5 Internet Appendix

5.1
Table Al: Estimated Bounds on Average Effects on Health Care Utilization with a Valid IV

Internet Appendix Tables

Prescription Drugs

Outpatient Visits

Any Number Any Number
Bounds on ATE
Proposition 1 -.348 362 -3.854 13.20 -.288 423 -4.278 17.04
Bounded Outcome (A5)  (-.362, .374) (-4.087, 13.97) (-.300, .433) (-4.474, 17.30)
Proposition 2 .028  .362 113 13.20 062  .423 316 17.04
Monotonicity (A6) (014, .374)  (.027, 13.97) (.050, .433) (.226, 17.30)
Proposition 3¢’ -.348 110 -3.854  .619 -.288 187  -4.278 1.049
Mean Dominance (A7¢’) (-.362, .133)  (-4.088, .780) (-.300, .208) (-4.474, 1.227)
Proposition 6’ .028 .110 113 .619 .062  .187 .316 1.049
A5 & A6 &ATC (012, .136)  (.017, .799) (.049, .210) (.217, 1.245)
Bounds on ATT
Proposition 1 -.058 424 -9.826 1.749 012 495 -12.27 2.200
Bounded Outcome (A5)  (-.085, .452) (-10.59, 1.911) (-.011, .520) (-12.82, 2.364)
Proposition 2 .00 424 .202 1.749 1121495 .564 2.200
Monotonicity (A6) (.025, 452) (.04, 1.915) (.089, .520) (.398, 2.370)
Proposition 3¢’ -.068 133 -9.826  .651 012  .258 -12.27 1.482
Mean Dominance (A7¢’) (-.087,.182)  (-10.59, .910) (-.013, .300) (-12.82, 1.741)
Proposition 6’ .050 .133 .202 .651 112 258 .064 1.482
AB & A6 &ATC (021, .184)  (.027, .945) (.086, .301) (.385, 1.770)
Bounds on LATE,;
Proposition 2 0 .397 0 21.97 0 .440 0 28.26
Monotonicity (A6) (0, .410) (0, 23.25) (0, .452) (0, 28.33)
Proposition 3’ -.602 .101 -2.027 .653 -.560 .146 -1.744 .830
Mean Dominance (A7¢’)  (-.615, .126)  (-2.099, .837) (-.572, .170) (-1.824, 1.052)
Proposition 6’ 0 101 0 .653 0 .146 0 .830
AB& A6 &ATC (0, .129) (0, .855) (0, .171) (0, 1.070)
Bounds on LATFE;
Proposition 2 0 775 0 3.208 0 794 0 3.392
Monotonicity (A6) (0, .797) (0, 3.376) (0, .815) (0, 3.608)
Proposition 3’ -225 171 -20.79 931 -.206 303 -.26.61 1.904
Mean Dominance (A7¢))  (-.249, .222) (-22.06, 1.225)  (-.227, .346) (-26.82, 2.225)
Proposition 6’ 0 71 0 931 0 .303 0 1.904
AB & A6 &ATC (0, .225) (0, 1.259) (0, .348) (0, 2.250)
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Table A2: Estimated Bounds on Average Effects on Preventive Care with a Valid IV

Blood Choles- Blood Tested Mammogram Pap Test
terol Checked  for High Blood  (Women >40) (Women)
Sugar /Diabetes

Bounds on ATE
Proposition 1 -.380 331 -.360 .350 -.176 .528 -.234 .485
Bounded Outcome (A5)  (-.392, .342)  (-.372,.361)  (-.194, .546)  (-.249, .499)
Proposition 2 .032 331 .025 .350 .053 .528 .051 485
Monotonicity (A6) (.020, .342) (.013, .361) (.033, .546) (.035, .499)
Proposition 3c’ -.380 .085 -.360 .078 -.176 151 -.234 .154
Mean Dominance (A7¢’)  (-.392, .107) (-.372, .099) (-.195, .188) (-.249, .184)
Proposition 6’ .032 .085 .025 .078 .053 151 .051 .154
A5 & A6 &ATC (.018, .110) (.011, .102) (.030, .191) (.033, .186)
Bounds on ATT
Proposition 1 -.118 .365 -.102 .380 -.111 331 -.129 404
Bounded Outcome (A5)  (-.142,.391)  (-.126, .405)  (-.154,.371)  (-.159, .431)
Proposition 2 .058 .365 .045 .380 .100 331 .085 .404
Monotonicity (A6) (.035, .391) (.022, .405) (.059, .372) (.058, .431)
Proposition 3¢’ -.118 .073 -.102 .102 -.111 .230 -.129 .236
Mean Dominance (A7¢’)  (-.144, .118)  (-.128,.144)  (-.156,.295)  (-.160, .286)
Proposition 6’ .058 .073 .045 .102 .100 .230 .085 .236
A5 & A6 &ATC (.031, .121) (.019, .147) (.056, .299) (.055, .289)
Bounds on LATE,;
Proposition 2 0 .369 0 402 0 .706 0 .605
Monotonicity (A6) (0, .381) (0, .414) (0, .724) (0, .620)
Proposition 3¢’ -.631 .085  -.598 064  -.294 109 -.395 .103
Mean Dominance (A7¢’)  (-.642, .109) (-.609, .088) (-.313, .153) (-.410, .137)
Proposition 6 0 .085 0 .064 0 .109 0 .103
A5 & A6 &ATC (0, .111) (0, .091) (0, .156) (0, .141)
Bounds on LATE,;
Proposition 2 0 .636 0 .695 0 .523 0 .599
Monotonicity (A5) (0, .661) (0, .718) (0, .569) (0, .628)
Proposition 3 -.364 .032 -.305 119 =477 .296 -.401 .283
Mean Dominance (A6) (-.390, .081) (-.329, .164) (-.523, .370) (-.431, .337)
Proposition 4 0 .032 0 119 0 .296 0 .283
A4 & A5 &A6 (0, .086) (0, .168) (0, .375) (0, .341)
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Table A3: Estimated Bounds on Average Effects on Self-Reported Health (Binary) with a Valid IV

Not Fair or Not Poor Same or Got- Not Screen
Poor ten Better Positive for
Depression

Bounds on ATE
Proposition 1 -.370 .340 -.511 .200 -.443 .267 -.444 .266
Bounded Outcome (A5)  (-.383, .351)  (-.521,.209)  (-.455, .278) (-.456, .277)
Proposition 2 .038 .340 .029 .200 .032 .267 .024 .266
Monotonicity (A6) (.025, .351) (.020, .209) (.021, .278) (.012, .277)
Proposition 3c .050 .340 .036 .200 .037 .267 -.001 .266
Mean Dominance (A7c) (.027, .352) (.020, .209) (.016, .278) (-.023, .278)
Proposition 6 .044 .340 .032 .200 .038 .267 .025 .266
A5 & A6 &ATc (.024, .352) (.019, .209) (.024, .278) (.009, .277)
Bounds on ATT
Proposition 1 -.162 321 -.032 450 -.083 .399 =137 345
Bounded Outcome (A5)  (-.187, .345)  (-.047, A71)  (-.104, .424) (-.161, .371)
Proposition 2 .068 321 .051 .450 .058 399 .043 .345
Monotonicity (A6) (.044, .346) (.036, .471) (.037, .424) (.020, .371)
Proposition 3 .092 321 .062 .450 .092 399 .059 .345
Mean Dominance (A7c)  (.048, .347) (.036, .472) (.055, .425) (.018, .372)
Proposition 6 .087 321 .059 .450 .088 399 .055 .345
A5 & A6 &ATc (.045, .347) (.035, .472) (.052, .425) (.017, .372)
Bounds on LATE,;
Proposition 2 0 .402 0 .104 0 .242 0 274
Monotonicity (A6) (0, .413) (0, .111) (0, .252) (0, .285)
Proposition 3¢ .008 .402 .007 .104 -.009 .242 -.051 274
Mean Dominance (A7c) (-.017, .413) (-.012, .112) (-.032, .252) (-.076, .285)
Proposition 6 .008 .402 .007 104 -.000 .242 -.000 274
A5 & A6 &ATc (-.000, 413)  (-.000, .111)  (-.000, .252) (-.000, .285)
Bounds on LATE,;
Proposition 2 0 .523 0 .827 0 .708 0 .626
Monotonicity (A6) (0, .549) (0, .847) (0, .729) (0, .649)
Proposition 3c .049 .023 .023 827 .071 .708 .034 .626
Mean Dominance (A7c) (.001, .550) (-.009, .847) (.031, .730) (-.011, .649)
Proposition 6 .048 .523 .023 .827 .071 .708 .033 .626
A5 & A6 &ATc (.003, .549)  (-.000,.847)  (.032, .730) (-.000, .649)

50



Table A4: Estimated Bounds on Average Effects on Self-Reported Health (# of days) with a Valid IV

Bounds on ATE
Proposition 1

Bounded Outcome (A5)
Proposition 2
Monotonicity (A6)
Proposition 3¢

Mean Dominance (A7c)
Proposition 6

A5 & A6 &ATc
Bounds on ATT
Proposition 1

Bounded Outcome (A5)
Proposition 2
Monotonicity (A6)
Proposition 3¢

Mean Dominance (A7c)
Proposition 6

A5 & A6 &ATc

Bounds on LATE,;
Proposition 2
Monotonicity (A6)
Proposition 3c

Mean Dominance (A7c)
Proposition 6

A5 & A6 &ATc
Bounds on LATE,;
Proposition 2
Monotonicity (A6)
Proposition 3¢

Mean Dominance (A7c)
Proposition 6

A5 & A6 &ATc

Physical Health
Good

-13.48  7.832
(-13.80, 8.119)
417 7.832
(.123, 8.119)
-156  7.832
(-.691, 8.122)
347 7.832
(.070, 8.119)
4689 9.780
(-5.257, 10.42)
745 9.780
(.214, 10.43)
532 9.780
(-.418, 10.45)
685 9.780
(.169, 10.43)
0 8.494
(0, 8.757)
-890  8.494
(-1.507, 8.760)
-000  8.494
(-.000, 8.757)
0 18.73
(0, 19.28)
-442  18.73
(-1.493, 19.28)
-000 1873
(-.000, 19.28)

Mental Health
Good
-12.61 8.706
(-12.93, 9.012)
.589 8.706
(.269, 9.012)
.099 8.706
(-.471, 9.015)
.594 8.706
(.212, 9.012)
-4.848  9.621
(-5.463, 10.30)
1.053 9.621
(.472, 10.31)
1.425 9.621
(.380, 10.33)
1.317 9.621
(.408, 10.33)
0 9.941
(0, 10.23)
-1.030  9.941
(-1.657, 10.23)
-.000 9.941
(-.000, 10.23)
0 17.77
(0, 18.34)
772 17.77
(-.341, 18.34)
767 17.77
(-.000, 18.34)

Poor Physical or
Mental Health
Did not Impair
Usual Activity

-14.49 6.820

(-14.79, 7.093)

333 6.820
(.061, 7.094)

-.703 6.820

(-1.198, 7.096)

268 6.820
(.012, 7.094)

-4.441 10.03

(-4.964, 10.67)

595 10.03
(.104, 10.68)

.086 10.03
(-.775, 10.69)

536 10.03
(.060, 10.68)

0 6.690

(0, 6.937)

-1.549 6.690

(-2.119, 6.940)

-.000 6.690
(-.000, 6.937)

0 19.56

(0, 20.11)

-1.054 19.56

(-2.030, 20.11)

-.000 19.56
(-.000, 20.11)
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Table A5: Estimated Bounds on Average Effects on the Alleviation of Financial Strain with a Valid IV

Not be refused
treatment due to

No out of pocket Not owe for Not borrow

medical expenses medical expenses money to pay

currently medical bills medical debt
Bounds on ATE
Proposition 1 -.260 450 -.284 426 -.359 .351 -.534 176
Bounded Outcome (A5) (-.273, .461) (-.296, .437) (-.372, .362) (-.544, .184)
Proposition 2 .056 450 .052 426 .045 .351 .010 176
Monotonicity (A6) (.044, .461) (.040, .437) (.033, .362) (.003, .184)
Proposition 3¢’ -.260 187 -.284 .104 -359 137 -.534 .019
Mean Dominance (A7¢’)  (-.273, .210) (-.296, .126) (-.372, .157) (-.544, .030)
Proposition 4’ .056 187 .052 .104 .045 137 .010 .019
A5 & A6 &ATC (.043, .211) (.038, .129) (.032, .159) (.002, .032)
Bounds on ATT
Proposition 1 -.139 .343 -.196 .286 -.063 419 -.018 .464
Bounded Outcome (A5) (-.165, .366) (-.222, .310) (-.086, .443) (-.031, .485)
Proposition 2 101 343 .093 .286 .081 419 .018 464
Monotonicity (A6) (.077, .367) (.070, .311) (.059, .444) (.006, .485)
Proposition 3’ -.139 123 -.196 122 -.063 123 -.018 .028
Mean Dominance (A7¢’) (-.167, .166) (-.223, .163) (-.088, .165) (-.032, .052)
Proposition 4’ .101 123 .093 122 .081 123 .018 .028
A5 & A5 &ATC (.074, .170) (.067, .168) (.056, .167) (.004, .053)
Bounds on LATE,;
Proposition 2 0 .567 0 .556 0 .367 0 .073
Monotonicity (A6) (0, .579) (0, .568) (0, .378) (0, .079)
Proposition 3¢’ -.443 217 -.444 .076 -.633 138 -.927 .010
Mean Dominance (A7c’) (-.446, .243) (-.456, .103) (-.645, .162) (-.934, .024)
Proposition 6’ 0 217 0 .076 0 138 0 .010
A5 & A6 &ATC (0, .245) (0, .106) (0, .164) (0, .026)
Bounds on LATFE,;
Proposition 2 0 .502 0 401 0 .701 0 925
Monotonicity (A6) (0, .527) (0, .426) (0, .723) (0, .938)
Proposition 3¢’ -.498 .046 -.599 .060 -.299 .086  -.075 .022
Mean Dominance (A7¢’)  (-.524, .093) (-.624, 107) (-.322, .132) (-.088, .049)
Proposition 6’ 0 .046 0 .060 0 .086 0 .022
A5 & A6 &ATC (0, .100) (0, .113) (0, .136) (0, .050)
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5.2 Derivation of the Bounds

We start by writing the parameter of interest A(z) for z = 0 and z = 1, separately.

A1)

= 7u(E[Y(1)|at] — E[Y(1,0)|at]) + mu(E[Y (1,1)|nt] — E[Y (1)|nt]) + 7rCLMATEc1 (16)

= 7ma(E[Y(1)|at] — E[Y(1,0)[at]) + mn(E[Y (1,1)|nt] — E[Y (1)[nt])

+E[Y|Z=1]-E[Y|Z =0] — ns LNATE?, — 7,4, LNATE?, — n.LNATE?°
11 10
= pipY  —popnY  —maE[Y (1, 0)[at] + mn E[Y (1,1)|nt] — mE[Y (1, Do)]c]

A(0)

(17)
(18)

= 7u(E[Y(0)|at] — E[Y(0,0)|at]) + m(E[Y (0,1)|nt] — E[Y(0)|nt]) + WCLMATE2(19)

= 7a(E[Y(0)|at] — E[Y(0,0)[at]) + mnt(E[Y (0, 1)[nt] — E[Y(0)[nt])

+E[Y|Z=1]-E[Y|Z =0] — n4 LNATE}, — 7,y LNATE}, — n.LNATE}
01 00
= pY  —popY  — maE[Y(0,0)|at] + 7 E[Y (0, 1)|nt] + 7 E[Y (0, D1)|c]

(20)
(21)

Similarly, by the definitions of LM ATE; and LNATE?, for k = at,nt, c, under Assumptions

1 through 3 we have

: _ | EY(D)ld — E[Y(1, Do)lc], for z =1
LMATE? = E[Y(z,D1)—Y(z, Do)l —{ E[Y(0,D1)|d — E[Y (0)|d], for = = 0
LMATE?, = E[Y(z2,D1)—Y(z,Dy)lat] =0, for z =0,1
LMATE:, = FE[Y(z2,D1)—Y(z,Do)lnt] =0, for z=0,1 (22)
and
E[Y(1)|c] — E[Y(0,D1)|c], for z =1
LNATE? = E[Y(1,D,)—-Y(0,D,)|c : ’
Y00 = YO0 = { v i B O or < 0
LNATE?, = E[Y(1,D,)—Y(0,D,)|at] = E[Y(1)|at] — E[Y (0)]at], for z = 0,1
LNATE:, = E[Y(1,D,)—-Y(0,D,)|nt] = E[Y(1)|nt] — E[Y(0)|nt], for z=0,1  (23)
In the main text, the relevant point identified objects in our setting are: mn: = po|1, Tat = P10,
Te = P11 — P1jo = Pojo — Po|1» ElY (1)] = E[Y|Z = 1], E[Y (0)] = E[Y|Z = 0],
E[Y (1) |nt] = ?10, E[Y (0) |at] = "' The partially identified average outcomes of the
corresponding strata obtained by the trimming procedure are given by:
Lo < E[Y (0)|nt] < U™, LM < E[Y (1) |at] < UL, L9 < E[Y (0) |¢] < U%€ and
LY < E[Y (1) | < U, where
Ont _ Ont _
L> [Y‘Z - 0 D= 0 Y= - y(po\l/Pow)] U [Y’Z - O D= 0 Y > y (P0|1/P0\0 ]

LY =E[Y|Z=1,D=1,Y <y
LM:EWM_OD_0Y<y
=E[Y|Z=1,D=1Y <yl

(pl\o/P1|1)]
), UM =E[Y|Z=0,D=0Y >

U =E[Y|Z=1,D=1Y >y,

(po\l/Pom

(P1\0/P1|1
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Similar to the equations 7, E[Y (0) |nt] + 7. E[Y (0) |c] = po‘()?OO and

Tt E[Y (1) |at] + 7. E[Y (1) |¢] = pm?ll in the respective trimming cells {Z = 0, D = 0} and
{Z =1,D = 1}, by the nature of the trimming bounds, the following equations also hold:
e L0 4+ 1 U = p0|0700, T U0 + 1 L0 = po‘o?oo, T LY 4+ m UL = p1|1711 and
Tt UV + m 1€ = pm?ll. These equations are used to compare bounds generated by

different equations for A(z).

5.2.1 Proof of Proposition 2

We start by deriving bounds for the non-point identified mean potential outcomes of the
strata, and for all the local net and mechanism average treatment effects.

Bounds for E[Y (0) |nt]: A5.2 implies E[Y (1) |nt] = v > E[Y (0) |nt]. A5 does not provide
any additional information for a lower bound of E[Y (0)|nt]. Since U%™ can be above or below
?10, we have: L9 < E[Y(0)|nt] < min{UO’m,Ylo}.17

Bounds for E[Y (1) |at]: A5.2 implies E[Y (1) |at] > E[Y (0)|at] = Y. A5 does not provide
any additional information for an upper bound of E[Y (1) |at]. Thus we have:

max{LY V") < B[V (1) |at] < UM,

Bounds for E[Y (0)|c]: A5.1 and A5.2 imply E[Y (1) |¢] > E[Y(0)|c], which implies that UL is
another upper bound for E[Y (0)|c]. A5 does not provide any additional information for a
lower bound of E[Y (0)|c]. Hence, L%¢ < E[Y(0)|c] < min{U%¢, U'<}.

Bounds for E[Y (1)|c]: A5.1 and A5.2 imply E[Y (1) |¢] > E[Y(0)|c], which implies that L%¢
is another lower bound for E[Y (1) |c]. Hence, max{L%¢, L1} < E[Y (1)|c] < UY*.

Bounds for E[Y (1, Do) |c]: A5.1 and A5.2 imply EY (1) |c] > E[Y (1, Do) |c] > E[Y (0)|],
which combined with the results above gives L*¢ < E[Y (1, Dg)|c] < U<

Bounds for E[Y (0,D1)|c]: A5.1 and A5.2 imply EY (1) |c] > E[Y (0, D) |c] > E[Y(0)|d],
which combined with the results above gives L?¢ < E[Y (0, D1)|c] < U~

Bounds for LNATE?,, for z =0,1: From (23), LNATE}, = v - E[Y (0)|nt]. Using the
bounds previously derived for E[Y (0)|nt], we have!s:

max{0,Y " — U} < LNATE?, <Y " — L% for z =0, 1.

Bounds for LNATE?,, for z = 0,1: From (23), LNATE? = E[Y (1)|at] = Y"". Using the
bounds previously derived for E[Y (1) |at], we have:

max{0, LYt — Y"'} < LNATE?, < UVt — Y for 2 = 0, 1.

7For brevity, in what follows we omit explicitly specifying when some quantities can be greater or lower than
others unless we believe it is necessary. Hence, when min (or max) operators are present, it implies that none of
the terms inside them is always lower (greater) than the other(s).

8The following equalities are helpful for the rest of the proofs. For scalars a,b,c and d we have: (i) a —
max{c,d} = min{a — ¢,a — d}; (ii) a — min{c, d} = max{a — c,a — d}; (iii) max{a,b} — c = max{a —¢,b—c}; (iv)
min{a,b} — ¢ = min{a — ¢,b — ¢}; (v) max{a,b} — min{c,d} = max{a — ¢,a — d,b — ¢,b — d}; (vi) min{a,b} —
max{c,d} = min{a — ¢,a —d,b— ¢, b — d}.
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Bounds for LNATE?: From (23), LNATE? = E[Y (1, Dy)|c] — E[Y (0)|c]. A5.2 directly states
LNATE? > 0. Using the bounds previously obtained for the components in LNATE? we
obtain two additional lower bounds: L%¢ — U%€¢ and L%¢ — U%¢. By definition, L%¢ — U%¢ < 0.
Also, employing A5.1 and A5.2, we have U%¢ > E[Y (1) |¢] > E[Y(0)|c] > L%, so

L%¢ — Ul¢ < 0. Hence, the lower bound for LNATE? is 0. Using the bounds previously
derived for the components of LNATE?, we have the upper bound is U¢ — L%¢. Thus,

0 < LNATE? < U — L%,

Bounds for LNATE}: From (23), LNATE! = E[Y(1)|c] — E[Y (0, Dy)|c]. A5.2 directly states
LNATE} > 0. Using the bounds previously obtained for the components in LNATE} we
obtain two additional lower bounds: L%¢ — U'¢ and L'¢ — U%¢. By definition, L¢ — U¢ < 0.
Also, employing A5.1 and A5.2, we have U%¢ > E[Y (1) |¢] > E[Y(0)|c] > L%, so

L%¢ — Ul¢ < 0. Hence, the lower bound for LNATE? is 0. Using the bounds previously
derived for the components of LNATE?, we have the upper bound is U¢ — L%¢. Thus,

0 < LNATE? < U< — Lo,

Bounds for LMATE!: LMATE! = E[Y(1)|c] — E[Y (1, Do)|c]. A5.1 directly implies
LMATE! > 0. Using the bounds previously obtained for the components of LM ATE} we
obtain two additional lower bounds: LY¢ — U%¢ and L% — U, Since L1 — U < 0 (by
definition) and L% — U'¢ < 0 (from above), the lower bound for LM ATE} is 0. Using the
bounds previously derived for the components of LM ATE!, we have the upper bound is

Ube — L%, Thus, 0 < LMATE}! < Ube — [0¢,

Bounds for LMATE?: LMATE? = E[Y (0,D1)|c] — E[Y(0)|c]. A5.1 directly implies
LMATE? > 0. Using the bounds previously obtained for the components of LM ATE? we
obtain two additional lower bounds: L% — U%€¢ and L%¢ — U%¢. Since L%¢ — U% < 0 (by
definition) and L%¢ — U'¢ < 0 (from above), the lower bound for LM ATE? is 0. Using the
bounds previously derived for the components of LM ATE?, we have the upper bound is

Ub¢ — %€ Thus, 0 < LMATE? < U< — L0

Bounds for E[Y (1,1) |nt]: A4 and A5.3 imply y* > E[Y (1,1) |nt] > ", And thus
E[Y(1,1)|nt] — E[Y(1)|nt] in (16) and (17) has the following bounds

0< E[Y(1,1)|nt] — E[Y (1)|nt] < y* — YV °.

Bounds for E[Y (0,1)|nt]: A4 and A5.3 imply y* > E[Y (0,1) |nt] > E[Y (0) |nt]. Thus, we
have y* > E[Y (0,1) |nt] > L%™. A5.3 directly states E[Y (0,1)|nt] — E[Y(0)|nt] > 0. Using
the bounds previously obtained for E[Y (0) |nt] we obtain two additional lower bounds for
E[Y (0,1)|nt] — B[Y (0)|nt]: Lo — U%nt and Lo — V" By definition, L0 — U0 < 0.
Also, employing A5.2, we have v = E[Y (1)|nt] > E[Y(0)|nt] > L% so L0 — v¥<o.
Hence, the lower bound for E[Y (0, 1)|nt] — E[Y (0)|nt] is 0. Using the bounds previously
derived for E[Y (0) |nt], we have the upper bound is y* — L%". Thus,

E[Y(0,1)|nt] — E[Y(0)|nt] in (19) and (20) has the following bounds
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0 < E[Y(0,1)[nt] — E[Y (0)|nt] < y* — LO7.

Bounds for E[Y (1,0)|at]: A4 and A5.3 imply E[Y (1) |at] > E[Y (1,0)|at] > y'. Thus, we
have UM% > E[Y (1,0) |at] > y'. A5.3 directly states E[Y (1)|at] — E[Y(1,0)|at] > 0. Using
the bounds previously obtained for E[Y (1) |at] we obtain two additional lower bounds for
E[Y(1)|at] — E[Y (1,0)|at]: L} —UYet and V' — UL, By definition, L — Ubat < 0. Also,
employing A5.2, we have v = E[Y (0) |at] < E[Y(1)|at] < UM so v et <. Hence,
the lower bound for E[Y (1)|at] — E[Y(1,0)|at] is 0. Using the bounds previously derived for
E[Y (1) |at], we have the upper bound is UY® — y!. Thus, E[Y (1)|at] — E[Y (1,0)|at] in (16)
and (17) has the following bounds 0 < E[Y (1)|at] — E[Y (1,0)|at] < UL — /.

Bounds for E[Y (0,0) |at]: A4 and A5.3 imply v > E[Y (0,0) |at] > y'. Thus,

E[Y(0)]at] — E[Y (0,0)|at] in (19) and (20) has the following bounds

0 < E[Y(0)|at] — E[Y(0,0)|at] < V" — .

Bounds on A(z). We now derive the bounds for A(z), for z = 0, 1, starting with the lower
bound of A(1). We use equations (16) through (18) to derive potential lower bounds for A(1)
by plugging in the appropriate bounds derived above into the terms that are not point
identified. The corresponding three potential lower bounds are:

LB =0

LBy = EY|Z=1]=BY|Z=0] = pyo(U" " =Y

—(p1j1 — P1|0)(U1’C - LO’C)
1 —11 10 1.at 10 l.c
LB, = pinY —popY  —pioU-" +popY = (pijn — p1j0)U

01 10
) — po\l(Y - Lo’nt)

LB = pm?ll - 290|0?)0 —p1oU* = (p1p — P1jo) U + popt L™ + (pojo — poj1) L€ =

(P11 — p1|o)(L1’c —Ube) + (Pojo — p0|1)(LO’C — U%¢) <0, where the second equality is obtained
by 7 L0 4+ 7 U%¢ = p0|0700, and 7, UV 4+ m . L1¢ = pm?n.

LB% = (pip — pl‘o)(Ll’c — U'¢) <0, where the equality follows 7, U + 7w L1¢ = pul?n.
Hence, the lower bound for A(1) = LB} = 0.

Similarly, we use equations (19) through (21) to derive potential lower bounds for A(0):

LB = 0

LBY = E[Y|Z=1]-E[Y|Z=0]-po0"" ~Y") — pou(Y
—(p1pp — p1o) (U = L)

LBg = ]?1\0701 - 100|0700 - 191\0701 +P0|1L0’m + (P11 — pl\O)LO’C

10 _ LO,nt)

After comparison, we find that LBg = LB}} < 0. Intuitively, this is because the parallel
assumptions are imposed for z = 0, and z = 1, respectively.

LBP, = (pojo — po‘l)(LQC — U%€¢) <0, where the equality follows L0 + 7.U%¢ = po‘o?oo.
Hence, the lower bound for A(0) = LBY = 0.
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We now use equations (16) through (18) to derive potential upper bounds for A(1):

—10
UBY = ppU" - y) +pop (" =Y )+ (pip — prp) (U = L)
—10
UBy = pioU" —y") +pop(y* =Y )+ E[Y|Z =1] — E[Y|Z = (]
—pyjo max{0, L — vy - Poj1 max{0,Y"" — U°"}

—11 —10
UB}Y = pipY —popnY - pnoyl + popy" — (P11 — p1|0)L0’C

To compare the above upper bounds, we obtain their difference.
UBy—UB,=E[Y|Z=1]-E[Y|Z =
01 =10
0] — p1jo max{0, L — Y} — poy max{0, Y — U™} — (pyj1 — p1jo) U + (pojo — poj1 ) L =
—1 =1 01 01

pon[(V" = U2) — maxc{0, Y = UO™}] + pyjol (L1 = ¥) — maxc{0, L1 — 7)) =
Poj1 min{?lo - U 0} + P10 min{ L% — 701, 0} <0. The second equality is derived by the
following equations: E[Y|Z = z] = p1|Z?Z1 +p0|z?zo, for z =0,1, and
T U0 + 1, L0¢ = p0|0700, Tt LY 4+ m UL = pul?n. Thus, UBé dominates UB}X.
UBj—UB, =

01 =10 01 =10
P1oU —p1oY —pop U™ +po1 Y — prjomax{0, LY =Y} — pgy max{0,Y — U} =

01 01 =10 =10

p1|0[(U1’at —-Y") = max{0, LM - Y }] +P0\1[(Y - U%") —max{0,Y - U*"}] = P1jo
min{U1 — ?]1, yhet _ platy + poj1 min{?lo — U%" 0}. Because
Ubtat > B[y (1)|at] > E[Y(0)|at] = Y, the first component involving min. operator is
non-negative, while the second component is non-positive. Thus, the upper bound for
A(1) = min{UB},UBL}.
We now use equations (19) through (21) to derive potential upper bounds for A(0):

—01
UBY = pio¥Y =) +pop (" — LO™) + (pijy — pjo) (UM — L)
—01 u
UBY = pyo" = o) +pop(y" — L") + E[Y|Z =1] - E[Y|Z = (]
—p1jo max{0, Lhaet — ?01} — Poj1 max{(),?w —yonty

<01 00
UB) = pioY —popY  —pyoy’ +popy” + (o1 — pro)U™*

UB% ~UBY=E[Y|Z=1]-E[Y|Z =
0] — p1jo max{0, L1 — vy - Po|1 max{0,Y" — U} — (p1p — p1p) (U = LO€) =

10 01 01 10
Poj1Y +p1|0L1’at —p1pY — p0|1U0’m — P1jo max{0, Lot -y b= Poj1 max{0,Y " — Uo’nt} =
pop (V0 = U0y — max{0, V" — UO}] + pyo[(L — V) — max{0, Lot — V)] =
Po(1 Min v U%m 0} 4 pyjo min{ L5 — 701, 0} < 0. The second equality is derived by the

of 0
following equations: E[Y|Z = z] = pl|z?z1 +p0|z?z0, for z =0,1, and
T U™ + 1, L0¢ = p0|0?00, Tt LV + 1, U¢ = p1|1711. Thus, UBg dominates UBY.
UBY — UBY =
10 01 01 =10

—po|1L0’nt +po1Y +p1|0L1’at —p1pY —p1jo max{0, Lhet -y} —pojp max{0,Y " — uonty =
puol(E* = V") — maxc{0, L1 — V' }] 4 poa[(V = L07) — max{0, V" — U0} =
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p1jo min{ LH* — 701, 0} + poj1 min{?10 — Lot gOnt _ [0nt1 Because

v'=E [Y(1)|nt] > E[Y(0)|nt] > L%" the first component involving min. operator is
non-positive, while the second component is non-negative. Thus, the upper bound for
A(0) = min{U B3, UBY}.

Finally, the bounds for E[A(z)] are obtained by directly plugging the corresponding terms
into the equation Pr(Z = 1)A(1) + Pr(Z = 0)A(0).

Bounds on ATT. We now derive the bounds on the AT'T under the same set of the
assumptions. Because ATT = 21I'(1) + £21'(0), with

P(1) =pipY " — 7B (1,0)|at] — mE[Y (1, Do)|¢] and T(0) = pyo(Y" — E[Y(0,0)[at]). We
start by deriving bounds on I'(0), and then derive bounds on I'(1) according to equations
(13), (14) and (15).

Under A4 and A5.3, 0 <T'(0) < pl‘o(?{n —4"). The lower bounds on I'(1) are:

by = 0
by = po(Y" U + EY|Z =1] - E[Y|Z = 0]
—]90|1(?10 - Lo’m) — (pip — 101|0)(U1’C - LO’C)
lb# = p1|1?11 - P1|0U1’at - (P1|1 - Pl\o)Ul’c
After arrangement, lb}j = (plu?n — p1pU* — w UY€) + (pop LO™ + m L0 — p0|0?00) =

Te(LYe = UY) + (L€ = U%€) < 0. Ib] = me(L1¢ — U€) < 0. Thus, Ib' = Iby, = 0. The
upper bounds on I'(1) are:

uby, = puo(U* — o) + (pup — prjo) (U — L)
uby = pip(Y —y)+E[Y|Z =1]- E[Y|Z = 0] — ppjy max{0,Y ~ — U"""}

—11
Ub# = pipY —p1|oyl— (P11 —P1|0)LO’C

11

ubl, — ubl = p1joUn™ + (p1j1 — pro)UM —pipY = pro(UH* — L1e4) > 0.

<00 10 10
Ub}g - U’b’ly = —P0|0Y +P0|1Y + (p1|1 - Pl\o)LO’C —Pon max{0,Y " — Uo’nt} =
pop[(Y"" = U%™) — max{0, V" — U} Y7 > U0 ubly = ubl; if V'° < U0,
ubly —ubl = poy (V' — U%™) < 0. Thus, ub' = ub}. Specifically, if V' > U0,
ub' = ubly = ubls it V' < U0 ub! = ubl = py oY —¢}) + E[Y|Z = 1] - E[Y|Z = 0].
According to ATT = “LT(1) + “0T(0), 0 < ATT < “ubly + "1 (V™" — yl). After
rearrangement, we have ub, = %ubé + %1”0(701 — by if v < U%" and
uby = Wbl + P (Pl if VI > U0 Q.D.E

5.2.2 Proof of Proposition 3

As before, we first derive bounds for the non-point identified mean potential outcomes of the

strata, and for all the local net and mechanism average treatment effects.
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Bounds for EY (0)|nt]: A6.2 implies v = E[Y (0)|at] > E[Y (0) |nt]. A6.2 and the equation
Tt E[Y (0) |nt] + 7 E[Y (0) |c] = po‘o?oo imply EY(0)|nt] < 7. Since Y < yomnt by
definition and Y < v by A6.2 , the upper bound is 7. A6 does not provide any
additional information for a lower bound of E[Y (0)|nt]. Thus, L% < E[Y(0)|nt] < v
Bounds for E[Y (1)|at]: A6.2 implies E[Y (1)|at] > E[Y (1) |nt] =Y . A6.2 and the
equation o E[Y (1) |at] + mE[Y (1) |d] = py V' yield E[Y (1)]at] > V' Since V' > L1t
by definition and v > v by A 6.2 , the lower bound is ' A6 does not provide any
additional information for an upper bound of E[Y (1) |at]. Thus, v'< E[Y (1) |at] < UM,
Bounds for E[Y (0)|c]: A6.2 and the equation 1, E[Y (0) |nt] + n.E[Y (0)|c] = p0|0700 yield
E[Y(0)|c] > ?00, where by definition v > L%€¢. As for the upper bound, A6.2 implies
E[Y(0)|c] < E[Y(0)|at] = ?01, which can be greater or less than U%¢. Thus,

Y" < E[Y(0)|¢] < min{U%, 7"},

Bounds for EY (1)|c]: A6.2 and the equation mq E[Y (1) |at] + m.E[Y (1) |c] = pm?ll yield
E[Y (1)]c] < ?11, where by definition U¢ > Y. As for the lower bound, A6.2 implies

E[lY (1)|c] > E[Y (1) |nt] = ?10, which can be greater or less than L. Thus,

max{L', Y} < E[Y (1)|d <Y'".

Bounds for E[Y (1, D) |c]: A6.1 implies E[Y (1, Do) |c] > E[Y (1) |nt] = Y. Combining with
the bounds previously derived for E[Y (1) |at] yields E[Y (1, Dy) |¢] < E[Y (1) |at] < U4,
Hence, v' < EY (1,Dp) |c] < ULt

Bounds for E[Y (0, D) |c]: A6.1 implies E[Y (0, Dy) |d] < E[Y (0)|at] = Y"'. Combining with
the bounds previously derived for E[Y (0) |nt] yields E[Y (0, Dy) |¢] > E[Y (0) |nt] > L.
Hence, L% < E[Y (0, D1) |¢] < v

Bounds for LNATE?,, for z =0,1: From (23), LNATE}, = v - E[Y (0)|nt]. Using the
bounds previously derived for E[Y (0)|nt]: v -Y" <IN ATE?, < v - L9 for z =0, 1.
Bounds for LNATE?,, for z = 0,1: From (23), LNATE?, = E[Y (1)]at] — Y. Using the
bounds previously derived for E[Y (1) |at]: vy < LNATEZ <Ubat — ?01, for z=0,1.
Bounds for LNATE?: From (23), LNATE? = E[Y (1, Dy)|c] — E[Y(0)|c]. Using the bounds
previously obtained for the components in LN ATE?, we obtain

Y — min{U%, ¥°"} < LNATE? < Ut — Y.

Bounds for LNATE}: From (23), LNATE! = E[Y(1)|¢] — E[Y (0, D1)|c]. Using the bounds
previously derived for the components of LNATE!, we have

max{L', Y} — Y < INATE! <Y'' — L0nt,

Bounds for LMATE!: LMATE! = E[Y (1)|c] — E[Y (1, Do)|c]. Using the bounds previously
derived for the components of LM ATE?!, we have

max{L1e, Y} — Ulat < LMATEL <V -V

Bounds for LMATE?: LMATE? = E[Y (0, D1)|c] — E[Y(0)|¢]. Using the bounds previously
derived for the components of LM ATE?, we have
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Lot — min{U%, Y} < LMATE? < V" — 7™

Bounds for E[Y (1,1)|nt]: A4 and A6.3 imply E[Y (1) |¢] > E[Y (1,1)|nt] > 3'. Combining
with the bounds previously derived for E[Y (1)|c] yields Y'>E [Y (1,1) |nt] > 3'. And thus
E[Y(1,1)|nt] — E[Y (1)|nt] in (16) and (17) has the following bounds

Yy -V <EYQ Dt —EYQ)n <Y -7

Bounds for E[Y (0,1) |nt]: A4 and A6.3 imply E[Y (0, D1)|c] > E[Y (0,1) |nt] > y'. Combining
with the bounds previously derived for E[Y (0, D1)|c| yields > E[Y (0,1) |nt] > y'. Using
the bounds previously derived for E[Y (0) |nt], we have E[Y (0,1)|nt] — E[Y (0)|nt] in (19) and
(20) has the following bounds 3! — v < E[Y(0,1)|nt] — E]Y (0)|nt] < <Y — pont,

Bounds for E[Y (1,0) |at]: A4 and A6.3 imply y* > E[Y (1,0) |at] > E[Y (1, Do)|c¢]. Combining
with the bounds previously derived for E[Y (1, Dy)|c| yields y* > E[Y (1,0) |at] > VY. Using
the bounds previously derived for E[Y (1) |at], we have E[Y (1)|at] — E[Y (1,0)|at] in (16) and
(17) has the following bounds Y'' — ¥ < E[Y(1)|at] — E[Y (1,0)|at] < Ubet — ¥'°.

Bounds for E[Y (0,0) |at]: A4 and A6.3 imply y* > E[Y (0,0) |at] > E[Y(0)|c]. Combining
with the bounds previously derived for E[Y (0)|c] yields y* > E[Y (0,0) |at] > Y™, And thus
E[Y (0)|at] — E[Y(0,0)|at] in (19) and (20) has the following bounds

Y~y < E[Y(0)|at] — E[Y(0,0)|at] < Y - 7.

>
v

Bounds on A(z). We now derive the lower bound of A(1) by the use of the equations (16)
through (18). The corresponding three potential lower bounds are:

11 5710 10
LBclv = p1|0(Y -y") +p0|1(yl =Y )+ (pip — pl‘o)(max{Ll’c,Y }— Ul’at)
w11 10
LBy = pio(Y —y")+pon(y' =Y )+ E[Y|Z =1] - E[Y|Z = 0]
=01 <10 —
—pro(U =Y ) —pop (Y — LY™) = (p1pp — p1o) (U =Y

—11 —10
LB$ = pipnY —popY —p1|oyu +P0|1yl - (pm —p1|0)U1’at

00)

After some algebra, we have
=01 =10
LBY— LB. = B[Y|Z = 1] - E[Y|Z = 0] — pypp(U = 7*) = popa (F° — LO) + (pyy —
<00 =10 =00 =10
pro)(Y " —max{L" Y "}) = (pyjg — p1jo) (L1 = U+ Y —max{L",Y "}) =
(p1p — pl‘o)[(VOO — U%¢) 4 (L1 — max{L¢,¥'"})] < 0. The second equality is derived by the
following equations: E[Y|Z = z] = p1|Z?Zl +p0|z?20, for z=0,1, and
Tt L0 + 1, U0€ = p0|0?00, and m, UM + 1. L1¢ = pm?ll. The inequality is because
7" <U% and Ll < maX{LLC,?lO} by definition. Hence, LB} dominates LBé.
—11 =11 =10
LB, — LBy =pipY  —pijoY  — (pip — prjo) max{L",Y "} =
P11 — P1 v — max L170,710 > 0. The inequality is because v > L'¢ by definition
| =11 ° 10
and Y~ >Y " by A6.2. Hence, LB% dominates LB!. Therefore, the lower bound for
11 10
A1) = LB =pip (Y = U + pop(y' =Y ) + prjo (U — y*).
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Similarly, we use equations (19) through (21) to derive potential lower bounds for A(0):

LBS = pio¥" =) +pon(y' = Y™) + (o — prjo) (L0 — min{U°€, V"' })
LBy = pup(¥" —y") +pop(y' = Y™) + E[Y|Z =1] - E[Y|Z = (]

—prpo(UH = V) = po (V' = L) — (pyyy — pupo) (¥ — L)
LBS = p1\0?01 - 100|0700 — p1joy" +p0|1yl + (p11 — P1|0)L0’nt

After some algebra, we have
LBy~ LBY = E[Y|Z = 1] - E[Y|Z = 0] — po(U"* = Y") = pou (V" = LO™) + (py1 —
o) min{U%, ¥} = V') = (pyy — puyo) (LH° — U% + min{U%, 7'} ~7') =
(p1p — p1|o)[(min{U0’c,?01} —U%) 4 (LY — ?11)] < 0. The second equality is derived by the
following equations: E[Y|Z = z] = p1|3721 —|—p0|z?zo, for z =0,1, and
Tt L0 + 1, U0¢ = p0|0700, and 7o UMY 4w L1¢ = pm?n. The inequality is because
Lte <V and min{UO’c,?Ol} < U%€ by definition. Hence, LB dominates LBg.
LB~ LB) = 100|1700 - po|o?00 + (P11 — P1)o) min{U%, "'} =
(P11 — P1|o)(min{U0’C,?Ol} — ?OO) > 0. The inequality is because U%¢ > v by definition
and YO > v by A6.2. Hence, LBS dominates LBg. Therefore, the lower bound for
A(0) = LBY = p1jo(Y" — ) + poo (L™ = Y™) + popa (5 — LO™).
We now use equations (16) through (18) to derive potential upper bounds for A(1):
UB;[ = pl\o(Ul’at - ?10> +p0|1(?11 - ?10) + (pl\l —171|0)(?11 - ?10)

UBY = pyo(U =Y") 4 pou(¥"' = V') + E[Y|Z = 1] - E[Y|Z = 0]

¥ =) = pn (V" =Y = (o — papp) (Y — min{U°¢, V)
UBi = Plu?n - Po|1?10 —]91|0?10 ‘1'2?0|1?11 - (P1|1 - Pl\o)?lo

UB,—UB,=FE[Y|Z=1]-E[Y|Z =
0] =po(Y V") =pop (V" =)+ (1 —pyjo) (mind U0, Y} =¥ = pyy V' —pyoV ' =
100|0700 +P0\1700 + (P11 — P1jo) (min{ U<, vy = (P11 — P1jo) (min{U*, v -7 >0
The second equality is derived by the equations: E[Y|Z = z] = py Z?Zl + po| Z?ZO, for 2 =0, 1.
The inequality is because U%¢ > v by definition and v > v by A6.2. Thus, UB}
dominates UBé. UB}Y ~UB! = pm?ll —p1|0U1’“t — (pip — p1|0)?11 = p1|0(?11 —Ultat) <o,
where the inequality follows the definition v < U%, Thus, UB% dominates U B;.
Therefore, the upper bound for A(1) = UB% A pou?w — pm?m A

We now use equations (19) through (21) to derive potential upper bounds for A(0):

—01 00 —o1 n —01 00
UBy = pioY =Y ) 4pon(Y =L+ (pip —pip) Y =Y )
—01 00 —o1 n
UBS = pio(Y =Y ) +pou(Y —LO")+E[Y|Z=1]-E[Y|Z = (]

<11 =01 <10 =00 ¢ <10, =01
—p1|0(Y -Y") —P0|1(Y -Y) - (P1|1 - puo)(maX{Ll’ Y7 =Y)
=01 =00 =00 =01 =01
UBS = pyoY —popY —pipY +popnY  + (P11 —p1o)Y
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UBY—~UBY = E[Y|Z =1]-E[Y|Z = 0] —po(Y " =Y =pop (Y =YY+ (prjg —p11o) (V' —
maX{Ll’c7?10}) = 101|1?11 —100|0700 —101|0?11 +p0|1700 + (p1p —101|0)(?00 —max{L"¢, ?10}) =
(P11 — p1|0)(711 — max{lec,?lo}) > 0. The second equality is derived by the equations:
ElY|Z =z] = p1|zY21 +p0|z?zo, for z = 0,1. The inequality is because v > L1¢ by
definition and ¥ > vy by A6.2. Thus, UBY dominates U Bg.

UB) — UBJ = pop L*™ — po\OYOO + (Pojo — po|1)700 = poy1 (L — V™) <0, where the
inequality follows the definition L%™ < v, Thus, U32 dominates UBY. Therefore, the
upper bound for A(0) = UBg = p(m?m +p1|1701 Tl TS T

Finally, the bounds for E[A(z)] are obtained by directly plugging the corresponding terms
into the equation Pr(Z = 1)A(1) + Pr(Z = 0)A(0).

Bounds on ATT. Under A4 and A6.3, pl‘o(?m —y*) <T(0) < pl‘o(?m - 700)

bounds on I'(1) are:

. The lower

Wy = pro(Y = y") + (pp — i) (max{L1, Y} — )
by = po(Y" —y") + EY|Z =1] - E[Y|Z = 0]

—Po\l(?lo — L%™) — (p1j1 — p1jo) (U — v
lbi = ]?1|1?11 —pyoy” — (p1p —p1|0)U1’at

Ib}, — b} = ﬂat?ll + e maX{LLC,?m} —pul?n = wc(max{LLC,?m} — ?11) <0, by
E[Y(Dlnt] <V, and L6 < Zaeghat 4 e fle 71,
1B} — 1} = —poiY ™ + 1t Lo 4 ¥ = g (L0 — ¥™) < 0, by
Lot < pZﬁUO’C + ﬁLO’”t -7, Thus, (b = lb#. The upper bounds on I'(1) are:
=10 11 10
uby, = p1|0(U1’at =Y )+ mip—ppo)Y =Y )
uby = p(Y =YV )+ E[Y|Z = 1] - E[Y|Z = 0]

—10 =00 —10 . . =01
—poi(Y " =Y ) = (pip —p1po)Y = min{U*, Y })

—11 —10 —10
Ub}, = pinY —pyoY - —pip)Y

ubl, — ub# = T UM + 71'@?11 — p1|1711 = Tt (UH — ?H) >0, by
Ut > B[y (1)]at] > BY (1)|d],

bl bl . ?00 ?OO . UO’C ?01 i . UO’C ?01 700 >0.b
ubg — ubs, = —pojo + Tt + wemin{U, Y} = m.(min{U) Y "} — ) >0, by
min{U°¢, E[Y (0)|at]} > E[Y(0)|c] > E[Y (0)|nt]. Thus, ub! = ub}. According to
ATT = 2T'(1) + 2I(0), we have Ib = f—lllb% + %1”0(701 —y") and
ub = Yypl + PPy V™) Q.D.E

T1

62



5.2.3 Proof of Proposition 4

Bounds for E[Y (0)|nt]: A5.2 implies E[Y (0)|nt] < E[Y (1) |nt] = ?10; and A6.2 implies
E[Y(0)|nt] < v (see proof of Prop. 3), where by definition U%" > v Combining A5 and
A6 does not yield any additional upper bound for E[Y (0)|nt] that could be lower than v or
vy By the equation m E[Y (0) [nt] + 7 E[Y (0) |c] = pO‘OYOO and A6.2

E[Y(0)|nt] < E[Y (0)|c], we have that E[Y (1) |nt] can be greater or less than E[Y (0)|c].
Hence, the upper bound for E[Y (0)|nt] is min{?lO,VOO}. A5 and A6 do not provide any
additional information for a lower bound of E[Y (0)|nt]. Thus,

Lo < E[Y(0)|nt] < min{Y ", Y™}

Bounds for E[Y (1) |at]: A5.2 implies E[Y (1) |at] > E[Y (0)|at] = 701; and A6.2 implies

E[Y (1) |at] > v (see proof of Prop. 3), where by definition v > et Combining A5 and
A6 does not yield any additional lower bound for E[Y (1) |at] that could be greater than v
or Y. By the equation m: E[Y (1) |at] + 7. E[Y (1) |c] = p1|1711 and A6.2

E[Y(1)|at] > E[Y (1) |c]|, we have that E[Y (0)|at] can be greater or less than E[Y (1) |c].
Hence, the lower bound for E[Y (1) |at] is max{?11,701}. A5 and A6 do not provide any
additional information for an upper bound of E[Y (1) |at]. Thus,

max{Y ', Y"'} < E[Y (1) |at] < UL,

Bounds for E[Y (0)|c]: A6.2 and the equation 7 E[Y (0) |nt] + m.E[Y (0) |c] = p0|0?00 yield
E[Y(0)|c] > 700, where by definition v > L%¢. Regarding an upper bound, the trimming
procedure implies E[Y (0)|c] < U%¢. A6.2 implies E[Y (0)|c] < E[Y (0)]at] = Y. Finally, A5
implies E[Y (1) |c] > E[Y (0)|c]. Below we show that the upper bound for E[Y (1) |c] under
Al, A3, A5 and A6 equals ?11, so E[Y (0)|c] < v Depending on the data, any of the
previous three upper bounds for E[Y (0)|c] can be less than the other two. Thus, we obtain
Y" < BE[Y(0)|d < min{U%, Y, V).

Bounds for E[Y (1) |c]: A6.2 and the equation 7 E[Y (1) |at] + 7. E[Y (1) |¢] = plu?n yield
ElY (1)| < ?H, where by definition v <ute. Regarding a lower bound, the trimming
procedure implies E[Y (1) |c] > LY. A6.2 implies E[Y (1)]|c] > E[Y (1) |nt] = v Finally, A5
implies E[Y (1) |c] > E[Y (0)|c]. Above we showed that the lower bound for E[Y (0)|c] under
Al, A3, A5 and A6 equals ?00, so E[Y (1) |c] > v, Depending on the data, any of the
previous three lower bounds for E[Y (1) |¢] can be greater than the other two. Thus, we
obtain max{L*,Y'*. Y} < E[Y (1) | < Y.

Bounds for E[Y (1, Do) |c]: A5.2 implies E[Y (1, Dp) |c] > E[Y (0)|c]. From above, the lower
bound for E[Y (0)|c] equals Y. A6.1 implies E[Y (1, Do) |c] > E[Y (1) |nt] = Y, which can
be greater or less than v (see above). Hence, E[Y (1, Dy) |c] > max{?oo,?lo}. A5.1 implies

9For instance, combining A6.2 and 5.2 yields E[Y (1) |at] > E[Y (0) |at] > E[Y (0)|c] > E[Y (0) |nt], which
implies E[Y (0)]at] = Y'' > E[Y (0)|nt] and U* > E[Y (1)]at] > E[Y (0)|nt]. However, we have that
Y > 7" and UVt > v > 7.
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E[Y (1)|c¢] > E[Y (1, Do) |c]. From above, the upper bound for E[Y (1) |c] equals Y''. Note
that A6.1 implies E[Y (1, Dg)|c] < E[Y (1) |at] < U4 but by definition v < utet,
Therefore, max{?lo,?m} < E[Y(1,Do)|c] < v

Bounds for E[Y (0,D1) |c]: A5.2 implies E[Y (0, D1) |c] < E[Y(1)|c]. From above, the upper
bound for E[Y (1)|c] equals Y. A6 implies E[Y (0,D1) |c] < E[Y (0) |at] = ?01, which can
be greater or less than v (see above). Hence, E[Y (0,D1) |c] < min{711,701}. A5.1 implies
E[Y (0,Dy) |c] > E[Y(0)|c]. From above, the lower bound for E[Y (0) |c] equals 7%, Note
that A6.1 implies E[Y (0, D1)|c] > E[Y (0) |nt] > L™, but by definition v > pont,
Therefore, v < E[Y (0,D1)|c] < min{?ll,vm}.

Bounds for LNATE?,, for z = 0,1: From (23), LNATE?, =Y
bounds previously derived for E[Y (0)|nt] we have:

max{0,Y'"’ — Y} < LNATE?, <V — L0t for z =0, 1.
Bounds for LNATE?,, for z = 0,1: From (23), LNATE?, = E[Y (1)|at] — Y"". Using the

at’

" _ B[y (0)[nt]. Using the

bounds previously derived for E[Y (1) |at] we have:

maX{O,?H - ?01} < LNATE? < Ut — Y for 2 =0,1.

Bounds for LNATE?: From (23), LNATE? = E[Y (1, Dy)|c] — E[Y(0)|c]. A5.2 directly
implies LNATE? > 0. Using the bounds previously obtained for the components of LN AT E?
we obtain six additional potential lower bounds: v Uoe, v ?11, vl 701, v Uoe,
YO 7" and ¥ — 7% Note that: VO -V <0, VX 0% <0, 7" - V" <0, and
v -7 <o. Hence, LNATE? > max{?10 - UO’C,?w - ?01, 0}. We have the upper bound
Y =7 Thus, max{V"" — 0%, " - ¥"",0} < LNATE? < V' - V™.

Bounds for LNATE}: From (23), LNATE! = E[Y(1)|c] — E[Y (0, D1)|c]. A5.2 directly
implies LNATE! > 0. Using the bounds previously obtained for the components of LN ATE}
we obtain six additional potential lower bounds: L¢ — ?11’ v 711, v ?11, Lbe — 701,
V-7 and Y - ¥ Note that: L -V <0, V'’ -V <0, v - ¥" <0, and
vy < 0. Hence, LNATE! > max{L¢ — 701,710 — ?01, 0}. We have the upper bound
Y -7 Thus, max{Ll - Y. V" - ¥" 0} < LNATE! <7V"' - 7™,

Bounds for LMATE!: LMATE! = E[Y (1)|c] — E[Y (1, Do)|c]. A5.1 directly implies
LMATE} > 0. Using the bounds previously obtained for the components of LM ATE} we
obtain three additional potential lower bounds: L“¢ — ?11,?10 7" and Y — ¥, Bach of
these three expressions is less than or equal to zero. We have the upper bound

Y - max{Y"?,¥"}. Thus, 0 < LMATE! <V" — max{V",¥"}.

Bounds for LMATE?: LMATE? = E[Y (0, Dy)|c] — E[Y(0)|c]. A5.1 directly implies
LMATE? > 0. Using the bounds previously obtained for the components of LM AT E? we
obtain three additional potential lower bounds: vO _u O’C,?OO — 701, v 7" Each of
these three expressions is less than or equal to zero. We have the upper bound

min{?ll,?m} -7 Thus, 0 < LMATE? < min{?ll,?m} -7
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Bounds for E[Y (1,1)|nt]: A5.3 and A6.3 imply E'[Y (1) |c] > E[Y (1, 1) [nt] > E[Y (1) |nt].
Comblnlng with the bounds previously derived for E[Y (1)|c] yields Y'>E Y (1,1) |nt] >
v". And thus E[Y(1,1)|nt] — E]Y ( )|nt] in (16) and (17) has the following bounds

0< E[Y(1,D)nt] — EY(D)nt] <Y -7

Bounds for E[Y (0,1) |nt]: A5.3 and A6.3 imply E[Y (0, D1)|c] > E[Y (0,1) [nt] > E[Y (0) |nt].
Combining with the bounds derived for E[Y (0, D1)|c] and E[Y (0) |nt] yields

min{V" ", Y} > E[Y (0,1) |nt] > Lo, Thus, we have E[Y(0,1)|nt] — E[Y(0)|nd] in (19) and
(20) has the following bounds 0 < E[Y(0,1)|nt] — E[Y'(0)|nt] < min{Y ", ¥"'} — LOnt,
Bounds for E[Y (1,0) |at]: A5.3 and A6.3 imply E[Y (1)|at] > E[Y (1,0) |at] > E[Y (1, Do)|c].
Combining with the bounds prev1ously derived for E[Y (1, Dg)|c] and E[Y (1)|at] yields

Ubet > BY (1,0) |at] > maX{Y ,Y } Thus, we have E[Y (1)|at] — E[Y(1,0)|at] in (16) and
(17) has the following bounds 0 < E[Y (1)|at] — E[Y (1,0)|at] < Ut — max{?lo,?oo}.
Bounds for E[Y (0,0) |at]: A5.3 and A6.3 imply E[Y (0)|at] > E[Y (0,0) |at] > E[Y (0)|c].
Combining with the bounds previously derived for E[Y (0)|c] yields

Y > B[V (0,0) |at] > Y. And thus E[Y (0)|at] — E[Y (0,0)|at] in (19) and (20) has the
following bounds 0 < E[Y (0)|at] — E[Y(0,0)|at] < Y — V"

Bounds on A(z). We now use equations (16) through (18) to derive the lower bounds for

A(1). The corresponding three potential lower bounds are:

LB, = 0
LBy = E[Y|Z=1]-E[Y|Z=0]-ppU""-7")
—10 —11 —00
—po (Y = LO™) = (pyjy = p1jo) (Y =Y )
—11

—11 =10 5-10
LB, = pynY  —popY  —pyoU" +popY " = (pip — pap)Y

After some algebra, we have

LBY = (pu1 — p1yo) LM — (p1j1 — p110) U = (prpy = p1po) (¥ = ¥) =

(p1p — p1|o)[(L1’c — 711) + (?00 — U%€)] < 0. The second equality is derived by the following
equations: E| =z]= p1|z?21 +p0|z?zo, for z = 0,1, and 7, L™ 4 7 U% = pom?oo, and
Tt UVY + m L1¢ = pm?ll. The inequality is because L¢ < v and v < U%. Thus,
LB,% < LB. LB}, = (P1|1 *pno)Ll’c - (p1|1 *101|0)?11 = (Pm *p1|0)(L1’c *?H) < 0, where
the first equality is derived from 7, UV + 1. L1¢ = p1|1?11 and the inequality is because
v > L by definition. Hence, LB}/ < LBL. Therefore, the lower bound for

A(1) = LB =0.
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Similarly, we use equations (19) through (21) to derive potential lower bounds for A(0):

LBY =0

LBy = ElY|Z=1-E[Y|Z=0]—ppU""-Y")
_pO\l(?lo — L) — (P11 — pl\o)(?H = ?00)

LB) = pio¥ = poo¥ " —puoY +popl®™ + (o1 = pro)¥

01

After comparison, we have LBg = LBé < 0. Thus, LBg < LBY.

LB} = —(pojo — pop)U% + (pojo — pop)Y"- = (paj1 — papp) (¥ — U%€) < 0, where the first
equality is derived from 7, LO™ + 7, U%¢ = pow?oo and the inequality is because v < yYe
by definition. Hence, LBg < LBY. Therefore, the lower bound for A(0) = LBY = 0.

We now use equations (16) through (18) to derive potential upper bounds for A(1):

UB, = pl\O(Ul’at - max{?lo’?()o}) ‘1‘190|1(711 - ?10) + (Pip — puo)(?n - maX{Vm,?OO})
UBY = pip(Ut —max{Y"", Y™} +pop (V"' = V") + E[Y|Z = 1) - E[Y|Z = 0

—p1jo max{0, vl ?)1} — Poj1 max{O,?lO - ?00}

(P11 — P1jo) max{?m - UO’C,?N — 701, 0}
UBi = pl\l?ll - Po|1?10 —P1jo maX{?ma?OO} + pO\l?H — (P1p — P1jo) max{?m,?oo}

To compare, UB% —~UB, = pm?ll —p1|0U1’at — (P11 — Z?1|0)?11 = 101|0(?11 - Uhet) <0,
where the inequality follows the definition v < Ubet, Thus, U B% dominates UB].
UBL—UB] = pyyo(U"" —max{Y",¥"'}) + poa (min{¥"*, ¥} = V) + (s -

prpo) (max{(Y"*, ¥ = ¥ — max (V" — 00, 77 -V o)), 117V > 7,

UBL— UB} = pyjo(U" — max{Y",Y"'}) + (pry1 — prjo) min{U%, 7" Y} - ¥™) > 0,
because U1 > max{?ll,vm} and min{UO’C,Ym,?m} >y%. Thus, UB! dominates UBé
when V' > 700, UB! = vyl Yyl < ?]0,

UB% —UB] = pyp(UM™ — max{?ll,?m}) +p0|1(?10 - ?00). We cannot determine the sign
because U4 > max{?n,?m} and VO <7, UB% A pou?m — pm?OO, and
UBY=Y" —E[Y|Z=0]+pyo(U"* — " — max{0,Y" —Y"}). Thus,

UBL=Y" — E[Y|Z = 0] + pyo(U" = V" —max{0,Y"' = ¥"'}) and UB} = UB.. Finally,
we have to show that when ?10 > ?OO, UB% < UB;.

UBL —UB! = (Y = V') 4 7 (V" = V") 4 1 (V" =V 4 max{V, Y} - ULet) <,
because YO < v and max{?ll,Ym} < ylet,
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We now use equations (19) through (21) to derive potential upper bounds for A(0):

01 00 . 511 =01 n . 511 =501 <00
UBy = pyo(Y =Y ) +pop(min{Y Y} = L) + (pyg — pyjo) (min{Y ¥} =V
01 00 . 511 =01 n
UBY = pip(¥ =Y ) +poumin{Y ",V } = LO")+ E[Y|Z = 1] - E[Y|Z = 0]

—p1jo max{0, v ?01} — DPoj1 max{oy?lo - ?00}

1

_(pl\l _ p1|0) max{Ll’C N ?01’?10 B ?01’ 0}
—01 00 00 . ~11 =01 i —on
UBY) = pipY —popY  —pipY  +popmin{Y Y} + (py1 — p1o) min{Y Y}

Similarly, UBY — UBY = —pgjoY " + pop L™ + (pojo — pop) Y - = poa (L™ — ¥™) < 0, where
the inequality follows the definition L%™ < v, Thus, U Bg dominates UBY.

. 10 =00 <11 <11 =01 11
UBj — UBY) = pop(min{Y ", Y} — L) 4 pyjo(Y —max{Y Y }) + (pip —p1jo) (Y —
max{L -V ¥V — ¥ 0} - min{V YY) 16V >V

. 10 =00 <11 <10 =01
UBj —UBY = pop(min{Y ", Y} = L) + (pyg — pyjo) (Y —max{L",Y .Y }) >0,
because min{?lo,?oo} > L0 and v > max{Ll’C,Ylo,?m}. Thus, UBg dominates UBg
when V' > V2 UBY = py oV = pooV . —prjoY - +popY - =Y =7V v <7
UBg - UBY = p0|1(min{?10,?00} — Lont) +p1|0(711 - ?01). We cannot determine the sign
because min{?lo,?oo} > L9 and yH < v
UBg =EY|Z=1]- v +p0‘1(?11 — Lont — max{(),?w - ?00}), and

— - 11

UB,% = p1|0Y01 7" +p0|0Y1 . Thus,
UBY = E[Y|Z =1 - Y" 4 pou(Y'" = L9 — max{0,Y" -~ ¥"}) and UB{ = UBY. Finally,
we have to show that when 711 > ?01, UBS < UBS.
UBY —UBY = ru(Y' =V ) 4 eV =V 4 (P =V 4 207 —min{ ¥, V™)) <0,
because Y <V, and Lo < min{Y ', V"),
Finally, the bounds for E[A(z)] are obtained by directly plugging the corresponding terms
into the equation Pr(Z = 1)A(1) + Pr(Z = 0)A(0).

01 00

Bounds on ATT. Under the same set of the assumptions, 0 <T(0) < pyp(Y —Y ). The

lower bounds on I'(1) are:

I = 0

by = po¥" — UM 4 E[Y|Z = 1] - E[Y|Z = (]
*P0|1(?10 — L% — (pip —p1|0)(?n -7

lb# = 101|1?11 - P1|0U1’a’t = (pip — pl‘o)Yll

After arrangement, lbé = — T UM + plu?n - po‘o?oo + T L0 — 776(?11 - 700) =

(V' = UL 70y (L0 = 7™) < 0. 10) = 7y (V' — UL9) < 0. Thus, Ib' = b}, = 0. The
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upper bounds on I'(1) are:

ubly = pupp(UM = max{Y YN + (pay —pyo) (V' — max{V YY)
ubh = po(Y" —max{Y",Y"}) + E[Y|Z = 1] - E[Y|Z = 0]

—Poj maX{()a?lO - ?OO} = (111 — P1)0) max{?m - UO’Ca?m - ?017 0}
Ub»ly = 1?1|1?11 — P1jo max{?m’?oo} - (p1|1 - pl\o) max{?107?00}

ubl, — ub# = T UL + WC?H — p1|1711 = T (UL — ?H) >0, by
Ubet > ElY (1lat] = E[Y (1)e). ubly —ubl = —pooY " + pop ¥ — pop max{0, V" — ¥V} —
(s = pao) (V" = U0V = V2,01 + (s — prjo) max{¥"", V). 1t

v > ?00, ubé — ub}y = —p0|0?00 + mw?oo — T max{?lo - UO’C,?N — 701, 0} + 7r0710 =
ﬂc(?lo —7” - max{?lo - UO’C,?lo - ?01, 0}) = ﬂc(min{UO’c,Ym,?w} - 700) > 0. That is,
ub% > ub#. iy’ < 700, ubé — ub,ly = —p0|0?00 + Wnt?lo + 71'0?00 = Wnt(Ylo — 700) < 0. That
is, ubé < ub%. Thus, if v > ?00,

ub = ub# = pul?n —Pip max{?w,?oo} = p1|1711 —pul?lo; and if V' < ?OO,

ubt = ubly = pyo(Y" —Y")+ E[Y|Z =1 - E[Y|Z =0] = E[Y|Z = 1] = pgoY " — p1pp? "
Therefore, according to ATT = =I'(1) + £21°(0),

0<ATT <t min{ubé, ubl} + wofll\o (?01 - 700). After rearrangement,

ubg = Wbl + YY) it Y < ¥, and ub, = Subl + W20y - YY)

T1

if

5.3 Sharpness of the Bounds

We prove that our bounds in Propositions 1 through 4 are sharp in the sense that they are the
narrowest bounds under their corresponding assumptions and they are consistent with the
data as well. The proof is completed by showing the sharpness of the bounds on A(1) and on
A(0) separately. The logic of the proof consists of writing A(1) (and A(0)) as a weighted
average of counterfactual and observed conditional average outcomes and then defining
conditional distributions that can generate such means. These defined distributions satisfy the
employed assumptions and are also consistent with the observed data. In each proposition, we
also show that the bounds on the ATT are sharp.

5.3.1 Proof of Proposition 1

Bounds on A(z). Let 7! denote the value of A(1). We will show that V7! € [LB!,UB'] in

Proposition 1, there exist distributions consistent with the observed data and Assumptions 1
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through 4, and A(1) = 7! evaluated under such distributions.

A(l) = E[Y(1,1)-Y(1,0)|Z =1] (24)
= me[Y(l, 1)-Y(1,0)|Z=1,D =1] —|—p0|1E[Y(1, 1)-Y(1,0)|Z=1,D = 0]
= p V" = ppElY(1,0)[Z = 1,D = 1] + pop E[Y (1,1)|Z = 1,D = 0] — pgy ¥

The second equality is derived from the Law of Iterated Expectations. Denote

E[Y(1,0)|Z =1,D = 1] as ¢i} and E[Y(1,1)|Z =1,D = 0] as ¢{{. Equation (24) shows that
for any value of A(1), it can be written as A(1) = pm?n —p1|1q%6 +p0|lq%? — p0|1710. Let
Fy|z,p(y|z,d) denote the observed distribution of Y conditional on Z = z and D = d. Let y.q
denote the value of the potential outcome Y'(z,d). Then, let Fy (1 )z p(y10/1,d) denote the
distribution of the potential outcome Y'(1,0) conditional on Z = 1 and D = d. Similarly,
Fy(1,1)1z,0(y11]1, d) denotes the distribution of the potential outcome Y (1,1) conditional on
Z =1and D = d. We define them as follows:

Fy|zp(y[1,0), ifd=0
Fraozotmld) ={ Fzed £0=0 (25)
and
Fy\zp(y[1,1), ifd=1
FY(171)|Z,D(y11|17d) = { 1[211 > q%(l)]’ fd=0 " (26)

where qig € [y}, y"] and ¢ € [y!, y*]. The ranges of ¢is and ¢i¢ are consistent with theirs
under Assumption 4. Under such distributions, A(1) = 7! for V7! € [LB!,UB!] in
Proposition 1. In particular, LB is achieved when q%(l] =y* and ¢i{ = y!, while UB" is
achieved when ¢} = y! and qif = y*.

Similarly, let 7° denote the value of A(0). We will show that V7° € [LB% U BY] in Proposition
1, there exist distributions consistent with the observed data and Assumptions 1 through 4,

and A(0) = 70 evaluated under such distributions.

A(0) = E[Y(0,1) = Y(0,0)|Z = 0] (27)
= pyeB[Y(0,1) = Y(0,0)|Z = 0,D = 1] + po E[Y (0,1) — ¥(0,0)|Z = 0, D = (]
= 201|o701 —p1oE[Y(0,0)[Z =0,D = 1] + pop E[Y (0,1)|Z = 0, D = 0] —Po\o?oo

Denote E[Y(0,0)|Z = 0,D = 1] as ¢}} and E[Y(0,1)|Z =0,D = 0] as ¢}. Equation (27)
shows that for any value of A(0), it can be written as

A(0) = pl‘o?m — p1|0q85 +p0‘0q89 — pO‘OVOO. Let Fy(0,0)z,0(%00/0, d) denote the distribution of
the potential outcome Y'(0,0) conditional on Z = 0 and D = d. Similarly, Fy (1) z,p(¥01/0, d)
denotes the distribution of the potential outcome Y'(0,1) conditional on Z =0 and D = d. We
define them as follows:

Fyzp(y[0,0), ifd=0

FY(O,U)‘Z,D(yOO|O’d) = { 1[y00 > qgé], ifd=1 (28)
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and .

Fy0,1))2,0(401/0,d) = { lzy[yi’f(zygg’?i)’ i Z _ (1) ; (29)
where qgé € [}, y*] and q89 € [%,y*]. The ranges of qg(l) and qg(l) are consistent with theirs
under Assumption 4. Under such distributions, A(0) = 79 for V7° € [LB®, UB"] in
Proposition 1. In partlcular LBY is achieved when ¢33 = y* and ¢3Y = y!, while UBY is
achieved when q =9} and qu =y

Bounds on ATT. Equation (12) shows that for any value of AT'T, it can be written as
ATT = E[Y|D =1] — %;”lq%é wOf’ll\O O Let Fy(1,0)1z,0(y10/1, 1) denote the distribution of
the potential outcome Y'(1,0) conditional on Z =1 and D = 1, and Fy (g 0)|z,p(%00[0,1)
denote the distribution of the potential outcome Y (0,0) conditional on Z =0 and D = 1.
Follow the same distributions defined in equations (25) and (28), with the same ranges of

a1t € [v', y"] and ¢ € [y!, y*]. The ranges of ¢is and ¢33 equal their respective ranges under
Assumption 4. Under such distributions, ATT = p for Vp € [Ib,ub]. In particular, Ib is
achieved when qw = y" and qoo = y", while ub is achieved when q10 =y and qgé =14 Q.D.E.

5.3.2 Proof of Proposition 2

Bounds on A(z). Since the upper bounds in Proposition 2 involve min operators, the
sharpness proof is completed conditional on the specific values of the upper bounds. When
deriving the upper bound on A(1) in Proposition 2, we have derived the difference between its
two values, UB! and U Bg. According to the notation in the Internet Appendix,

UBL —UB} = UB} — UBL = pyjg min{U" — V"', U — LYo} 4 po min{¥° — U™, 0}
Let us denote this difference as §'. When ' > 0, UB! = UBb, otherwise UB! = UB!. The
following proof regarding the bounds on A(1) is discussed based on the value of §!.

We start by showing that when 8! > 0, V7! € [0, UB;] in Proposition 2, there exist
distributions consistent with the observed data and Assumptions 1 through 5, and A(1) = 7!
evaluated under such distributions. According to equation (24), we define Fy (1 o)z p(y10[1, d)
and Fy(11)|z,p(y11|1,d) in a similar way to equations (25) and (26), but modify the ranges of
qis and g9 subject to the constraints implied by Assumptions 1 through 5. By the principal
stratification under Assumptions 1 through 3, ¢i} = ;ralt E[Y(1,0)|at] + I:ﬁE [Y (1, Do)|c], and
g1y = E[Y(1,1)|nt]. When deriving the bounds in Proposition 2, we have shown that
Assumptions 4 and 5 imply E[Y(1,0)|at] € [y}, UL, E[Y (1, Dy)|c] € [L%¢, U], and

E[Y(1,1)|nt] € [?10 y“]. Thus, the ranges of ¢i} and ¢i} are

P1jo l Pi1j1—P1jo Lo c Piorriat P1j1—Pi1jorrl,c
90 € [pm + P11 ’me + P11 v
ranges under the current assumptions, the ranges for defining Fy (1 )|z, p(y10/1,d) and

] and ¢i¥ € [710, y"]. Since these are the

Fy1,1))z,0(y11]1, d) should be subsets of the above ranges. By equation (24), LB' =0is
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achieved when qw — 7" and ql) = v Rearrange the terms in U B; by equation (24), we

have:
1 11 l 0,c U 310
UB, = pl\ly — DP1j0Y —(p1|1 —P1|0)L’ + Poj1y —P0|1Y
= P1j0 P11 — P1jo =10
= pmy — Pl 11yl+| i | LO’C)JrPouy"—pouY

Thus, UB1 is achieved when qlo = gi:? P+ %LO < and ¢} = y*. As a result, the defined

ranges of ¢if and 1Y are ¢l € [ii:?yl + %LOC v and 79 e [Y', 44, For qig, its

defined range [illo Y+ %LO o© ?H] is a subset of
[;%:(1) l Pll;HIfuo Loe, ii:? Ulat 4 pll; ‘leo Ule

?11 Zi:? ylat 4 pll;)l‘ll’llt)Ll,c < %Ul at | Pl\; lpuo
range implied by the assumptions. At last, it is straightforward to show that the defined
ranges of ¢i and ¢i{ are valid. That is, illoyl + p”;llp”OLO <V and VY < y“. The latter
is implied by Assumption 4, while the former is derived by y* < LV L0¢ < U and

v = ;rla‘tl Ltat + 3 T U1 ¢. Therefore, when 6! > 0, V7! € [0, UB}] in Proposition 2, there exist
distributions Fy(q 0)|ZD(y10|1 d) and Fy(11)z,p(y11]1,d) defined in equations (25) and (26),
where ¢i} € [zi:? Y+ %LOC ?11] and ¢i{ € [?10,3/“], and A(1) = 7! evaluated under
these distributions.

Now we show that when #' < 0, V7! € [0, UB!] in Proposition 2, there exist distributions

| because

Ube. For qi?, its defined range equals its

Fy(1,0)1z,0(y10/1,d) and Fy(y 1)z,p(y11|1,d) that are consistent with the observed data and
Assumptions 1 through 5, and A(1) = 7! evaluated under these distributions. Since UB! is
derived from equation (17), by expending the local net effects of the different strata, we write
A(1) as:

A1) = 7a(E[Y(1)|at] — E[Y(1,0)]at]) + mne(E[Y (1,1)|nt] — E[Y (1)|nt]) + E[Y|Z = 1]
—EY|Z = 0] - 7at(E[Y (1) at] — E[Y(0)|at]) — mut(E[Y (1) |nt] — E[Y (0)[nt])
—me(E[Y (1, Do)|c] — E[Y(0)|c])
= E[Y|Z=1] - 2ruE[Y(1)|nt] — 7 E[Y (1,0)|at] — mE[Y (1, Do)|¢] (30)
S EIY (1,1)nt]
= EY|Z=1]-2ponY"° = pipnE[Y(1,0)|Z = 1,D = 1] + pop E[Y (1,1)|Z = 1,D = 0].

The last equality is derived from the principal stratification under Assumptions 1 through 3.
Equation (30) shows that for any value of A(1), it can be written as

A(l)=E[Y|Z=1]— 2p0|1?10 — p1paip + Poj1qii- According to equations (24) and (30), we
redefine Fy (10 zp(y10l1,d) and Fy (1 1))2,p(y11]1, d) by modifying the ranges of ¢} and ¢f¥
By equation (24), LB! = 0 is achieved when ¢i} = " and q = v Rearranging the terms
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in UB! according to equation (30), we have:

UB, = ]91|0(U1’at ~y") +pop (¥ — ?10) +EY|Z=1]-E[Y|Z =0
—pl‘o(maX{Ll’“t,?Ol} - ?01) - p0|1(max{710, uonty — gonty
—(pip — 171|0)(LO’c — L%
= —pl\oyl — (p1ip —]31|0)LO’C +EY|Z=1] - 21?0\1?10
+po1 (¥ — max{?lo, uonty 4 ?10) + pl‘o(Ul’“t — maX{Ll’at,?Ol})

=10 P10 P11 —P1jo
= EY|Z=1]- 2po Y —P1|1(7|yl + QLO’C)
Pin P11
ooy — max{0, U0~ V1) 4 @ a1 7))
0/1

UB) is achieved when ¢jd = 210yl 4 PULZPI0 F0c 5

10 — P11 P11
g1 = y* — max{0, U*"* — 710} + Z;—:?(Ul’“t - maX{Ll’“t,Ym}). As a result, the defined ranges
of alg and gff are glf € [[2y! + P10 Y] and
q € [710, y* — max{0, U%" — 710} 4 2o (grlat max{leat,Ym})]. Again, these defined

Po|1
ranges should be subsets of the ranges of ¢i} and ¢}) under Assumptions 1 through 5. In the

case of 8! > 0, we have shown that the defined range of ¢, [wyl + MLO’C,VH

is a
P11 P11 ]’

Pijo 1 P1|1—P1\0L07C P1jo Ul’at P1|1—P1\0U17c
P1|1y + P11 > P11 + P11

subset of [710, y"], we have to show that

<10 01 .
y* — max{0, U™ —Y "} + i;—:?(Ul’at —max{Lb Y }) < y*. That is,

%(Ul’“t — max{leat,Ym}) < max{0, U%"t — 710}. The condition #' < 0 suffices to show

this inequality, where 0! = P10 min{U % — ?01, ylat _ platy 4 Poj1 min{?10 — Ut 0}.
6' < 0 implies p1|0(U1’“t — max{?OI, LYty < poj1 max{U%" — ?10, 0}. Finally, we show that

these defined ranges themselves are valid. The validity of the defined range of q%(l) is shown in

subset of | ]. To show the defined range of ¢i? is a

the case of §! > 0. To show the defined range of g1 is also valid, we use the condition 6 < 0.

—10 —01 .
Because max{U%" —Y ", 0} > 0 and U"* — max{Y", LY} > 0, ' < 0 implies
Pijo max{U%"t—¥"'" 0}
Pojr — Ul’atfmax{?m,le‘”}

Thus, [y* — max{0, U%" — 710} + %(Ul’“t — max{LL“t,?Ol})] vy =

gt — Uont 1 Y0 4 i;—:?(Ul’“t — max{L¥t, ¥"'}) =¥ > 0. Therefore, when 6 < 0,

V7l € [0,UB!] in Proposition 2, there exist distributions Fy(1,0)1z,0(y10[1,d) and

.. =10
. For positive values of 7y and 7, ”<” holds when U%™ >Y .

Fy1,1))2,0(y11]1,d) defined in equations (25) and (26), where qis € [%yl + %LO’C,?H]
and ¢i? € [?10, y* — max{0, U™ — ?10} + 2o (grlat max{Ll’“t,?Ol})], and A(1) = 7!

Poj1
evaluated under these distributions.

Similarly, for the bounds on A(0) in Proposition 2, the proof is completed based on the two
values of UB?, UB? and U B,? . When deriving these bounds in the Internet Appendix, we
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obtain

UBY — UBY = UBY ~ UBY = pyjgmin{L — Y0} + pojy min{Y" " — L0, y0Ont — [0nt},
Let us denote this difference as §°. When 6° > 0, UBY = UB}, otherwise UB? = UB?. In the
followings, we first show that when 8 > 0, V7% € [0,U Bg] in Proposition 2, there exist
distributions consistent with the observed data and Assumptions 1 through 5, and A(0) = 7°
evaluated under such distributions. According to equation (27), we redefine

Fy(0,0)2,0 (4000, d) and Fy(0,1)z,0(%01|0, d) in equations (28) and (29) by modifying the
ranges of qO and q . By the principal stratification under Assumptions 1 through 3,

a3 = E[Y(0,0)|at], and ¢ = ;;ZE[ (0,1)|nt] + p’;ﬁE[ (0, Dy)|c]. We have derived their
bounds under Assumptions 4 and 5: E[Y (0,0)|at] € [yl,701], E[Y(0,1)|nt] € [LY" y¥], and
E[Y(0,D1)|c] € [L%,U"¢]. Thus, the ranges of ¢J3 and ¢J? under the current assumptions are
a € [y, ?01] and ¢ € [PALp0nt 4 PO0PORL 0.c PolLyu 4 Pol0 POl grle] By equation (27),

Po\o Pojo ’ p0|0 Polo

LB° = 0 is achieved when ¢J} = v and ¢fY = T Rearranging the terms in U Bg by

equation (27), we have:

01 3700
UB) = pioY  —pioy’ +popy” + (Pojo — pop ) U = pogY’

Po Pojo — Pojn |
= p1|0Y — Py’ +p0|0( Ly 4 200 TO1 U) = pojoY
Pojo Pojo

00

Thus, U Bg is achieved when ¢} = y! and ) = my“ + POlOZPolL rrle - Ag g result, the defined

Polo Pojo

3700 Poj1 o , Pojo—Poj1 [le
? Pojo Po|o

defined ranges should be subsets of their corresponding ranges implied by the assumptions.

ranges of git and ¢3} are ¢)} € [y l,Y ] and ¢y € [V |. Again, these

For qOO, its defined range equals its range under the assumptions. For qu, its defined range

00
[Y Poj1 Pojo—Po|1 Ul’c] is a subset of [PouL()nt_’_Po\o Po\lL()c Po|1 u+ Pojo— P0|1U ]

’ p0|0 Polo Po|o ’ p0|0 Polo
S P Pojo—P
because Y0 ig:; yont 4 po‘;i‘pollljo € > po:l Lont 4 0';7‘0'1L0 . Then, we show that the

defined ranges of q I and q are valid. y! < vis implied by Assumption 4, while
v < ZE:; vt %Ul  is derived by U%™ < y* and L%¢ < UM¢. Therefore, when 6° > 0,

vrY € [0, UBY] in Proposition 2, there exist distributions Fy(0,0)1z,0 (4000, d) and

Fy0,1))2,0(401|0, d) defined in equations (28) and (29), where a8 € [yl,?m] and

00 5700 Poj1, 4 | Pojo—Pol177l,c
901 [ ? Pojo Po|o v

The next part of the sharpness proof of Proposition 2 is to show that when 6° < 0,

], and A(0) = 7° evaluated under these distributions.
V70 € [0, UBY], there exist distributions Fy(0,0)z,0(400[0, d) and Fy-(g 1y1z,0(¥01]0, d) consistent

with the observed data and Assumptions 1 through 5, and A(0) = 7° evaluated under these
distributions. Since UBY is derived from equation (20), by expending the local net effects of
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the different strata, we write A(0) as:

A(0) = mu(E[Y(0)|at] — E[Y(0,0)|at]) + m(E[Y (0,1)|nt] — E[Y(0)|nt]) + E[Y|Z = 1]
—E[Y|Z = 0] = nat(E[Y (1)]at] — E[Y(0)]at]) — mne(E[Y (1)|nt] — E[Y (0)|nt])
—me(E[Y (1)|e] — E[Y(0, D1)|c])
= —muE[Y(0,0)]at] + 7 E[Y (0, D1)|c] + mu E[Y (0, 1)|nt] — E[Y|Z = (] (31)
+2m E1Y (0)]at]
= 2p V" = E[Y|Z = 0] — pyoE[Y(0,0)|Z = 0, D = 1] + poE[Y (0,1)|Z = 0, D = 0].

The last equality is implied by the principal stratification under Assumptions 1 through 3.
Equation (31) shows that for any value of A(0), it can be written as

A(0) = 2p1|0?01 — BY|Z = 0] — p1)o4g5 + Pojod0;- According to equations (27) and (31), we
redefine Fy (9 0)(z,p(%00/0, d) and Fy(o.1yz,0(v01|0, d) by modifying the ranges of g5 and ¢3?
By equation (27), LBY = 0 is achieved when ¢} = v and ) = v Rearranging the terms

in UBY according to equation (31), we have:

UBY = pyo(Y" — o)) + pop(y* — L% + E[Y|Z = 1] - E[Y|Z = 0]
—prp(max{Y"", L1} = V) — poy (V' — min{¥', 00"}
—(p1p — pp) (U = U)
= Y = E[Y]Z = 0]+ popy" + (pr1 — paj) U™
_P1|0(yl +max{0, V" — L'}) + pyy (min{¥, U0} — L01)

— bon P11 — P10
= 2p1\0Y —E[Y‘Z = 0] +p0\0( | Y+ Ao U
Pojo Polo
—ppoly’ + max{0, V"' — Lbet} — POl (i {7710, Oty — oty
Pijo

UBY is achieved when ¢J§ = y' + max{0,V" — Llat} — po“( min{Y"", U%} — LOmt) and

00 __ Poj1 P1j1—Pijorr1,
Qo1 = my“ + WU €. As a result, the deﬁned ranges of ¢i and ¢J are

a5 € [y + max{0, v — Lhat} — pO'I( min {Y ,gomty [ onty ?Ol] and

00 YOO Po|1 Y Pojo—Po|1 [le
do1 © [ ’po\o + Polo

<00
[Y ”P0|1 m + Pojo—Po|1 U1 c] is a subset of [P0|1 LO nt + Pojo—Po|1 LO cvpo\l u + Pojo po\lU ] To
p0|0 Pojo Pojo po\o Pojo

show the defined range of ¢} is a subset of [} ,Y ], we have to show that

y' + max{0, A aty pou( i {710 Uont) — 0ty > 4l That is,

max{0,Y" — Llat} > 20:1 (min{Y"°, U0t} — L0 ”t) Here the condition 6% < 0 suffices to
show this inequality, where 6° = pyo min{L!** — ,O} + poj1 min{?10 — Lot gOnt _ [0nty
6° < 0 implies p0|1(min{7w Uty — Lo < pyjg max{0, v - LYY, The final step is to

show that these defined ranges themselves are valid. The validity of the defined range of ¢Jy is

]. We have shown that the defined range of qg?,
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shown in the case of ° > 0. To show the defined range of 3} is also valid, we use the
condition 0° < 0. Because min{Y ', U%"} — LOn > 0 and max{0,Y" — Lt} >0, 8% <0

Poj1 max{O,?Ol—Ll’at} o 9 %

i < (¥ 0 Uty Lot For positive values of my: and 7y, ”<” holds when
Y > Lbat, Thus, [y + max{O,? — Lbhat} — p0|1( in{?lo, yonty — pont)] — v =
y 4 YO - Llat _ %;(min{?lo, yonty — 0ty — YO < 0. Therefore, when ¢° < 0,
V70 € [0, UBY] in Proposition 2, there exist distributions Fy(0,0)12,0 (4000, d) and

implies

Fy(0,1)12,0 (Y0110, d) deﬁned in equations (28) and (29), where
) € o+ max{0, Y7 — L0} — P (min{¥ T, U0 — L07), ¥

00 ?00 Poj1 . u , Pojo—Poj1 [le
o1 < [ ? Pojo Polo

1] and

], and A(0) = 79 evaluated under these distributions.

Bounds on ATT. For the bounds on the ATT, the proof is completed based on the two
values of ub, ub, and ub,. When deriving these bounds in the Internet Appendix, we have: if
v > Uont ub, = %ub# + %;1'0(701 —y1); otherwise, ub, = ubﬁ + wop1|o (?01 y'). Thus,
we first show that when V' > Ut p € [0, uby], there exist dlstrlbutlons consistent with the
observed data and Assumptions 1 through 5, and ATT = p evaluated under such distributions.
According to equation (12), we redefine Fy (1 )z p(y10/1,1) and Fy(0,0),2,0(¥00[0, 1) in
equations (25) and (28) by modifying the ranges of ¢i} and ¢j. As above, we have derived
the ranges of ¢J and ¢} under the Assumptions 1 through 5, which are ¢J} € [y, Y v ] and

Pijo 1 P11 P10 70,c Piloyrl,at Pi1—Pol177l,c . Nz .
a1 € [pm 7}71‘1 LY ,me + U"¢]. By equation (12), b = 0 is achieved when
qg(l) = 7" and q10 -y Rearranging the terms in ub, according to equation (12), we have:
w w —
ub, = —1ub}y + LoP1jo (YO1 — yl)
™ 7“1
w1 WoP1|0 ,~01
= (P1|1Y —p1oy’ — (P11 — Pryo) L) + ?'(Y —)
wip11 P1jo P11 — P1jo woP1|0
_ E[Y|D — 1] _ ‘ (7|yl + | | LO,C) _ ‘ yl
L Pip P 1

Thus, uby is achieved when ¢)f = y! and qis = ii:i’yl + %LO ©. As a result the defined

[@ 1 P11 PuoL[)c Eva
P11 Yy P11
defined ranges should be subsets of their corresponding ranges implied by the assumptions.

ranges of ¢it and ¢i} are ¢)} € [y l,Y ] and ¢i} € ] Again, these

For ¢J}, the defined range equals its range under the assumptions. For ¢i}, its defined range

—11
P10 7 s, of (2 + B0, Bt B ]
—11
Y ii:? yhat 4 %Ll < zl:o ylat 4 P lpou Ul¢. Then, we show that the defined

ranges of ¢)5 and q%é are valid. 3! < v s implied by Assumption 4, while

- =11, .
%yl + %LO’C <Y  is derived by y' < L1 and L%¢ < U'¢. Therefore, when

v > Ut p € [0, uby], there exist distributions Fy(1,0)z,0(y10[1,1) and Fy(g,0),z,0(¥00/0, 1)
defined in equations (25) and (28), where ¢} € [yl,?m] and ¢i} € [;1:? Ly %LO © 711],

75



and ATT = p evaluated under these distributions.

The last part of the sharpness proof of Proposition 2 is to show that when v < yont,

Vp € [0, uby], there exist distributions Fy-(g,0),z,0(¥00/0,1) and Fy-(1 0yz,p(y10/1,1) consistent
with the observed data and Assumptions 1 through 5, and ATT = p evaluated under these

distributions. Since ub, is derived by expanding equation (14), we write AT'T as:

w — w —
art = PPRET By L0z =1,0=1)+ “POF" — By (0,017 =0,D=1)
1 1
w1 WoP1|0

V" — g0) (32)

=10
= TI(E[Y\Z =1 —popY  —pipaio) +
The last equality is implied by pou?m + pnl?n = E[Y|Z = 1]. Equation (32) shows that for
any value of ATT, it can be written as a function of ¢)j and ¢i. According to equation (32),
we redefine Fy(o,o)‘ZD(yoo\O, 1) and Fy(1,0)z,p(¥10/1,1) by modifying the ranges of g9 and
qig- b =0 is achieved when ¢} = v and qis = v Rearranging the terms in ub, according

to equation (32), we have:

w
ub, = ﬂub}; + 0P1j0 (?01 — yl)
1 1
w1 —01 WoP1|0 501
= oo =) 4 EYIZ =1] - BlY|Z = 0) + =R )
w1 =10 P11 =00 =10 WoP1|0 501
= H[E[Y|Z =1] —ponY  — pl:l(Puoyl +poY  —popnY )+ TI(Y — ")

. =00 =10
- : +p0j0 Y —po1 ¥
Thus, ub, is achieved when ¢J§ = y' and ¢]§ = 22477 0';1‘1 Pot® | As a result, the defined

P1|0yl+P0|0700—P0|1710 ?11
P11 ’
defined ranges should be subsets of their corresponding ranges implied by the assumptions.

ranges of ¢) and ¢i} are ¢} € [yl,?m] and g1} € | |. Again, these

For qg(l], its defined range equals its range under the assumptions. For q}é, we have to show

=00 =10
p1jo¥' +PojoY  —Ppo1Y 511
Y
P11

that its defined range | | is a subset of

[p—llo by Pii=Puo po.c Piogrlat 4 Pai—Poir U'€]. Since we have shown that
P11 P11 Pin P
Y < %TULM + pllglifollUl’c, we only need to show that
L =00 =10
P11o¥Y +PojoY  —poj1Y Pijo, 1 |, P11—Pijo 70, . 7700 10 0,
i > AT TL ¢, that is, poY —ponY = (pip — p1jo) L,

which is equivalent to show 7, (U%" — 710) > 0. The last inequality is satisfied by the

condition ¥ < U%™. Then, we have to show that the defined range of g1} is valid, i.e.,

L FO_ 70 44
P1joY +Polo Po|1 <V
Pip -

=00 =10 =11
Pyt +popY  —popY  —pipY  <0.
LHS = ma(y' — E[Y (1)|at]) + mnt(E[Y (0)|nt] — E[Y (1)|nt]) + me(E[Y (0)|c] = E[Y (1)c]) <0
by the assumptions. Therefore, when vy < U Vp € [0, uby], there exist distributions

, which is equivalent to show that

Fy1,0)2,0(y10[1,1) and Fy (g,0)z,0(y00/0, 1) defined in equations (25) and (28), where
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01 1 3701 11 Proy +PopY oY 11
s € W,Y ] and ¢if € [*H 'pm L= Y 7], and ATT = p evaluated under these
distributions. Q.D.E.

5.3.3 Proof of Proposition 3

Bounds on A(z). We start by showing that V7! € [LB!, UB!] in Proposition 3, there exist
distributions consistent with the observed data and Assumptions 1 through 4, and 6, and
A(1) = 7! evaluated under such distributions. According to equation (24), we redefine
Fy(1,0)1z,0(y10/1,d) and Fy(1 1)z,p(y11|1,d) in equations (25) and (26) by modifying the
ranges of q11 and ¢{{ according to the values of LB! and UB! in Proposition 3. As we have
mentioned before, under Assumptions 1 through 3 ¢ig = ;r“‘t [Y(1,0)]at] + ﬁE[Y(l,DOHC],
and ¢ = E[Y (1,1)|nt]. When deriving the bounds in Proposition 3, we have shown that
Assumptions 4 and 6 imply E[Y (1,0)|at] € [?1O,y“] E[Y (1, Do)|c] € [?10, U] and

E[Y(1,1)|nt] € [yl,711]. Thus, the ranges of ¢} and ¢i} are ¢i} € [Ylo, i%y“ + %Ukat}

and ¢i{ € [yl,?n]. Again, the ranges for defining Fy (1 0yz,p(y10/1,d) and Fy (1 1y12,p(y11|1, d)
should be subsets of the above ranges. By equation (24), we rearrange the terms in LB! and
UB':

LB' = pinY = pioy” — b1 — p1o) U™ + popy’ — pop Y
= P10 P11 — P1jo =10
= p1|1Y —pip(— 0, 4 ZHL_ T2 UM + popy' — pop Y
P |1 Pin
11 10 —11 —10
UB' = pipnY —Pl\oy —(P1|1 —P1|0)Y +poY  —popnY

11 =10 - =10
= pinY —pipY +po|1Y —po\ly

Pijo, u Pij1—P1jo Ul’at

Pi o and ¢i$ = ¢!, while UB! is achieved when

LB! is achieved when qlo =

as = vy and ¢f9 = =y . Thus, the defined ranges of ¢i} and ¢i? are

qis € [?10, Z%y“ + %Ul @] and i € [yl,YH]. It turns out that the defined ranges of
th) and q%? equal their respective ranges implied by the assumptions. Therefore,

V7l € [LB',UB'] in Proposition 3, there exist distributions Fy(1 o)z p(y10/1,d) and
Fy(1,1)1z,p(y11]1, d) defined in equations (25) and (26), where qag € [710, gi—:?y“ + %Ul’at]
and ¢i{ € [yl,?n], and A(1) = 7! evaluated under these distributions.

We now show that ¥7% € [LBY, UB] in Proposition 3, there exist distributions consistent
with the observed data and Assumptions 1 through 4 and 6, and A(0) = 70 evaluated under
such distributions. According to equation (27), we redefine Fy(0,0yz p(%00/0, d) and
Fy(0,1)z,0(y01|0, d) in equations (28) and (29) by modifying the ranges of g5 and ¢3?
according to the values of LB? and UB®. We have shown that under Assumptions 1 through
3, @06 = E[Y(0,0)]at], and ¢§Y = ;O—”";E[Y(O, 1)|nt] + pzﬁE[Y(O, D1)|c] and that Assumptions 4
and 6 imply: E[Y(0,0)|at] € [YOO,y“], E[Y(0,1)|nt] € [yl,?n], and
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E[Y(0,D1)|c] € [Lom,?m}. Thus, the ranges of ¢i3 and ¢} under the current assumptions
are q)% € [?00, y“] and ¢} € [%yl + %Lo’m,?m]. Again, the ranges for defining

Fy(0,0)12,0(y00]0, d) and Fy (g 1)|z,0(¥01|0, d) should be subsets of the above ranges. By

equation (27), we rearrange the terms in LB and U BY:

—01 —00
LB = pioY  —piyoy* +popy' + o1 — prjo) L™ — pop Y
01 Poj1 Pojo — Poj1 <00
= pyoY  —Pp1oy" +P0|0(7‘yl + 20 7o L™ — popY’
Pojo Pojo
—01 —00 —01 —01 —00
UB" = pioY —pipY  +ponY +@ip—pp)Y —popY

—o1 —00 —o1 —00
= pipY —pipY  +popY —popY -

LB is achieved when qg(l) = y" and qg(l) = gz—:;yl + %Lovnt, while UB? is achieved when
Q5 = 7" and Y = v Thus, the defined ranges of ¢0¢ and ¢ are g3} € [?00, y"] and

q) € [%yl + po'%‘gollLo’"t,?m]. As a result, the defined ranges of ¢0} and ¢Qy equal their
respective ranges under the current assumptions. Therefore, ¥7° € [LB°, UB’] in Proposition
3, there exist distributions Fy-(0,0yz,p(y00l0,d) and Fy(o1)|z,0 (%010, d) defined in equations
(28) and (29), where ¢} € [700, y"] and ¢} € [%yl + %Lom’ym]’ and A(0) = 70
evaluated under these distributions.

Bounds on ATT. By equation (12), we redefine the distributions Fy (1 0yz,p(y10/1,1) and
Fy(0,0)12,0(%00/0, 1) defined in equations (25) and (28) by modifying the range of ¢j§ and ¢gg.

We have derived the ranges of q{é and qgé under Assumptions 4 and 6: qgé € [?00, y"] and

10 P10 4 P11 —Poj1 Ul’at

as ey ]. By equation (12), rearranging the terms in lb and ub, we

> P11 P11
have:
w1 =11 WoP1|0 01
b = H(pmy — poy” — (P11 — P1)U M) + T'(y —y")
W1P1)1 =11 P10 P — P1jo WoP1|0 <501
— | [Y _ (#yu 4 | | Ul,at)] 4 | (Y _ yu)
1 Pin Pin 1
w1 11 =10 =10 WoP1|0 <501 =00
ub = H(pmy —piY = (Pip —pip)Y )+ " | Y -Y")
W1P1)1 511 <10 WoP1|0 01 =00
= Lt ytoy TR0 0t 00
1 1
Thus, Ib is achieved when ¢33 = y* and gf§ = 210y PPN f7Lat  while ub is achieved when

P11 P11
Qs = Y™ and qis = v Asa result, the defined ranges of ¢) and ¢i} are ¢ii € [700, y*] and
qis € [710, gi—:?y“ + %UL‘”]. These defined ranges equal their ranges under the
assumptions. Therefore, there exist distributions Fy-(1 0z p(y10/1,1) and Fy(g,0),z,0(¥00/0, 1)
defined in equations (25) and (28), where ¢} € [?Oo,y“] and

qis € [?10, Z%y“ + %Ul’“t], and ATT = p evaluated under these distributions. Q.D.E.
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5.3.4 Proof of Proposition 4

Bounds on A(z). Similar to the proof of Proposition 2, since the upper bounds in
Proposition 4 involve min/max operators, the sharpness proof is completed conditional on the
specific values of the upper bounds. First, we derive the difference between the two values of
the upper bound on A(1) in Proposition 4.

UBL—UBL = pop Y ' —E[Y|Z = 0]4pyo(U V" —max{0, V"' =V*'}) +-pyy max{¥"*, ¥}
We denote this difference as 8'. When ' > 0, UB! = UB;, otherwise UB' = UB].

We start by showing that when 6! > 0, V7! € [0,UB}] in Proposition 4, there exist
distributions consistent with the observed data and Assumptions 1 through 3, 5 and 6, and
A(1) = 7! evaluated under such distributions. According to equation (24), we redefine
Fy(1,0)1z,0(y10/1,d) and Fy( 1)z,p(y11|1,d) in equations (25) and (26) by modifying the
ranges of q%é and ¢{{ according to the values 0 and U Bg in Proposition 4. We have shown the
current assumptions imply E[Y (1,0)|at] € [max{?m,?oo}, Uhat],

E[Y (1, Dy)|c] € [max{?lo,Yoo},Yn], and EY (1,1)|nt] € [710,711]. Thus, the ranges of it
and ¢i{ under the assumptions are ¢} € [max{?lo,ﬁo}, ;%:Z)U Lat %?11] and
qiy € [?10,?11]. By equation (24), LB! = 0 is achieved when ¢i} = v and ) = v
Rearrange the terms in UB} by equation (24), we have:

—11 —10 —00 <10 <00 —11 =10
UBy, = pipn¥ —pomax{Y Y} — (pip —prjo) max{Y Y} +po¥Y  —po1Y
—11 —10 —00 —11 =10
= piY —pypmax{y LY} +ponY —popY .

Thus, UBj is achieved when ¢} = max{?lo,?oo} and ¢f = v Asa result, the defined
ranges of g1 and ¢i{ are ¢l € [max{?lo,?w},Yll] and ¢if € [710,711}. For ¢i}, its defined
range [max{?lo,?oo},?n] is a subset of its range implied by the assumptions because

v = %??11 + pl‘%‘f”o?n < %Ul’“t + %?H. For ¢{?, its defined range [710,?11]
equals its range implied by the assumptions. At last, it is straightforward to show that the
defined ranges of ¢i} and ¢j} are valid by employing Assumptions 5 and 6. Therefore, when
6! >0, vr! € [0,UB}] in Proposition 4, there exist distributions Fy1,0)z,0(y10/1,d) and
Fy(1,1)12,0(y11]1,d) defined in equations (25) and (26), where 3 € [max{?m’?oo},?u] and
q¥ € [710,?11], and A(1) = 7! evaluated under these distributions.

Now we show that when 0! < 0, V7! € [0, UB!] in Proposition 4, there exist distributions
Fy(1,0)1z,0(y10/1,d) and Fy (1 1)z,p(y11|1,d) that are consistent with the observed data and
Assumptions 1 through 3, 5 and 6, and A(1) = 7! evaluated under these distributions.
According to equations (24) and (30), we redefine Fy-(1 )z p(y10|1,d) and Fy(11)z,p(y11(1, d)
by modifying the ranges of ¢i and ¢i{ according to the values 0 and UBL. By equation (24),

LB!' = 0 is achieved when ¢} = v and qi) = v Rearranging the terms in U B! according
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to equation (30), we have:

UB! = Y —E[Y|Z=0]+pyo0"" - ¥ —max{0,7" - 7"}
10 10
= E[Y|Z=1]=2pyuY  +popY - E[Y|Z =0

P10 =V —max{0,Y" = V")) + po ¥
10 =10 00 o 11
= E[Y|Z=1]—=2ponY  —pip(max{y Y "} - ZTH) +popY
1 - . 11 10 00 o1
UB, is achieved when ¢j; = max{Y Y '} — P where
o' = p0|1?10 — E[Y|Z =0 +p1‘0(U1’“t T max{(),?11 - 701}) +pip max{?lO,YOO} <0,
and ¢i = Y". Asa result, the defined ranges of ¢i} and ¢i) are
qis € [max{?lo,?()o} - %7?11] and qi} € [710,?11}. These defined ranges should be subsets
of their ranges under the assumptions derived in the last paragraph. Clearly, the defined

range of ¢ equals its range implied by the assumptions. For ¢i}, to show

=10 — =11 . =10 < 10511
[max{Y O,YOO - %,Y | is a subset of [max{Y O,YOO}, %Ul’at + %Y ], we have to
<10 <00 =10 <00 11 —prjor11
show that max{Y ", Y "} — % >max{Y ,Y }andY < %Ul’“t + %Y . The

”>" holds for #1 < 0 and the ”<” holds for ?11 < UYL, Finally, we show that the defined
range of qij itself is valid. That is, v > max{?lo,?oo} — ﬁ,
plu?ll —pip max{?lo,?oo} +601>0. LHS = m(E[Y (1)|at] — v 4 ylat —
max{?n,?m}) + 7 (E[Y (1)|c] — E[Y(0)|c]) + wm(?lo — E[Y (0)|nt]) > 0 by the assumptions.
Thus, the defined range of th) itself is valid. Therefore, when #* < 0, V7! € [0, UB!] in
Proposition 4, there exist distributions Fy-(10yzp(y10|1,d) and Fy (1 1)z,p(y11|1, d) defined in

equations (25) and (26), where ¢i} € [max{?w,Yoo} — %,711] and ¢i € [?10,?11], and

which is equivalent to show

A(1) = 7! evaluated under these distributions.

Now we show the case of A(0) in Proposition 4. We derive the difference between the two
values of the upper bound.

UBY—~UBY = E[Y|Z = 1]—popy (L*™ +max{0, Y~ ¥} =V'!) = py oV —pgjo min{¥"", V"' }.
Let us denote this difference as #°. When §° > 0, UBY = UBZ?, otherwise UB? = UBg. In the
following of the proof, we first show that when 6% > 0, ¥7° € [0,U B,?] in Proposition 4, there
exist distributions consistent with the observed data and Assumptions 1 through 3, 5 and 6,
and A(0) = 70 evaluated under such distributions. According to equation (27), we redefine
Fy(0,0)12,0(%00]0, d) and Fy(o1)|z,p (%010, d) in equations (28) and (29) by modifying the
ranges of qgé and qg?. When deriving the bounds in Proposition 4, we have shown:
E[Y(0,0)]at] € Y™, Y], E[Y(0,1)|nt] € [L®", min{Y ", Y "}], and

E[Y(0,D1)|c] € [?)0, min{?ll,?m}]. Thus, the ranges of ¢)} and ¢ under the current
assumptions are i € [?00,?01] and ¢ € [2ALp0nt 4 MYOO,HHH{?H,?M}]. By

Polo Pojo
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equation (27), LBY = 0 is achieved when ¢} = 7! and ) = 7. Rearranging the terms in

UBY by equation (27), we have:
01 00 .11 01 . 711 01 <00
UBj pipY  —pipY  +popmin{Y Y} 4 (pojo — pop) min{Y Y} — popY

—o1 —00 . 11 —01 —00
= pyoY —poY  +poomin{Y Y} —popY .

Thus, U Bg is achieved when qg(l) =7 and qg[l) = min{?ll,Ym}. As a result, the defined

ranges of ¢) and ¢ are ¢} € [700,701] and ¢) € [?00, min{?ll,?m }. For g3, its defined
range equals its range implied by the assumptions. For qgg, its defined range

[?OO, min{?H,?Ol}] is a subset of [%Lo’nt + %?00’ min{?117?01}] because

?00 _ m?()o + po‘ofpml?OO > mLO,”t + Pojo—Po|1
Pojo Pojo Pojo Pojo

suffices to show the validity of the defined ranges of qg(l) and qg(l). Therefore, when 6% > 0,

v*. Combination of Assumptions 5 and 6

v7r% € [0, UB}] in Proposition 4, there exist distributions Fy(0,0)z,0(400|0, d) and
Fy(0,1)2,0(901|0, d) defined in equations (28) and (29), where a8 € [?00,701] and

@ e [?00, min{?ll,Ym}], and A(0) = 70 evaluated under these distributions.

The next part of the sharpness proof of Proposition 4 is to show that when 6° < 0,

v70 € [0,UBY), there exist distributions Fy (g 0yz,p(400|0, d) and Fy-(g.1),2,p(401]0, d) consistent
with the observed data and Assumptions 1 through 3, 5 and 6, and A(0) = 70 evaluated
under these distributions. According to equations (27) and (31), we redefine

Fy(0,0)12,0(y00]0, d) and Fy(o1)|z,p(%01|0, d) by modifying the ranges of g5 and ¢3Y. By
equation (27), LBY = 0 is achieved when ¢} = v’

UB? according to equation (31), we have:

! and q8(1) = 700. Rearranging the terms in

UB) = E[Y|Z=1]-Y" —pou (L% + max{0,V" -V} -V

<01 <00
= 2poY —EY[Z=0]-ppY +EY|Z=1

]
=10 =00, 11 —o1
—popn(LO™ + max{0,Y —Y } =Y ) —py Y
—01 —00 .11 =01 g0
= 2pY  —EY|Z=0]-pioY  +pojo(min{Y ", Y} + ﬂ)
0/0

UBY is achieved when ¢} = 7" and a9 = min{?11,701} + %, where
O =E[Y|Z=1] - po‘l(LO’m + max{O,?lO — ?00} — ?11) —p1|0?01 — DPojo min{?n,?m} <0.

Thus, the defined ranges of ¢J§ and ¢! are ¢{} € [700,701} and

q) € [?00, min{?n,?n} + %]. These defined ranges should be subsets of their respective
ranges under the assumptions derived in the previous paragraph. Clearly, the defined range of
qd§ equals its range implied by the assumptions. For ¢, to show [ﬁo, min{?ll,?m} + %]
o 3 subset of (2297 + 22920 7% i (71 791 e have 0 st

Yy > Dot pont 4 Polo—Pon 00 g min{?n,?n} + % < min{?n,?m}. The ”>" holds for

— DPojo Pojo

v > L% and the ”<” holds for §° < 0. Finally, we show that the defined range of q8? itself
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is valid. That is, v < min{?n,ﬁl

popY . — popmin{Y' ¥} =09 < 0. LHS = 1 (E[Y (0)|nt] — min{YV ", ¥} 4 Lot —
?11) +p1|0(701 — E[Y(1)]at]) + 7.(E[Y(0)[c] — E[Y (1)|c]) < 0 by the assumptions. Thus, the
defined range of qg(l) itself is valid. Therefore, when #° < 0, V7° € [0, U B?] in Proposition 4,
there exist distributions Fy (0,0yz,0(%00/0,d) and Fy-(0,1yz,p(y01|0, d) defined in equations (28)
and (29), where ¢i} € [700,?01] and ¢J) € [YOO,min{YH,YOI} + %], and A(0) = 70

evaluated under these distributions.

+ %, which is equivalent to show

Bounds on ATT. For the bounds on the ATT, the proof is completed based on the two

values of ub, ub, and uby. When deriving these bounds in the Internet Appendix, we have: if

V>V ub = uby, = Wb} + 210G ) otherwise

T

ub = ub, = %ubé + %11'0(?01 — ?100). Thus, we first show that when v > ?00,

Vp € [0, ubp], there exist distributions consistent with the observed data and Assumptions 1

through 6, and ATT = p evaluated under such distributions.

According to equation (12), we redefine Fy(10),z,p(y10/1,1) and Fy(0,0yz,p(%00l0, 1) in

equations (25) and (28) by modifying the ranges of ¢i§ and ¢)j. We have derived the ranges of
P1jo Ul’at + }M?ll]

11 01 : s e o1l 3700 3710
q1p and ggp under the combined assumptions: ¢j; € max{Y " ,Y "}, i i

and ¢{} € [700,701]. By equation (12), Ib = 0 is achieved when ¢3¢ = 7! and s =Y

Rearranging the terms in ub, according to equation (12), we have:

11

w1 11 10 WoP1)0 01 00
uby = —(pY —pipY )+ 7'(}/ -Y)
1 1
w — w —
— EY|D=1]- 1p1|1Y10 B opl\oyoo
1 1

Thus, uby is achieved when qg(l) — 7" and q}é 7" Asa result, the defined ranges of qg(l]
and qi} are ¢Q} € [700,701] and qij € [?10,?11]. For gJi, the defined range equals its range
under the assumptions. For q%é, we have to show that its defined range [710,711] is a subset
of [max{Y", Y}, oyt %?ﬂ]. When V" > 7", V" > max{YV"",Y "}, and
v = %(I)Ul’at + pill;);foll Lhe < ;%:(I)Ul’“t + L;;fml?n. Then, we show that the defined
range of q%é is valid, Y < v s implied by Assumption 6.2. Therefore, when v > 700,
Vp € [0, uby], there exist distributions Fy-(; o)zp(y10/1,1) and Fy (g 0)2z,0(¥00/0, 1) defined in
equations (25) and (28) , where ¢i} € [700,701] and ¢ig € [?10,?11], and ATT = p evaluated
under these distributions.

The last part of the sharpness proof of Proposition 4 is to show that when vy < ?00,

Vp € [0, ub,], there exist distributions Fy (g 0)/z,0(%00/0, 1) and Fy (1 )z p(y10/1, 1) consistent
with the observed data and Assumptions 1 through 6, and ATT = p evaluated under these
distributions. According to equation (32), we redefine Fy-(g,0)z,0(¥00/0,1) and

Fy(1,0)z,0(y10/1, 1) by modifying the ranges of g9 and g}, b =0 is achieved when ¢3¢ = v

82



and q%é -7 Rearranging the terms in ub, according to equation (32), we have:

— w —
ub, — ﬂ(E[Y|Z —1]- YOO) i 0P1]0 (YOI _?)0)
1 1
w1 =10  P1]1 =00 10 WoP1|0 5701 =00
= BY|Z =1 = pop V" = T pop V) + — (7 -7
1 P11 1
. . 01 —00 11 ?Oo—pml?lo
Thus, ub, is achieved when g5y =Y and g5 = — As a result, the defined ranges of
00 10 .
Y —pon Y

g5 and g} are g9} € [?OO,?Ol] and g1} €| ,?11]. Again, these defined ranges

P11
should be subsets of their corresponding ranges implied by the assumptions. For q[%, its

defined range equals its range under the assumptions. For q%(l), we have to show that its

Y()ino‘lYlO 11, . —00 10 pl‘o 1.at pl‘lfpo‘lfll

[— Y ]is asubset of max{Y ,Y "}, =2U* + ==Y ] when
P11 P11 P11

=10 _ =00 . 11 -
Y <Y . Since we have shown that Y~ < %(I)Ul’at + pl';lifollUl’c, we only need to show

00 10
Y —pop Y <00 = - . = — D :
that +(|)1‘1 > max{YOO, Ylo} = YOO, that is, v - p0|1Y10 > p1|1Y00, which is equivalent

to show 7, (700 — ?10) > 0. The last inequality is satisfied by the condition vy < N

—00 —10
Y _pon Y —11 .
7;; (\)1‘1 <Y ', which is

defined range

Then, we have to show that the defined range q%(l) is valid, i.e.,
equivalent to show that v - pou?m — plu?ll <0.

LHS = 7(V" = E[Y (1)|at]) + 7t (E[Y (0)|nt] — E[Y (1)|nt]) + m(E[Y (0)|c] — E[Y (1)|c]) <0
by Assumptions 5.2 and 6.2. Therefore, when v < ?00, Vp € [0, ubgy], there exist
distributions Fy(1,0yz,p(¥10/1,1) and Fy (o 0)jz,0(¥00|0, 1) defined in equations (25) and (28),
where ¢3} € [?00,?01] and qig € [W,?H], and ATT = p evaluated under these
distributions. Q.D.E.

5.4 Bounds under the Reversed Weak Monotonicity across Strata
Assumption 6’. (Weak Monotonicity of Mean Potential Outcomes Across Strata,).

6.1’ E[Y (2) |at] < E[Y (2,D1-;) |c] < EY (2) |nt];

6.22 E[Y (2)|at] < E[Y (2)|c] < E[Y (2) |nt];

6.3 E[Y (2,0)|at] < E[Y (z,D0)|c],E[Y (2,D1) |c] < E[Y (2,1) |nt], where z = 0, 1.
5.4.1 Bounds on ATFE and ATT under the Assumption 6’

Proposition 3’ If Assumptions 1 through 4, and 6’ hold, then the bounds
LB° < A(0) <UB° and LB' < A(1) < UB? are sharp. And for z = 0,1,

Pr(Z = 0)LB° + Pr(Z = 1)LB' < E[A(2)] < Pr(Z = 0)UB° + Pr(Z = 1)UB*,
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where

LB® = y" -y
g - Uo7
UB® = 101|0(701 —y) - po|0?00 + popy” + (prj — pryo)UO™
UB' = 101|1?11 + po\l(yu - ?10) - p1|oyl - (]91\1 - p1|0)L1’at

lat _ _ _ 11
L = E[Y|Z =LD=1Y< y(puo/mu)]

Ont __ — — 00
U = E[Y|Z =0,D=0Y = yl—(Po\l/Pom)]'

Proof. See the next subsection.

Proposition 4°. If Assumptions 1 through 3, 5 and 6’ hold, then
0 < A(0) <min{UBJ,UBY} and 0 < A(1) < min{UBL,UB}} are sharp. And for
z=0,1,

0 < E[A(2)] £ Pr(Z = 0)min{UB,UB}} + Pr(Z = 1) min{UB,, UB}},
where

UB) = pipo(V" =y —max{0, L™ — V")) + E[Y|Z = 1] - E[Y|Z = 0]

+popn (" = Y = max{0,Y"" = U%"}) — (pyy — pyjo) max{0, V" — U%"*}
UBI? = pl\O(YOI - yl) - 100|0700 + popy" + (P11 — P1jo) min{?w’ ot utey
UBL = pio(V — ¢ —max{0, L = Y"'}) + E[Y|Z = 1] — E[Y|Z = 0]

+pop (" =V = max{0,Y" = U"}) = (pyjy — pyjo) maxc{0, L1 =V}
UB; = pm?ll +p0|1(yu - 710) - p1|oyl - (p1|1 - pl\o) max{?m’ LO’C,Ll’at};

Lat B o 11
LYY = F Y‘Z = 1’D - 1’Y < y(P1|0/P1\1)]
U07nt — Ey‘Z:()’D:O,YZQ?O_(
0e B o 00
L = EY|Z=0,D=0,Y < yl—(po|1/P0\0)]

le . . 00
U = EY|Z=1,D=1Y > yp1|0/P1\1)]

P0|1/P0\0)]

[
[
[
[

Proof. See the next subsection.

Under the assumptions in Proposition 3’ (A6’), the bounds b < ATT < ub are sharp, where

w1p1)1 ?10 w0p1|0700
71 T

w1
ub = EY|D=1]- H(Pm —P1|0)L1’at -

b = E[Y|D=1]—

Pijo
7y .
1
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Under the assumptions in Proposition 4’ (A5 & A6’), the bounds 0 < ATT < min{ub,, uby}

are sharp, where

%)0
—(p1|1 - p1|0) maX{Ll’at7Y }]
P1j0 w1 =01
ub, = E[Y|D=1]— 7'@/ - Z(pm —p1|0)maX{Y aLO’caLl’at}-

5.4.2 Proof of Proposition 3’

As before, we first derive bounds for the non-point identified mean potential outcomes of the
strata, and for all the local net and mechanism average treatment effects.
Bounds for E[Y (0)|nt]: A6.2’ implies Y'' = E[Y (0) |at] < E[Y (0) |nt]. A6.2’ and the
equation T E[Y (0) |nt] + m.E[Y (0)|c] = p0|0700 imply E[Y (0)|nt] > v Since Y > V"
by A6.2’, the lower bound is 7. A6 does not provide any additional information for an
upper bound of E[Y (0)|nt]. Thus, v'<E [V (0)|nt] < U™,
Bounds for E[Y (1) |at]: A6.2” implies E[Y (1) |at] < E[Y (1) |nt] = Y™, A6.2’ and the
equation T E[Y (1) |at] + 7E[Y (1) |d = p1p Y yield E[Y (1)]at] <V Since V' <V by
A6.2°, the upper bound is ', A6 does not provide any additional information for a lower
bound of E[Y (1) |at]. Thus, LY < E[Y (1)|at] <Y .
Bounds for E[ ( )lc]: A6.2" and the equation m E[Y (0) [nt] + m.E[Y (0)|c] = pO‘OY y1e1d
E[Y(0)|c] < Y™, As for the lower bound, A6.2’ 1mphes E[Y(0)|c] > [Y( )|at] = , which
can be greater or less than L%¢. Thus, max{L", v’ } < E[Y(0)|c] < v
Bounds for E[Y (1) |c]: A6.2” and the equation 7o E[Y (1) |at] + 7. E[Y (1 ) lc] = meH yield
E[Y (1) c] > Y. As for the upper bound, A6.2” implies E[Y (1) |c] < E[Y (1) |nt] = 710,
which can be greater or less than U¢. Thus, v < E[Y (1)|c] < min{U" 0,710}.
Bounds for E[Y (1, Dy) |c]: A6.1" implies E[Y (1, Do) |c] < E[Y (1) |nt] = Y. Combining
with the bounds previously derived for E[Y (1) |at] yields
E[Y (1, D) |d] > E[Y (1)]at] > L4, Hence, L'* < E[Y (1, Dg)|c] <Y
Bounds for E[Y (0,D1) |c]: A6.1" implies E[Y (0, D;) |c] > E[Y (0) |at] = v Combining
with the bounds previously derived for E[Y (0) |nt] yields

E[Y (0,D1)|d] < E[Y (0) |nt] < U%. Hence, Y < E[Y (0, D1)| d < Uont,
Bounds for LNATE?,, for z =0,1: From ( ) LNATE?, = v — E[Y(0)|nt]. Using the
bounds previously derived for E[Y (0)|nt]: Y — U™ < LNATE?, < v - ?00, for z =0,1.
Bounds for LNATE?,, for z=0,1: From (23), LNATE?, = E[Y (1)|at] — v Using the
bounds previously derived for E[Y (1) |at]: L1 — v < LNATE? < v - 701, for z =0,1.
Bounds for LNATE?: From (23), LNATE? = E[Y (1, Dy)|c] — E[Y(0)|c]. Using the bounds
previously obtained for the components in LN ATE?, we obtain
Lhat 7" < INATE? < V" — max{L0¢, 7" ).
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Bounds for LNATE}: From (23), LNATE}! = E[Y(1)|c] — E[Y (0, D1)|c]. Using the bounds
previously derived for the components of LNATE], we have

Y - %t < LNATE! < min{UYe, V") - V"

Bounds for LMATE}: LMATE! = E[Y(1)|c] — E[Y (1, Do)|¢]. Using the bounds previously
derived for the components of LM ATE}, we have

Y —7" < LMATE! < min{U'e,Y"%} — L1et,

Bounds for LMATE?: LMATE? = E[Y (0, D1)|c] — E[Y (0)|c]. Using the bounds previously
derived for the components of LM ATE?, we have

Y —Y" < LMATE? < U™ — max{L%¢, 7" '}.

Bounds for E[Y (1,1) [nt]: A4 and A6.3" imply E'[Y (1)|c] < E[Y (1,1) |nt] < y*. Combining
with the bounds previously derived for E[Y (1)|c] yields v'< E[Y (1,1) |nt] < y*. And thus
E[Y(1,1)|nt] — E[Y(1)|nt] in (16) and (17) has the following bounds

Y'Y <EY () - E[Y (D)|nt] <yt Y.

Bounds for E[Y (0,1)|nt]: A4 and A6.3” imply E[Y (0, D1)|c] < E[Y (0,1) |nt] < y™.
Combining with the bounds previously derived for E[Y (0, Dy)|c] yields

v'<FE [Y (0,1) |nt] < y*. Using the bounds previously derived for E[Y (0) |nt], we have
E[Y(0,1)|nt] — E[Y(0)|nt] in (19) and (20) has the following bounds

YO — Ut < BIY(0,1)nt] — E[Y(0)|nt] <y — Y.

Bounds for E[Y (1,0)|at]: A4 and A6.3" imply ' < E[Y (1,0)|at] < E[Y (1, Do)|].
Combining with the bounds previously derived for E[Y (1, Dy)|c] yields

y' < E[Y (1,0) |at] < v Using the bounds previously derived for E[Y (1) |at], we have
E[Y(1)|at] — E[Y (1,0)|at] in (16) and (17) has the following bounds

Lret — Y'Y < By (1)]at] — E[Y (1,0)|at] <Y — oL,

Bounds for E[Y (0,0)|at]: A4 and A6.3” imply 3' < E[Y (0,0) |at] < E[Y (0)|c]. Combining
with the bounds previously derived for E[Y(0)|c] yields y' < E[Y (0,0) |at] < Y™, And thus
E[Y (0)|at] — E[Y(0,0)|at] in (19) and (20) has the following bounds

Y —Y” < E[Y(0)|at] — E[Y(0,0)|at] < V"' — ..

Bounds on A(z). We now derive the lower bound of A(1) by the use of the equations (16)
through (18). The corresponding three potential lower bounds are:

LBé _ ﬂ'at<L1’at _ ?10> + ﬂ'nt(?ll o ?10) + 7’(’0(?11 _ ?10)
LB} = wa(l™ V") 4 (Y — V) + E[Y|Z =1] - E[Y|Z = 0]
(VT =7 = 1V =7 — 7oV — max{L%¢, 7'}

11 =10 =10 11 =10
LB}Y = P1|1Y —pouy —matY Y — 7Y

After some algebra, we have LB} — LBL = E[Y|Z = 1] = E[Y|Z = 0] —pyo(Y  —Y") -

—10 <00 . =01, —l1 . =01, =00
pop (Y =Y )+ (p1j1 — pjo) (max{LO¢, Y} =Y ) = (p1)1 — p1po) (max{L>¢,Y "} =Y ) <0.
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Hence, LB. dominates LBé. LB% — LBl = p1|0(?11 — LY > 0. Hence, LB% dominates
LB!. Therefore, the lower bound for A(1) = LB}/ =y -7
Similarly, we use equations (19) through (21) to derive potential lower bounds for A(0):

<01

LBY = r(Y =01 =00

V) 4 (V" = U 4 (VO YY)

LBy = 7Y —Y") 4+ mu(Y" —U) + E[Y|Z =1] - E[Y|Z = 0]
(¥ =Y = 1 (V" = Y) — ro(min{U, Yy - ¥

LBY = po¥" = pooV" = 7tV + Vo 4w Y

After some algebra, we have LBY — LB = E[Y|Z = 1] = E[Y|Z = 0] —pyo(Y  —Y") -

10 00 <00 . 10 11 . 10
pop(Y " =Y )+ (prj1 —p1jo) (Y —min{UH¢, Y 7)) = (pyj1 —p1jo) (Y —min{U¢, Y 7}) <0.
Hence, LBY dominates LBY. LBY — LBY = po; (U —Y") > 0. Hence, LBY dominates

LBY. Therefore, the lower bound for A(0) = LBP/ =7 -y

We now use equations (16) through (18) to derive potential upper bounds for A(1):

UBY = 7a(V'" =) + ma(y" = V'0) + me(min{TU¢, V') — 1)
UBY = 7Y —y) +muly” = V") + E[Y|Z = 1] = E[Y|Z = 0]
—Wat(Ll’at o ?01) o Wnt(?m _ UO,nt) _ 7TC(Ll,at . ?00)
11 10
UB, = pinY  —ponY  — may + mney® — weLH
=01 =10
UBy—UB, =ElY|Z =1 = E[Y|Z = 0] = pyp(L"" =Y ) =popn(Y ~ = U*™) + (p1j1 —
<00 . 10 00 ) 10
p1o) (Y —min{UY, Y }) = (p1p — p1jo) (Y — L+ U —min{U,Y "}) > 0. UB}
dominates UBé. UB) - UB, = FC(?H — min{Ul’C,?lo}) < 0. Thus, UB] dominates UBj.
Therefore, the upper bound for
11 <10

A(L) =UB: =pinY +pop(* =Y ) — proy' — (p1p — pajo) L
We now use equations (19) through (21) to derive potential upper bounds for A(0):

UBY = 7" =) + ma(y® = V) + me (U0 — max{L%°, Y"'})

UBY = 7Y — ') + muly® —Y*) + E[Y|Z = 1] - E[Y|Z = 0]

_Wat(LLat _ ?01) _ 7Tnt(710 _ UO,nt) _ Wc(?ll _ UO,nt)
01 00
UBS = pipY  —popY  — Tty + Tpey® + w U0
01 10
UBE; - UBg =E[Y|Z=1] - E[Y|Z = 0] —p1|0(L1’at -Y) —p0|1(Y - Uo’m) + (p1|1 -
puo) max{L2 ¥} = ¥') = (py — pajo) (max{ L0, Y} — L0 4 UL —¥) > 0. Thus,
UBY dominates UB%. UBY - UB] = ﬂc(max{LO’c,?Ol} - ?00) < 0. Thus, UBY dominates
UBY. Therefore, the upper bound for
=01 00

A(0) = UBS =pipY — y") —popY " +popy* + (Pip — p1|0)U0’nt-
Finally, the bounds for E[A(z)] are obtained by directly plugging the corresponding terms
into the equation Pr(Z = 1)A(1) + Pr(Z = 0)A(0).

87



Bounds on ATT. Under A4 and A6.3’, p1|0(701

bounds on I'(1) are:

-y ) <T(0) < pl‘o(?m —3'). The lower
b = m( L -V 4 -7

by = 7Y -V 4 EY|Z=1]-E[Y|Z =]

(Y = 7)) — 2oV — max{L0c, V')
11 10 10

lb,ly = p1|1Y — 7TatY — 7TCY
1oy, — b} = wat(L:it —zlol) < 0. by — b} = me(max{L0¢,¥""} — ¥™) < 0. Thus,
b = lb% =pin(Y =Y ). The upper bounds on I'(1) are:

Y=y me(minfU, Y} - L

uby = mu(Y" —y) + E[Y|Z=1]- E[Y|Z =]
*Wnt(?w o UO,nt) _ 7_[_c(Ll,at . ?00)

ubl = (Y

1 11 l 1,at
Ubfy = p1|1Y — Taty — Tl

ubp, — ubl = ﬂc(min{Ul’C,?lo} — ?11) > 0. ubé — ubl, = 7, (U™ — ?OO) > 0. Thus,
711 .
ub! = ub}/ =pipnY - pl‘oyl — (P11 — p1|O)Ll’at. According to ATT = 2T'(1) + 72T(0), we

have [b = 21p] + "2 (7" _ V™) and ub = Lubl + 20 (¥ 4. QD.E

T1

5.4.3 Proof of Proposition 4’

Bounds for E[Y (0)|nt]: A5.2 implies E[Y (0 )\nt] <E[Y (1) |nt] =Y" and E[Y (0)|nt] < U,
and A6.2’ implies E[Y (0)[nt] > Y. Thus, V" < E[Y(0)|nt] < min{¥"", U%"}.

Bounds for E[Y (1) |at]: A5.2 implies E[Y (1 ) lat] > E[Y (0)|at] = 01, and

E[Y (1) |at] > LY4; and A6.2" implies E[Y (1)]at] <Y . Thus,

max{Y", Lb} < B[Y (1) |at] <Y

Bounds for E[Y (0)|c]: A6.2" and the equation m E[Y (0) [nt] + 7.E[Y (0)|c] = pO‘OYOO yield
E[Y (0)|c] < 7. Regarding a lower bound, the trimming procedure implies E[Y (0)|c] > L%.
A6.2’ implies E[Y(0)|d] > E[Y (0)]at] = Y"". Finally, A5 implies E[Y (1) |c] > E[Y (0)|c].
Thus, we obtain max{?m, L%} < E[Y(0)|] < min{?oo, Utel.

Bounds for E[Y (1) |c]: A6.2” and the equation 7, E[Y (1) |at] + 7. E[Y (1)|c] = p1|1?11 yield
E[Y (1)|c > v Regarding an upper bound, the trimming procedure implies

E[Y (1)|c] < Ub¢. A6.2" implies E[Y (1)|c] < E[Y (1) |nt] = Y. Finally, A5 implies

E[Y (1) |d = E[Y(0)|c]. Thus, we obtain max{L%¢, V" } < E[Y (1)|c] < min{Y'’, UL},
Bounds for E[Y (1, Dy) |c]: A5.2 1mphes E[Y (1, Dy) |c] > E[Y (0)|c]. From above, the lower
bound for E[Y (0)|c] equals max{Y L0 1. A6.17 implies E[Y (1,Dg) |c] < E[Y (1) |nt] =Y
A5.1 implies E[Y (1) |c] > E[Y (1, Dy) |¢]. From above, the upper bound for E[Y (1)|c] equals

10
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min{?lo, Ub¢}. Note that A6.1" implies E[Y (1, Do)|c] > E[Y (1) |at] > max{?n,Ll’at}.
Therefore, max{Vm, L% LYty < E[Y (1, Do)|c] < min{?lo, Ubey.

Bounds for E[Y (0,D1)|c]: A5.2 implies E[Y (0, D) |c] < E[Y(1)|c]. From above, the upper
bound for E[Y (1)|c] equals min{Y" ", U%¢}. A6.1’ implies E[Y (0, Dy)|c] > E[Y (0) |at] = V"""
A5.1 implies E[Y (0, Dy) |c] > E[Y(0)|c]. From above, the lower bound for E[Y (0) || equals
max{Y"', L%}. Note that AG.1’ implies E[Y(0, D1)|c] < E[Y (0) |nt] < min{Y '’, U%nt},
Therefore, max{?m, LY} < E[Y(0,Dy)|c] < min{?lo, yont gle}.

Bounds for LNATE?,, for z =0,1: From (23), LNATE?, = v - E[Y(0)|nt]. Using the
bounds previously derived for E[Y (0)|nt] we have:

max{O,?lO — Uty < LNATE?, < v - ?00, for z=0,1.

Bounds for LNATE?,, for z = 0,1: From (23), LNATE?, = E[Y (1)]at] — Y. Using the
bounds previously derived for E[Y (1) |at] we have:

max{0, L1 — Y'} < LNATE?, <YV =Y, for =0, 1.

Bounds for LNATE?: From (23), LNATE? = E[Y (1, Dy)|c] — E[Y(0)|c]. A5.2 directly
implies LNATE? > 0. We have derived

max{Y"", L%, LYt} < B[V (1, Do)|d] < min{Y"’, UL} and

max{?m, LY} < E[Y(0)|c] < min{?oo, Ul<}. Using the bounds previously obtained for the
components of LNATE? we obtain six additional potential lower bounds: v 700,

v _pgte, poe 7P e _gle phat 7% and phet — Ule, Note that: VO — Y <0,
v _ute <o, 10— YY" <0, L0¢ — Ule <0, and L — L€ < 0. Hence,

LNATE? > max{0, Lbt — ?00}. We have the upper bound min{?m7 Ubey — max{?m, LY%<},
Thus, max{0, L1 — 700} < LNATE? < min{?lo, Ube} — max{?m, Lo},

Bounds for LNATE}: From (23), LNATE! = E[Y(1)|c] — E[Y (0, D1)|c]. A5.2 directly
implies LNATE! > 0. We have derived maX{LO’C,?H} <E[Y ()| < min{?lo, U} and
max{?m, L%} < E[Y(0,Dy)|c] < min{?m, Uont e}, Using the bounds previously
obtained for the components of LNATE! we obtain six additional potential lower bounds:
L0c 7 poc _gont poc _ple g0 _gont a0 ¥ - Ule. Note that:

L0 70 <0, L0 — ot <, [0 —Ule <0, Y~V <0,and Y — UL < 0. Hence,
LNATE! > max{(),?11 — U%™}. We have the upper bound min{?lo, Ubtey — max{?m, Lo},
Thus, maX{O,?H — Uty < LNATE! < min{?lo, Ubte} — max{?m, LY%<},

Bounds for LMATE}!: LMATE! = E[Y(1)|c] — E[Y (1, Dy)|c]. A5.1 directly implies
LMATE! > 0. We have derived that max{L%¢,Y"'} < E[Y (1) || < min{Y"’, U} and
max{?m, LYe Lhaty < E[Y (1, Dy)|c] < min{?lo, Ub¢}. Using the bounds previously
obtained for the components of LM ATE! we obtain four additional potential lower bounds:
L0e — ?10,?11 — ULC,?H — ?10, and L% — U%¢. BEach of these four expressions is less than
or equal to zero. We have the upper bound min{?w, Ubey — max{?m, L% LYt} Thus,

0< LMATE} < min{?lo, Ubey — max{?m, Loe, Lhaty,
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Bounds for LMATE?: LMATE? = E[Y (0, Dy)|c] — E[Y(0)|c]. A5.1 directly implies
LMATE? > 0. We have drived max{Y"", L} < E[Y (0, Dy)|d] < min{Y"*, U%", U1} and
max{?m, LY} < E[Y(0)|] < min{?oo, U'}. Using the bounds previously obtained for the
components of LM ATE? we obtain four additional potential lower bounds:

v ?OO, L0e — ?00,701 — U, and L%¢ — U'¢. Each of these four expressions is less than
or equal to zero. We have the upper bound min{?m, yont gle} — max{?m, L%¢}. Thus,
0< LMATE? < min{Y ", U%" UL} — max{Y"", L0},

Bounds for E[Y (1,1)|nt]: A5.3 and A6.3" imply E[Y (1,1)|nt] > E[Y (1) |nt] > E[Y (1) |c],
so Y'Y < B[Y (1,1) |nt] < y*. And thus E[Y(1,1)|nt] — E[Y(1)|nt] in (16) and (17) has the
following bounds 0 < E[Y (1,1)|nt] — E[Y (1)|nt] < y* — Y '°.

Bounds for E[Y (0,1)|nt]: A5.3 and A6.3’ imply that E[Y (0, D1)|c] < E[Y (0,1) |nt], and
E[Y (0,1)|nt] > E[Y (0) |nt]. Combining with the bounds derived for E[Y (0, D1)|c] and
E[Y (0) |nd] yields Y < E[Y (0,1) |nt] < y*. Since Y < E[Y(0)|nt] < min{Y" ", U}, we
have E[Y(0,1)|nt] — E[Y (0)|nt] in (19) and (20) has the following bounds

0 < E[Y(0,1)|nt] — E[Y (0)|nt] < y* — V.

Bounds for E[Y (1,0) |at]: A5.3 and A6.3" imply that E[Y (1)|at] > E[Y (1,0) |at], and
E[Y(1,Dy)|c] > E]Y (1,0) |at]. Combining with the bounds previously derived for

E[Y (1, Do)|c] and E[Y (1)|at] yields y' < E[Y (1,0)|at] < Y. Since

max{?m,Ll’“t} < E[Y (1) lat] < ?11, we have E[Y (1)|at] — E[Y(1,0)|at] in (16) and (17) has
the following bounds 0 < E[Y (1)|at] — E[Y(1,0)|at] <Y — /..

Bounds for E[Y (0,0) |at]: A5.3 and A6.3" imply E[Y (0)|c] > E[Y(0)|at] > E[Y (0,0) |at].
Combining with the bounds previously derived for E[Y (0)|c] yields y' < E[Y (0,0) |at] < v
And thus E[Y (0)|at] — E[Y(0,0)|at] in (19) and (20) has the following bounds

0 < E[Y(0)|at] — E[Y(0,0)|at] < V" — .

Bounds on A(z). We now use equations (16) through (18) to derive the lower bounds for

A(1). The corresponding three potential lower bounds are:

LB} =0
LBy = E[Y|Z=1-E[Y|Z=0-n,Y" -Y")

(T = 7)) = mo(min{V ", UM} — max{Y", L%¢})
LBY = pu V" = popY " — ¥ A Y — memin{Y 0, U

1

After some algebra, we have LBé = 7rc(711 - min{?lo, Ubel + max{Ym, L%} — ?DO) <0.
Thus, LB} < LBL. LB) = n(Y'"' —min{Y"’,U"*}) < 0. Hence, LB < LB}. Therefore, the
lower bound for A(1) = LB} = 0.
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Similarly, we use equations (19) through (21) to derive potential lower bounds for A(0):

LB = 0
LB} = EY|Z=1-E[Y|Z=0—ru(V"' =7")

—ﬂ'nt(?lo - ?00) - wc(min{?lo, uhey — max{?m, L%Y)
LBg = p1‘0701 - p0|0?00 — ﬂat?m + Fnt?oo + e max{?ol, L%}

After comparison, we have LBg = LBé < 0. Thus, LBg < LBY.

LBl = ﬂc(max{?m, Lo} — ?00). Hence, LBg < LBY. Therefore, the lower bound for
A(0) = LBY = 0.

We now use equations (16) through (18) to derive potential upper bounds for A(1):

UB, = TFat(?H — ) + (Y — ?10) + Wc(min{Ylo, Ute} — max{Ym, L%, Lhat})
UBj = Wat(?ll — ) + Ty — ?10) +E[Y|Z=1]-E[Y|Z =0
— g max{0, L1 — ?01} — Tt maX{O,?lo — U™} — r.max{0, L1 — ?00}

—11 —10 —01
UB% = pi1Y —popnY — Ty’ + Ty” — memax{Y" , L%¢ b}

To compare, UBL —UB} = wC(YH — min{?lo, U¢}) < 0. Thus, UB! dominates UB}.
UBY ~UB! = 1(Y" — max{L"*, ¥"'}) + mp(min{V"", U0} — V™) +
ﬂc(max{?m, LOe, [hat) maX{Ll’at,?Oo}). Because Y — max{Ll’at,?Ol} >0,
min{?w, yonty — v > 0, and max{?m, Loe phaty — maX{Ll’at,Yoo} <0,

UB' = min{UB}, UBL}.

We now use equations (19) through (21) to derive potential upper bounds for A(0):

UBg = ﬂat(ﬁl — yl) + Tt (y* — ?00) + Wc(min{?lo, UO’”t, Ul’c} — max{?m, LO’C})
UBY = 7Y =) + mu(y® = Y) + E[Y|Z = 1] - E[Y|Z = 0]
—q¢ max{0, L1 — ?01} — Tt max{O,?lO — Uty — . max{(),?11 —yonty

—o1 —00 C—10
UBY) = pioY —popY  — maty' + ey + memin{Y U, U}

Similarly, UB — UBY = mo(max{Y"", L%} - V") < 0. Thus, UBY < UBY.

UBY ~ UBY = pyo(Y ' — max{L"* ¥ }) + popy (min{Y", U™} = V™) + (py); —
p1|0)(min{?11, yonty — min{?lo, Uont Ul<}). Because yh - max{Ll’at,ﬁl} >0,
min{?lo, yonty v > 0, and min{?n, yonty min{?lo, Uont glel <o,

UB® = min{UBj, UBY}.

Finally, the bounds for E[A(z)] are obtained by directly plugging the corresponding terms
into the equation Pr(Z = 1)A(1) + Pr(Z = 0)A(0).
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Bounds on ATT. Under the same set of the assumptions, 0 < I'(0) < p1|0(?01 —9%). The

lower bounds on I'(1) are:

I = 0
L = V' Y'Y+ EY|Z=1]-E[Y|Z=
b= Tal )+ E[Y|Z=1] - E[Y|Z = (]
(Y =7 = e (min{Y°, UM} — max{Y"", L%¢})
lb% = plu?n - wat?n — T min{?lo, ubey

After arrangement, lbé = Wc(?ll - min{?lo, U<} + max{?n, Lo} — ?)0) <0.
b} = 770(711 - min{?w, U1}) < 0. Thus, Ib' = Ib}, = 0. The upper bounds on I'(1) are:

wbt = 7Y =) + me(min{Y '’ UM} — max{Y"", L0¢, [1ot})
uby = 7Y =)+ EY|Z=1] - E[Y|Z =]
— Tt max{O,?10 — U%y — 7, max{0, L1 — ?00}

11 =01
ub# = pipY —Watyl—wcmax{Y ,L0e platy

uby, — ubl = Wc(min{?m, Ube} — ?11) > 0.

ubly — ubl, = 1oy (min{ Y, U™} — V) 4 re(max{Y", L0, L1} — max {1, Y™}
min{V ", U} — 7 > 0, max{V", L%, L1} — max{L1 ¥} < 0, so

ub! = min{ubé, ubl}. After rearrangement, ub, = %ubé + Lo (701 — ') and

1
uby = %ub# + Loflllo (?01 —9Y. Q.D.E.

5.5 GMM Moment Function

We write the moment functions for average baseline characteristics of all the strata based on
the conditional expectation defined by {Z, D}. Let T denote the expectation of a scalar
baseline variable for a certain stratum k. The moment function for this variable is defined as:
(ZL‘ — fat)(l — Z)D

(x —ZTnt)Z(1 — D)

— T — Tq
g({mi}) = (& = Tepf; = Fap,p) 2D
(x =Tt — T T2t ) (1 - Z)(1 — D)

Cpo\o npo\o
xr — Zk Tk ]

where {ZTr} = {Tut, Tnt, Tc}. By Law of Iterated Expectation, E[g({Z})] = 0 when evaluated
at the true value of {Zy}.

Alternatively, we could also write the moment function for the proportions of all the strata
and then estimate the model together with the average baseline characteristics simultaneously
by GMM. However, such GMM estimators do not behave well in our data. Thus, in our
application, we first identify the proportions of all the strata, and then estimate all the

average baseline characteristics given the identified proportions. As seen in g({Z}), for each
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variable, we have 5 equations (4 derived from the conditional expectations defined by {Z, D}
plus one from the expectation for the entire sample) to identify 3 means, i.e., {Zx}. Since the
standard errors obtained from this GMM model do not take into account the fact that the
proportions of the strata are also estimated, we employ a 500-repetition bootstrap to calculate

the standard errors of the estimated average baseline characteristics.
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