed, convex, and bounded, the affine mapping

BxΞM + AxA2L

M
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will also be closed, convex, and bounded.

Thus we approximate the identified set for ((fY0|Z`)all `, (fY1|Z`)all `) by

ΘM
0 (c)×ΘM

1 (c) =
(
DM (c) ∩HM0

)
×
(
DM (c) ∩HM1

)
where

DM (c) ∩HMx =
{

f(y) = EMbM (y) : EM ∈ AM (c) ∩ (BxΞM + AxA2L

M )
}
.

This approximate identified set is empty—and hence the approximate model is falsified—if the set

AM (c) ∩ (BxΞM + AxA2L

M )

is empty for either x = 0 or x = 1. These two sets are finite dimensional polytopes. Hence it is

computationally tractable to compute the distance between them,

dist(AM (c), BxΞM + AxA2L

M ) = inf
(v1,v2)∈AM (c)×(BxΞM+AxA2L

M )

‖v1 − v2‖,

for any given c. Since they are closed, convex, and bounded, the approximate model will be

non-refuted if and only if

dist(AM (c), BxΞM + AxA2L

M ) = 0.

This characterization can be used to compute an approximate falsification frontier as well as an

approximate falsification adaptive set.

Although we omit a full analysis, we expect the identified sets ΘM
0 (c) × ΘM

1 (c) will converge

to Θ0(c)×Θ1(c) as M →∞ under suitable regularity conditions. Consequently, the approximate

falsification frontier and falsification adaptive sets should also converge as M → ∞. Finally, the

value of M can be chosen large enough so that the approximate objects of interest change by less

than a preset tolerance for further increases in M .

6 Conclusion

Summary

In this paper we outlined a systematic and constructive answer to the question “What should

researchers do when their baseline model is refuted?” Our answer focuses on what can be learned

from falsified models, rather than treating falsification as a nuisance to be ignored or as a fatal flaw

which dooms a study.

We gave four recommendations. First: Measure the extent of falsification. Do this by defining

continuous relaxations of the key identifying assumptions of interest, and then relaxing these as-

sumptions until the model is no longer falsified. We call the set of points at which this happens

the falsification frontier. Second: Present the falsification adaptive set, the identified set for the

parameter of interest under the assumption that the true model lies somewhere on the falsifica-
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tion frontier. This second recommendation is a generalization of standard practice for non-refuted

baseline models. Moreover, it does not require the researcher to select or calibrate sensitivity pa-

rameters. Third: Present the identified set for selected points of interest on the falsification frontier.

Fourth: Present identified sets for points beyond the falsification frontier, as a further sensitivity

analysis.

We illustrated these four recommendations in two different overidentified instrumental variable

models. The first model imposes homogeneous treatment effects but allows for continuous treat-

ments, while the second model allows for heterogeneous treatment effects but focuses on binary

treatments. In both models, multiple instruments are observed and the key identifying assump-

tions are exclusion and exogeneity of each instrument. We considered continuous relaxations of

these assumptions. We then characterized the falsification frontier, the falsification adaptive set,

and identified sets for points beyond the frontier. In the homogeneous treatment effect model, the

falsification adaptive set has a particularly simple closed form expression, depending only on the

value of a handful of 2SLS regression coefficients. In the heterogeneous treatment effect model, the

falsification adaptive set can be quickly computed using convex optimization.

We showed how to use our results in four substantively different empirical applications. There

we emphasized that that falsification adaptive set is an informative complement to traditional

overidentification test p-values: It directly summarizes the range of estimates corresponding to

non-falsified alternative models. We also emphasized the importance of controlling for the possibly

invalid instruments when considering alternative models.

Future Research

In this paper we outlined our general approach and then applied it to the classical linear instru-

mental variable model. The falsification frontier and falsification adaptive sets, however, must

generally be derived separately for each baseline model and class of relaxations from those baseline

assumptions. Thus in future work we plan to do this kind of analysis for different baseline mod-

els and different classes of relaxations. Here we focused on instrumental variable models. Other

possible applications include various kinds of placebo tests, like those discussed in Heckman and

Hotz (1989). It may also be possible to derive results for a general class of models, by applying

the results of Chesher and Rosen (2017) or Torgovitsky (2019), for example. Such extensions are

important since—just like the choice of the baseline assumptions—the choice of relaxation matters.

Hence comparing empirical results for different relaxations will be informative.

Finally, in this paper we focused on population level analysis. We briefly discussed estimation

and inference in sections 2.5 and 3.4, but a full analysis of this remains for future work.
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Lafférs, L. (2018): “Bounding average treatment effects using linear programming,” Empirical
Economics, 1–41.

——— (2019): “Identification in models with discrete variables,” Computational Economics, 53,
657–696.

Lechicki, A. and A. Spakowski (1985): “A note on intersection of lower semicontinuous multi-
functions,” Proceedings of the American Mathematical Society, 95, 119–122.

Liu, T.-C. (1955): “A simple forecasting model for the US economy,” International Monetary
Fund Staff Papers, 4, 434–466.

——— (1960): “Underidentification, structural estimation, and forecasting,” Econometrica, 28,
855–865.

——— (1963): “Structural estimation and forecasting: A critique of the Cowles commission
method,” Tsing Hua Journal of Chinese Studies, 4, 152–171.

Ludvigson, S. C. (2013): “Advances in consumption-based asset pricing: Empirical tests,” in
Handbook of the Economics of Finance, Elsevier, vol. 2, 799–906.

Machado, C., A. Shaikh, and E. Vytlacil (2019): “Instrumental variables and the sign of
the average treatment effect,” Journal of Econometrics, 212, 522–555.

Manski, C. F. (1990): “Nonparametric bounds on treatment effects,” American Economic Review
P&P, 80, 319–323.

——— (2003): Partial Identification of Probability Distributions, Springer.

Manski, C. F. and J. V. Pepper (2000): “Monotone instrumental variables: With an application
to the returns to schooling,” Econometrica, 68, 997–1010.

——— (2009): “More on monotone instrumental variables,” The Econometrics Journal, 12, S200–
S216.

——— (2018): “How do right-to-carry laws affect crime rates? Coping with ambiguity using
bounded-variation assumptions,” The Review of Economics and Statistics, 100, 232–244.

Manski, C. F. and E. Tamer (2002): “Inference on regressions with interval data on a regressor
or outcome,” Econometrica, 70, 519–546.

64



Masten, M. A. and A. Poirier (2018a): “Identification of treatment effects under conditional
partial independence,” Econometrica, 86, 317–351.

——— (2018b): “Salvaging falsified instrumental variable models,” arXiv preprint
arXiv:1812.11598.

——— (2019): “Inference on breakdown frontiers,” Quantitative Economics (forthcoming).

Matzkin, R. L. (2007): “Nonparametric identification,” Handbook of Econometrics, 6, 5307–5368.

Mogstad, M., A. Santos, and A. Torgovitsky (2018): “Using instrumental variables for
inference about policy relevant treatment parameters,” Econometrica, 86, 1589–1619.

Molinari, F. (2019): “Econometrics with partial identification,” The Handbook of Econometrics
(forthcoming).

Moon, H. R. and F. Schorfheide (2012): “Bayesian and frequentist inference in partially
identified models,” Econometrica, 80, 755–782.

Nevo, A. (2000): “Mergers with differentiated products: The case of the ready-to-eat cereal
industry,” The RAND Journal of Economics, 31, 395–421.

——— (2001): “Measuring market power in the ready-to-eat cereal industry,” Econometrica, 69,
307–342.

——— (2003): “New products, quality changes, and welfare measures computed from estimated
demand systems,” The Review of Economics and Statistics, 85, 266–275.

——— (2011): “Empirical models of consumer behavior,” Annual Reviews of Economics, 3, 51–75.

Nevo, A. and A. M. Rosen (2012): “Identification with imperfect instruments,” The Review of
Economics and Statistics, 94, 659–671.

Newey, W. K. (1985): “Generalized method of moments specification testing,” Journal of Econo-
metrics, 29, 229–256.

Parente, P. M. and J. Santos Silva (2012): “A cautionary note on tests of overidentifying
restrictions,” Economics Letters, 115, 314–317.

Popper, K. R. (1934): The Logic of Scientific Discovery.

Pryor, F. L. (1985): “The invention of the plow,” Comparative Studies in Society and history,
27, 727–743.

Ramsahai, R. R. (2012): “Causal bounds and observable constraints for non-deterministic mod-
els,” Journal of Machine Learning Research, 13, 829–848.

Rockafellar, R. T. (1970): Convex Analysis, Princeton University Press.

Sargan, J. D. (1958): “The estimation of economic relationships using instrumental variables,”
Econometrica, 26, 393–415.

Slichter, D. (2014): “Testing instrument validity and identification with invalid instruments,”
Working paper.

65



Small, D. S. (2007): “Sensitivity analysis for instrumental variables regression with overidentify-
ing restrictions,” Journal of the American Statistical Association, 102, 1049–1058.

Spanos, A. (2018): “Mis-specification testing in retrospect,” Journal of Economic Surveys, 32,
541–577.

Stanford, K. (2017): “Underdetermination of scientific theory,” in The Stanford Encyclopedia of
Philosophy, ed. by E. N. Zalta, Metaphysics Research Lab, Stanford University, winter 2017 ed.

Sundaram, R. K. (1996): A First Course in Optimization Theory, Cambridge University Press.

Swanson, S. A., M. A. Hernán, M. Miller, J. M. Robins, and T. Richardson (2018):
“Partial identification of the average treatment effect using instrumental variables: Review of
methods for binary instruments, treatments, and outcomes,” Journal of the American Statistical
Association, 113, 933–947.

Tebaldi, P., A. Torgovitsky, and H. Yang (2019): “Nonparametric estimates of demand in
the California Health Insurance Exchange,” Working paper.

Torgovitsky, A. (2019): “Partial identification by extending subdistributions,” Quantitative
Economics, 10, 105–144.

van Kippersluis, H. and C. A. Rietveld (2017): “Pleiotropy-robust Mendelian randomiza-
tion,” International Journal of Epidemiology, 47, 1279–1288.

——— (2018): “Beyond plausibly exogenous,” The Econometrics Journal, 21, 316–331.

White, H. (1982): “Maximum likelihood estimation of misspecified models,” Econometrica, 50,
1–25.

——— (1994): Estimation, Inference and Specification Analysis, Cambridge University Press.

Wooldridge, J. M. (1997): “On two stage least squares estimation of the average treatment
effect in a random coefficient model,” Economics Letters, 56, 129–133.

——— (2003): “Further results on instrumental variables estimation of average treatment effects
in the correlated random coefficient model,” Economics Letters, 79, 185–191.

——— (2008): “Instrumental variables estimation of the average treatment effect in the correlated
random coefficient model,” in Modelling and Evaluating Treatment Effects in Econometrics (Ad-
vances in Econometrics, Volume 21), ed. by T. Fomby, R. C. Hill, D. L. Millimet, J. A. Smith,
and E. J. Vytlacil, Emerald Group Publishing Limited, 93–116.

66



Appendices to Accompany

“Salvaging Falsified Instrumental Variable Models”

Matthew A. Masten Alexandre Poirier

Duke University Georgetown University

Table of Contents

This document contains twelve appendices:

A. A detailed review of how our results relate to the previous literature.

B. A discussion of five alternative responses to falsification from the literature.

C. An alternative approach to defining falsification points.

D. A discussion of Bayesian approaches to falsification, and how it relates to our results.

E. An analysis of the implications of using affine transformations of one’s original instruments,
in the the linear model.

F. An extension of our linear model analysis to allow for covariates. Here we consider both linear
and nonparametric controls. We then use these results to show how to use our approach to
falsification to analyze subgroups.

G. A formal explanation that exclusion and exogeneity are technically equivalent in linear models,
although they are substantively distinct.

H. An analysis of the 2SLS estimand in falsified models, and a comparison of it with the falsifi-
cation adaptive set.

I. A discussion of how to interpret non-falsified models, and how our results relate to the previous
literature on this topic.

J. Additional empirical results for the Duranton et al. (2014) application.

K. Proofs for section 3.

L. Proofs for section 5.

67



A Related Literature

In this section, we review the related literature.

Falsification

We begin with the literature on falsification. Typically a model entails many different assumptions.
Although we can sometimes falsify all assumptions jointly, it is often impossible to know which
specific assumption is false. This result is known in philosophy as the Duhem-Quine thesis (Bonk
2008, Stanford 2017). For example, Ariew (2018, section 2.1) states that “the thesis formed from
the two sub-theses, that (i) since empirical statements are interconnected, they cannot be singly
disconfirmed, and (ii) if we wish to hold a particular statement true we can always adjust another
statement, has become known as the Duhem-Quine thesis.” That is, the general idea that one
can consider trade-offs between assumptions to avoid falsification of any given assumption is well
known in philosophy. Our paper builds on this literature by providing a specific formalization of
this trade-off using identification theory.

In econometrics, three papers are most closely related. Of these, the conceptually closest is
Manski and Pepper (2018). They study identification of treatment effects under combinations of
different “bounded variation” assumptions, which are continuous relaxations of certain baseline
assumptions. In an empirical analysis of right-to-carry laws, they compute identified sets for var-
ious combinations of these relaxations; see their table 2. Our recommended responses to baseline
falsification can be read from this table. First, the boundary between the dark gray identified sets
in that table and the rest is essentially a discrete approximation to the falsification frontier in their
model. Second, the collection of the singleton identified sets on this boundary is what we call the
falsification adaptive set. Third, given all of the separate presented singleton identified sets on the
frontier, one can focus on any single set of interest. Finally, they also present identified sets beyond
the frontier. In our paper, we formally define the falsification frontier and falsification adaptive set
in a general model and relate it to the problem of responding to specification test rejection. We
emphasize that these concepts and the four responses apply to any falsified model, not just the
specific one considered by Manski and Pepper (2018). Finally, we illustrate these responses using
refutable instrumental variable models, whereas Manski and Pepper (2018) studied a model with
cross sectional and time series variation in treatment rather than variation due to instrumental
variables.

Ramsahai (2012) studies a heterogeneous treatment effect model with a binary outcome, a
binary treatment, and a binary instrument. He defines a continuous relaxation of the instrument
exogeneity assumption and then shows how to numerically compute identified sets for a single
value of this relaxation. He notes that the model can be falsified even if exogeneity does not hold
exactly, and that the model is not falsified if instrument exogeneity is completely relaxed. He does
not formally define and derive the falsification point, however. He also does not consider multi-
dimensional relaxations. On pages 842–843, he notes that “it is not obvious how the methods
described in [his] paper can be extended to compute bounds” as a function of his relaxation. In
our analysis, we show how to compute bounds for any value of our continuous relaxation, and thus
also are able to derive falsification points, falsification frontiers, and the falsification adaptive set.
Unlike him, we also consider multiple instruments as well as models for continuous outcomes and
continuous treatments.

Machado, Shaikh, and Vytlacil (2019) study the testable implications of instrument exogeneity,
sometimes combined with various monotonicity assumptions. They only consider the case where
the outcome, treatment, and instrument are all binary. Their proposition 4.1 characterizes the set of
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distributions of unobservables (potential outcomes, potential treatments, and the instrument) which
falsify instrument exogeneity. In their appendix A, they illustrate this result by parameterizing the
distribution of unobservables. From the set of falsified distributions of unobservables, they pick
the distribution which has the smallest relaxation of the baseline assumption, in a certain sense.
They call this the “minimal detectable violation.” This is equivalent to what we call a falsification
point. We explain this equivalence formally in our appendix C. Beyond this similarity, however,
there are several main differences between our paper and theirs. First, they only consider the case
where outcomes are binary, whereas we also consider the continuous outcome case. Second, even
in the binary outcome case their falsification point analysis is based on parametric index model
assumptions. Our analysis of that case does not use such assumptions. Third, they do not consider
the linear case, which allows for continuous treatments. Fourth, they do not consider the multiple
instrument case. Finally, unlike their paper, we characterize identified sets under relaxations of
the baseline assumptions. This allows us to characterize the falsification adaptive set, as well as
identified sets beyond the falsification frontier. In particular, this allows researchers to do sensitivity
analysis even when the baseline model is not falsified.

Before these three papers, a large literature in asset pricing beginning with Hansen and Ja-
gannathan (1991, 1997) developed in response to refutation of models via overidentification tests.
For example, Hansen, Heaton, and Luttmer (1995, page 239) state that their goal “is to shift the
focus of statistical analysis of asset pricing models away from whether the models are correctly
specified and toward measurement of the extent to which they are misspecified” (emphasis added).
Our paper is motivated by the same concern—the falsification frontier provides one way of mea-
suring the extent to which one’s baseline model is misspecified. Besides this shared motivation,
however, the technical approach in our paper is substantially different from that taken in this asset
pricing literature. For an explanation and further discussion of the approach in that literature, see
Ludvigson (2013, section 3.3).

Recent work by D’Haultfoeuille, Gaillac, and Maurel (2018) also has a similar motivation.
They characterize the constraints that the rational expectations assumption places on the marginal
distributions of realized outcomes and subjective expectations. When rational expectations is
refuted, they define minimal deviations from the rational expectations assumption. They then
propose using these minimal deviations as an input to structural estimation. Again, besides a
shared motivation, the technical approach in our paper is substantially different. We also study a
different setting, instrumental variable models.

Finally, many researchers have studied falsifiable partially identified models. As with point
identified models, however, the existing literature focuses on testing the baseline model. For exam-
ple, see Bontemps, Magnac, and Maurin (2012) and Bugni, Canay, and Shi (2015). The results in
Chernozhukov et al. (2013) can also be used for this purpose. The falsification frontier we develop
builds on such baseline tests by characterizing how much the baseline assumptions must be relaxed
before the model is no longer falsified.

The Testable Implications of Instrumental Variable Models

A large literature has studied the testable implications of instrumental variable models, especially
for models with heterogeneous treatment effects. Flores and Chen (2018) and Swanson, Hernán,
Miller, Robins, and Richardson (2018) provide excellent surveys. Here we discuss the results most
related to our paper.

Our analysis of the heterogeneous treatment effect case starts from Manski (1990). He derived
identified sets on average treatment effects assuming potential outcomes are mean independent of
the instrument. When the outcome, treatment, and instrument are all binary, Balke and Pearl
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(1997) characterize when Manski’s bounds are empty, and hence when the model is falsified.8 Kita-
gawa (2009, proposition 3.1) generalizes this characterization to allow for continuous outcomes, still
requiring the treatment and instrument to be binary. As Kitagawa (2009) notes, his extension is an
adaptation of corollary 2.2.1 in Manski’s (2003) analysis of missing data. Beresteanu, Molchanov,
and Molinari (2012, proposition 2.4) further generalize this characterization to allow for continuous
instruments and discrete treatment, for discrete or continuous outcomes. Kédagni and Mourifié
(2019, proposition 1) provide an alternative characterization when instruments and outcomes are
continuous, treatment is binary, and under the stronger assumption that the instrument is inde-
pendent of the potential outcomes jointly; also see proposition 2.5 of Beresteanu et al. (2012) for a
result under this stronger independence assumption.

Our paper builds on these results in two ways. First, and most importantly: These papers
only consider falsification of the baseline model with valid instruments. We consider falsification
of a class of models which nests the baseline case along with continuous relaxations of the baseline
assumptions. This allows us to define and derive the falsification frontier and falsification adaptive
set. Second, for non-falsified models, our results allow researchers to do sensitivity analysis by
relaxing the instrument exogeneity assumption.

Our paper complements these results in one subtle way: These previous papers focus on the
single instrument case whereas we study multiple instruments. If one assumes that all instruments
are jointly independent of potential outcomes, and that instruments are all discrete, then the
multiple instrument case can be reduced to a single instrument, and thus the previous results
apply.9 If even one of the instruments is invalid, however, this new instrument will also typically be
invalid. For this reason, we purposely do not combine multiple instruments into one new instrument.
This allows us to relax each instrument exogeneity assumption separately. In our baseline model, we
only assume that each instrument is independent of each potential outcome, rather than assuming
joint independence of all instruments with each potential outcome. Thus our baseline model with
multiple instruments is slightly weaker than the model obtained by combining the instruments into
a single discrete instrument and then applying one of the papers mentioned above. Hence even the
testable implications we derive in our baseline case are apparently new, although this is a minor
point since our primary contribution is the falsification frontier analysis rather than the baseline
analysis.

Finally, a large literature on the testable implications of instrument exogeneity combined with
other assumptions has developed. Most notably, many papers have studied the testable implications
of the monotonicity assumption of Imbens and Angrist (1994). Flores and Chen (2018) give a
comprehensive review. In this paper we focus on instrument exogeneity only.

Sensitivity Analysis in Homogeneous Effect Instrumental Variable Models

In a series of papers from the mid-1950’s to early 1960’s, Ta-Chung Liu criticized the identify-
ing assumptions used in the Cowles Commission approach to simultaneous equations models (Liu
1955, 1960, 1963). Among other criticisms, he argued that exclusion restrictions are unlikely to

8Balke and Pearl (1997) assume the instrument is independent of the potential outcomes jointly, whereas Manski
(1990) only assumed the instrument is independent of each potential outcome separately. (Here we suppose outcomes
are binary so that mean independence is equivalent to statistical independence.) This difference does not affect
whether the identified set is empty or not, given any fixed distribution of observables. Hence it does not change the
testable implications of the model. When the identified set is not empty, however, this difference can affect the size
of the identified set. See the second paragraph of section 3 in Swanson et al. (2018) for further discussion.

9Another way to directly apply previous results is by looking at one instrument at a time, obtaining bounds using
that instrument only, and then intersecting each of those instrument-specific bounds. This generally does not yield
sharp bounds, however.
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hold exactly, and thus no valid instruments actually exist. Frank Fisher called this a “disturb-
ing argument,” since “its premises apparently cannot be doubted and because its conclusions, if
accepted, imply that the hope of structural estimation by any techniques whatsoever is forlorn
indeed” (Fisher 1961, page 139). Fisher countered this argument, however, by providing perhaps
the first sensitivity analysis of an instrumental variable model. He considered a linear model where
the supposedly excluded variable actually has a nonzero coefficient, with the magnitude of this
coefficient measuring the scale of the deviation from the baseline assumption. He showed that the
bias of k-class estimators—which includes 2SLS—is continuous in this deviation from the exclusion
restriction. He thus argued that it suffices that failures of the exclusion restriction are sufficiently
small—it is not necessary for exclusion to hold exactly. Although Fisher called this paper his
“most important contribution to econometrics” (Fisher 2005, page 545), it apparently was mostly
forgotten for over 40 years.

Around the early 2000’s, however, several papers renewed the study of sensitivity analysis in
linear instrumental variable models. This includes Angrist and Krueger (1994), Altonji, Elder, and
Taber (2005), Small (2007), Conley et al. (2012), Ashley (2009), Kraay (2012), Ashley and Parmeter
(2015), and van Kippersluis and Rietveld (2017, 2018). In section 3, we study the same classical
linear model as all of these papers, along with similar relaxations of the baseline assumptions.
In that section, our main contribution is the analysis of falsification points, frontiers, and the
falsification adaptive set. In contrast, this previous literature has focused on sensitivity analysis
for statistical inference on the treatment variable coefficient. Our results build on Small’s (2007)
equation (8), which characterizes the set of instrument coefficients consistent with the data. Small
focuses on the implications of this characterization for non-rejection of the overidentification test
(see his proposition 1), and then uses this result to do sensitivity analysis for the treatment effect.
In contrast, we focus on the implications of this characterization for falsification.

Sensitivity Analysis in Heterogeneous Effect Instrumental Variable Models

Unlike the literature on models with homogeneous treatment effects, there are far fewer papers on
sensitivity analysis in instrumental variable models with heterogeneous treatment effects. Specifi-
cally, few papers consider continuous relaxations of the baseline instrumental variable assumptions
while still allowing for heterogeneous treatment effects.

An important early paper was Hotz, Mullin, and Sanders (1997), who use a mixture model to
allow for relaxations of the baseline assumptions. There are three main differences with our paper:
First, they only study sensitivity, not falsification. Second, their mixture relaxation is different
from the kind of relaxation we consider. Finally, they focus on the average effect of treatment on
the treated, whereas our sensitivity analysis allows for a broader set of parameters of interest.

When all variables are discrete, it is well known that identified sets can often be computed using
linear programming. For example, see the literature review in Torgovitsky (2019). This approach
has been used in several papers to do sensitivity analysis. One paper is Ramsahai (2012), which we
already discussed above. Lafférs (2019, section 4) considers continuous relaxations of instrument
exogeneity. He then computes identified sets for ATE for several values of this relaxation. In Lafférs
(2018) he applies this approach to various additional forms of continuous relaxations. These three
papers all require all variables to be discrete. A key contribution of our paper is that our results
allow for continuous outcome variables. Furthermore, these papers focus on sensitivity analysis,
rather than falsification (see our discussion of Ramsahai 2012 above, however).

Finally, the paper by Huber (2014) is somewhat related. He studies deviations from the base-
line instrument exogeneity, exclusion, and monotonicity assumptions. These deviations are not
relaxations of the baseline assumption; rather, they point identify LATE given the values of the
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sensitivity parameters. He does not consider parameters besides LATE. Moreover, his sensitiv-
ity analysis does not account for the possibility that the model is falsified. Hence his analysis is
substantially different from ours.

Discrete Relaxations of Instrumental Variable Assumptions

Above we focused on the previous literature which studied continuous relaxations of the baseline
instrumental variables assumptions, like we do. Several papers instead consider discrete relax-
ations. Manski and Pepper (2000, 2009) propose and study the monotone instrumental variable
assumption. Blundell, Gosling, Ichimura, and Meghir (2007) use this assumption in their study of
wage distributions. Kreider and Pepper (2007), Kreider, Pepper, Gundersen, and Jolliffe (2012),
Gundersen, Kreider, and Pepper (2012), and Kreider, Pepper, and Roy (2016) use this assumption
combined with assumptions on measurement error to do sensitivity analysis in various empirical
applications. Chen, Flores, and Flores-Lagunes (2016) also study identification under monotonic-
ity type assumptions on the instrument. Nevo and Rosen (2012) suppose the correlation between
the instrument and the unobservable is of the same sign and smaller than the correlation between
treatment and the unobservable.

As with the other papers discussed above, these papers’ primary goal is to obtain identified
sets on various parameters under assumptions weaker than the standard instrumental variables
assumptions. While our results allow for similar analyses, our primary focus is on falsified models.

Local Versus Global Approaches to Sensitivity Analysis

Several papers use local asymptotics to study various kinds of sensitivity to misspecification. For
example, see Andrews, Gentzkow, and Shapiro (2017), Bonhomme and Weidner (2018), and Arm-
strong and Kolesár (2019). The local asymptotic approach assumes the baseline model is approx-
imately correct, in the sense that the magnitude of model misspecification is about the same size
as the magnitude of sampling uncertainty. When analyzing falsifiable models, this means that the
local approach is designed to handle misspecification which is difficult to detect with specifica-
tion tests. For example, Bonhomme and Weidner (2018) cite the following quote from Huber and
Ronchetti (2009, page 294):

“[such local] neighborhoods make eminent sense, since the standard goodness-of-fit tests
are just able to detect deviations of this order. Larger deviations should be taken care
of by diagnostic and modeling, while smaller ones are difficult to detect and should be
covered (in the insurance sense) by [local] robustness.” [emphasis added]

In this paper we focus on models which are clearly falsified—the “larger deviations” which Huber
and Ronchetti refer to. In these larger deviations, it is known that the model is not approximately
correct. For this reason we take a global approach to sensitivity analysis, which does not rely on
linking the size of model misspecification to the size of sampling uncertainty.

Finally, note that this distinction is empirical relevant since many baseline models are strongly
rejected in practice. For example, both Andrews et al. (2017) and Armstrong and Kolesár (2019)
study the classic automobile data used by Berry, Levinsohn, and Pakes (1995) to estimate a baseline
random coefficients logit model. This model is strongly rejected by the data, however. Specifically,
Armstrong and Kolesár (2019) report that “The J-statistic for testing the hypothesis that all
moments are correctly specified equals 404.7. Consequently, the hypothesis is rejected at the usual
significance levels” (page 34). We deal with empirical findings of large misspecification like this by
taking a global approach.
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B Alternative Responses to Falsification

In this paper we provided four constructive responses to refutation of a baseline model. In this
section, we briefly discuss five alternative responses from the literature.

1. Present the no assumption bounds. This response is nested as a special case of our analysis.
Specifically, in the heterogeneous treatment effects model, the no assumption bounds are
obtained by allowing c` to be sufficiently large for all ` ∈ {1, . . . , L}. In the homogeneous
treatment effects model, the no assumption bounds are (−∞,∞), which is obtained as δ` →∞
for all ` ∈ {1, . . . , L}.

2. Present identified sets under alternative, discrete relaxations of the baseline assumptions. For
example, one could use the analysis of Manski and Pepper (2000, 2009) or Nevo and Rosen
(2012). Even these relaxations are falsifiable, however. When these weaker assumption are
falsified, researchers again face the question of what to do. Our identification assumptions
are not nested with these alternative relaxations. Hence they are complementary and can be
used together with these previous results.

3. Focus on a non-falsified subgroup. We discuss this point formally in section F, so here we
give an informal explanation. Suppose a vector of covariates W is observed. Then the model
may be refuted conditional on some values w ∈ supp(W ) but not conditional on other values.
So one could present results for those subgroups where the model is not refuted. This is
reasonable under either of two assumptions:

(a) You assume treatment effects do not depend on covariates. Thus the subgroup effect
equals the effect for the entire population.

(b) You are specifically interested in a certain subgroup, which happens to be one which
does not refute the model, and you are not interested in other subgroups.

If, however, you care about other subgroups, or the entire population, and you want to allow
for coefficients that are functions of the covariates, then it is not sufficient to focus on non-
falsified subgroups. In section F we formally discuss how you can use our results to handle
the subgroups where the model is refuted and then aggregate up to get identified sets for an
overall treatment effect.

4. Use a specific estimator to redefine the parameter of interest. For example, in a fully para-
metric model one could declare the maximum likelihood estimand to be the parameter of
interest. When the model is falsified, this parameter is called the pseudo-true parameter,
while its estimator is called the quasi-MLE. Note that this approach absolves the researcher
from any need to do specification testing, since interest in the parameter is motivated by the
estimator rather than an underlying model. While this approach is sometimes used, it was
not advocated in White’s original analysis of quasi-MLE. To the contrary, he used quasi-MLE
as a tool for constructing specification tests, emphasizing that

“[if] one has an indication that the parameter estimator is inconsistent for the pa-
rameters of interest” then “the model specification must be carefully re-examined.”
(White 1982, pages 16–17)

He reaches a similar conclusion in his 1994 book:
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“In many cases, the goal of empirical economic research is to test hypotheses about
parameters to which one wishes to attribute economic meaning. It is our view that
this is inappropriate and unjustified without first establishing that the model within
which the hypotheses are being tested is correctly specified to at least some extent.
Otherwise, one may only have confidence that one is testing hypotheses about
[the pseudo-true parameter] θ∗; the economic interpretation desired is untenable.”
(White 1994, pages 346–347)

We concur with this sentiment and focus on methods which hold the parameter of interest
fixed but vary the model assumptions to avoid falsification.

5. Drop the research and move on to a different project. This response has three problems:
(a) It creates a kind of publication bias, since we would never observe analyses with refuted
baseline models. (b) It prevents us from answering certain empirical questions when there
are no good alternative models or datasets. And (c) It treats all falsified models equally; in
contrast, our analysis distinguishes between models which are just barely falsified and those
which are strongly falsified.

C An Alternative Definition of the Falsification Point

In this section we discuss an alternative method of defining the falsification point or frontier. This
alternative approach is motivated by the analysis in appendix A of Machado et al. (2019). For
concreteness, we focus on the binary outcome heterogeneous treatment effects model of section 5.1.
Let

Q = {FY1,Y0,X,Z : This distribution is consistent with the observed data FY,X,Z}.
That is, Q ∈ Q if and only if QX,Z = FX,Z and

QYx|X,Z(· | x, ·) = FY |X,Z(· | x, ·)

for each x ∈ {0, 1}, so that equation (11) holds. For each Q ∈ Q, define

cx(Q) = sup
y∈{0,1}

|PQ(Z = 1 | Yx = y)− PQ(Z = 1)|

Then compute
c∗x = inf

Q∈Q
cx(Q).

Proposition 9. Consider the model of section 5.1. The falsification point is c∗ = max{c∗0, c∗1}.

In sections 3 and 5, we obtain falsification frontiers by characterizing identified sets under a
given relaxation of the assumptions, and then checking when they are empty. A benefit of this
approach is that we can present identified sets for values of the sensitivity parameters on or beyond
the falsification frontier. The approach discussed in the present section provides the falsification
point but does not characterize identified sets for values c ≥ c∗.

Proof of proposition 9. Let c ≥ c∗. Then, c ≥ c∗x for x ∈ {0, 1}. Thus, by definition of c∗x, there
exists a distribution Qx ∈ Q under which Z is c-dependent with Yx, for each x ∈ {0, 1}. Define
QY1,Y0,X,Z as follows: Let QX,Z = FX,Z . Next, define

QY1,Y0|X,Z = Q1
Y1|X,Z ·Q

0
Y0|X,Z .
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Then (a) Q ∈ Q, so that it is consistent with the data, and (b) under Q, Z is c-dependent with Yx
for each x ∈ {0, 1}. Thus the model under partial exogeneity with c-dependence is not falsified.

Next suppose c < c∗. Then cx(Q) > c for all Q ∈ Q. That is, all distributions of the unobserv-
ables that are consistent with the data have

sup
y∈{0,1}

|PQ(Z = 1 | Yx = y)− PQ(Z = 1)| > c

for each x ∈ {0, 1}, and so cannot satisfy c-dependence. Thus the model under partial exogeneity
with c-dependence is falsified.

D A Bayesian Perspective on Falsification

In this section we briefly discuss how one might respond to falsification of a baseline model from
a Bayesian perspective. To do this, it is first helpful to describe our analysis from a different
perspective than that used in the main paper. After that, we describe an alternative Bayesian
perspective. We then compare the two approaches.

For concreteness, we focus on the classical linear instrumental variable model of section 3.
Several papers study sensitivity analysis in this model from a Bayesian perspective, including
Ashley (2009), Conley et al. (2012), Kraay (2012), and Chan and Tobias (2015). Also see DiTraglia
and Garćıa-Jimeno (2019) for a detailed analysis of priors in instrumental variable models. Here
we focus on the problem of falsification.

An Alternative Perspective of Our Analysis

Suppose we impose A1, A2, and A3, but we make no assumptions about γ. Then the model is no
longer falsifiable. Instead, there is always a nonempty identified set for (β, γ). Proposition 15 in
appendix I below shows that the identified set for γ is a line in RL. Figure 11 shows two examples
in the two instrument case. Falsification of the baseline model occurs when this line does not pass
through the origin.

For simplicity, focus on the two instrument case, as depicted in figure 11. Let γ∗1 denote
the horizontal intercept of this line. Let γ∗2 denote the vertical intercept. Then δ∗1 = γ∗1 and
δ∗2 = γ∗2 , where δ∗1 and δ∗2 are the falsification points defined in section 3.2. The falsification frontier
corresponds to the line segment with endpoints (0, γ∗2) and (γ∗1 , 0).

Each point in the identified set for γ corresponds to a unique value of β, namely, the value b
that satisfies

γ = ψ − bΠ.
See proposition 15. Thus the falsification adaptive set is simply the values of b corresponding to γ’s
in the line segment between (0, γ∗2) and (γ∗1 , 0). As we emphasize in our fourth recommendation,
researchers may want to do sensitivity analysis beyond the falsification frontier. That is, they may
want to start by presenting the falsification adaptive set, but also present larger identified sets
corresponding to values of δ that lie beyond the falsification frontier. In this case, the identified set
for β simply expands to include values of b that correspond to γ’s beyond the line segment between
(0, γ∗2) and (γ∗1 , 0).

A Bayesian Perspective

With that as background, we next discuss a Bayesian approach. The baseline model corresponds
to a dogmatic prior that places all of its mass on γ = 0. Instead, suppose we specify a prior π on γ
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which is centered at zero, but has full support. Suppose now that we observe the distribution of the
data FY,X,Z . And we see that this distribution is incompatible with the baseline model. That is,
the identified set for γ described in proposition 15 does not pass through the origin. A prior which
was dogmatic on zero would be refuted. But a full support prior would not. Instead, we would
update our prior so that our posterior will place support only on the identified set for γ. Given
that our prior had full support, our posterior will have full support on this line in RL. Since each
point on this line corresponds to a unique value of β, this posterior on γ will imply a posterior on
β. This posterior will have full support on R, but of course will give larger weight to some values
than to others.

Note that there is no need to specify a prior on β, since we are working with population level
data. The only uncertainty that is being captured by the prior is the model uncertainty over the
precise value of γ, rather than sampling uncertainty. That said, the prior on γ implies a prior on β,
which depends on the values ψ and Π. These values themselves come from the data. Thus, before
seeing the population data, it may still be useful to consider one’s prior on β and on the values of ψ
and Π when thinking about the choice of the prior on γ. We leave a full analysis of prior selection
to future work.

A Comparison and Integration of Both Approaches

Now that we have described both approaches, let’s compare them. As noted above, the Bayesian
approach yields a posterior for β that has full support on R. Assuming the prior on γ places most
of its mass near zero, the posterior on β will put more mass on the values corresponding to γ’s
closer to the origin. Thus means that it will generally put large amount of mass on the falsification
adaptive set. In general, researchers taking a Bayesian perspective may find it useful to compute
the posterior probability that β lies within the falsification adaptive set. If we view the falsification
adaptive set as a partial summary of the identified set for γ, reporting this posterior probability
can help researchers understand which aspects of the conclusions come from the data and which
come from the prior. This is similar to Moon and Schorfheide’s (2012) suggestion that researchers
reported estimated identified sets along with Bayesian posteriors.

As researchers relax their model beyond the falsification frontier, the identified set for β will
expand beyond the falsification adaptive set. Bayesian researchers may also find it helpful to
compare the size of credible sets to the falsification adaptive set. More generally, they could
compute a kind of Bayesian falsification frontier: For α ∈ (0, 1), what is the set of δ’s that yield a
posterior for β which places probability 1− α on the identified set B(δ)?

In this section we have briefly compared and contrasted our approach with a Bayesian approach,
and shown that they can complement each other. There are many open questions, however, like
how to choose priors and how to analyze finite sample versions of this analysis. In particular, in
finite samples we never know for sure that our model is falsified. Thus it will be interesting to see
how Bayesian shrinkage methods, like those in Fessler and Kasy (2019), can be applied to analyze
falsifiable models. We leave this and related questions to future work.

E Affine Transformations of the Instruments in the Linear Model

In this section we discuss the implications of using affine transformations of the original instruments
Z. Specifically, let A denote an invertible L×L matrix. Let b ∈ RL. Then Z̃ = AZ + b is an affine
transformation of Z. Let

ψ̃ = var(Z̃)−1 cov(Z̃, Y ) and π̃ = var(Z̃)−1 cov(Z̃,X).
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Here we assume K = 1 for simplicity.

Proposition 10. Suppose A is diagonal. Then

ψ̃`
π̃`

=
ψ`
π`
.

Hence the FAS using Z as instruments equals the FAS using Z̃ as instruments.

Proof of proposition 10. We have

ψ̃` = e′`ψ̃

= e′` var(Z̃)−1 cov(Z̃, Y )

= e′` var(AZ + b)−1 cov(AZ + b, Y )

= e′` var(AZ)−1 cov(AZ, Y )

= e′`[A var(Z)A′]−1A cov(Z, Y )

= e′`(A
′)−1 var(Z)−1 cov(Z, Y )

= e′`(A
′)−1ψ.

Similarly,
π̃` = e′`(A

′)−1π.

Thus

ψ̃`
π̃`

=
e′`(A

′)−1ψ

e′`(A
′)−1π

=
a`e
′
`ψ

a`e
′
`π

=
e′`ψ

e′`π

=
ψ`
π`
.

The second line follows since A = diag(a1, . . . , aL), so that e′`(A
′)−1 = a`e

′
`.

Proposition 10 shows that the just-identified 2SLS estimand using Z̃` as an instrument and
Z̃−` as controls is equivalent to the just-identified 2SLS estimand using Z` as an instrument and
Z−` as controls. As stated, this implies that the falsification adaptive set is the same too. When
A is invertible and diagonal, Z̃` = a`Z + b` for some a` 6= 0. So the proposition shows that the
falsification adaptive set is invariant to rescaling each instrument and changing their location.

When A is not diagonal, however, these just-identified 2SLS estimands ψ`/π` are not invariant
to affine transformations. As we show next, this is not surprising since using a non-diagonal affine
transformation is equivalent to using the original instruments, but with a different way of relaxing
the exclusion restriction.

To see this, consider the case where A is a rotation matrix and b = 0. From the outcome
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Figure 8: Rotating the instruments leads to a different class of exclusion restriction relaxations.
See text for explanation.

equation we have

Y = β′X + γ′Z + U

= β′X + γ′A−1AZ + U

= β′X + (A−1γ)′Z̃ + U

= β′X + γ̃′Z̃ + U.

In the last line we defined γ̃ = A−1γ. A−1 is also a rotation matrix, and hence γ̃ is a rotation
of γ. To illustrate this, consider the two instrument case and suppose A represents a 45 degree
counter-clockwise rotation:

A =

(
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

)
.

Then

A−1 = A′ =

(
cos(−π/4) − sin(−π/4)
sin(−π/4) cos(−π/4)

)
represents a 45 degree clockwise rotation. The first plot in figure 8 shows the original axes for
measuring (γ1, γ2). The second plot shows the rotated axes. Suppose we now apply our results
directly using Z̃ as the instruments. That is, we define relaxations of exclusion γ̃ = 0 by

|γ̃`| ≤ δ`.

Then we measure relaxations of γ̃ = 0 by placing rectangles around the origin, in the rotated
coordinate system. The third plot in figure 8 shows an example of this constraint set, for a given
value of δ. The fourth plot in figure 8 shows this same constraint set, but now in our original
coordinate system. Thus we see that relaxations of the exclusion restriction γ = 0 are now measured
in terms of rotated rectangles around the origin. In contrast, suppose we instead used our original
instruments Z and measured relaxations of exclusion by |γ`| ≤ δ`. The fifth and final plot in figure
8 shows this constraint set, for the same δ.

Comparing the last two plots in figure 8 thus shows why rotating the instruments will generally
yield different a falsification adaptive sets: It is equivalent to using a different class of relaxations
of the exclusion restriction with the original instruments. Different classes of relaxations of one’s
assumptions will typically lead to different falsification adaptive sets. This is exactly the same
situation as one’s baseline analysis, where different baseline assumptions typically lead to different
baseline estimands.
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F Including Covariates in the Linear Model and Subgroup Analysis

In this section we discuss how to include additional covariates in the analysis of section 3. We
consider two approaches: In the first approach we include covariates linearly. In the second approach
we condition nonparametrically on the covariates. Finally, we discuss how to use our results in
combination with the subgroup analysis approach discussed in section B.

Linear Controls

Generalize equation (1) as follows:

Y = X ′β + Z ′γ +W ′α+ U (1′)

where W ∈ Rdim(W ) is a dim(W )-vector of additional covariates and α is a dim(W )-vector of un-
known constant coefficients. In addition to assumptions A1–A3, we make two further assumptions:

1. The controls are exogenous: cov(W,U) = 0.

2. The vector Z̃ = (Z,W ) has a nonsingular variance matrix.

In the framework considered in section 3, we can think of the vector W as a vector of instruments
whose exclusion violation is not restricted at all. That is, we set δ` = ∞ for the elements of Z̃
corresponding to the W covariates. Hence we do not place any constraints on the magnitude of α.
It is nonetheless helpful to keep Z and W separate in the notation.

Under equation (1′) and the exogenous controls assumption, we can obtain the identified set
for β by simply applying the analysis of section 3, but with an initial step where the exogenous
covariates are partialled out from instruments Z and endogenous regressors X. To see this, write

cov(Z, Y ) = cov(Z,X)β + var(Z)γ + cov(Z,W )α

cov(W,Y ) = cov(W,X)β + cov(W,Z)γ + var(W )α.

Solve the second equation for α to get

α = var(W )−1 cov(W,Y )− var(W )−1 cov(W,X)β − var(W )−1 cov(W,Z)γ.

Substitute this into the first equation to get

cov(Z − cov(Z,W ) var(W )−1W,Y ) = cov(Z − cov(Z,W ) var(W )−1W,X)β

+ var(Z − cov(Z,W ) var(W )−1W )γ.

By the assumption that Z̃ has a nonsingular variance matrix, solve for γ to get

γ = var(Z − cov(Z,W ) var(W )−1W )−1
(

cov(Z − cov(Z,W ) var(W )−1W,Y )

− cov(Z − cov(Z,W ) var(W )−1W,X)β
)
.

Thus we can write the identified set for β as

B(δ) = {b ∈ RK : −δ ≤ Ψ̃− Π̃β ≤ δ}

where
Ψ̃ = var(Z − cov(Z,W ) var(W )−1W )−1 cov(Z − cov(Z,W ) var(W )−1W,Y )
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is the vector of population OLS coefficients on Z in a regression of Y on (1, Z,W ) and

Π̃ = var(Z − cov(Z,W ) var(W )−1W )−1 cov(Z − cov(Z,W ) var(W )−1W,X)

is the vector of population OLS coefficients on Z in a regression of X on (1, Z,W ).
From this characterization of the identified set for β, we can adapt the proof of theorem 2 to

see that the falsification adaptive set is

⋃
δ∈FF

B(δ) =

[
min

`=1,...,L

ψ̃`
π̃`
, max
`=1,...,L

ψ̃`
π̃`

]

where ψ̃` is the `th component of Ψ̃ and π̃` is the `th component of Π̃. Here we assume π̃` 6= 0 for
all ` ∈ {1, . . . , L}. Moreover, as in lemma 1, ψ̃`/π̃` equals the population 2SLS coefficient on X
using Z` as the excluded instrument and (Z−`,W ) as controls. Thus, under the above assumptions,
the presence of these additional controls poses no additional technical challenges for estimation
and inference since the falsification adaptive set can still be computed via standard linear 2SLS
regressions.

Nonparametric Controls

Above we included controls linearly and assumed they were exogenous. An alternative approach
is to condition on them nonparametrically. This allows the value of the covariates to affect the
coefficients on X and Z, and also allows the controls to be endogenous. Thus we now generalize
equation (1) as follows:

Y = X ′β(W ) + Z ′γ(W ) + U (1′′)

where W is a dim(W )-vector of controls, and β(·) and γ(·) are unknown functions. We replace
A1–A4 with their conditional-on-W versions:

A1∗. cov(Z,X |W = w) has rank K for almost all w ∈ supp(W ).

A2∗. var(Z |W = w) has full rank for almost all w ∈ supp(W ).

A3∗. For all ` ∈ {1, . . . , L}, cov(Z`, U |W = w) = 0 for almost all w ∈ supp(W ).

A4∗. For all ` ∈ {1, . . . , L}, γ`(w) = 0 for almost all w ∈ supp(W ).

We relax A4∗ by

A4∗∗. There are known functions δ`(w) ≥ 0 such that |γ`(w)| ≤ δ`(w) for almost all w ∈ supp(W ),
for all ` ∈ {1, . . . , L}. Let δ(w) = (δ1(w), . . . , δL(w))′.

Write

γ(w) = var(Z |W = w)−1
(

cov(Z, Y |W = w)− cov(Z,X |W = w)β(w)
)

for any w ∈ supp(W ).
By derivations similar to those in section 3, the identified set for β(w) is

B(δ(w) | w)

=
{
b ∈ RK : −δ(w) ≤ var(Z |W = w)−1

(
cov(Z, Y |W = w)− cov(Z,X |W = w)b

)
≤ δ(w)

}
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for any w ∈ supp(W ). For a given δ(·), the model is refuted if the set {w ∈ supp(W ) : B(δ(w) |
w) = ∅} has positive probability.

Subgroup Analysis

Suppose that the baseline model discussed in section 3 is refuted. Or suppose the model with
covariates based on equation (1′) is refuted. As discussed in section B, one response is to switch
to the nonparametric controls model based on equation (1′′), and then find the set of conditioning
covariates for which the model is not refuted. Specifically, define

W(0) = {w ∈ supp(W ) : B(0 | w) 6= ∅}.

This set is point identified. If we impose A1∗–A4∗ only for w ∈ W(0), then the model is not refuted.
Thus one approach to salvaging the model is to focus on the subgroups W(0), and to report β(w)
for w ∈ W(0).

Alternatively, one could make specific assumptions to extrapolate from β(w) for w ∈ W(0) to
β(w) for w in the complementW(0)c. For example, suppose β(w) is observed to be constant across
w ∈ W(0). Then one could assume that it is also constant across w ∈ W(0)c, and that this constant
value is the same as the observed constant value across w ∈ W(0).

Suppose, however, that we want to allow for β(w) to vary over w, and that we are interested
in the entire population, not just the subgroups in W(0). In this case, a natural parameter is the
mean coefficient, E[β(W )]. We can construct the falsification adaptive set for this parameter as
follows. For simplicity, suppose K = 1. We have

E[β(W )] =

∫
w∈supp(W )

β(w) dFW (w)

=

∫
w∈W(0)

β(w) dFW (w) +

∫
w/∈W(0)

β(w) dFW (w).

The first term is point identified. For the second term, we can construct the falsification adaptive
set for β(w) for each w ∈ W(0) by applying the results of section 3. Denote these bounds by
[L(w), U(w)]. Then the falsification adaptive set for E[β(W )] is [L,U ] where

L =

∫
w∈W(0)

β(w) dFW (w) +

∫
w/∈W(0)

L(w) dFW (w)

and

U =

∫
w∈W(0)

β(w) dFW (w) +

∫
w/∈W(0)

U(w) dFW (w).

Keep in mind that this falsification adaptive set relaxes exclusion by using values δ`(w) that vary
across w. In particular, δ`(w) = 0 for all w ∈ W(0). If we require δ`(w) = δ` to be constant across
w, then the falsification adaptive set will be weakly larger.

G Technical Equivalence of Exclusion and Exogeneity in Linear Models

In section 3 we explicitly modeled relaxations of the instrument exclusion restriction, holding in-
strument exogeneity fixed. In this section we show that the same formal results can be used to relax
exogeneity alone or to relax exogeneity and exclusion simultaneously. This analysis is essentially a
variation of Small (2007).
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Figure 9: Two ways for the standard instrumental variable assumptions to fail.

Let A and U denote unobserved random variables. Suppose the true model for potential out-
comes is

Y (x, z, a) = x′β + z′λ+ φa+ U.

Thus observed outcomes are

Y = Y (X,Z,A)

= X ′β + Z ′λ+ (φA+ U).

This equation allows for violations of exclusion if λ is nonzero. It also allows for violations of
exogeneity if A and Z are correlated. Figure G shows these two kinds of failures. Let ψ be the
coefficients on Z in a linear projection of A onto Z and let Ũ be the projection residual. Thus

A = Z ′ψ + Ũ

where cov(Z`, Ũ) = 0 by construction. Then

Y = X ′β + Z ′λ+ φA+ U

= X ′β + Z ′λ+ φ(Z ′ψ + Ṽ ) + U

= X ′β + Z ′(λ+ φψ) + (Ũ + U)

≡ X ′β + Z ′γ + V.

In the last line we defined
γ = λ+ φψ

and V = Ũ + U . For all ` ∈ {1, . . . , L}, we have cov(Z`, V ) = 0 since cov(Z`, U) = 0 by A3 and
cov(Z`, Ũ) = 0 by construction.

Thus the formal results in section 3 apply to relaxations of exogeneity as well. The key difference
is that the interpretation of the coefficient on Z changes depending on whether we are interested
in exclusion or exogeneity failure. For example, suppose λ = 0 so that we are only worried about
exogeneity failures. Then the interpretation of γ depends on the size of the causal effect of φ and the
relationship between Z and A. This is the case that Small (2007) focuses on. To aid interpretation
of these parameters, he adapts the ideas of Imbens (2003) to phrase constraints on φ and ‖ψ‖ in
terms of R2 measures.
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H Comparing the 2SLS Estimand with the Falsification Adapative Set

The following proposition gives the relationship between the 2SLS estimand

β2SLS =
cov(X,Z) var(Z)−1 cov(Z, Y )

cov(X,Z) var(Z)−1 cov(Z,X)

and the falsification adaptive set when there is a single endogenous variable. Here we assume all
instruments are relevant.

Proposition 11. Suppose K = 1. Suppose π` 6= 0 for all ` = 1, . . . , L. Then

β2SLS =
L∑
`=1

W`
ψ`
π`

where

W` =
cov(

∑L
j=1 πjZj , π`Z`)

var(
∑L

j=1 πjZj)
.

Recall that ψ`/π` is the 2SLS estimand using Z` as an instrument and the remaining instruments
Z−` as controls. The falsification adaptive set is the interval between the smallest and largest such
estimands. Proposition 11 shows that the 2SLS estimand is a weighted average of the estimands
ψ`/π`. The weights sum to one,

∑L
`=1W` = 1, but the weights are not necessarily positive. For

example, this may happen if covariances between instruments are negative, or if some π` < 0.
Thus an important implication of this result is that the 2SLS estimand does not have to be

inside the falsification adaptive set. Indeed, it can be arbitrarily far from it. Put differently, in a
falsified linear IV model, the 2SLS estimand can be arbitrarily far from the set of parameters which
correspond to minimally non-falsified models.

Proof of proposition 11. Recall that

ψ
(L×1)

≡ var(Z)−1 cov(Z, Y ) and π
(L×1)

≡ var(Z)−1 cov(Z,X).

Thus

β2SLS =
cov(X,Z)ψ

cov(X,Z)π
.

Since π is the vector of coefficients from a linear projection of X onto the instruments, we can write

X =

L∑
`=1

π`Z` + V
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where cov(Z`, V ) = 0 for all `. Consider the numerator of β2SLS:

cov(X,Z)ψ =

L∑
`=1

cov(X,Z`)ψ`

=

L∑
`=1

cov

 L∑
j=1

πjZj + V,Z`

ψ`

=

L∑
`=1

cov

 L∑
j=1

πjZj , Z`

ψ`

=

L∑
`=1

ψ`
π`

cov

 L∑
j=1

πjZj , π`Z`

 .

Next consider the denominator of β2SLS:

cov(X,Z)π =
L∑
`=1

cov(X,Z`)π`

=
L∑
`=1

cov

(
L∑
s=1

πsZs + V,Z`

)
π`

=
L∑
`=1

L∑
s=1

cov(πsZs, π`Z`)

= var

 L∑
j=1

πjZj

 .

Putting these two results together yields the result.

I Further Remarks on Interpreting Non-Falsified Models

In this section we elaborate on the discussion in section 2.2. We only consider the linear instrumental
variable model of section 3 with one endogenous variable and two instruments. Newey (1985)
analyzes the problem in a much broader class of moment equality models.

With just two instruments, the outcome equation is

Y = α+ βX + γ1Z1 + γ2Z2 + U. (20)

Here we include a constant intercept α, unlike in section 3. So we also impose the normalization
E(U) = 0. This normalization combined with the exogeneity assumption A3 gives us the following
three moment conditions:

E[U ] = 0

E[Z1U ] = 0

E[Z2U ] = 0.
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We can use these moments to define a GMM objective function

Q(b) = m(b)′Wm(b)

where W is a symmetric positive definite weighting matrix, m(b) = (m1(b),m2(b))′, and

m`(b) = cov(Z`, Y )− b cov(Z`, X).

for ` ∈ {1, 2}. This leads to the following standard result.

Proposition 12. Consider the outcome equation (20). Suppose E(U) = 0. Suppose A1, A3, and
A4 hold; that is, suppose the baseline model is true. Then Q is uniquely minimized at β. Moreover,
Q(β) = 0.

This result immediately provides a way of checking whether the model is falsified. Let

Q∗ = min
b∈R

Q(b).

Corollary 7. Suppose Q∗ > 0. Then the model is false.

As we discussed in section 2.2, however, the inverse statement is not true. That is, observing
Q∗ = 0 does not imply the model is true. It merely implies that there exist values of the unob-
servables that are consistent with the assumptions and the data. But, as is well known, there also
exist values of the unobservables that are consistent with the data but which are not consistent
with the assumptions. To see this, we will study the value of Q∗ as the true coefficients (γ1, γ2) on
the instruments vary. For simplicity, suppose we use the identity weight matrix. Then

Q(b) =
(

cov(Z1, Y )− b cov(Z1, X)
)2

+
(

cov(Z2, Y )− b cov(Z2, X)
)2
. (21)

Proposition 13. Suppose the true model is given by (20) with coefficients (β, γ1, γ2). That is,
the exclusion restriction does not necessarily hold. Suppose A1 and A3 hold. Then the value of Q
evaluated at its optimizer is

Q∗(γ1, γ2) = f(γ1, γ2)2

[
(1− ω)2 + ω2

(
cov(Z2, X)

cov(Z1, X)

)2
]

where

f(γ1, γ2) = γ1

[
var(Z1)− cov(Z1, Z2)

cov(Z1, X)

cov(Z2, X)

]
+ γ2

[
cov(Z1, Z2)− var(Z2)

cov(Z1, X)

cov(Z2, X)

]
and

ω =
cov(X,Z1)2

cov(X,Z1)2 + cov(X,Z2)2
.

Notice that Q∗(γ1, γ2) does not depend on the value of β. The left plot in figure 10 shows
an example of Q∗(γ1, γ2).10 From this proposition, we see that Q∗(γ1, γ2) = 0 if and only if
f(γ1, γ2) = 0. This equation defines a line in R2. Thus the model is not refuted if and only
if (γ1, γ2) falls on this line. Only one of these points—the origin—corresponds to the baseline

10This figure plots the function Q∗mt(δ, γ1, γ2) which we discuss below. When evaluated at δ = 0, and when
var(Z1) = var(Z2) = 1 as used in the figure, we have Q∗mt(0, γ1, γ2) = Q∗(γ1, γ2). In general, Q∗mt(0, γ1, γ2) equals the
GMM objective function with weight matrix W = diag(1/ var(Z1)2, 1/ var(Z2)2).
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Figure 10: Plots of Q∗mt(δ, γ1, γ2) as functions of (γ1, γ2) for three different values of δ. Left: The
baseline case, δ1 = δ2 = 0. Middle: A relaxed model with δ1 = δ2 = 1. Right: A relaxed
model with δ1 = δ2 = 2. All three plots set var(Z1) = var(Z2) = 1, cov(Z1, Z2) = 0, and
cov(Z1, X) = cov(Z2, X) = 0.5.

model. All other points on this line are false models which are observationally equivalent to a set
of structural parameters which satisfy the model assumptions.

Next we consider the relaxed model which replaces exclusion A4 with partial exclusion A4′.
Following Manski and Tamer (2002) and Chernozhukov, Hong, and Tamer (2007), we can again
characterize falsification of the model in terms of a certain objective function. Under partial
exclusion, theorem 1 shows that the identified set B(δ) is characterized by four moment inequalities:

(ψ` − π`β) + δ` ≥ 0

−(ψ` − π`β) + δ` ≥ 0

for ` ∈ {1, 2}. Recall that ψ and π were defined on page 13. Define

Qmt(b, δ) =

2∑
`=1

(
max

{
− [(ψ` − π`b) + δ`], 0

}2
+ max

{
− [−(ψ` − π`b) + δ`], 0

}2
)
.

Then Qmt(b, δ) = 0 if and only if b ∈ B(δ). This objective function generalizes equation (21). Recall
the notation B`(δ) = [b`(δ), b`(δ)] from equation (4). The following proposition characterizes this
objective function at its minimal value.

Proposition 14. Let Q∗mt(δ) = minb∈RQmt(b, δ). Then

Q∗mt(δ) =



0 if max{b1(δ), b2(δ)} ≤ min{b1(δ), b2(δ)}

1

2

(
b2(δ)− b1(δ)

)2
if b1(δ) < b2(δ)

1

2

(
b1(δ)− b2(δ)

)2
if b2(δ) < b1(δ).

The identified set B(δ) is the intersection of two intervals, B1(δ) and B2(δ). When these two
intervals overlap, the model is not refuted and Q∗mt(δ) = 0. This is the first case. When the intervals
do not overlap, Q∗mt(δ) is strictly positive. The second case above occurs when B1(δ) is completely
below B2(δ). The third case above is the reverse. That is, if Q∗mt(δ) > 0, then the model is false.

As in proposition 13 above, we can view Q∗mt(δ) as a function of the true underlying parameters,
which we write as

Q∗mt(δ, γ1, γ2).
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We give an explicit expression for this function on page 91. The middle and right plots in figure 10
show two examples of Q∗mt(δ, γ1, γ2), for two different values of δ. Like the baseline case, (δ1, δ2) =
(0, 0), there is a set of values (γ1, γ2) where the objective function is zero. This set contains the
values in the square [−δ1, δ1] × [−δ2, δ2] which are consistent with partial exclusion A4′. But this
set also contains values outside of this square. Each of these values is a false model which is
observationally equivalent to a set of structural parameters which satisfy the model assumptions.
As the components of δ increase, this set of (γ1, γ2) values such that Q∗mt(δ, γ1, γ2) = 0 grows.

Finally, we relate these results to the falsification frontier. In figure 10, as we vary (γ1, γ2)
in the domain, the distribution of the observed data changes. This follows since cov(Z1, Y ) and
cov(Z2, Y ) change when (γ1, γ2) change while holding all else fixed. In our analysis in sections 2
and 3 we fix a single distribution of the observed data (Y,X,Z1, Z2). We then check whether the
model is falsified by that distribution. For example, we check whether the objective function in
equation (21) is zero at its optimizer. Suppose it is not. Then the model is falsified. This means
that, in the left plot of figure 10, we observed a distribution of (Y,X,Z1, Z2) off the diagonal defined
by f(γ1, γ2) = 0. As we increase the components of δ, the value function Q∗mt(δ) will flatten, until
eventually we have Q∗mt(δ) = 0. The smallest set of δ’s at which this happens is what we call the
falsification frontier.

The Identified Set for (β, γ)

An alternative way to view these arguments is to study the identified set for (β, γ) when no con-
straints on the values of γ are imposed. Specifically, we have the following result.

Proposition 15. Suppose A1, A2, and A3 hold. Suppose K = 1. Then

Γ =
{
γ ∈ RL : γ = ψ − bΠ for some b ∈ R

}
is the identified set for γ. Moreover, the identified set for (β, γ) is

{(β, γ) ∈ R1+L : ψ − βΠ = γ for some γ ∈ Γ}.

Recall from page 13 that ψ is the vector of reduced form regression coefficients of Y on Z.
Similarly, Π is the vector of first stage regression coefficients of X on Z. Proposition 15 is essentially
a restatement of equation (8) in Small (2007).

The identified set Γ is never empty, which means that without any constraints on the direct
causal effects of the instruments, the model is not refutable. With a single instrument (L = 1), the
identified set Γ always contains 0. That is, the exclusion restriction γ = 0 is always consistent with
the data and assumptions A1, A2, and A3. This is simply the well known result that the classical
linear IV model with one instrument is not refutable.

With L ≥ 2 instruments, however, the identified set Γ does not necessarily contain the origin.
Thus the baseline model (the outcome equation (1) plus assumptions A1–A4) with two or more
instruments is refutable: The baseline model is refuted if and only if the origin is not an element of
the identified set Γ. Figure 11 shows two examples of the identified sets Γ, for the two instrument
case. On the left, the baseline model is not refuted since the set Γ passes through the origin. On
the right, the baseline model is refuted since the set Γ does not pass through the origin.

Importantly, even when the baseline model is not refuted, the identified set for γ always contains
elements which are inconsistent with the exclusion restriction. This is the same point we discussed
above, by analyzing the GMM objective function.

To relate this discussion to the falsification frontier, fix a distribution of the observed data
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Figure 11: Example identified sets for (γ1, γ2). Left: A distribution of (Y,X,Z1, Z2) which does
not refute the baseline model. Right: A distribution of (Y,X,Z1, Z2) which does refute the baseline
model.

(Y,X,Z). We then check whether the baseline model is falsified by that distribution. For example,
we check whether Γ contains the origin. Suppose it does not. Then the baseline model is falsified.
We then compute the falsification frontier. While this set was given by proposition 2, it can
alternatively be obtained as the set

FF =

{
δ ∈ [0,∞)L :

(
L∏
`=1

[−δ`, δ`]
)
∩ Γ is a singleton

}
.

Essentially, we consider boxes around the origin. We then find all boxes that have a singleton
intersection with the line Γ.

At any point δ on the falsification frontier, the relaxed model (the outcome equation (1) plus
assumptions A1–A3 and A4′) is not refuted and there is a unique γ value consistent with the relaxed
model assumptions. If we drop the partial exclusion assumption A4′, however, there are infinitely
many values of γ consistent with the remaining assumptions and the data—all the elements of the
set Γ.

Proofs for section I

Proof of proposition 12. This result is standard, but we include the proof for completeness. Sub-
stituting the outcome equation (20) into our system of three moments and using exclusion yields
the moments

E[Y − α− βX] = 0

E[Z1(Y − α− βX)] = 0

E[Z2(Y − α− βX)] = 0.

Next we profile out the intercept. Solving the first equation for α yields α = E(Y ) − βE(X).
Substituting this into the second two equations gives

E[Z1(Y − E(Y ) + βE(X)− βX)] = 0

E[Z2(Y − E(Y ) + βE(X)− βX)] = 0.
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We can rewrite this system as

cov(Z1, Y )− β cov(Z1, X) = 0

cov(Z2, Y )− β cov(Z2, X) = 0.

This is a system of two moment equalities with one unknown, β. The left hand side is the vector
m(β). This explains the definition of Q and shows that Q(β) = 0. The fact that Q is uniquely
minimized at β follows by the relevance assumption A1 and since the moments are linear in β.

Proof of corollary 7. This is simply the contrapositive of proposition 12. For concreteness, however,
notice that the model is falsified if and only if both instruments are relevant, so that cov(Z`, X) 6= 0
for ` ∈ {1, 2}, and

cov(Z1, Y )

cov(Z1, X)
6= cov(Z2, Y )

cov(Z2, X)
.

This happens when there does not exist a solution to the population moment equations.

Proof of proposition 13. Solving the first order conditions for minimizing Q yields

b∗ =
cov(Z1, Y ) cov(Z1, X) + cov(Z2, Y ) cov(Z2, X)

cov(Z1, X)2 + cov(Z2, X)2

=
cov(Y, Z1)

cov(X,Z1)

cov(X,Z1)2

cov(X,Z1)2 + cov(X,Z2)2
+

cov(Y, Z2)

cov(X,Z2)

cov(X,Z2)2

cov(X,Z1)2 + cov(X,Z2)2

≡ β2sls
Z1

ω + β2sls
Z2

(1− ω)

where ω ∈ [0, 1]. That is, the optimizer is a convex combination of the two individual 2SLS
estimands. Thus the value function is

Q∗ = Q(b∗)

=
(

cov(Z1, Y )− b∗ cov(Z1, X)
)2

+
(

cov(Z2, Y )− b∗ cov(Z2, X)
)2

=
(

cov(Z1, Y )− [β2sls
Z1

ω + β2sls
Z2

(1− ω)] cov(Z1, X)
)2

+
(

cov(Z2, Y )− [β2sls
Z1

ω + β2sls
Z2

(1− ω)] cov(Z2, X)
)2

=
(
cov(Z1, Y )− cov(Z1, Y )ω − (1− ω)β2sls

Z2
cov(Z1, X)

)2
+
(
cov(Z2, Y )− (1− ω) cov(Z2, Y )− ωβ2sls

Z1
cov(Z2, X)

)2
= (1− ω)2

(
cov(Z1, Y )− cov(Z1, X)β2sls

Z2

)2
+ ω2

(
cov(Z2, Y )− cov(Z2, X)β2sls

Z1

)2
= (1− ω)2

(
cov(Z1, Y )− cov(Z2, Y )

cov(Z1, X)

cov(Z2, X)

)2

+ ω2

(
cov(Z2, Y )− cov(Z1, Y )

cov(Z2, X)

cov(Z1, X)

)2

.

To understand how this value function changes as the underlying dgp changes, we substitute the
outcome equation (20) for Y . Since Y only enters via its covariance with Z`, this yields

cov(Z`, Y ) = cov (Z`, α+ βX + γ1Z1 + γ2Z2 + U)

= β cov(Z`, X) +
∑

j∈{1,2}

γj cov(Z`, Zj).
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Thus

Q∗(γ1, γ2)

= (1− ω)2

(
β cov(Z1, X) + γ1 var(Z1) + γ2 cov(Z1, Z2)

− [β cov(Z2, X) + γ1 cov(Z1, Z2) + γ2 var(Z2)]
cov(Z1, X)

cov(Z2, X)

)2

+ ω2

(
β cov(Z2, X) + γ1 cov(Z1, Z2) + γ2 var(Z2)

− [β cov(Z1, X) + γ1 var(Z1) + γ2 cov(Z1, Z2)]
cov(Z2, X)

cov(Z1, X)

)2

= (1− ω)2

(
γ1

[
var(Z1)− cov(Z1, Z2)

cov(Z1, X)

cov(Z2, X)

]
+ γ2

[
cov(Z1, Z2)− var(Z2)

cov(Z1, X)

cov(Z2, X)

])2

+ ω2

(
γ1

[
cov(Z1, Z2)− var(Z1)

cov(Z2, X)

cov(Z1, X)

]
+ γ2

[
var(Z2)− cov(Z1, Z2)

cov(Z2, X)

cov(Z1, X)

])2

= (1− ω)2

(
γ1

[
var(Z1)− cov(Z1, Z2)

cov(Z1, X)

cov(Z2, X)

]
+ γ2

[
cov(Z1, Z2)− var(Z2)

cov(Z1, X)

cov(Z2, X)

])2

+ ω2

(
cov(Z2, X)

cov(Z1, X)

)2(
γ1

[
var(Z1)− cov(Z1, Z2)

cov(Z1, X)

cov(Z2, X)

]
+ γ2

[
cov(Z1, Z2)− var(Z2)

cov(Z1, X)

cov(Z2, X)

])2

.

Proof of proposition 14. When the model is not refuted, Qmt(b, δ) = 0 by definition. This gives
us the first case in the definition of Q∗mt(δ). So suppose the model is refuted. Then the intervals
[b1(δ), b1(δ)] and [b2(δ), b2(δ)] do not intersect. Hence one of them lies strictly to the left of the
other. Suppose that

[L1, U1] ≡ [b1(δ), b1(δ)]

lies to the left of
[L2, U2] ≡ [b2(δ), b2(δ)],

meaning that U1 < L2. First we show that Qmt(b, δ) is uniquely minimized at the midpoint between
U1 and L2,

b∗ =
U1 + L2

2
.

First note that any value b outside of [L1, U2] can never be a minimizer. Furthermore, b∗ must lie
inside [U1, L2]. For b’s in this range, the objective function is

Qmt(b, δ) = max{b− U1, 0}2 + max{−(b− L2), 0}2

= (b− U1)2 + (b− L2)2.

The FOC is
2(b− U1)(−1) + 2(b− L2)(−1) = 0.

Solve for b to get the midpoint. This essentially follows since our objective function gives equal
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weight to violations of each of the two inequalities. Next, to obtain the value of the objective
function at the optimizer, simply plug b∗ back in to get

Qmt(b∗) =

(
U1 + L2

2
− U1

)2

+

(
U1 + L2

2
− L2

)2

=
(L2 − U1)2

4
+

(U1 − L2)2

4

=
1

2
(U1 − L2)2.

This gives us the second case in the definition of Q∗mt(δ). The third case occurs when the interval
[b2(δ), b2(δ)] lies to the left of [b1(δ), b1(δ)]. The result follows by following the derivations of the
second case, but reversing the role of the two intervals.

Derivation of Q∗mt(δ, γ1, γ2). First substitute the definitions of the bounds b`(δ) and b`(δ) into the
expression for Q∗mt(δ). This yields Q∗mt(δ) = 0 if

max

{
ψ1

π1
− δ1

|π1|
,
ψ2

π2
− δ2

|π2|

}
≤ min

{
ψ1

π1
+

δ1

|π1|
,
ψ2

π2
+

δ2

|π2|

}
and

Q∗mt(δ) =


1

2

[(
ψ2

π2
− δ2

|π2|

)
−
(
ψ1

π1
+

δ1

|π1|

)]2

if

(
ψ2

π2
− δ2

|π2|

)
>

(
ψ1

π1
+

δ1

|π1|

)
1

2

[(
ψ1

π1
− δ1

|π1|

)
−
(
ψ2

π2
+

δ2

|π2|

)]2

if

(
ψ1

π1
− δ1

|π1|

)
>

(
ψ2

π2
+

δ2

|π2|

)
.

Of all of these terms, only ψ` depends on (β, γ1, γ2). Specifically,

ψ = var(Z)−1 cov(Z, Y )

=

(
var(Z1) cov(Z1, Z2)

cov(Z1, Z2) var(Z2)

)−1(
cov(Z1, Y )
cov(Z2, Y )

)
=

1

var(Z1) var(Z2)− cov(Z1, Z2)2

(
var(Z2) − cov(Z1, Z2)

− cov(Z1, Z2) var(Z1)

)(
cov(Z1, Y )
cov(Z2, Y )

)
.

So

ψ1 =
cov(Z1, Y ) var(Z2)− cov(Z2, Y ) cov(Z1, Z2)

var(Z1) var(Z2)− cov(Z1, Z2)2

and

ψ2 =
cov(Z2, Y ) var(Z1)− cov(Z1, Y ) cov(Z1, Z2)

var(Z1) var(Z2)− cov(Z1, Z2)2
.

Now substitute
cov(Z`, Y ) = β∗ cov(Z`, X) +

∑
j∈{1,2}

γ∗j cov(Z`, Zj)

to obtain the desired function Q∗mt(δ, γ1, γ2). As in the baseline case, notice that this function does
not actually depend on the value of β.

Proof of proposition 15. This follows immediately from the proof of theorem 1.
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J Duranton et al. (2014): Analysis of export value

Duranton et al. (2014) consider two different outcome variables: Propensity to export weight and
propensity to export value. In section 4.1 we focused on export weight. Here we briefly discuss the
results for export value. Panel A of table 11 reproduces columns 5–8 of table 5 in Duranton et al.
(2014). These are their main results for export value. As with our analysis of export weight, we
add the falsification adaptive set to the last row of panel A. In panel B we present results using plan
and exploration as instruments, controlling for railroads. Compared to their baseline results, our
modified baseline results in panel B suggest that the effect of within city highways on propensity
to export value is potentially large and negative. Their theoretical model, however, predicts that
this effect should be small and positive (their comparative static 3). That said, there is substantial
model uncertainty: The falsification adaptive set in column 4 is [−0.19, 0.047], which includes small
positive values along with the large negative values. There is substantial statistical uncertainty as
well. Thus the data does not allow us to draw a definitive conclusion about the validity of their
model’s predicted comparative static.

K Proofs for section 3

Proof of proposition 1. This result is well known, but we include a proof for completeness. Suppose
equation (2) holds for all m, ` ∈ {1, . . . , L}. We will construct a joint distribution (Y,X,Z, Ũ) and
a parameter β̃ consistent with the data and assumptions A1–A4.

By the relevance assumption A1, there exists an ` such that cov(X,Z`) 6= 0. Let

β̃ =
cov(Y,Z`)

cov(X,Z`)
.

Let Ũ = Y −Xβ̃. For every m ∈ {1, . . . , L},

cov(Ũ , Zm) = cov(Y, Zm)− cov(X,Zm)β̃

= cov(Y, Zm)− cov(X,Zm)
cov(Y,Z`)

cov(X,Z`)

=
cov(Y,Zm) cov(X,Z`)− cov(Y, Z`) cov(X,Zm)

cov(X,Z`)

= 0.

Thus A3 holds. A4 holds by definition of Ũ . A2 holds automatically. Thus the model is not refuted.
Next suppose the model is not refuted. Then there exists a joint distribution of (Y,X,Z, U)

and a value β consistent with the model assumptions and the data. By A3 we have

0 = cov(U,Z`)

= cov(Y −Xβ,Z`)
= cov(Y,Z`)− β cov(X,Z`)

for all ` ∈ {1, . . . , L}. Suppose β = 0. Then cov(Y,Z`) = 0 for all `, and hence equation (2) holds
for all m, ` ∈ {1, . . . , L}.

Suppose β 6= 0. Suppose cov(X,Z`) = 0. Then the above equation implies that we must have
cov(Y, Z`) = 0 as well. Hence equation (2) holds for this ` and any other m ∈ {1, . . . , L}.
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Table 11: Baseline 2SLS results for Duranton et al. (2014): The effect of highways on export
value. Non-highlighted parts reproduce results from their paper. Highlighted parts are new. Panel
A reproduces columns 1–4 of their table 5. It also shows the estimated falsification adaptive set.
Panel B uses only two of their instruments, controlling for the other. See text for discussion.

Dependent variable: Export value

(1) (2) (3) (4)

Panel A. Plan, exploration, and railroads used as instruments

log highway km 1.10*** 0.17 0.070 -0.026
(0.17) (0.16) (0.14) (0.12)

log employment 0.91*** 1.19** 0.90**
(0.091) (0.58) (0.42)

Market access (export) -0.19 -0.38*** -0.36***
(0.12) (0.14) (0.11)

log 1920 population -0.34 -0.23
(0.30) (0.30)

log 1950 population 0.95* 0.49
(0.48) (0.51)

log 2000 population -0.84 -0.14
(0.72) (0.58)

log % manuf. emp. 0.83***
(0.16)

First-stage F stat. 97.5 90.3 80 84.8

Overid. p-value 0.081 0.071 0.28 0.55

FAS [0.24, 0.78] [-0.85, -0.085] [-0.85, -0.01] [-0.19, 0.047]

Panel B. Plan and exploration used as instruments, controlling for railroads

log highway km 0.69** -0.22 -0.16 -0.14
(0.30) (0.23) (0.18) (0.15)

log 1898 railroad km 0.41** 0.32** 0.22* 0.11
(0.20) (0.14) (0.13) (0.11)

First-stage F stat. 61.1 65.4 77.8 82.2

Overid. p-value 0.60 0.47 0.41 0.74

Notes: 66 observations per column. All specifications include a constant. Heteroskedas-
ticity robust standard errors in parentheses. ***, **, *: statistically significant at 1%,
5%, 10%.
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Finally, consider any pair m and ` such that cov(X,Zm) 6= 0 and cov(X,Z`) 6= 0. Then the
above equation implies

cov(Y,Z`)

cov(X,Z`)
= β =

cov(Y,Zm)

cov(X,Zm)
.

Thus we have shown that equation (2) holds for all m, ` ∈ {1, . . . , L}.

Proof of theorem 1. First we show that any value of β consistent with the model must lie in B(δ).
By the outcome equation (1) and the instrument exogeneity A3,

cov(Z, Y ) = cov(Z,X ′β + Z ′γ + U)

= cov(Z,X)β + var(Z)γ.

By A2,
γ = var(Z)−1(cov(Z, Y )− cov(Z,X)β).

Since −δ ≤ γ ≤ δ (component-wise) by A4′, we have β ∈ B(δ).
Next we show that B(δ) is sharp. Let b ∈ B(δ). Define

γ = var(Z)−1(cov(Z, Y )− cov(Z,X)b).

Then γ satisfies A4′ by definition of B(δ). Next, define Ũ ≡ Y −X ′b− Z ′γ. Then

cov(Z, Ũ) = cov(Z, Y −X ′b− Z ′γ)

= cov(Z, Y −X ′b− Z ′ var(Z)−1(cov(Z, Y )− cov(Z,X)b))

= cov(Z, Y )− cov(Z,X)b− var(Z) var(Z)−1(cov(Z, Y )− cov(Z,X)b)

= 0.

Thus A3 holds. Hence B(δ) is sharp. That the model is refuted if and only if this set is empty
follows by the definition of the (sharp) identified set.

Proof of corollary 1. Write the identified set from theorem 1 as

B(δ) = {b ∈ R : −δ ≤ ψ − bπ ≤ δ}
= {b ∈ R : −δ` ≤ ψ` − bπ` ≤ δ`, ` = 1, . . . , L}
= {b ∈ R : ψ` − δ` ≤ bπ` ≤ ψ` + δ`, ` = 1, . . . , L} .

Equation (4) follows immediately by considering the three cases π` = 0, π` < 0, and π` > 0
separately.

Proof of lemma 1. Without loss of generality, let ` = 1. The result for ` 6= 1 can be obtained by
permuting the components of the vector Z. Then X̃ = (X,Z2, . . . , ZL). Hence

cov(Z, X̃1) =

(
cov(Z1, X) cov(Z1, Z−1)

cov(Z−1, X) var(Z−1)

)
.
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By block matrix inversion, the first row of cov(Z, X̃1)−1 is

e′1 cov(Z, X̃1)−1 =(
(cov(Z1, X)− cov(Z1, Z−1) var(Z−1)−1 cov(Z−1, X))−1

−(cov(Z1, X)− cov(Z1, Z−1) var(Z−1)−1 cov(Z−1, X))−1 cov(Z1, Z−1) var(Z−1)−1

)′
.

Hence

e′1 cov(Z, X̃1)−1 cov(Z, Y )

=
cov(Z1, Y )− cov(Z1, Z−1) var(Z−1)−1 cov(Z−1, Y )

cov(Z1, X)− cov(Z1, Z−1) var(Z−1)−1 cov(Z−1, X)

=
cov(Z1 − cov(Z1, Z−1) var(Z−1)−1Z−1, Y )

cov(Z1 − cov(Z1, Z−1) var(Z−1)−1Z−1, X)

=
cov(Z̃1, Y )

cov(Z̃1, X)

=
cov(Z̃1, Y )

var(Z̃1)

/
cov(Z̃1, X)

var(Z̃1)

=
ψ1

π1
.

Here we defined Z̃1 = Z1− cov(Z1, Z−1) var(Z−1)−1Z−1. This is the population residual of Z1 after
removing the projection of Z1 onto Z−1. The last line thus follows by the partitioned regression
formula.

Proof of equation (5) on page 14. As in the proof of lemma 1, without loss of generality suppose
` = 1. Suppose the baseline model (δ = 0) holds. Then

ψ1

π1
=

cov(Z̃1, Y )

cov(Z̃1, X)

=
cov(Z̃1, βX + U)

cov(Z̃1, X)

= β
cov(Z̃1, X)

cov(Z̃1, X)

= β.

Similarly, cov(Z1, Y )/ cov(Z1, X) = β. Equation (5) follows.

We use the following lemma in the proofs of proposition 2 and theorem 2. It says that the
identified set for β is a singleton at any point δ in the set FF defined in equation (6).

Lemma 2. Suppose A1–A3 hold. Suppose K = 1. Let

b ∈
[

min
`=1,...,L:π` 6=0

ψ`
π`
, max
`=1,...,L:π` 6=0

ψ`
π`

]
.

Define δ(b) = (|ψ1 − bπ1|, . . . , |ψL − bπL|). Then B(δ(b)) = {b}.
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Proof of lemma 2. We have

B(δ(b)) =
⋂

`=1,...,L:π` 6=0

[
ψ`
π`
− δ`(b)

|π`|
,
ψ`
π`

+
δ`(b)

|π`|

]

=
⋂

`=1,...,L:π` 6=0

[
ψ`
π`
− |ψ` − bπ`||π`|

,
ψ`
π`

+
|ψ` − bπ`|
|π`|

]

=
⋂

`=1,...,L:π` 6=0

[
ψ`
π`
−
∣∣∣∣ψ`π` − b

∣∣∣∣ , ψ`π` +

∣∣∣∣ψ`π` − b
∣∣∣∣]

=

 ⋂
`=1,...,L:ψ`≥bπ`,π` 6=0

[
ψ`
π`
−
∣∣∣∣ψ`π` − b

∣∣∣∣ , ψ`π` +

∣∣∣∣ψ`π` − b
∣∣∣∣]


⋂ ⋂
`=1,...,L:ψ`<bπ`,π` 6=0

[
ψ`
π`
−
∣∣∣∣ψ`π` − b

∣∣∣∣ , ψ`π` +

∣∣∣∣ψ`π` − b
∣∣∣∣]


=

 ⋂
`=1,...,L:ψ`≥bπ`,π` 6=0

[
b, 2

ψ`
π`
− b
]⋂ ⋂

`=1,...,L:ψ`<bπ`,π` 6=0

[
2
ψ`
π`
− b, b

]
= {b}.

The first line follows by equation (4), and by the definition of δ(b). The second line also uses the
definition of δ(b). The remaining lines follow by considering two cases so that we can eliminate the
absolute values.

Proof of proposition 2. Let FF denote the true falsification frontier. Let

FFguess =

{
δ ∈ RL≥0 : δ` = |ψ` − bπ`|, ` = 1, . . . , L, b ∈

[
min

`=1,...,L:π` 6=0

ψ`
π`
, max
`=1,...,L:π` 6=0

ψ`
π`

]}
.

We will show FF = FFguess. We split the proof in three parts. The first two parts together show
that FFguess ⊆ FF. The third part shows that FFguess ⊇ FF.

1. We first show that if δ ∈ FFguess, then the identified set B(δ) is not empty. This follows
immediately from lemma 2.

2. We next show that δ′ < δ for δ ∈ FFguess implies that B(δ′) is empty. So let δ′ < δ where
δ ∈ FFguess and δ′ ≥ 0. Consider two cases.

(a) First suppose δ′` < δ` for some ` such that π` = 0. By the definition of FFguess, δ` = |ψ`|.
• Suppose ψ` > 0. Then δ` = ψ` and hence [ψ` − δ`, ψ` + δ`] = [0, 2ψ`]. Since δ′` < δ`,
ψ` − δ′` > 0 and so 0 is not an element of [ψ` − δ′`, ψ` + δ′`]. Hence B`(δ

′
`) = ∅ by

equation (4).

• Suppose ψ` < 0. Then δ` = −ψ` and hence [ψ`−δ`, ψ`+δ`] = [2ψ`, 0]. Since δ′` < δ`,
ψ` + δ′` < 0 and so 0 is not an element of [ψ` − δ′`, ψ` + δ′`]. Hence B`(δ

′
`) = ∅ by

equation (4).

• Suppose ψ` = 0. Then δ` = 0 and so we cannot have δ′` < δ`, since δ′` ≥ 0.

Thus in this case we must have B(δ′) = ∅.
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(b) Next suppose δ′` < δ` for some ` such that π` 6= 0. δ′ < δ implies that B(δ′) ⊆ B(δ). By
lemma 2, B(δ) = {b∗} for some value b∗. Thus it suffices to show that b∗ /∈ B(δ′). That
will imply that B(δ′) = ∅.
To show that b∗ /∈ B(δ′) it suffices to show that b∗ /∈ B`(δ′) for some `, since B(δ′) is the
intersection of these sets over all `’s, by corollary 1. From that corollary we have

B`(δ
′) =

[
ψ`
π`
− δ′`
|π`|

,
ψ`
π`

+
δ′`
|π`|

]
.

Consider two cases:

i. Suppose b∗ ≤ ψ`/π`. Then

ψ`
π`
− δ`
|π`|

=
ψ`
π`
− |ψ` − b

∗π`|
|π`|

=
ψ`
π`
−
∣∣∣∣ψ`π` − b∗

∣∣∣∣
= b∗.

Hence

ψ`
π`
− δ′`
|π`|

>
ψ`
π`
− δ`
|π`|

= b∗.

Thus b∗ /∈ B`(δ′).
ii. Suppose b∗ > ψ`/π`. Then

ψ`
π`

+
δ`
|π`|

=
ψ`
π`

+
|ψ` − b∗π`|
|π`|

=
ψ`
π`

+

∣∣∣∣ψ`π` − b∗
∣∣∣∣

= b∗.

Hence

ψ`
π`

+
δ′`
|π`|

<
ψ`
π`

+
δ`
|π`|

= b∗.

Thus b∗ /∈ B`(δ′).
Steps 1 and 2 together imply that FFguess ⊆ FF.

3. Finally, we show that FFguess ⊇ FF. We show the contrapositive: δ /∈ FFguess implies that
δ /∈ FF. So let δ /∈ FFguess. There are three cases to consider.

(a) Suppose B(δ) = ∅. Then δ /∈ FF by definition.

(b) Denote

bmin = min
`=1,...,L:π` 6=0

ψ`
π`

and bmax = max
`=1,...,L:π` 6=0

ψ`
π`
.
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Suppose B(δ) 6= ∅ and B(δ) ⊆ [bmin, bmax]. We’ll show that we can find a δ′ < δ such
that B(δ′) 6= ∅, and hence δ /∈ FF. We use two observations:

i. Since δ /∈ FFguess we must have δ 6= δ(b) for all b ∈ [bmin, bmax]. In particular,
δ 6= δ(b) for all b ∈ B(δ), since we’re considering the case where B(δ) ⊆ [bmin, bmax].

ii. Let b ∈ B(δ). By the characterization of B(δ) in theorem 1 (specifically, see equation
(22) in our discussion below), this implies that |ψ` − bπ`| ≤ δ` for all ` = 1, . . . , L.
That is, δ(b) ≤ δ.

Let b′ be any element of B(δ). This exists by assumption. Let δ′ = δ(b′). Observation
(i) implies δ′ 6= δ. Observation (ii) implies δ′ ≤ δ. Hence δ′ < δ. Moreover, we have
B(δ′) = B(δ(b′)) = {b′} 6= ∅ by lemma 2. Thus δ /∈ FF, by definition of the falsification
frontier.

(c) Suppose B(δ) contains an element b /∈ [bmin, bmax]. Suppose b > bmax. Let δ′ = δ(bmax).

• Observation (i) above implies δ′ 6= δ.

• Next we show δ′ ≤ δ. Observation (ii) above implies δ`(b) = |ψ` − bπ`| ≤ δ` for all
` = 1, . . . , L. So it suffices to show

δ`(bmax) = |ψ` − bmaxπ`| ≤ |ψ` − bπ`| = δ`(b)

for all `. This holds immediately for all ` with π` = 0. For the other `’s, it follows
by the structure of the δ`(·) function, the definition

bmax = max
`=1,...,L:π` 6=0

ψ`
π`
,

and the fact that b > bmax. Specifically, notice that for ` such that π` 6= 0, δ`(·)
is zero at ψ`/π` and otherwise is strictly increasing as the distance between ψ`/π`
and its argument increases. (Specifically, it is a V-shaped function, whose slope is
determined by π`, but this specific shape is not important here.) Since b > bmax,
b > ψs/πs for all s with πs 6= 0. Thus we must have δ`(b) > δ`(ψs/πs) for all ` and
s with π` 6= 0 and πs 6= 0. In particular, it holds for the s such that bmax = ψs/πs.

Hence δ′ < δ. Moreover, B(δ′) = B(δ(bmax)) = {bmax} 6= ∅ by lemma 2. So δ /∈ FF,
by definition of the falsification frontier. A similar argument applies if instead we have
b < bmin.

Proof of corollary 2. The falsification frontier is given by

FF =

{
δ ∈ R2

≥0 : δ` = |ψ` − bπ`|, ` = 1, 2, b ∈
[

min
`=1,2

ψ`
π`
,max
`=1,2

ψ`
π`

]}
,

a line segment in R2. We can directly see that FF is the line segment between(
0,

∣∣∣∣ψ2 −
ψ1

π1
π2

∣∣∣∣) and

(∣∣∣∣ψ1 −
ψ2

π2
π1

∣∣∣∣ , 0)
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which corresponds the equation

|π2|
∣∣∣∣ψ1

π1
− ψ2

π2

∣∣∣∣− ∣∣∣∣π2

π1

∣∣∣∣ δ1 = δ2

for nonnegative values of δ1 and δ2.

Proof of theorem 2. We have⋃
δ∈FF

B(δ) =
⋃

b∈
[
min`=1,...,L:π` 6=0

ψ`
π`
,max`=1,...,L:π` 6=0

ψ`
π`

]B(δ(b))

=
⋃

b∈
[
min`=1,...,L:π` 6=0

ψ`
π`
,max`=1,...,L:π` 6=0

ψ`
π`

]{b}

=

[
min

`=1,...,L:π` 6=0

ψ`
π`
, max
`=1,...,L:π` 6=0

ψ`
π`

]
.

The first equality follows by the characterization of the falsification frontier in proposition 2. The
second equality follows by lemma 2.

Proof of proposition 3. Let

m∗ = max
`,`′∈{1,...,L}

ψ`
π`
− ψ`′

π`′
d`
|π`|

+
d`′

|π`′ |

.

Suppose m < m∗. Then there is an s and an s′ such that

m <

ψs
πs
− ψs′

πs′
ds
|πs|
− ds′

|πs′ |

.

Rearranging yields
ψs
πs
− mds
|πs|

>
ψs′

πs′
+
mds′

|πs′ |
.

Hence

max
`=1,...,L

(
ψ`
π`
− md`
|π`|

)
> min

`′=1,...,L

(
ψ`′

π`′
+
md`′

|π`′ |

)
.

But recall from corollary 4 that for any δ,

B(δ) =
⋂

`=1,...,L

[
ψ`
π`
− δ`
|π`|

,
ψ`
π`

+
δ`
|π`|

]

=

[
max

`=1,...,L

(
ψ`
π`
− md`
|π`|

)
, min
`′=1,...,L

(
ψ`′

π`′
+
md`′

|π`′ |

)]
.

We just showed, however, that for δ = m · d, the left endpoint is larger than the right endpoint.
Hence B(m · d) is empty.
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Now, let δ = m∗ · d. Let s, s′ be such that

m∗ =

ψs
πs
− ψs′

πs′
ds
|πs|
− ds′

|πs′ |

.

Rearranging yields
ψs
πs
− m∗ds
|πs|

=
ψs′

πs′
+
m∗ds′

|πs′ |
.

Let b∗ denote this common value.
Next let ` ∈ {1, . . . , L} be arbitrary. We will show that b∗ ∈ B`(δ). We prove this by contra-

diction. Consider two cases.

1. Suppose
ψ`
π`

+
m∗d`
|π`|

< b∗.

Rearranging this equation yields
ψs
πs
− ψ`
π`

ds
|πs|

+
d`
|π`|

> m∗.

This contradicts the definition of s.

2. Suppose

b∗ <
ψ`
π`

+
m∗d`
|π`|

.

Rearranging this equation yields

ψ`
π`
− ψs′

πs′
d`
|π`|

+
ds′

|πs′ |

> m∗.

This contradicts the definition of s′.

Thus b∗ ∈ B`(δ) for any ` ∈ {1, . . . , L}. Hence b∗ ∈ B(δ). Thus implies that B(δ) is not empty, as
desired.

Proof of corollary 3. This result follows immediately from corollary 1, proposition 2, and proposi-
tion 3.
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Proofs for section 3.6: K endogenous variables

To prove the results in this section, we first review the structure of the identified set for β. From
theorem 1, this set is

B(δ) =
{
b ∈ RK : −δ ≤ ψ −Πb ≤ δ

}
=

L⋂
`=1

{
b ∈ RK : −δ` ≤ ψ` − π′`b ≤ δ`

}
where π′` is the `th row of the matrix Π. So if we let

B`(δ`) =
{
b ∈ RK : −δ` ≤ ψ` − π′`b ≤ δ`

}
then

B(δ) =

L⋂
`=1

B`(δ`). (22)

In our baseline model with δ` = 0, B`(0) is a hyperplane in RK :

B`(0) = {b ∈ RK : ψ` = π′`b}.

As we relax exclusion, this set goes from being a hyperplane to the space between two hyperplanes.
Figures 12, 13, and 14 plot examples of these spaces. The overall identified set B(δ) is just the
intersection of these spaces.

With that as background, we next prove our main results: proposition 5, our characterization
of the falsification frontier, and theorem 4, our characterization of the falsification adaptive set. We
do this using a sequence of lemmas.

We begin by showing a basic geometric fact about the set FAS∗ when L = K + 1. Here and
elsewhere we use the notation β2sls

−` = β2sls
{1,...,L}\{`}.

Lemma 3. Suppose A1′, A2, and A3 hold. Suppose L = K + 1. Then exactly one of the following
holds:

1. β2sls
−` = β2sls

−`′ for all `, `′ ∈ {1, . . . , L}.

2. π′`β
2sls
−` 6= ψ` for all ` ∈ {1, . . . , L}.

Proof of lemma 3. We will show that (1) holds if and only if (2) does not hold.

1. (⇒) Suppose statement (1) holds. So β2sls
−` = β2sls

−`′ for all `, `′ ∈ {1, . . . , L}. Then π′`β
2sls
−` =

π′`β
2sls
−`′ = ψ` for any ` and any `′ 6= `. Therefore statement (2) does not hold.

2. (⇐). Suppose (2) does not hold. Then there exists an ` such that π′`β
2sls
−` = ψ`. By definition

of β2sls
−` , we have π′`′β

2sls
−` = ψ`′ for all `′ 6= `. But now we know it also holds for `′ = `. Thus

β2sls
−` is an element of every hyperplane B`′(0). This implies that(

Π{1,...,L}\{`′}
)
b = ψ{1,...,L}\{`′}

is satisfied by b = β2sls
−` . But this equation is also satisfied by b = β2sls

−`′ , by definition of this
estimand. By A1′, this equation has a unique solution. Thus β2sls

−`′ = β2sls
−` . This argument

holds for all `′ ∈ {1, . . . , L} \ {`}. Thus (1) holds.

101



The next lemma shows that, when L = K + 1 and FAS∗ is not a singleton, we can write any
element of RK as a weighted sum of our just-identified 2SLS estimands.

Lemma 4. Suppose A1′ holds. Suppose L = K + 1. Assume that FAS∗ is not a singleton. Then
for any b ∈ RK there exist weights w1(b), . . . , wL(b) such that

b =
L∑
`=1

w`(b)β
2sls
−`

and the weights that sum to one,
∑L

`=1w`(b) = 1.

Proof of lemma 4. Since we want the weights to sum to one, the last weight is always defined by

1−
L=1∑
`=1

w`(b)

once we’ve chosen the first L− 1 weights. Thus we want to find (w1(b), . . . , wL−1(b)) such that

b =
(
β2sls
−1 · · · β2sls

−L
) w1(b)

...

1−∑L−1
`=1 w`(b)


holds. Multiplying this out we get

b =
L−1∑
s=1

β2sls
−s ws(b) +

(
β2sls
−L − β2sls

−L

L−1∑
s=1

ws(b)

)
or

b− β2sls
−L =

L−1∑
s=1

(β2sls
−s − β2sls

−L )ws(b).

Thus in matrix notation we have

b− β2sls
−L =

(
β2sls
−1 − β2sls

−L · · · β2sls
−(L−1) − β2sls

−L

)
︸ ︷︷ ︸

(L−1)×(L−1)

 w1(b)
...

wL−1(b)

 .

This system has a unique solution if the matrix(
β2sls
−1 − β2sls

−L · · · β2sls
−(L−1) − β2sls

−L

)
has full rank. So that’s what we’ll show.

This matrix doesn’t have full rank if we can find a c ∈ RL−1 with c 6= 0L−1 such that(
β2sls
−1 − β2sls

−L · · · β2sls
−(L−1) − β2sls

−L

)
c = 0L−1. (23)
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Multiplying out we see that this equality is equivalent to

L−1∑
`=1

c`β
2sls
−` = β2sls

−L

L−1∑
`=1

c`.

Premultiplying by π′L gives

π′Lβ
2sls
−L

L−1∑
`=1

c` =
L−1∑
`=1

c`π
′
Lβ

2sls
−`

= ψL

L−1∑
`=1

c`.

The second line follows since β2sls
−` lies on the line ψL = π′Lb̃ for all ` 6= L, by definition of these

2SLS estimands. Thus

(ψL − π′Lβ2sls
−L )

L−1∑
`=1

c` = 0.

By lemma 3, ψL 6= π′Lβ
2sls
−L . So we must have

L−1∑
`=1

c` = 0.

We can now go back and substitute this into equation (23) to get

(
β2sls
−1 − β2sls

−L · · · β2sls
−(L−1) − β2sls

−L

) c1
...

−∑L−2
`−1 c`

 = 0L−1.

Multiplying this out yields

L−2∑
`=1

c`β
2sls
−` − β2sls

−L

L−2∑
`=1

c` + (β−(L−1) − β−L)

(
−
L−2∑
`=1

c`

)
= 0L−1.

Simplifying gives

β2sls
−(L−1)

L−2∑
`=1

c` =

L−2∑
`=1

c`β
2sls
−` .

Premultiply both sides by πL−1 and repeat the arguments above to get

L−2∑
`=1

c` = 0.

Repeat this argument iteratively to see that c = 0L−1. Thus the matrix(
β2sls
−1 − β2sls

−L · · · β2sls
−(L−1) − β2sls

−L

)
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is nonsingular.

Now recall our general definition of the falsification frontier: It is the set of values δ ∈ RL≥0

such that B(δ) 6= ∅ and B(δ′) = ∅ for any δ′ < δ. We first show that, in the L = K + 1 case, the
identified set for β is a singleton at any point δ in the conjectured falsification frontier defined in
equation (10). For this we define

δ`(b) = |ψ` − π′`b|
for all ` = 1, . . . , L. Let δ(b) = (δ1(b), . . . , δL(b)).

Lemma 5. Suppose A1′, A2, and A3 hold. Suppose L = K+1. Let b ∈ FAS∗. Then B(δ(b)) = {b}.

Figure 12 illustrates the geometric intuition for this lemma.

Proof of lemma 5. By lemma 3, there are two cases to consider: FAS∗ is either a singleton or a
nondegenerate simplex in RK .

Case 1. Suppose FAS∗ = {b} is a singleton. By the definition of FAS∗, this implies that
b = β2SLS

L for any L ⊆ {1, . . . , L} with |L| = K. Moreover, for any such L,⋂
`∈L

B`(0) = {b̃ ∈ RK : ΠLb̃ = ψL}

= {b}.

Let L1 and L2 be subsets of {1, . . . , L} such that L1 ∪ L2 = L. Then

B(0) =

L⋂
`=1

B`(0)

=

 ⋂
`∈L1

B`(0)

⋂ ⋂
`∈L2

B`(0)


= {b}.

The first line holds by equation (22). Thus B(δ(b)) = B(0) = {b}.

Case 2. Suppose FAS∗ is not a singleton. Then π′`β
2sls
−` 6= ψ` for all ` ∈ {1, . . . , L}. We prove

equality of sets by showing that both directions of set inclusion hold.

Step 1 (⊇). First we show that B(δ(b)) ⊇ {b}. By definition of δ`(·),

ψ` − π′`b ∈ [−δ`(b), δ`(b)]

for all `. Thus, by the characterization of B(·) in theorem 1, b ∈ B(δ(b)).

Step 2 (⊆). Next we show that B(δ(b)) ⊆ {b}. First suppose δ`(b) = 0 for all `. In this case
the baseline model is not refuted. b is then the unique value that satisfies all of the instrument
constraints. So FAS∗ is a singleton. This is a contradiction. So we must have δ`(b) > 0 for some `.

We will show that any element b∗ 6= b is not in B(δ(b)). The set FAS∗ is a polytope. Consider
its alternative half-space representation. The half-spaces correspond to one side of the hyperplanes
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B`(0). For example, the shaded areas in figure 5 can be written as the intersection of half-spaces
formed by the plotted lines. Formally, write

FAS∗ =

L⋂
`=1

{b̃ ∈ RK : ψ` − π′`b̃ ≤ 0}. (24)

Here we assume without loss of generality that all of the inequalities go in the same direction (≤ 0).

• If one of the half-spaces originally has the form ψ` − π′`b̃ ≥ 0, it can be rewritten as −ψ` −
(−π′`b̃) ≤ 0. This is equivalent to replacing Z` with −Z`. As shown in appendix E, changing
the sign of an instrument does not affect the estimands β2sls

L and therefore does not affect
the set FAS∗.

Now recall that

B(δ) =
L⋂
`=1

{
b̃ ∈ RK : −δ` ≤ ψ` − π′`b̃ ≤ δ`

}
=

(
L⋂
`=1

{b̃ ∈ RK : ψ` − π′`b̃ ≥ −δ`}
)⋂(

L⋂
`=1

{b̃ ∈ RK : ψ` − π′`b̃ ≤ δ`}
)
.

Evaluating this expression at δ(b) yields

B(δ(b)) =

(
L⋂
`=1

{b̃ ∈ RK : ψ` − π′`b̃ ≥ −|ψ` − π′`b|}
)⋂(

L⋂
`=1

{b̃ ∈ RK : ψ` − π′`b̃ ≤ |ψ` − π′`b|}
)

≡ P1(b) ∩ P2(b).

By lemma 4, any element in RK can be written as a linear combination of our L different just-
identified 2SLS estimands. In particular, we can write b∗ in this way:

b∗ =

L∑
`=1

w`(b
∗)β2sls
−`

where β2sls
−` = β2sls

{1,...,L}\{`} and where w`(b
∗) are weights that sum to one,

∑L
`=1w`(b

∗) = 1. (These

weights are not necessarily non-negative.) Remember that our goal is to show that b∗ 6= b implies
b∗ /∈ B(δ(b)). By our decomposition above, it suffices to show that b∗ /∈ P1(b).

Since b ∈ FAS∗,
ψ` − π′`b ≤ 0

for all `. This follows directly from our half-space representation of FAS∗. Thus

−|ψ` − π′`b| = ψ` − π′`b
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for all `. Hence

P1(b) =
L⋂
`=1

{b̃ ∈ RK : ψ` − π′`b̃ ≥ −|ψ` − π′`b|}

=
L⋂
`=1

{b̃ ∈ RK : ψ` − π′`b̃ ≥ ψ` − π′`b}

=

L⋂
`=1

{b̃ ∈ RK : π′`(b̃− b) ≤ 0}.

So b∗ ∈ P1(b) if and only if π′`(b
∗ − b) ≤ 0 for all `. Focus on just one ` for a moment. Then

π′`(b
∗ − b) =

L∑
s=1

(ws(b
∗)− ws(b))π′`β2sls

−s

=

L∑
s=1

(ws(b
∗)− ws(b))π′`β2sls

−s − π′`β2sls
−`

L∑
s=1

(ws(b
∗)− ws(b))

=
∑
s 6=`

(ws(b
∗)− ws(b))π′`β2sls

−s − π′`β2sls
−`

∑
s 6=`

(ws(b
∗)− ws(b))

=
∑
s 6=`

(ws(b
∗)− ws(b))ψ` − π′`β2sls

−`
∑
s 6=`

(ws(b
∗)− ws(b))

= (ψ` − π′`β2sls
−` )

∑
s 6=`

(ws(b
∗)− ws(b)).

The first line follows by substituting in our linear combination representation of any element in RK
for both b∗ and b. The second line follows since the weights sum to one, so the sum of the difference
in weights is zero. The third line comes from cancelling the `th term in the two summations. The
fourth line follows since, for all s 6= `, β2sls

−s lies on the line ψ` = π′`b̃. This holds by the definition
of these 2SLS estimands.

Next notice that ψ`−π′`β2sls
−` < 0. This follows from β2sls

−` ∈ FAS∗, the half-space representation
of FAS∗, and the fact that FAS∗ is a nondegenerate simplex. So suppose by way of contradiction
that b∗ ∈ P1(b). Then π′`(b

∗ − b) ≤ 0 for all `. We’ve just seen that this implies∑
s 6=`

(ws(b
∗)− ws(b)) ≥ 0

for all `. But now we have

0 =
L∑
s=1

(ws(b
∗)− ws(b))

=
∑
s 6=`

(ws(b
∗)− ws(b)) + (w`(b

∗)− w`(b)).
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Figure 12: Geometric intuition for a key step in the proof of theorem 3. Start at the top left.
Here we have K = 2 and L = 3, as in the left plot of figure 5. We pick a point inside the convex
hull of the three just identified 2SLS estimands. Call it b. We’ll now illustrate the intuition for
lemma 5, which shows that B(δ(b)) = {b}. We next plot the sets B`(δ`(b)) = {b ∈ RK : −δ`(b) ≤
ψ`− π′`b ≤ δ`(b)}, adding one at a time. We look at relaxations δ`(b) = |ψ`− π′`b| which are chosen
to be as small as possible, while still making sure that b is included in each of the tubes centered
at the different hyperplanes B`(0). The result is that the identified set for β given the relaxation
δ(b)—the intersection of these three tubes—is the singleton {b}.

Thus

w`(b
∗)− w`(b) = −

∑
s 6=`

(ws(b
∗)− ws(b))

≤ 0.

This holds for all `. But the only way for the sum of non-positive numbers to equal zero is if
they’re all zero. Thus w`(b

∗) = w`(b) for all `. This implies that b∗ = b, a contradiction. Therefore
b∗ /∈ P1(b). As discussed above, this suffices to see that b∗ /∈ B(δ(b)).

Lemma 6. Suppose A1′, A2, and A3 hold. Suppose L ≥ K + 1. Let b ∈ P. Then B(δ(b)) = {b}.
Proof of lemma 6. As in the proof of lemma 5, we prove set equality by showing that both directions
of set inclusion hold.

Step 1 (⊇). The proof of this step from lemma 5 applies without modification.

Step 2 (⊆). Since b ∈ P there is some L ⊆ {1, . . . , L} with |L| = K such that b ∈ PL. Let

BL(δ) =
⋂
`∈L

B`(δ).
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Figure 13: Geometric intuition for a key step in the proof of theorem 3, continued from figure 12.
Here we instead pick a point outside the convex hull of the three just identified 2SLS estimands.
We again relax each exclusion restriction just enough so that b is inside each of the tubes centered
at the different hyperplanes B`(0). But now when we look at the intersection of these tubes we get
a non-singleton set. Because this set has an interior, we’ve relaxed exclusion too much—we can
strengthen some of the exclusion restrictions without obtaining a falsified model. Thus the point b
is not in the falsification adaptive set.

This is the identified set for β when we impose partial exclusion for only the instruments with
indices in L. By lemma 5, BL(δ(b)) = {b}. Moreover, BL(δ) ⊇ B(δ). Thus B(δ(b)) ⊆ {b}.

The following variation on Farkas’ lemma (for example, corollary 22.3.1 on page 200 of Rock-
afellar 1970; Border 2019 provides an extensive discussion) is helpful.

Lemma 7 (Variation on Farkas’ Lemma). Let x1, . . . , xn ∈ RK . Then 0 /∈ conv({x1, . . . , xn}) if
and only if there exists a point p ∈ RK such that p′xi > 0 for all i = 1, . . . , n.

In particular, this lemma shows that if you pick a point outside a convex hull of {x1, . . . , xn},
then you can find a vector p pointing towards all of the vectors x1, . . . , xn.

Proof of lemma 7. 0 /∈ conv({x1, . . . , xn}) if and only if the system(
1 · · · 1
x1 · · · xn

)
λ =

(
1
0

)
λ ≥ 0

has no solutions. By Farkas’ lemma (for example, theorem 6 in Border 2019), this system does not
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have a solution if and only if there exists a point p̃ = (p0, p) ∈ RK+1 such that

p̃′
(

1 · · · 1
x1 · · · xn

)
≥ 0

p̃′
(

1
0

)
< 0.

That is,

(
p0 p′

)( 1 · · · 1
x1 · · · xn

)
≥ 0

(
p0 p′

)(1
0

)
< 0

which is equivalent to

p0 + p′xi ≥ 0 for all i = 1, . . . , n

p0 < 0. (25)

For the⇒ direction, this immediately implies that p′xi > 0 for all i = 1, . . . , n. For the⇐ direction,
we take p′xi > 0 for all i = 1, . . . , n as our assumption. We can then always pick a p0 < 0 sufficiently
close to zero that the system (25) holds.

Lemma 8. Suppose A1′ holds. Suppose L = K + 1. Suppose FAS∗ is not a singleton. Then
ψ` − π′`b = w`(b)(ψ` − π′`β2sls

−` ) for all ` = 1, . . . , L.

Proof of lemma 8. For `′ ∈ {1, . . . , L} we have

ψ`′ − π′`′b = ψ`′ − π′`′
(

L∑
`=1

w`(b)β
2sls
−`

)

= ψ`′ − π′`′

∑
`6=`′

w`(b)β
2sls
−` + w`′(b)β

2sls
−`′


= ψ`′ − π′`′

∑
`6=`′

w`(b)β
2sls
−` +

1−
∑
`6=`′

w`(b)

β2sls
−`′


= ψ`′ −

∑
6̀=`′

w`(b)π
′
`′β

2sls
−` −

1−
∑
`6=`′

w`(b)

π′`′β
2sls
−`′

= ψ`′ −
∑
6̀=`′

w`(b)ψ`′ −

1−
∑
`6=`′

w`(b)

π′`′β
2sls
−`′

=

1−
∑
6̀=`′

w`(b)

ψ`′ −

1−
∑
`6=`′

w`(b)

π′`′β
2sls
−`′

=

1−
∑
6̀=`′

w`(b)

 (ψ`′ − π′`′β2sls
−`′ )
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= w`′(b)(ψ`′ − π′`′β2sls
−`′ ).

In the first line we used the representation b =
∑L

`=1w`(b)β
2sls
−` , by lemma 4. The last equality

follows since the weights sum to one.

Lemma 9. Suppose A1′ holds. Suppose L = K + 1. Suppose FAS∗ is not a singleton. Without
loss of generality, write

FAS∗ =
L⋂
`=1

{b ∈ RK : ψ` − π′`b ≤ 0}.

(See equation (24) in the proof of lemma 5, and the surrounding discussion.) Then there are no
b ∈ RK such that ψ` − π′`b ≥ 0 for all ` = 1, . . . , L.

Proof of lemma 9. Let

E =
L⋂
`=1

{b̃ ∈ RK : ψ` − π′`b̃ ≥ 0}.

Suppose by way of contradiction that there is some element b ∈ E . Write

b =
L∑
`=1

w`(b)β
2sls
−`

where
∑L

`=1w`(b) = 1. By lemma 8 (which we can use since L = K+1 and FAS∗ is not a singleton),

ψ` − π′`b = w`(b)(ψ` − π′`β2sls
−` ).

This term is ≥ 0 since b ∈ E . Since β2sls
−` ∈ FAS∗ and by lemma 3 we have ψ` − π′`β2sls

−` < 0. This

implies w`(b) ≤ 0. This must hold for all `. That is a contradiction to
∑L

`=1w`(b) = 1. Hence
E = ∅.

Lemma 10. Suppose A1′, A2, and A3 hold. Suppose L = K+1. Then there exists a normalization
of the hyperplanes {b ∈ RK : π′`b = ψ`} with ψ` ≥ 0 and such that

0 ∈ conv({π` : ` = 1, . . . , L}) ⇒ 0 ∈ conv({β2sls
−` : ` = 1, . . . , L}).

Proof of lemma 10. We prove this by contrapositive. So suppose 0 /∈ conv({β2sls
−` : ` = 1, . . . , L}).

By L = K + 1 and lemma 3, there are two cases to consider.

1. Suppose FAS∗ = conv({β2sls
−` : ` = 1, . . . , L}) is a singleton. Let b∗ denote this common value.

By definition of β2sls
−` , π′`β

2sls
−` = ψ` for all `. Thus π′`b

∗ = ψ` for all `. Since 0 is not in the
convex hull of the β2sls

−` points by assumption, we have b∗ 6= 0. Recall also that we normalized
ψ` ≥ 0 for all `. So we have π′`b

∗ ≥ 0 for all `.

Let L0 denote the indices ` such that ψ` = 0. Note that π′`b
∗ = 0 for ` ∈ L0. The set⋃

`∈L0

{b ∈ RK : π′`b = 0}

does not equal RK . This follows since it is a finite union of K − 1 dimensional hyperplanes.
So there is a point v ∈ RK which is not in this set. That is, there exists a vector v ∈ RK such
that π′`v 6= 0 for all ` ∈ L0.
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Note that hyperplanes corresponding to ` ∈ L0 are invariant to sign normalizations of π` since

{b ∈ RK : π′`b = 0} = {b ∈ RK : (−π`)′b = 0}.

The element v is independent of the normalization since if π′`v 6= 0, then (−π`)′v 6= 0 as well.
Let

b∗(t) = b∗ + tv

for t ≥ 0. At t = 0 we have
π′`b
∗(0) = ψ` > 0

for all ` ∈ L \ L0. By continuity, for small enough t > 0 we also have

π′`b
∗(t) = π′`b

∗ + tπ′`v > 0

for all ` ∈ L \ L0. Denote this point by t̄ > 0. Next, for all ` ∈ L0 we have

π′`b
∗(t̄) = π′`b

∗ + t̄π′`v

= t̄π′`v

6= 0.

Therefore, given that the sign of π` for ` ∈ L0 can be renormalized, we can normalize π` for
` ∈ L0 such that π′`b

∗(t̄) > 0 for all ` ∈ L0. So now we have found a normalization and a point
b∗(t̄) such that π′`b

∗(t̄) > 0 for all `. Lemma 7 thus implies that 0 /∈ conv({π` : ` = 1, . . . , L}).

2. Suppose conv({β2sls
−` : ` = 1, . . . , L}) is not a singleton. By A1.2′, the equation

(
1 . . . 1
π1 . . . πL

)λ1
...
λL

 =

(
1

0K

)
(26)

has a unique solution λ ∈ RL. We want to show that this solution does not satisfy λ ≥ 0.

Recall that we can write FAS∗ = conv({β2sls
−` : ` = 1, . . . , L}) as an intersection of halfspaces

{b̃ ∈ RK : π′`b̃ ≤ ψ`}. Without loss of generality, write

FAS∗ =

 ⋂
`∈L1

{b̃ ∈ RK : ψ` − π′`b̃ ≤ 0}

⋂ ⋂
`∈L2

{b̃ ∈ RK : ψ` − π′`b̃ ≥ 0}


for some partition L1 ∪ L2 = L. Since we have normalized ψ` ≥ 0, we cannot have L1 = ∅
because this would imply that 0 ∈ FAS∗. So this implies that there is some index k1 such
that

conv({β2sls
−` : ` = 1, . . . , L}) ⊆ {b ∈ RK : π′k1b ≥ ψk1}.

However, we also cannot have L1 = {1, . . . , L}.

• If L1 = {1, . . . , L} then

FAS∗ =
⋂

`∈{1,...,L}

{b̃ ∈ RK : ψ` − π′`b̃ ≤ 0}.
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By lemma 9, this implies that ⋂
`∈{1,...,L}

{b̃ ∈ RK : ψ` − π′`b̃ ≥ 0}

is empty. This is a contradiction since

0 ∈
⋂

`∈{1,...,L}

{b̃ ∈ RK : ψ` − π′`b̃ ≥ 0}

by the normalization ψ` ≥ 0.

Hence there is some index k2 ∈ L2. That is, there is a k2 such that

{b ∈ RK : π′k2b ≤ ψk2} ⊇ conv({β2sls
−` : ` = 1, . . . , L}).

Now, from the last row of equation (26) we have

L∑
`=1

λ`π` = 0K .

Multiply this equation by (β2sls
−k )′ to get

(β2sls
−k )′

L∑
`=1

π`λ` = 0.

Separate the ` = k from the sum to get∑
` 6=k

λ`π
′
`β

2sls
−k + λkπ

′
kβ

2sls
−k = 0.

Recall that, by the definition of these 2SLS estimands, π′kβ
2sls
−` = ψk for k 6= `. Hence∑

`6=k
λ`ψk + λkπ

′
kβ

2sls
−k = 0. (27)

Consider this equation for our two different indices k1, k2 ∈ {1, . . . , L},∑
6̀=k1

λ`ψk1 + λk1π
′
k1β

2sls
−k1 = 0 and

∑
`6=k2

λ`ψk2 + λk2π
′
k2β

2sls
−k2 = 0.

Subtract the left equation from the right to get

0 = λk2(π′k2β
2sls
−k2 − ψk2) + λk1(ψk1 − π′k1β2sls

−k1 ).

As mentioned earlier, lemma 3 implies that π′k2β
2sls
−k2 − ψk2 < 0 and ψk1 − π′k1β2sls

−k1 < 0. This
equation implies that λk2 and λk1 cannot both have the same signs. If one of them is > 0
then the other must be < 0. In this case, we’re done. Here we use the fact that λ is the
unique solution to equation (26).

So suppose both of them are zero. Let k3 ∈ {1, . . . , L} \ {k1, k2}. Then by similar derivations
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we have
0 = λk2(π′k2β

2sls
−k2 − ψk2) + λk3(ψk1 − π′k3β2sls

−k3 ).

We know that λk2 = 0 already and thus

0 = λk3(ψk1 − π′k3β2sls
−k3 ).

We know that ψk1 − π′k3β2sls
−k3 6= 0 and thus we must have λk3 = 0. Continuing in this way

we obtain λ = 0. This contradicts
∑L

`=1 λ` = 1. Thus λ cannot be nonnegative. So equation
(26) then implies that 0 /∈ conv({π` : ` = 1, . . . , L}).

Lemma 11. Suppose A1′, A2, and A3 hold. Suppose L ≥ K + 1. Let b /∈ P. Then there exists a
δ′ < δ(b) such that B(δ′) 6= ∅.

Figures 13 and 14 illustrate the geometric intuition for this lemma.

Proof of lemma 11. Without loss of generality, suppose b = 0. This follows since we can simply
translate our coordinate system so that the origin is at b. Put differently, we map all x ∈ RK to
x− b. In particular, the hyperplanes

B`(0) = {b̃ ∈ RK : ψ` = π′`b̃}

get mapped to
B`(0)− b = {b̃ ∈ RK : ψ` − π′`b = π′`b̃}.

Thus we let b = 0. Throughout this proof, pick one of the normalizations given by lemma 10. In
these normalizations we have ψ` ≥ 0 for all `. Next, there are two cases to consider.

1. Suppose δ`(b) > 0 for all `. Since b /∈ P, b /∈ PL = conv({β2sls
L\{l} : ` ∈ L}) for any L with

|L| = K + 1. Since b = 0, lemma 10 implies that 0 /∈ conv({π` : ` ∈ L}). This holds for any
set L such that |L| = K + 1. This implies that 0 /∈ conv({π` : ` = 1, . . . , L}).

• If 0 ∈ conv({π` : ` = 1, . . . , L}), then Caratheodory’s theorem (e.g., chapter 17 of
Rockafellar 1970) implies that 0 is in the convex hull of a (K + 1)-element subset of
{π` : ` = 1, . . . , L}, That is, 0 ∈ conv({π` : ` ∈ L}) for some L with |L| = K + 1. This
is a contradiction.

Since 0 /∈ conv({π` : ` = 1, . . . , L}), lemma 7 implies that there exists a vector b̄ such that
b̄′π` > 0 for all ` = 1, . . . , L. Define

b(ε) = b+ εb̄

= 0 + εb̄.

This is a point that starts at b and moves in the direction of b. Recall that we normalized
ψ` ≥ 0 for all `. Moreover, note that we must actually have ψ` > 0 since 0 < δ`(0) = |ψ`|.
Thus, since ψ` > 0 and π′`b̄ > 0 for all `, there exists an ε̄ > 0 such that

ψ` − ε̄π′`b̄ > 0
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for all `. This implies that

|ψ` − π′`b(ε̄)| = |ψ` − π′`(b+ ε̄b̄)|
= |(ψ` − π′`b)− ε̄π′`b̄|
= (ψ` − π′`b)− ε̄π′`b̄
= δ`(b)− ε̄π′`b̄
< δ`(b).

The third line uses b = 0 and our specific choice of ε̄ to ensure that this term is positive, and
hence we can drop the absolute value. The fourth line uses ψ` ≥ 0 and b = 0. The fifth line
uses π′`b̄ > 0 and ε̄ > 0.

Let
δ′` = |ψ` − π′`b(ε̄)|.

We have shown that δ′ < δ(b). Finally, by our characterization of B(·) and the definition of
δ′, we have b(ε̄) ∈ B(δ′). Hence B(δ′) 6= ∅.

2. Suppose δ`(b) = 0 for some `’s. There can be at most K − 1 such indices, since otherwise we
would have b ∈ P. Let L0 denote the set of these indices. As in the proof of lemma 10, we
must have ψ` = 0 for ` ∈ L0. In this case, consider the subspace

{b̃ ∈ RK : 0 = π′`b̃, ` ∈ L0}.

This is a linear subspace of dimension at least 1 (by assumption that δ`(b) = 0 for some `’s)
and at most K − 1 (as noted earlier). Within this subspace, we can look at the remaining
indices {1, . . . , L} \ L0. We have δ`(b) > 0 for all of these indices. By restricting attention to
this subspace we can thus immediately apply the analysis of case 1.

For the next two lemmas, let

FFguess = {δ ∈ RL≥0 : δ` = |ψ` − π′`b|, ` = 1, . . . , L, b ∈ P}

and let FF denote the true falsification frontier.

Lemma 12. Suppose A1′, A2, and A3 hold. Suppose L ≥ K + 1. Then FFguess ⊆ FF.

Proof of lemma 12. Recall the definition δ`(b) = |ψ` − π′`b|. Let δ ∈ FFguess. Then, by definition,
there is a b ∈ P such that δ`(b) = δ` for all `. Thus B(δ) = {b} by lemma 6.

Let δ′ < δ(b). Then there is some index ` such that 0 < δ′` < δ`(b). So δ`(b) /∈ [−δ′`, δ′`]. That is,

ψ` − π′`b /∈ [−δ′`, δ′`].

So b /∈ B`(δ′). This implies that b /∈ B(δ′). But since B(δ′) ⊆ B(δ) = {b}, we must have B(δ′) = ∅.
Hence, by the definition of the falsification frontier, FFguess ⊆ FF.

Lemma 13. Suppose A1′, A2, and A3 hold. Suppose L ≥ K + 1. Then FFguess ⊇ FF.

Proof of lemma 13. We will show the contrapositive: δ /∈ FFguess implies δ /∈ FF. So let δ /∈ FFguess.
There are three cases to consider.
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1. Suppose δ is such that B(δ) = ∅.

• In this case the result follows immediately since B(δ) = ∅ implies δ /∈ FF by definition.

2. Suppose δ is such that B(δ) contains an element b /∈ P.

• By lemma 11 there exists a δ′ < δ(b) with B(δ′) 6= ∅. Moreover, δ(b) ≤ δ by the
characterization of B(δ) in theorem 1. Thus δ /∈ FF by the definition of the falsification
frontier.

3. Suppose δ is such that B(δ) 6= ∅ and B(δ) ⊆ P.

• We use two observations:

(a) Since δ /∈ FFguess we must have δ 6= δ(b) for all b ∈ P. In particular, δ 6= δ(b) for all
b ∈ B(δ), since we are considering the case where B(δ) ⊆ P.

(b) Let b ∈ B(δ). By the characterization of B(δ) in theorem 1 (see equation (22)), this
implies that |ψ` − π′`b| ≤ δ`. That is, δ(b) ≤ δ.

Let b′ be any element of B(δ). This exists by assumption. Let δ′ = δ(b′). The previous
two observations imply that δ′ 6= δ and δ′ ≤ δ. This implies δ′ < δ. Moreover, we have
B(δ′) = B(δ(b′)) = {b′} 6= ∅ by lemma 6. Thus δ /∈ FF, by definition of the falsification
frontier.

All values of δ must fall in one of these three cases. Therefore FFguess ⊇ FF.

Proof of proposition 5. This follows directly from lemmas 12 and 13.

Proof of proposition 4. This is a special case of proposition 5.

Proof of theorem 4. We have ⋃
δ∈FF

B(δ) =
⋃
b∈P
B(δ(b))

=
⋃
b∈P
{b}

= P.

The first line follows by proposition 5. The second line follows by lemma 6.

Proof of theorem 3. This is a special case of theorem 4. In particular, note that P = FAS∗ in this
case.

To prove corollary 4, we use the following definition: Let P be a K × K idempotent matrix.
Define the linear operator p : RK → RK by p(a) = Pa. p is called a projection. For A ⊆ RK , define
the projection of the set A as

proj(A) = {p(a) ∈ RK : a ∈ A}.

We use the following lemma.

Lemma 14. proj(conv(A)) = conv(proj(A)).
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Proof of lemma 14. Step 1 (⊇). Since A ⊆ conv(A), proj(A) ⊆ proj(conv(A)). Thus

conv(proj(A)) ⊆ conv(proj(conv(A))).

Since p(·) is a linear operator, proj(conv(A)) is convex. Hence

conv(proj(conv(A))) = proj(conv(A)).

This with our previous result shows that conv(proj(A)) ⊆ proj(conv(A)).

Step 2 (⊆). Let x ∈ proj(conv(A)). Then x = p(y) for some y ∈ conv(A). Since y ∈ conv(A),
we can write

y =

n∑
i=1

θiyi

where
∑n

i=1 θi = 1,θi ≥ 0, and yi ∈ A for i = 1, . . . , n, where n is a finite integer. Since p(·) is a
linear operator,

p(y) =
n∑
i=1

θip(yi).

Thus we’ve written x as a convex combination of elements p(yi) ∈ proj(A). Hence x ∈ conv(proj(A)).
Thus we’ve shown that proj(conv(A)) ⊆ conv(proj(A)).

Proof of corollary 4. The first part of this result states that P ⊆ FAS∗. To see this, let b ∈ P.
Then b ∈ PL for some set of indices L with |L| = K + 1. But if b is a convex combination of
{β2sls
L\{`} : ` ∈ L}, then it is also a convex combination of the larger set of elements {β2sls

S : S ⊆
{1, . . . , L}, |S| = K}. Hence b ∈ FAS∗.

To prove the second part, consider projections defined by

P =


α′

0
...
0


where α ∈ RK . For any set A ⊆ RK , let [A]1 = {a1 ∈ R : a = (a1, . . . , aK) ∈ RK}. Since P maps
the 2, . . . ,K components of any vector a ∈ RK to zero, it suffices to show that

[proj(P)]1 = [proj(FAS∗)]1

and

[proj(FAS∗)]1 =

[
min

L⊆{1,...,L},|L|=K
α′β2sls
L , max

L⊆{1,...,L},|L|=K
α′β2sls
L

]
. (28)

We have

proj(FAS∗) = proj(conv(P))

= proj(conv({β2sls
L : L ⊆ {1, . . . , L}, |L| = K}))

= conv(proj({β2sls
L : L ⊆ {1, . . . , L}, |L| = K}))

= conv({Pβ2sls
L : L ⊆ {1, . . . , L}, |L| = K}).
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The third line follows from lemma 14. The fourth by the definition of the projection of a set. Using
the specific form of the projection P now gives equation (28).

Similarly,

proj(P) = proj

 ⋃
L⊆{1,...,L}:|L|=K+1

conv
({
β2sls
L\{`} : ` ∈ L

})
=

⋃
L⊆{1,...,L}:|L|=K+1

proj
(

conv
({
β2sls
L\{`} : ` ∈ L

}))
=

⋃
L⊆{1,...,L}:|L|=K+1

conv
(

proj
({
β2sls
L\{`} : ` ∈ L

}))
.

The first line follows by definition of P. The second since projections and unions commute. The
third from lemma 14. Hence

[proj(P)]1 =
⋃

L⊆{1,...,L}:|L|=K+1

[
min
`∈L

α′β2sls
L\{`}, max

`∈L
α′β2sls
L\{`}

]

Thus we see that the first component of proj(P) is a union of closed intervals.
If L and L′ differ by at most one element, then the intervals[

min
`∈L

α′β2sls
L\{`}, max

`∈L
α′β2sls
L\{`}

]
and [

min
`∈L′

α′β2sls
L′\{`}, max

`∈L′
α′β2sls
L′\{`}

]
will overlap (have non-empty intersection). Their union is therefore also a closed interval. Because
we take the union over all L ⊆ {1, . . . , L} : |L| = K + 1, we can find a sequence (L1, . . . ,LN ) such
that [

min
`∈Ln

α′β2sls
Ln\{`}, max

`∈Ln
α′β2sls
Ln\{`}

]
and [

min
`∈Ln+1

α′β2sls
Ln+1\{`}, max

`∈Ln+1

α′β2sls
Ln+1\{`}

]
overlap and such that

N⋃
n=1

Ln = {1, . . . , L}

Thus ⋃
L⊆{1,...,L}:|L|=K+1

[
min
`∈L

α′β2sls
L\{`},max

`∈L
α′β2sls
L\{`}

]
=

[
min

L⊆{1,...,L},|L|=K
α′β2sls
L , max

L⊆{1,...,L},|L|=K
α′β2sls
L

]
.

Putting everything together yields [proj(P)]1 = [proj(FAS∗)]1 as desired.
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Figure 14: Geometric intuition for a key step in the proof of theorem 4. This figure is analogous
to figure 13, except now we have K = 2 and L = 4. Moreover, here we pick b to be outside of
P but inside FAS∗. Thus here we illustrate why FAS∗ is not the falsification adaptive set when
L > K+ 1. The argument is the same as before: We relax each exclusion restriction just enough to
include b in the tubes. But when we do this their intersection is non-singleton. Thus we’ve relaxed
exclusion too much. The point b is not in the falsification adaptive set.

L Proofs for section 5

Proofs for section 5.1: Single binary instrument

Proof of theorem 5. This result follows by applying theorem 6 to the case with J = 2 and L = 1.
Here we will show that the general expressions for D(c) and Hx used in theorem 6 simplify to the
ones used in theorem 5.

We start with D(c). From theorem 6, it is the set of (a0, a1) ∈ [0, 1]2 such that the following
eight inequalities hold

(1− pZ)a0 −min{1− pZ + c, 1}(pZa1 + (1− pZ)a0) ≤ 0

(1− pZ)a0 −max{1− pZ − c, 0}(pZa1 + (1− pZ)a0) ≥ 0

(1− pZ)(1− a0)−min{1− pZ + c, 1}[1− (pZa1 + (1− pZ)a0)] ≤ 0

(1− pZ)(1− a0)−max{1− pZ − c, 0}[1− (pZa1 + (1− pZ)a0)] ≥ 0

pZa1 −min{pZ + c, 1}(pZa1 + (1− pZ)a0) ≤ 0

pZa1 −max{pZ − c, 0}(pZa1 + (1− pZ)a0) ≥ 0

pZ(1− a1)−min{pZ + c, 1}[1− (pZa1 + (1− pZ)a0)] ≤ 0

pZ(1− a1)−max{pZ − c, 0}[1− (pZa1 + (1− pZ)a0)] ≥ 0.

Note that we indexed the elements of D(c) by j ∈ {0, 1} rather than j ∈ {1, 2}. Also recall that
pZ = P(Z = 1). Using the function kz(c) and removing redundant equations, we can rearrange
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these 8 inequalities to obtain

a1 ≥ a0k0(c)

a0 ≥ a1k1(c)

(1− a1) ≥ (1− a0)k0(c)

(1− a0) ≥ (1− a1)k1(c).

This is the set of inequalities described in equation (14) and used in theorem 5.
Next consider Hx. From theorem 6, we have

Hx = {(a0, a1) ∈ [0, 1]2 : For some (q0, q1) ∈ [0, 1]2,

a0 = P(Y = 1, X = x | Z = 0) + P(X = 1− x | Z = 0)q0,

a1 = P(Y = 1, X = x | Z = 1) + P(X = 1− x | Z = 1)q1}.

This is simply

Hx = [P(Y = 1, X = x | Z = 0), P(Y = 1, X = x | Z = 0) + P(X = 1− x | Z = 0)]

× [P(Y = 1, X = x | Z = 1), P(Y = 1, X = x | Z = 1) + P(X = 1− x | Z = 1)]

as in theorem 5.

Proof of proposition 6. Parts 1 and 2 are immediate corollaries of proposition 7. Consider part 3.
By proposition 7, the correspondence φ is continuous on

(c∗, 1] =
{
c ∈ [c∗, 1] :

(
int(D(c)) ∩ int(Hx)

)
6= ∅, x ∈ {0, 1}

}
.

Here we show that φ is also continuous at c = c∗. Again by proposition 7, this correspondence is
uhc at c = c∗. To show it is also lhc at c = c∗, let U = [c∗, 1]. U is an open neighborhood of c∗

relative to the domain [c∗, 1]. Let E be any open set such that(
Θ0(c∗)×Θ1(c∗)

)
∩ E 6= ∅.

Since the set Θ0(c)×Θ1(c) is weakly increasing in c (with respect to the set inclusion order ⊆),(
Θ0(c∗)×Θ1(c∗)

)
⊆
(
Θ0(c)×Θ1(c)

)
for any c ∈ U . Hence [(

Θ0(c∗)×Θ1(c∗)
)
∩ E

]
⊆
[(

Θ0(c)×Θ1(c)
)
∩ E

]
for any c ∈ U . Since the set on the left is not empty, the set on the right is not empty:(

Θ0(c)×Θ1(c)
)
∩ E 6= ∅

for any c ∈ U . Therefore φ is continuous at c = c∗.

Proof of corollary 5. This follows immediately from the more general result, corollary 6.
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Proofs for section 5.1: Multiple discrete instruments

Proof of theorem 6. There are two steps. First we show that Θ0(c) × Θ1(c) is an outer identified
set, in the sense that it contains the true parameters. Then we show that it is sharp, in the sense
that any element of this set is consistent with the data and the assumptions. Finally, the fact that
the model is refuted if and only if this set is empty follows by the definition of a (sharp) identified
set.

Step 1. We first show that the true conditional probabilities (p0, p1) are in Θ0(c)×Θ1(c). Fix
x ∈ {0, 1}. By c`-dependence,

P(Z` = zj` | Yx = 1) ≤ min{P(Z` = zj` ) + c`, 1}
P(Z` = zj` | Yx = 1) ≥ max{P(Z` = zj` )− c`, 0}
P(Z` = zj` | Yx = 0) ≤ min{P(Z` = zj` ) + c`, 1}
P(Z` = zj` | Yx = 0) ≥ max{P(Z` = zj` )− c`, 0}

for all j ∈ {1, . . . , J}. Consider the first inequality. Use Bayes’ rule to rewrite the left hand side.
This yields

P(Yx = 1 | Z` = zj` )P(Z` = zj` ) ≤ min{P(Z = zj` ) + c`, 1}P(Yx = 1)

= min{P(Z = zj` ) + c`, 1}
J∑
k=1

P(Yx = 1 | Z` = zk` )P(Z` = zk` ).

In the last line we applied the law of total probability. Hence

P(Yx = 1 | Z` = zj` )P(Z` = zj` )−min{P(Z = zj` ) + c`, 1}
J∑
k=1

P(Yx = 1 | Z` = zk` )P(Z` = zk` ) ≤ 0.

Repeat these derivations for the other three inequalities. This yields the definition of D`(c`). Thus
we have shown that the true conditional probabilities P(Yx = 1 | Z` = zj` ) are in D`(c`) for each
` ∈ {1, . . . , L}. px is simply the vector of these conditional probabilities. Thus we have shown
px ∈ D(c).

Next we show that px ∈ Hx. Element (`− 1)J + j of px can be written as

[px](`−1)J+j = P(Yx = 1 | Z` = zj` )

= P(Yx = 1, X = x | Z` = zj` ) + P(Yx = 1, X = 1− x | Z` = zj` )

= P(Y = 1, X = x | Z` = zj` ) + P(Yx = 1, X = 1− x | Z` = zj` )

= P(Y = 1, X = x | Z` = zj` )

+

JL−1∑
k=1

P(Yx = 1 | X = 1− x, Z` = zj` , Z−` = zk−`)P(X = 1− x, Z−` = zk−` | Z` = zj` ).

This is simply equation (16). Since

P(Yx = 1 | X = 1− x, Z` = zj` , Z−` = zk−`) ∈ [0, 1],
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these derivations imply that
px = bx + Axqx

where qx ∈ [0, 1]J
L

is a vector with elements

P(Yx = 1 | X = 1− x, Z` = zj` , Z−` = zk−`).

Thus px ∈ Hx.

Thus we have shown that px ∈ D(c) ∩ Hx. Since this is true for each x ∈ {0, 1}, we have
p ∈ Θ1(c)×Θ0(c).

Step 2. Next we show sharpness. Let (p0, p1) ∈ Θ1(c)×Θ0(c). First, px ∈ D(c) implies

P(Z = zj` | Yx = y) ∈ [max{P(Z` = zj` )− c`, 0},min{P(Z` = zj` ) + c`, 1}]

for all ` ∈ {1, . . . , L} and all j ∈ {1, . . . , J}. This follows by reversing the arguments at the
beginning of step 1. Hence c`-dependence is satisfied for all ` ∈ {1, . . . , L}.

Next, since px ∈ Hx there is a vector qx ∈ [0, 1]J
L

such that

px = bx + Axqx.

This vector qx consists of elements of the form

P(Yx = 1 | X = 1− x, Z = z).

Take these elements and combine them with the observed probabilities

P(Y = 1 | X = x, Z = z) = P(Yx = 1 | X = x, Z = z)

to get a distribution of Yx | (X,Z). Do this for both x ∈ {0, 1}. Combine these conditional marginal
distributions into a joint distribution (Y0, Y1) | (X,Z) using any copula, and finally combine these
with the known marginals (X,Z) to get a joint distribution of (Y0, Y1, X, Z). By construction, this
joint distribution is consistent with c-dependence, the distribution of the observed data (Y,X,Z),
and yields the point (p0, p1) that we started with.

Lemma 15. Suppose B2′ holds. Then the correspondence D : [0, 1]L ⇒ [0, 1]LJ defined by D(c) in
equation (18) is continuous.

Proof of lemma 15. To prove this result, we show that D` is both upper hemicontinuous (uhc) and
lower hemicontinuous (lhc).

Step 1: Upper hemicontinuity. Pick any c` ∈ [0, 1] and a ∈ [0, 1]J . Consider a sequence
{cn` } converging to c` and a sequence {an} converging to a such that an ∈ D(cn) for all n. From
the first inequality in equation (18),

P(Z` = zj` )a
n
j −min{P(Z` = zj` ) + cn` , 1}

J∑
k=1

P(Z` = zk` )ank ≤ 0.
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Taking limits as n→∞ yields

P(Z` = zj` )aj −min{P(Z` = zj` ) + c`, 1}
J∑
k=1

P(Z` = zk` )ak ≤ 0.

Repeating this for the other three inequalities shows that a ∈ D`(c`). Thus D` has a closed graph.
Hence D` is uhc by theorem 17.11 in Aliprantis and Border (2006), since the range [0, 1]J is closed.

Step 2: Lower hemicontinuity. We next show that D` is lhc. We do this in two parts: First
for c̄ ∈ (0, 1) and second for c̄ = 0.

Part A. Let c̄ ∈ (0, 1]. We will show D` is lhc at c̄. Let E be an open set in [0, 1]J such that

D`(c̄) ∩ E 6= ∅.

By the definition of lhc, we must find an open set U (open relative to the domain [0, 1]) such that

1. c̄ ∈ U , and

2. c ∈ U implies that D`(c) ∩ E 6= ∅.

We consider two cases.

Case 1. Suppose there is an element ā = (ā1, . . . , āJ) ∈ D`(c̄) ∩ E such that ā1 = · · · = āJ .
In this case, we can simply let U = [0, 1]. Why? U is open (relative to [0, 1]). It contains c̄ since
it has to be in [0, 1]. Moreover, we know that ā ∈ E. But since ā1 = · · · = āJ , we also know
that ā ∈ D`(0). (This is simply our baseline model where all these conditional probabilities equal
each other, by statistical independence.) Hence ā ∈ D`(c) for any c ∈ [0, 1], since D`(c) is weakly
increasing in c. Thus D`(c)∩E 6= ∅ for all c ∈ [0, 1] = U . This is the second requirement we needed
of U .

Case 2. Suppose none of the elements in D`(c̄) ∩ E have all components equal. Let ā be an
arbitrary element of this intersection. Consider

a(ε) = (1− ε)ā+ ε
1

2
ιJ

where ιJ is a J-vector of ones. 1
2 ιJ ∈ D`(c) for all c since D`(c) always contains the diagonal. This

combined with convexity of the set D`(c) implies that a(ε) ∈ D`(c̄) for all ε ∈ [0, 1]. Finally, since
E is open, there exists an ε∗ ∈ [0, 1] such that a(ε∗) ∈ D`(c̄) ∩ E. Let a∗ = a(ε∗). Let

U = {c ∈ [0, 1] : a∗ ∈ int(D`(c))} .
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Equivalently,

U =

{
c ∈ [0, 1] : For all j = 1, . . . , J ,

P(Z` = zj` )a
∗
j −min{P(Z` = zj` ) + c, 1}

J∑
k=1

P(Z` = zk` )a∗k < 0,

P(Z` = zj` )a
∗
j −max{P(Z` = zj` )− c, 0}

J∑
k=1

P(Z` = zk` )a∗k > 0,

P(Z` = zj` )(1− a∗j )−min{P(Z` = zj` ) + c, 1}
J∑
k=1

P(Z` = zk` )(1− a∗k) < 0,

P(Z` = zj` )(1− a∗j )−max{P(Z` = zj` )− c, 0}
J∑
k=1

P(Z` = zk` )(1− a∗k) > 0

}
.

This set U can be written as

U =

J⋂
j=1

[{
c ∈ [0, 1] : P(Z` = zj` )a

∗
j −min{P(Z` = zj` ) + c, 1}

J∑
k=1

P(Z` = zk` )a∗k < 0

}

∩
{
c ∈ [0, 1] : P(Z` = zj` )a

∗
j −max{P(Z` = zj` )− c, 0}

J∑
k=1

P(Z` = zk` )a∗k > 0

}

∩
{
c ∈ [0, 1] : P(Z` = zj` )(1− a∗j )−min{P(Z` = zj` ) + c, 1}

J∑
k=1

P(Z` = zk` )(1− a∗k) < 0

}

∩
{
c ∈ [0, 1] : P(Z` = zj` )(1− a∗j )−max{P(Z` = zj` )− c, 0}

J∑
k=1

P(Z` = zk` )(1− a∗k) > 0

}]
.

By continuity in c of the inequality components, this is a finite intersection of open sets. Hence U
is open. U is not empty since c̄ ∈ U , which follows since a∗ ∈ int(D`(c̄)).

Finally, we show that U satisfies the second property we need: Suppose c ∈ U . By definition
of U , a∗ ∈ int(D`(c)). Moreover, a∗ ∈ E by construction. Thus a∗ ∈

(
D`(c) ∩ E

)
for any c ∈ U .

Hence
D`(c) ∩ E 6= ∅

for any c ∈ U .

Part B. Let c = 0. Let E be an open set in [0, 1]J such that D`(0) ∩ E 6= ∅. Let U = [0, 1]. U
is open (relative to [0, 1]). Moreover,(

D`(0) ∩ E
)
⊆
(
D`(c) ∩ E

)
since D` is weakly increasing. Since the set on the left is not empty, the set on the right is not
empty:

D`(c) ∩ E 6= ∅
for any c ∈ U .
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Step 3: Take products. Finally, theorem 17.28 in Aliprantis and Border (2006) shows that
the product of continuous correspondences is continuous. Hence the correspondence D(·) defined
by

D(c) =
L∏
`=1

D`(c`)

is continuous.

Proof of proposition 7.

1. By lemma 15, the correspondence D(·) is continuous. Moreover D(·) is closed-valued since
it is defined by a finite number of linear weak inequalities. The correspondence that maps
c into Hx is continuous since it is constant-valued. It is also closed- and compact-valued
since [0, 1]J

L
is compact, and Hx is the image of [0, 1]J

L
under a continuous (affine) mapping.

Hence the set
Cx = {c ∈ [0, 1]L : D(c) ∩Hx 6= ∅}

is closed, by exercise 11.18(b) on page 58 of Border (1985). Finally, let

C = C0 ∩ C1.

This set is the intersection of two closed sets and hence is closed. It depends only on D(·)
and Hx, which are point identified. Hence C is point identified.

2. By definition of Θx(c),

Θ0(c)×Θ1(c) =
(
D(c)×H0

)
×
(
D(c)×H1

)
.

Each of these sets is a closed, convex polytope. To see this, consider D(c) and Hx separately.

(a) D(c) is closed, as shown in part 1. It is convex since it is defined by a collection of linear
inequalities.

(b) Hx is compact, as shown in part 1. Therefore it is closed and bounded. It is convex

valued since it is an affine transformation of the convex set [0, 1]J
L
, and convexity is

preserved by affine transformations.

Since both D(c) and Hx are closed, convex, bounded by [0, 1]LJ , and defined by linear inequal-
ities, they are both polytopes. Finally, all three properties—closed, convex, polytope—are
preserved by taking finite Cartesian products.

3. Next we show continuity of the correspondence φ : C ⇒ [0, 1]2LJ defined by φ(c) = Θ0(c) ×
Θ1(c). First consider the correspondence φx : C ⇒ [0, 1]LJ defined by

φx(c) = Θx(c) = D(c) ∩Hx.

It is convex-valued and closed-valued since its values are the intersection of two closed and
convex sets. It is uhc by theorem 17.25 in Aliprantis and Border (2006), since D(c) and Hx
are both uhc. It is lhc for all c such that int(D(c)) ∩ int(Hx) 6= ∅, by applying theorem B in
Lechicki and Spakowski (1985). Finally, φ is just the product of the correspondences φ0 and
φ1. The product of continuous correspondences is continuous by theorem 17.28 in Aliprantis
and Border (2006).
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Proof of corollary 6.

1. We can write the identified set for (P(Y0 = 1),P(Y1 = 1)) as
 J∑
j=1

L∑
`=1

a(`−1)J+jP(Z` = zj` ),

J∑
j=1

L∑
`=1

ã(`−1)J+jP(Z` = zj` )

 : a ∈ Θ0(c), ã ∈ Θ1(c)


=


J∑
j=1

L∑
`=1

a(`−1)J+jP(Z` = zj` ) : a ∈ Θ0(c)

×


J∑
j=1

L∑
`=1

ã(`−1)J+jP(Z` = zj` ) : ã ∈ Θ1(c)

 .

By proposition 7, Θx(c) is closed, non-empty, and bounded for x ∈ {0, 1}. Therefore, suprema
and infima of these sets are attained on Θx(c). Moreover, since Θx(c) is convex, the set

J∑
j=1

L∑
`=1

a(`−1)J+jP(Z` = zj` ) : a ∈ Θx(c)


equals a closed interval ranging from the infimum to the supremum.

2. The mapping f(·) defined by

f(a) =
J∑
j=1

L∑
`=1

a(`−1)J+jP(Z` = zj` )

is continuous at all a ∈ RLJ . The correspondence Θx(·) is continuous and compact-valued for
all c such that int(D(c)) ∩ int(Hx) 6= ∅ by proposition 7. Therefore

P x(c) = max{f(a) : a ∈ Θx(c)}

is a continuous function of c on {c ∈ C : int(D(c)) ∩ int(Hx) 6= ∅} by the Maximum The-
orem (for example, see theorem 9.14 in Sundaram 1996). By continuity of −f(a), P x(c) is
continuous over the same domain.

3. This follows immediately from the identified set Θ0(c) × Θ1(c) being a Cartesian product,
which implies that maxima and minima for each component can be simultaneously attained.

Proofs for section 5.2

Proof of proposition 8. See proposition 3.1 of Kitagawa (2009).

Proof of theorem 7. This proof follows the structure of the proof of theorem 6.

Step 1. We first show that the true densities ((fY0|Z`)all `, (fY1|Z`)all `) are in Θ0(c)×Θ1(c). Fix
x ∈ {0, 1}. By c`-dependence,

P(Z` = z | Yx = y) ≤ min{P(Z` = z) + c`, 1}
P(Z` = z | Yx = y) ≥ max{P(Z` = z)− c`, 0}.
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all y ∈ supp(Yx) and each z ∈ {0, 1}. These inequalities for z = 0 are equivalent to the inequalities
for z = 1, so there are only two non-redundant inequalities here. Use Bayes’ rule to rewrite the left
hand side. This yields

fYx|Z`(y | z)P(Z` = z) ≤ min{P(Z` = z) + c`, 1}fYx(y)

= min{P(Z` = z) + c`, 1}
1∑
z̃=0

fYx|Z`(y | z̃)P(Z` = z̃).

Hence

fYx|Z`(y | z)P(Z` = z)−min{P(Z` = z) + c`, 1}
1∑
z̃=0

fYx|Z`(y | z̃)P(Z` = z̃) ≤ 0.

Evaluating at z = 0 yields

fYx|Z`(y | 0)P(Z` = 0)−min{P(Z` = 0)+c`, 1}
(
fYx|Z`(y | 0)P(Z` = 0)+fYx|Z`(y | 1)P(Z` = 1)

)
≤ 0.

Rearranging yields

fYx|Z`(y | 0)P(Z` = 0)
(
1−min{P(Z` = 0) + c`, 1}

)
≤ P(Z` = 1) min{P(Z` = 0) + c`, 1}fYx|Z`(y | 1)

or

fYx|Z`(y | 0)
P(Z` = 0)

(
1−min{P(Z` = 0) + c`, 1}

)
P(Z` = 1) min{P(Z` = 0) + c`, 1}

≤ fYx|Z`(y | 1).

In the numerator,
1−min{P(Z` = 0) + c`, 1} = max{P(Z` = 1)− c`, 0}.

Hence we have
fYx|Z`(y | 0)k`0(c`) ≤ fYx|Z`(y | 1).

Repeat these derivations for the other inequality evaluated at z = 0 to get the second inequality
in the definition of Dx,`(c`). Thus we have shown that the true conditional densities fYx|Z` are in
Dx,`(c`) for all `. Since (fYx|Z`)all ` is just the vector of these conditional densities, we have shown
that it is in Dx(c).

Next we show that (fYx|Z`)all ` ∈ Hx. For z ∈ {0, 1}, element (`− 1)2 + 1 + z of (fYx|Z`)all ` can
be written as

[(fYx|Z`)all `](`−1)2+z

= fYx|Z`(y | z)
= fYx,X|Z`(y, x | z) + fYx,X|Z`(y, 1− x | z)
= fY,X|Z`(y, x | z) + fYx,X|Z`(y, 1− x | z)

= fY,X|Z`(y, x | z) +
2L∑
k=1

fYx|X,Z`,Z−`(y | 1− x, z, zk−`)P(X = 1− x, Z−` = zk−` | Z` = z).

Since
fYx|X,Z`,Z−`(y, 1− x | z, zk−`) ∈ P(Yx)
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these derivations imply that

(fYx|Z`)all ` = (fY,X|Z`(·, x))all ` + Axq

where q ∈ P(Yx)2L is a vector with elements fYx|X,Z`,Z−`(y | 1− x, z, zk−`). Thus (fYx|Z`)all ` ∈ Hx.

Thus we have shown that (fYx|Z`)all ` ∈ Dx(c) ∩ Hx. Since this is true for each x ∈ {0, 1}, we
have ((fY0|Z`)all `, (fY1|Z`)all `) ∈ Θ0(c)×Θ1(c).

Step 2. Next we show sharpness. Let (f0, f1) ∈ Θ1(c)×Θ0(c). First, fx ∈ Dx(c) implies

P(Z` = z | Yx = y) ∈ [max{P(Z` = z)− c`, 0},min{P(Z` = z) + c`, 1}]

for all ` ∈ {1, . . . , L} and all z ∈ {0, 1}. This follows by reversing the arguments at the beginning
of step 1. Hence c`-dependence is satisfied for all ` ∈ {1, . . . , L}.

Next, since fx ∈ Hx, there is a vector of counterfactual densities qx ∈ P(Yx)2L such that

fx = (fY,X|Z`(·, x))all ` + Axqx.

This vector qx consists of elements of the form fYx|X,Z(· | 1−x, z). Take these densities and combine
them with the observed densities

fY |X,Z(· | x, z) = fYx|X,Z(· | x, z)

to get a distribution of Yx | (X,Z). Do this for both x ∈ {0, 1}. Combine these conditional marginal
distributions into a joint distribution (Y0, Y1) | (X,Z) using any copula, and finally combine these
with the known marginals (X,Z) to get a joint distribution of (Y0, Y1, X, Z). By construction, this
joint distribution is consistent with c-dependence, the distribution of the observed data (Y,X,Z),
and yields the point (f0, f1) that we started with.
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