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Abstract

In nonlinear panel models with fixed effects and fixed-T , the incidental pa-

rameter problem poses identification difficulties for structural parameters and

partial effects. Existing solutions are model-specific, likelihood-based, impose

time homogeneity, or restrict the distribution of unobserved heterogeneity. We

provide new identification results for the large class of Fixed Effects Linear

Transformation (FELT) models with unknown, time-varying, weakly mono-

tone transformation functions. Our results accommodate continuous and dis-

crete outcomes and covariates, require only two time periods and no parametric

distributional assumptions. First, we provide a systematic solution to the in-

cidental parameter problem in FELT via binarization, which transforms FELT

into many binary choice models. Second, we identify the distribution of counter-

factual outcomes and a menu of time-varying partial effects. Third, we obtain

new results for nonlinear difference-in-differences with discrete and censored

outcomes, and for FELT with random coefficients. Finally, we propose rank-

and likelihood-based estimators that achieve
√
n rate of convergence.
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1 Introduction

Panel models used in microeconometrics include individual-specific parameters, or

fixed effects, in order to account for individual-specific unobservables that are corre-

lated with the regressors. If the number of observations per individual is small, then

two problems arise in nonlinear panel models. First, common parameters may fail

to be point-identified, which is known as the incidental parameter problem. Second,

even when the common parameters can be identified, interesting partial effects may

not be.

This paper addresses both of these issues for a large class of nonlinear panel mod-

els with fixed effects and a short time horizon, or fixed-T . Leading examples of models

nested by our framework are the binary choice model, the ordered choice model, the

linear model, the Box-Cox transformation model, some duration models, transforma-

tion models with (unknown) monotone transformation functions, and extensions of

all these models to time-varying censoring and time-varying link functions. We refer

to the class of models studied in this paper as Fixed Effects Linear Transformation

(FELT), building on the terminology of Abrevaya (1999, 2000).

Our first contribution is to provide a systematic solution to the incidental param-

eter problem in the FELT class. We do so via binarization, a method that exploits

the connection between transformation models and binary choice models. Our results

accommodate discrete and continuous outcomes and covariates, eliminating the need

for case-by-case identification studies of common (structural) parameters in FELT

models. We provide both nonparametric and parametric (logistic) identification re-

sults that build on Manski (1987); Chamberlain (2010); Muris (2017). Our approach

can be applied to models which currently have no solution, such as models with

time-varying censoring or ordered choice models with time-varying link functions.

Our second contribution is to present identification results for the distribution

of counterfactual outcomes in models belonging to the FELT class. This leads to

the identification of a menu of marginal and partial effects that are time-varying in

an unrestricted way. This result is relevant since recent work on partial effects in

nonlinear panel models restricts time variation of partial effects by relying on time-

homogeneity assumptions, see e.g. Chernozhukov et al. (2013a, 2015).

Our third contribution is to obtain new identification results for the distribution

of counterfactual outcomes for the treated in the context of nonlinear difference-in-
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differences. Our results are invariant to unknown monotone transformations of the

outcome variable, and extend those for the panel data version of the changes-in-

changes method of Athey and Imbens (2006) to allow for continuous outcomes with

censoring, and for discrete outcomes and fixed effects.

As a fourth contribution, we propose four estimators for the finite- and infinite-

dimensional common parameters. Estimation depends on the nature of the outcome

(discrete or continuous), and on whether the distribution of the error term is left

unspecified (nonparametric) or assumed logistic. Three out of these four estimators

are
√
n-consistent and asymptotically normal; the parametric rate is not attained only

for the model for discrete outcomes and nonparametric errors. Our estimators for the

parameters in the model with continuous outcome and nonparametric errors build

on the rank estimators of Abrevaya (1999) and Chen (2002), extending the latter

to panel data. For the logistic case, we extend the conditional maximum likelihood

estimator in Muris (2017). None of our estimators require smoothing parameters.

Our primary identification results are obtained for the following FELT model:

Yit = ht (αi +Xitβ − Uit) , i = 1, · · · , n, t = 1, · · · , T, (1.1)

Uit|αi, Xi
d
= F (u|αi, Xi) , (1.2)

where Yit is a discrete or continuous scalar dependent variable, αi is a scalar unob-

served fixed effect for individual i, Xi = (Xi1, · · · , XiT ), where Xit is a vector of ex-

planatory variables, β is the vector of corresponding coefficients, and Uit is a stochastic

error term with (unknown) cumulative distribution function (cdf), F (u|α,X).1 Im-

portantly, the functions (ht, t = 1, · · · , T ) are unknown, time-varying, and weakly

monotone. In particular, the transformation functions are allowed to have flat parts

and jumps.2

We first transform FELT into many binary choice models, a method which we

call binarization. We then show that binarization obtains identification of β and ht

without imposing any parametric assumptions on F (u|α,X) or on the conditional

distribution of the fixed effects given the covariates Xi. Two time periods are suf-

ficient for our results and serial dependence in Uit is allowed. These assumptions

1The stationarity of the error terms and strict exogeneity of the covariates are standard assump-
tions in the static nonlinear panel model literature, see e.g. the review by Arellano and Bonhomme
(2012).

2In the Appendix, we extend our results to FELT with random coefficients.
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set binarization apart from other identification strategies that have been applied in

the context of nonlinear panel models, such as the functional differencing method of

Bonhomme (2012), Kotlarski’s lemma, see e.g. Evdokimov (2011), or more general

operator diagonalization techniques, see e.g. Freyberger (2012).

Given identification of (β, ht), we then show that the distribution of counterfac-

tual outcomes at time t is identified without knowledge of the conditional distribution

of αi. The distribution of counterfactual outcomes is either point or partially iden-

tified depending on whether ht is invertible. Additionally, we show identification of

time-varying partial effects for both continuous and discrete outcomes. These re-

sults are surprising for two reasons. First, in nonlinear panel models with fixed-T ,

knowledge of the structural function is typically not sufficient to identify the effect of

counterfactual changes, see e.g. Arellano and Honoré (2001). Second, as mentioned

above, identification of partial effects in nonlinear panel models typically relies on

time-homogeneity assumptions. The only exception that we are aware of is Cher-

nozhukov et al. (2013a) who allow for time-varying location and scale effects. Their

specification, however, is incompatible with outcomes with fixed, discrete support.

Our estimation strategy for (β, ht) depends on whether F (u|α,X) is nonpara-

metric or logistic, and on whether the outcomes are continuous or discrete. When

F (u|α,X) is nonparametric and the outcomes are discrete, a maximum score estima-

tor for the common parameters is pointwise consistent and attains cube root-n rate

of convergence, see e.g. Sherman (2010). When F (u|α,X) is nonparametric and the

outcomes are continuous, we propose a two-step rank-based estimator. In the first

step, we estimate β via the leapfrog procedure of Abrevaya (1999). In the second

step, we obtain an estimator for ht by extending the rank-based estimator of Chen

(2002) to the panel data case. Both estimators achieve
√
n rate of convergence and are

asymptotically normal, with the results for the estimator of ht holding uniformly over

compact intervals. When F (u|α,X) is logistic, we extend the conditional maximum

likelihood estimator in Muris (2017), and we show that the estimation procedure at-

tains the parametric rate and asymptotic normality of both estimators, whether the

outcomes are continuous or discrete. Hence, the logistic estimator is interesting in

that it preserves the parametric rate of convergence for both estimators when the

outcomes are discrete (as opposed to the nonparametric estimator).

A key assumption driving our results is additivity in the unobservables inside the

transformation function. This functional form restriction implies that the marginal
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rate of substitution is invariant with respect to unobserved heterogeneity. To alleviate

possible concerns about this assumption, we offer the following arguments. First, the

imposed structure avoids the curse of dimensionality, which is key for its use in applied

work. Second, we show that binarization obtains the same type of identification

results when applied to a random coefficient version of FELT, which allows for a cross-

sectionally varying marginal rate of substitution. Third, the constant marginal rate

of substitution assumption is testable by exploiting over-identification of β. Fourth,

we note that in spite of the strong functional form restriction, the model described

by (1.1)-(1.2) nests a large class of models used in applied work, and our analysis of

FELT provides several new results that are relevant to the literature on transformation

models, on nonlinear panel models with fixed effects, and on partial effects (as we

explain in the literature review).

The remainder of this paper is organized as follows. Section 2 provides an overview

of the literature on transformation models, on the incidental parameter problem in

nonlinear panel models with fixed-T , and on partial effects in nonlinear panel mod-

els with fixed-T . Section 3 presents our identification results for two non-nested

cases: F (u|α,X) is nonparametric and F (u|α,X) is the standard logistic distribu-

tion function. Then Section 3.2 provides identification results for the distribution

of the counterfactual outcomes and for the partial effects. Subsection 3.3 applies

binarization to a nonlinear difference-in-differences model. Section 4 presents four es-

timators and shows their large sample properties, while Section 5 illustrates the small

sample properties of the estimator that we propose for applied work via simulation

studies. Finally, Section 6 concludes. All proofs are in Appendix A, Appendix B

applies binarization to FELT with random coefficients, and Appendix C elaborates

on our rank estimator.

2 Existing literature

Our paper contributes to four active literatures: the literature on identification and

estimation of transformation models; the literature on the incidental parameter prob-

lem in nonlinear panel models with fixed effects; the literature on partial effects in

nonlinear panel models with fixed effects and fixed-T ; and the literature on nonlinear

difference-in-differences.
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2.1 Transformation models

A large literature in statistics and econometrics studies the identification and esti-

mation of cross-sectional linear transformation models. The results in this literature

rely on strict monotonicity of the transformation function. Important contributions

for the cross-sectional case are Horowitz (1996), Chen (2002), Chiappori et al. (2015),

and Florens and Sokullu (2016). We contribute to the literature by studying the iden-

tification and estimation of a linear transformation model in the panel data context.

Importantly, we study identification of a linear transformation model with individ-

ual fixed effects and a time-varying weakly monotone transformation function, which

cannot be studied in a cross-sectional context.

Within the class of linear transformation models with fixed effects, Abrevaya

(1999, 2000) studies estimation of the finite-dimensional parameter. Abrevaya (1999)

considers a time-varying linear transformation model that is similar to ours, but he

restricts his analysis to transformation functions that are strictly increasing. He in-

troduces a leapfrog estimator for the finite-dimensional parameter and shows that it

is consistent and
√
n-asymptotically normal. Chen (2010) extends the results for the

finite-dimensional parameter in Abrevaya (1999) to allow for censoring. Abrevaya

(2000) considers a generalized regression model, where the transformation function

does not change over time, but that otherwise nests FELT. He shows that a maximum

score estimator consistently estimates the finite-dimensional parameter.

In a recent working paper, Pakes and Porter (2016) provide partial identification

results for the finite dimensional parameter in a nonlinear transformation model with

fixed effects. Their analysis relies critically on the time-invariance of the transforma-

tion function.

2.2 The incidental parameter problem

Model-specific solutions to the incidental parameter problem are available for some

of the models nested by FELT.3 The focus in the panel literature concerned with

the incidental parameter problem has been on consistent estimation of the finite di-

mensional parameter, rather than on the transformation function or on the partial

effects. For example, Chamberlain (1985) provides results for some duration mod-

3For a discussion of the incidental parameter problem in nonlinear panel models, see e.g. Neyman
and Scott (1948) and Lancaster (2000).
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els; Manski (1987) discusses the nonparametric binary choice model; Honoré (1992)

provides a solution for censored regression; Kyriazidou (1997) for sample selection;

Machado (2004) for binomial regression; Chamberlain (2010) for the binary choice

logistic model; Magnac (2004) for a generalization of the conditional logit model;

Shi et al. (2016) for multinomial choice models; and Muris (2017) for logit ordered

choice. For reviews of the literature, see Chamberlain (1984) (Section 3), Honoré

(1992), Arellano and Honoré (2001) (Section 4), Arellano (2003), and Arellano and

Bonhomme (2012) (Sections 2 and 4).

There are very few solutions to the incidental parameter problem that are not

model-specific. Two exceptions that we are aware of are Lancaster (2002) and Bon-

homme (2012). Both papers provide likelihood-based solutions. For example, Lan-

caster (2002) proposes an estimator based on the integrated likelihood after an or-

thogonal reparametrization of the fixed effects.4 The functional differencing approach

of Bonhomme (2012) requires finding a projection that yields a set of moment con-

ditions for the common parameter that is free of the incidental parameters. The

framework in Bonhomme (2012) covers some models that our framework does not,

such as models with a dynamic structure. However, it requires a parametric structure,

i.e. that the distribution of the error terms and the (time-invariant) transformation

function be known up to a finite-dimensional parameter. In contrast, our approach

is not likelihood-based, it allows for a time-varying transformation function, and it

does not require a parametric structure.5

2.3 Partial effects

An emerging literature studies the identification of partial effects in nonlinear panel

models with fixed-T . This literature can be divided into two strands, see also Ghanem

(2017). Strand 1 bypasses the identification of the structure and focuses on identifying

a partial effect of interest. Strand 2 identifies the entire structure, and obtains partial

4Arellano and Bonhomme (2009) generalize Lancaster’s approach to the case when orthogonal
reparametrizations are not available. Consistency of the resulting estimators requires n, T →∞.

5There are other approaches that provide consistent estimators for common parameters in non-
linear panel models, but they either: do not deal with fixed effects, i.e. they restrict the joint
distribution of (αi, Xi) so they consider (correlated) random effects, see e.g. Alvarez and Arellano
(2003); or they assume large T , see e.g. Hahn and Kuersteiner (2002), Hahn and Newey (2004),
Arellano and Hahn (2007), Arellano and Bonhomme (2009), Fernández-Val (2009), Fernández-Val
and Lee (2013), Fernández-Val and Weidner (2016). Compared to these approaches, we impose no
restrictions on the distribution of (αi, Xi) (“fixed effects”) and require that T = 2 (“small-T”).
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effects as a result.

Our approach is in between these two strands. We identify some of the struc-

ture (the structural function, but not the distribution of the unobservables) and we

show that this is sufficient for the identification of the distribution of counterfactual

outcomes at time t and, therefore, of a menu of partial effects that are time-varying.

Strand 1. When X is discrete, Chernozhukov et al. (2013a) provide point iden-

tification of partial effects for the subpopulation of movers, and partial identification

of partial effects for the entire population. When X is continuous, Chernozhukov

et al. (2015) provide point identification of marginal effects for stayers. Hoderlein

and White (2012) identify local partial effects for stayers. These papers invoke time-

homogeneity, which implies that the partial effects are not time-varying.6

In contrast, our approach allows for continuous as well as discrete covariates, and

obtains partial effects that vary over time in an unrestricted way. We identify the

distribution of counterfactual outcomes, obtaining point identification if the transfor-

mation functions are invertible and partial identification otherwise.

Strand 2. The papers in this literature obtain identification of partial effects

as a byproduct of identifying the entire structure of the model. However, using the

terminology of Graham and Powell (2012), the αi in this literature are correlated

random effects (rather than fixed effects).7

For example, Altonji and Matzkin (2005) identify the structural function and the

local average response in a nonseparable model, assuming strict monotonicity and

time-invariance of the transformation function, and an exchangeability condition.

Bester and Hansen (2009) identify and estimate marginal effects under an exchange-

ability restriction similar to that in Altonji and Matzkin (2005). These exchangeabil-

ity conditions impose restrictions on the distribution of the unobserved heterogeneity

that are not required by a fixed effects approach.

Another approach is to use Kotlarski’s lemma or operator diagonalization tech-

niques in order to identify the entire structure, see Evdokimov (2011) and Freyberger

(2012). The identification strategies based on these techniques are substantially dif-

6Chernozhukov et al. (2013a) also consider a slightly weaker assumption on the transformation
function that allows for time-varying scale and location effects. Nonetheless, as they note, this
weaker assumption is incompatible with outcomes that have a fixed, discrete support.

7The analyses in this strand impose conditions on the support of (the distribution of) αi. In
contrast, fixed effects analyses do not impose such restriction, imposing instead assumptions on the
transformation functions.
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ferent from ours and require different assumptions. For example, at least three time

periods are required (at least three for Evdokimov (2011), at least five for Freyberger

(2012)); the stochastic errors are required to be serially independent; and αi is re-

quired to either be continuously distributed with full support (when the outcomes are

continuous, see Evdokimov (2011)) or have a known number of support points (when

the outcomes are discrete, see Freyberger (2012)).

A crucial assumption underlying our analysis, that is not required for the results

in any of the papers mentioned in this subsection, is the single-index structure on

the latent variable. In return, we require only two time periods, we do not restrict

the support of αi given the covariates, we allow for serial dependence in the error

terms, and impose weak restrictions on the transformation function ht which allow

our analysis to apply to both continuous and discrete outcomes. Additionally, we

show that identification of the structural function is sufficient for the identification of

partial effects. Finally, our identification approach suggests estimators that achieve

parametric rates of convergence, and which require no smoothing parameters. For

this reason, binarization provides an alternative, complementary approach to identi-

fication in nonlinear panel models.

2.4 Nonlinear difference-in-differences

Recent papers on nonlinear difference-in-differences are Athey and Imbens (2006),

Bonhomme and Sauder (2011), and D’Haultfoeuille et al. (2015). The results of these

papers apply to both cross-sectional and panel data, while ours apply only to panel

data. However, the results of Bonhomme and Sauder (2011) and D’Haultfoeuille

et al. (2015) apply only to continuous outcomes. Our approach, just as that of Athey

and Imbens (2006), allows for both discrete and continuous outcomes. However, the

method of Athey and Imbens (2006) does not allow for censored continuous outcomes

or for fixed effects when the outcomes are discrete. In contrast, our results allow for

these two cases that are relevant to applied work. Finally, just as the changes-in-

changes approach, our method identifies the distribution of the counterfactual out-

comes of the treated and is invariant to monotone transformations of the outcome

variable.
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3 Identification

This section considers identification of the common parameters in FELT, (β, ht),

of the distribution of the counterfactual outcomes at time t, and of the resulting

partial effects. Section 3.1 presents the identification (β, ht). We distinguish two

non-nested cases: one with nonparametric errors, and one with logistic errors. Sec-

tion 3.2 discusses the identification of the distribution of counterfactual outcomes in

FELT, leading to the identification of a menu of time-varying partial effects. Section

3.3 illustrates the relevance of those results by considering the identification of the

distribution of the counterfactual outcomes (and hence of the average treatment effect

on the treated) in a nonlinear difference-in-differences setting. Appendix B considers

the identification of the common parameters and partial effects in an extension of

FELT to random coefficients.

3.1 Common parameters in FELT

Dropping the i subscript, we let Y = (Y1, ..., YT )
′

and X = (X ′1, ..., X
′
T )
′
. We rewrite

the model in (1.1)-(1.2) as the following latent variable model for t = 1, ..., T :

Y ∗t = α +Xtβ − Ut,

Yt = ht(Y
∗
t ),

Ut|α,X ∼ Ft(u|α,X),

(3.1)

where Y ∗t is the latent outcome variable at time t. Denote the supports of Yt, Y
∗
t , Xt

by Y ⊆ R, Y* = R, and X ⊆ RK , respectively.8

Here, we provide sufficient conditions for identification of (β, ht). We consider two

non-nested cases. The first case allows for nonparametric Ft(u|α,X), requiring only

that it is stationary. In this case, the idiosyncratic errors are allowed to be serially

dependent. The second case assumes that Ut, t = 1, · · · , T , are serially independent,

standard logistic. For both cases, we maintain the assumption below:

Assumption 1. [Weak monotonicity] For each t, the transformation function ht :

Y* → Y is unknown, non-decreasing, and right continuous.

8The supports may be indexed by t. We omit this index here for the sake of notation.
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Define the generalized inverse h−t : Y → Y∗ as

h−t (y) ≡ inf
{
y∗ ∈ Y* : y ≤ ht (y∗)

}
with the convention that inf (∅) = inf (Y). Additionally, let Y ≡ Y\ inf Y . For an

arbitrary y ∈ Y , define the binary random variable

Dt (y) ≡ 1 {Yt ≥ y} (3.2)

= 1
{
Ut ≤ α +Xtβ − h−t (y)

}
,

where the equality follows from specification (3.1) and weak monotonicity. Here, we

use Y instead of Y because Dt (inf Y) = 1 almost surely for all t.

3.1.1 Identification strategy: binarization

Two time periods are sufficient for our identification results, so we let T = 2 in what

follows.

For any two points (y1, y2) ∈ Y2, define the following vector of binary variables

D (y1, y2) ≡ (D1 (y1) , D2 (y2)) .

Our identification strategy for (β, h1, h2), which we call binarization, is based on the

observation that D (y1, y2) follows a panel data binary choice model for any (y1, y2) ∈
Y2.

The identification proof proceeds in three steps. First, we show identification of

β and of h−2 (y2) − h−1 (y1) for arbitrary (y1, y2) ∈ Y2. In the resulting binary choice

model, the difference h−2 (y2)− h−1 (y1) shows up as the coefficient on the differenced

time dummy, while β shows up as the regression coefficient on X2 −X1. For a given

binary choice model, identification of β and of h−2 (y2)−h−1 (y1) follows Manski (1987)

for the nonparametric version of our model, and Chamberlain (2010) for the logistic

version.

Second, we show that varying the pair (y1, y2) over Y2 obtains identification of

{
h−2 (y2)− h−1 (y1) , (y1, y2) ∈ Y2

}
.

Third, we show that identification of this set of differences obtains identification
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of the functions h1 and h2 under a normalization assumption similar to that made in

the literature on transformation models.

In summary, we show that FELT can be converted into a collection of binary choice

models, which is precisely what allows us to identify the transformation functions.

Omitting the fact that FELT can be transformed into many binary choice models

obtains identification of β only.

3.1.2 Nonparametric errors

In this section, we provide nonparametric identification results for (β, h1, h2). Parts

of our identification proof build on Manski (1987).

Assumption 2. [Error terms]

(i) F1(u|α,X) = F2(u|α,X) ≡ F (u|α,X) for all (α,X);

(ii) The support of F (u|α,X) is R for all (α,X).

Assumption 2(i) is a stationarity assumption, requiring that the distribution of the

error terms conditional on observed and unobserved heterogeneity be time-invariant.

This assumption excludes lagged dependent variables as covariates, but it allows for

serial dependence in Ut. Additionally, as noted by e.g. Chamberlain (2010) and Pakes

and Porter (2016), this assumption allows for a particular type of heteroskedasticity,

which requires that even when X1 6= X2, U1 and U2 have equal skedasticities. This

type of stationarity assumption is common in linear and nonlinear panel models, see

e.g. Chernozhukov et al. (2013b), Pakes and Porter (2016), and references therein.

Assumption 2(ii) requires full support of the error terms. This assumption is similar

to Assumption 1 in Manski (1987). It guarantees that, for any pair (y1, y2) ∈ Y2,

the probability of being a switcher is positive. In our context, being a switcher

refers to the event D1 (y1) + D2 (y2) = 1, so that Assumption 2 guarantees that

P (D1 (y1) +D2 (y2) = 1) > 0.

Let ∆X ≡ X2 −X1 and for an arbitrary pair (y1, y2) ∈ Y2, define

γ (y1, y2) ≡ h−2 (y2)− h−1 (y1) . (3.3)

Lemma 1. Suppose that (Y,X) follows the model in (3.1). Let Assumptions 1 and

2 hold. Then for all (y1, y2) ∈ Y2,

med (D2 (y2)−D1 (y1) |X, D1 (y1) +D2 (y2) = 1) = sgn (∆Xβ − γ (y1, y2)) . (3.4)
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Proof. The proof builds on Manski (1987), and is presented in Appendix A.1.

Let W ≡ (∆X,−1)′ and θ (y1, y2) ≡ (β, γ (y1, y2)) , so that (3.4) can be written as

med (D2 (y2)−D1 (y1) |X,D1 (y1) +D2 (y2) = 1) = sgn (Wθ (y1, y2)) .

For identification of θ (y1, y2) we impose the following additional assumptions.

Assumption 3. [Covariates]

(i) The distribution of ∆X is such that at least one component of ∆X has positive

Lebesgue density on R conditional on all the other components of ∆X with probability

one. The corresponding component of β is non-zero.

(ii) The support of W is not contained in any proper linear subspace of RK+1.

Assumption 3(i) requires that the change in one of the regressors be continuously

distributed conditional on the other components. Assumption 3(ii) is a full rank

assumption. These assumptions are standard in the binary choice literature concerned

with point identification of the parameters.

Assumption 3 resembles Assumption 2 in Manski (1987), the difference being that

our assumption concerns W , which includes a constant that captures a time trend.

The presence of this constant requires sufficient variation in Xt over time. No linear

combination of the components of Xt can equal the time trend.

Assumption 4. [Normalization-β] For any (y1, y2) ∈ Y2, θ (y1, y2) ∈ Θ = B × R,
where B =

{
β : β ∈ RK , ‖β‖ = 1

}
.

Assumption 4 imposes a normalization on the parameter of interest, namely that

the norm of the regression coefficient equals 1. Scale normalizations are standard

in the binary choice literature, and are necessary for point identification when the

distribution of the error terms is not parametrized. Normalizing β (instead of θ)

avoids a normalization that would otherwise depend on the choice of (y1, y2). In this

way, the scale of β remains constant across different choices of (y1, y2). Alternatively,

one can normalize the coefficient on the continuous covariate (cf. Assumption 3(i))

to be equal to one.

Theorem 1. Suppose that (Y,X) follows the model in (3.1), and let the distribution

of (Y,X) be observed. Let Assumptions 1, 2, 3, and 4 hold. Then, for an arbitrary

pair (y1, y2) ∈ Y2, θ (y1, y2) is identified.
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Proof. The proof proceeds by showing that FELT can be converted into a binary

choice model for an arbitrary pair (y1, y2) , and then builds on Theorem 1 in Manski

(1987). See Appendix A.2.

So far, we have identified the regression coefficient β and the difference in the

generalized inverses at arbitrary pairs (y1, y2). We consider now identification of the

functions h1 and h2 on Y .

Assumption 5. [Normalization-h1] For some y0 ∈ Y , h−1 (y0) = 0.

Such a normalization is standard in transformation models, see e.g. Horowitz

(1996). Without this normalization, all identification results hold up to h−1 (y0). We

only normalize the function in the first time period, imposing no restrictions on the

function in the second period beyond that of weak monotonicity (cf. Assumption 1).

Theorem 2. Suppose that (Y,X) follows the model in (3.1), and let the distribution

of (Y,X) be observed. Under Assumptions 1, 2, 3, 4, and 5, the transformation

functions h1 (·) and h2 (·) are identified.

Proof. The proof proceeds by identifying the generalized inverses of monotone func-

tions, which obtains identification of the pre-images of h1 and h2. This obtains

identification of the functions themselves. See Appendix A.3.

3.1.3 Logistic errors

In this section, we show identification of (β, h1, h2) when the error terms are assumed

to follow a logistic distribution. The logistic case is not nested by the nonparametric

case. In particular, when the errors are logistic, we do not require a continuous

regressor. However, we require conditional serial independence of the error terms.9

Assumption 6. [Logit] (i) F1(u|α,X) = F2(u|α,X) = Λ (u) = exp(u)
1+exp(u)

, and U1 and

U2 are independent; (ii) E(W ′W ) is invertible.

Assumption 6(i) strengthens Assumption 2 by imposing serial independence and

specifying a distribution for the error terms. In particular, it specifies that the vari-

ance of the error terms is equal to 1, which eliminates the need to normalize β. As-

sumption 6(ii) is similar in spirit to Assumption 3(ii): it requires sufficient variation

in ∆X.
9See Chamberlain (2010) and Magnac (2004) for more details about identification under non-

parametric versus logistic errors in the panel data binary choice context.

14



Theorem 3. Suppose that (Y,X) follow the model in (3.1), and let the distribution

of (Y,X) be observed. Let Assumptions 1 and 6 hold. Then, for an arbitrary pair

(y1, y2) ∈ Y2, θ (y1, y2) is identified. Additionally, letting Assumption 5 hold, then the

transformation functions h1 (·) and h2 (·) are identified.

Proof. See Appendix A.4.

3.2 Partial effects in FELT

Let Yt (x) represent the counterfactual outcome at time t under the treatment status

Xt = x,10 i.e.

Yt (x) ≡ ht (α + xβ − Ut) , t = 1, 2. (3.5)

The previous subsections show identification of (β, h1, h2). In the present section,

we show that this is sufficient for the identification of the distributions of Y1 (x) and

Y2 (x) conditional on X = (X1, X2). This obtains the identification of a menu of

time-varying partial effects.

Let h+
t : Y → Y∗ be the right inverse of ht defined as

h+
t (y) ≡ sup {y∗ ∈ Y∗ : y ≥ ht (y∗)} .

Furthermore, we extend the domain of ht to the extended real line, and set ht (−∞) =

inf Y and ht (+∞) = supY .
The following corollary shows that bounds on the distribution of the counterfactual

outcomes at time t can be obtained from the observed distribution of (Y,X). We

consider below the nonparametric case (the results hold trivially for the logistic case).

Corollary 1. Let the conditions of Theorem 1 hold. Then, for s, t ∈ {1, 2} ,

max
s
Ls (x, y; β, hs, ht) ≤ P (Yt (x) ≤ y|X) ≤ min

s
Us (x, y; β, hs, ht) ,

10In the terminology of Blundell and Powell (2003), Yt (x) is the structural function.
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where

Ls (x, y; β, hs, ht) ≡ P
(
Ys ≤ hs

(
h−t (y) + (Xs − x) β

)∣∣X) ,
Us (x, y; β, hs, ht) ≡ P

(
Ys ≤ hs

(
h+
t (y) + (Xs − x) β

)∣∣X) ,
are lower and upper bounds on the distribution of counterfactual outcomes in period

t, based on the observed distribution of outcomes in period s.

Proof. For s, t ∈ {1, 2} consider:

P (Yt (x) ≤ y|X) = P (ht (α + xβ − Ut) ≤ y|X)

= P (ht (α + xβ − Us) ≤ y|X) (3.6)

≥ P
(
α + xβ − Us ≤ h−t (y)

∣∣X) (3.7)

= P
(
α +Xsβ − Us ≤ h−t (y) + (Xs − x)

∣∣X) (3.8)

= P
(
Ys ≤ hs

(
h−t (y) + (Xs − x)

)∣∣X) , (3.9)

where 3.6 follows by the stationarity assumption on the stochastic errors; 3.7 follows

by weak monotonicity of ht; 3.8 follows by adding and subtracting Xsβ on both sides

of the inequality; and 3.9 follows by the model specification and weak monotonicity

of the transformation functions.

Similarly, using the definition of the right inverse, obtains:

P (Yt (x) ≤ y|X) = P (ht (α + xβ − Ut) ≤ y|X)

≤ P
(
Ys ≤ hs

(
h+
t (y) + (Xs − x)

)∣∣X) .
For Yt (x), the inequality holds for s ∈ {1, 2}, and therefore for the maximum (mini-

mum) of the lower (upper) bounds.

Finally, the bounds are identified because the distribution of (Y,X) is observed, so

that the distributions of Y1 and Y2 given X are observed. The parameters (β, h1, h2)

are identified by Theorem 1.

Remark 1. When ht is invertible, h+
t (y) = h−t (y) = h−1

t (y) so that the bounds above

are equal to each other. This obtains point identification of the distribution of the
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counterfactuals. For example, the counterfactual outcome at time t = 1 is given by:

P (Y1 (x) ≤ y|X) = P
(
Y1 ≤ h1

(
h−1

1 (y) + (X1 − x) β
)∣∣X)

= P
(
Y2 ≤ h2

(
h−1

1 (y) + (X2 − x) β
)∣∣X) .

This result shows that FELT satisfies rank similarity (for a definition of rank similarity

see Chernozhukov and Hansen (2005)).

Remark 2. Once the distribution of the counterfactual outcomes has been identified,

the average structural function (ASF) is identified. For example, when ht is invertible,

the ASF is given by

ASFt (x) ≡ E (Yt (x)) ,

and the marginal effect is given by

Mt

(
x, x

′
)
≡ 1

d (x, x′)

[
E (Yt (x))− E

(
Yt

(
x
′
))]

where d
(
x, x

′)
is a measure of distance between x and x

′
. When ht is assumed to be

differentiable, the marginal effect for the kth component of Xt is given by ∂
∂xk

E (Yt (x)) .

3.3 Nonlinear difference-in-differences

In this section, we illustrate the relevance of our identification results by extend-

ing them to the case of non-linear difference-in-differences (DID) with heterogeneous

treatment effects. We show identification results for both continuous outcomes (with

or without censoring) and discrete outcomes. All cases that we consider allow for

fixed effects.

Let t = 1 correspond to the pre-treatment period, and t = 2 to the post-treatment

period. As in the standard DID framework, let Dt be a binary random variable

indicating treatment status. An individual belongs to one of two groups: the treated

group (D1 = 0 and D2 = 1) or the control group (D1 = D2 = 0). The researcher

observes (Yt, Xt, Dt) in each period t. Define Yt (0) as the potential outcome in the

absence of treatment and Yt (1) as the potential outcome under treatment. Then

Yt = DtYt (1) + (1−Dt)Yt (0) for t = 1, 2.
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We assume that, for each group, the potential outcomes in the absence of treat-

ment follow FELT, i.e.:

Yt (0) = ht (α +Xtβ − Ut (0)) , t = 1, 2, (3.10)

Ut (0)|X,α d
= F (u|α,X) . (3.11)

To analyze the effect of the treatment on the treated, it is not necessary to specify a

model for Yt (1).11

The parameter of interest is the distribution of the counterfactual outcome for the

treated, i.e.

τ (y;X) ≡ P (Y2 (0) ≤ y|D1 = 0, D2 = 1, X) , (3.12)

where

Y2 (0) = h2 (α +X2β − U2 (0)) . (3.13)

The following corollary obtains partial identification of τ (y;X).

Corollary 2. Let (Y,X,D) satisfy the conditions of Theorem 1 and let the counter-

factual outcomes for the treated, Y2 (0), be given by (3.13). Then

P
(
Ỹ l

2 (0) ≤ y
∣∣∣D1 = 0, D2 = 1, X

)
(3.14)

≤ τ (y;X) (3.15)

≤ P
(
Ỹ u

2 (0) ≤ y
∣∣∣D1 = 0, D2 = 1, X

)
, (3.16)

where

Ỹ l
2 (0) ≡ h2

(
h−1 (Y1) + (X2 −X1) β

)
,

Ỹ u
2 (0) ≡ h2

(
h+

1 (Y1) + (X2 −X1) β
)
.

Proof. The subpopulation with D1 = D2 = 0 provides identification of (β, h1, h2) by

11One particular example of how the treatment could impact outcomes is

Yit (1) = ht (αi +Xitβ + γit− Uit (1)) ,

where γi is an individual-specific coefficient. This specification mirrors that of Yt (1) in the standard
DID framework, where the treatment has an additive effect on the potential outcome.
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Theorem 1, since their observed outcomes follow FELT:

Y1 = Y1 (0) = h1 (α +X1β − U1 (0))

Y2 = Y2 (0) = h2 (α +X2β − U2 (0)) .

The remainder of this proof is concerned with the identification of the distribution

of counterfactual outcomes Y2 (0) in the subpopulation of treated units, i.e. D1 =

0, D2 = 1. We have that

P (Y2 (0) ≤ y|X,D1 = 0, D2 = 1)

= P (h2 (α +X2β − U2 (0)) ≤ y|X,D1 = 0, D2 = 1) (3.17)

= P (h2 (α +X2β − U1 (0)) ≤ y|X,D1 = 0, D2 = 1) (3.18)

= P (h2 (α +X1β − U1 (0) + (X2 −X1) β) ≤ y|X,D1 = 0, D2 = 1)

≥ P
(
h2

(
h−1 (Y1) + (X2 −X1) β

)
≤ y|X,D1 = 0, D2 = 1

)
(3.19)

= P
(
Ỹ l

2 (0) ≤ y|X,D1 = 0, D2 = 1
)

(3.20)

where (3.18) follows from the stationarity of Ut (0) , t = 1, 2, (3.19) follows from

weak monotonicity of ht, t = 1, 2. The result in (3.16) can be obtained by similar

arguments.

Remark 3. When the outcomes are continuous and the transformation functions are

invertible, τ (y;X) is point identified and given by

τ (y;X) = P
(
Ỹ2 (0) ≤ y

∣∣∣D1 = 0, D2 = 1, X
)

(3.21)

where Ỹ2 (0) = h2

(
h−1

1 (Y1) + (X2 −X1) β
)
, which is observed given identification of

(β, h1, h2) .

Remark 4. Note that 3.14 obtains identification of the ATT, where

ATT ≡E (Y2 (1)− Y1 (0)|D1 = 0, D2 = 1)

=E (Y2|D1 = 0, D2 = 1)− E (Y2 (0)|D1 = 0, D2 = 1) .

Since the distribution ofX is observed in the treatment group, the bounds of Corollary
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2 can be integrated over it, to obtain:

E (Y2|D1 = 0, D2 = 1)− E
(
Ỹ u

2 (0)
∣∣∣D1 = 0, D2 = 1

)
(3.22)

≤ ATT (3.23)

≤ E (Y2|D1 = 0, D2 = 1)− E
(
Ỹ l

2 (0)
∣∣∣D1 = 0, D2 = 1

)
. (3.24)

Our bounds on the ATT above are valid for the case of discrete outcomes and fixed

effects, as well as for the case of continuous outcomes with or without censoring.

4 Estimation

This section considers estimation of the identified parameters in model (3.1). For

arbitrary (y1, y2) ∈ Y2, denote the true value of the parameter by

θ0 (y1, y2) ≡
(
β0, h

−
1,0 (y1) , h−2,0 (y2)

)
.

To parallel our identification results, we consider two cases: one where the errors are

nonparametric and one where the errors are logistic. For each one of those cases, we

distinguish between continuous and discrete outcomes. Hence we introduce four esti-

mators, three of which are shown to be
√
n-consistent and asymptotically normal (the

results hold uniformly over compact intervals for the estimator of the transformation

function).

When the errors are nonparametric, and the outcome is discrete, a maximum score

estimator for θ0 (y1, y2) is shown to be consistent. It is well-known that the conver-

gence rate of such estimators is slower than
√
n. When the outcome is continuous,

we propose a two-step rank estimator for θ0 (y1, y2). We show that the estimator is
√
n-consistent and asymptotically normal, uniformly over compact intervals.

For the logistic case, we show that conditional maximum likelihood estimation

leads to
√
n-consistent and asymptotically normal estimators for discrete and contin-

uous outcomes. We propose estimation via integrated maximum likelihood, extending

Baetschmann et al. (2015) and Muris (2017).

For all cases, we assume that a random sample is available:
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Assumption 7. [Random sample] A sample of n independent realizations

{(Yi, Xi) , i = 1, · · · , n}

is drawn from the distribution of (Y,X) generated by (1.1)-(1.2).

4.1 Nonparametric errors

4.1.1 Discrete outcomes

Our proposed estimator for θ0 (y1, y2) is the following maximum score estimator:

θ̂ (y1, y2) = argmaxθ∈Θ

1

n

n∑
i=1

(Di2 (y2)−Di1 (y1)) sgn {Wiθ} .

Theorem 4. Let Assumptions 1, 2, 3, 4, 7, and let the parameter space Θ be compact.

Then, as n→∞,

θ̂ (y1, y2)
p→ θ0 (y1, y2) .

Proof. The proof consists of showing that the conditions of Theorem 2.1 and Lemma

2.4 in Newey and McFadden (1994) hold. See Appendix A.5.

Remark 5. From the literature on maximum score estimation, we know that θ̂ (y1, y2)

obeys cube root asymptotics, see Kim and Pollard (1990), and that the bootstrap fails,

see Abrevaya and Huang (2005). Smoothing the indicator function as in Horowitz

(1992) may yield convergence rates that are arbitrarily close to
√
n at the cost of an

additional tuning parameter. For more details, see e.g. Sherman (2010).

4.1.2 Continuous outcomes

When the outcomes are continuous, we assume that the transformation functions are

invertible. For this case, we propose a two-step rank estimation procedure. In the

first step, we estimate the finite dimensional parameter via the leapfrog procedure

in Abrevaya (1999). In the second step, we extend the cross-sectional estimation

procedure in Chen (2002) to the panel data case. The estimators are shown to be

consistent and
√
n-asymptotically normal. For the estimators of the inverse trans-

formation functions, those properties hold uniformly over compact intervals in their

domain Y .
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Let yt ∈ Y be a generic threshold and, for (y1, y
′
1, y2, y

′
2) ∈ Y4 and i 6= j, define

the following binary random variables:

Di (y1, y2) ≡ 1 {Di1 (y1) +Di2 (y2) = 1} ,

Zij (y1, y
′
1, y2, y

′
2) ≡ Di (y1, y2)Dj (y′1, y

′
2) 1 {Di2 (y2) > Dj2 (y′2)} .

Conditional on being a switcher, i.e. Di (y1, y2) = 1, an observation can be of

two types: start low and end high (Yi1 < y1, Yi2 ≥ y2) or start high and end low

(Yi1 ≥ y1, Yi2 < y2). Then Zij 6= 1 if both i, j are switchers and if i ends high and j

ends low. This information is captured by the sample criterion function:

Qn (y1, y
′
1, y2, y

′
2, β, γ1, γ2)

=
1

n (n− 1)

∑
i 6=j

Zij (y1, y
′
1, y2, y

′
2) 1 {(∆Xi −∆Xj) β > γ2 − γ1} , (4.1)

where gt ≡ h−1
t and γt ≡ gt (yt)− gt

(
y
′
t

)
, t = 1, 2.12

We propose a two step estimation procedure for (β0, g1,0, g2,0), where zero sub-

scripts refer to the true values of the parameters. Given the strict monotonicity

of the transformation functions, we first estimate β0 via the leapfrog procedure in

Abrevaya (1999).13 We then obtain estimators for (g1,0, g2,0) by extending the cross-

sectional estimation procedure in Chen (2002) to the panel data case, as described

below.

Let y ∈
[
y, y
]
⊂ Y , and let Gt, t = 1, 2 be (known) compact intervals such that

they contain gt,0, i.e. for ε > 0,

[
gt,0
(
y − ε

)
, gt,0 (y + ε)

]
⊂ Gt.

12Appendix C provides a detailed motivation for this criterion function. The idea is to use in-
formation from pairs of observations where one individual leapfrogs (cf. Abrevaya (1999)) a chosen
pair of thresholds (y1, y2), whereas the other individual stays within a different pair of thresholds(
y

′

1, y
′

2

)
. This can be done for any combination

(
y1, y2, y

′

1, y
′

2

)
.

13That is,
β̂ = argmaxβ∈BMn (β)

where

Mn (β) ≡ 1

n (n− 1)

∑
i 6=j

1 {∆Xiβ > ∆Xjβ} (1 {Yi1 < Yj1, Yi2 > Yj2} − 1 {Yi1 > Yj1, Yi2 < Yj2}) .
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Let ỹ ∈ Y be fixed, and let y0 ∈ Y be as in Assumption 5 so that g1,0 (y0) = 0,

and further let g2,0 (y0) = 0.14 Then for thresholds (y1, y
′
1, y2, y

′
2) = (y, y0, ỹ, ỹ), the

estimator of g1,0 is defined as:

ĝ1 (y) = argmaxg1∈G1
Qn

(
y, y0, ỹ, ỹ, β̂, g1, 0

)
= argmaxg1∈G1

1

n (n− 1)

∑
i 6=j

Zij (y, y0, ỹ, ỹ) 1
{

(∆Xi −∆Xj) β̂ > g1

}
.

For thresholds (y1, y
′
1, y2, y

′
2) = (ỹ, ỹ, y, y0), the estimator of g2,0 is defined as:

ĝ2 (y) = argmaxg2∈G2
Qn

(
ỹ, ỹ, y, y0, β̂, 0, g2

)
= argmaxg2∈G2

1

n (n− 1)

∑
i 6=j

Zij (ỹ, ỹ, y, y0) 1
{

(∆Xi −∆Xj) β̂ > g2

}
.

Remark 6. There are a few advantages to the proposed estimation strategy. First,

monotonicity of the transformation functions is sufficient for estimation of the finite

dimensional parameter in the first step. Second, estimation of the transformation

functions does not involve any smoothing parameters (as it would be the case for

sieve or kernel estimation). Third, we obtain
√
n asymptotic normality for all three

estimators. However, the disadvantage of this two-step procedure is a possible loss of

efficiency.

To derive the asymptotic properties of ĝ1 and ĝ2, define the following functions:

µg1
(
y(1), y(2), y(3), y(4), x(1), x(2), y, b, g

)
≡
(
1
{
y(1) ≥ y

}
+ 1

{
y(2) ≥ ỹ

}) (
1
{
y(3) ≥ y0

}
+ 1

{
y(4) ≥ ỹ

})
×
(
1
{
y(2) ≥ ỹ

}
> 1

{
y(4) ≥ ỹ

})
1
{(
x(1) − x(2)

)
b > g

}
and

µg2
(
y(1), y(2), y(3), y(4), x(1), x(2), y, b, g

)
≡
(
1
{
y(1) ≥ ỹ

}
+ 1

{
y(2) ≥ y

}) (
1
{
y(3) ≥ ỹ

}
+ 1

{
y(4) ≥ y0

})
×
(
1
{
y(2) ≥ ỹ

}
> 1

{
y(4) ≥ y0

})
1
{(
x(1) − x(2)

)
b > g

}
14This additional normalization is without loss of generality, as discussed in Appendix C.2.
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Additionally, for t = 1, 2, define:

τgt
(
y(1), y(2),∆x, y, b, g

)
≡ Eµgt

(
y(1), y(2), Y1, Y2,∆x,∆X, y, b, g

)
+ Eµgt

(
Y1, Y2, y

(1), y(2),∆X,∆x, y, b, g
)
,

Rt (y) ≡ E

[
∂

∂gt,0
τgt (Y1, Y2,∆X, y, β0, gt,0 (y))

]
,

Vt (y) ≡ 1

2
E

[
∂2

∂g2
t,0

τgt (Y1, Y2,∆X, y, β0, gt,0 (y))

]
,

Ωt (y) ≡ E

[
∂2

∂β∂gt,0
τgt (Y1, Y2,∆X, y, β0, gt,0 (y))

]
.

Consider now the following assumption:

Assumption 8. (i) The support of ∆X ∈ RK is not contained in any proper linear

subspace of RK a.s. The distribution of the first component of ∆X conditional on the

other covariates, ∆X̃, is absolutely continuous with respect to the Lebesgue measure;

(ii) The parameter space B is a compact subset of
{
β ∈ RK : β1,0 = 1

}
and the

true parameter β0 is an interior point of B;

(iii) For t = 1, 2, the transformation functions ht,0 are strictly increasing with

h−1
t,0 (y0) ≡ gt,0 (y0) = 0, y0 ∈ Y, and gt,0 ∈ Gt where Gt are (known) compact inter-

vals. That is, for
[
y, y
]
⊂ Y and some ε > 0,

[
gt,0
(
y
)
− ε, gt,0 (y) + ε

]
⊂ Gt;

(iv) The density of Z ≡ ∆Xβ conditional on ∆X̃ = x̃, p (z|x̃) , is twice continu-

ously differentiable with respect to z, with uniformly bounded derivative. The density

of U is twice continuously differentiable with a uniformly bounded derivative. The

third order moments of ∆X̃ are finite;

(v) For y ∈
[
y, y
]

and t = 1, 2, Vt (y) < 0, Vt (y) is uniformly bounded away from

zero, and Rt (y) and Ωt (y) are finite;

(vi) The estimator for β0, β̂, has the following asymptotic representation

√
n
(
β̂ − β0

)
=

1√
n

∑
ψ (Yi1, Yi2,∆Xi) + op (1) ,

where E (ψ (Y1, Y2,∆X)) = 0 and E
(
ψ (Y1, Y2,∆X)ψ (Y1, Y2,∆X)′

)
< ∞ under the

true distribution of (Y,X).
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Theorem 5. Let assumptions 7 and 8 hold. Then uniformly over y ∈
[
y, y
]
⊂ Y and

t = 1, 2, as n→∞ we have that

ĝt (y) = gt,0 (y) + op (1) (4.2)

and

√
n (ĝt (y)− gt,0 (y))

d→ N
(
0, E

[
It,y (Y1, Y2,∆X) I ′t,y (Y1, Y2,∆X)

])
(4.3)

where

It,y (Y1, Y2,∆X) ≡ −V −1
t (y)

[
Rt (y) +

1

2
Ωt (y)ψ (Y1, Y2,∆X)

]
. (4.4)

Proof. We show the asymptotic properties of ĝt (y) , t = 1, 2, by building on the

results in Chen (2002) and Jochmans (2012). For the proof, see Appendix A.6.

4.2 Logistic errors

In this section, we propose an estimator for the common parameters in the logistic

version of FELT and derive its large sample properties.

In Appendix A.4 we show that

P
(
Di2 (y2) = 1|Di (y1, y2) = 1, Xi

)
= Λ (Wiθ0 (y1, y2)) . (4.5)

This suggests that estimation of θ0 (y1, y2) can be based on

li (θ, y1, y2) ≡ Di (y1, y2) [Di2(y2) ln Λ (Wiθ) + (1−Di2(y2)) ln (1− Λ (Wiθ))] , (4.6)

which is the conditional log-likelihood contribution for individual i associated with

4.5. This contribution is different from zero only if individual i is a switcher, i.e.

Di (y1, y2) = 1.

Define the conditional maximum likelihood estimator as

θ̂n (y1, y2) = argmaxθ∈RK+1

1

n

n∑
i=1

li (θ, y1, y2) . (4.7)

25



The associated score contribution is the (K + 1) vector

si (θ, y1, y2) = Di (y1, y2) [Di2 (y2)− Λ (Wiθ)]W
′

i , (4.8)

and the associated Hessian contribution is the (K + 1)× (K + 1) matrix

Hi (θ, y1, y2) = −Di (y1, y2) Λ (Wiθ) (1− Λ (Wiθ))WiW
′

i . (4.9)

By (4.5), E
(
Di2 (y2)|Wi, Di (y1, y2) = 1

)
= Λ (Wiθ0 (y1, y2)) so that the information

matrix equality holds:

J (y1, y2) ≡ E
[
si (θ0 (y1, y2) , y1, y2) si (θ0 (y1, y2) , y1, y2)

′
]

= E
(
Di (y1, y2) Λ

(
W
′

i θ0 (y1, y2)
)(

1− Λ
(
W
′

i θ0 (y1, y2)
))

WiW
′

i

)
= −E (Hi (θ0 (y1, y2) , y1, y2)) . (4.10)

Theorem 6. Let Assumptions 1, 6, and 7 hold, and let (y1, y2) ∈ Y2 . Then

θ̂n (y1, y2)
p→ θ0 (y1, y2) as n→∞.

Proof. See Appendix A.7.

We now establish
√
n-asymptotic normality of θ̂n (y1, y2), as well as some inter-

mediate results that are useful for the weak convergence results that we present later

on in this section.

Theorem 7. If the conditions of Theorem 6 hold, then: (i) J(y) is positive definite;

(ii) the score follows a central limit theorem:

√
nsn (θ0 (y1, y2) , y1, y2)

d→ N (0, J (y1, y2)) ;

and (iii) the conditional maximum likelihood estimator is
√
n-asymptotically normal,

√
n
(
θ̂ (y1, y2)− θ0 (y1, y2)

)
d→ N

(
0, J−1 (y1, y2)

)
,

as n→∞.

Proof. See Appendix A.8.
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Consider the joint behavior for a pair of estimators
(
θ̂ (y1, y2) , θ̂

(
y
′
1, y

′
2

))
for two

pairs of cut points (y1, y2) and
(
y
′
1, y

′
2

)
. Define

sn (θ, y1, y2) =
1

n

∑
i

si (θ, y1, y2)

and

Hn (θ, y1, y2) =
1

n

∑
i

Hi (θ, y1, y2)

Stacking the estimators, Taylor-expanding around θ0, and defining

Ξn ≡

 Hn

(
θ̃n (y1, y2) , y1, y2

)
0

0 Hn

(
θ̃n
(
y
′
1, y

′
2

)
, y
′
1, y

′
2

) 
obtains:

√
n

(
θ̂n (y1, y2)− θ0 (y1, y2)

θ̂n
(
y
′
1, y

′
2

)
− θ0

(
y
′
1, y

′
2

) )

= −Ξ−1
n

√
n

(
sn (θ0 (y1, y2) , y1, y2)

sn
(
θ0

(
y
′
1, y

′
2

)
, y
′
1, y

′
2

) )
d→ N

(
0,

(
J−1 (y1, y2) Σ

(
y1, y2, y

′
1, y

′
2

)
Σ
(
y1, y2, y

′
1, y

′
2

)
J−1

(
y
′
1, y

′
2

) ))
(4.11)

where, assuming without loss of generality that y2 ≥ y
′
2,

Σ
(
y1, y2, y

′

1, y
′

2

)
= J−1 (y1, y2) Ω0

(
y1, y2, y

′

1, y
′

2

)
J−1

(
y
′

1, y
′

2

)
(4.12)

Ω0

(
y1, y2, y

′

1, y
′

2

)
= E

[
Di (y1, y2)Di

(
y
′

1, y
′

2

)
Λ (Wiθ0 (y1, y2))

×
(

1− Λ
(
Wiθ0

(
y
′

1, y
′

2

)))
WiW

′

i

]
. (4.13)

This provides the covariance function Σ
(
y1, y2, y

′
1, y

′
2

)
for the weak convergence result

that follows.15

15Here, we treat the two parameters θ0 (y1, y2) and θ0

(
y

′

1, y
′

2

)
as if functionally independent. We

ignore the linear relationship between θ0 (y1, y2) and θ0

(
y

′

1, y
′

2

)
, e.g. we ignore that their first K

components are identical. The dependence between the two parameter vectors can be exploited for
statistical and computational efficiency. We discuss this in the next section.
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Assumption 9. (i) E ‖∆Xi‖2+ε < ∞ for some ε > 0; (ii) the conditional density

fYt (y|∆Xi = x) , t = 1, 2, exists, and it is bounded and uniformly continuous in y,

uniformly in x over the support of ∆Xi; (iii) ht is continuous for each t = 1, 2.

We now establish that a functional central limit theorem holds for the conditional

maximum likelihood estimator. The result holds over a compact interval
[
y, y
]
, which

was introduced in Section 4.1.2.

Theorem 8. Assume that the conditions for Theorem 7 hold, and let Assumption 9

hold. Then
√
n
(
θ̂ (·)− θ (·)

)
⇒ z (·) in `∞

([
y, y
])2

as n→∞ where z (·) is a Gaussian process with covariance function Σ
(
y1, y2, y

′
1, y

′
2

)
.

Proof. See Appendix A.9.

4.3 Implementation

For applied practice, we recommend using logit estimation via the integrated log-

likelihood contribution

l̃i
(
β, h−2 (·) , h−1 (·)

)
=

∫
[y,y]

∫
[y,y]

w (y1, y2) li (θ, y1, y2) dy1dy2 (4.14)

where w (y1, y2) is a positive, integrable weight function, e.g. any continuous pdf. A

criterion function based on (4.14) integrates the log-likelihood contribution (4.7) over

all pairs y = (y1, y2) ∈
[
y, y
]2

.

The first advantage of the integrated objective function is related to the functional

dependence of the parameters across different pairs (y1, y2) 6=
(
y
′
1, y

′
2

)
. Decompos-

ing θ0 (y1, y2) = (β (y1, y2) , γ (y1, y2)) , we have β (y1, y2) = β
(
y
′
1, y

′
2

)
for any choice

of thresholds. The integrated objective function (4.14) automatically imposes such

relationships.16

A second advantage of the integrated likelihood approach is that it has excellent

small sample performance. In particular, the simulation results in Baetschmann et al.

(2015) and Muris (2017) document excellent performance of the version with equal

16An alternative approach would be to use a minimum distance approach. See e.g. Baetschman et
al. (2015) and Muris (2017) for a discussion in the context of the time-invariant fixed effects ordered
logit model.
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weights, w (y1, y2) = 1, in the context of ordered choice. The integrated likelihood

estimator performs well regardless of the number of time periods, or the choice of

(number of) pairs (y1, y2). Alternatives based on (optimal) minimum distance and

GMM have poor performance when the number of pairs is high, or when there are

many time periods, see Muris (2017).

A third advantage is ease of implementation (see Baetschmann et al. (2015) for

the ordered choice case, and the extension in Muris (2017)). For the present case, we

can extend that procedure on an arbitrarily precise grid for (y1, y2). We describe this

procedure below.

First, duplicate the original data set once for each point on the grid. For each

duplicate, compute Di (y1, y2) and Di2 (y2). Second, in the subsample with Di =

1, run a logit regression of Di2 on ∆Xi augmented with a set of dummy variables

indicating which grid values (y1, y2) were used for that duplicate observation. In the

resulting output, the coefficient on ∆Xi is β̂. The coefficients on the y1 dummies are

ĥ−1 (y1). The coefficients on the y2 dummies are ĥ−2 (y2). All of these steps use only

standard software, and require only a few lines of code.

To see that the weak convergence results in Theorem 8 continue to hold, rewrite

the scores in (4.8) as:

si (θ, y1, y2) = Di (y1, y2) [Di2 (y2)− Λ (Wiθ)]W
′

i

≡ ti
(
β, h−2 , h

−
1 , y1, y2

)(∆Xi

−1

)
.

Then, the set of scores for the integrated likelihood contribution is

∂l̃i
(
β, h−2 (·) , h−1 (·)

)
∂β

=

∫
[y,y]

∫
[y,y]

w (y1, y2) ti
(
β, h−2 , h

−
1 , y1, y2

)
∆Xidy1dy2, (4.15)

∂l̃i
(
β, h−2 (·) , h−1 (·)

)
∂h−1 (y1)

=

∫
[y,y]

w (y1, y2) ti
(
β, h−2 , h

−
1 , y1, y2

)
dy2, (4.16)

∂l̃i
(
β, h−2 (·) , h−1 (·)

)
∂h−2 (y2)

= −
∫

[y,y]
w (y1, y2) ti

(
β, h−2 , h

−
1 , y1, y2

)
dy1. (4.17)

Weak convergence of the Z-estimator process associated with the scores (4.15)-

(4.17) follows if the weight function w is positive and integrable on
[
y, y
]2

. The weight
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function is chosen by the researcher, so this condition is easily satisfied. In particular,

it will be satisfied for our recommended estimator, which uses w (y1, y2) = 1. Given

Donskerity of the scores in (4.8), a Donsker preservation theorem then applies to the

scores in (4.15)-(4.17), given positivity and integrability of the weight function. Then

the proof of Theorem 8, applied to the Z-estimator based on (4.15)-(4.17) follows with

only a minor modification.

5 Simulation study

This section provides some evidence on the finite sample properties of the integrated

likelihood estimator with uniform weights, described in Section 4.3. This is the es-

timator that we recommend for applied practice given its small sample performance

and ease of implementation.

First, we consider estimation of the common parameters in the fixed effects ordered

logit model with time-varying link function. We are not aware of any other consistent

estimators for the parameters in a model of this type. Second, we consider estimation

of the transformation functions and of the ATT in a nonlinear difference-in-differences

setting.

5.1 Ordered choice with time-varying link function

Our first simulation results are for ordered logit with a time-varying link function.

We consider the logistic version of FELT with transformation function given by:

ht (y∗) =


1 if y∗ < γ1t

2 if γ1t ≤ y∗ < γ2t

3 if y∗ ≥ γ2t

and with the normalization γ11 = 0. The unknown parameters are (γ21, γ12, γ22, β) .

We generate the univariate regressors from a standard normal, Xit ∼ N (0, 1)

and the unobserved heterogeneity according to αi ∼ N (0, 1) + 1
2

(Xi1 +Xi2). We set

γ21 = 1, β = 1, and vary the remaining parameters (n, γ12, γ22) across designs. We

use S = 1000 replications for each design.

We consider seven designs. The first four designs vary the sample size across
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n ∈ {100, 250, 500, 1000} while keeping h2 = h1, i.e. an ordered choice model without

time-varying link function. For the remaining designs, we use n = 1000. The fifth

design expands the width of the intervals between categories in period 2 by setting

h2 = 2h1. The sixth design shifts h2 = 1 + h1. The seventh design combines the

location and scale shifts of designs (5) and (6) by setting h2 = 2h1 + 1.

The results of our simulation study can be found in Table 1. We only report results

for our integrated likelihood estimator, as we are not aware of any other consistent

estimator for the parameters in the time-varying ordered choice model. The following

paragraph describes our findings.

First, the effect of sample size is as expected, see the results across the first four

rows. The bias decreases with n. For example, for β, the bias drops from 0.077

to 0.007. Biases are similarly small and decreasing for the other parameters. The

RMSE also decreases monotonically in n for all parameters. Second, changing the

link function (designs (4)-(7)) does not affect the RMSE. Third, when we change

the link function, the bias remains of small order. However, there is some effect of

varying the link function on the bias. We conjecture that these differences in bias

are due to the frequency of switchers decreasing as γ22 increases. For example, the

bias for γ22 in designs (5) through (7) occurs when γ22 is 2 and 3, respectively. In

our simulation designs, the distribution of the latent variable is centered at zero and

symmetric. The probability P (Y ∗it > γ22) sharply decreases in γ22, thus reducing the

number of observations with (Yi1 < 3, Yi2 = 3). Additional simulations show that

P (Yi1 < 3, Yi2 = 3) drops from 0.23 in design 4 to 0.05 in design 7.

5.2 Nonlinear difference-in-differences

In this section, we considers a simulation study in the context of nonlinear difference-

in-differences (the theoretical development can be found in Section 3.3). We consider

estimation of the common parameters as well as of the ATT.

The control outcomes are generated by FELT, with

h1 (y∗) = y∗

h2 (y∗) = Φ

(
y∗ − 1

σ

)
,

with σ = 0.5 unless mentioned otherwise, and all other design parameters are as in
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the previous subsection (i.e. the generation of αi, Xit and Y ∗it ). We use a sample size

of n = 500, S = 1000 simulations for each result, and a linear spline with 12 knots at

equispaced quantiles of Yi1 (for h−1
1 ) and Yi2 (for h−1

2 ), with uniform weights w.

First, our simulations yield a bias for the regression coefficient of 0.01 and an

RMSE of 0.1. The estimated functions are displayed in Figure 5.1. The solid line

represents the true function. The dotted line represents the simulated average of

the estimated functions. The dashed black lines represent the simulated (point-wise)

interquartile range. The estimator captures most of the nonlinearity in h2. Further

increasing the number of evaluation points, or shifting them further towards the edges

of the support, would capture even better the nonlinearity in the transformation

function.

Second, in order to compute the ATT and to compare our estimator to that of the

standard DID, we generate counterfactual outcomes for a treated group according to:

htreat2 (Y ∗it ) = Φ

(
Y ∗it + γi − 1

σ

)
,

γi ∼ N (1, 1) .

That is, we add a heterogeneous treatment effect linearly, and draw it from a normal

distribution with unit mean and standard deviation.17 The control outcomes for this

treatment group are generated in the same way as for the control group, except that

we shift the mean unobserved heterogeneity by 1, i.e.

αi ∼ N (µ, 1) +
1

2
(Xi1 +Xi2) ,

µ = 1.

The nonlinearity in h2 and the location shift in Y ∗it between the control and the

treatment group pose difficulties for the standard DID estimator. In our design, the

true ATT equals τ = 0.140. The standard DID estimator obtains −0.713 while FELT

produces a mean ATT estimate of 0.140 across the replications.

Table 2 presents simulation results for the regression coefficient and the ATT in

a number of designs. Design (0) is the benchmark design outlined above. Design (1)

reduces the number of knots to 6. Design (2) sets σ = 0.25. Design (3) sets µ = 0.

17Consistency for the ATT does not require additivity in the treatment indicator.
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Figure 5.1: Simulation results for the difference-in-differences study: control out-
come equations. True functions are solid lines.The simulated means and pointwise
interquartile ranges are reported.
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Figure 5.2: Estimate of h2 in design (1).

Design (4) sets h2 (y∗) = y∗.

In design (1), by reducing the number of knots, function h2 is not approximated

as closely, see Figure 5.2. This shows up in Table 2 as an increased bias for the

FELT ATT estimator. In design (2), the increased steepness in h2 does not affect

the relative performance substantively. Designs (3) and (4) remove the reasons for

the poor performance of the linear DID estimator. In design (3), we impose that

the distribution of Y ∗i1 is the same in treatment and control group, so that the DID

estimator correctly estimates the trend despite the nonlinearity. In design (4), we set

h2 = h1 to be linear, so that the DID estimator is consistent. This is reflected in

Table 2 by an improvement in the performance of the DID estimator. Even in design

(4), the FELT estimator is competitive with the linear DID estimator, although it is

slightly outperformed in terms of bias and RMSE.

6 Conclusion

In this paper, we consider identification and estimation in a fixed-T , fixed effects

linear transformation (FELT) model, where the transformation function is unknown,

weakly monotone, and time-varying. FELT nests a large number of fixed effects panel
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models for discrete and continuous outcomes that are used in applied work, such as

binary choice, ordered choice, and various transformation models.

Our approach to identification and estimation, which we call binarization, relies

on the relationship between time-varying, weakly monotone transformation models

and a collection of binary choice models.

We contribute to the literature on nonlinear panel models in three ways. First, we

provide a general solution to the incidental parameter problem for this large class of

models. Existing solutions are either model-specific or likelihood-based. Second, we

obtain identification of the distribution of counterfactual outcomes, leading to a menu

of time-varying partial effects. Current fixed-T results rely on time-homogeneity,

which restricts the variability of the partial effects over time. Additionally, we show

how our results can be used in a nonlinear difference-in-differences setting to iden-

tify the distribution of the counterfactual outcomes for the treated, as well as the

ATT. Third, we provide estimators for the parameters of interest and derive their

large sample properties. We discuss four estimators, depending on whether the out-

come variable is discrete or continuous, and on whether the stationary distribution

of the error term is nonparametric or logistic. All estimators are
√
n-consistent and

asymptotically normal, except in the nonparametric discrete case.

Our results leave some questions for future research. First, it would be interesting

to extend the findings to allow for lagged dependent variables, and for other explana-

tory variables that do not satisfy the strict exogeneity assumption maintained in this

paper. Second, it would be interesting to establish the efficiency bound for the pa-

rameters in FELT. Third, we hope that the binarization approach may prove useful

for identification in even more general panel models, for example nonlinear latent

variable models.
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A Proofs

A.1 Proof of Lemma (1)

Proof. Define D = 1 {D1 (y1) +D2 (y2) = 1}. The proof consists in showing the fol-

lowing:

med
(
D2 (y2)−D1 (y1) |X, D = 1

)
(A.1)

= sgn
(
P
(
D (y1, y2) = (0, 1) |X, D = 1

)
− P

(
D (y1, y2) = (1, 0) |X, D = 1

))
(A.2)

= sgn

(
P
(
D (y1, y2) = (0, 1) , D = 1|X

)
P (D = 1|X)

−
P
(
D (y1, y2) = (1, 0) , D = 1|X

)
P (D = 1|X)

)
(A.3)

= sgn
(
P
(
D (y1, y2) = (0, 1) , D = 1|X

)
− P

(
D (y1, y2) = (1, 0) , D = 1|X

))
(A.4)

= sgn (P (D (y1, y2) = (0, 1) |X)− P (D (y1, y2) = (1, 0) |X)) (A.5)

= sgn (P (D2 (y2) = 1|X)− P (D1 (y1) = 1|X)) (A.6)

= sgn (∆Xβ − γ (y1, y2)) (A.7)

where (A.2) follows since the random variable D2 (y2) − D1 (y1) ∈ {−1, 1}, which

implies that

med
(
D2 (y2)−D1 (y1) |X, D = 1

)
=

{
1 if P

(
D (y1, y2) = (0, 1) |X, D = 1

)
> P

(
D (y1, y2) = (1, 0) |X, D = 1

)
−1 if P

(
D (y1, y2) = (0, 1) |X, D = 1

)
< P

(
D (y1, y2) = (1, 0) |X, D = 1

) ,
(A.3) follows from the definition of conditional probability, (A.4) follows since the

sign function is not affected by scaling both quantities by the same positive factor

(the denominator), (A.5) follows by the definition of D, and (A.6) follows since:

P (D2 (y2) = 1|X) = P (D (y1, y2) = (0, 1) |X) + P (D (y1, y2) = (1, 1) |X)

P (D1 (y1) = 1|X) = P (D (y1, y2) = (1, 0) |X) + P (D (y1, y2) = (1, 1) |X)

Finally, (A.7) follows from Assumption 2(ii), which implies that e.g.

P (D2 (y2) = 1|α,X) > P (D1 (y1) = 1|α,X)⇔ α +X2β − h−2 (y2) > α +X1β − h−1 (y1) .
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Integrating both sides over the conditional distribution of α given X obtains:

P (D2 (y2) = 1|X) > P (D1 (y1) = 1|X) ⇔ X2β − h−2 (y2) > X1β − h−1 (y1)

⇔ ∆Xβ − γ (y1, y2) > 0.

Result (3.4) now follows.

A.2 Proof of Theorem 1

Proof. Following Manski (1985), it suffices to show that for an arbitrary θ ∈ Θ,

θ 6= θ0 ≡ θ0 (y1, y2),

P (Wθ < 0 ≤ Wθ0) + P (Wθ0 < 0 ≤ Wθ) > 0. (A.8)

Our proof follows very closely that in Manski (1985), with Wθ taking the role of xb

and Wθ0 taking the role of xβ. However, our scale normalization is different.

Without loss of generality, let XK be the continuous regressor in Assumption

3(i). Separate ∆X = (∆X−K ,∆XK) where the first component ∆X−K represents

all covariates except the K-th one. Similarly, for any θ = (β, γ) ∈ Θ, separate

β = (β−K , βK). Furthermore denote W−K = (∆X−K ,−1) and θ−K = (β−K , γ).

Assume that the associated regression coefficient β0,K > 0. The case β0,K < 0

follows similarly. Let θ = (β, γ) ∈ Θ, θ 6= θ0. As in Manski (1985, p. 318), consider

three cases: (i) βK < 0; (ii) βK = 0; (iii) βK > 0.

Cases (i) and (ii). βK ≤ 0. The proof is identical to that in Manski, with Xβ

replaced by Wθ. The fact that we use a different scale normalization does not come

into play.

Case (iii). βK > 0. note that

P (Wθ < 0 ≤ Wθ0) = P

(
−W−Kθ0,−K

β0,K

< ∆XK < −W−Kθ−K
βK

)
.

P (Wθ0 < 0 ≤ Wθ) = P

(
−W−Kθ−K

βK
< ∆XK < −W−Kθ0,−K

β0,K

)
.

By assumption 4, β−K

βK
6= β0,−K

β0,K
, which shows that the first K components of the vector

θ are not a scalar multiple of the first K components of the vector θ0. Therefore, θ is

not a scalar multiple of θ0. In particular,
θ0,−K

β0,K
6= θ−K

βK
. Additionally, assumption 3(ii)
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implies that P
(
W−Kθ0,−K

β0,K
6= W−Kθ−K

βK

)
> 0. Hence at least one of the two probabilities

above is positive so that (A.8) holds.

A.3 Proof of Theorem 2

Proof. Under Assumption 5, h−1 (y0) = 0. Using the pair (y0, y2) for binarization thus

obtains identification of

γ (y0, y2) = h−2 (y2)− h−1 (y0)

= h−2 (y2).

By varying y2 ∈ Y , we identify the function h−2 from the binary choice models asso-

ciated with {D (y0, y2) = (D1 (y0) , D2 (y2)) , y2 ∈ Y}.
The pairs (y0, y2) and (y1, y2) identify the difference

γ (y0, y2)− γ (y1, y2) = (h−2 (y2)− h−1 (y0))− (h−2 (y2)− h−1 (y1))

= h−1 (y1).

By varying y1 ∈ Y we therefore identify h−1 .

Thus, the functions h−1 and h−2 are identified. Because of monotonicity of ht

(Assumption 1), and because Y is known, h−t contains all the information about the

pre-image of ht. Knowledge of the pre-image of a function is equivalent to knowledge

of the function itself. Therefore, ht can be identified from h−t .
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A.4 Proof of Theorem (3)

Proof. For the panel data binary choice model with logit errors, we obtain

P (D2 (y2) = 1|D (y1, y2) = 1, X, α) (A.9)

=
P (D2 (y2) = 1, D (y1, y2) = 1|X,α)

P
(
D (y1, y2) = 1|X,α

) (A.10)

=
P (D1 (y1) = 0, D2 (y2) = 1|X,α)

P
(
D (y1, y2) = 1|X,α

) (A.11)

=
P (D1 (y1) = 0, D2 (y2) = 1|X,α)

P (D1 (y1) = 0, D2 (y2) = 1|X,α) + P (D1 (y1) = 1, D2 (y2) = 0|X,α)
(A.12)

=
1

1 + P (D1(y1)=1,D2(y2)=0|X,α)
P (D1(y1)=0,D2(y2)=1|X,α)

(A.13)

= Λ(∆Xβ − γ(y1, y2)) (A.14)

where A.10 follows from the definition of a conditional probability; A.11 follows be-

cause D2 = 1 and D̄ = 1 are equivalent to D1 = 0 and D2 = 1; A.12 follows because

D1 + D2 = 1 happens precisely when either (D1, D2) = (1, 0) or (D1, D2) = (0, 1);

A.13 follows by dividing by the numerator; and the final expression follows by the

argument below.

Note that P (D1(y1)=1,D2(y2)=0|X,α)
P (D1(y1)=0,D2(y2)=1|X,α)

equals

P (D1 (y1) = 1|X,α)P (D2 (y2) = 0|X,α)

P (D1 (y1) = 0|X,α)P (D2 (y2) = 1|X,α)
(A.15)

=
Λ
(
α +X1β − h−1 (y1)

) [
1− Λ

(
α +X2β − h−2 (y2)

)][
1− Λ

(
α +X1β − h−1 (y1)

)]
Λ
(
α +X2β − h−2 (y2)

) (A.16)

=
exp

(
α +X1β − h−1 (y1)

)
exp

(
α +X2β − h−2 (y2)

) (A.17)

= exp
(
(X1 −X2) β −

(
h−1 (y1)− h−2 (y2)

))
, (A.18)

where A.15 follows from serial independence of (U1, U2) conditional on (X,α); A.16

from the logit model specification; and A.17 follows from

Λ (u) / (1− Λ (u)) = exp (u) .
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The discussion above implies that A.9 does not depend on α. Hence,

p (X, y1, y2) ≡ P (D2 (y2) = 1|D (y1, y2) = 1, X)

= Λ(∆Xβ − γ(y1, y2))

= Λ (Wθ (y1, y2)) .

and note that p (X, y1, y2) is identified from the distribution of (Y,X), which is as-

sumed to be observed. Then

θ(y1, y2) = [E(W ′W )]−1E(W ′Λ−1(p(X, y1, y2)))

by invertibility of Λ and the full rank assumption on E [W ′W ]. This establishes

identification of β and γ (y1, y2). The proof in Section A.3 applies, which shows the

identification of h1 and h2.

A.5 Proof of Theorem 4

Proof. Our proof consists of checking the conditions of Theorem 2.1 in Newey and

McFadden (1994). That theorem requires four conditions: (i) identification; (ii) com-

pactness of the parameter space; (iii) continuity of the population objective function;

(iv) uniform convergence of the sample criterion function to the population objective

function.

(i) Identification. The population objective function is defined as the limit of

our sample criterion function Qn (θ), and is given by

Q0(θ) = E (sgn (Wθ) (D2 (y2)−D1 (y1))) . (A.19)

This function achieves its unique maximum on Θ, as shown in Manski (1987), Lemma

3.

(ii) Compactness. Implied by Assumption 4 and compactness of Γ, which is

assumed in the statement of the theorem.

(iii)+(iv) Continuity and uniform convergence. These conditions follow if

the conditions of Lemma 2.4 in Newey and McFadden are verified. Define

a (D2, D1,W, θ) = sgn (Wθ) (D2 (y2)−D1 (y1)) .
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The Lemma requires (a) compactness of Θ; (b) continuity of a (·) in θ with probability

1; (c) dominance of a (·) by an integrable function. (a) follows by our assumptions,

see (ii) above. To see that (b) holds, note that sgn (Wθ) is continuous in θ unless

Wθ = 0. By Assumption 3(i), P (Wθ = 0) = 0 for all θ, because W includes a

continuous component ∆XK with βK 6= 0. To see that (c) holds, note that |a (·)| ≤ 1

for any value of (W, θ,D2, D1), hence the dominance condition is satisfied.

A.6 Proof of Theorem 5

Proof. The proof follows that in Chen (2002) and Jochmans (2012), see also Horowitz

(2009), and it is not repeated here. A summary of the proof is as follows. First, it

is shown that ĝt is asymptotically linear by using the arguments in Sherman (1993).

Then it is shown that the influence function of ĝt belongs to a Euclidean class of

functions for unit envelope, so that Theorem 5.3 in Pollard (1984) applies. Notice

that e.g. the only difference between our criterion function,

Qn

(
y, y0, ỹ, ỹ, β̂, g1, 0

)
,

and that of Chen (2002) is that in our framework the indicator 1 {(∆Xi −∆Xj) β > g1}
is premultiplied by:

Di (y1, y2)Dj

(
y
′

1, y
′

2

)
1
{
Di2 (y2) > Dj2

(
y
′

2

)}
while in Chen (2002), it is premultiplied by:

Di (y)−Dj (y0)

Since these two functions are bounded from above by 1 and do not depend on the

parameters of interest, the results in Chen (2002) and Jochmans (2012) apply directly.

A.7 Proof of Theorem 6

Proof. This proof is similar to that in Muris (2017, Theorem 2) and proceeds by

verifying the conditions in Theorem 2.7 in Newey and McFadden (1994). To verify

those conditions, we connect the notation in the present paper to that in Newey and
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McFadden (1994) by letting the sample objective function

Q̂n (θ) =
1

n

∑
i

li (θ, y1, y2)

=
1

n

∑
i

Di (y1, y2) [Di2(y2) ln Λ (Wiθ) + (1−Di2(y2)) ln (1− Λ (Wiθ))] ,

population objective function

Q0 (θ) = E
[
Di (y1, y2) [Di2(y2) ln Λ (Wiθ) + (1−Di2(y2)) ln (1− Λ (Wiθ))]

]
,

and true value of the parameter

θ0 = θ0 (y1, y2) ,

which lives in Θ = RK+1.

Because of the information inequality and the positive definiteness of E
(
WiW

′
i

)
,

Q0 achieves its minimum uniquely at θ0 (condition i).

In the main text, we established that

∂2li (θ, y1, y2)

∂θ (∂θ)
′ = Hi (θ, y1, y2)

= −Di (y1, y2) Λ (Wiθ) (1− Λ (Wiθ))WiW
′

i

which is clearly non-positive since Di (y1, y2) ∈ {0, 1}, and Λ (1− Λ) ∈ (0, 1). The

second derivative of Q̂n (θ) is 1
n

∑
iHi (θ, y1, y2) ≤ 0 so that the sample objective

function is concave (condition ii).

To bound the second moment of the conditional log likelihood contribution, note

that:

ln Λ (Wiθ) = ln Λ (0) +
(

1− Λ
(
Wiθ̃

))
Wiθ

so that

var
(
Di (y1, y2)Di2(y2) ln Λ (Wiθ)

)
≤ θ

′
var (W ) θ <∞.

A similar analysis applies to the second term in Q0. Since the variance of li is

bounded, and we have assumed a random sample, a law of large numbers applies to

Qn (θ) (condition iii).
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A.8 Proof of Theorem 7

Proof. This proof proceeds by verifying the conditions in Theorem 3.3 in Newey and

McFadden (1994), which is an asymptotic normality result for maximum likelihood

estimators. In Section A.7, we demonstrated the consistency of θ̂ (y1, y2) for θ0 (y1, y2).

The true value of the parameter is automatically in the interior, so that condition i

is satisfied. The logit distribution function is twice differentiable, and the indicator

functions do not depend on the parameter (condition ii). Denote

f (w|θ) =
[
Λ (wθ)Di2(y) (1− Λ (wθ))(1−Di2(y))

]Di(y1,y2)

so that, letting Λ=Λ (wθ) and λ ≡ ∂Λ
∂wθ

Λ (wθ) [1− Λ (wθ)], so that

∂λ/∂ (wθ) = λ (1− Λ)− Λλ

= λ (1− 2Λ) .

Therefore,

∂f

∂θ
=
[
(λw)Di2(y) (1− Λ)(1−Di2(y)) − ΛDi2(y) (λw)(1−Di2(y))

]Di(y1,y2)

=
[
λ
[
(1− Λ)(1−Di2(y)) − ΛDi2(y)

]
w
]Di(y1,y2)

and

∂2f

∂θ (∂θ)
′ =

[(
λ (1− 2Λ)

[
(1− Λ)(1−Di2(y)) − ΛDi2(y)

]
− λ2

)
ww′

]Di(y1,y2)

.

Let N = (θ0 − 1, θ0 + 1). Then∫
supθ∈N

∥∥∥∥∂f (z|θ)
∂θ

∥∥∥∥ dz =E

[
supθ∈N‖

[
λ
[
(1− Λ)(1−Di2(y)) − ΛDi2(y)

]
Wi

]Di(y1,y2)

‖
]

≤ aE
[
‖W ′

i ‖
]
<∞,

where a = supθ∈N

∥∥∥λ [(1− Λ)(1−Di2(y)) − ΛDi2(y)
]∥∥∥ which is bounded for a given inter-

val in the interior of Rk+1. Uniform boundedness on that interval then follows because
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the second moment of W is bounded. Similarly,∫
supθ∈N

∥∥∥∥∂2f (z|θ)
∂θ∂θ′

∥∥∥∥ dz
= E

[
supθ∈N‖

[(
λ (1− 2Λ)

[
(1− Λ)(1−Di2(y)) − ΛDi2(y)

]
− λ2

)
WiW

′

i

]Di(y1,y2)

‖
]

≤ bE
[
‖WiW

′

i ‖
]
<∞,

where

b = E
[
supθ∈N‖

[(
λ (1− 2Λ)

[
(1− Λ)(1−Di2(y)) − ΛDi2(y)

]
− λ2

)]
‖
]

which is finite on any open interval in Rk+1. Together with assumed boundedness of

the second moment of Wi, this gives the boundedness of the expectation of the second

derivative of the density. Therefore, condition iii is satisfied.

For the Hessian, we have∫
supθ∈N

∥∥∥∥∂2 ln f (z|θ)
∂θ∂θ′

∥∥∥∥ dz
= E

[
supθ∈N‖ −Di (y1, y2) Λ (Wiθ) (1− Λ (Wiθ))WiW

′

i ‖
]

≤ E
[
‖WiW

′

i ‖
]
<∞,

which is finite because the second moment of W is assumed to be bounded. (condi-

tion v).

In Section 4.2we show that the information matrix equality holds:

E

[
∂ ln f (z|θ)

∂θ

(
∂ ln f (z|θ)

∂θ

)′∣∣∣∣∣
θ=θ0

]
=E

[
Di (y1, y2) Λ (Wiθ) (1− Λ (Wiθ))WiW

′

i

]
.

To see that this matrix is non-singular (condition iv), see Muris (2017, proof of

Theorem 2).
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A.9 Proof of Theorem 8

Proof. Given the multivariate CLT, and since y 7→ θ (y) is continuous in y and

y 7→ E
(
D (y1, y2) Λ (W ′θ (y)) (1− Λ (W ′θ))WW ′) is continuous at θ0 (y) for each

y ∈
[
y, y
]
, the result of Theorem 8 holds under stochastic equicontinuity of (y, θ) 7→

Gn

(
D (y1, y2) (D2 (y)− Λ (W ′θ))W

)
where Gn (f (Z)) = 1√

n

∑
i [f (Zi)− Ef (Zi)] and

Z = (Yi1, Yi2,Wi). To show this consider the following argument.

The function classes

F1 ≡
{

1 {Y1 ≥ y} , y ∈
[
y, y
]
⊂ Y

}
,

F2 ≡
{

1 {Y2 ≥ y} , y ∈
[
y, y
]
⊂ Y

}
,

F3 ≡
{
W ′θ, θ ∈ Rk+1

}
,

and {Wq, q = 1, . . . , k + 1}, where q indexes elements of the vector W , are VC classes

of functions. The class

F = {1 {F1 + F2 = 1} (F2 − Λ (F3))Wq, q = 1, . . . , k + 1}

is a Lipschitz transformation of VC classes with Lipschitz constant bounded by c ‖W‖,
where c is a positive constant, and square integrable envelope c ‖W‖.

B FELT with random coefficients

In this Appendix, we extend the identification results to the case of FELT with ran-

dom coefficients. We use a subpopulation of stayers (units whose regressors associated

with the random coefficients do not change over time) to identify the common pa-

rameters. This technique is similar to that used by Graham and Powell (2012) in a

linear model with random coefficients.

Denote by Z =
(
Z
′
1, Z

′
2

)′
the regressors associated with the random coefficient δ.

Denote by Z the support of Zt. Extend the model in (3.1) as the following latent

variable model for t = 1, 2:

Y ∗t = α +Xtβ + Ztδ − Ut,

Yt = ht(Y
∗
t ),

Ut|α, δ,X, Z ∼ Ft(u|α, δ,X, Z).

(B.1)
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In this model,

Dt (y) ≡ 1 {Yt ≥ y} (B.2)

= 1
{
Ut ≤ α +Xtβ − Ztδ − h−t (y)

}
,

The presence of the additional regressors and their random coefficients δ requires us

to impose slightly different assumptions:

Assumption 10. [Error terms]

(i) F1(u|α, δ,X.Z) = F2(u|α, δ,X, Z) ≡ F (u|α, δ,X, Z) for all (α, δ,X, Z);

(ii) The support of F (u|α, δ,X, Z) is R for all (α, δ,X, Z).

Let

∆Z ≡ Z2 − Z1.

Assumption 11. [Positive density] P (∆Z = 0) > 0.

This assumption can be relaxed to positive density of ∆Z in a neighborhood of 0,

see Graham and Powell (2012).

Lemma 2. Let Assumptions 1, 10, and 11 hold. Then

med
(
D2 (y2)−D1 (y1) |X, D (y1, y2) = 1,∆Z = 0

)
= sgn (∆Xβ − γ (y1, y2)) . (B.3)

Proof. The main derivation in the proof of Lemma 1 yields

med
(
D2 (y2)−D1 (y1) |X, D (y1, y2) = 1, δ, Z

)
= sgn (∆Xβ + ∆Zδ − γ (y1, y2)) .

Further conditioning on ∆Z = 0 obtains the desired result.

Identification of θ (y1, y2) ≡ (β, γ (y1, y2)) requires the following additional as-

sumptions, which differ from 3 only by conditioning on the event ∆Z = 0.

Assumption 12. [Covariates] Denote by F ∗∆X the distribution of ∆X conditional on

∆Z = 0.

(i) F ∗∆X is such that at least one component of ∆X has positive Lebesgue density

on R conditional on all the other components, with probability one. The corresponding

component of β is non-zero;

48



(ii) The support of F ∗∆X is not contained in any proper linear subspace of RK.

A modification of our main result 1 to the case with random coefficients now

follows.

Theorem 9. Suppose that (Y,X,Z) follow the model in (B.1), and let the distri-

bution of (Y,X,Z) be observed. Let Assumptions 1, 4, 10, 12, and 11 hold. Then

β is identified. Additionally, under assumption 5, the functions h1 (·) and h2 (·) are

identified.

Proof. The proof extends that of Theorems 1 and 2. The only modification is that

the probabilities are now understood to be conditional on the event ∆Z = 0.

Using the population of stayers, we have identified all the common parameters

in this model. In what follows, assume for simplicity that h1 and h2 are invertible.

Define the structural function as

Yt (x) ≡ ht (xβ + Ztδ + α− Ut) . (B.4)

Then, by arguments similar to those in Section 3.2, the structural function is identified

and given by

Yt(x) = ht
(
h−1
t (Yt) + (x−Xt) β

)
.

If interest lies in the effect of Zt on Yt, one can use the identification of the

common parameters to transform the model to a linear panel data model with random

coefficients:

St ≡ h−1
t (Yt)−Xtβ

= α + Ztγ − Ut,

One could then use the identification results in the literature on linear random coef-

ficients models (Chamberlain (1992); Graham and Powell (2012); Arellano and Bon-

homme (2012)).

C Rank estimator criterion function

In this Appendix, we discuss the intuition behind the criterion function in Section

4.1.2. We also explain that the additional scale normalization in that Section is
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without loss of generality.

C.1 Motivating the criterion function

Consider an individual i and a pair of thresholds y = (y1, y2), chosen by the researcher.

The binary variables Di1 (y1) and Di2 (y2) indicate whether an individual’s latent

variable

Y ∗it = αi +Xitβ − Uit

is above or below the threshold h−t (yt) on the latent variable in period t. The binary

variable Di (y1, y2) indicates whether the individual is a “switcher”, i.e. whether the

individual’s outcome is above the threshold exactly once in the two time periods. Non-

switchers are non-informative about the model parameters, as is well-known from the

panel data binary choice literature.

There are two types of switchers. First, those with Di2 (y2) = 1 (and Di1 (y1) =

0) that start below the time-1 threshold and end above the time-2 threshold. In

Abrevaya’s (1999) language, the former type “leapfrogs” with respect to the time-

varying thresholds. Second, there are those with Di2 (y2) = 0 (and Di1 (y1) = 1).

They are anti-leapfroggers (call them “nosedivers”) as they start above the threshold

but end below.

Compare an observation i that leapfrogs with respect to (y1, y2) to an observation j

that nosedives with respect to
(
y
′
1, y

′
2

)
. Setting (y1, y2) =

(
y
′
1, y

′
2

)
leads to information

about β, whereas considering different values (y1, y2) 6=
(
y
′
1, y

′
2

)
provides information

on

β,
(
h−2 (y2)− h−2

(
y
′

2

))
−
(
h−1 (y1)− h−1

(
y
′

1

))
.

To see this, note that i, the leapfrogger, has

Y ∗i1 = αi +Xi1β − Ui1 < h−1 (y1)

Y ∗i2 = αi +Xi2β − Ui2 > h−2 (y2)

so that

∆Xiβ > h−2 (y2)− h−1 (y1) + ∆Uit. (C.1)
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Similarly, for a nosediver j, we have

∆Xjβ < h−2

(
y
′

2

)
− h−1

(
y
′

1

)
+ ∆Ujt. (C.2)

Then, subtracting C.2 from C.1 obtains

∆Xiβ −∆Xjβ >
(
h−2 (y2)− h−1 (y1)

)
−
(
h−2

(
y
′

2

)
− h−1

(
y
′

1

))
+ (∆Uit −∆Ujt) .

The error terms are stationary, and independent across observations. Therefore, the

inequality

(∆Xi −∆Xj) β >
(
h−2 (y2)− h−1 (y1)

)
−
(
h−2

(
y
′

2

)
− h−1

(
y
′

1

))
is associated with

D2i (y2)−D2j

(
y
′

2

)
> 0

conditional on Di (y1, y2) = Dj

(
y
′
1, y

′
2

)
= 1.

The sample objective function sums over all pairwise comparisons for a given

choice of
(
y1, y2, y

′
1, y

′
2

)
. For y1 = y

′
1 and y2 = y

′
2, the objective function does not

depend on ht, and corresponds to Abrevaya’s (1999) criterion function applied to a

subset of the pairs. For y2 = y
′
2 and y

′
1 = y0,it corresponds to Chen’s (2002) estimator,

applied to the subset of pairs with Di (y1, y2)Dj

(
y
′
1, y

′
2

)
= 1, using differences rather

than levels.

C.2 Normalization on h2

The procedure in Section 4.1.2 targets β, h−1 , and h−2 (y2)− h−2 (y0) where y0 is such

that h−1 (y0) = 0. Here, we show that the scale of h−2 is recovered by augmenting the

first step regression with a time dummy.

The FELT model is given by

Yi1 = h1 (αi +Xi1β − Ui1)

Yi2 = h2 (αi +Xi2β − Ui2)

with the normalization h−1 (y0). Here, as in Section 4.1.2, we assume invertibility of

ht.
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Consider a normalized version of the transformation function in the second time

period,

h̃−2 (y2) = h−2 (y2)− h−2 (y0) ,

which is exactly the quantity obtained from the rank procedure. Consider the follow-

ing model:

Yi1 = h1 (αi +Xi1β − Ui1)

Yi2 = h̃2 (αi +Xi2β − Ui2 − δ) .

Then

δ = (αi +Xi2β − Ui2)− h̃−1
2 (Yi2)

= ˜h−1
2 (Yi2)− h̃−1

2 (Yi2)

= ˜h−1
2 (Yi2)−

(
h−2 (y2)− h−2 (y0)

)
= h−2 (y0) ,

so that the scale of h2 can be obtained by applying the leapfrog estimator to (Yit, (Xit, 1 {t = 2})) ,
i.e. a transformation model augmented with a time dummy.
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