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Abstract

Two items, one commonly desirable, the other commonly disliked, may be assigned

to n asymmetrically distributed players, whose types determine their marginal rates of

substitution for money. This paper characterizes the set of all interim Pareto optimal

mechanisms. Despite the infinite dimensions of interim Pareto optimality, any such

optimum is in the form of auctions, with the winner-selection rule adjusted to the par-

ticular optimum. All surplus from the auctions is rebated to the players and goes only

to those most favored by the welfare ranking associated with the Pareto optimum, who

need not be the stochastically high- or low-type players. A player’s equilibrium payoff

is roughly U-shape in his type, hence type-inequality does not beget payoff-inequality.

Optimal matching also obtains because there is zero probability for both items to go

to the same player. In characterizing the optimal mechanisms we develop a new kind

of operators to incorporate every player’s endogenously countervailing incentive.
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1 Introduction

This paper is motivated by the question how to induce Pareto improving wealth transfers

across individuals. In order for wealth transfer to be Pareto improving, let us consider an

environment where individuals may have different marginal rates of substitution for money.

To induce voluntary wealth transfers, suppose that the social planner has two items, one

good, the other bad, to assign to n players. For example, she needs to locate among n cities

a high-tech giant’s headquarter and an oil pipeline terminal. If the social planner sells the

good to a player who values money less and uses the revenue to pay another who values

money more to take the bad, a Pareto improving wealth transfer is induced. Such a transfer,

however, is only one instance among a large variety of redistribution schemes that a social

planner may deem Pareto improving. Depending on her value judgement, the social planner

may favor one player against another, or favor one type of a player against another type of

the same player, whether or not the former values money intrinsically more than the latter

does. Thus, we assume no stand on interpersonal comparison, as one dollar for one type of a

player may be deemed by the social planner more valuable than one dollar for another type

of the same or a different player. Rather we consider the entire set of interim Pareto optimal

mechanisms, without assuming the existence of any rule according to which a social planner

assigns welfare weights across players and across types of a player. That is, we shall find out

the common features of all the Pareto optima not only among all players but also among

all types of each player. The latter aspect makes this study relevant not only to mechanism

design but also to macro settings where types in a continuum are interpreted as atomless

individuals and players interpreted as regions or other collections of individuals.

The model has n players, whose types are independently drawn from possibly differ-

ent distributions. The positive values of the good, and the negative values of the bad, are

commonly known. A player’s type determines his marginal rate of substitution of money.

Any mechanism committed to by the social planner is subject to the standard constraints:

incentive compatibility (IC), (interim) individual rationality (IR) and (ex post) budget bal-

ance (BB). Interim Pareto improvement means an IC, IR and BB mechanism that makes a

positive measure of some player’s types better-off, and zero measure of every player’s types

worse-off, than the status quo. Interim Pareto optimality means IC, IR, BB and immunity

to interim Pareto dominance. The problem is to characterize the set of all interim Pareto
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optimal mechanisms and identify their common features.

This problem is novel to the mechanism design literature because our design objective,

interim Pareto optimality, has infinite dimensions, whereas the objective in mechanism design

has only one dimension such as an auctioneer’s expected revenue or a planner’s social welfare

function aggregating individual preferences through exogenous welfare weights.1 Another

feature of the problem is each player’s endogenously countervailing incentive: Depending on

what the mechanism entails contingent on his realized type, a player may act as a buyer of

the good sometimes, and as a recipient of the bad some other times. He would underreport

his willingness to pay in the former event, and exaggerate his cost in the latter. By contrast,

in the literatures of optimal auctions (Myerson [11]), optimal taxation (Mirrlees [10]) and

bilateral trade (Myerson and Satterthwaite [12]), the role of a player is exogenous.

Our solution to this problem says that any interim Pareto optimal mechanism is neces-

sarily in the form of auctions, with the winner-selection rule adjusted to the particularity of

the optimum. First, for any interim Pareto optimum there is an associated welfare ranking ,

as a profile of type-distributions across players, that aggregates individual preferences into a

unidimensional social welfare function which the Pareto optimum maximizes subject to IC,

IR and BB (Theorem 1). Second, the associated welfare ranking, coupled with the Lagrange

multiplier for the joint constraint of IC, IR and BB, determines a rule to select the winner

of the good, and another rule to select the “winner” of the bad, that the given Pareto opti-

mum entails. These winner-selection rules together determine each player’s expected value

of money transfers in the Pareto optimal mechanism up to a constant, and the constant

is determined by the expectation of the player’s marginal value of money measured by the

associated welfare-ranking distribution (Theorem 2).

This general characterization has several implications. The first is about redistribution

across players. An interim Pareto optimal mechanism entails lump sum transfers across

players, but the transfer need not go to those whose types are stochastically low (or stochas-

tically high). Rather, the lump sum transfer goes only to those who are most favored ex

ante by the endogenous welfare ranking associated with the particular Pareto optimum, and

1 Should each player have only finitely many types, it would be trivial to reduce the finite-dimensional

Pareto optimality to a unidimensional objective, but the finite-type assumption would restrict the model,

undermine its relevance to macro considerations of a continuum of agents, and make it hard to relate to

much of the mechanism design literature, where most of the elegant results is based on continuum types.
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the exogenous type-distributions have no bearing on the welfare ranking (Section 3.3.1).

The second implication is about redistribution across types. Any interim Pareto opti-

mal mechanism that assigns the bad with a positive probability entails non-monotone interim

expected payoff functions for all players, with types at the high and low ends enjoying larger

surpluses than those in the middle (Figure 4). Thus, in the symmetric case where all players

are treated identically so that they differ only in types, there is no way to reorder the types

for the ranking on the players in terms of their types to propagate to a ranking on them

in terms of their payoffs. That is, an interim Pareto optimal mechanism breaks the linkage

from type-inequality to payoff-inequality (Corollary 1).

Third, in any interim Pareto optimal mechanism, a player-type that has a positive

probability to get the good has zero probability to get the bad, and vice versa. In other

words, any interim Pareto optimum in our model is also an interim Pareto optimum in the

matching environment that disallows a player to have both items (Corollary 2). This result

complements the new literature of matching with transfers (Chiappori [1]) by showing that

a particular auction mechanism achieves optimal matching.2

Fourth, the winner-selection rule in an interim Pareto optimal mechanism often involves

ironing when players’ realized types belong to some intervals, regardless of the functional

form of his type-distribution (Section 3.3.4). Consequently, efficient allocation, a main goal

in mechanism design, is in general suboptimal. When the players are i.i.d. and treated

equally by the social planner’s welfare ranking, ironing takes the form of lotteries. Such

prevalence of ironing stands in contrast to the optimal auction literature, where ironing can

be avoided by assuming regular type-distributions.

Our method to obtain these results has two novel aspects. The first is to reduce

the infinite-dimensional objective, interim Pareto optimality, to a unidimensional objective

that allows for the calculation of optimal mechanisms (Section 4.1). Although this step is

essentially an application of the Hahn-Banach theorem, we need to resolve a dilemma, present

in infinite-horizon macro models, between ensuring existence of a separating hyperplane

and guaranteeing that the hyperplane can be properly represented (cf. Stokey, Lucas and

Prescott [14, §15.4, §16.6]). This dilemma is resolved in our model because the separating

hyperplane here needs only to be represented as a distribution rather than an inner product

operator (as in the macro models), and the hyperplane can be represented as a distribution

2 According to Herodotus [4], auctions were used in ancient Babylon marriage matching markets.
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because of a basic continuity observation in mechanism design.

The second novelty in our method is a new kind of operators that calculate ev-

ery player’s information rent bifurcated by his endogenously countervailing incentive (Sec-

tion 4.2.1). With such operators, we reduce any interim Pareto optimal mechanism to a

solution of a maximization problem subject to only two constraints, one being the standard

monotonicity condition, the other a combined constraint of IC, IR and BB (Lemma 4). A

useful property of such operators guarantees that any solution of this constrained optimiza-

tion problem satisfies the saddle point condition (Lemma 5). This property also provides the

basis for us to solve the Lagrange problem associated with the saddle point condition, despite

nonlinearity of the Lagrangian due to endogenously countervailing incentives (Section 4.3.2).

Our solution of that Lagrange problem is an extension of the ironing technique in mechanism

design to handle countervailing incentives and multiplicity of binding constraints.

Our modeling choice of individual preferences and types follows the idea in Dworczak,

Kominers and Akbarpour [3] that captures wealth inequality by heterogeneous marginal

rates of substitution (MRS) for money and meanwhile maintains quasilinear preferences for

tractability. Dworczak et al. suggest that quasilinearity at the presence of wealth inequality

is an appropriate local approximation when one’s valuation of money is a smooth function of

his wealth. Even when wealth imposes a hard budget constraint on an individual, a recent

finding by Khan and Schlee [5] suggests that quasilinearity might still obtain through a

saddle point reformulation.

Considering a bilateral trade environment, Dworczak et al. [3] characterize the set of

mechanisms that maximize the sum of the integrals across agents’ utilities given exogenous

welfare density functions of the agents (same as types in their model) such that the welfare

density functions can be arbitrary. They use a novel technique and observe that the optimal

design uses tax-like pricing mechanisms, with a wedge between the price for the buyers

and that for the sellers, and lump sum transfers to the poorer agents. This paper builds

upon their idea of capturing wealth inequality by the notion of heterogeneous MRS in a

quasilinear setting. Our model differs from theirs in four aspects. First, we do not assume

a unidimensional, utilitarian design objective such as a sum or an integral of utilities across

types or agents; rather, the associated welfare ranking that aggregates preferences, across

types and across players, is a consequence of the Pareto optimum under consideration (and

the welfare ranking need not be representable as an inner product operator with its densities).
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Second, we have n players whose types are drawn from possibly different distributions; in

their model, there is a continuum of i.i.d. buyers, and a continuum of i.i.d. sellers. Third, in

our model a player’s role—whether to be a seller or to be a buyer—is endogenous and hence

has countervailing incentives, whereas in their model an agent’s role is exogenously assumed.

Fourth, the items in our model need not be assigned and hence the probability of assigning

the good need not be equal to the probability of assigning the bad; in their model, market

clearance requires that the aggregate probability of sales be equal to that of purchases.

Because of the first difference, this paper complements Dworczak et al. with our Theo-

rem 1, which suggests that with a similar separating hyperplane argument their assumption

of exogenous welfare densities might be relaxable. Because of the other differences, Pareto

optima in our model are all auction-like mechanisms rather than the tax-like mechanisms in

their model. A player’s bid in our model affects the type-cutoffs for other players to receive

an item, whereas in their model an agent, atomless, has no influence on others. Although

our optimal mechanisms also entail lump sum transfers, the beneficiaries of the transfers in

our case need not be the stochastically poorer players but rather are those who are most

favored by the endogenous welfare ranking associated with the Pareto optimum. Because of

the third difference, a player’s surplus in our model is a non-monotone function of his type,

while in theirs it is monotone. Applied to symmetric cases, this non-monotonicity implica-

tion says that our Pareto optimal mechanisms breaks the type-generated hierarchy through

giving higher surpluses to types near the high and low ends than to those in the middle.

Countervailing incentives have been considered in the partnership dissolution litera-

ture, initiated by Cramton, Gibbons and Klemperer [2]. The focus of that literature is im-

plementability of one particular winner-selection rule, the efficient allocation, which would

be optimal if implementable and if the objective is the simple sum of surpluses across players.

Loertscher and Wasser [7], differently, consider a design objective that is a convex combi-

nation between the auctioneer’s expected revenue and the expected utility of the good for

its final owner. Since the total money transfer from the players to the auctioneer is a plus

rather than a negative in that objective,3 their optimal mechanism does not rebate surplus to

players but rather squeezes the lowest surplus for each player down to the player’s exogenous

3The expected utility of the good for its final owner (called social surplus by Loertscher and Wasser) is

not equal to the total surplus among all players. That is because the total money transfer from the players

to the auctioneer is not subtracted from the expected utility of the good for its final owner.
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outside option. This outside option equation is crucial in Loertscher and Wasser’s solution

of the countervailing incentive problem. Our paper differs from the partnership dissolution

literature by charactering the entire set of interim Pareto optimal mechanisms. With players

heterogenous in MRS for money, our counterpart of the efficient allocation is suboptimal

even if it is implementable (Section 3.3.4). The paper differs from Loertscher and Wasser

also in the first and fourth aspects in which we differ from Dworczak et al. Consequently,

our optimal mechanisms do rebate surplus back to players and do not squeeze the lowest

surplus for each player down to the player’s exogenous outside option. Hence Loertscher and

Wasser’s outside option equation is unavailable to us. Conversely, however, our new operator

is applicable to their model, with or without their assumption of regular type-distributions,

and delivers their Lagrangian, though our bisection technique is inapplicable to maximization

of their Lagrangian because of the fourth difference listed previously.

The following Section 2 defines the model and the design problem. Section 3 then

presents the main results and implications. Section 4 presents the proofs, with some details

relegated to the Appendix. The new operator is introduced in Section 4.2.1. Our extension

of the ironing technique is in Section 4.3.2 and Appendix B.6. Section 5 concludes.

2 The Model

2.1 The Good, the Bad, and n Players

Two items, named A and B, each indivisible, are to be allocated among n players (n ≥ 2),

each of whom can get one or both or none of the items. A social planner commits to a

mechanism that may allocate the items to some players and may mandate money transfers

among the players. The outcome to any player i takes the form (xiA, xiB, yi), where xij

(∀j ∈ {A,B}) denotes the probability with which player i gets item j, and yi the net money

transfer from player i to others (with negative yi signifying the transfer from others to i).

After the mechanism is announced and before it is operated, each player, given his own

private information, can opt out of the mechanism thereby getting the outcome (0, 0, 0) for

himself. Each player i’s preference relation is represented by a vNM utility function

(xiA, xiB, yi) 7→ xiA − cxiB −
yi
ti
, (1)
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with c ≥ 0 a constant across all players, and ti player i’s realized type. Thus, item A is

interpreted as a good, and item B a bad, to all players; 1/ti may be interpreted as player i’s

marginal rate of substitution for money.

Assume that each player i’s type ti is independently drawn from a commonly known

cumulative distribution function (CDF) Fi such that its support is Ti := [ai, bi], its density fi

is positive on the support, and ai > 0.

Remark 1 Without changing the results, one can generalize (1) to

(xiA, xiB, yi) 7→ (vixiA − cixiB)ωi − yiθi,

where vi and ci are commonly known, positive constants, and (ωi, θi) ∈ R2
++ is drawn from a

joint distribution whose realization is privately known to player i. That is, the intensities of

the good and the bad may vary across players, and each player has two-dimensional types.

Dworczak, Kominers and Akbarpour [3] have shown that there is no loss of generality to

restrict attention to mechanisms whose message space for player i consists only of the realized

values of ti := ωi/θi. Thus, the more general vNM utility function is simplified to

(xiA, xiB, yi) 7→ vixiA − cixiB − yi/ti.

Furthermore, since we want a general characterization of Pareto optima and hence take

no stand on interpersonal comparison of utilities, there is no loss of generality to simplify

the above utility function further by replacing the player-specific coefficients vi and ci with

constants v and c common across i, and normalizing the constant v to one. Thus (1) obtains.

2.2 Allocations and Mechanisms

For each player i, denote T−i :=
∏

j 6=i Tj, and let F−i be the product measure on T−i generated

by (Fj)j 6=i. An ex post allocation means a list (qiA, qiB)ni=1 of functions such that qiA, qiB :∏n
j=1 Tj → [0, 1] for each i and, for each t ∈

∏n
j=1 Tj,∑

i

qiA(t) ≤ 1 and
∑
i

qiB(t) ≤ 1.

An ex post payment rule means a list (pi)
n
i=1 of functions such that pi :

∏
j Tj → R for each i.

By the revelation principle, any equilibrium-feasible mechanism corresponds to a pair of ex

post allocation (qiA, qiB)ni=1 and ex post payment rule (pi)
n
i=1, with qij(t) interpreted as the
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probability with which item j (j ∈ {A,B}) is assigned to player i, and pi(t) the net money

transfer from player i to others, when t is the profile of alleged types across players.

A list (Qi)
n
i=1 of functions Qi : Ti → R (∀i) is said generated by an ex post allocation

(qiA, qiB)ni=1 iff, for each i = 1, . . . , n and each ti ∈ Ti,

Qi(ti) =

∫
T−i

qiA(ti, t−i)dF−i(t−i)− c
∫
T−i

qiB(ti, t−i)dF−i(t−i). (2)

Likewise, a list (Pi)
n
i=1 of functions Pi : Ti → R (∀i) is said generated by an ex post payment

rule (pi)
n
i=1 iff, for each i = 1, . . . , n and each ti ∈ Ti, Pi(ti) =

∫
T−i

pi(ti, t−i)dF−i(t−i). Any

list (Qi, Pi)
n
i=1 such that (Qi)

n
i=1 is generated by some ex post allocation (qiA, qiB)ni=1, and

(Pi)
n
i=1 generated by some ex post payment rule (pi)

n
i=1, is called reduced-form mechanism,

or mechanism for short.

2.3 Constraints

Given any (reduced-form) mechanism (Qi, Pi)
n
i=1, it follows from the vNM utility function (1),

and the shorthand (2), that the interim expected utility for any type ti ∈ Ti of player i to

act type t̂i, given truthtelling from others, is equal to Qi(t̂i)− Pi(t̂i)/ti. Denote

Ui(ti | Q,P ) := max
t̂i∈Ti

Qi(t̂i)− Pi(t̂i)/ti. (3)

Since inf Ti > 0 by assumption, the maximization problem in (3) is equivalent to

Ũi(ti | Q,P ) := max
t̂i∈Ti

tiQi(t̂i)− Pi(t̂i). (4)

Thus, as is routine in auction theory, incentive compatibility (IC) of (Qi, Pi)
n
i=1 is equivalent

to simultaneous satisfaction of two conditions for each player i: (i) Qi is weakly increasing

on Ti; (ii) for any ti, t
0
i ∈ Ti,

Pi(ti)− Pi(t0i ) =

∫ ti

t0i

sdQi(s). (5)

Since each player can opt out of a mechanism before it operates, his outside payoff is

zero, hence (Qi, Pi)
n
i=1 is said individually rational (IR) iff Ui(ti|Q,P ) ≥ 0 for all i and all

ti ∈ Ti. By (3) and (4), Ui(ti|Q,P ) = Ũi(ti | Q,P )/ti for any ti ∈ Ti, and it is routine to

show that Ũi(· | Q,P ) is convex, with derivative almost everywhere equal to Qi, which is

weakly increasing by IC. Thus, Ũi(· | Q,P ) attains its minimum at

τ(Qi) := inf {ti ∈ Ti : Qi(ti) ≥ 0 or ti = bi} . (6)
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Consequently, Ũi(τ(Qi) | Q,P ) ≥ 0 iff “Ũi(ti | Q,P ) ≥ 0 for all ti ∈ Ti” iff “Ui(ti | Q,P ) ≥ 0

for all ti ∈ Ti.” Thus, IR is equivalent to Ũi (τ(Qi) | Q,P ) ≥ 0 for all players i.

For the society consisting of the n players to transfer wealth among themselves with-

out relying on outside subsides, we require that a mechanism be always budget-balanced:

(Qi, Pi)
n
i=1 satisfies budget balance (BB) iff (Pi)

n
i=1 is generated by some ex post payment

rule (pi)
n
i=1 such that

∑
i pi(t) ≥ 0 for all t ∈

∏
i Ti.

2.4 The Problem

To characterize a large class of Pareto optimal mechanisms, we use a strong notion of Pareto

dominance based on interim, rather than ex ante, expected payoffs. A mechanism (Q∗, P ∗)

is interim Pareto optimal iff (i) (Q∗, P ∗) is IC, IR and BB, and (ii) there does not exist any

IC, IR and BB mechanism (Q,P ) such that ui(· | Q,P ) ≥ ui(· | Q∗, P ∗) a.e. on Ti for all

i ∈ {1, . . . , n} and, for some i, ui(· | Q,P ) > ui(· | Q∗, P ∗) on a positive-measure subset

of Ti. The problem is to characterize the set of all interim Pareto optimal mechanisms.

With interim Pareto optimality the welfare criterion, not only do we take no stand a

priori regarding interpersonal comparison, we also allow for any inter-type comparison for

the same player. That is, regardless of the cardinal interpretation of (1), the social planner

may want to subsidize one player against another, or rank one type of a player higher than

another type of the same player. Without even assuming the existence of such ranking rules,

we shall find out the common feature of all interim Pareto optimal mechanisms.

3 The Solution

The result, roughly speaking, is that any interim Pareto optimum, no matter how it ranks

across players and across types, is necessarily in the form of auctions. To state the result,

we need only to formalize the notation for some standard concepts in auction design.

3.1 Notation

Ironing For any integrable function ψi : Ti → R, define Hi(ψi) : [0, 1]→ R by

(Hi(ψi)) (s) :=

∫ s

0

ψi
(
F−1
i (r)

)
dr (7)
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for any s ∈ [0, 1]. Denote Ĥi(ψi) for the convex hull of Hi(ψi). Then Ĥi(ψi) is differentiable

almost everywhere on [0, 1]. Define the ironed copy ψi of ψi by

ψi(ti) :=
d

ds

(
Ĥi(ψi)

)
(s)

∣∣∣∣
s=Fi(ti)

(8)

for any ti ∈ Ti such that Ĥi(ψi) is differentiable at Fi(ti). Thus ψi is weakly increasing on

the set of such ti’s. Extend ψi to other points in Ti to maintain its monotonicity.

The φ+ and φ− of function φ For any function φ : R → R, denote φ+ and φ− by

φ+(x) := max{φ(x), 0} and φ−(x) := max{−φ(x), 0} for all x ∈ R. Thus φ = φ+ − φ−.

Allocations by Ranks For any profile (ϕi)
n
i=1 of integrable functions ϕi : Ti → R (∀i)

and any (ti)
n
i=1 ∈

∏
i Ti, denote

A ((ϕi)
n
i=1) := arg max(πi)ni=1∈S

∫
∏

i Ti

n∑
i=1

ϕi(ti)πi ((tk)
n
k=1) dF1(t1) · · · dFn(tn), (9)

where S denotes the set of all profiles (πi)
n
i=1 of functions πi :

∏
k Tk → [0, 1] (∀i) such

that
∑

i πi ≤ 1 on
∏

k Tk. Clearly, (πi)
n
i=1 ∈ A ((ϕi)

n
i=1) if and only if, for almost every

(tk)
n
k=1 ∈

∏
k Tk and for any i, ϕi(ti) > maxj 6=i ϕ

+
j (tj) implies πi ((tk)

n
k=1) = 1, and ϕi(ti) <

maxj 6=i ϕ
+
j (tj) implies πi ((tk)

n
k=1) = 0. Note that A ((ϕi)

n
i=1) contains an element (πi)

n
i=1

such that πi(ti, ·) = 0 on T−i whenever ϕi(ti) ≤ 0, as the previous sentence, combined with

equal-probability random assignment whenever ϕi(ti) = maxj 6=i ϕ
+
j (tj) > 0 and πi(ti, ·) = 0

on T−i whenever ϕi(ti) = 0, defines an element of this set.

3.2 The Result: Common Features of All Interim Pareto Optima

By distribution on an interval [a, b], we mean a real function on R that is weakly increasing

on R, right-continuous on (a, b), constant on (b,∞), and equal to zero on (−∞, a). Our first

theorem, proved in Section 4.1, reduces interim Pareto optimality, an objective with infinite

dimensions, to a mechanism design problem with a unidimensional objective.

Theorem 1 For any interim Pareto optimal mechanism (Qi, Pi)
n
i=1, there exists a profile

(λi)
n
i=1 such that λi is a distribution on Ti for each i, λi > 0 on some positive-measure subset

of Ti for some i, and (Qi, Pi)
n
i=1 maximizes∑

i

∫
Ti

Ui(· | Q̃, P̃ )dλi (10)
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among all IC, IR and BB mechanisms (Q̃, P̃ ).

The distribution profile (λi)
n
i=1 in Theorem 1 can be interpreted as the welfare ranking ,

across players and across types, that supports the given Pareto optimum as a maximum

of the unidimensional social welfare (10) among all IC, IR and BB mechanisms (Q̃, P̃ ).

Note that λi need not be absolutely continuous with respect to the prior distribution Fi,

hence it need not have a derivative λ′i for which the integral in (10) equals an inner product∫
Ti
Ui(· | Q̃, P̃ )λ′idFi. Our characterization of optimal mechanisms does not need such inner

product representation of λi, hence we make no assumption to force its absolute continuity.

The next theorem, proved in Sections 4.2–4.3, characterizes all constrained optima of (10).

Theorem 2 For any profile (λi)
n
i=1 of distributions λi on Ti, if (Qi, Pi)

n
i=1 maximizes (10)

among all IC, IR and BB mechanisms, then there exists a profile (Zi,+, Zi,−)ni=1 of integrable

functions Zi,+, Zi,− : Ti → R such that Zi,+ ≤ Zi,− and:

a. for each i, Q+
i =

∫
Ti
qiA(·, t−i)dF−i and Q−i = c

∫
Ti
qiB(·, t−i)dF−i on Ti for some

(qiA)ni=1 ∈ A
(
(Zi,+)ni=1

)
and (qiB)ni=1 ∈ A

(
(−Zi,−)ni=1

)
;

b. (Pi)
n
i=1 is determined by (Qi)

n
i=1 according to:

i. Eq. (5) for any i and any ti, t
0
i ∈ Ti;

ii. if
∫
Ti

(1/s)dλi(s) <
∫
Tk

(1/s)dλk(s) for some k 6= i, then minti∈Ti Ui(ti | Q,P ) = 0;

iii.
∑n

i=1

∫
Ti
Pi(ti)dFi(ti) = 0.

Theorems 1 and 2 combined, any interim Pareto optimal mechanism is necessarily in

form of auctions, encapsulated in a profile (Zi,+, Zi,−)ni=1 of functions. These functions are

jointly determined by the welfare ranking (λi)
n
i=1 supporting the Pareto optimum and the

Lagrange multiplier for the constraint combining IR, IC and BB. Here Zi,+ corresponds to

the virtual surplus to the society contributed by player i who acts as a buyer of the good,

and Zi,− the virtual surplus contributed by i who acts as a seller of the service of receiving

the bad (Figure 1). A crucial feature, asserted by Theorem 2, is that Zi,− is above Zi,+.

From (Zi,+, Zi,−)ni=1, one finds out how the Pareto optimal mechanism allocates the

two items according to Claim (a) of Theorem 2. First, obtain the ironed copy Zi,+ of Zi,+

and the ironed copy Zi,− of Zi,−, for each i (Figure 2). Second, assign the good (item A)

by the rank of
(
Zi,+

)n
i=1

à la Myerson [11]: Score each player i’s alleged type ti according

12



ti

R

0

Zi,−

Zi,+

Figure 1: The bifurcated Z-values

ti

R

0

Zi,−

Zi,+
Zi,−

Zi,+

Figure 2: The thick curves: The ironed Z-values

to the ironed function Zi,+, and assign the good to a player with the highest ironed Z score

provided that it is nonnegative. Likewise, assign the bad (item B) by the rank of
(
−Zi,−

)n
i=1

:

Score each player i’s alleged type ti according to the ironed function Zi,−, and assign the

bad to a player with the lowest ironed Z score provided that it is nonpositive.

These two assignments together generate the reduced form allocation (Qi)
n
i=1 of the

mechanism. Then Claim (b.i) of the theorem says that from (Qi)
n
i=1 one can pin down the

money transfer rule Pi for each player i via the envelope equation up to a constant and pin

down the constant according to (b.ii) and (b.iii). There,
∫
Ti

(1/s)dλi(s) stands for player i’s

average weight in the social welfare that incorporates both the welfare ranking λi on the

various types of his and his marginal valuations of money given these types. Claim (b.ii)

says that anyone whose average weight is less than someone else’s has zero as his minimum

surplus in the mechanism. Claim (b.iii) states the obvious fact that the auctioneer retains

no money surplus at any Pareto optimum.

13
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Figure 3: The optimal allocation

Claim (a) of the theorem implies a surprising property of an interim Pareto optimal

mechanism (Q,P ). The claim says that the positive part Q+
i is the marginal of qiA, and the

negative part Q−i the marginal of qiB. Thus one can show that qiA(t)qiB(t) = 0 for almost

every profile t of types across players. That is, a player-type that has a positive probability

to get the good has zero probability to get the bad, and vice versa: In Figure 3, since Zi,−

is above Zi,+, any type with a nonngegative ironed Zi,+ score is larger than any type with a

negative Zi,− score.

Ensuring that the characterization in Theorem 2 is not vacuous, the next theorem

asserts existence of Pareto optima. Specifically, it asserts existence of the interim Pareto op-

timum that maximizes the utilitarian social welfare given any welfare ranking across players

and across types. The proof is deferred to Appendix C.

Theorem 3 For any profile (λi)
n
i=i of distributions λi on Ti there exists a mechanism that

maximizes (10) among all IC, IR and BB mechanisms (Q̃, P̃ ).

3.3 Implications

For any interim Pareto optimal mechanism supported by a profile (λi)
n
i=1 of distributions,

let

Λi(ti) :=

∫ ti

ai

1

s
dλi(s), (11)

αλ := max
i=1,...,n

Λi(bi). (12)

14



3.3.1 Redistribution across Players: Lump Sum Transfers

According to Claim (b.iii) of Theorem 2, any interim Pareto optimal mechanism rebates all

the surplus thereby generated back to the players. Subtract from the transfer received by

a player the amount necessitated by the envelope equation (Claim (b.i)) and we obtain the

lump sum transfer the player receives. According to Claim (b.ii), the lump sum transfer

goes only to those players i whose Λi(bi)’s are equal to αλ (defined in (11) and (12)). See the

proof of Lemma 4 for the reasoning and explicit formulas for the transfer. Importantly, note

from (11) that the direction of lump sum transfers depends purely on the welfare ranking

(λi)
n
i=1 associated with the Pareto optimal mechanism, and not tied to prior distributions

(Fi)
n
i=1 of types. Thus, an interim Pareto optimal mechanism need not take money from

the (ex ante) stochastically high-type players (“the rich”) to subsidize the stochastically

low-type ones (“the poor”). Only when the endogenous welfare ranking (λi)
n
i=1 is identical

to the exogenous type-distribution profile (Fi)
n
i=1 would the optimal mechanism necessarily

direct lump sum transfers from the stochastically rich to the stochastically poor.

3.3.2 Redistribution across Types: Non-monotone Equilibrium Surplus

Consider, within this subsection, the symmetric case where types are drawn from the same

distribution and the symmetric welfare ranking (λi)
n
i=1 such that λi = λj for any players i

and j. Then the only inequality among players is their realized types. In most mechanism

design models, a player’s role, whether to be a buyer or to be a seller, is assumed a priori,

hence incentive compatibility implies that his equilibrium surplus from any mechanism is

necessarily monotone (weakly increasing or weakly decreasing). Thus, the player’s possible

types can be reordered so that the mechanism gives higher types higher expected payoffs.

That is, inequality in types begets inequality in payoffs.

In our model, by contrast, a player’s role is endogenous, and incentive compatibility

implies that he acts as a seller when his realized type is sufficiently low, and a buyer when

his realized type is sufficiently high. Then an envelope-theorem argument gives the next

corollary, saying that a player’s interim expected payoff function in any Pareto optimal

mechanism is like the roughly U-shape curve in Figure 4. With equilibrium surplus non-

monotone in types, it is impossible to reorder the types so that a Pareto optimal mechanism

would let inequality in types propagate to inequality in payoffs.

15
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Figure 4: Non-monotone Interim Payoff Functions

Corollary 1 Suppose: (i) Fi = Fj and λi = λj for all i and j, (ii) (Q,P ) maximizes (10)

subject to IC, IR and BB, and (iii) the ex ante probability with which Q assigns the bad is

strictly positive. Then for each i there exists (xi, yi, zi) such that ai < xi < yi < zi < bi and

Ui(· | Q,P ) is strictly decreasing on [ai, xi), constant on (xi, yi), and strictly increasing on

(zi, bi].

Proved in Appendix D.1, this corollary demonstrates the crucial role of having not only

a good but also a bad to assign. Had there been only one item, be it good or bad, any IC

allocation Qi would be either nonnegative on Ti or nonpositive on Ti. In either case any

player’s equilibrium surplus would be monotone.

3.3.3 Exclusive Assignments

While we do not impose the condition that the good and the bad be assigned to different

players, any interim Pareto optimal mechanism also satisfies that condition. More precisely,

a mechanism satisfies assignment exclusivity iff, for the underlying ex post allocation rule

(qiA, qiB)ni=1, qAi (t)qBi (t) = 0 for almost every t ∈
∏

k Tk and all i.

Corollary 2 If c > 0 then any interim Pareto optimal mechanism is also an interim Pareto

optimal mechanism subject to not only IC, IR and BB but also assignment exclusivity.

Proved in Appendix D.2, this corollary is a consequence of Theorem 2.a, which says that

the positive part Q+
i of an optimal allocation Qi is the marginal of qiA, and the negative

part Q−i the marginal of qiB.
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3.3.4 Prevalence of Ironing

In the literature, one can guarantee monotonicity of the virtual surplus functions, thereby

avoiding ironing, by imposing regular conditions on the prior distributions Fi. By contrast,

our counterpart of the virtual surplus, the (Zi,+, Zi,−)ni=1 illustrated in Figure 1, cannot be

guaranteed monotone even with such restrictions of the priors. That is because these Z

functions depend not only on the priors but also on two endogenous objects: the welfare

ranking (λi)
n
i=1 associated with the Pareto optimum and the Lagrange multiplier of the joint

constraint of IC, IR and BB. For instance, when the Lagrange multiplier is zero, one can

show that both ai and bi are local maxima of Zi,− on [ai, zi]. Even when the welfare ranking is

well-behaved, the next corollary, proved in Appendix D.3, says that ironing is still prevalent.

Corollary 3 If fi is continuously differentiable at ai for each i, then in any interim Pareto

optimum (Qi, Pi)
n
i=1 for which the supporting welfare ranking (λi)

n
i=1 is absolutely continuous

in (Fi)
n
i=1 and, with λ′i the Radon-Nikodym derivative of λi with respect to Fi (∀i), satisfies

∀i ∈ {1, . . . , n} : lim inf
ti↓ai

λ′i(ti) > 2αλai, (13)

there exists a player i for whom Qi is constant on a neighborhood of ai.

The absolute continuity assumption in Corollary 3 means that the welfare-ranking

distributions λi’s are nonsingular. In other words, the welfare ranking does not weigh any

single type more than a continuum of types (unlike the Dirac measure), nor does it ignore

almost all types by assigning zero density to each of them (unlike the Cantor measure).

Thus, the assumption allows the simple case, often assumed in mechanism design, where the

Radon-Nikodym derivative of λi with respect to Fi is constantly equal to one so that the

social welfare function is a simple sum of players’ surpluses.

A main goal in the mechanism design literature is efficient allocation, which in our

model means allocating the good to the highest-type player and the bad to the lowest one.

With ironing prevalent, however, efficient allocation in general does not belong to the Pareto

frontier. Furthermore, as a direct consequence of Corollary 3, efficient allocation is subopti-

mal even in the simple case where each player weighs equally in the social welfare function.

As another implication of Corollary 3, if players’ types are i.i.d. and the welfare rank-

ing treats the players equally, the optimal mechanism entails ironing for all realized types

belonging to a lower truncation of the type support. That is, the bad is allocated through
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an egalitarian lottery when the realized types eligible for the bad (i.e., below the cutoff xi in

Figure 4) belong to that lower truncation.4

4 The Method

The proof of Theorems 1 and 2 has three main steps. First is to quantify the infinite-

dimensional design objective, interim Pareto optimality, into a one-dimension, utilitarian,

social welfare function. The second step is to incorporate part of the IC constraint and opti-

mality condition into the social welfare function thereby obtaining a tractable optimization

problem. The third is to solve this optimization problem through bisecting the associated

Lagrange problem into two linear programmings. The first and third steps are novel to the

mechanism design literature. The second step, albeit stemming from the envelope theo-

rem and integration-by-parts routines in the literature, develops a new operator—two-part

operator—to calculate a player’s endogenously countervailing information rents. Properties

of this operator are important to the third step.

4.1 Quantifying the Objective: Proof of Theorem 1

This step uses the Hahn-Banach theorem to obtain a welfare ranking (λi)
n
i=1 that supports

a Pareto optimal mechanism under consideration as a maximum of the unidimensional ob-

jective (10). Since a mechanism corresponds to functions defined on a continuum, the choice

of the function space requires care. On one hand, the space needs to satisfy the nonempty

interior condition for existence of a linear functional on the space that supports the Pareto

optimum. On the other hand, the space needs to guarantee that the linear functional be rep-

resentable by a profile of distributions in the form (λi)
n
i=1. Our choice of the function space

stems from an observation that the interim expected surplus generated by any IC mechanism

is a continuous function of types. Hence our function space consists of continuous functions

defined on compact intervals, conducive to the Hahn-Banach and representation theorems.

First, we specify the function space. For each i ∈ {1, . . . , n} denote C(Ti) for the space

of continuous real functions defined on the closed, bounded interval Ti, with the maximum

4 Dworczak, Kominers and Akbarpour [3] also obtain such an implication. Interestingly, our sufficient

condition (13) for the implication looks similar to their sufficient condition, despite differences in our models.
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norm ‖ · ‖max. Let

C :=
n∏
i=1

C(Ti)

and endow C with the maximum norm such that ‖(ϕi)ni=1‖max := maxi ‖ϕi‖max for all

(ϕi)
n
i=1 ∈ C . Thus, C is a normed linear space. Define the utility possibility set

U := {(Wi)
n
i=1 ∈ C : ∃ IC, IR & BB (Q,P ) [∀i ∀ti ∈ Ti [Wi(ti) ≤ Ui (ti | Q,P ))]]} . (14)

As noted above, (Ui(· | Q,P ))ni=1 ∈ C for any IC mechanism (Q,P ).

To prove Theorem 1, pick any interim Pareto optimal mechanism (Q∗, P ∗). Denote

u∗i := Ui(· | Q∗, P ∗) for each i. Then (u∗i )
n
i=1 ∈ U. Denote

V((u∗i )
n
i=1) := {(ui)ni=1 ∈ C : ∀i [ui ≥ u∗i a.e. Ti] ;∃i [ui > u∗i on a positive-measure Si ⊆ Ti]} .

Obviously, V((u∗i )
n
i=1) is convex.

Claim 1 There exists a continuous linear functional φ on C , not identically zero, such that

for all (ui)
n
i=1 ∈ U,

φ ((ui)
n
i=1) ≤ φ ((u∗i )

n
i=1) . (15)

Proof First, U is convex (Appendix A), and V((u∗i )
n
i=1) convex as noted above. Second,

U contains an interior point: Consider the mechanism that gives away the good A for free

with probability 1/2, else assigns neither item to anyone, and, in the former event, randomly

assigns the good A (for free) to one of the n players with equal probability. This mechanism

is IC, IR and BB, and it generates for everyone an interim expected payoff constantly equal

to 1/(2n). Thus, this payoff profile belongs to U. Now consider another mechanism that

differs from the former only by that it assigns the good with probability 1/2 + ε. The

mechanism is also IC, IR and BB, and generates an expected payoff profile larger than

the former in every dimension by ε/n. Since this is true for all ε ∈ (0, 1/2], the payoff

profile generated by the former mechanism is an interior point of U with respect to the max

norm. Third, V ((u∗i )
n
i=1) contain no interior point of U; otherwise, such an interior point,

by definition of V ((u∗i )
n
i=1), interim Pareto dominates (u∗i )

n
i=1, contradiction. Thus, by the

Hahn-Banach theorem, there exists a continuous linear functional φ on C , not identically

zero, such that, for some constant w, for any (ui)
n
i=1 ∈ U and any (ûi)

n
i=1 ∈ V((u∗i )

n
i=1),

φ ((ui)
n
i=1) ≤ w ≤ φ ((ûi)

n
i=1) . (16)
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For any ε > 0, the profile (u∗i + ε)ni=1 ∈ V((u∗i )
n
i=1). Thus

w ≤ φ ((u∗i + ε)ni=1) = φ ((u∗i )
n
i=1) + εφ(1),

with the equality due to linearity of φ, and 1 denoting the unit vector of C . Since continuous

linear functionals are bounded, εφ(1) → 0 as ε → 0. Hence w ≤ φ ((u∗i )
n
i=1). This coupled

with the fact (u∗i )
n
i=1 ∈ U implies φ ((u∗i )

n
i=1) ≤ w ≤ φ ((u∗i )

n
i=1), hence φ ((u∗i )

n
i=1) = w. Plug

this into (16) to obtain (15) and hence the claim. �

For each i ∈ {1, . . . , n} and any ui ∈ C(Ti) let

φi(ui) := φ (0, . . . , 0, ui, 0, . . . , 0) ,

that is, the action of φ on the profile of payoff functions whose components are constantly

zero except the one corresponding to player i’s payoff function. By linearity of φ,

φ ((ui)
n
i=1) =

n∑
i=1

φi(ui) (17)

for all (ui)
n
i=1 ∈ C . Obviously, for each i, φi is a continuous linear functional on C(Ti).

Thus φi is also a bounded functional on C(Ti).

Claim 2 For each i ∈ {1, . . . , n}, φi is positive.5

Proof Suppose, to the contrary, that φi(ui) < 0 for some ui ∈ C(Ti) such that ui ≥ 0 on Ti.

Then
(
u∗i − ui, (u∗j)j 6=i

)
∈ U by definition of U, hence Claim 1 implies

φ
(
(u∗j)

n
j=1

)
≥ φ

((
u∗i − ui, (u∗j)j 6=i

))
=

n∑
j=1

φj(u
∗
j)− φi(ui) >

n∑
j=1

φj(u
∗
j) = φ

(
(u∗j)

n
j=1

)
,

contradiction. �

For any i, since φi is a bounded linear functional on C(Ti), with Ti = [ai, bi] a closed,

bounded interval, the Riesz representation theorem in its original version (Royden and Fitz-

patrick [13, p468]) implies that there exists a unique function φi : Ti → R, of bounded

variation on [ai, bi], continuous on the right on (ai, bi), and vanishing at ai, such that

φi(ui) =

∫
Ti

uidλi

5 A functional φi on C(Ti) is positive iff φi(ui) ≥ 0 for any ui ∈ C(Ti) such that ui ≥ 0 on Ti.
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for all ui ∈ C(Ti). This, combined with (15) and (17), delivers Theorem 1 if (i) λi is also

weakly increasing, (ii) its range belongs to R+, and (iii) λi > 0 on some positive-measure

subset of Ti for some i.

Property (ii) follows from property (i) because λi(ai) = 0. Then (iii) follows from (ii):

Otherwise (ii) implies λi = 0 for all i, hence φ is identically zero on C , contradiction to

Claim 1. Thus it suffices to prove (i).

To that end, suppose, to the contrary, that ti < t′i and λi(ti) > λi(t
′
i) for some ti, t

′
i ∈

(ai, bi).
6 Then, since λi is right-continuous on (ai, bi), there exists a sufficiently small ε > 0

such that for any δ ∈ (0, ε), λi(ti+δ) > λi(t
′
i+δ). It is easy to construct a continuous function

ui : Ti → [0, 1] whose support is contained by [ti, t
′
i+ ε] such that ui = 1 on [ti+ ε/2, t′i+ ε/2].

Then ui ≥ 0 on Ti, ui ∈ C(Ti), and yet

φi(ui) =

∫
Ti

uidλi =

∫ t′i+ε

ti

dλi ≤
∫ t′i+ε/2

ti+ε/2

dλi = λi(t
′
i + ε/2)− λi(ti + ε) < 0,

contradicting Claim 2. That proves property (i) of λi. Thus Theorem 1 follows.

4.2 Calculating the Objective with Two-Part Operators

Theorem 1, coupled with (3), implies that any interim Pareto optimum is a maximum of∑
i

∫
Ti

Qi(ti)dλi(ti)−
∑
i

∫
Ti

Pi(ti)

ti
dλi(ti) (18)

among all mechanisms (Qi, Pi)
n
i=1 subject to IC, IR and BB, given some profile (λi)

n
i=1 of

distributions λi on Ti specified in Theorem 1. By (11), ti 7→ 1/ti is the Radon-Nikodym

derivative dΛi

dλi
of Λi with respect to λi, hence the objective (18) is equal to∑

i

∫
Ti

Qidλi −
∑
i

∫
Ti

PidΛi. (19)

One can calculate the integral
∫
Ti
PidΛi in the second sum with the envelope theorem and

integration-by-part routine in auction theory, thereby incorporating into (18) the first-order

condition part of the IC constraint. The calculation amounts to modifying the ex ante

expected revenue—measured by the endogenous Λi rather than the exogenous Fi—that one

can extract from player i by the expected information rent necessary to incentivize i in

6 There is no need to consider ti = ai and t′i = bi because we already have λi(ai) = 0, and it is immaterial

to change the value of λi at the singleton bi.
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implementing the allocation Qi. Because i’s incentive is that of a buyer when Qi(ti) > 0,

and that of a seller (for the service of receiving the bad) when Qi(ti) < 0, the information rent

calculation is an operation that bifurcates according to the sign of Qi(ti) for each realized

type ti. Managing this operation tractably and understanding its properties are important

for this and the next steps of the proof for Theorem 2. First we define such operations.

4.2.1 Two-Part Operators

For any player i and any three integrable functions Qi, ϕi,+, ϕi,− : Ti → R, denote ϕi :=

(ϕi,+, ϕi,−), called two-part function, and define

〈Qi : ϕi| :=
∫
Ti

Q+
i (s)ϕi,+(s)ds−

∫
Ti

Q−i (s)ϕi,−(s)ds. (20)

Thus the operation Qi 7→ 〈Qi : ϕi| acts on the function Qi in two parts, one on the positive

part Q+
i of Qi, the other on the negative part, −Q−i . The asymmetric bracket of Qi and ϕi

is to highlight the asymmetry between the two arguments: Obviously, 〈Qi : ϕi| is not linear

in Qi unless ϕi,+ = ϕi,−; by contrast, 〈Qi : ϕi| is a linear functional of ϕi. Any integrable

function gi : Ti → R is the same as a two-part function (gi,+, gi,−) such that gi,+ = gi,− = gi.

A two-part function ϕi := (ϕi,+, ϕi,−) on Ti is said well-ordered iff ϕi,+ ≤ ϕi,− a.e. on Ti.

Next is an important property of well-ordered two-part functions (proved in Appendix B.1).

Lemma 1 For any i and any two-part function ϕi that is well-ordered, Qi 7→ 〈Qi : ϕi| is a

concave functional on the space of integrable functions defined on Ti.

For any i and any distribution µi on Ti, define a two-part function ρ(µi) := (ρ+(µi), ρ−(µi))

by letting, for any ti ∈ Ti,

ρ+(µi)(ti) := −
∫
Ti

dµi +

∫ ti

ai

dµi, (21)

ρ−(µi)(ti) :=

∫ ti

ai

dµi. (22)

Obviously ρ(µi) is well-ordered. It will be clear that ρ+(µi) reflects i’s information rent

density when i acts as a buyer, and ρ−(µi), i’s information rent density when i acts as a

seller, had i’s type been measured by µi. The bifurcated calculation of a player i’s information

rents mentioned previously, according to the next lemma (proved in Appendix B.2), involves

a two-part operation on his allocation Qi with ρ(µi):
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Lemma 2 For any IC mechanism (Q,P ), any player i and any distribution µi on Ti, with

the notation in (4) and (6),∫
Ti

Pidµi =

∫
Ti

tiQi(ti)dµi(ti) + 〈Qi : ρ(µi)| − Ũi (τ(Qi))

∫
Ti

dµi. (23)

4.2.2 The Budget Balance Condition Combined with IC and IR

Denote I for the identity map s 7→ s on R. For any functions g, h : R → R, denote gh for

the pointwise product between g and h, so that (gh)(s) = g(s)h(s) for all s ∈ R.

Lemma 3 For any allocation (Qi)
n
i=1 such that Qi is weakly increasing on Ti for any i, if

(Qi)
n
i=1 constitutes an IC, IR and BB mechanism then∑

i

〈Qi : Ifi + ρ(Fi)| ≥ 0; (24)

conversely, if (24) holds then there exists an ex post payment rule (pi)
n
i=1,∑

i

pi(t) =
∑
i

〈Qi : Ifi + ρ(Fi)| (25)

for any t ∈
∏

j Tj, which coupled with Q constitutes an IC, IR and BB mechanism such that

IR is binding at some ti ∈ Ti for every i.

Proof By Lemma 2, IC of (Q,P ) implies (23). Plug µi = Fi into (23) and note dFi(s) =

fi(s)ds to obtain∫
Ti

PidFi =

∫
Ti

tiQi(ti)fi(ti)dti + 〈Qi : ρ(Fi)| − Ũi (τ(Qi))

= 〈Qi : Ifi|+ 〈Qi : ρ(Fi)| − Ũi (τ(Qi)) ,

where the second line comes from the notations of I and pointwise product Ifi, and the fact

that
∫
Ti
Qi(s)ψ(s)ds = 〈Qi : ψ| for any integrable function ψ : Ti → R, as ψ is a special

two-part function such that ψ+ = ψ− = ψ. Then, since ϕ 7→ 〈Qi : ϕ| is linear,∫
Ti

PidFi = 〈Qi : Ifi + ρ(Fi)| − Ũi (τ(Qi)) .

Sum this equation across i = 1, . . . , n to get∑
i

∫
Ti

PidFi =
∑
i

〈Qi : Ifi + ρ(Fi)| −
∑
i

Ũi (τ(Qi)) .
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BB implies that the left-hand side is nonnegative and hence∑
i

〈Qi : Ifi + ρ(Fi)| ≥
∑
i

Ũi (τ(Qi)) , (26)

which coupled with IR (Section 2.3) implies (24). Thus (24) is a necessary condition for any

profile Q of weakly increasing allocations to constitute an IC, IR and BB mechanism. The

proof of the converse is routine and hence relegated to Appendix B.3.

4.2.3 The Objective with Optimal Payment Rules

Now we calculate the objective (18) by incorporating (23) (part of the IC constraint) and

optimality of the payment rule. Denote Q for the set of all (reduced-form) allocations

(Qi)
n
i=1, each generated by some ex post allocation according to (2). Let Qmon be the set of

all (Qi)
n
i=1 ∈ Q such that Qi is weakly increasing for every i.

Lemma 4 For any profile λ := (λi)
n
i=1 of distributions specified in Theorem 1, denote Λ

and αλ by (11)–(12); then maximization of (10) subject to IC, IR and BB is equivalent to

max
Q∈Qmon

∑
i 〈Qi : αλ (Ifi + ρ(Fi))− ρ(Λi)| (27)

s.t.
∑

i 〈Qi : Ifi + ρ(Fi)| ≥ 0.

Proof By Sections 2.3 and Lemma 3, the constraints Q ∈ Qmon and
∑

i 〈Qi : Ifi + ρ(Fi)| ≥
0 together constitute the choice set for the problem. We still need to show that the objective

in (27) is equal to (10), i.e., equal to (19). By Lemma 2, IC of (Q,P ) implies (23). Plug

into (23) the case µi = Λi and note dΛi(s) = (1/s)dλi by (11) to obtain∫
Ti

PidΛi =

∫
Ti

sQi(s)(1/s)dλi(s) + 〈Qi : ρ(Λi)| − Ũi (τ(Qi))

∫
Ti

dΛi

=

∫
Ti

Qidλi + 〈Qi : ρ(Λi)| − Ũi (τ(Qi))

∫
Ti

dΛi.

Sum this across i and plug the equation obtained thereof into (19) to see that the objec-

tive (18) is equal to ∑
i

Ũi (τ(Qi))

∫
Ti

dΛi −
∑
i

〈Qi : ρ(Λi)| . (28)

By (12) and (26),∑
i

Ũi (τ(Qi))

∫
Ti

dΛi ≤ αλ
∑
i

Ũi (τ(Qi)) ≤ αλ
∑
i

〈Qi : Ifi + ρ(Fi)| .

24



Furthermore, the right end of this inequality can be attained: Pick a player i∗ for whom∫
Ti∗
dΛi∗ = αλ; for any realized type profile t ∈

∏
i Ti and any i 6= i∗, set the money

transfer p∗i (t) from i to others to be pi(t), with pi being the ex post payment rule in (25); set

the money transfer p∗i∗(t) from i∗ to others as pi∗(t)−
∑

i 〈Qi : Ifi + ρ(Fi)|. Given (p∗i )
n
i=1, BB

follows from (25), and Ũi (τ(Qi)) = 0 for all i 6= i∗, while Ũi (τ(Qi∗)) =
∑

i 〈Qi : Ifi + ρ(Fi)|.
Thus, given the allocation Q, when the payment is optimized, we have∑

i

Ũi (τ(Qi))

∫
Ti

dΛi = αλ
∑
i

〈Qi : Ifi + ρ(Fi)| .

Hence there is no loss of generality to assume that (10), or (28), is equal to

αλ
∑
i

〈Qi : Ifi + ρ(Fi)| −
∑
i

〈Qi : ρ(Λi)| .

This, by linearity of ϕi 7→ 〈Qi : ϕi|, is equal to∑
i

(〈Qi : αλ (Ifi + ρ(Fi))| − 〈Qi : ρ(Λi)|) =
∑
i

〈Qi : αλ (Ifi + ρ(Fi))− ρ(Λi)| ,

the objective in (27).

Remark 2 By (26), any payment rule p̂ that renders Ũi (τ(Qi)) > 0 while
∫
Ti
dΛi < αλ

would make
∑

i Ũi (τ(Qi))
∫
Ti

Λi < αλ
∑

i 〈Qi : Ifi + ρ(Fi)|. Since the proof of Lemma 4

has shown that the right-hand side of this inequality is attainable, the payment rule p̂ is

suboptimal. This, coupled with the definitions of τ(Qi) and Ũi, implies Claim (b.ii) of

Theorem 2. Claim (b.iii) is obvious. If it does not hold, there is a positive expected money

surplus, which can be equally distributed to the players independently of their types thereby

achieving Pareto improvement, contradiction.

4.3 Solving the Constrained Optimization Problem

To solve the optimization problem (27), first we reformulate it through the saddle point con-

dition, which delivers the profile (Zi,+, Zi,−)ni=1 of functions stated in Theorem 2. Then we

maximize the associated Lagrangian thereby obtaining the formula for the optimal mecha-

nism. The first step requires that the saddle point condition be a necessary condition for any

solution of (27). The second step presents us a nonlinear programming problem, which we

solve through bisecting it into two linear programmings. Properties of the two-part operators

are instrumental to both steps.
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4.3.1 Deriving the (Zi)
n
i=1 Functions through the Saddle Point Condition

Recall that Q denotes the space of all allocations (Qi)
n
i=1, each generated by some ex post

allocation according to (2). It is easy to verify that Q belongs to a normed linear space.

Endow Q with such a norm.7 Also recall Qmon as the set of (Qi)
n
i=1 ∈ Q such that Qi is

weakly increasing for any i. One can prove that Qmon is convex (Appendix B.4).

Denote ν for the Lagrange multiplier of the constraint
∑

i 〈Qi : Ifi + ρ(Fi)| ≥ 0 in (27).

The Lagrangian associated with (27) is

L (Q, ν) :=
∑
i

〈Qi : αλ (Ifi + ρ(Fi))− ρ(Λi)|+ ν
∑
i

〈Qi : Ifi + ρ(Fi)|

=
∑
i

〈Qi : αλ (Ifi + ρ(Fi))− ρ(Λi) + ν (Ifi + ρ(Fi))|

=
∑
i

〈
Qi :

(
(αλ + ν)

(
I +

ρ(Fi)

fi

)
− ρ(Λi)

fi

)
fi

∣∣∣∣ , (29)

with the second line due to linearity of ϕi 7→ 〈Qi : ϕi|, and the third line due to the fact

that two-part functions constitute an algebra (allowing for multiplications and divisions).

Lemma 5 Q∗ is a solution for (27) if and only if there exists a ν∗ ∈ R+ such that (Q∗, ν∗)

is a saddle point in the sense that, for all Q ∈ Qmon and all ν ∈ R+,

L (Q∗, ν) ≥ L (Q∗, ν∗) ≥ L (Q, ν∗). (30)

Proof The “if” part is trivial. To prove the “only if” part, it suffices to verify the conditions

corresponding to those in Luenberger [8, Corollary 1, p219]. To that end, we start with two

claims about each player i, which are proved in Appendix B.5: First, the two-part functions

Ifi + ρ(Fi) and αλ (Ifi + ρ(Fi))− ρ(Λi) are each well-ordered. Second,

〈Qi : Ifi + ρ(Fi)| ≥ τ(Qi)

∫
Ti

QidFi (31)

for any weakly increasing Qi : Ti → R.

Now that Ifi + ρ(Fi) and αλ (Ifi + ρ(Fi)) − ρ(Λi) are each well-ordered, Lemma 1

implies that, in (27), both the constraint expression
∑

i〈Qi : Ifi + ρ(Fi)| and the objective

7 For example, for each player i let L2(Ti) be the L2-space of measurable real functions defined on Ti,

endowed with the measure Fi. Clearly Q ∈
∏

i L
2(Ti). Define the norm for

∏
i L

2(Ti) by ‖Q‖ :=
∑

i ‖Qi‖2
for any Q := (Qi)

n
i=1 ∈

∏
i L

2(Ti).
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∑
i〈Qi : αλ (Ifi + ρ(Fi))− ρ(Λi)| are concave functions of (Qi)

n
i=1. Thus,{

(Qi)
n
i=1 ∈ Q :

∑
i

〈Qi : Ifi + ρ(Fi)| ≥ 0

}
is a convex set, and the objective in (27) is concave in the choice variable. This, coupled

with convexity of Qmon (Appendix B.4), means that the proof is complete if there exists a

(Qi)
n
i=1 ∈ Qmon such that

∑
i〈Qi : Ifi + ρ(Fi)| > 0. Such (Qi)

n
i=1 exists: always assign the

good to player 1 and never assign the bad at all. That is, Q1 = 1, hence τ(Q1) = a1, and

Qi = 0 for all i 6= 1. Note (Qi)
n
i=1 ∈ Qmon. By (31),∑

i

〈Qi : Ifi + ρ(Fi)| = 〈Q1 : If1 + ρ(F1)| ≥ a1

∫
T1

Q1dF1 = a1 > 0.

Now that all conditions are verified, the saddle point characterization follows.

Coupled with Theorem 1, Lemma 5 implies that any Pareto optimal mechanism is

necessarily a solution of maxQ∈Qmon L (Q, ν) with L (Q, ν) defined by (29) for some profile

(λi)
n
i=1 of distributions specified in Theorem 1, and some ν ∈ R+. For each i, denote

Zi := (αλ + ν)

(
I +

ρ(Fi)

fi

)
− ρ(Λi)

fi
. (32)

Then (29) is the same as

L (Q, ν) =
∑
i

〈Qi : Zifi| . (33)

The Zi defined in (32) is exactly the two-part function that constitutes the profile (Zi)
n
i=1 in

Theorem 2. Plugging (21) and (22) into (32), and recalling I as the notation for the identity

map, we obtain the explicit formula for the functions Zi,+ and Zi,−: for all i and all ti ∈ Ti,

Zi,+(ti) = αλti +
αλFi(ti)− Λi(ti)

fi(ti)
− αλ − Λi(bi)

fi(ti)
+ ν

(
ti −

1− Fi(ti)
fi(ti)

)
, (34)

Zi,−(ti) = αλti +
αλFi(ti)− Λi(ti)

fi(ti)
+ ν

(
ti +

Fi(ti)

fi(ti)

)
. (35)

By (34) and (35), Zi,+(ti) − Zi,−(ti) = − (αλ − Λi(bi) + ν) /fi(ti), which is nonpositive be-

cause αλ − Λi(bi) and ν are each nonnegative by definition. Thus, Zi,+ ≤ Zi,−, as asserted

in Theorem 2.

4.3.2 Maximizing the Lagrangian through Bisection

It follows that any interim Pareto optimal mechanism satisfies the saddle point condi-

tion (30), and hence maximizes the associated Lagrangian
∑

i 〈Qi : Zifi|, defined in (33).
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To solve this Lagrange problem, recall from the end of the previous subsection that the

two-part function Zi is well-ordered. This property will be useful in the following, where we

bisect the Lagrange problem into two independent linear programmings.

Let Q+ be the set of all (Qi)
n
i=1 ∈ Q such that Qi ≥ 0 for all i, and Q− the set of all

(Qi)
n
i=1 ∈ Q such that Qi ≤ 0 for all i. Obviously both Q+ and Q− are convex. By (20)

and (33), maxQ∈Qmon L (Q, ν) is equivalent to

max
(Qi)ni=1∈Qmon

(∑
i

∫
Ti

Q+
i Zi,+dFi −

∑
i

∫
Ti

Q−i Zi,−dFi

)
(36)

≤ max
(Qi)ni=1∈Qmon

∑
i

∫
Ti

Q+
i Zi,+dFi + max

(Qi)ni=1∈Qmon

∑
i

∫
Ti

(
−Q−i

)
Zi,−dFi (37)

= max
(Qi)ni=1∈Qmon∩Q+

∑
i

∫
Ti

QiZi,+dFi (38)

+ max
(Qi)ni=1∈Qmon∩Q−

∑
i

∫
Ti

QiZi,−dFi. (39)

Thus, to solve (36), it suffices to first solve (38) and (39) individually and then construct

from the two solutions a Q∗ ∈ Qmon given which the objective in (36) attains the sum of the

maximands in (38) and (39). The next two lemmas are proved in Appendix B.6.

Lemma 6 (Q̂i)
n
i=1 ∈ Q solves (38) if and only if, for some (q̂i)i=1 ∈ A

(
(Zi,+)ni=1

)
and for

each i, Q̂i =
∫
T−i

q̂i(·, t−i)dF−i(t−i) on Ti.

Lemma 7 (Q̌i)
n
i=1 ∈ Q solves (39) if and only if, for some (q̌iB)i=1 ∈ A

(
(−Zi,−)ni=1

)
and

for each i, Q̌i = c
∫
T−i

q̌i(·, t−i)dF−i(t−i) on Ti.
8

As noted in Section 3.1, A
(
(Zi,+)ni=1

)
contains an element (q̂iA)i=1 such that q̂iA(ti, ·) =

0 on T−i whenever Zi,+(ti) ≤ 0. Likewise, A
(
(−Zi,−)ni=1

)
contains an element (q̌iB)i=1 such

that q̌iB(ti, ·) = 0 on T−i whenever Zi,−(ti) ≥ 0. For each i, let Q̂i be the marginal of q̂iA,

and Q̌i the marginal of cq̌iB. By Lemmas 6 and 7, (Q̂i)
n
i=1 solves (39), and (Q̌i)

n
i=1 solves (39).

Note that the support of (Q̂i)
n
i=1 and that of (Q̌i)

n
i=1 have no overlapped interior: For each i,

Q̂i(ti) 6= 0 ⇐⇒ q̂i(ti, ·) 6≡ 0 ⇐⇒ q̌i(ti, ·) ≡ 0 ⇐⇒ Q̌i(ti) = 0. (40)

That is because, by the choice of (q̂i)
n
i=1 and (q̌i)

n
i=1,

Q̌i(ti) 6= 0 ⇒ Q̌i(ti) < 0 ⇒ ti ≤ sup
{
τi ∈ Ti : Zi,−(τi) < 0

}
,

Q̂i(ti) 6= 0 ⇒ Q̂i(ti) > 0 ⇒ ti ≥ inf
{
τi ∈ Ti : Zi,+(τi) > 0

}
,

8Recall (2) for the role of the coefficient c.
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and, because Zi is well-ordered, one can prove (Appendix B.7) that

sup
{
τi ∈ Ti : Zi,−(τi) < 0

}
≤ inf

{
τi ∈ Ti : Zi,+(τi) ≥ 0

}
. (41)

Thus, the following function Q∗i is well-defined and weakly increasing on Ti:

Q∗i (ti) :=


Q̌i(ti) if Zi,−(ti) < 0

Q̂i(ti) if Zi,+(ti) > 0

0 else.

(42)

Because of (40), (Q∗i )
+ = Q̂i and (Q∗i )

− = −Q̌i for any i. It follows that (Q∗i )
n
i=1 is a solution

for both problems in (37) simultaneously. By (41), (42) and monotonicity of Q̂i and Q̌i,

each Q∗i is weakly increasing; thus (Q∗i )
n
i=1 is a feasible choice for (36), an upper bound of

which is the maximand of (37), attained by (Q∗i )
n
i=1. Thus, (Q∗i )

n
i=1 is a solution of (36).

4.3.3 Proof of Theorem 2

Given any profile (λi)
n
i=1 of distributions, λi on Ti for each i, the objective (10) is defined.

Let (Q,P ) be a mechanism that maximizes (10) subject to IC, IR and BB. Then Q solves (27)

and P obeys Claim (b) of the theorem with respect to Q (Lemma 4 and Remark 2). We still

need to prove that Claim (a) of the theorem holds for Q. To do that, note from Q being a

solution of (27) that (Q, ν) is a saddle point for some ν ≥ 0 with respect to the Lagrangian L

defined by (λi)
n
i=1 via (32) and (33) (Lemma 5). Thus, Q solves (36). Section 4.3.2 has shown

that the maximand of (36) is equal to the sum of the maximands in (37). Consequently,

for Q to solve (36) it must solve the two problems in (37) simultaneously. That is, (Q+
i )ni=1

solves (38) and (−Q−i )ni=1 solves (39). For (Q+
i )ni=1 to solve (38), Lemma 6 requires that Q+

i

be the marginal of some q̂iA, for each i, such that (q̂iA)ni=1 ∈ A
(
(Zi,+)ni=1

)
; for (−Q−i )ni=1 to

solve (39), Lemma 7 requires that −Q−i be the marginal of some cq̌iB, for each i, such that

(q̌iB)ni=1 ∈ A
(
(−Zi,−)ni=1

)
. That proves Claim (a) of the theorem. �

5 Conclusion

Although the literature has long recognized auctions as the optimal means to allocate scarce

resources to multiple individuals, the role of auctions has yet to be recognized, and sometimes
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deemed morally repugnant, when the issue is about redistribution among individuals.9 Given

wealth inequality, auctions are feared to benefit the rich and impoverish the poor. This paper,

by contrast, argues that the role of auctions is essential to achieve redistributive optimality.

Any interim Pareto optimum, no matter where it is located on the Pareto frontier, whether

it weighs the poor more than it does the rich, or the rich more than the poor, is necessarily

in the form of auctions, with the winner-selection rule adjusted to reflect the particular

welfare weights associated with the particular Pareto optimum. Instead of mandating wealth

transfers from one individual to another, whose idiosyncrasies are uncertain to regulators,

a social planner could have used auctions to induce the right amount of wealth transfers

among the right types of individuals.

This paper makes a methodology contribution to the mechanism design literature.

Rather than assuming a utilitarian, one-dimension, design objective, we start with interim

Pareto optimality, an objective with infinite dimensions, and show that any optimum in this

infinite dimension space corresponds to a constrained optimization of a utilitarian objective

obtained through the endogenous welfare ranking associated with the optimum. We intro-

duce a new kind of operators to systematically keep track of each player’s countervailing

incentive of playing the role of a buyer sometimes and the role of a seller some other times.

We devise a bisection technique to solve an optimal mechanism problem whose objective is

nonlinear and binding constraints are multiple.

Our model is relevant to matching theory in the case where one side of the matching

market has both desirable and undesirable items (e.g., toxic assets that need to be absorbed

by other financial institutions; enrollment of schools in undesirable neighborhoods; thankless

tasks to be carried out by some team members; donation of one’s own kidney). While much of

the matching theory literature assumes that money transfers are banned, our result suggests

that it is suboptimal to ban money transfers from matching markets.

9 Recall the indignant outcry expressed in the mass media when news broke that the locations of some

international games were chosen through bidding, or the negative media coverage on less developed countries

being paid to receive toxic, recycled materials.
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A Details in Theorem 1: Convexity of U

Pick any (W 1
i )ni=1, (W

2
i )ni=1 ∈ U. Thus, for some IC, IR and BB mechanisms (Q1

i , P
1
i )ni=1 and

(Q2
i , P

2
i )ni=1 we have, for each i = 1, . . . , n, each k = 1, 2, and any ti ∈ Ti,

W k
i (ti) ≤ Qk

i (ti)−
P k
i (ti)

ti
, (43)

P k
i (t′i) = P k

i (ti) +

∫ t′i

ti

sdQk
i (s) (∀t′i ∈ Ti), (44)

0 ≤ tiQ
k
i (ti)− P k

i (ti), (45)

P k
i (ti) =

∫
T−i

pki (ti, t−i)dF−i(t−i), (46)

0 ≤
∑
i

pki (t) (∀t ∈
∏
i

Ti), (47)

and Qk ∈ Qmon and W k
i a continuous function on Ti for each k. Here (44) coupled with

Qk ∈ Qmon is equivalent to IC, (45) is equivalent to IR, (46) and (47) together mean BB.

For any γ ∈ [0, 1], define for each i

Qi := γQ1
i + (1− γ)Q2

i ,

pi := γp1
i + (1− γ)p2

i .

Then it follows from (46) that, for any i and any ti ∈ Ti,

Pi = γP 1
i + (1− γ)P 2

i .

We shall show that (Qi, Pi)
n
i=1 satisfies IC, IR and BB. Immediately from the definition

of pi and (47), BB follows. IR is proved by combining together the definition of Qi, the

fact Pi = γP 1
i + (1 − γ)P 2

i , and (45) for both k = 1, 2. To verify IC, first note that

γQ1 + (1− γ)Q2 ∈ Qmon by convexity of Qmon (Appendix B.4). Second, by (44),

γP 1
i (t′i) + (1− γ)P 2

i (t′i) = γP 1
i (ti) + (1− γ)P 2

i (ti) +

∫ t′i

ti

sd
(
γQ1

i (s) + (1− γ)Q2
i (s)

)
for any ti, t

′
i ∈ Ti and any i. Hence (Qi, Pi)

n
i=1 is IC. Thus, (Qi, Pi)

n
i=1 satisfies IC, IR and

BB. Finally, plug Qi = γQ1
i + (1− γ)Q2

i and Pi = γP 1
i + (1− γ)P 2

i into (43) to obtain

γW 1
i (ti) + (1− γ)W 2

i (ti) ≤ Qi(ti)−
Pi(ti)

ti

for each i and any ti ∈ Ti. This coupled with continuity of γW 1
i + (1 − γ)W 2

i implies

(γW 1
i + (1− γ)W 2

i )
n
i=1 ∈ U, as desired.
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B Details in Theorem 2

B.1 Proof of Lemma 1

For any integrable function Qi : Ti → R and any well-ordered two-part function ϕi :=

(ϕi,+, ϕi,−), use the definition of two-part operators and the fact Qi = Q+
i −Q−i to obtain

〈Qi : ϕi| =

∫
Ti

Q+
i (ti)ϕi,+(ti)dFi(ti)−

∫
Ti

Q−i (ti)ϕi,−(ti)dFi(ti)

=

∫
Ti

Qi(ti)ϕi,−(ti)dFi(ti) +

∫
Ti

Q+
i (ti) (ϕi,+(ti)− ϕi,−(ti)) dFi(ti).

On the second line, the first sum on the second line is linear in Qi; and the second sum

concave in Qi because Qi(ti) 7→ Q+
i (ti) is a convex mapping and, because ϕi,+ − ϕi,− ≤ 0

a.e. on Ti (ϕ being well-ordered) and hence Q+
i (ti) (ϕi,+(ti)− ϕi,−(ti)) is a concave function

of Qi(ti) for almost all ti in Ti. Thus 〈Qi : ϕi| is concave in Qi.

B.2 Proof of Lemma 2

Denote t0i := τ(Qi). Since (Qi, Pi) is IC, (5) implies∫
Ti

Pidµi =

∫
Ti

(
tiQi(ti)−

∫ ti

t0i

Qi(s)ds− Ũi(t0i )

)
dµi(ti)

=

∫
Ti

tiQi(ti)dµi(ti)− Ũi(t0i )
∫
Ti

dµi −
∫
Ti

∫ ti

t0i

Qi(s)dsdµi(ti).

Decompose the last double integral to obtain∫
Ti

∫ ti

t0i

Qi(s)dsdµi(ti) =

∫ t0i

ai

∫ ti

t0i

Qi(s)dsdµi(ti) +

∫ bi

t0i

∫ ti

t0i

Qi(s)dsdµi(ti)

= −
∫ t0i

ai

∫ t0i

ti

Qi(s)dsdµi(ti) +

∫ bi

t0i

∫ ti

t0i

Qi(s)dsdµi(ti)

= −
∫ t0i

ai

∫ s

ai

Qi(s)dµi(ti)ds+

∫ bi

t0i

∫ bi

s

Qi(s)dµi(ti)ds

= −
∫ t0i

ai

Qi(s)

∫ s

ai

dµi(ti)ds+

∫ bi

t0i

Qi(s)

∫ bi

s

dµi(ti)ds

=

∫ t0i

ai

Q−i (s)

∫ s

ai

dµi(ti)ds+

∫ bi

t0i

Q+
i (s)

(∫ bi

ai

dµi(ti)−
∫ s

ai

dµi(ti)

)
ds

=

∫ t0i

ai

Q−i (s)ρ−(µi)(s)ds−
∫ bi

t0i

Q+
i (s)ρ+(µi)(s)ds

= −〈Qi : ρ(µi)| ,
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with the third equality due to Fubini’s theorem, the second last equality due to (21) and (22),

and the last equality due to (20). Plugging
∫
Ti

∫ ti
t0i
Qi(s)dsdµi(ti) = −〈Qi : ρ(µi)| into the

equation of
∫
Ti
Pidµi displayed above, we get (23).

B.3 Proof of the Sufficiency of (24)

For each player i, denote t0i := τ(Qi) (τ defined in (6)). For each player i, define

ci := t0iQi(t
0
i )−

∫ t0i

ai

sdQi(s) +
1

n− 1

∑
j 6=i

∫ bj

aj

s (1− Fj(s)) dQj(s) (48)

and, for any (ti, t−i) ∈ Ti × T−i, let the money transfer from i to others be equal to

pi(ti, t−i) := ci +

∫ ti

ai

sdQi(s)−
1

n− 1

∑
j 6=i

∫ tj

aj

sdQj(s). (49)

Integrating pi(ti, t−i) across t−i gives the envelope equation (5), which coupled with the mono-

tonicity hypothesis of Qi implies IC. The integration also implies Ũi(t
0
i ) = 0, hence IR follows.

To complete the proof, we prove BB: It suffices to prove (25),
∑

i pi(t) =
∑

i 〈Qi : Ifi + ρ(Fi)|
for all t ∈

∏
i Ti, for then BB follows from (24). Hence pick any t := (ti)

n
i=1 ∈

∏
i Ti. By (49),∑

i

pi(t) =
∑
i

ci +
∑
i

∫ ti

ai

sdQi(s)−
1

n− 1

∑
i

∑
j 6=i

∫ tj

aj

sdQj(s) =
∑
i

ci.

Thus, by (48),∑
i

pi(t) =
∑
i

t0iQi(t
0
i )−

∑
i

∫ t0i

ai

sdQi(s) +
1

n− 1

∑
i

∑
j 6=i

∫ bj

aj

s (1− Fj(s)) dQj(s)

=
∑
i

t0iQi(t
0
i )−

∑
i

∫ t0i

ai

sdQi(s) +
∑
i

∫ bi

ai

s (1− Fi(s)) dQi(s)

=
∑
i

(
t0iQi(t

0
i )−

∫ t0i

ai

sdQi(s) +

∫ bi

ai

s (1− Fi(s)) dQi(s)

)
.

Calculate the two integrals in the last line through integration by parts and then combine

terms to obtain∑
i

pi(t) =
∑
i

(∫ t0i

ai

Qi(s)ds−
∫ bi

ai

Qi(s) (1− Fi(s)− sfi(s)) ds

)

=
∑
i

(∫ t0i

ai

Qi(s) (1− (1− Fi(s)− sfi(s))) ds−
∫ bi

t0i

Qi(s) (1− Fi(s)− sfi(s)) ds

)
=

∑
i

〈Qi : Ifi + ρ(Fi)| ,
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with the last line due to t0i = τ(Qi), (6), (20) and the definition of ρ(F ) (Eqs. (21) and (21)).

That proves (25) and hence BB.

B.4 Convexity of Qmon

Let γ ∈ [0, 1] and Q, Q̂ ∈ Qmon. Since Q ∈ Qmon, it is generated by a (qiA, qiB)ni=1 with∑
i qiA(·) ≤ 1 and

∑
i qiB(·) ≤ 1 via (2), and Qi is weakly increasing for all i. Like-

wise, Q̂ = (Q̂i)
n
i=1 is generated by a (q̂iA, q̂iB)ni=1 with each Q̃i weakly increasing. Then∑

i (γqiA + (1− γ)q̂iA) ≤ 1 and
∑

i (γqiB + (1− γ)q̂iB) ≤ 1; furthermore, for each i, γQi +

(1 − γ)Q̂i satisfies (2) with respect to (γqiA + (1− γ)q̂iA, γqiB + (1− γ)q̂iB), and is weakly

increasing because both Qi and Q̂i are so. Thus
(
γQi + (1− γ)Q̂i

)n
i=1
∈ Qmon.

B.5 Proving the Claims in the Proof of Lemma 5

Ifi + ρ(Fi) is well-ordered By (21) and (22)), ρ+(Fi) ≤ ρ−(Fi). This, coupled with the

fact (Ifi)+ = (Ifi)− = Ifi, implies Ifi + ρ+(Fi) ≤ Ifi + ρ−(Fi). �

αλ (Ifi + ρ(Fi))−ρ(Λi) is well-ordered Since (Ifi)+ = (Ifi)− = Ifi, and αλ is a coefficient,

it suffices to show that αλρ(Fi) − ρ(Λi) is well-ordered. To that end, let ti ∈ Ti. By (11),

(12), (21) and (22),

αλ (ρ+(Fi)) (ti)− (ρ+(Λi)) (ti) = αλ (−1 + Fi(ti))− (−Λi(bi) + Λi(ti))

= αλFi(ti)− Λi(ti)− (αλ − Λi(bi))

≤ αλFi(ti)− Λi(ti)

= αλ (ρ−(Fi)) (ti)− (ρ−(Λi)) (ti),

with the inequality due to (12). Thus, αλρ(Fi)− ρ(Λi) is well-ordered, as desired. �

Proof of (31) Let Q : Ti → R be weakly increasing. Denote t0i := τ(Qi) for any i. Recall

the notation I for the identity mapping ti 7→ ti, plug (21) and (22) into ρ(F ), and use (20)

34



the definition of two-part operators to obtain

〈Qi : Ifi + ρ(Fi)| =

∫ bi

ai

Q+
i (ti)tidFi(ti)−

∫ bi

ai

Q+
i (ti) (1− Fi(ti)) dti

+

∫ bi

ai

Q−i (ti)tidFi(ti)−
∫ bi

ai

Q−i (ti)Fi(ti)dti

(6)
= −

∫ bi

t0i

Qi(ti)d (ti(1− Fi(ti))) +

∫ t0i

ai

Qi(ti)d (tiFi(ti))

= Q(t0i )t
0
i +

∫ bi

t0i

ti(1− Fi(ti))dQi(ti)−
∫ t0i

ai

tiFi(ti)dQi(ti)

≥ Q(t0i )t
0
i + t0i

[∫ bi

t0i

(1− Fi(ti))dQi(ti)−
∫ t0i

ai

Fi(ti)dQi(ti)

]

= Q(t0i )t
0
i + t0i

[∫ bi

ai

Qi(ti)dFi(ti)−Q(t0i )

]
= t0i

∫
Ti

Qi(ti)dFi(ti),

with the third and fourth equalities due to integration by parts, and the inequality due to Qi

being weakly increasing. �

B.6 Proofs of Lemmas 6 and 7

Since (38) has a nonnegativity constraint Q ∈ Q+, and (39) a nonpositivity constraint

Q ∈ Q−, we need to modify Myerson’s [11, pp. 68–70] proof to prove these lemmas. For any

continuous function ϕ : [0, 1]→ R, denote the convex hull of ϕ by convϕ, and define

(convL ϕ) (s) :=

 min[0,1] ϕ if s ≤ inf
(
arg minr∈[0,1] ϕ(r)

)
(convϕ) (s) else,

(50)

(convR ϕ) (s) :=

 min[0,1] ϕ if s ≥ sup
(
arg minr∈[0,1] ϕ(r)

)
(convϕ) (s) else.

(51)

For any integrable function ψi : Ti → R, Hi (ψi) : [0, 1]→ R is defined by (7) and continuous.

Hence convLHi (Zi,+) and convRHi (Zi,−) are defined by (50) and (51). Each a convex

function, their derivatives are defined for almost every ti ∈ Ti, and weakly increasing on the
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set of these points:

Zi,+(ti) :=
d

ds
((convLHi (Zi,+)) (s))

∣∣∣∣
s=Fi(ti)

; (52)

Zi,−(ti) :=
d

ds
((convRHi (Zi,−)) (s))

∣∣∣∣
s=Fi(ti)

. (53)

Extend the definitions to all ti ∈ Ti to keep Zi,+ and Zi,− monotone.

Proof of Lemma 6 Recall that any (Qi)
n
i=1 ∈ Q is generated by some ex post allocation

(qiA, qiB)ni=1 via (2). For any (qiA, qiB)ni=1 and any i, denote

qi := qiA − cqiB. (54)

Then (38) is equivalent to

max
(qi)ni=1∈

∏
i[−c,1]Ti

∑
i

∫
Ti

∫
T−i

qi(ti, t−i)Zi,+(ti)dF−i(t−i)dFi(ti) (55)

s.t.
(∫

T−i
qi(·, t−i)dF−i(t−i)

)n
i=1
∈ Qmon,

−c ≤
∑

i qi ≤ 1 on
∏

i Ti,∫
T−i

qi(ti, ·)dF−i ≥ 0 a.e. ti ∈ Ti ∀i ∈ {1, . . . , n}. (56)

Pick any (q̂i)
n
i=1 ∈ A

(
(Zi,+)ni=1

)
. By the definition of A

(
(Zi,+)ni=1

)
, (q̂i)

n
i=1 satisfies all

the constraints in (55). Let Q̂i denote the marginal of q̂i for each i. We claim that (q̂i)
n
i=1

solves (55).

To that end, denote Gi := Hi(Zi,+), GL
i := convL Hi(Zi,+), T :=

∏
i Ti, t := (ti)

n
i=1 and

F :=
∏

i Fi. Given any (qi)
n
i=1, with (Qi)

n
i=1 its marginal, the objective in (55) is equal to∫

T

∑
i

qi(t)Zi,+(ti)dF (t)−
∑
i

∫
Ti

(
Gi (Fi(ti))−GL

i (Fi(ti))
)
dQi(ti)

+
∑
i

Qi(bi)
(
Gi(1)−GL

i (1)
)
−
∑
i

Qi(ai)
(
Gi(0)−GL

i (0)
)

by (52) the definition of Zi,+ and integration-by-part. Here the third sum is zero because

GL
i (1) = Gi(1) by definition of GL

i , (50), for all i. Thus the objective in (55) is equal to∫
T

∑
i

qi(t)Zi,+(ti)dF (t)︸ ︷︷ ︸
=:I((qi)ni=1)

−
∑
i

∫
Ti

(
Gi (Fi(ti))−GL

i (Fi(ti))
)
dQi(ti)︸ ︷︷ ︸

=:J((qi)ni=1)

−
∑
i

Qi(ai)
(
Gi(0)−GL

i (0)
)

︸ ︷︷ ︸
=:K((qi)ni=1)

.
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Note from (52) the definition of Zi,+ that, for any i and almost every ti ∈ Ti,

Zi,+(ti) = max
{

0, Zi,+(ti)
}

(57)

Thus, since (q̂i)
n
i=1 ∈ A

(
(Zi,+)ni=1

)
, (9) the definition of A

(
(Zi,+)ni=1

)
implies

I ((q̂i)
n
i=1) ≥ I ((qi)

n
i=1) ,

with the inequality strict if (qi)
n
i=1 6∈ A

(
(Zi,+)ni=1

)
. By definition of GL

i , Gi ≥ GL
i on [0, 1];

by the monotonicity constraint in (55), Qi and Q̂i are weakly increasing, and Q̂i by definition

is constant on any interval where Gi > GL
i . Thus,

J ((q̂i)
n
i=1) = 0 ≤ J ((qi)

n
i=1) .

By (56), Qi(ai) ≥ 0. If min arg minr∈[0,1] (Hi(Zi,+)) (r) > 0, then Zi,+ < 0 on a neighborhood

of ai; since (q̂i)
n
i=1 ∈ A

(
(Zi,+)ni=1

)
, that means q̂i(ti, ·) = 0 on T−i for all ti sufficiently

near ai. Thus, with (q̂i)
n
i=1 generating Q̂, we have Q̂i(ai) = 0. If, on the other hand,

min arg minr∈[0,1] (Hi(Zi,+)) (r) = 0, then by the definition of GL
i and (50), we have Gi(0) =

GL
i (0). Thus, in either case,

K ((q̂i)
n
i=1) ≤ K ((qi)

n
i=1) .

It follows that I ((q̂i)
n
i=1) − J ((q̂i)

n
i=1) − K ((q̂i)

n
i=1) ≥ I ((qi)

n
i=1) − J ((qi)

n
i=1) − K ((qi)

n
i=1),

with the inequality strict if (qi)
n
i=1 6∈ A

(
(Zi,+)ni=1

)
. That proves the lemma. �

Proof of Lemma 7 This is analogous to the proof of Lemma 6, where constraint (56) is

replaced here by ∫
T−i

qi(ti, ·)dF−i ≤ 0 a.e. ti ∈ Ti ∀i ∈ {1, . . . , n}.

Pick any (q̌i)
n
i=1 ∈ A

(
(Zi,−)ni=1

)
. By the definition of A

(
(Zi,−)ni=1

)
, (cq̌i)

n
i=1 satisfies all

the constraints in the counterpart of (55). Let Q̌i denote the marginal of cq̌i for each i.

By the same token as the previous proof, (cq̌i)
n
i=1 solves the counterpart of (55): Denote

Gi := Hi(Zi,−) and GR
i := convRHi(Zi,−). We need only to make the following changes

in the proof of Lemma 6: (i)
∑

iQi(ai)
(
Gi(0)−GR

i (0)
)

= 0 because Gi(0) = GR
i (0); (ii)∑

iQi(bi)
(
Gi(1)−GR

i (1)
)

is maximized by Q̌ because Q̌i(bi) = 0 when

max
(
arg minr∈[0,1]Hi(Zi,−)(r)

)
< 1,

and Gi(1) = GR
i (1) when the inequality does not hold. �
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B.7 Proof of (41)

The following general observation on ironing (defined in (7) and (8)) implies (41).

Lemma 8 For any two integrable functions ϕ and φ defined on Ti, if ϕ ≥ φ on Ti then

sup {t ∈ Ti : ϕ(t) < 0} ≤ inf
{
t ∈ Ti : φ(t) ≥ 0

}
. (58)

Proof Note from (7) and (8)) that the left-hand side of (58) is equal to

inf

(
arg min

t∈Ti
(Hi(ϕ)) (Fi(t))

)
,

and the right-hand side of (58) equal to

inf

(
arg min

t∈Ti
(Hi(φ)) (Fi(t))

)
.

By (7), for any t′ > t the difference (H(ϕ)) (Fi(t
′))−(H(ϕ)) (Fi(t)) =

∫ t′
t
ϕ(s)dFi(s) increases

when ϕ increases pointwise. Thus, with ϕ ≥ φ on Ti, arg mint∈Ti (H(ϕ)) (Fi(t)) is less than

arg mint∈Ti (H(φ)) (Fi(t)) in strong-set order (Milgrom and Shannon [9]), implying (58).

C Proof of Theorem 3

For each i, let L2(Ti) be the L2-space of measurable real functions defined on Ti, endowed

with the measure corresponding to Fi. Note that L2(Ti) is a normed linear space. Endow

it with the weak topology.10 Denote Bi for the closed ball in L2(Ti) such that the radius

of Bi is equal to max{c, 1}. Endow L :=
∏n

i=1 L
2(Ti) with the product topology whose

subspaces L2(Ti) are all in the weak topology.

Lemma 9 Q ⊂
∏

i Bi.

Proof Let Q ∈ Q. Then Q = (Qi)
n
i=1 such that, by (2), Qi is uniformly bounded within

[−c, 1] for all i. Thus, with the compact domain Ti, Qi ∈ L2(Ti); furthermore, ‖Qi‖2 ≤
max{1, c} according to the probability measure F . Thus Qi ∈ Bi, hence (Qi)

n
i=1 ∈

∏
i Bi.

Lemma 10
∏

i Bi is compact in L2.

10 Although Q belongs to a normed linear space, topologizing Q according to the norm cannot guarantee

compactness of any closed and bounded choice set (cf. Royden and Fitzpatrick [13, §13.3]).
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Proof For each i, L2(Ti) is a Banach space; furthermore, L2(Ti) is the dual of itself by the

Rieze representation theorem and the fact that the number 2 is its own conjugate. Thus, by

Kakutani’s theorem (Royden and Fitzpatrick [13, p301]), Bi is compact in the weak topology

for each i. Then compactness of
∏

i Bi follows from the Tychonoff product theorem.

Lemma 11 Qmon is compact in L.

Proof Let
(
(Qk

i )
n
i=1

)∞
k=1

be a sequence in Qmon. It suffices to extract an infinite subsequence

that converges to some element of Qmon in the topology of L.

By Lemmas 9 and 10,
(
(Qk

i )
n
i=1

)∞
k=1

has a subsequence ((Qkl
i )ni=1)∞l=1 that converges in

the topology of L. Since the latter is the product topology of L2(Ti)’s across i, each in weak

topology, (Qkl
i )∞l=1 converges in weak topology for each i ∈ {1, . . . , n}.

Pick any i ∈ {1, . . . , n}. By the definition of Qmon, Qkl
i is a weakly increasing function

and bounded within [−c, 1] for all i and all l. Thus, by Helley’s selection principle,11 (Qkl
i )nl=1

has an infinite subsequence that converges pointwise to some Q∗i : Ti → R. This being true

for all i ∈ {1, . . . , n}, we can extract an infinite subsequence, denoted by ((Qk
i )
n
i=1)∞k=1 with

superscripts relabeled, such that Qk
i →k Q

∗
i pointwise on Ti for all i.

Claim: (Q∗i )
n
i=1 ∈ Qmon. For each i, with the convergence Qk

i →k Q∗i pointwise,

obviously Q∗i is weakly increasing and bounded within [−c, 1]. Thus it suffices the claim to

prove (Q∗i )
n
i=1 ∈ Q, i.e., that (Q∗i )

n
i=1 is generated by some ex post allocation via (2). To

that end, note from (Qk
i )
n
i=1 ∈ Q that for each k ∈ {1, 2, . . .} there is a profile (qkiA, q

k
iB)ni=1,

with qkiA, q
k
iB :

∏n
j=1 Tj → [0, 1],

∑
i q
k
iA(·) ≤ 1 and

∑
i q
k
iB(·) ≤ 1, that generates (Qk

i )
n
i=1

according to (2). For each i let ((smi )ni=1)∞m=1 be an enumeration of the points in
∏n

k=1 Ti with

rational coordinates. By the diagonal trick we can extract a subsequence
(
(qkmiA , q

km
iB )ni=1

)∞
m=1

of
(
(qkiA, q

k
iB)ni=1

)∞
k=1

such that
(
qkmiA
)∞
m=1

converges to some q∗iA, and
(
qkmiB
)∞
m=1

to some q∗iB,

at (smi )ni=1 for all m = 1, 2, . . .. Extend the domain of (q∗iA, q
∗
iB)ni=1 to the rest of

∏
i Ti by

q∗iA(r) := infsm=r q
∗
iA(sm) and q∗iB(r) := infsm=r q

∗
iB(sm) for all r ∈

∏
i Ti. Obviously, q∗iA

and q∗iB are each a function
∏

i Ti → [0, 1],
∑

i q
∗
iA(·) ≤ 1, and

∑
i q
∗
iB(·) ≤ 1. For each

m = 1, 2, . . ., Eq. (2) implies

Qkm
i (·) =

∫
T−i

qkmiA (·, t−i)dF−i(t−i)− c
∫
T−i

qkmiB (·, t−i)dF−i(t−i)

11 Kolmogorov and Fomin [6, p372].
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on Ti. Now that (qkmiA , q
km
iB )→m (q∗iA, q

∗
iB) pointwise, the right-hand side of the above equation,

by the bounded convergence theorem, converges to∫
T−i

q∗iA(·, t−i)dF−i(t−i)− c
∫
T−i

q∗iB(·, t−i)dF−i(t−i)

pointwise on Ti. Meanwhile, Qkm
i →m Q∗i pointwise, as already established. Thus, for each i,

Q∗i (·) =

∫
T−i

q∗iA(·, t−i)dF−i(t−i)− c
∫
T−i

q∗iB(·, t−i)dF−i(t−i)

on Ti. Consequently, (Q∗i )
n
i=1 ∈ Q, which implies the claim (Q∗i )

n
i=1 ∈ Qmon.

Thus, to complete the proof, we show that the subsequence ((Qk
i )
n
i=1)∞k=1 converges, in

the topology of L, to (Q∗i )
n
i=1. It suffices to show that, for each bidder i, (Qk

i )
∞
k=1 converges

to Q∗i in the weak topology of L2(Ti). Thus consider any bounded linear functional Ψ

on L2(Ti). By Riesz’s representation theorem, the functional is the form of

Ψ(ϕi) =

∫
Ti

ϕiψdFi

for some function ψ ∈ L2(Ti). Since Qk
i → Q∗i pointwise on Ti,

lim
k→∞

Ψ(Qk
i ) = lim

k→∞

∫
Ti

Qk
iψdFi =

∫
Ti

lim
k→∞

Qk
iψdFi =

∫
Ti

Q∗iψdFi.

This being true for any continuous linear functional Ψ on L2(Ti), (Qk
i )
∞
k=1 converges to Q∗i in

the weak topology of L2(Ti). Hence ((Qk
i )
n
i=1)∞k=1 converges, in the topology of L, to (Q∗i )

n
i=1,

an element of Qmon. Thus Qmon is compact in the topology of L.

Lemma 12 For any i and any distribution µi on Ti, Qi 7→ 〈Qi : ρ(µ)| is continuous on Q

in the topology of L.

Proof By (20), 〈Qi : ρ(µ)| =
∫
Ti
Q+
i (s) ((ρ+(µi)) (s)) ds −

∫
Ti
Q−i (s) ((ρ−(µi)) (s)) ds, and

Q+ and Q− are each continuous in Q. Thus it suffices to show continuity of

ϕi 7→
∫
Ti

ϕi(s) ((ρ+(µi)) (s)) ds,

ϕi 7→
∫
Ti

ϕi(s) ((ρ−(µi)) (s)) ds,

in the weak topology of L2(Ti). By the definition of weak topology, it suffices to show that

both mappings are bounded linear functionals on L2(Ti). With linearity obvious, we need
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only to show boundedness. To show that, note from (21) and (22) that

− µi(bi)

minTi fi
≤ ρ+(µi)

fi
≤ 0,

0 ≤ ρ−(µi)

fi
≤ µi(bi)

minTi fi
.

Hence ∣∣∣∣∫
Ti

ϕi ·
ρ+(µi)

fi
dFi

∣∣∣∣ ≤ µi(bi)

minTi fi

∫
Ti

|ϕi| dFi ≤
µi(bi)

minTi fi
‖ϕi‖,

and likewise for ρ−(µi). Thus each is bounded on Lp(Ti), as desired.

Proof of Theorem 3 By Lemma 4, it suffices to prove that problem (27) admits a solution.

By Lemma 12, 〈Qi : ρ(Fi)| and 〈Qi : ρ(Λi)| are each a continuous function of Qi in the

topology of L. Note that 〈Qi : Ifi| =
∫
Ti
Qi(s)sfi(s)ds, clearly a continuous function of Qi

in the topology of L. Thus,
∑

i 〈Qi : αλ (Ifi + ρ(Fi))− ρ(Λi)|, the objective in (27), is a

continuous function of the choice variable Q in the topology of L, and the constraint
∑

i〈Qi :

Ifi + ρ(Fi)〉 ≥ 0 defines a closed subset of Q in the topology of L. Since Qmon is compact in

the same topology (Lemma 11), the choice set of problem (27),

Q+
mon :=

{
(Qi)

n
i=1 ∈ Qmon :

∑
i

〈Qi : Ifi + ρ(Fi)| ≥ 0

}
,

is compact in the topology of L. Since ti 7→ 1/n (assigning the good for free randomly with

equal probability among the n players and assigning the bad to none) is contained in Q+
mon,

the set is also nonempty. It then follows from the generalized Weierstrass extreme value

theorem that (27) admits a solution, as desired.

D Proofs of the Corollaries

D.1 Proof of Corollary 1

By hypothesis of this corollary, Fi = Fj and λi = λj for all players i and j. Thus, by (34)

and (35), the pair (Zi,+, Zi,−) is identical across i. Hence Theorem 2 implies that Qi is

identical across i.

First, we claim that Qi > 0 on (bi − δ, bi] for all i. To prove the claim, note from (34)

that Zi,+(bi) = (αλ + ν) bi > 0 for all i. Thus, by continuity, Zi,+ > 0 on (bi − δ, bi] for
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some δ > 0 for all i. Then for each i, Hi(Zi,+) is strictly increasing on (Fi(bi − δ), 1]; thus,

since 1 is the maximum of the domain for Hi(Zi,+), its convex hull Ĥi(Zi,+) is also strictly

increasing on (Fi(bi−δ), 1]. It follows that Zi,+ > 0 on (bi−δ, bi], hence Theorem 2.a implies

that Qi > 0 on (bi − δ, bi].
Second, by the hypothesis that the bad is assigned with strictly positive probability

and the fact that Qi is weakly increasing, Qi < 0 on [ai, ai + ε] for some ε > 0 and all i.

The first and second observations combined, there exists xi, yi ∈ (ai, bi) (∀i) such that

Qi(ti)


< 0 if ti ∈ (ai, xi)

= 0 if ti ∈ (xi, yi)

> 0 if ti ∈ (yi, bi).

Recall the notation Ũi(· | Q,P ) from (4). By the envelope theorem, d
dti
Ũi(ti | Q,P ) = Qi(ti)

for almost every ti, and Ũi(· | Q,P ) is absolutely continuous. Thus, Ũi(· | Q,P ) is strictly

decreasing on [ai, xi), constant on (xi, yi), and strictly increasing on (yi, bi]. Recall from (3)

and (4) that

Ui(ti | Q,P ) =
1

ti
Ũi(ti | Q,P )

for all ti ∈ Ti. Thus, Ui(· | Q,P ) is absolutely continuous on Ti
12 and, since ti ≥ ai > 0,

Ui(· | Q,P ) is strictly decreasing on [ai, yi). To complete the proof, we need only to show

that Ui(· | Q,P ) is strictly increasing on (bi − δ, bi] for some δ > 0. To that end, pick any

ti ∈ (ai, bi) at which Ũi(· | Q,P ) is differentiable and note

d

dti
Ui(ti | Q,P ) =

d

dti

(
Ũi(ti | Q,P )

ti

)
=

1

(ti)2

(
tiQi(ti)− Ũi(ti | Q,P )

)
=

1

(ti)2
Pi(ti),

with the last equality due to (4). By the envelope equation (5), Pi is continuous and weakly

increasing on Ti, hence limti↑bi Pi(ti) = Pi(bi) = maxTi Pi. We claim that Pi(bi) > 0, otherwise

by Theorem 2.b.iii we have Pi = 0 on Ti, which contradicts (5), as Qi has been proved to be

12 It suffices to prove that Ui(· | Q,P ) is Lipschitz on Ti: For any ti, t
′
i ∈ Ti, with Ui := Ui(· | Q,P ),

|Ui(t
′
i)− Ui(ti)| =

∣∣∣∣ 1

t′i
Ũi(t

′
i)−

1

ti
Ũi(ti)

∣∣∣∣ =

∣∣∣∣ 1

t′iti

(
ti

(
Ũi(t

′
i)− Ũi(ti)

)
+ Ũ(ti) (ti − t′i)

)∣∣∣∣
=

∣∣∣∣∣ 1

t′iti

(
ti

∫ t′i

ti

Qi(s)ds+ Ũ(ti) (ti − t′i)

)∣∣∣∣∣ ≤
∣∣∣∣ 1

t′iti

(
ti |t′i − ti|max

Ti

|Qi|+
∣∣∣Ũ(ti)

∣∣∣ |ti − t′i|)∣∣∣∣
≤ bi

a2i
(max{1, c}+ 1) |t′i − ti| ,

with the last inequality due to −c ≤ Qi ≤ 1 and 0 ≤ Ũi ≤ bi. Hence Ui(· | Q,P ) is Lipschitz.
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nonzero on positive-measure subsets of Ti. Now that Pi(bi) > 0, limti↑bi Pi(ti) = Pi(bi) means

that Pi > 0 on (bi − δ, bi] for some δ > 0. Thus d
dti
Ui(ti | Q,P ) > 0 at any differentiable

point ti in this interval. This, coupled with absolute continuity of Ui(· | Q,P ), implies that

Ui(· | Q,P ) is strictly increasing on this interval, as desired.

D.2 Proof of Corollary 2

Theorems 1 and 2 combined, any interim Pareto optimal mechanism (Q,P ) satisfies (a) in

Theorem 2. That is, Q is generated by an ex post allocation (qiA, qiB)ni=1 such that, for

each i, the marginal of qiA is equal to Q+
i , and the marginal of cqiB, Q−i . Since suppQ+

i and

suppQ−i have no overlapped interior, for any interior point ti of suppQ+
i ,

c

∫
T−i

qiB(ti, ·)dF−i = Q−i (ti) = 0

and hence, since c > 0 by hypothesis, qiB(ti, ·) = 0 a.e. on T−i. Since ti is interior to suppQ+
i

if 0 < Q+
i (ti) =

∫
T−i

qiA(ti, ·)dF−i, which holds if qiA(ti, ·) > 0 on a positive-measure subset

of T−i, we have:

qiA(ti, ·) > 0 on a positive-measure subset of T−i =⇒ qiB(ti, ·) = 0 a.e. on T−i.

Analogously, the above holds when the roles of A and B are switched. Thus, qiAqiB = 0 a.e.

on
∏

k Tk for all i, i.e., the mechanism (Q,P ) satisfies assignment exclusivity, as desired.

D.3 Proof of Corollary 3

Lemma 13 For any solution Q of (27), if Qi ≥ 0 on (ai, bi] for any i, then
∑

i〈Qi :

Ifi + ρ(Fi)| > 0.

Proof For any i, Qi ≥ 0 on (ai, bi] means that τ(Qi) = ai (with τ(Qi) defined in (6)).

Then (31) implies ∑
i

〈Qi : Ifi + ρ(Fi)| ≥
(

min
i
ai

)∑
i

∫
Ti

Qi(ti)dFi(ti).

We claim that
∑

i

∫
Ti
Qi(ti)dFi(ti) > 0. Otherwise, since Qi ≥ 0 for all i, Qi = 0 for all i.

Consequently, the objective in (27) is equal to∑
i

〈0 : αλ (Ifi + ρ(Fi))− ρ(Λi)| = 0.
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Thus, by Lemma 4, the social welfare
∑n

i=1

∫
Ti
Ui(· | Q,P )dλi = 0. But then Q is suboptimal

because assigning the good to any i for free, for whom λi > 0 on a positive-measure subset

of Ti (such i exists because, by Theorem 1, λk’s are not identically zero), generates a positive

social welfare. Thus
∑

i

∫
Ti
Qi(ti)dFi(ti) > 0, hence

∑
i〈Qi : Ifi + ρ(Fi)| > 0.

Proof of Corollary 3 Let (Qi, Pi)
n
i=1 be any Pareto optimum specified by the hypothesis.

Then it is determined by (Zi,+, Zi,−)ni=1 (Theorem 2). By (34) and (35) and continuous

differentiability of fi at ai, and the definition of λ′i (= dλi/dFi), one can show, for each i,

that d
dti
Zi,+ and d

dti
Zi,− are continuous at ai and

d

dti
Zi,+(ai) = 2 (αλ + ν)− λ′i(ai)

ai
+
f ′i(ai)

f 2
i (ai)

(αλ − Λi(bi)) +
νf ′i(ai)

f 2
i (ai)

,

d

dti
Zi,−(ai) = 2 (αλ + ν)− λ′i(ai)

ai
.

Case (i): ν = 0. Then, by (13), d
dti
Zi,−(ai) < 0 for any i, and d

dti∗
Zi∗,+(ai∗) < 0 for

the i∗ that maximizes Λi(bi) among all i (so αλ−Λi∗(bi∗) = 0). Thus, since d
dti
Zi,+ and d

dti
Zi,−

are continuous at ai, both Zi∗,+ and Zi∗,− are strictly decreasing on [ai∗ , ai∗ + δ) for some

δ > 0. Then Hi∗(Zi∗,+) and Hi∗(Zi∗,−) by (7) are strictly concave, and hence their convex

hulls affine, on [Fi∗(ai∗), Fi∗(ai∗ + δ)). Thus Zi∗,+ and Zi∗,− are constant on [ai∗ , ai∗ + δ).

Then Claims (a) of Theorem 2 implies that Qi∗ is constant on this neighborhood.

Case (ii): ν > 0. We claim that there exists some i for whom Qi < 0 on a neighborhood

in Ti. Otherwise, the constraint
∑

i〈Qi : Ifi + ρ(Fi)| ≥ 0 is non-binding (Lemma 13),

which coupled with the saddle point condition (30) implies that ν = 0, contradiction. Now

that Qi < 0 on a neighborhood in Ti for some i, it follows from monotonicity (IC) of Qi

that Qi < 0 on [ai, ai +η) for some η > 0. Then Theorem 2.a implies Zi,− < 0 on [ai, ai +η).

By definition of ironing, if Zi,− is not constant on a neighborhood of ai, then Zi,− = Zi,−

on that neighborhood and then Zi,− < 0 on that neighborhood, contradicting the fact that

Zi,−(ai) = (αλ + ν) ai > 0 and that Zi,− is continuous. Thus, on a neighborhood of ai, Zi,−

is constant, and hence so is Qi.

E Possibility of Binding IC, IR and BB Constraint

The bisection method in Section 4.3.2 is needed to solve the Lagrange problem because its

objective
∑

i〈Qi : Zifi| may be nonlinear in the choice variable Q. Clearly
∑

i〈Qi : Zifi| is
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nonlinear if and only if (Zi,+)ni=1 6= (Zi,−)ni=1, which holds in general when Λi is not identical

across all players i. Even if Λi is identical across all players i, (Zi,+)ni=1 6= (Zi,−)ni=1 still holds

if ν > 0, i.e., if the combined IC, IR and BB constraint,
∑

i 〈Qi : Ifi + ρ(Fi)| ≥ 0, is binding.

Thus, consider the special case where for some constant β

∀i = 1, . . . , n : Λi(bi) = β. (59)

Then the objective in (27) becomes a linear functional on Q:∑
i

∫
Ti

QiYidFi, (60)

where, for any player i and any ti ∈ Ti,

Yi(ti) := βti +
βFi(ti)− Λi(ti)

fi(ti)
. (61)

Thus, had
∑

i 〈Qi : Ifi + ρ(Fi)| ≥ 0 been relaxed, Problem (27) would become a linear

programming of maximizing (60) among all Q ∈ Qmon, thus for any solution Q∗ for (27),(
(Q∗i )

+)n
i=1

would be the profile of marginals of an element of A
(
(Y i)

n
i=1

)
and

(
(Q∗i )

−)n
i=1

that of A
(
(−Y i)

n
i=1

)
. However, the next remark shows existence of parametric configura-

tions that satisfies (59) and yet the constraint
∑

i 〈Qi : Ifi + ρ(Fi)| ≥ 0 is binding in every

solution for (27).

Remark 3 Let 0 < L < H such that ln(H/L) ≥ 11/6. Pick any m = 1, 2, . . . large enough

for L < H − 1/m < H. For any t ∈ [L,H], let

φ(t) := t3/3− (H − 1/m)t2 + (H − 1/m)2t+ t/m4.

Consider a symmetric-player case where the common distribution F is defined by

F (t) =
φ(t)− φ(L)

φ(H)− φ(L)

for all t in its support [L,H]. Suppose further that λi = 1 for all players i. Then (59) is

satisfied, and hence the objective in (27) becomes the linear form (60). By (12), (61), and

the parametric condition ln(H/L) ≥ 11/6, one can show (Appendix E.1):

Yi(H − 1/m)→ −∞ as m→∞. (62)

Should the constraint
∑

i 〈Qi : Ifi + ρ(Fi)| ≥ 0 be non-binding at a solution Q∗ for (27), Q∗

would be the concatenation of the allocation by the rank of
(
Y i

)n
i=1

and the allocation by
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the rank of
(
−Y i

)n
i=1

. By (62), for all sufficiently large m, Y i < 0 on [L,H−1/m) and hence

Q∗i < 0 on [L,H − 1/m) for all i. This, coupled with the fact that I + ρ+(Fi)/fi ≤ bi = H

and I + ρ−(Fi)/fi ≥ ai = L for all i (due to (21 and (22)), implies that∑
i

〈Q∗i : Ifi + ρ(Fi)| ≤ H
∑
i

∫
Ti

max{0, Q∗i (ti)}dF (ti)− L
∑
i

∫
Ti

max{0,−Q∗i (ti)}dF (ti)

≤ H (1− F (H − 1/m)n)− Lc (1− (1− F (H − 1/m))n) ,

which is negative for all sufficiently large m, contradiction.

E.1 Proof of (62)

Denote ∆ := φ(H)− φ(L). Note that the density function is, for all t ∈ [L,H],

f(t) =
1

∆

(
(t− (H − 1/m))2 + 1/m4

)
.

By the identical distribution and the definition of Λi in (12), for all i, Λi(bi) = αλ such that

αλ =
1

∆

(
1

2
(H2 − L2)− 2(H − 1/m)(H − L) + ((H − 1/m)2 + 1/m4) ln(H/L)

)
=

1

∆

(
H2 ln(H/L)− (H − L)

(
3

2
H − 1

2
L

))
+O(1/m)

>
1

∆
H2 (ln(H/L)− 3/2) +O(1/m),

with the inequality due to H > L. Plug into this the definitions of ∆ to obtain

αλ −
1

H − 1/m
>

H2 (ln(H/L)− 3/2)

(H3 − L3)/3−H(H2 − L2) +H2(H − L)
− 1

H
+O(1/m)

=
H2 (ln(H/L)− 3/2)

(H − L)3/3
− 1

H
+O(1/m)

>
1

H
(3 (ln(H/L)− 3/2)− 1) +O(1/m)

≥ O(1/m), (63)

with the last line due to ln(H/L) ≥ 11/6. By definitions of G and αλ,

G(H − 1/m)− αλF (H − 1/m) =

∫ H−1/m

L

1

s
dF (s)− F (H − 1/m)

∫ H

L

1

s
dF (s)

= (F (H)− F (H − 1/m))

∫ H

L

1

s
dF (s)−

∫ H

H−1/m

1

s
dF (s)

> (F (H)− F (H − 1/m)) (αλ − 1/(H − 1/m))

> O(1/m2)O(1/m)

= O(1/m3),
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with the second last line due to Taylor’s formula and (63). Plug the above-derived inequality

and the fact f(H − 1/m) = 1/(∆m4) = o(1/m3) into the definition of Yi to obtain

Yi(H − 1/m) = αλ(H − 1/m)−
∣∣∣∣O(1/m3)

o(1/m3)

∣∣∣∣ = −
∣∣∣∣ 1

O(1/m)

∣∣∣∣ −→m −∞.
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