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Abstract. This paper considers factor model problems where the observed out-

comes are convex combinations of the hidden factor values. It presents identifi-

cation results based on non-negative matrix factorization (Lee and Seung, 1999),

orthonormality (Hotelling, 1933), and volume minimization (Fu et al., 2016). In the

case of non-negative matrix factorization, the sparsity conditions of Huang et al.

(2014) are necessary and sufficient (Adams, 2016). For the remaining cases, the

paper presents new results. Under orthonormality, small factor models are iden-

tified and the sparsity conditions of Huang et al. (2014) on the weighting matrix,

are sufficient for larger models. For exact factor models, the volume minimization

approach finds the correct factors if and only if for each hidden factor there is one

observed unit that places all of its weight on that factor. For approximate factor

models, the paper presents sufficient conditions for using the volume minimiza-

tion procedure to find the correct factors. The volume minimization approach to

the approximate factor model is illustrated with a parametric maximum likelihood

estimator. The estimator is run on simulated data and panel data analysis of a

casino merger in Missouri.

The views expressed in this article are those of the author and do not necessarily reflect those

of the Federal Trade Commission. I’m grateful for continued discussions about this problem with,

Stephane Bonhomme, Jeremy Sandford and Nathan Wilson. All errors are my own.
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1. Introduction

Factor models date to at least 1933 and have found a wide variety of uses in

econometrics and applied statistics including analysis of psychometric data, panel

data, macroeconomics and document analysis (Hotelling, 1933; Bai and Ng, 2013;

Lee and Seung, 1999). The non-uniqueness of the underlying matrix factorization is

well-known (Hotelling, 1933).1 This paper considers a restriction on the factor model

where each observation is assumed to be a convex combination of the hidden factor

values. The paper presents identification results under three alternative approaches.

First, the paper presents necessary and sufficient conditions for uniqueness when

the factor values are assumed to be non-negative (Lee and Seung, 1999). Second,

the paper presents sufficient conditions for uniqueness when the matrix factor rep-

resenting the hidden factor values is assumed to be orthonormal (Hotelling, 1933).

Third, the paper presents conditions for uniqueness when the solution to the matrix

factorization problem is found through volume minimization (Fu et al., 2016). The

third approach suggests a maximum likelihood estimator. Results from the estimator

are presented using simulated data and data from prior to the merger of casinos in

Missouri.

Lee and Seung (1999) consider factor models where the factor values and the factor

weights are assumed to be non-negative. The authors argue that such models are a

good representation of document sets or sets of pictures. Huang et al. (2014) presents

necessary, and separately, sufficient conditions for uniqueness under this restriction.

Adams (2016) shows that when the observed values are a convex combination of the

hidden factor values, the necessary condition of Huang et al. (2014) is also sufficient.

Hotelling (1933) considered an orthonormality restriction on the matrix factor

representing the hidden factor values. That is, the author assumes that the matrix’s

inverse is equal to its transpose. Hotelling (1933) justifies the assumption by noting

that if the number of “time periods” is large enough and the factor values are drawn

iid from a standard normal distribution, the variance-covariance matrix is the identity

matrix.2 Bai and Ng (2013) present conditions on the factor weights that lead to

1Bai (2009) shows that strict identification of the factor model is not always necessary in treat-

ment estimation, such as the problem considered in the last section. However, simulation results

(not included) suggest that the estimator presented below out-performs the estimator suggested in

Bai (2009) in finite samples.
2The analogy to time periods in the original paper’s application is the individual test takers.
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uniqueness. In particular, if for each factor there is some observed unit that only

places weight on that factor, then the factorization is unique. In contrast, this paper

considers combining the orthonormality assumption with the assumption that the

observed values are convex combinations of the hidden factor values. The paper

shows that if the number of factors is 2 or 3, then the model is uniquely determined.

In addition, the paper shows that a sparsity condition (Huang et al., 2014) on the

weighting matrix is sufficient for uniqueness.

Like this paper, Fu et al. (2016) considers factor models where the observed values

are assumed to be convex combinations of the hidden factor values. The authors point

out that the matrix factorization problem can be thought of as a volume minimization

problem subject to constraints. The authors present and discuss various conditions

on the problem such that the volume minimization problem provides the unique

solution to an exact factor model. The authors present the sufficient condition in

terms of how “spread out” the observations are. This paper takes a more direct

approach. It shows if for each factor there is one observation that places all its weight

on that factor, then this is necessary and sufficient for the volume minimization

solution to be the unique solution to the factor model problem.3 Obviously, if the

observations are sufficiently “spread out” then the condition will hold.

It is unclear from Fu et al. (2016) whether the volume minimization approach

can be applied to approximate factor models (Bai and Ng, 2002). The problem is

that the volume minimization approach will tend to choose polyhedrons that are too

large because of the “errant” observations. This paper shows that problem can be

represented as a finite mixture model. Identification is based on two steps. In the

first step, the distribution of the “mean values” can be determined following Adams

(2016) and Efron (2010). In the second step, the results for the exact factor model

are used to determine the hidden factors.

The rest of the paper proceeds as follows. Section 2 presents the notation. Section

3 presents the empirical model. Section 4 presents the main identification results.

Section 5 presents the estimation results for the maximum likelihood estimator. Sec-

tion 6 concludes.

3This is similar to the sufficient condition presented in Huang et al. (2014) and the assumption

made in Bai and Ng (2013).
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2. Notation

Let B denote a rectangular matrix. Let B′ denote the transpose, B−1 denote the

inverse of a square (full-rank) matrix, and B+ denote the generalized inverse of the

matrix. Let I denote the identity matrix. B ≥ 0 means that each element of the

matrix is non-negative. 1 is a vector of 1’s. Here vol(B) of a I × J matrix is the

volume contained inside an I-dimensional convex polytope with J vertexes. The

notation Bj refers to a vector, column j of the matrix, Bij is an element of the

vector. B = C means that there is some arrangement of the columns of B such that

the matrices are the same. The element Bit is a random scalar, while B is a fixed

scalar, and b also refers to a vector.

3. Model

Consider an approximate factor model with observed outcome Yit for unit i in time

t. This outcome is assumed to be a weighted average over K hidden factor values

and an error term.

(1) Yit =
K∑
k=1

λikFkt + εit

where i ∈ {1, ..., I} and t ∈ {1, ..., T}. In matrix notation, a model of a panel data

set is as follows.

(2) Y = FΛ′ + E

where Y is T × I, F is T ×K, Λ is I ×K, and E is T × I.

For ease of exposition, the paper will generally consider the “mean value” version

of the model. However, in the latter sections the approximate version is considered

explicitly.

(3) Ȳ = Y − E = F̄Λ̄′

The following assumption is maintained throughout the paper. It states that each

observed outcome is a convex combination of the hidden factor values.4

Assumption 1.
∑K

k=1 λik = 1 for all i ∈ {1, ...I} and λik ≥ 0 for all i ∈ {1, ..., I}
and k ∈ {1, ..., K} or 1′Λ′ = 1′ and Λ ≥ 0.

4In some literatures a matrix with this property is called “stochastic.”
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An immediate consequence of Assumption 1 is that it reduces the number of

unknown parameters from K2 to (K − 1)K.

Lemma 1. Let F = F̄ and Λ = Λ̄ and let A be a K ×K full-rank matrix such that

(4) Y = FAA−1Λ′

Given Assumption 1, if Λ is rank K, then 1′A = 1′.

Proof. See Appendix. �

A standard assumption in the non-negative matrix factorization literature is that

both matrix factors are non-negative (Lee and Seung, 1999). That is, each element

of the matrix is either zero or positive.

Assumption 2. Fkt ≥ 0 for all k ∈ {1, ..., K} and t ∈ {1, ..., T} or F ≥ 0.

Following Hotelling (1933), it is standard in the factor model literature to make

some version of the following orthonormality assumption (Bai and Ng, 2013).

Assumption 3. F′F = I

4. Identification

4.1. Non-Negative Matrix Factorization. The non-negativity assumption is stan-

dard in the machine-learning literature following Lee and Seung (1999). The authors

argue that it is a reasonable representation of documents or photos. As the matrix

factorization problem is identical to the problem for finite mixture models, the result

presented in Adams (2016) can be applied directly.

Theorem 1. Let F = F̄ and Λ = Λ̄ and let A be a K × K full-rank matrix such

that Equation (4) holds. Define

(5)
Tk = {t ∈ {1, ..., T}|Ftk 6= 0}
Ik = {i ∈ {1, ..., I}|Λik 6= 0}

Given Assumptions 1 and 2, then A = I (up to rearranging columns) if and only if

there do not exist k1, k2 ∈ {1, ..., K}, k1 6= k2 such that Tk1 ⊆ Tk2 or Ik1 ⊆ Ik2.

Proof. See Adams (2016). �
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Theorem 1 is based on the necessary conditions presented in Theorem 3 of Huang

et al. (2014). The proof presented in Adams (2016) adjusts the proof of Huang

et al. (2014) to account for the extra constraint provided by Assumption 1. The

proof shows that the necessary condition is the same. This means that the minimum

requirement for identification is the sparsity condition presented in Huang et al.

(2014). The paper shows that the additional constraint of summing to one implies

that this necessary condition is also sufficient.

4.2. Orthonormality. A more standard restriction in the economics literature is

the orthonormality restriction of the matrix of factor values. Hotelling (1933) notes

that for a large number of time periods, the matrix factor is related to the variance-

covariance matrix. Thus, the author justifies this restriction by assuming the factor

values are distributed standard normal and independent across factors.

Lemma 2. Let F = F̄ and Λ = Λ̄ and let A be a K ×K full-rank matrix such that

Equation (4) holds. Given Assumption 3, A′A = I providing K(K+1)
2

independent

equations and det(A) = ±1.

Proof. In the Appendix. �

The first result states that the orthonormal property of the matrix factor is passed

on to the unknown matrix. As Hotelling (1933) points out, this result adds K(K+1)
2

constraints to the unknown parameters. In the original version of the model these

additional restrictions are not enough for identification. Here, with the additional

convexity restriction, the model is identified if the number of factors is either 2 or 3.

Theorem 2. Let F = F̄ and Λ = Λ̄ and let A be a K × K full-rank matrix such

that Equation (4) holds. Given Assumptions 1 and 3 and K = 2 or K = 3, if Λ is

rank K, then A = I.

Proof. In the Appendix. �

The last result shows that the sparsity conditions of Huang et al. (2014), but

limited to only the weighting matrix, are sufficient for identification.

Theorem 3. Let F = F̄ and Λ = Λ̄ and let A be a K × K full-rank matrix

such that Equation (4) holds. Given Assumptions 1 and 3, if there do not exist

k1, k2 ∈ {1, ..., K}, k1 6= k2 such that Ik1 ⊆ Ik2 then A = I.

Proof. In the Appendix. �
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4.3. Volume Minimization with Exact Factor Model. Fu et al. (2016) presents

an alternative method for determining the parameters of the factor model. If the

observed outcomes are a convex combination of the unobserved factor values, then

the authors note that there exists a T -polyhedron that includes all the observations

inside it. Moreover, the smallest such T -polyhedron has vertexes at hidden factor

vectors.

Figure 1 represents the case where there are three hidden factors and two-time

periods. The three factors are represented by the points F1, F2 and F3 in the diagram.

These are the factor value vectors for each of the three factors. The circles represent

some set of observed outcome vectors for the units of observation. By assumption

these observed outcomes must lie within the triangle. In this case, we may be able

to identify the factor model by simply plotting out the data
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Figure 1. Three factor convex model.

Lemma 3 states that the volume minimizing T -polyhedron is unique and its ver-

texes are observed outcomes from the model.
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Lemma 3. Let there be some data set Y, where each column of the matrix represents

an observed unit i and the value lies in <T . Let G∗ be a T ×K matrix such that

(6)

G∗ = arg minG∈G vol(G)

s.t. Y = GΛ′G
Λ′G ≥ 0

1′Λ′G = 1′

where G is the set matrices with T rows and some finite number of columns less than

equal to I, then

(1) G∗ is unique,

(2) There are NK ≥ K elements associated with Y (columns of Y) that lie exactly

at the K vertexes of G∗, and

(3) All elements associated with Y (columns of Y) either lie at the vertexes of

G∗ or strict convex combinations of two more vertexes of G∗.

Proof. In the Appendix. �

Theorem 4 states that if there is at least one observed outcome that is equal

to each of the hidden factors, then that is both necessary and sufficient condition

for the volume minimizing T -polyhedron to solve the factor model. If there is one

observed outcome at each factor value, then the volume minimizing T -polyhedron

will have vertexes at those observed outcomes. If not, then the volume minimizing T -

polyhedron will have vertexes that are strict convex combinations of the true factors.

Theorem 4. Let F = F̄ and Λ = Λ̄. Given Assumption 1, there exists ik ∈ {1, ..., I}
for each k ∈ {1, ..., K}, such that Λikk = 1 if and only if F = G∗.

Proof. In the Appendix. �

4.4. Volume Minimization with Approximate Factor Model. The volume

minimization approach suggests a powerful tool for solving factor models. However,

it is not robust to approximation error in the model. It is straightforward to see

that if there are “outliers” then the volume minimization approach will find a T -

polyhedron that is too large.

In general, we can re-write the factor model as a mixture model. Note that each

observation is the vector of outcomes across the time periods for the observed unit i.
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(7) Pr(yi = y) =

∫
ȳ

h(y − ȳ)g(ȳ)

where ȳi = FΛi and yi = FΛi + Ei, h is the distribution of the error term and g is

the distribution of the “mean values.”

Let the outcome set in <T be partitioned into M1 sets and let the set of average

outcomes in <T be partitioned into R1 sets.

(8) p = H1g

where p is a M1 × 1 vector of probabilities over outcomes (in the T -dimensional

reals), H1 is a M1 ×R1 matrix mapping from the mean value of the factor model to

the observed probabilities over outcomes, and g is an R1× 1 vector representing the

probability distribution over mean values.

Given this representation, we can determine the distribution of mean values if the

error term distribution is known.

Lemma 4. If H1 is known and rank R1, then g = H+
1 p.

Proof. See Efron (2010). �

The identification result presented here, breaks the problem into two steps. In

the first step, it considers the mixture model problem at the level of a unit-time

observation. In the second step, the problem is aggregated back up to the unit level

and the above result is used because the error distribution is known (found in the

first step).

(9) Pr(Yit = Y ) =

∫
Ȳ ∈<

ht(Y |Ȳ )gt(Ȳ )

The following assumption, that the error terms are distributed symmetrically

across time, allows results from the mixture model literature to be used to show

identification.

Assumption 4. ht(Y |Ȳ ) = ht′(Y |Ȳ ) = h(Y |Ȳ ) for all t, t′ ∈ {1, ..., T}.

By Assumption 4, the distribution over the error term is the same for each time-

period.
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(10) Pr(Yit = Y ) =

∫
Ȳ ∈<

h(Y |Ȳ )gt(Ȳ )

Let the outcome set in < be partitioned into M2 sets and let the set of mean

outcomes in < be partitioned into R2 sets.

(11) P = H2Γ

where P is a M2 × T matrix, H2 is a M2 ×R2 matrix, and Γ is a R2 × T matrix.

Note that the mean values (Ȳ) represent the subset of the R1 elements of g, such

that gr1 > 0. Define G∗∗ as in Lemma 3, where Y is replaced with Ȳ.

Theorem 5. Define

(12)
Mr = {m ∈ {1, ...,M}|H2mr 6= 0}
Tr = {t ∈ {1, ..., T}|Γrt 6= 0}

and Q is a R2 ×R2 full-rank matrix such that

(13) P = H2QQ−1Γ

Given Assumptions 1 and 4, if

(1) there do not exist r1, r2 ∈ {1, ..., R2}, r1 6= r2 such that Mr1 ⊆ Mr2 or

Tr1 ⊆ Tr2,

(2) H1 is rank R1, and

(3) there exists ik ∈ {1, ..., I} for each k ∈ {1, ..., K}, such that Λikk = 1,

then Ȳ is identified and F = G∗∗.

Theorem 5 presents sufficient conditions for the adjusted volume minimization

approach to find the factor values. As the problem can be represented as a mix-

ture model problem, the conditions presented in Huang et al. (2014) are sufficient.

Once the distribution of error term is determined, it is possible to determine the

distribution of the mean values. The result then uses the result for the exact factor

model where the observed outcomes are replaced with outcomes that can occur with

positive probability.
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5. Estimation

5.1. Estimator. Bai and Ng (2013) present estimation results for matrix factoriza-

tion problems similar to the ones based on non-negativity and orthonormality. To

illustrate the volume minimization result consider a simple maximum likelihood esti-

mator. Following the logic of the identification result, consider a two-step estimator

in which the first step estimates the error distribution and the second step estimates

the factor value vectors.

Step 1.

(14) {F̂kt, σ̂} = arg max
I∑
i=1

T∑
t=1

log

(∫
λ∈[0,1]K

φ

(
Yit − Ftλ

σ

))
s.t. 1′λ = 1

Step 2.

(15) {Fk} = arg max
I∑
i=1

log

(∫
λ∈[0,1]K

φ

(
||Yi − Fλ||

σ̂

))
s.t. 1′λ = 1

Although the identification results are non-parametric, it is simpler to illustrate

the volume minimization approach with a parametric estimator. Here the error term

is normally distributed with the standard deviation to be estimated in the first step.

The mean value distribution is uniform with the estimator determining the vertexes

of the T -polyhedron.

5.2. Simulation. To illustrate the maximum-likelihood estimator described above,

the simulated data is generated assuming that Yit =
∑3

k=1 λikFkt + εit, where εit ∼
N (0, σ), and

∑3
k=1 λik = 1 for all i ∈ 1, ..., 100 and t ∈ {1, ..., 10}. Two cases are run

with 100 simulated runs each. In the first case the standard deviation on the error

term is 0.20. In the second case it is 0.10.

Table 1 presents the average estimate for the standard deviation and the average

root mean squared error for the model.

5.3. Merger of Casinos in Missouri. In 2013, the Federal Trade Commission

agreed to allow Pinnacle Entertainment to merger with Ameristar Casinos, in a deal

worth $2.8 billion. The FTC required that the parties divest Lumiere Place Casino

in St Louis MO. The FTC charged that without the divestiture the merger would

reduce competition in St Louis MO. The merger was consummated in August 2013,
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σ Average SD Average RMSE SD RMSE

0.20 0.17 0.05 1.46 0.47

0.10 0.12 0.05 1.48 0.52

Table 1. Average (and standard deviation) of the estimate of σ̂ and

the root mean squared error. Three factors (assumed) (K = 3), ten

time periods (T = 10) and 100 individual units (I = 100). 100 simu-

lations.

with the divestiture taking place 8 months later in April 2014. Osinski and Sandford

(2017) use a standard difference-in-difference estimator to analyze the impact of both

the merger and the divestiture. The authors find that the merger is associated with

a small increase in output, suggestive that there were efficiencies due to the merger.

The authors also find that there was a relatively large decrease in output associated

with the divestiture, suggesting some issues with the owners of the divested casino.

This paper uses the same data but the method suggested above to estimate the

treatment effect of the merger and the divestiture on the St Louis MO casinos. The

results are broadly similar to the difference in difference estimation, although they

suggest more variation and uncertainty associated with the outcomes.

The analysis uses monthly data on the amount of money put into various slot

machine games across casinos located in Missouri. The measure of “output” is log

of “table drop,” which is the amount of money put into a particular type of machine

(1 cent, 5 cent, $5 etc). A unit of observation is average log table drop per type of

machine in each casino per month. The time period is from August 2011 to December

2016. The factor analysis is conducted on the pre-treatment period which is from

August 2011 to August 2013. The analysis is limited to the penny slots, which has

the largest revenue.

Figure 2 suggests that there are only two hidden factors. This is assumed in the

maximum likelihood procedure. The first step estimates the standard deviation of

the error term at 0.14. The second step assumes this is the true standard deviation

and estimates the two factor value vectors. Table 2 presents the results from the

second step.

A third step is to take the estimated factor values and determine the appropriate

weights given the observed data. Table 3 presents the estimated weights. The table
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Figure 2. Average table drop per penny slot, splitting the pre-

treatment into two periods and averaging.

also highlights the four “treated” firms. The table shows that all four treated units

place all their weight on factor 1.

Figure 3 presents the treatment effect for each of the treated units. The line is

the difference between the actual log table drop during the treated period and the

estimated log table drop inferred from the factor model. Given the model estimates,

the counter-factual log table drop is the same for each firm and it is a weighted

average of the log table drop for Ameristar KC, Argosy, Harrah’s NKC, Isle of Capri

- KC, and St. Jo, with Ameristar KC getting most of the weight. The analysis does

not account for sampling variance.

The results suggest that the merging firms had higher volumes most merger. This

suggests that the merger was associated with efficiencies. One possibility is that

the merger allowed the firms to better coordinate their marketing. The results also

suggest that the divested firm under-performed relative to the other firms in the

market and relative to its counter-factual performance.
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1 2

1 -1.36 -0.50

2 1.08 -0.76

3 0.48 -1.79

4 -0.38 -0.38

5 -0.08 0.12

6 -0.45 1.61

7 -0.50 0.05

8 0.10 0.57

9 -0.60 0.55

10 0.12 0.27

11 -0.70 -1.32

12 0.79 -0.47

σ̂ 0.14

Log Lik Step 1 204.37

Log Lik Step 2 20.72

Table 2. Factor values by time-period from Step 2 of the maximum

likelihood estimator.

6. Conclusion

The paper considers a linear factor model where each observed outcome is assumed

to be a convex combination of some finite set of hidden factor values. The paper

considers three approaches to identifying this model. The first approach requires

that the hidden factor values are non-negative. For this case, the paper presents

a result from Adams (2016) providing the necessary and sufficient conditions for

identification. The second approach requires that the matrix factor representing

the hidden factors is orthonormal. The paper presents new results showing that the

model is identified if the number of factors is 2 or 3. It shows that more generally, the

condition of Huang et al. (2014) is sufficient for identification. The third approach

considers the idea of finding the volume minimizing T -polyhedron subject to obser-

vations coming from a factor model. The paper presents necessary and sufficient

conditions for the approach to find the correct hidden factors when the factor model

is exact. It also considers approximate factor models and shows that the volume
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1 2 Treated

Ameristar KC 1 cent 1.00 0.00

Ameristar SC 1 cent 1.00 0.00 Yes

Argosy 1 cent 0.74 0.26

Harrah’s NKC 1 cent 0.70 0.30

Hollywood 1 cent 1.00 0.00 Yes

Isle - Boonville 1 cent 0.00 1.00

Isle of Capri - KC 1 cent 0.32 0.68

Lady Luck 1 cent 0.00 1.00

Lumiere Place 1 cent 1.00 0.00 Yes

Mark Twain 1 cent 0.00 1.00

River City 1 cent 1.00 0.00 Yes

St. Jo 1 cent 0.82 0.18

Table 3. Factor weights by slot game

Figure 3. Treatment effect for the St Louis Casinos. In order from

highest to lowest, they are the merging casinos Ameristar and River

City, the non-merging firm Hollywood and the divested casino Lumiere

Place.
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minimization approach can be combined with a mixture model to determine the so-

lution. The paper presents sufficient conditions for this approach to find the correct

hidden factors. The last approach is illustrated with simulated data and analysis of

a merger of casinos in Missouri.

7. Appendix

7.1. Proof of Lemma 1.

Proof. By Assumption 1, 1′Λ′ = 1′. By the condition of the lemma,

(16) 1′ = 1′(Λ′)+

Also by definition of A,

(17) 1′A−1Λ′ = 1′

or

(18) 1′A−1 = 1′(Λ′)+ = 1′

�

7.2. Proof of Lemma 2.

Proof. By Assumption 3 and definition of A,

(19) A′F′FA = I

Substituting F′F = I and rearranging

(20) A−1 = A′

The rest follows from the orthonormal properties of the matrix A. �

7.3. Proof of Theorem 2.

Proof. By Lemma 1 and Lemma 2, 1′A′ = 1′ and there are (K−1)2 free-parameters.

Case 1. K = 2. From Lemma 1 and above,

(21) A =

[
1− a a

a 1− a

]
By Lemma 2

(22) 1 + 2a = ±1
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Case 2. K = 3. From Lemma 1 and above,

(23) A =

 1 + a+ b −a− d −b+ d

−b− c 1 + a+ b+ c −a
−a+ c −b− c+ d 1 + a+ b− d


where {a, b, c, d} ∈ <4. From orthonormality we have

(24) −a− d = (−b− c)(1 + a+ b− d)− (−a)(−a+ c)

or

(25) −a+ b+ c− d+ ab+ bc− bd− cd+ b2 + a2 = 0

and in addition we have

(26) −a+ c = (−a− d)(−a)− (−b+ d)(1 + a+ b+ c)

or

(27) −a− b+ c+ d− ab− bc+ bd+ cd− a2 − b2 = 0

Adding Equations (25) and (27),

(28) −2a+ 2c = 0

or a = c. Also from orthonormality we have

(29) −b− c+ d = (1 + a+ b)(−a)− (−b+ d)(−b− c)

or

(30) a− b− c+ d+ ab+ bc− bd− cd+ a2 + b2 = 0

Adding Equation (27) and (30)

(31) −2b+ 2d = 0

or b = d. These results allow us to simplify A

(32) A =

 1 + a+ b −a− b 0

−b− a 1 + 2a+ b −a
0 −a 1 + a


Again by orthonormality

(33) 0 = (−a− b)(−a)

For a = 0 or a = −b see Case (1). �
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7.4. Proof of Theorem 3.

Proof. By Assumption 1, A−1Λ′ ≥ 0. By Lemma 2, A′Λ′ ≥ 0. Taking the transpose,

ΛA ≥ 0. The rest follows from Theorem 1, where Λ is labeled F.

�

7.5. Proof of Lemma 3.

Proof. (3). From the constraint of the optimization problem.

(2). Suppose not. There is at least one vertex (G∗k) which does not correspond

to any elements of Y. Therefore there exists two elements of Y such that the three

points form a T -polyhedron with no elements of Y strictly inside the volume. There-

fore the volume has not been minimized subject to the constraints. A contradiction.

(1). Suppose not. Case 1. There is some other solution with vertexes that are not

vertexes of G∗. This contradicts (2). Case 2. There is some other solution where the

vertexes of G∗ are not vertexes of the alternative solution. This contradicts (2). �

7.6. Proof of Theorem 4.

Proof. ⇒ By the condition, there exists a subset of the columns of Y, such that

YK = FI. By Lemma 3, YK = G∗.

⇐ By the condition, F = G∗. By Lemma 3, G∗ = YK . So there exists a subset

of the columns of Y such that YK = FI.

�

7.7. Proof of Theorem 5.

Proof. By Assumption 4 and Theorem 1, then if the condition (1) of the theorem

holds, H2 is uniquely determined from the data. So H1 is known. By condition (2)

and Lemma 4, g is determined. Ȳ is determined by definition. By definition of G∗∗

and Lemma 3, G∗∗ is uniquely determined. By Assumption 1 and condition (3),

F = G∗∗.

�
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