Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix

Selling Consumer Data for Profit: Optimal Market-Segmentation Design and its Consequences

Kai Hao Yang Cowles Foundation, Yale University

Micro Theory Seminar, Penn State University

October 16, 2020

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Introduc	ction				

◆□ > < 個 > < E > < E > E 9 < 0</p>

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Introduc	ction				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Several data brokers own vast amount consumer data (e.g. Acxiom, Oracle, Facebook, Amazon).

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Introduc	ction				

Several data brokers own vast amount consumer data (e.g. Acxiom, Oracle, Facebook, Amazon).

They sell consumer data to producers and facilitate price discrimination.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \Rightarrow Effectively selling market segmentations to producers.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Introduc	ction				

Several data brokers own vast amount consumer data (e.g. Acxiom, Oracle, Facebook, Amazon).

They sell consumer data to producers and facilitate price discrimination.

 \Rightarrow Effectively selling market segmentations to producers.

This paper studies the **sale of consumer data (market segmentation)** and its implications.

Model outline

- A unit mass of **consumers** with unit demand.
- A producer sells a product to the consumers at a constant marginal cost.
- The marginal cost is **private information**.
- A data broker can sell consumer data to the producer using any selling mechanism (but cannot contract on how the data are used).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

A publisher wants to sell an advanced textbook for graduate study.

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A publisher wants to sell an advanced textbook for graduate study.

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The publisher has a private marginal cost $c \in \{0, 1\}$, equally likely.

A unit mass of consumers:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			

<□> <圖> < E> < E> E のQ@

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			

$$(v=3)$$
 $(v=2)$ $(v=1)$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			

$$(v=3)$$
 $(v=2)$ $(v=1)$

The data broker owns "all sorts" of consumer data

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

The data broker owns "all sorts" of consumer data (e.g., occupation,

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The data broker owns "all sorts" of consumer data (e.g., occupation, gender,

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The data broker owns "all sorts" of consumer data (e.g., occupation, gender, *#* of children,

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The data broker owns "all sorts" of consumer data (e.g., occupation, gender, *#* of children, resident-type)

Introduction		Optimal Mechanism		Appendix
Illustrati	ive Exa	mple		

$$(v=3)$$
 $(v=2)$ $(v=1)$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The data broker owns "all sorts" of consumer data (i.e., any partition on the line)

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			

$$(v=3)$$
 $(v=2)$ $(v=1)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

The data broker owns "all sorts" of consumer data (i.e., any partition on the line)

How should the data broker sell these data?

Introduction	Optimal Mechanism			Appendix
Illustrati				

$$(v=3)$$
 $(v=2)$ $(v=1)$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The data broker owns "all sorts" of consumer data (i.e., any partition on the line)

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			

$$(v=3)$$
 $(v=2)$ $(v=1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The data broker owns "all sorts" of consumer data (i.e., any partition on the line)

Relaxed problem: Suppose that the broker can also contract on quantity.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			

$$(v=3)$$
 $(v=2)$ $(v=1)$

The data broker owns "all sorts" of consumer data (i.e., any partition on the line)

Relaxed problem: Suppose that the broker can also contract on quantity.

The data broker offers a menu consisting of items of form

(data (partition of the line), q (upper-bound for quantity sold), τ (payment))

ション ふゆ アメリア メリア しょうくの

Introduction		Optimal Mechanism		Appendix
Illustrat	ive Exa	mple		

$$(v=3)$$
 $(v=2)$ $(v=1)$

The data broker owns "all sorts" of consumer data (i.e., any partition on the line)

Relaxed problem: Suppose that the broker can also contract on quantity.

The data broker offers a menu consisting of items of form

(data (partition of the line), q (upper-bound for quantity sold), τ (payment))

The publisher purchases one item. Otherwise, she obtains her optimal uniform pricing profit: $\max\{(1-c), \frac{2}{3}(2-c), \frac{1}{3}(3-c)\}$.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			

$$(v=3)$$
 $(v=2)$ $(v=1)$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			

$$(v=3)$$
 $(v=2)$ $(v=1)$

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

Introduction		Optimal Mechanism		Appendix
Illustrati	ive Exa	mple		

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Introduction		Optimal Mechanism			Appendix
Illustrati	ive Exa				

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

c = 0: Buys the item with q = 1, sells to all consumers by charging their values.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction		Optimal Mechanism			Appendix
Illustrati	ive Exa				

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

c = 0: Buys the item with q = 1, sells to all consumers by charging their values.

c = 1: Buys the item with $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values.

ション ふゆ アメリア メリア しょうくしゃ

Introduction		Optimal Mechanism		Appendix
Illustrati	ive Exa	mple		

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

c = 0: Buys the item with q = 1, sells to all consumers by charging their values.

c = 1: Buys the item with $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values.

Intuition: Both items are equally valuable for c = 1, while q = 1 is more valuable for c = 0.

Introduction		Optimal Mechanism		Appendix
Illustrati	ive Exa	mple		

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

c = 0: Buys the item with q = 1, sells to all consumers by charging their values.

c = 1: Buys the item with $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values.

Intuition: Both items are equally valuable for c = 1, while q = 1 is more valuable for c = 0.

 \Rightarrow The broker can charge both types their willingness to pay.

Introduction		Optimal Mechanism		Appendix
Illustrati	ve Exa	mple		

$$(v=3)$$
 $(v=2)$ $(v=1)$

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

c = 0: Buys the item with q = 1, sells to all consumers by charging their values.

c = 1: Buys the item with $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values.

Intuition: Both items are equally valuable for c = 1, while q = 1 is more valuable for c = 0.

 \Rightarrow The broker can charge both types their willingness to pay.

	Introduction		Optimal Mechanism		Appendix
Illustrative Example	Illustrat	ive Exa	mple		

$$(v=3)$$
 $(v=2)$ $(v=1)$

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

c = 0: Buys the item with q = 1, sells to all consumers by charging their values.

c = 1: Buys the item with $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values.

Intuition: Both items are equally valuable for c = 1, while q = 1 is more valuable for c = 0.

 \Rightarrow The broker can charge both types their willingness to pay.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ve Exa	mple			

$$(v=3)$$
 $(v=2)$ $(v=1)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Optimal menu:

$$\left\{ \left(\text{value-revealing data}, q = 1, \tau = \frac{2}{3} \right), \left(\text{value-revealing data}, q = \frac{2}{3}, \tau = \frac{1}{3} \right) \right\}.$$

c = 0: Buys the item with q = 1, sells to all consumers by charging their values.

c = 1: Buys the item with $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			
value-revealin	ng data + $\left\{ \right.$	$(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau =$	$=\frac{1}{3}$.		

(v=3) (v=2) (v=1)

・ロト ・個ト ・ヨト ・ヨト

= 900

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			
		$\left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=0\right)$ all consumers by characteristic	,,	25. (a)	

(v=3) (v=2) (v=1)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix
Illustrat	ive Exa	mple				
		$(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau =$,,			
c = 0: Buys q	=1, sells to	all consumers by chai	rging their value	es.	a $(, a)$	(1)

ション ふゆ アメリア メリア しょうくの

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix
Illustrat	ive Exa	mple				
value-revealin	ng data + $\left\{ \right.$	$(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau =$	$=\frac{1}{3}$.	F	G	U

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion		Proof	Арр	endix	
Illustrat	ive Exa	mple							
value-revealin	g data + $\left\{ \right.$	$(q=1, \tau=\frac{2}{3}), (q=\frac{2}{3}, \tau=$	$=\frac{1}{3}$.		н.	А	. Н	А	
			,,						

(v=3) (v=2) (v=1)

ション ふゆ アメリア メリア しょうくの

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix
Illustrat	ive Exa	mple				
		$(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau =$,,			
c = 0: Buys q	=1, sells to	all consumers by chai	rging their value	es.	a $(, a)$	(1)

(v=3) (v=2) (v=1)

ション ふゆ アメリア メリア しょうくの

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix
Illustrat	ive Exa	mple				
	($\left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=0\right)$	-))	. F	:	
c = 0: Buys q	= 1, sells to	all consumers by chai	rging their value	es. (a (a, b)	(1)

(v=3) (v=2) (v=1)

ション ふゆ アメリア メリア しょうくしゃ

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix
Illustrat	ive Exa	mple				
value-revealin	ig data + $\left\{ \right.$	$(q=1, \tau=\frac{2}{3}), (q=\frac{2}{3}, \tau=$	$=\frac{1}{3}\Big\}.$			
c = 0: Buys q	= 1, sells to	all consumers by char	rging their value	s.	· 	· (

(v=3) (v=2) (v=1)

ション ふゆ アメリア メリア しょうくしゃ

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix	
Illustrati	ve Exa	mple					
		•					
value-revealing	g data + $\left\{ \right.$	$\left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=1\right)$	$=\frac{1}{3}$.	F	G	U	

$$(v=3)$$
 $(v=2)$ $(v=1)$

ション ふゆ アメリア メリア しょうくしゃ

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion		Арр	endix	
	F							
Illustrati	ve Exa	mple						
value-revealing	g data + $\left\{ \right.$	$(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau =$	$=\frac{1}{3}$	ŀ	I A	. H	А	

$$(v=3)$$
 $(v=2)$ $(v=1)$

ション ふゆ アメリア メリア しょうくしゃ

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix
Illustrati	ve Exa	mple				
value-revealing	g data + $\Big\{$	$(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau =$	$=\frac{1}{3}\Big)\Big\}.$	Н	А	HA

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Model	Optimal Mechanis	m Implications	Discussion		Appendix
Illustrat	ive Exa	mple				
		(2) (2 1))	Ц	٨	

value-revealing data + $\{(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau = \frac{1}{3})\}$. c = 0: Buys q = 1, sells to all consumers by charging their values. c = 1: Buys $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ve Exa	mple			

value-revealing data + {
$$\left(q = 1, \tau = \frac{2}{3}\right), \left(q = \frac{2}{3}, \tau = \frac{1}{3}\right)$$
}.
 $c = 0$: Buys $q = 1$, sells to all consumers by charging their values.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			
mastrati		mpre			

value-revealing data +
$$\left\{ \left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=\frac{1}{3}\right) \right\}$$
.

$$\begin{array}{c|cccc} H & A & H & A \\ \hline (v=3) & (v=2) & (v=1) \end{array}$$

・ロト ・個ト ・モト ・モト

æ

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			
mastrati		mpre			

value-revealing data + {
$$\left(q=1,\tau=\frac{2}{3}\right), \left(q=\frac{2}{3},\tau=\frac{1}{3}\right)$$
}.

$$\begin{array}{c|cccc} H & A & H & A \\ \hline (v=3) & (v=2) & (v=1) \end{array}$$

・ロト ・個ト ・モト ・モト

æ

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			
mastrati		mpre			

value-revealing data + {
$$\left(q=1,\tau=\frac{2}{3}\right), \left(q=\frac{2}{3},\tau=\frac{1}{3}\right)$$
}.

・ロト ・聞ト ・ヨト ・ヨト

- 2

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			
mastrati		mpre			

value-revealing data + {
$$\left(q = 1, \tau = \frac{2}{3}\right), \left(q = \frac{2}{3}, \tau = \frac{1}{3}\right)$$
}.
 $c = 0$: Buys $q = 1$, sells to all consumers by charging their values.

・ロト ・個ト ・モト ・モト

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			
mustiat		mpic			

value-revealing data + {
$$\left(q = 1, \tau = \frac{2}{3}\right), \left(q = \frac{2}{3}, \tau = \frac{1}{3}\right)$$
}.
 $c = 0$: Buys $q = 1$, sells to all consumers by charging their values.

・ロト ・聞ト ・ヨト ・ヨト

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ve Exa	mple			

value-revealing data + {
$$\left(q = 1, \tau = \frac{2}{3}\right), \left(q = \frac{2}{3}, \tau = \frac{1}{3}\right)$$
}.
 $c = 0$: Buys $q = 1$, sells to all consumers by charging their values.

・ロト ・個ト ・モト ・モト

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrati	ive Exa	mple			
		T			

value-revealing data + {
$$\left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=\frac{1}{3}\right)$$
}.
 $c=0$: Buys $q=1$, sells to all consumers by charging their values.

c = 0: Sell to v = 2 and v = 3 by charging their values.

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix		
Illustrative Example								

value-revealing data + { $\left(q = 1, \tau = \frac{2}{3}\right), \left(q = \frac{2}{3}, \tau = \frac{1}{3}\right)$ }. c = 0: Buys q = 1, sells to all consumers by charging their values.

c=1: Buys $q=\frac{2}{3}$, sells to v=2 and v=3 by charging their values.

c = 0: Sell to v = 2 and v = 3 by charging their values.

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix		
Illustrative Example								

value-revealing data + $\{(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau = \frac{1}{3})\}$. c = 0: Buys q = 1, sells to all consumers by charging their values.

c=1: Buys $q=\frac{2}{3}$, sells to v=2 and v=3 by charging their values.

c = 0: Sell to v = 2 and v = 3 by charging their values.

c = 1: Sell to v = 2 and v = 3 by charging their values.

c = 0: Sell to v = 2 and v = 3 by charging their values.

c = 1: Sell to v = 2 and v = 3 by charging their values.

 \Rightarrow Residential data is equivalent to value-revealing data $+ q = \frac{2}{3}$

э

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			
value-revealin	ng data + $\left\{ \right.$	$(q = 1, \tau = \frac{2}{3}), (q = \frac{2}{3}, \tau =$	$=\frac{1}{3}$.		

= 900

⇒ Residential data is equivalent to value-revealing data + $q = \frac{2}{3}$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Illustrat	ive Exa	mple			
1 12	f	(1, 1, 2) $(1, 2)$	1))		

value-revealing data + { $(q = 1, \tau = \frac{c}{3}), (q = \frac{c}{3}, \tau = \frac{1}{3})$ }. c = 0: Buys q = 1, sells to all consumers by charging their values. c = 1: Buys $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values.

Residential data is equivalent to value-revealing data $+ q = \frac{2}{3}$

ション ふゆ アメリア メリア しょうくしゃ

value-revealing data + { $\left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=\frac{1}{3}\right)$ }. c=0: Buys q=1, sells to all consumers by charging their values. c=1: Buys $q=\frac{2}{3}$, sells to v=2 and v=3 by charging their values.

Residential data is equivalent to value-revealing data $+ q = \frac{2}{3}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The data broker can attain the same amount of revenue even if he

cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

value-revealing data + $\left\{ \left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=\frac{1}{3}\right) \right\}$.

c = 0: Buys q = 1, sells to all consumers by charging their values. c = 1: Buys $q = \frac{2}{3}$, sells to v = 2 and v = 3 by charging their values. (v=3) (v=2) (v=1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Residential data is equivalent to value-revealing data $+ q = \frac{2}{3}$

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

value-revealing data + { $\left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=\frac{1}{3}\right)$ }. c=0: Buys q=1, sells to all consumers by charging their values. c=1: Buys $q=\frac{2}{3}$, sells to v=2 and v=3 by charging their values.

(v=3) (v=2) (v=1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Residential data is equivalent to value-revealing data $+ q = rac{2}{3}$

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

value-revealing data + { $\left(q=1, \tau=\frac{2}{3}\right), \left(q=\frac{2}{3}, \tau=\frac{1}{3}\right)$ }. c=0: Buys q=1, sells to all consumers by charging their values. c=1: Buys $q=\frac{2}{3}$, sells to v=2 and v=3 by charging their values.

(v=3) (v=2) (v=1)

ション ふゆ く 山 マ チャット しょうくしゃ

Residential data is equivalent to value-revealing data $+ q = \frac{2}{3}$

The data broker can attain the same amount of revenue even if he cannot contract on quantity.

Consider the following menu:

$$\mathcal{M}^* = \left\{ \left(\text{value-revealing data}, \tau = \frac{2}{3} \right), \left(\text{residential data}, \tau = \frac{1}{3} \right) \right\}$$

c = 0: Buys the value-revealing data; c = 1: Buys the residential data. \checkmark

 \mathscr{M}^* replicates the outcome even if the broker cannot contract on quantity.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Some Re	emarks				

 \mathcal{M}^* is optimal.

It separates the high-value consumers while pooling the low-value consumers with them.

 \Rightarrow Pooling low-value consumers to discourage trade.

 \mathcal{M}^* remains optimal even when $c \in \{\varepsilon, 1-\varepsilon\}$ for ε small enough. \Rightarrow Consumers with v = 1 may not be served even if there are gains from trade.

The data broker's optimal revenue is the same even if he can contract on quantity.

(ロ) (型) (E) (E) (E) (O)

These features continue to hold in a more general model.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix

Model

◆□ > < 個 > < E > < E > E 9 < 0</p>

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Model					

Single product, one producer (she), a unit mass of consumers, and a *data broker* (he).

Consumers: Unit demand, values $v \in V = [\underline{v}, \overline{v}] \subset \mathbb{R}_+$, D_M (market demand) describes the value distribution (i.e., $D_M(p)$: share of consumers with $v \ge p$ for all $p \in V$).

 D_M is nonincreasing, u.s.c., $D_M(\underline{\nu}) = 1$, $D_M(\overline{\nu}^+) = 0$.

Assume: D_M is regular (i.e., D_M is decreasing, differentiable and the marginal revenue of D_M is decreasing)

ション ふゆ く 山 マ チャット しょうくしゃ

\mathcal{D} : collection of demand functions that are of the same sizes as D_M :

 $\mathcal{D} := \{D: V \to [0,1] | D \text{ nonincreasing, u.s.c., } D(\underline{v}) = 1, D(\overline{v}^+) = 0\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Model					
model					

 \mathcal{D} : collection of demand functions that are of the same sizes as D_M :

 $\mathcal{D} := \{D: V \to [0,1] | D \text{ nonincreasing, u.s.c., } D(\underline{v}) = 1, D(\overline{v}^+) = 0\}.$

A market segmentation is a way to split the market demand D_M . i.e., $s \in \Delta(\mathcal{D})$ s.t.

$$\int_{\mathscr{D}} D(p) s(\mathrm{d}D) = D_M(p), \,\forall p.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Model					
model					

 \mathcal{D} : collection of demand functions that are of the same sizes as D_M :

 $\mathcal{D} := \{D: V \to [0,1] | D \text{ nonincreasing, u.s.c., } D(\underline{v}) = 1, D(\overline{v}^+) = 0\}.$

A market segmentation is a way to split the market demand D_M . i.e., $s \in \Delta(\mathcal{D})$ s.t.

$$\int_{\mathscr{D}} D(p) s(\mathrm{d}D) = D_M(p), \,\forall p.$$

The data broker can sell to the producer any market segmentation.

• Can arbitrarily segment the consumers according to their values.

- Can always reveal the value.
- Equivalent to selling any Blackwell experiment.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Model					

The producer:

- Sells the product to consumers.
- Has private marginal cost of production $c \in C = [\underline{c}, \overline{c}] \subset \mathbb{R}_+$.

ション ふゆ アメリア メリア しょうくしゃ

- $c \sim G$, G has density g > 0 on C.
- Let $\phi_G(c) := c + G(c)/g(c)$ denote the virtual cost.
- Assume: G is regular (i.e., ϕ_G is increasing)

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Model					

The producer:

- Sells the product to consumers.
- Has private marginal cost of production $c \in C = [\underline{c}, \overline{c}] \subset \mathbb{R}_+$.
- $c \sim G$, G has density g > 0 on C.
- Let $\phi_G(c) := c + G(c)/g(c)$ denote the virtual cost.
- Assume: G is regular (i.e., ϕ_G is increasing)

Given market segmentation $s \in \Delta(\mathcal{D})$, the producer with cost c solves

 $\max_{p\geq 0}(p-c)D(p),$

ション ふゆ アメリア メリア しょうくしゃ

for all D in the support of s.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Model					

A mechanism is a pair (σ, τ) that specifies, for each reported cost c,

- a market segmentation $\sigma(c) \in \Delta(\mathcal{D})$
- and a transfer $\tau(c) \in \mathbb{R}$ from the producer to the data broker.

If the producer does not participate in the mechanism, she receives optimal uniform pricing profit

 $\max_{p\geq 0}(p-c)D_M(p).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Model					

A mechanism is a pair (σ, τ) that specifies, for each reported cost c,

- a market segmentation $\sigma(c) \in \Delta(\mathcal{D})$
- and a transfer $\tau(c) \in \mathbb{R}$ from the producer to the data broker.

If the producer does not participate in the mechanism, she receives optimal uniform pricing profit

 $\max_{p\geq 0}(p-c)D_M(p).$

ション ふゆ く 山 マ チャット しょうくしゃ

Comparison to standard monopolistic pricing models:

- Large (infinite-dimensional) allocation space.
- Type-dependent outside option.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Model					

For any $c \in C$ and for and $D \in \mathcal{D}$, let

$$\pi_D(c) := \max_{p \ge 0} (p-c)D(p).$$

A mechanism (σ, τ) is:

• incentive compatible if for any $c, c' \in C$

$$\int_{\mathcal{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \int_{\mathcal{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c');$$

• individually rational if for any $c \in C$,

$$\int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \tau(c) \ge \pi_{D_M}(c).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix

Optimal Mechanism

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix Revenue Equivalence Formula

For any $c \in C$ and for any $D \in \mathcal{D}$, let $p_D(c)$ be the largest solution of

 $\max_{p\geq 0}(p-c)D(p),$

Recall:

$$\phi_G(c) := c + \frac{G(c)}{g(c)}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

is the virtual cost induced by G.

Introduction		Optimal Mechanism				Appendix		
Revenue Equivalence Formula								

Recall: $\phi_G(c) := c + \frac{G(c)}{g(c)}$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Revenue	Equival	ence Formula			

ション ふゆ アメリア メリア しょうくしゃ

 $p_D(c)$: largest solution of $\max_p(p-c)D(p)$.

Recall: $\phi_G(c) := c + \frac{G(c)}{g(c)}$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

- Revenue equivalence
- Integral monotonicity

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Revenue	Equival	ence Formula			

Recall: $\phi_G(c) := c + \frac{G(c)}{g(c)}$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

 $\mathbf{O} \ \tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z + \overline{\tau}, \text{ for all } c$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Integral monotonicity

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Revenue	Equiv	alence Formul	а		

Recall: $\phi_G(c) := c + \frac{G(c)}{g(c)}$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

$$\mathbf{O} \ \tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z + \overline{\tau}, \text{ for all } c$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Revenue	Equival	ence Formula			

Recall: $\phi_G(c) := c + \frac{G(c)}{g(c)}$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

 $\mathbf{O} \ \tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z + \overline{\tau}, \text{ for all } c$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Integral monotonicity

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Revenue	Equival	ence Formula			

Recall: $\phi_G(c) := c + \frac{G(c)}{g(c)}$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

- $\mathbf{O} \ \tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z + \overline{\tau}, \text{ for all } c$
- Integral monotonicity

The expected revenue under any IC mechanism (σ, τ) can be written as

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathcal{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}),$$

ション ふゆ く 山 マ チャット しょうくしゃ

Derivation

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Revenue	Equival	ence Formula			

Recall: $\phi_G(c) := c + \frac{G(c)}{g(c)}$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

- $\mathbf{O} \ \tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z + \overline{\tau}, \text{ for all } c$
- Integral monotonicity

The expected revenue under any IC mechanism (σ, τ) can be written as

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathcal{D}} (\boldsymbol{p}_D(\boldsymbol{c}) - \boldsymbol{\phi}_G(\boldsymbol{c})) D(\boldsymbol{p}_D(\boldsymbol{c})) \sigma(\mathrm{d}D|\boldsymbol{c}) \right) G(\mathrm{d}\boldsymbol{c}) - \pi_{D_M}(\boldsymbol{c}),$$

ション ふゆ く 山 マ チャット しょうくしゃ

Derivation

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Revenue	Equival	ence Formula			

Recall: $\phi_G(c) := c + \frac{G(c)}{g(c)}$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

- $\mathbf{O} \ \tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z + \overline{\tau}, \text{ for all } c$
- Integral monotonicity

The expected revenue under any IC mechanism (σ, τ) can be written as

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathcal{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}),$$

ション ふゆ く 山 マ チャット しょうくしゃ

Derivation

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Revenue	e Equiv	alence Formula	а		

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathcal{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}),$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathcal{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\mathscr{D}} \max_p (p - \phi_G(c)) D(p) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathbb{E}[\tau(c)] = \int_{C} \left(\int_{\mathcal{D}} (\boldsymbol{p}_{D}(c) - \phi_{G}(c)) D(\boldsymbol{p}_{D}(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c})$$
$$\leq \int_{C} \left(\int_{\mathcal{D}} \max_{p} (p - \phi_{G}(c)) D(p) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c})$$

(maximize profit w.r.t. $\phi_G(c)$ pointwise)

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\mathscr{D}} \max_p (p - \phi_G(c)) D(p) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (p_D(c) - \phi_G(c)) D(p_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

$$\leq \int_C \left(\int_{\mathscr{D}} \max_p (p - \phi_G(c)) D(p) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\begin{split} \mathbb{E}[\tau(c)] &= \int_{C} \left(\int_{\mathcal{D}} (\boldsymbol{p}_{D}(c) - \phi_{G}(c)) D(\boldsymbol{p}_{D}(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \\ &\leq \int_{C} \left(\int_{\mathcal{D}} \max_{p} (\boldsymbol{p} - \phi_{G}(c)) D(\boldsymbol{p}) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \\ &\leq \int_{C} \left(\int_{\{\boldsymbol{\nu} \geq \phi_{G}(c)\}} (\boldsymbol{\nu} - \phi_{G}(c)) D_{M}(\mathrm{d}\boldsymbol{\nu}) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

An Upper Bound for Revenue

$$\begin{split} \mathbb{E}[\tau(c)] &= \int_C \left(\int_{\mathcal{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}) \\ &\leq \int_C \left(\int_{\mathcal{D}} \max_p (\boldsymbol{p} - \phi_G(c)) D(\boldsymbol{p}) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}) \\ &\leq \int_C \left(\int_{\{\boldsymbol{\nu} \geq \phi_G(c)\}} (\boldsymbol{\nu} - \phi_G(c)) D_M(\mathrm{d}\boldsymbol{\nu}) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}) \end{split}$$

 $(profit \leq total surplus)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\begin{split} \mathbb{E}[\tau(c)] &= \int_{C} \left(\int_{\mathcal{D}} (\boldsymbol{p}_{D}(c) - \phi_{G}(c)) D(\boldsymbol{p}_{D}(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \\ &\leq \int_{C} \left(\int_{\mathcal{D}} \max_{p} (\boldsymbol{p} - \phi_{G}(c)) D(\boldsymbol{p}) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \\ &\leq \int_{C} \left(\int_{\{\boldsymbol{\nu} \geq \phi_{G}(c)\}} (\boldsymbol{\nu} - \phi_{G}(c)) D_{M}(\mathrm{d}\boldsymbol{\nu}) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\begin{split} \mathbb{E}[\tau(c)] &= \int_{C} \left(\int_{\mathcal{D}} (\boldsymbol{p}_{D}(c) - \phi_{G}(c)) D(\boldsymbol{p}_{D}(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \\ &\leq \int_{C} \left(\int_{\mathcal{D}} \max_{p} (p - \phi_{G}(c)) D(p) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \\ &\leq \int_{C} \left(\int_{\{v \geq \phi_{G}(c)\}} (v - \phi_{G}(c)) D_{M}(\mathrm{d}v) \right) G(\mathrm{d}c) - \pi_{D_{M}}(\overline{c}) \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\begin{split} \mathbb{E}[\tau(c)] &= \int_C \left(\int_{\mathcal{D}} (p_D(c) - \phi_G(c)) D(p_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}) \\ &\leq \int_C \left(\int_{\mathcal{D}} \max_p (p - \phi_G(c)) D(p) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}) \\ &\leq \int_C \left(\int_{\{v \ge \phi_G(c)\}} (v - \phi_G(c)) D_M(\mathrm{d}v) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}) \\ &=: R^*. \end{split}$$

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

$$\leq \int_C \left(\int_{\{\nu \geq \phi_G(c)\}} (\nu - \phi_G(c)) D_M(\mathrm{d}\nu) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (p_D(c) - \phi_G(c)) D(p_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\{v \ge \phi_G(c)\}} (v - \phi_G(c)) D_M(\mathrm{d}v) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (p_D(c) - \phi_G(c)) D(p_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\{v \ge \phi_G(c)\}} (v - \phi_G(c)) D_M(\mathrm{d}v) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\{v \ge \phi_G(c)\}} (v - \phi_G(c)) D_M(\mathrm{d}v) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathcal{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\{v \ge \phi_G(c)\}} (v - \phi_G(c)) D_M(\mathrm{d}v) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

All the consumers with $v \ge \phi_G(c)$ buy and pay their values; All the consumers with $v < \phi_G(c)$ do not buy

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\{\nu \ge \phi_G(c)\}} (\nu - \phi_G(c)) D_M(\mathrm{d}\nu) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

All the consumers with $v \ge \phi_G(c)$ buy and pay their values; All the consumers with $v < \phi_G(c)$ do not buy

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\{v \ge \phi_G(c)\}} (v - \phi_G(c)) D_M(\mathrm{d}v) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

All the consumers with $v \ge \phi_G(c)$ buy and pay their values; All the consumers with $v < \phi_G(c)$ do not buy

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathcal{D}} (p_D(c) - \phi_G(c)) D(p_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

$$\leq \int_C \left(\int_{\{\nu \ge \phi_G(c)\}} (\nu - \phi_G(c)) D_M(\mathrm{d}\nu) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

All the consumers with $v \ge \phi_G(c)$ buy and pay their values; All the consumers with $v < \phi_G(c)$ do not buy

Remark.

Suppose that there is an IC & IR mechanism (σ, τ) such that for all c, $\sigma(c)$ induces quasi-perfect price discrimination for c.

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\{\nu \ge \phi_G(c)\}} (\nu - \phi_G(c)) D_M(\mathrm{d}\nu) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

All the consumers with $v \ge \phi_G(c)$ buy and pay their values; All the consumers with $v < \phi_G(c)$ do not buy

Remark.

Suppose that there is an IC & IR mechanism (σ, τ) such that for all c, $\sigma(c)$ induces quasi-perfect price discrimination for c.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathcal{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$\leq \int_C \left(\int_{\{\boldsymbol{\nu} \ge \phi_G(c)\}} (\boldsymbol{\nu} - \phi_G(c)) D_M(\mathrm{d}\nu) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

All the consumers with $v \ge \phi_G(c)$ buy and pay their values; All the consumers with $v < \phi_G(c)$ do not buy

Remark.

Suppose that there is an IC & IR mechanism (σ, τ) such that for all c, $\sigma(c)$ induces quasi-perfect price discrimination for c.

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$= \int_C \left(\int_{\{\boldsymbol{\nu} \ge \phi_G(c)\}} (\boldsymbol{\nu} - \phi_G(c)) D_M(\mathrm{d}\nu) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

All the consumers with $v \ge \phi_G(c)$ buy and pay their values; All the consumers with $v < \phi_G(c)$ do not buy

Remark.

Suppose that there is an IC & IR mechanism (σ, τ) such that for all c, $\sigma(c)$ induces quasi-perfect price discrimination for c.

Quasi-Perfect Price Discrimination

$$\mathbb{E}[\tau(c)] = \int_C \left(\int_{\mathscr{D}} (\boldsymbol{p}_D(c) - \phi_G(c)) D(\boldsymbol{p}_D(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$
$$= \int_C \left(\int_{\{\boldsymbol{\nu} \ge \phi_G(c)\}} (\boldsymbol{\nu} - \phi_G(c)) D_M(\mathrm{d}\nu) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c})$$

Definition.

 $s \in \Delta(\mathcal{D})$ induces **quasi-perfect price discrimination** for *c* if the producer with cost *c*, when operates under *s*,

All the consumers with $v \ge \phi_G(c)$ buy and pay their values; All the consumers with $v < \phi_G(c)$ do not buy

Remark.

Suppose that there is an IC & IR mechanism (σ, τ) such that for all c, $\sigma(c)$ induces quasi-perfect price discrimination for c. $\Rightarrow (\sigma, \tau)$ is optimal!

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Assume (for this talk): $\phi_G(c) \le p_{D_M}(c)$ for all $c \in C$. For any $c \in C$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Constructing an Optimal Mechanism

Assume (for this talk): $\phi_G(c) \le p_{D_M}(c)$ for all $c \in C$. For any $c \in C$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

For any $c \in C$ and for any $v \ge \phi_G(c)$,

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

For any $c \in C$ and for any $v \ge \phi_G(c)$,

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Construct	ting an	Optimal Me	chanism		

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Construct	ting an	Optimal Me	chanism		

For any $c \in C$ and for any $v \ge \phi_G(c)$, define D_v^c as follows:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Construct	ting an	Optimal Me	chanism		

For any $c \in C$ and for any $v \ge \phi_G(c)$, define D_v^c as follows:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Construct	ting an	Optimal Me	chanism		

5 1

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

For any $c \in C$ and for any $v \ge \phi_G(c)$, define D_v^c as follows:

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Construct	ting an	Optimal Me	chanism		

.

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

For any $c \in C$ and for any $v \ge \phi_G(c)$, define D_v^c as follows:

Constructing an Optimal Mechanism

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

For any $c \in C$ and for any $v \ge \phi_G(c)$, define D_v^c as follows:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Constructing an Optimal Mechanism

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Constructing an Optimal Mechanism

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Constructing an Optimal Mechanism

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

 Introduction
 Model
 Optimal Mechanism
 Implications
 Discussion
 Proof
 Appendix

 Constructing an Optimal Mechanism
 Mechanism
 Implications
 Implications

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

 Introduction
 Model
 Optimal Mechanism
 Implications
 Discussion
 Proof
 Appendix

 Constructing an Optimal Mechanism
 Mechanism
 Implications
 Implications

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Constructing an Optimal Mechanism

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

Assume (for this talk): $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$.

v

0

For any $c \in C$ and for any $v \ge \phi_G(c)$, define D_v^c as follows:

q

1

 $D_M(\phi_G(c))$ $\sigma^*(c)$ has support $\{D_v^c\}_{v \in [\phi_G(c), \overline{v}]}$ and assigns density $\frac{|D'_M(v)|}{D_M(\phi_G(c))}$ to D_v^c .

Constructing an Optimal Mechanism

 $\sigma^*(c) \text{ has support } \{D_v^c\}_{v \in [\phi_G(c), \overline{v}]} \text{ and assigns density } \frac{|D'_M(v)|}{D_M(\phi_G(c))} \text{ to } D_v^c.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

constructing an optimal meenansin

 $\sigma^*(c) \text{ has support } \{D_v^c\}_{v \in [\phi_G(c),\overline{v}]} \text{ and assigns density } \tfrac{|D'_M(v)|}{D_M(\phi_G(c))} \text{ to } D_v^c.$

 $\sigma^*(c)$ has support $\{D_v^c\}_{v \in [\phi_G(c), \overline{v}]}$ and assigns density $\frac{|D'_M(v)|}{D_M(\phi_G(c))}$ to D_v^c .

For all $c \in C$, let

$$\tau^*(c) := \int_{\mathscr{D}} \pi_D(c) \sigma^*(\mathrm{d}D|c) - \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^*(\mathrm{d}D|z) \right) \mathrm{d}z - \pi_{D_M}(\overline{c})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\sigma^*(c) \text{ has support } \{D_v^c\}_{v \in [\phi_G(c), \overline{v}]} \text{ and assigns density } \frac{|D'_M(v)|}{D_M(\phi_G(c))} \text{ to } D_v^c.$

For all $c \in C$, let

$$\tau^*(c) := \int_{\mathscr{D}} \pi_D(c) \sigma^*(\mathrm{d}D|c) - \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^*(\mathrm{d}D|z) \right) \mathrm{d}z - \pi_{D_M}(\overline{c})$$

ション ふゆ アメリア メリア しょうくしゃ

Theorem (Optimal Mechanism)

 (σ^*, τ^*) is an optimal mechanism. Furthermore, for any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ induces quasi-perfect price discrimination for c.

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix Constructing an Optimal Mechanism

 $\sigma^*(c) \text{ has support } \{D_v^c\}_{v \in [\phi_G(c),\overline{v}]} \text{ and assigns density } \frac{|D'_M(v)|}{D_M(\phi_G(c))} \text{ to } D_v^c.$

For all $c \in C$, let

$$\tau^*(c) := \int_{\mathscr{D}} \pi_D(c) \sigma^*(\mathrm{d}D|c) - \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^*(\mathrm{d}D|z) \right) \mathrm{d}z - \pi_{D_M}(\overline{c})$$

Theorem (Optimal Mechanism)

 (σ^*, τ^*) is an optimal mechanism. Furthermore, for any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ induces quasi-perfect price discrimination for c.

Need to show:

• For any c, $\sigma^*(c)$ induces quasi-perfect price discrimination for c.

(ロ) (型) (E) (E) (E) (O)

• (σ^*, τ^*) is IC & IR .

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix Constructing an Optimal Mechanism

 $\sigma^*(c) \text{ has support } \{D_v^c\}_{v \in [\phi_G(c),\overline{v}]} \text{ and assigns density } \frac{|D'_M(v)|}{D_M(\phi_G(c))} \text{ to } D_v^c.$

For all $c \in C$, let

$$\tau^*(c) := \int_{\mathscr{D}} \pi_D(c) \sigma^*(\mathrm{d}D|c) - \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^*(\mathrm{d}D|z) \right) \mathrm{d}z - \pi_{D_M}(\overline{c})$$

Theorem (Optimal Mechanism)

 (σ^*, τ^*) is an optimal mechanism. Furthermore, for any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ induces quasi-perfect price discrimination for c.

Need to show:

• For any c, $\sigma^*(c)$ induces quasi-perfect price discrimination for c.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• (σ^*, τ^*) is IC & IR .

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix Constructing an Optimal Mechanism

 $\sigma^*(c) \text{ has support } \{D_v^c\}_{v \in [\phi_G(c), \overline{v}]} \text{ and assigns density } \frac{|D'_M(v)|}{D_M(\phi_G(c))} \text{ to } D_v^c.$

For all $c \in C$, let

$$\tau^*(c) := \int_{\mathscr{D}} \pi_D(c) \sigma^*(\mathrm{d}D|c) - \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^*(\mathrm{d}D|z) \right) \mathrm{d}z - \pi_{D_M}(\overline{c})$$

Theorem (Optimal Mechanism)

 (σ^*, τ^*) is an optimal mechanism. Furthermore, for any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ induces quasi-perfect price discrimination for c.

Need to show:

- For any c, $\sigma^*(c)$ induces quasi-perfect price discrimination for c.
- (σ^*, τ^*) is IC & IR (later if time permits).

Screening cost \Rightarrow Data broker has a higher marginal cost than the producer (i.e., $\phi_G(c) \ge c$)

Optimal mechanism pools low-value consumers (i.e., $v \in [c, \phi_G(c)]$) with thew high-values: Preventing the producer from selling at prices below $\phi_G(c)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Data broker's revenue is the same even if he can contract on prices.

Allocation is inefficient: Some consumers with $v \ge c$ do not buy.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix

Implications

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix		
Surplus Extraction								

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Surplus Extraction)

Consumer surplus is zero under any optimal mechanism

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix	
Surplus Extraction							

Theorem (Surplus Extraction)

Consumer surplus is zero under any optimal mechanism

Proof.

Quasi-perfect price discrimination

 \Rightarrow Conditional on purchasing, every consumer pays their value. Consumer surplus is zero

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Theorem (Surplus Extraction)

Consumer surplus is zero under any optimal mechanism

Proof.

Quasi-perfect price discrimination

 \Rightarrow Conditional on purchasing, every consumer pays their value. Consumer surplus is zero

Separating the ownership of consumer data and the ownership of production technology does not benefit the consumers.

 \Rightarrow Better to make *c* common knowledge.

There are other natural market regimes under which the data broker can profit from the consumer data he owns.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Exclusive retail.
- Price-controlling data brokership.

Exclusive retail:

c is private information.

The data broker purchases the product from the producer as a monopsony.

Then the broker sells the purchased product to the consumers **exclusively**, via **perfect price discrimination**.

If the producer does not sell to the broker, she sells to the consumers without data and receives $\pi_{D_M}(c)$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Price-Controlling Data Brokership:

c is private information. The data broker designs a mechanism (σ, τ, γ) .

For each report $c \in C$,

- $\sigma(c) \in \Delta(\mathcal{D})$: segmentation provided to the producer.
- $\tau(c) \in \mathbb{R}$: payment from the producer to the data broker.
- γ(·|D, c) ∈ Δ(ℝ₊): distribution from which price charged in segmet D is drawn.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Outcom	e Equiv	valence			

Theorem (Outcome Equivalence)

Exclusive retail, price-controlling data brokership and data brokership are outcome-equivalent.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Implications

- Data brokers have no incentives to play a more active role in the product market.
- No concerns even if a data broker gains control over the product market.
- The ability to create and sell market segmentations makes the data broker influential in the product market.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix

Discussion and Extension

◆□ > < 個 > < E > < E > E 9 < 0</p>

Technical Assumption: Can be relaxed for most of the results.

Data broker's ability to create any market segmentation $s \in \Delta(\mathcal{D})$.

- The ability to reveal the value \Rightarrow Can be extended.
- The ability to split D_M arbitrarily
- \Rightarrow Can be interpreted as partitioning an abstract characteristic space.

Comparison with uniform pricing & Consumers' property right over data.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Private information about the market.

Can allow targeting marketing.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix

Proof of the Main Theorem

◆□ > < 個 > < E > < E > E 9 < 0</p>

Theorem (Optimal Mechanism)

 (σ^*, τ^*) is an optimal mechanism. Furthermore, for any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ must induce quasi-perfect price discrimination for c.

Suffices to show:

• For any c, $\sigma^*(c)$ induces quasi-perfect price discrimination for c.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(σ*, τ*) is IC & IR.

Theorem (Optimal Mechanism)

 (σ^*, τ^*) is an optimal mechanism. Furthermore, for any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ must induce quasi-perfect price discrimination for c.

Suffices to show:

• For any c, $\sigma^*(c)$ induces quasi-perfect price discrimination for c.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(σ*, τ*) is IC & IR.

Theorem (Optimal Mechanism)

 (σ^*, τ^*) is an optimal mechanism. Furthermore, for any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ must induce quasi-perfect price discrimination for c.

Suffices to show:

• For any c, $\sigma^*(c)$ induces quasi-perfect price discrimination for c.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• (σ^*, τ^*) is IC & IR.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
	6.5	~				
Sketch	of Proo	t				

For any $c \in C$ and for any $v \ge \phi_G(c)$, define D_v^c as

 $\sigma^*(c) \text{ has support } \{D_v^c\}_{v \in [\phi_G(c),\overline{v}]} \text{ and assigns size } \frac{|D'_M(v)|}{D_M(\phi_G(c)} \text{ to } D_v^c.$

(ロ) (型) (E) (E) (E) (O)

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				

 $\sigma^*(c) \text{ has support } \{D_{\nu}^{c}\}_{\nu \in [\phi_G(c),\overline{\nu}]} \text{ and assigns size } \frac{|D'_M(\nu)|}{D_M(\phi_G(c)} \text{ to } D_{\nu}^{c}.$

・ロト ・聞ト ・ヨト ・ヨト

æ

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch	of Droo	t				
Skelch	of Proo	I				

・ロト ・個ト ・モト ・モト

æ

 $\sigma^*(c)$ has support $\{D_v^c\}_{v \in [\phi_G(c), \overline{v}]}$ and assigns size $|D'_M(v)|$ to D_v^c .

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch	of Proo	f				

 $\sigma^*(c)$ has support $\{D_v^c\}_{v \in [\phi_G(c), \overline{v}]}$ and assigns size $|D'_M(v)|$ to D_v^c .

Lemma

For any $c \in C$ and for any $D \in \text{supp}(\sigma^*(c))$,

$$\phi_G(z) \le p_D(z),\tag{*}$$

for all $z \in [\underline{c}, c]$.

 $\sigma^*(c)$ has support $\{D_v^c\}_{v \in [\phi_G(c), \overline{v}]}$ and assigns size $|D'_M(v)|$ to D_v^c .

Lemma

For any $c \in C$ and for any $D \in \text{supp}(\sigma^*(c))$,

$$\phi_G(z) \le p_D(z),\tag{*}$$

for all $z \in [\underline{c}, c]$.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch	of Proo	f				

・ロト ・西ト ・ヨト ・ヨト

æ

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch c	of Proo	f				

✓ Need to show: $\phi_G(z) \le p_{D_U^c}(z)$ for all $z \le c$.

(ロ)、(型)、(E)、(E)、 E) のQで

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch a	of Proo	f				
Skelch	51 1 100	1				

Lemma

For any $c \in C$ and for any $D \in \text{supp}(\sigma^*(c))$,

 $\phi_G(z) \le p_D(z)$

(*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all $z \in [c, c]$.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				
For any $c \in C$	and for any	$D \in \operatorname{supp}(\sigma^*(c)),$				

Le	m	m	2
Le			a

 $\phi_G(z) \leq p_D(z), \ \forall z \in [\underline{c}, c].$

For any $c \in C$ and for any $D \in \text{supp}(\sigma^*(c))$,

 $\phi_G(z) \le p_D(z)$

(*)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

for all $z \in [c, c]$.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch of	Proof					
For any $c \in C$ and	d for any L	$D \in \operatorname{supp}(\sigma^*(c)),$				

 $\phi_G(z) \le p_D(z), \ \forall z \in [\underline{c}, c].$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

I For any
$$c \in C$$
,

$$\tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \right) \mathrm{d}z + U(\overline{c}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For any
$$c, c' \in C$$
,
$$\int_{c'}^{c} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|c)) \right) \mathrm{d}z \ge 0.$$

Derivation

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch of	Proof					
For any $c \in C$ and	d for any L	$D \in \operatorname{supp}(\sigma^*(c)),$				

 $\phi_G(z) \le p_D(z), \ \forall z \in [\underline{c}, c].$

Lemma (Revenue Equivalence Lemma)

A mechanism (σ, τ) is incentive compatible if and only if

I For any
$$c \in C$$
,

$$\tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \right) \mathrm{d}z + U(\overline{c}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For any
$$c, c' \in C$$
,
$$\int_{c'}^{c} \left(\int_{\mathscr{D}} D(p_D(z))\sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D(p_D(z))\sigma(\mathrm{d}D|c)) \right) \mathrm{d}z \ge 0.$$

Derivation

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch	of Proo	f				
For any of (and for any	$D \in \operatorname{supp}(\sigma^*(c))$				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For any $c \in C$ and for any $D \in \text{supp}(\sigma^*(c))$, $\phi_G(z) \le p_D(z), \forall z \in [\underline{c}, c].$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				
Far any ac C	and far any	$D \in \operatorname{supp}(\pi^*(a))$				

For any $c \in C$ and for any $D \in \text{supp}(\sigma^*(c))$, $\phi_G(z) \le p_D(z), \forall z \in [\underline{c}, c].$

For any c, c' with c' < c,

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				

For any c, c' with c' < c,

$$\int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_D(\boldsymbol{z})) \sigma^* (\mathrm{d}D|\boldsymbol{z}) - \int_{\mathscr{D}} D(\boldsymbol{p}_D(\boldsymbol{z})) \sigma^* (\mathrm{d}D|\boldsymbol{c}) \right) \mathrm{d}\boldsymbol{z}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				

For any c, c' with c' < c,

$$\int_{c'}^{c} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^* (\mathrm{d}D|z) - \int_{\mathscr{D}} D(p_D(z)) \sigma^* (\mathrm{d}D|c) \right) \mathrm{d}z$$
$$= \int_{c'}^{c} \left(D_M(\phi_G(z)) - \int_{\mathscr{D}} D(p_D(z)) \sigma^* (\mathrm{d}D|c) \right) \mathrm{d}z$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch c	of Proo	f				

For any c, c' with c' < c,

$$\begin{split} &\int_{c'}^{c} \left(\int_{\mathcal{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|z) - \int_{\mathcal{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \\ &= \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - \int_{\mathcal{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \\ &\geq \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - \int_{\mathcal{D}} D(\phi_{G}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch c	of Proo	f				

For any c, c' with c' < c,

$$\int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|z) - \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z$$
$$= \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z$$
$$\geq \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - \int_{\mathscr{D}} D(\phi_{G}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z$$
$$= \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch c	of Proo	f				

For any c, c' with c' < c,

$$\begin{split} &\int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|z) - \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \\ &= \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \\ &\geq \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - \int_{\mathscr{D}} D(\phi_{G}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \\ &= \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z \\ &= 0. \end{split}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch c	of Proo	f				

For any c, c' with c' < c,

$$\begin{split} &\int_{c'}^{c} \left(\int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|z) - \int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \\ &= \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - \int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \\ &\geq \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - \int_{\mathscr{D}} D(\phi_{G}(z)) \sigma^{*}(\mathrm{d}D|c) \right) \mathrm{d}z \\ &= \int_{c'}^{c} \left(D_{M}(\phi_{G}(z)) - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z \\ &= 0. \end{split}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch	of Proo	f				
For any of (and for any	$D \in \operatorname{supp}(\sigma^*(c))$				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For any $c \in C$ and for any $D \in \text{supp}(\sigma^*(c))$, $\phi_G(z) \le p_D(z), \forall z \in [\underline{c}, c].$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				
Far any ac C	and far any	$D \in \operatorname{supp}(\pi^*(a))$				

For any $c \in C$ and for any $D \in \text{supp}(\sigma^*(c))$, $\phi_G(z) \le p_D(z), \forall z \in [\underline{c}, c].$

For any c, c' with c' > c,

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch c	of Proo	f				

For any c, c' with c' > c,

$$\int_{c}^{c'} \left(\int_{\mathcal{D}} D(\boldsymbol{p}_{D}(\boldsymbol{z})) \sigma^{*}(\mathrm{d}\boldsymbol{D}|\boldsymbol{c}) - \int_{\mathcal{D}} D(\boldsymbol{p}_{D}(\boldsymbol{z})) \sigma^{*}(\mathrm{d}\boldsymbol{D}|\boldsymbol{z}) \right) \mathrm{d}\boldsymbol{z}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				

For any c, c' with c' > c,

$$\int_{c}^{c'} \left(\int_{\mathcal{D}} D(\boldsymbol{p}_{D}(\boldsymbol{z})) \sigma^{*}(\mathrm{d}D|\boldsymbol{c}) - \int_{\mathcal{D}} D(\boldsymbol{p}_{D}(\boldsymbol{z})) \sigma^{*}(\mathrm{d}D|\boldsymbol{z}) \right) \mathrm{d}\boldsymbol{z}$$
$$= \int_{c}^{c'} \left(\int_{\mathcal{D}} D(\boldsymbol{p}_{D}(\boldsymbol{z})) \sigma^{*}(\mathrm{d}D|\boldsymbol{c}) - D_{M}(\boldsymbol{\phi}_{G}(\boldsymbol{z})) \right) \mathrm{d}\boldsymbol{z}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				

For any c, c' with c' > c,

$$\int_{c}^{c'} \left(\int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|c) - \int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|z) \right) \mathrm{d}z$$
$$= \int_{c}^{c'} \left(\int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|c) - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z$$
$$= \int_{c}^{c'} \left(\min\{D_{M}(\phi_{G}(c)), D_{M}(z)\} - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch c	of Proo	f				

For any c, c' with c' > c,

$$\int_{c}^{c'} \left(\int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|c) - \int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|z) \right) \mathrm{d}z$$
$$= \int_{c}^{c'} \left(\int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|c) - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z$$
$$= \int_{c}^{c'} \left(\min\{D_{M}(\phi_{G}(c)), D_{M}(z)\} - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z$$
$$\geq \int_{c}^{c'} \left(\min\{D_{M}(\phi_{G}(c)), D_{M}(z)\} - \min\{D_{M}(\phi_{G}(c)), D_{M}(z)\} \right) \mathrm{d}z$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch c	of Proo	f				

For any c, c' with c' > c,

$$\int_{c}^{c'} \left(\int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|c) - \int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|z) \right) \mathrm{d}z$$

$$= \int_{c}^{c'} \left(\int_{\mathscr{D}} D(p_{D}(z)) \sigma^{*}(\mathrm{d}D|c) - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z$$

$$= \int_{c}^{c'} \left(\min\{D_{M}(\phi_{G}(c)), D_{M}(z)\} - D_{M}(\phi_{G}(z)) \right) \mathrm{d}z$$

$$\geq \int_{c}^{c'} \left(\min\{D_{M}(\phi_{G}(c)), D_{M}(z)\} - \min\{D_{M}(\phi_{G}(c)), D_{M}(z)\} \right) \mathrm{d}z$$

$$= 0.$$

By the revenue equivalence formula, (σ^*, τ^*) is IC.

Moreover, the producer's indirect utility is

$$\pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_D(z)) \sigma^*(\mathrm{d}D|z) \right) \mathrm{d}z$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By the revenue equivalence formula, (σ^*, τ^*) is IC.

Moreover, the producer's indirect utility is

$$\pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^* (\mathrm{d}D|z) \right) \mathrm{d}z$$
$$= \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(\phi_G(z)) \,\mathrm{d}z$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				
Desalls						

Recall: $\phi_G(c) \le p_{D_M}(c)$ for all c.

By the revenue equivalence formula, (σ^*, τ^*) is IC.

Moreover, the producer's indirect utility is

$$\pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^* (\mathrm{d}D|z) \right) \mathrm{d}z$$
$$= \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(\phi_G(z)) \,\mathrm{d}z$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				
Desalls						

Recall: $\phi_G(c) \le p_{D_M}(c)$ for all c.

By the revenue equivalence formula, (σ^*, τ^*) is IC.

Moreover, the producer's indirect utility is

$$\pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^* (\mathrm{d}D|z) \right) \mathrm{d}z$$
$$= \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(\phi_G(z)) \,\mathrm{d}z$$
$$\geq \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(p_{D_M}(z)) \,\mathrm{d}z$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix
Sketch o	of Proo	f				

 $\begin{aligned} & \text{Recall:} \\ & \phi_G(c) \leq p_{D_M}(c) \text{ for all } c. \\ & \pi_D(c) = \max_p (p-c) D(p) \Rightarrow \pi'_D(c) = -D(p_D(c)). \end{aligned}$

By the revenue equivalence formula, (σ^*, τ^*) is IC.

Moreover, the producer's indirect utility is

$$\pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_D(z)) \sigma^* (\mathrm{d}D|z) \right) \mathrm{d}z$$
$$= \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(\phi_G(z)) \,\mathrm{d}z$$
$$\geq \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(\boldsymbol{p}_{D_M}(z)) \,\mathrm{d}z$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix		
Sketch of Proof								

 $\begin{aligned} & \text{Recall:} \\ & \phi_G(c) \leq p_{D_M}(c) \text{ for all } c. \\ & \pi_D(c) = \max_p (p-c) D(p) \Rightarrow \pi'_D(c) = -D(p_D(c)). \end{aligned}$

By the revenue equivalence formula, (σ^*, τ^*) is IC.

Moreover, the producer's indirect utility is

$$\pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^* (\mathrm{d}D|z) \right) \mathrm{d}z$$
$$= \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(\phi_G(z)) \,\mathrm{d}z$$
$$\geq \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(p_{D_M}(z)) \,\mathrm{d}z$$
$$= \pi_{D_M}(c)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction	Model	Optimal Mechanism	Implications	Discussion	Proof	Appendix		
Sketch of Proof								

 $\begin{aligned} & \text{Recall:} \\ & \phi_G(c) \leq p_{D_M}(c) \text{ for all } c. \\ & \pi_D(c) = \max_p (p-c) D(p) \Rightarrow \pi'_D(c) = -D(p_D(c)). \end{aligned}$

By the revenue equivalence formula, (σ^*, τ^*) is IC.

Moreover, the producer's indirect utility is

$$\pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} \left(\int_{\mathscr{D}} D(p_D(z)) \sigma^* (\mathrm{d}D|z) \right) \mathrm{d}z$$
$$= \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(\phi_G(z)) \,\mathrm{d}z$$
$$\geq \pi_{D_M}(\overline{c}) + \int_c^{\overline{c}} D_M(p_{D_M}(z)) \,\mathrm{d}z$$
$$= \pi_{D_M}(c)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Hence, (σ^*, τ^*) is IR.

Theorem (Surplus Extraction)

Consumer surplus is zero under any optimal mechanism.

Theorem (Surplus Extraction)

Consumer surplus is zero under any optimal mechanism.

Proof.

Every optimal mechanism induces quasi-perfect price discrimination.

For (almost) every c, conditional on buying, all consumer pay their values.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Remarks

- Consumers surplus is zero regardless of whether the broker is also the owner of production technology.
- Therefore, separation the owners of consumer data from the owners of production technology does not benefit the consumers.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix

Comparison with Uniform Pricing

Proposition

The data broker's optimal revenue is greater than the consumer surplus under uniform pricing.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix

Comparison with Uniform Pricing

Proposition

The data broker's optimal revenue is greater than the consumer surplus under uniform pricing.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Two corollaries:

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix

Comparison with Uniform Pricing

Proposition

The data broker's optimal revenue is greater than the consumer surplus under uniform pricing.

Two corollaries:

• Data brokership increases total surplus (compared with uniform pricing).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix

Comparison with Uniform Pricing

Proposition

The data broker's optimal revenue is greater than the consumer surplus under uniform pricing.

Two corollaries:

- Data brokership increases total surplus (compared with uniform pricing).
- If the data broker has to purchase data from the consumers (**before** they learn their values), then data brokership is Pareto improving in the ex-ante sense.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix

Note: \mathscr{D} is bijective to $\Delta(V)$.

For any $D \in \mathcal{D}$, let $m^D \in \Delta(V)$ be the probability measure associated with D.

For any measurable function $h: V \to \mathbb{R}$, define

$$\int_V h(p)D(\mathrm{d}p) := \int_V h(p)m^D(\mathrm{d}p).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Regularity of G: Replace ϕ_G by the ironed virtual cost.

Regularity of D_M : Same outcome, different way to pool the low value consumers, more complicated proof (see paper).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\phi_G(c) \leq p_{D_M}(c)$ for all c: Two weaker conditions:

Regularity of G: Replace ϕ_G by the ironed virtual cost.

Regularity of D_M : Same outcome, different way to pool the low value consumers, more complicated proof (see paper).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $\phi_G(c) \leq p_{D_M}(c)$ for all c: Two weaker conditions:

1) max{ $g(c)(\phi_G(c) - p_{D_M}(c)), 0$ } is nondecreasing.

- Implied by $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$
- Admits many commonly seen examples.

Regularity of G: Replace ϕ_G by the ironed virtual cost.

Regularity of D_M : Same outcome, different way to pool the low value consumers, more complicated proof (see paper).

 $\phi_G(c) \leq p_{D_M}(c)$ for all c: Two weaker conditions:

1) max{ $g(c)(\phi_G(c) - p_{D_M}(c)), 0$ } is nondecreasing.

- Implied by $\phi_G(c) \leq p_{D_M}(c)$ for all $c \in C$
- Admits many commonly seen examples.

2) D_M is continuous.

The surplus extraction result does not require any assumptions on (D_M, G) .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples where $\max\{g(c)(\phi_G(c) - p_{D_M}(c)), 0\}$ is nondecreasing.

- Linear D_M and uniform G;
- $D_M(p) = (1-p)^{\beta}$, $G(c) = c^{\alpha}$, for all $\alpha, \beta > 0$;
- Both D_M and G are (truncated) exponential;
- Any mix of the above.

▶ Back

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
A Relax	ed Prol	blem			

The data broker's revenue maximization problem:

$$\max_{(\sigma,\tau)} \int_{C} \tau(c) G(dc)$$

s.t.
$$\int_{\mathscr{D}} \pi_{D}(c) \sigma(dD|c) - \tau(c) \ge \pi_{D_{M}}(c), \forall c \in C,$$
$$\int_{\mathscr{D}} \pi_{D}(c) \sigma(dD|c) - \tau(c) \ge \int_{\mathscr{D}} \pi_{D}(c) \sigma(dD|c') - \tau(c'), \quad \forall c, c' \in C$$

Introduction		Optimal Mechanism		Appendix
A Relax	ed Prol	blem		

$$\begin{split} &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_M}(c), \\ &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c'), \\ &\forall c, c' \in C \end{split}$$

Introduction		Optimal Mechanism		Appendix
A Relax	ed Prol	blem		

$$\begin{split} &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_M}(c), \\ &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c'), \\ &\forall c, c' \in C \end{split}$$

$$\iff \exists \gamma : \mathscr{D} \times C \to \Delta(\mathbb{R}_+) \text{ s.t.}$$

Introduction		Optimal Mechanism		Appendix
A Relax	ed Pro	blem		

$$\begin{split} &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_M}(c), \\ &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c'), \\ &\forall c, c' \in C \end{split}$$

$$\iff \exists \gamma : \mathscr{D} \times C \to \Delta(\mathbb{R}_+) \text{ s.t.}$$
$$\int_{\mathbb{R}_+} (p-c)D(p)\gamma(\mathrm{d}p|D,c) = \pi_D(c),$$

Introduction		Optimal Mechanism		Appendix
A Relax	ed Pro	blem		

$$\begin{split} &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_M}(c), \\ &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c'), \\ &\forall c, c' \in C \end{split}$$

$$\iff \exists \gamma : \mathscr{D} \times C \to \Delta(\mathbb{R}_{+}) \text{ s.t.}$$

$$\int_{\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c) = \pi_{D}(c),$$

$$\int_{\mathscr{D}} \pi_{D}(c)\sigma(\mathrm{d}D|c) - \tau(c) \ge \pi_{D_{M}}(c),$$

$$\int_{\mathscr{D}} \pi_{D}(c)\sigma(\mathrm{d}D|c) - \tau(c)$$

$$\ge \int_{\mathscr{D}} \pi_{D}(c)\sigma(\mathrm{d}D|c') - \tau(c'),$$

$$\forall c, c' \in C, D \in \mathscr{D}.$$

Introduction		Optimal Mechanism		Appendix
A Relax	ed Prol	olem		

$$\begin{split} &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_M}(c), \\ &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c'), \\ &\forall c, c' \in C \end{split}$$

$$\begin{split} \Longleftrightarrow \exists \gamma : \mathscr{D} \times C \to \Delta(\mathbb{R}_{+}) \text{ s.t.} \\ \int_{\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c) = \pi_{D}(c), \\ \int_{\mathscr{D} \times \mathbb{R}_{+}} (p-c)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_{M}}(c), \\ \int_{\mathscr{D}} \pi_{D}(c)\sigma(\mathrm{d}D|c) - \tau(c) \\ \geq \int_{\mathscr{D}} \pi_{D}(c)\sigma(\mathrm{d}D|c') - \tau(c'), \\ \forall c, c' \in C, D \in \mathscr{D}. \end{split}$$

Introduction		Optimal Mechanism		Appendix
A Relax	ed Pro	blem		

$$\begin{split} &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_M}(c), \\ &\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c'), \\ &\forall c, c' \in C \end{split}$$

$$\iff \exists \gamma : \mathscr{D} \times C \to \Delta(\mathbb{R}_{+}) \text{ s.t.}$$

$$\int_{\mathbb{R}_{+}} (p-c)D(p)\gamma(dp|D,c) = \pi_{D}(c),$$

$$\int_{\mathscr{D} \times \mathbb{R}_{+}} (p-c)\gamma(dp|D,c)\sigma(dD|c) - \tau(c) \ge \pi_{D_{M}}(c),$$

$$\int_{\mathscr{D} \times \mathbb{R}_{+}} (p-c)D(p)\gamma(dp|D,c)\sigma(dD|c) - \tau(c)$$

$$\ge \int_{\mathscr{D}} \pi_{D}(c)\sigma(dD|c') - \tau(c'),$$

$$\forall c, c' \in C, D \in \mathscr{D}.$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
A Relax	ed Prol	olem			

$$\begin{split} &\int_{\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c) = \pi_{D}(c), \\ &\int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_{M}}(c), \\ &\int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c) - \tau(c) \\ &\geq \int_{\mathscr{D}} \pi_{D}(c)\sigma(\mathrm{d}D|c') - \tau(c'), \end{split}$$

・ロト ・雪 ・ ヨト ・ヨー うへぐ

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
A Relax	ed Prol	olem			

$$\begin{split} &\int_{\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c) = \pi_{D}(c), \\ &\int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_{M}}(c), \\ &\int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c) - \tau(c) \\ &\geq \int_{\mathscr{D}} \pi_{D}(c)\sigma(\mathrm{d}D|c') - \tau(c'), \\ &\geq \int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c')\sigma(\mathrm{d}D|c) - \tau(c'), \end{split}$$

•

$$\begin{split} &\int_{\mathscr{D}\times\mathbb{R}_{+}}(p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c)-\tau(c)\geq\pi_{D_{M}}(c),\\ &\int_{\mathbb{R}_{+}}(p-c)D(p)\gamma(\mathrm{d}p|D,c)\overline{\sigma}(\mathrm{d}D|c)=\pi_{D}(c),\\ &\overbrace{\mathcal{D}_{\mathscr{D}\times\mathbb{R}_{+}}}(p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c)-\tau(c)\\ &\geq\int_{\mathscr{D}}\pi_{D}(c)\sigma(\mathrm{d}D|c')-\tau(c'),\\ &\geq\int_{\mathscr{D}\times\mathbb{R}_{+}}(p-c)D(p)\gamma(\mathrm{d}p|D,c')\sigma(\mathrm{d}D|c)-\tau(c'),\\ &\forall c,c'\in C. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
A Relax	ed Prol	blem			

Relaxed problem:

$$\begin{split} \max_{(\sigma,\tau,\gamma)} &\int_{C} \tau(c) G(\mathrm{d}c) \\ \text{s.t.} \quad \int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c) D(p) \gamma(\mathrm{d}p|D,c) \sigma(\mathrm{d}D|c) - \tau(c) \\ &\geq \int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c) D(p) \gamma(\mathrm{d}p|D,c') \sigma(\mathrm{d}D|c') - \tau(c'), \qquad (\mathsf{R-IC}) \\ &\int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c) D(p) \gamma(\mathrm{d}p|D,c) \sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_{M}}(c), \qquad (\mathsf{R-IR}) \\ &\forall c,c' \in C \end{split}$$

▶ Back

Suppose that a consumer's value is $f(\theta, v)$.

All the consumers, as well as the producer, know $\theta \in [\underline{\theta}, \overline{\theta}] = \Theta$. Data broker does not know the realization of θ . Cost is common knowledge, normalized to zero

v is distributed according to D_M across the consumers; the data broker can create any market segmentation w.r.t v. Two parameterized cases:

うして ふゆう ふほう ふほう うらつ

- Additive case: $f(\theta, v) = v \theta$, $\underline{\theta} = 0$, $\overline{\theta} = \underline{v} > 0$.
- Multiplicative case: $f(\theta, v) = \theta \cdot v, \ \underline{\theta} > 0.$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Additive	Case				

Suppose that $f(\theta, v) = v - \theta$.

Given any posted price p, a consumer buys $v - \theta \ge p$.

Given any market segment $D \in \mathcal{D}$, the producer's pricing problem is

 $\max_{\tilde{p}\geq 0}\tilde{p}D(\tilde{p}+\theta).$

Let $p = \tilde{p} + \theta$, the seller's problem becomes

 $\max_{p\geq 0}(p-\theta)D(p),$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

which is the same as the pricing problem with cost θ .

Additive case is equivalent to the private cost model.

Introduction	Model	Optimal Mechanism	Implications	Discussion		Appendix	
Multiplicative Case							

Suppose that $f(\theta, v) = \theta \cdot v$.

Given any posted price p, a consumer buys iff $v\theta \ge p$.

Given any market segment $D \in \mathcal{D}$, the producer's pricing problem is

$$\max_{\tilde{p}\geq 0}\tilde{p}D\bigg(\frac{\tilde{p}}{\theta}\bigg),$$

which, by letting $p = \tilde{p}/\theta$ can be written as

 $\theta \cdot \max_{p \geq 0} pD(p)$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Seller's pricing problem is independent of type \Rightarrow Outcome equivalence follows mechanically.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Partition V into finitely adjacent intervals.

Partition V into finitely adjacent intervals.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Partition V into finitely adjacent intervals.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Partition V into finitely adjacent intervals.

The most predictive data can only identify consumer-values by these intervals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Partition V into finitely adjacent intervals.

The most predictive data can only identify consumer-values by these intervals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Partition V into finitely adjacent intervals.

The most predictive data can only identify consumer-values by these intervals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix Extension: Consumers' Private Information

 Θ : Finite partition of $V, \theta \in \Theta$: Interval.

 $\theta \sim \beta_M$, D_{θ} demand conditional on θ , market demand D_M , where

$$D_M(p) = \sum_{\theta \in \Theta} D_{\theta}(p) \beta_M(\theta),$$

for all $p \in V$,

 $s \in \Delta(\Delta(\Theta))$ is a market segmentation if

$$\int_{\Delta(\Theta)} \beta(\theta) \, s(\mathrm{d}\beta) = \beta_M(\theta),$$

for all $\theta \in \Theta$.

Full disclosing segmentation: \bar{s} , where

$$\bar{s}(\delta_{\{\theta\}}) = \beta_M(\theta),$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for all $\theta \in \Theta$.

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix Extension: Consumers' Private Information

Theorem

The consumer surplus under any optimal mechanism of the data broker is lower than that under the full disclosing segmentation.

Implications:

- Separation between the ownership of consumer data and the production technology harms the consumers.
- Vertical integration increases total surplus **and** benefits the consumers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Extensio	n Cor	sumers' Priva	te Inform	ation	

An optimal mechanism can also be characterized.

Let $u(\theta)$ be the upper bound of interval θ .

For any $c \in C$ and $\theta \in \Theta$ such that $u(\theta) \ge \phi_G(c)$, define β_{θ} as

$$\beta_{\theta}(\theta') := \begin{cases} \beta_0(\theta'), & \text{if } u(\theta') < \phi_G(c) \\ \sum_{\{\hat{\theta}: u(\hat{\theta}) \ge \phi_G(c)\}} \beta_0(\hat{\theta}), & \text{if } \theta' = \theta \\ 0, & \text{otherwise} \end{cases}$$

and let

$$\sigma^*(\beta_{\theta}|c) := \frac{\beta_0(\theta)}{\sum_{\{\hat{\theta}: u(\hat{\theta}\}) \ge \phi_G(c)} \beta_0(\hat{\theta})},$$

for all $\theta \in \Theta$ such that $u(\theta) \ge \phi_G(c)$. Also, let

$$\tau^*(c) := \int_{\Delta(\Theta)} \pi_{D_{\beta}}(c) \sigma^*(\mathrm{d}\beta|c) - \int_c^{\overline{c}} D_{\beta}(p_{D_{\beta}}(z)) \sigma^*(\mathrm{d}\beta|z) \,\mathrm{d}z - \pi_{D_M}(\overline{c}).$$

Model Introduction **Optimal Mechanism** Proof Appendix

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Extension: Consumer's Private Information

Theorem

 (σ^*, τ^*) is an optimal mechanism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $J \in \mathbb{N}$ producers. Each of them produces a distinct product.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $J \in \mathbb{N}$ producers. Each of them produces a distinct product.

 $I \in \mathbb{N}$ different group of consumers. Each group has different preferences among the J products.

 $J \in \mathbb{N}$ producers. Each of them produces a distinct product.

 $I \in \mathbb{N}$ different group of consumers. Each group has different preferences among the J products.

 $D_M^{ij} \in \mathscr{D}$: demand of consumers' values in group *i* about product *j*.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 $J \in \mathbb{N}$ producers. Each of them produces a distinct product.

 $I \in \mathbb{N}$ different group of consumers. Each group has different preferences among the J products.

 $D_M^{ij} \in \mathcal{D}$: demand of consumers' values in group *i* about product *j*.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

j has marginal cost $c_j \in C_j = [\underline{c}_j, \overline{c}_j].$

 $J \in \mathbb{N}$ producers. Each of them produces a distinct product.

 $I \in \mathbb{N}$ different group of consumers. Each group has different preferences among the J products.

 $D_M^{ij} \in \mathcal{D}$: demand of consumers' values in group *i* about product *j*.

j has marginal cost $c_j \in C_j = [\underline{c}_j, \overline{c}_j]$.

 $\begin{array}{l} c_j \text{ is private information to } j, \\ \{c_j\}_{j=1}^J \text{ indp., } c_j \sim G_j \text{ for all } j, \ G_j \text{ admits a density } g_j > 0 \text{ for all } j. \\ C := \prod_{j=1}^J C_j, \ G := \prod_{j=1}^J G_j. \end{array}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Producers do not know the consumers' values a priori.

Producers do not know the consumers' values a priori.

Consumers can buy any subset of products they see.

Producers do not know the consumers' values a priori.

Consumers can buy any subset of products they see.

Producers do not have targeting technology a priori \Rightarrow outside option for j with cost c_j is $\pi_{m_i^0}(c_j)$, where

$$D_0^j := \frac{1}{I} \sum_{i=1}^I D_M^{ij}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Producers do not know the consumers' values a priori.

Consumers can buy any subset of products they see.

Producers do not have targeting technology a priori \Rightarrow outside option for j with cost c_j is $\pi_{m_i^0}(c_j)$, where

$$D_0^j := \frac{1}{I} \sum_{i=1}^I D_M^{ij}$$

A mechanism is $(\sigma_{ij}, \tau_j, q_{ij})_{i \in \mathcal{I}, j \in \mathcal{J}}$. For any report $c \in C$,

- $\sigma_{ij}(c) \in \mathscr{S}_{D_M^{ij}}$ is the segmentation of group i provided to j.
- $\tau_j(c) \in \mathbb{R}$ is the amount of payments producer j pays.
- $q_{ij}(c)$ is the fraction of group *i* that sees *j*, where $\sum_i q_{ij}(c) \le 1$.

Theorem (Surplus Extraction with Targeting)

For any $\{D_0^{ij}\}_{i \in \mathcal{I}, j \in \mathcal{J}} \subset \mathcal{D}$ and any distributions of marginal costs $\{G_j\}_{j \in \mathcal{J}}$, there exists an incentive feasible mechanism that maximizes the data broker's revenue. Moreover, under any revenue-maximizing mechanism, consumers retain zero surplus.

Theorem (Outcome Equivalence with Targeting)

For any $\{D_0^{ij}\}_{i \in \mathscr{I}, j \in \mathscr{J}} \subset \mathscr{D}$ such that $\{D_0^{ij}\}_{i \in \mathscr{I}}$ is ordered by the pointwise ordering for each $j \in \mathscr{J}$, and for any regular distributions of marginal costs $\{G_j\}_{j \in \mathscr{J}}$, suppose that for any $i \in \mathscr{I}$ and any $j \in \mathscr{J}$, $p_{D_M^{ij}} \ge \phi_{G_j}$ and $p_{D_M^j} \ge \phi_{G_j}$. Then data brokership and price-controlling data brokership are outcome equivalent.

Data broker extracts all the additional surplus created by targeting:

- Target product j to the most profitable group.
- Implement the optimal $\overline{\varphi}_{G_j}$ -quasi-perfect scheme characterized above.

Data broker extracts all the additional surplus created by targeting:

- Target product *j* to the most profitable group.
- Implement the optimal $\overline{\varphi}_{G_j}$ -quasi-perfect scheme characterized above.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Targeted marketing does not benefit the consumers.

Outcome equivalence still holds even with targeting.

Revenue Equivalence Formula: Derivation

Recall: $\pi_D(c) = \max_p(p-c)D(p)$.

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c).$

Recall: $\pi_D(c) = \max_p(p-c)D(p)$.

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c).$

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d} D | c) - \tau(c) = U(c)$$

Revenue Equivalence Formula: Derivation

Recall: $\pi_D(c) = \max_p (p-c)D(p)$.

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z) \,\mathrm{d}z$$

Recall: $\pi_D(c) = \max_p(p-c)D(p)$.

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

 $\mathsf{IC} \Leftrightarrow U(c) = \max_{c'} \int_{\mathscr{D}} \pi_D(c) \sigma(\mathsf{d}D|c') - \tau(c').$

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z) \,\mathrm{d}z$$

Aevenue Equivalence Formula. Deriva

Recall: $\pi_D(c) = \max_p (p-c)D(p)$.

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

$$\begin{split} \mathsf{IC} &\Leftrightarrow U(c) = \max_{c'} \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c'). \\ &\Rightarrow U'(c) = \int_{\mathscr{D}} \pi'_D(c) \sigma(\mathrm{d}D|c). \end{split}$$

$$\int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z) \,\mathrm{d}z$$

Recall: $\pi_D(c) = \max_p(p-c)D(p)$.

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

$$\begin{split} \mathsf{IC} &\Leftrightarrow U(c) = \max_{c'} \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c'). \\ &\Rightarrow U'(c) = \int_{\mathcal{D}} \pi'_D(c) \sigma(\mathrm{d}D|c). \end{split}$$

$$\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z)\,\mathrm{d}z$$
$$= U(\overline{c}) - \int_c^{\overline{c}} \int_{\mathscr{D}} \pi'_D(z)\sigma(\mathrm{d}D|z)\,\mathrm{d}z$$

Recall:
$$\pi_D(c) = \max_p(p-c)D(p) \Rightarrow \pi'_D(c) = -D(p_D(c))$$

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

$$\begin{split} \mathsf{IC} &\Leftrightarrow U(c) = \max_{c'} \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c'). \\ &\Rightarrow U'(c) = \int_{\mathscr{D}} \pi'_D(c) \sigma(\mathrm{d}D|c). \end{split}$$

$$\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z)\,\mathrm{d}z$$
$$= U(\overline{c}) - \int_c^{\overline{c}} \int_{\mathscr{D}} \pi'_D(z)\sigma(\mathrm{d}D|z)\,\mathrm{d}z$$

Recall:
$$\pi_D(c) = \max_p(p-c)D(p) \Rightarrow \pi'_D(c) = -D(p_D(c))$$

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

$$\begin{split} \mathsf{IC} &\Leftrightarrow U(c) = \max_{c'} \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c'). \\ &\Rightarrow U'(c) = \int_{\mathcal{D}} \pi'_D(c) \sigma(\mathrm{d}D|c). \end{split}$$

$$\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z) \,\mathrm{d}z$$
$$= U(\overline{c}) - \int_c^{\overline{c}} \int_{\mathscr{D}} \pi'_D(z)\sigma(\mathrm{d}D|z) \,\mathrm{d}z$$
$$= U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z))\sigma(\mathrm{d}D|z) \,\mathrm{d}z.$$

Recall:
$$\pi_D(c) = \max_p(p-c)D(p) \Rightarrow \pi'_D(c) = -D(p_D(c))$$

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

$$\begin{split} \mathsf{IC} &\Leftrightarrow U(c) = \max_{c'} \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c'). \\ &\Rightarrow U'(c) = \int_{\mathcal{D}} \pi'_D(c) \sigma(\mathrm{d}D|c). \end{split}$$

$$\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z) \,\mathrm{d}z$$
$$= U(\overline{c}) - \int_c^{\overline{c}} \int_{\mathscr{D}} \pi'_D(z)\sigma(\mathrm{d}D|z) \,\mathrm{d}z$$
$$= U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z))\sigma(\mathrm{d}D|z) \,\mathrm{d}z.$$

Recall:
$$\pi_D(c) = \max_p(p-c)D(p) \Rightarrow \pi'_D(c) = -D(p_D(c))$$

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

$$\begin{split} \mathsf{IC} &\Leftrightarrow U(c) = \max_{c'} \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c'). \\ &\Rightarrow U'(c) = \int_{\mathcal{D}} \pi'_D(c) \sigma(\mathrm{d}D|c). \end{split}$$

$$\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z)\,\mathrm{d}z$$
$$= U(\overline{c}) - \int_c^{\overline{c}} \int_{\mathscr{D}} \pi'_D(z)\sigma(\mathrm{d}D|z)\,\mathrm{d}z$$
$$= U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z))\sigma(\mathrm{d}D|z)\,\mathrm{d}z.$$

Recall:
$$\pi_D(c) = \max_p(p-c)D(p) \Rightarrow \pi'_D(c) = -D(p_D(c))$$

Recall:
$$\pi_D(c) = \max_p(p-c)D(p) \Rightarrow \pi'_D(c) = -D(p_D(c))$$

Define: $U(c) := \int_{\mathcal{Q}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

 $\mathsf{IC} \Leftrightarrow U(c) = \max_{c'} \int_{\mathscr{D}} \pi_D(c) \sigma(\mathsf{d}D|c') - \tau(c').$ $\Rightarrow U'(c) = \int_{\mathscr{Q}} \pi'_D(c) \sigma(\mathrm{d}D|c).$

$$\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z) \,\mathrm{d}z$$
$$= U(\overline{c}) - \int_c^{\overline{c}} \int_{\mathscr{D}} \pi'_D(z)\sigma(\mathrm{d}D|z) \,\mathrm{d}z$$
$$= U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z))\sigma(\mathrm{d}D|z) \,\mathrm{d}z.$$

$$\Rightarrow \tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c}).$$

Recall:
$$\pi_D(c) = \max_p(p-c)D(p) \Rightarrow \pi'_D(c) = -D(p_D(c))$$

Define: $U(c) := \int_{\mathscr{D}} \pi_D(c) \sigma(dD|c) - \tau(c)$.

$$\begin{split} \mathsf{IC} &\Leftrightarrow U(c) = \max_{c'} \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c'). \\ &\Rightarrow U'(c) = \int_{\mathcal{D}} \pi'_D(c) \sigma(\mathrm{d}D|c). \end{split}$$

$$\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) - \int_c^{\overline{c}} U'(z) \,\mathrm{d}z$$
$$= U(\overline{c}) - \int_c^{\overline{c}} \int_{\mathscr{D}} \pi'_D(z)\sigma(\mathrm{d}D|z) \,\mathrm{d}z$$
$$= U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathscr{D}} D(\mathbf{p}_D(z))\sigma(\mathrm{d}D|z) \,\mathrm{d}z.$$

$$\Rightarrow \tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(\boldsymbol{p}_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

•

$$\tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c}).$$

$$\tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$\tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $\Rightarrow \mathbb{E}[\tau(c)]$

 $\Rightarrow \mathbb{E}[\tau(c)]$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c})$$

$$\tau(c) = \int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z))\sigma(\mathrm{d}D|z)\,\mathrm{d}z - U(\overline{c})$$

$$= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(p_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $\Rightarrow \mathbb{E}[\tau(c)]$

$$\tau(c) = \int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathscr{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(p_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c})$$
$$= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c)$$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(p_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c})$$

$$= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathscr{D}} D(p_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c})$$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$= \int_{C} \left[\int_{\mathcal{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathcal{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c})$$

$$= \int_{C} \left(\int_{\mathcal{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathcal{D}} D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c})$$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$\begin{split} &= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\pi_{D}(c) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$\begin{split} &= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\pi_{D}(c) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \end{split}$$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$\begin{split} &= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\pi_{D}(c) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\boldsymbol{p}_{D}(c) - c) D(\boldsymbol{p}_{D}(c)) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right] G(\mathrm{d}c) - U(\overline{c}) \end{split} \right]$$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$\begin{split} &= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\pi_{D}(c) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} (\boldsymbol{p}_{D}(c) - c) D(\boldsymbol{p}_{D}(c)) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right] G(\mathrm{d}c) - U(\overline{c}) \end{split}$$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$\begin{split} &= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\pi_{D}(c) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\boldsymbol{p}_{D}(c) - c) D(\boldsymbol{p}_{D}(c)) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right] G(\mathrm{d}c) - U(\overline{c}) \end{split} \right]$$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$\begin{split} &= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\pi_{D}(c) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\boldsymbol{p}_{D}(c) - c) D(\boldsymbol{p}_{D}(c)) - D(\boldsymbol{p}_{D}(c)) \frac{G(c)}{g(c)} \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\boldsymbol{p}_{D}(c) - \left(c + \frac{G(c)}{g(c)} \right) \right) D(\boldsymbol{p}_{D}(c)) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \end{split}$$

$$\tau(c) = \int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z - U(\overline{c})$$

$$\begin{split} &= \int_{C} \left[\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) - \int_{c}^{\overline{c}} \int_{\mathscr{D}} D(p_{D}(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left(\int_{\mathscr{D}} \pi_{D}(c) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - \int_{C} \left(\int_{\mathscr{D}} D(p_{D}(c)) \frac{G(c)}{g(c)} \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(\pi_{D}(c) - D(p_{D}(c)) \frac{G(c)}{g(c)} \right) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} (p_{D}(c) - c) D(p_{D}(c)) - D(p_{D}(c)) \frac{G(c)}{g(c)} \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left[\int_{\mathscr{D}} \left(p_{D}(c) - \left(c + \frac{G(c)}{g(c)} \right) \right) D(p_{D}(c)) \sigma(\mathrm{d}D|c) \right] G(\mathrm{d}c) - U(\overline{c}) \\ &= \int_{C} \left(\int_{\mathscr{D}} (p_{D}(c) - \phi_{G}(c)) D(p_{D}(c)) \sigma(\mathrm{d}D|c) \right) G(\mathrm{d}c) - U(\overline{c}). \end{split}$$

Recall:

$$\int_{\mathcal{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z))\sigma(\mathrm{d}D|z) \,\mathrm{d}z$$

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c)\sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z))\sigma(\mathrm{d}D|z) \,\mathrm{d}z$$

For any $c, c' \in C$,

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

For any $c, c' \in C$,

$$0 \le U(c) - \left[\int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c') \right]$$

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d} D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d} D|z) \,\mathrm{d} z$$

For any $c, c' \in C$,

$$0 \leq U(c) - \left[\int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c') \right]$$
$$= U(c) \qquad - \left[\int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c') \right]$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d} D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d} D|z) \,\mathrm{d} z$$

For any $c, c' \in C$,

$$\begin{aligned} 0 &\leq U(c) - \left[\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c') \right] \\ &= U(c) - \int_{\mathcal{D}} \pi_D(c') \sigma(\mathrm{d}D|c') + \int_{\mathcal{D}} \pi_D(c') \sigma(\mathrm{d}D|c') - \left[\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c') \right] \end{aligned}$$

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d} D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d} D|z) \,\mathrm{d} z$$

For any $c, c' \in C$,

$$0 \leq U(c) - \left[\int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c') \right]$$

= $U(c) - \int_{\mathscr{D}} \pi_D(c') \sigma(\mathrm{d}D|c') + \int_{\mathscr{D}} \pi_D(c') \sigma(\mathrm{d}D|c') - \left[\int_{\mathscr{D}} \pi_D(c) \sigma(\mathrm{d}D|c') - \tau(c') \right]$

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d} D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d} D|z) \,\mathrm{d} z$$

For any $c, c' \in C$,

$$0 \leq U(c) - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c') \right]$$

= $U(c) - \int_{\mathscr{D}} \pi_D(c')\sigma(\mathrm{d}D|c') + \int_{\mathscr{D}} \pi_D(c')\sigma(\mathrm{d}D|c') - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(\mathrm{d}D|c') - \tau(c') \right]$
= $(U(c) - U(c')) + \int_{\mathscr{D}} (\pi_D(c') - \pi_D(c))\sigma(\mathrm{d}D|c')$

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z$$

For any $c, c' \in C$,

$$0 \leq U(c) - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(dD|c') - \tau(c') \right]$$

= $U(c) - \int_{\mathscr{D}} \pi_D(c')\sigma(dD|c') + \int_{\mathscr{D}} \pi_D(c')\sigma(dD|c') - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(dD|c') - \tau(c') \right]$
= $(U(c) - U(c')) + \int_{\mathscr{D}} (\pi_D(c') - \pi_D(c))\sigma(dD|c')$

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z$$

For any $c, c' \in C$,

$$0 \leq U(c) - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(dD|c') - \tau(c') \right]$$

= $U(c) - \int_{\mathscr{D}} \pi_D(c')\sigma(dD|c') + \int_{\mathscr{D}} \pi_D(c')\sigma(dD|c') - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(dD|c') - \tau(c') \right]$
= $(U(c) - U(c')) + \int_{\mathscr{D}} (\pi_D(c') - \pi_D(c))\sigma(dD|c')$
= $\int_c^{c'} -U'(z) dz + \int_c^{c'} \left(\int_{\mathscr{D}} \pi'_D(z)\sigma(dD|c') \right) dz$

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d}D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d}D|z) \,\mathrm{d}z$$

For any $c, c' \in C$,

$$0 \leq U(c) - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(dD|c') - \tau(c') \right]$$

= $U(c) - \int_{\mathscr{D}} \pi_D(c')\sigma(dD|c') + \int_{\mathscr{D}} \pi_D(c')\sigma(dD|c') - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(dD|c') - \tau(c') \right]$
= $(U(c) - U(c')) + \int_{\mathscr{D}} (\pi_D(c') - \pi_D(c))\sigma(dD|c')$
= $\int_c^{c'} - U'(z) dz + \int_c^{c'} \left(\int_{\mathscr{D}} \pi'_D(z)\sigma(dD|c') \right) dz$
= $\int_c^{c'} \int_{\mathscr{D}} D(\mathbf{p}_D(z))\sigma(dD|c) dz - \int_c^{c'} \int_{\mathscr{D}} D(\mathbf{p}_D(z))\sigma(dD|c') dz$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Revenue Equivalence Formula: Derivation

Recall:

$$\int_{\mathcal{D}} \pi_D(c) \sigma(\mathrm{d} D|c) - \tau(c) = U(c) = U(\overline{c}) + \int_c^{\overline{c}} \int_{\mathcal{D}} D(p_D(z)) \sigma(\mathrm{d} D|z) \,\mathrm{d} z$$

For any $c, c' \in C$,

$$0 \leq U(c) - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(dD|c') - \tau(c') \right]$$

= $U(c) - \int_{\mathscr{D}} \pi_D(c')\sigma(dD|c') + \int_{\mathscr{D}} \pi_D(c')\sigma(dD|c') - \left[\int_{\mathscr{D}} \pi_D(c)\sigma(dD|c') - \tau(c') \right]$
= $(U(c) - U(c')) + \int_{\mathscr{D}} (\pi_D(c') - \pi_D(c))\sigma(dD|c')$
= $\int_c^{c'} - U'(z) dz + \int_c^{c'} \left(\int_{\mathscr{D}} \pi'_D(z)\sigma(dD|c') \right) dz$
= $\int_c^{c'} \int_{\mathscr{D}} D(p_D(z))\sigma(dD|c) dz - \int_c^{c'} \int_{\mathscr{D}} D(p_D(z))\sigma(dD|c') dz$

▶ Back

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch c	of Proo	f			

For any $D \in \mathcal{D}$, let

$$D^{-1}(q) := \sup\{p \in V : D(p) \ge q\}.$$

Lemma

The price-controlling data broker's problem has a solution. Moreover, the optimal revenue is

$$R^* = \max_{\boldsymbol{q} \in \mathcal{Q}} \int_C \left(\int_0^{\boldsymbol{q}(c)} (D_M^{-1}(\boldsymbol{q}) - \phi_G(c)) \, \mathrm{d}\boldsymbol{q} \right) G(\mathrm{d}\boldsymbol{c}) - \pi_{D_M}(\overline{\boldsymbol{c}})$$

s.t. $\bar{\pi} + \int_c^{\overline{c}} \boldsymbol{q}(z) \, \mathrm{d}\boldsymbol{z} \ge \bar{\pi} + \int_c^{\overline{c}} D_M(\boldsymbol{p}_{D_M}(z)) \, \mathrm{d}\boldsymbol{z},$

where \mathcal{Q} is the collection of all nonincreasing functions from C to [0,1].

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Sketch of Proof

For any $q \in \mathcal{Q}$ let R(q) be the price-controlling data broker revenue when choosing $q \in \mathcal{Q}$.

$$R(\boldsymbol{q}) := \int_C \left(\int_0^{\boldsymbol{q}(c)} (D_M^{-1}(\boldsymbol{q}) - \phi_G(c)) \, \mathrm{d}\boldsymbol{q} \right) G(\mathrm{d}\boldsymbol{c}) - \bar{\boldsymbol{\pi}}$$

Consider the dual: For any Borel measure μ , let

$$d(\mu) := \sup_{\boldsymbol{q} \in \mathcal{Q}} \left[R(\boldsymbol{q}) + \int_C \left(\int_c^{\bar{c}} (\boldsymbol{q}(z) - D_M(\boldsymbol{p}_{D_M}(z))) \, \mathrm{d}z \right) \mu(\mathrm{d}c) \right]$$

and let

$$d^* := \inf_{\mu} d(\mu)$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

By weak duality, it suffices to find μ^* so that

- $D_M \circ \phi_G$ is feasible in the primal problem.
- $D_M \circ \phi_G$ solves the dual problem $d(\mu^*)$.
- the complementary slackness condition is satisfied. i.e.,

$$\int_C \left(\int_c^{\bar{c}} (D_M(\phi_G(z)) - D_M(\boldsymbol{p}_{D_M}(z))) \, \mathrm{d}z \right) \mu^*(\mathrm{d}c) = 0$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch o	of Proo	f			

Define

$$M^*(c) := \lim_{z \downarrow c} g(z) (\phi_G(z) - p_{D_M}(z))^+, \forall c \in C$$

By assumption: M^* is nondecreasing and right-continuous.

Let μ^* be the Borel measure induced by M^* .

Can show that $D_M \circ \phi_G$ solves $d(\mu^*)$ and that the complementary slackness condition is satisfied.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch (of Proo	f			

Also, since $\phi_G \leq p_{D_M}$,

$$\bar{\pi} \int_{c}^{\bar{c}} D_{M}(\phi_{G}(z)) \, \mathrm{d}z \ge \bar{\pi} + \int_{c}^{\bar{c}} D_{M}(\boldsymbol{p}_{D_{M}}(z)) \, \mathrm{d}z, \, \forall c \in C$$

and thus $D_M \circ \phi_G$ is feasible in the primal problem.

 $D_M \circ \phi_G$ solves the primal problem.

By definition,

$$\int_0^{D_M(\phi_G(c))} (D_M^{-1}(q) - \phi_G(c)) \, \mathrm{d}q = \int_{\{v \ge \phi_G(c)\}} (v - \phi_G(c)) D_M(\mathrm{d}v).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

→ Back

A market segmentation can also be thought of as a partition of consumers' characteristics.

Any segmentation $s \in \Delta(\mathcal{D})$ can be generated by partitioning the characteristics, as long as they are rich enough.

 $(\Theta, \mathscr{F}, \mathbb{P})$: probability space (characteristics).

 $\mathbf{V}: \Theta \rightarrow V$, measurable ($\mathbf{V}(\theta)$ is a consumer's value when their characteristic is θ).

ション ふゆ アメリア メリア しょうくしゃ

Theorem (Generating Countable Segmentation)

Suppose that $(\Theta, \mathscr{F}, \mathbb{P})$ is nonatomic. Then for any segmentation *s* with $\operatorname{supp}(s)$ being countable, there exists a countable partition \mathscr{P} of Θ such that for any $D \in \operatorname{supp}(s)$, there exists $F \in \mathscr{P}$ such that

 $\mathbb{P}(F \cap \mathbf{V}^{-1}([p,\overline{v}])) = D(p)s(D),$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

for all $p \in V$.

Definition

Say that $(\Theta, \mathscr{F}, \mathbb{P})$ is rich relative to **V** if for any $p \in V$, $(\mathbf{V}^{-1}([p, \overline{v}]), \mathscr{F}|_{\mathbf{V}^{-1}([p, \overline{v}])}, \tilde{\mathbb{P}}_p)$ is isomorphic to $(I, \mathscr{B}([0, 1]), L)$ modulo zero for some interval $I \subseteq [0, 1]$, where

$$\mathscr{F}|_{\mathbf{V}^{-1}([p,\overline{\nu}])} := \{F \in \mathscr{F} : F \subseteq \mathbf{V}^{-1}([p,\overline{\nu}])\},\$$

$$\tilde{\mathbb{P}}_p(F) := \mathbb{P}(F \cap \mathbf{V}^{-1}([p,\overline{v}])),$$

for any $F \in \mathscr{F}|_{\mathbf{V}^{-1}([p,\overline{\nu}])}$ and L is the Lebesgue measure.

Example: $\Theta \subseteq \mathbb{R}^n$, $n \ge 2$; \mathscr{F} : Borel σ -algebre; \mathbb{P} absolutely continuous w.r.t the Lebesgue measure;

$$\{\theta \in \Theta | \mathbf{V}(\theta) = v\}$$

ション ふゆ く 山 マ チャット しょうくしゃ

has Hausdorff dimension ≥ 1 for all $v \in V$.

Theorem (Generating Arbitrary Segmentation)

Suppose that $(\Theta, \mathscr{F}, \mathbb{P})$ is rich relative to V. Then for any segmentation s, there exists a random variable $\mathbf{D}: \Theta \to \mathscr{D}$ such that

$$\mathbb{P}(\mathbf{D}^{-1}(B) \cap \mathbf{V}^{-1}([p,\overline{v}])) = \int_B D(p)s(\mathrm{d}D),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

for all $p \in V$ and for any measurable $B \subseteq \mathcal{D}$.

Back

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Exclusive	e retail				

Exclusive retail:

c is private information.

The data broker offers a menu consisting of items (q, t). For each item (q, t),

- The data broker pays t to the producer.
- The producer produces q units for the data broker and forfeits the right to sell the product.
- The data broker can sell at most *q* units to the consumers (via perfect price discrimination).

Then the broker sells the purchased product to the consumers **exclusively**, via **perfect price discrimination**.

If the producer does not choose any item, she sells to the consumers without data and receives $\pi_{D_M}(c)$.

ション ふゆ アメリア メリア しょうくしゃ

Lemma (Decomposition Lemma)

For any nondecreasing $\psi: C \to \mathbb{R}_+$ with $\psi(c) \ge c$ for all $c \in C$, there exists $\sigma^*: C \to \Delta(\mathscr{D})$ such that for all $c \in C$, $\sigma^*(c)$ is a segmentation that induces quasi-perfect price discrimination with cutoff $\psi(c)$ for c and that

$$\psi(z) \le \boldsymbol{p}_D(z),$$

**`

for any $z \in [c, c]$ and for any $D \in \text{supp}(\sigma(c))$.

Back

Consider first the case where D_M is a step function with finitely many steps.

Let

$$\hat{c} := \inf\{z \in C | p_{D_M}(z) \ge \psi(c)\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\psi(c) \leq p_{D_M}(c) \Rightarrow \hat{c} \in [\underline{c}, c].$

 p_{D_M} is nondegreasing $\Rightarrow p_{D_M}(z) \ge \psi(c)$ iff $z \ge \hat{c}$.

If $\hat{c} > \underline{c}$, then it must be that $\underline{p}_0(\hat{c}) < \psi(c) \le p_{D_M}(\hat{c})$.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch	of Proo	$f(\hat{c} > \underline{c})$			

		$\underline{p}_0^{(\hat{c})}$		$\psi(c)$		$\boldsymbol{p}_{D_M}(\hat{c})$	
v_1	v_2	v_3	v_4	v_5	v_6	v_7	
$m^0(v_1)$	$m^0(v_2)$	$m^{0}(v_{3})$	$m^0(v_4)$	$m^0(v_5)$	$m^{0}(v_{6})$	$m^0(v_7)$	
$\alpha_{v_{1}}^{v_{7}}m^{0}(v_{1})$	$\alpha_{v_2}^{v_7} m^0(v_2)$	$\alpha_{v_{3}}^{v_{7}}m^{0}(v_{3})$	$\alpha_{v_4}^{v_7} m^0(v_4)$	0	0	$m^0(v_7)$	
$\alpha_{v_{1}}^{v_{6}}m^{0}(v_{1})$	$\alpha_{v_2}^{v_6} m^0(v_2)$	$\alpha_{\nu_{3}}^{\nu_{6}}m^{0}(\nu_{3})$	$\alpha_{v_4}^{v_6} m^0(v_4)$	0	$m^0(v_6)$	0	
$\alpha_{v_{1}}^{v_{5}}m^{0}(v_{1})$	$\alpha_{v_2}^{v_5} m^0(v_2)$	$\alpha_{\nu_{3}}^{\nu_{5}}m^{0}(\nu_{3})$	$\alpha_{v_4}^{v_5} m^0(v_4)$	$m^0(v_5)$	0	0	

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch	of Proo	$f(\hat{c} > \underline{c})$			

		$\underline{p}_0(\hat{c})$		$\psi(c)$		$\hat{\psi}(\hat{c}) \ oldsymbol{p}_{D_M}(\hat{c})$
<i>v</i> ₁	v_2	ν_3	ν_4	v_5	v_6	ν_7
$m^0(v_1)$	$m^{0}(v_{2})$	$m^{0}(v_{3})$	$m^0(v_4)$	$m^0(v_5)$	$m^{0}(v_{6})$	$m^0(v_7)$
$\alpha_{v_{1}}^{v_{7}}m^{0}(v_{1})$	$\alpha_{v_{2}}^{v_{7}}m^{0}(v_{2})$	$\alpha_{\nu_{3}}^{\nu_{7}}m^{0}(\nu_{3})$	$\alpha_{v_4}^{v_7} m^0(v_4)$	0	0	$m^{0}(v_{7})$
$\alpha_{v_{1}}^{v_{6}}m^{0}(v_{1})$	$\alpha_{v_2}^{v_6} m^0(v_2)$	$\alpha_{v_3}^{v_6} m^0(v_3)$	$\alpha_{v_4}^{v_6} m^0(v_4)$	0	$m^0(v_6)$	0
$\alpha_{v_{1}}^{v_{5}}m^{0}(v_{1})$	$\alpha_{v_{2}}^{v_{5}}m^{0}(v_{2})$	$\alpha_{v_3}^{v_5} m^0(v_3)$	$\alpha_{v_4}^{v_5} m^0(v_4)$	$m^0(v_5)$	0	0

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch o	of Proo	$f(\hat{c} > \underline{c})$			

					BB	M cutoff
		$\underline{p}_{0}(\hat{c})$		$\psi(c)$		$\hat{\psi}(\hat{c}) \ p_{D_M}(\hat{c})$
<i>v</i> ₁	v_2	$\frac{\underline{P}_{0}(v)}{v_{3}}$	v_4	v_5	v_6	v_7
$m^0(v_1)$	$m^0(v_2)$	$m^{0}(v_{3})$	$m^0(v_4)$	$m^0(v_5)$	$m^{0}(v_{6})$	$m^{0}(v_{7})$
$\alpha_{v_{1}}^{v_{7}}m^{0}(v_{1})$	$\alpha_{v_{2}}^{v_{7}}m^{0}(v_{2})$	$\alpha_{v_{3}}^{v_{7}}m^{0}(v_{3})$	$\alpha_{v_{4}}^{v_{7}}m^{0}(v_{4})$	0	0	$m^0(v_7)$
$\alpha_{v_1}^{v_6} m^0(v_1)$	$\alpha_{v_2}^{v_6} m^0(v_2)$	$\alpha_{\nu_{3}}^{\nu_{6}}m^{0}(\nu_{3})$	$\alpha_{v_{4}}^{v_{6}}m^{0}(v_{4})$	0	$m^0(v_6)$	0
$\alpha_{v_{1}}^{v_{5}}m^{0}(v_{1})$	$\alpha_{v_{2}}^{v_{5}}m^{0}(v_{2})$	$\alpha_{v_{3}}^{v_{5}}m^{0}(v_{3})$	$\alpha_{v_{4}}^{v_{5}}m^{0}(v_{4})$	$m^0(v_5)$	0	0

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch	of Proo	$f(\hat{c} > \underline{c})$			

		$\underline{p}_{0}(\hat{c})$		$\psi(c)$		$\boldsymbol{p}_{D_M}(\hat{c})$
<i>v</i> _1	v_2	v_3	v_4	v_5	v_6	v_7
$m^0(v_1)$	$m^{0}(v_{2})$	$m^{0}(v_{3})$	$m^0(v_4)$	$m^0(v_5)$	$m^0(v_6)$	$m^0(v_7)$
$\alpha^{v_7}m^0(v_1)$	$\alpha^{v_7}m^0(v_2)$	$\beta_{v_3}^{v_7} m^0(v_3)$	$\beta_{v_4}^{v_7} m^0(v_4)$	0	0	$m^0(v_7)$
$\alpha^{\nu_6}m^0(\nu_1)$	$\alpha^{\nu_6}m^0(\nu_2)$	$\beta_{v_3}^{v_6} m^0(v_3)$	$\beta_{v_4}^{v_6} m^0(v_4)$	0	$m^0(v_6)$	0
$\alpha^{\nu_5}m^0(\nu_1)$	$\alpha^{\nu_5}m^0(\nu_2)$	$\beta_{v_3}^{v_5} m^0(v_3)$	$\beta_{v_4}^{v_5} m^0(v_4)$	$m^0(v_5)$	0	0

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch	of Proof	$f(\hat{c} > \underline{c})$			

		$\underline{p}_{0}(\hat{c})$		$\psi(c)$		$oldsymbol{p}_{D_M}(\hat{c})$		
<i>v</i> ₁	v_2	v_3	v_4	v_5	v_6	v_7		
		$m^{0}(v_{3})$						
$\alpha^{\nu_7}m^0(\nu_1)$	$\alpha^{\nu_7}m^0(\nu_2)$	$\beta_{v_3}^{v_7} m^0(v_3)$	$\beta_{v_4}^{v_7} m^0(v_4)$	0	0	$m^0(v_7)$		
$\alpha^{\nu_6}m^0(\nu_1)$	$\alpha^{v_6}m^0(v_2)$	$\beta_{\nu_{3}}^{\nu_{6}}m^{0}(\nu_{3})$	$\beta_{v_4}^{v_6} m^0(v_4)$	0	$m^0(v_6)$	0		
$\alpha^{\nu_5}m^0(\nu_1)$	$\alpha^{\nu_5}m^0(\nu_2)$	$\beta_{\nu_{3}}^{\nu_{5}}m^{0}(\nu_{3})$	$\beta_{v_4}^{v_5} m^0(v_4)$	$m^0(v_5)$	0	0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
BBM weights								

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch	of Proof	$f(\hat{c} > \underline{c})$			

		$\underline{p}_{0}(\hat{c})$		$\psi(c)$		$p_{D_M}(\hat{c})$
<i>v</i> _1	v_2	v_3	v_4	v_5	v_6	v_7
		$m^{0}(v_{3})$				
$\alpha^{v_7} m^0(v_1)$	$\alpha^{v_7} m^0(v_2)$	$\beta_{\nu_3}^{\nu_7} m^0(\nu_3)$	$\beta_{v_4}^{v_7} m^0(v_4)$	0	0	$m^0(v_7)$
$\alpha^{v_6}m^0(v_1)$	$\alpha^{\nu_6}m^0(\nu_2)$	$\beta_{v_3}^{v_6} m^0(v_3)$	$\beta_{v_4}^{v_6} m^0(v_4)$	0	$m^0(v_6)$	0
$ \begin{array}{c} \alpha^{\nu_7} m^0(\nu_1) \\ \alpha^{\nu_6} m^0(\nu_1) \\ \alpha^{\nu_5} m^0(\nu_1) \end{array} $	$\alpha^{v_5}m^0(v_2)$	$\beta_{\nu_{3}}^{\nu_{5}}m^{0}(\nu_{3})$	$\beta_{v_4}^{v_5} m^0(v_4)$	$m^0(v_5)$	0	0
regular						

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch	of Proof	$f(\hat{c} > \underline{c})$			

		$\underline{p}_{0}(\hat{c})$		$\psi(c)$		$p_{D_M}(\hat{c})$
<i>v</i> _1	v_2	v_3	v_4	v_5	v_6	v_7
		$m^{0}(v_{3})$				
$\alpha^{v_7} m^0(v_1)$	$\alpha^{v_7} m^0(v_2)$	$\beta_{\nu_3}^{\nu_7} m^0(\nu_3)$	$\beta_{v_4}^{v_7} m^0(v_4)$	0	0	$m^0(v_7)$
$\alpha^{v_6}m^0(v_1)$	$\alpha^{\nu_6}m^0(\nu_2)$	$\beta_{v_3}^{v_6} m^0(v_3)$	$\beta_{v_4}^{v_6} m^0(v_4)$	0	$m^0(v_6)$	0
$ \begin{array}{l} \alpha^{\nu_7} m^0(\nu_1) \\ \alpha^{\nu_6} m^0(\nu_1) \\ \alpha^{\nu_5} m^0(\nu_1) \end{array} $	$\alpha^{v_5}m^0(v_2)$	$\beta_{\nu_{3}}^{\nu_{5}}m^{0}(\nu_{3})$	$\beta_{v_4}^{v_5} m^0(v_4)$	$m^0(v_5)$	0	0
regular						

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch o	of Proo	$f(\hat{c} = \underline{c})$			

		$\psi(c)$			$p_{D_M}(\underline{c})$	
v_1	v_2	v_3	v_4	v_5	v_6	v_7
$m^0(v_1)$	$m^0(v_2)$	$m^0(v_3)$	$m^0(v_4)$	$m^0(v_5)$	$m^0(v_6)$	$m^0(v_7)$
$\alpha^{\nu_7}m^0(\nu_1)$	$\alpha^{v_7}m^0(v_2)$	0	0	0	0	$m^0(v_7)$
$\alpha^{\nu_6}m^0(\nu_1)$	$\alpha^{\nu_6}m^0(\nu_2)$	0	0	0	$m^0(v_6)$	0
0	0	0	0	$m^0(v_5)$	0	0
0	0	0	$m^0(v_4)$	0	0	0
0	0	$m^{0}(v_{3})$	0	0	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch o	of Proo	f			

Lemma

Consider any function $\psi \in \mathbb{R}^{C}_{+}$ with $c \leq \psi(c)$ for all $c \in C$. Given any $\{D_{n}\} \subset \mathcal{D}$ and $\{\sigma_{n}\} \subset \mathscr{P}^{C}_{D_{n}}$. Suppose that $\{\sigma_{n}\} \rightarrow \sigma$ pointwisely and $\{D_{n}\} \rightarrow D_{M}$ for some $\sigma \in \Delta(\mathcal{D})^{C}$ and $D_{M} \in \mathcal{D}$. Then $\sigma \in \mathscr{S}^{C}$. Moreover, suppose further that σ_{n} is a ψ -quasi-perfect scheme for all $n \in \mathbb{N}$. Then σ is a ψ -quasi-perfect scheme.

For any $D_M \in \mathscr{D}$, take a sequence of step functions $\{D_n\} \subseteq \mathscr{D}$ such that $\{D_n\} \to D_M$ and that

 $c \le \psi(c) \le p_{D_n}(c), \forall c \in C$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

There exists $\{\sigma_n\} \to \sigma^*$ such that $\sigma_n : C \to \mathscr{S}_{D_n}$ is a ψ -quasi-perfect scheme satisfying (*).

 σ^* is as desired.

▶ Back

Assuming $\max\{g(c)(\phi_G(c) - p_{D_M}(c)), 0\}$ is nondecreasing:

Let $\overline{\varphi}_G(c) := \min\{\varphi_G(c), p_{D_M}(c)\}$ for all $c \in C$, where φ_G is the ironed virtual cost.

Can construct an optimal mechanism (σ^{**}, τ^{**}).

For any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ induces quasi-perfect price discrimination with cutoff $\overline{\varphi}_G(c)$ for c.

If, in addition, D_M is regular, then $\sigma^{**} \equiv \sigma^*$ and $\tau^{**} \equiv \tau^*$, with ϕ_G being replaced by $\overline{\varphi}_G$.

All the other results remain true.

► Sketch of Proof ► Back

Assuming D_M is continuous.

Can construct an optimal mechanism $(\bar{\sigma}, \bar{\tau})$.

For any optimal mechanism (σ, τ) and for any c, $\sigma(c)$ induces quasi-perfect price discrimination with cutoff $\varphi^*(c)$ for c.

 φ^* is a nondecreasing function such that $\varphi^*(c) > c$ for all $c > \underline{c}$. φ^* does not have a closed form, the paper (appendix) provides a partial characterization.

Consumer surplus is zero under and optimal mechanism.

Vertical integration is Pareto improving.

Exclusive retail and price-controlling data brokership Pareto dominates data brokership.

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix

Relaxing the Technical Assumptions

Theorem (Surplus Extraction)

For any (D_M, G) , there exists an IC & IR mechanism that maximizes the data broker's revenue. Furthermore, under any revenue-maximizing mechanism for the data broker, the consumers retain zero surplus.

ション ふゆ く 山 マ チャット しょうくしゃ

▶ Back

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch o	of Proo	f			

Lemma (Decomposition Lemma)

For any nondecreasing $\psi : C \to \mathbb{R}_+$ with $\psi(c) \ge c$ for all $c \in C$, there exists $\sigma^* : C \to \Delta(\mathscr{D})$ such that for all $c \in C$, $\sigma^*(c)$ is a segmentation that induces quasi-perfect price discrimination with cutoff $\psi(c)$ for c and that

$$\psi(z) \le p_D(z),$$

(**)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

for any $z \in [\underline{c}, c]$ and for any $D \in \text{supp}(\sigma(c))$.

Consider any IC & IR mechanism (σ, τ) such that the consumers retain positive surplus.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider any IC & IR mechanism (σ, τ) such that the consumers retain positive surplus.

Clearly, $c \le p_D(c) \le p_D(c)$ for all $D \in \operatorname{supp}(\sigma(c))$ for all $c \in C$.

Consider any IC & IR mechanism (σ, τ) such that the consumers retain positive surplus.

Clearly, $c \le p_D(c) \le p_D(c)$ for all $D \in \operatorname{supp}(\sigma(c))$ for all $c \in C$.

For all $c \in C$ and for all $D \in \text{supp}(\sigma(c))$, apply the decomposition lemma on D and obtain p_D -quasi-perfect scheme, say σ^D , satisfying (**)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider any IC & IR mechanism (σ, τ) such that the consumers retain positive surplus.

Clearly, $c \le p_D(c) \le p_D(c)$ for all $D \in \operatorname{supp}(\sigma(c))$ for all $c \in C$.

For all $c \in C$ and for all $D \in \text{supp}(\sigma(c))$, apply the decomposition lemma on D and obtain p_D -quasi-perfect scheme, say σ^D , satisfying (**)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This induces another segmentation scheme $\hat{\sigma}$.

Consider any IC & IR mechanism (σ, τ) such that the consumers retain positive surplus.

Clearly, $c \le p_D(c) \le p_D(c)$ for all $D \in \operatorname{supp}(\sigma(c))$ for all $c \in C$.

For all $c \in C$ and for all $D \in \text{supp}(\sigma(c))$, apply the decomposition lemma on D and obtain p_D -quasi-perfect scheme, say σ^D , satisfying (**)

This induces another segmentation scheme $\hat{\sigma}$.

Consumer surplus >0 under $(\sigma, \tau) \Rightarrow \hat{\sigma}$ extracts more surplus than σ .

ション ふゆ く 山 マ チャット しょうくしゃ

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Splitting	D by	$\sigma^D(c)$			

	v_1	v_2	v_3	v_4	v_5	v_6
D_M :	$m^0(v_1)$	$m^{0}(v_{2})$	$m^{0}(v_{3})$	$m^{0}(v_{4})$	$m^0(v_5)$	$m^0(v_6)$
D_1 :	$m^{D_1}(v_1)$	$m^{D_1}(v_2)$	$m^{D_1}(v_3)$	0	0	$m^{D_1}(v_6)$
D_2 :	$m^{D_2}(v_1)$	$m^{D_2}(v_2)$	$m^{D_2}(v_3)$	0	$m^{D_2}(v_5)$	0
D:	$m^D(v_1)$	$m^D(v_2)$	$m^D(v_3)$	$m^D(v_4)$	$m^D(v_5)$	$m^D(v_6)$

Note: Blue mark indicates the optimal price for producer c under each segment.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Splitting	D by	$\sigma^D(c)$			

		v_1	v_2	v_3	v_4	v_5	ν_6
_	D_M :	$m^{0}(v_{1})$	$m^{0}(v_{2})$	$m^{0}(v_{3})$	$m^{0}(v_{4})$	$m^0(v_5)$	$m^{0}(v_{6})$
	D_1 :	$m^{D_1}(v_1)$	$m^{D_1}(v_2)$	$m^{D_1}(v_3)$	0	0	$m^{D_1}(v_6)$
	D_2 :	$m^{D_2}(v_1)$	$m^{D_2}(v_2)$	$m^{D_2}(v_3)$	0	$m^{D_2}(v_5)$	0
	D:	$m^D(v_1)$	$m^D(v_2)$	$m^D(v_3)$	$m^D(v_4)$	$m^D(v_5)$	$m^D(v_6)$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Splitting	g D by	$\sigma^D(c)$			

			$p_D(c)$			
	v_1	v_2	v_3	v_4	v_5	v_6
<i>D</i> :	$m^D(v_1)$	$m^D(v_2)$	$m^D(v_3)$	$m^D(v_4)$	$m^D(v_5)$	$m^D(v_6)$
\hat{D}_{v_6} :	$\hat{m}^{v_6}(v_1)$	$\hat{m}^{v_6}(v_2)$	$\hat{m}^{v_6}(v_3)$	0	0	$m^D(v_6)$
\hat{D}_{v_5} :	$\hat{m}^{v_5}(v_1)$	$\hat{m}^{v_5}(v_2)$	$\hat{m}^{v_5}(v_3)$	0	$m^D(v_5)$	0
\hat{D}^{ν_4} :	$\hat{m}^{v_4}(v_1)$	$\hat{m}^{v_4}(v_2)$	$\hat{m}^{v_4}(v_3)$	$m^D(v_4)$	0	0

・ロ・・ (日・・ (日・・ 日・ のへぐ

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Splitting	D by	$\sigma^D(c)$			

	v_1	v_2	v_3	v_4	v_5	v_6
D_M :	$m^0(v_1)$	$m^{0}(v_{2})$	$m^{0}(v_{3})$	$m^{0}(v_{4})$	$m^0(v_5)$	$m^{0}(v_{6})$
D_1 :	$m^{D_1}(v_1)$	$m^{D_1}(v_2)$	$m^{D_1}(v_3)$	0	0	$m^{D_1}(v_6)$
D_2 :	$m^{D_2}(v_1)$	$m^{D_2}(v_2)$	$m^{D_2}(v_3)$	0	$m^{D_2}(v_5)$	0
<i>D</i> :	$m^D(v_1)$	$m^D(v_2)$	$m^D(v_3)$	$m^D(v_4)$	$m^D(v_5)$	$m^D(v_6)$

Introduction		Optimal Mechanism		Appendix
Splitting	D by	$\sigma^D(c)$		

_		v_1	v_2	v_3	v_4	v_5	v_6
_	D_M :	$m^0(v_1)$	$m^0(v_2)$	$m^0(v_3)$	$m^0(v_4)$	$m^0(v_5)$	$m^{0}(v_{6})$
	D_1 :	$m^{D_1}(v_1)$	$m^{D_1}(v_2)$	$m^{D_1}(v_3)$	0	0	$m^{D_1}(v_6)$
	m^{D_2} :	$m^{D_2}(v_1)$	$m^{D_2}(v_2)$	$m^{D_2}(v_3)$	0	$m^{D_2}(v_5)$	0
(\hat{D}_{v_6} :	$\hat{m}^{v_6}(v_1)$	$\hat{m}^{v_6}(v_2)$	$\hat{m}^{v_6}(v_3)$	0	0	$m^D(v_6)$
ł	\hat{D}^{v_5} :	$\hat{m}^{v_5}(v_1)$	$\hat{m}^{v_5}(v_2)$	$\hat{m}^{v_5}(v_3)$	0	$m^D(v_5)$	0
	\hat{D}^{v_4} :	$\hat{m}^{v_4}(v_1)$	$\hat{m}^{\nu_6}(\nu_2)$ $\hat{m}^{\nu_5}(\nu_2)$ $\hat{m}^{\nu_4}(\nu_2)$	$\hat{m}^{v_4}(v_3)$	$m^D(v_4)$	0	0

D

 $p_{D'}(z) \geq p_D(z), \, \forall z \in [\underline{c}, c]$

 $p_{D'}(z) \ge p_D(z), \, \forall z \in [\underline{c}, c]$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Therefore, for all $c, c' \in C$ with c' < c,

 $p_{D'}(z) \ge p_D(z), \, \forall z \in [\underline{c}, c]$

Therefore, for all $c, c' \in C$ with c' < c,

$$\int_{c'}^{c} \left(\int_{\mathscr{D}} Q_{D'}(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$

 $p_{D'}(z) \ge p_D(z), \, \forall z \in [\underline{c}, c]$

Therefore, for all $c, c' \in C$ with c' < c,

$$\int_{c'}^{c} \left(\int_{\mathscr{D}} Q_{D'}(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$
$$= \int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$

 $p_{D'}(z) \ge p_D(z), \, \forall z \in [\underline{c}, c]$

Therefore, for all $c, c' \in C$ with c' < c,

$$\int_{c'}^{c} \left(\int_{\mathscr{D}} Q_{D'}(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$
$$= \int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$
$$\geq \int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|c) \right) \mathrm{d}z$$

 $p_{D'}(z) \ge p_D(z), \, \forall z \in [\underline{c}, c]$

Therefore, for all $c, c' \in C$ with c' < c,

$$\int_{c'}^{c} \left(\int_{\mathscr{D}} Q_{D'}(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$
$$= \int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$
$$\geq \int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|c) \right) \mathrm{d}z$$
$$\geq 0$$

 $p_{D'}(z) \ge p_D(z), \, \forall z \in [\underline{c}, c]$

Therefore, for all $c, c' \in C$ with c' < c,

$$\int_{c'}^{c} \left(\int_{\mathscr{D}} Q_{D'}(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$
$$= \int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D'(\boldsymbol{p}_{D'}(z)) \hat{\sigma}(\mathrm{d}D'|c) \right) \mathrm{d}z$$
$$\geq \int_{c'}^{c} \left(\int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|z) - \int_{\mathscr{D}} D(\boldsymbol{p}_{D}(z)) \sigma(\mathrm{d}D|c) \right) \mathrm{d}z$$
$$\geq 0$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \Rightarrow IC is relaxed.

Can show that IR is also relaxed.

Revenue equivalence formula

 \Rightarrow There exists a mechanism $(\hat{\sigma},\hat{\tau},p)$ that strictly improves the revenue.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Back

Step 1: Finding an upper bound for revenue (the price-controlling data broker's revenue).

Step 2: Constructing a feasible mechanism that attains this upper bound.

▶ Back

The price-controlling data broker's optimal revenue is an upper bound for the data broker's revenue.

A mechanism (of the price-controlling data broker) (σ, τ, γ) is:

• incentive compatible if for any $c, c' \in C$,

$$\begin{split} &\int_{\mathscr{D}\times\mathbb{R}_{+}}(p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c)-\tau(c)\\ &\geq \int_{\mathscr{D}\times\mathbb{R}_{+}}(p-c)D(p)\gamma(\mathrm{d}p|D,c')\sigma(\mathrm{d}D|c')-\tau(c') \end{split}$$

• individually rational if for any $c \in C$,

$$\int_{\mathcal{D}\times\mathbb{R}_+} (p-c)D(p)\gamma(\mathrm{d}p|D,c)\sigma(\mathrm{d}D|c) - \tau(c) \geq \pi_{D_M}(c)$$

Prices are contractable \Rightarrow Can discourage trade by prices.

Can restrict attention to the following mechanisms: For any report c, commit to a cutoff $\psi(c)$ so that

- Sell to all consumers with $v \ge \psi(c)$ by charging their values.
- Not sell to the rest of consumers

Choice of mechanism is reduced to a (one-dimensional) cutoff function ψ and transfer scheme $\tau.$

ション ふゆ アメリア メリア しょうくの

Standard revenue-equivalence formula \Rightarrow Choosing nondecreasing ψ to maximize virtual profit s.t. IR constraints.

Recall that

$$\phi_G(c) := c + \frac{G(c)}{g(c)}$$

is the virtual marginal cost and that

$$\overline{\phi}_G(c) := \min\{\phi_G(c), p_{D_M}(c)\}.$$

Proposition

The price-controlling data broker's optimal cutoff function is $\overline{\phi}_G$ and the optimal revenue is

$$R^* = \int_C \left(\int_{\{\nu \ge \overline{\phi}_G(c)\}} (\nu - \phi_G(c)) D_M(\mathrm{d}\nu) \right) G(\mathrm{d}c) - \pi_{D_M}(\overline{c}).$$

Furthermore, any optimal mechanism of the price-controlling data broker induces $\bar{\phi}_G(c)$ -quasi-perfect price discrimination for G-almost all $c \in C$.

Sketch of Proof

Using integration by parts, for any $q \in \mathcal{Q}$,

$$\int_C \left(\int_c^{\bar{c}} (\boldsymbol{q}(z) - D_M(\boldsymbol{p}_{D_M}(z))) \, \mathrm{d}z \right) \mu^*(\mathrm{d}c)$$
$$= \int_C M^*(c) (\boldsymbol{q}(c) - D_M(\boldsymbol{p}_{D_M}(c))) \, \mathrm{d}c$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch o	of Proo	t			
Skelch	511100	1			

Therefore, for any $q \in \mathcal{Q}$,

$$\begin{split} R(q) &+ \int_C \left(\int_c^{\bar{c}} (q(z) - D_M(p_{D_M}(z))) \, \mathrm{d}z \right) \mu^*(\mathrm{d}c) \\ &= \int_C \left(\int_0^{q(c)} (D_M^{-1}(y) - \phi_G(c)) \, \mathrm{d}y \right) G(\mathrm{d}c) - \bar{\pi} \\ &+ \int_C M^*(c) (q(c) - D_M(p_{D_M}(c))) \, \mathrm{d}c \\ &= \int_C \left(\int_0^{q(c)} (D_M^{-1}(y) - \phi_G(c)) \, \mathrm{d}y \right) G(\mathrm{d}c) \\ &- \bar{\pi} - \int_C M^*(c) D_M(p_{D_M}(c)) \, \mathrm{d}c, \end{split}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch o	of Proo	f			

Thus, the dual is equivalent to

$$\sup_{\boldsymbol{q}\in\mathcal{Q}}\int_C \left(\int_0^{\boldsymbol{q}(c)} (v-\phi_G(c))\,\mathrm{d}y\right) G(\mathrm{d}c),$$

which has a solution $D_M \circ \phi_G$.

Also, since $\phi_G(c) = p_{D_M}(c)$ for all c such that $M^*(c) > 0$, the complementary slackness condition is also satisfied. That is

$$\int_{C} M^{*}(c)(D_{M}(\phi_{G}(c)) - D_{M}(p_{D_{M}}(c))) dc$$

= $\int_{c^{*}}^{\bar{c}} M^{*}(c)(D_{M}(p_{D_{M}}(c)) - D_{M}(p_{D_{M}}(c))) dc$
= 0.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▶ Back

Bergemann et al. (2013) construct an output minimizing segmentation.

Given $m^0 \in \Delta^f(V)$ and \hat{c} , $\hat{\psi}(\hat{c})$ is the smallest $\hat{\psi}$ such that

$$\pi_0(\hat{c}) \leq \sum_{\nu \geq \hat{\psi}} (\nu - \hat{c}) m^0(\nu).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Notice that $\hat{\psi}(\hat{c}) \ge p_{D_M}(\hat{c}) \ge \psi(c)$.

▶ Back

Introduction Model Optimal Mechanism Implications Discussion Proof Appendix
Sketch of Proof

For each $v \ge \psi(c)$, define $\beta_{v'}^v$ recursively by

$$\beta_{v'}^{\nu} := \frac{(v-\hat{c})m^{0}(v) - (v'-\hat{c})\sum_{\hat{v} > v'}\hat{m}^{v}(\hat{v})}{\sum_{v \ge \psi(v)} \left[(v-\hat{c})m^{0}(v) - (v'-\hat{c})\sum_{\hat{v} > v'}\hat{m}^{v}(\hat{v}) \right]}, \, \forall \underline{p}_{m^{0}}(\hat{c}) \le v' < \psi(c).$$

Also, let

$$\alpha^{\nu} := \frac{\sum_{\hat{\nu} \ge \underline{p}_{m^0}(\hat{c})} \hat{m}^{\nu}(\hat{\nu})}{\sum_{\hat{\nu} \ge \underline{p}_{m^0}(\hat{c})} m(\hat{\nu})}, \forall \nu' < \underline{p}_{m^0}(\hat{c}).$$

Then define

$$\hat{m}^{\nu}(\nu') := \begin{cases} m^{0}(\nu), & \text{if } \nu' = \nu \\ 0, & \text{if } \nu' \geq \psi(c), \nu' \neq \nu \\ \beta^{\nu}_{\nu'}m^{0}(\nu'), & \text{if } \underline{p}_{m^{0}}(\hat{c}) \leq \nu' < \psi(c) \\ \alpha^{\nu}m^{0}(\nu'), & \text{if } \nu' < \underline{p}_{m^{0}}(\hat{c}) \end{cases},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all $v \ge \psi(c)$ and for all v'.

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
Sketch (of Proo	f			

Can be verified that $\beta^{\nu}_{\nu'} \in [0,1], \ \alpha^{\nu} \in [0,1]$ and

$$\sum_{\nu \geq \psi(c)} \beta_{\nu'}^{\nu} = \sum_{\nu \geq \psi(c)} \alpha^{\nu} = 1, \forall \nu' < \psi(c)$$

Furthermore, $v \in P_{\hat{m}^v}(z)$ for all $z \ge \hat{c}$ and $p_{\hat{m}^v}(z) \ge p_{D_M}(z)$ for all $z < \hat{c}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

▶ Back

Consider the price-controlling data broker's problem

$$\begin{aligned} \max_{(\sigma,\tau,\gamma)} &\int_{C} \tau(c) G(dc) \\ \text{s.t.} \quad \int_{\mathscr{D} \times \mathbb{R}_{+}} (p-c) D(p) \gamma(dp|D,c) \sigma(dD|c) - \tau(c) \\ &\geq \int_{\mathscr{D} \times \mathbb{R}_{+}} (p-c) D(p) \gamma(dp|D,c') \sigma(dD|c') - \tau(c'), \qquad (\mathsf{IC}^{*}) \\ &\int_{\mathscr{D} \times \mathbb{R}_{+}} (p-c) D(p) \gamma(dp|D,c) \sigma(dD|c) - \tau(c) \geq \pi_{D_{M}}(c), \qquad (\mathsf{IR}^{*}) \\ &\forall c, c' \in C \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Consider any (σ, τ, γ) satisfying (IC*) and (IR*).

$$\boldsymbol{q}(\boldsymbol{c}) := \int_{\mathcal{D}} D(\boldsymbol{p}) \boldsymbol{\gamma}(\mathrm{d}\boldsymbol{p}|\boldsymbol{D},\boldsymbol{c}) \boldsymbol{\sigma}(\mathrm{d}\boldsymbol{D}|\boldsymbol{c}).$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$\boldsymbol{q}(\boldsymbol{c}) := \int_{\mathcal{D}} D(\boldsymbol{p}) \boldsymbol{\gamma}(\mathrm{d}\boldsymbol{p}|\boldsymbol{D},\boldsymbol{c}) \boldsymbol{\sigma}(\mathrm{d}\boldsymbol{D}|\boldsymbol{c}).$$

 $(\bar{\sigma},\bar{\gamma})$: perfectly price discriminating all consumers with values above the (1-q(c))-th percentile for all c.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\boldsymbol{q}(c) := \int_{\mathcal{D}} D(p) \boldsymbol{\gamma}(\mathrm{d}p|D,c) \boldsymbol{\sigma}(\mathrm{d}D|c).$$

 $(\bar{\sigma},\bar{\gamma})$: perfectly price discriminating all consumers with values above the (1-q(c))-th percentile for all c.

Let

$$\bar{\tau}(c) := \int_{\mathscr{D} \times \mathbb{R}_+} pD(p)(\bar{\gamma}(\mathrm{d}p|D,c)\bar{\sigma}(\mathrm{d}D|c) - \gamma(\mathrm{d}p|D)\sigma(\mathrm{d}D|c)) + \tau(c).$$

$$\boldsymbol{q}(c) := \int_{\mathcal{D}} D(p) \boldsymbol{\gamma}(\mathrm{d}p|D,c) \boldsymbol{\sigma}(\mathrm{d}D|c).$$

 $(\bar{\sigma},\bar{\gamma})$: perfectly price discriminating all consumers with values above the (1-q(c))-th percentile for all c.

Let

$$\bar{\tau}(c) := \int_{\mathscr{D} \times \mathbb{R}_+} pD(p)(\bar{\gamma}(\mathrm{d}p|D,c)\bar{\sigma}(\mathrm{d}D|c) - \gamma(\mathrm{d}p|D)\sigma(\mathrm{d}D|c)) + \tau(c).$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Then, $\bar{\tau}(c) \ge \tau(c)$ and $(\bar{\sigma}, \bar{\tau}, \bar{\gamma})$ satisfies (R-IC) and (R-IR).

By the revenue equivalence formula,

$$\mathbb{E}_G[\bar{\tau}(c)] = \int_C \left(\int_0^{\boldsymbol{q}(c)} (D_M^{-1}(q) - \phi_G(c)) \,\mathrm{d}q \right) G(\mathrm{d}c) - \pi_{D_M}(\bar{c}),$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

as desired.

▶ Back

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
A Relax	ed Prol	blem			

$$\int_{\mathscr{D}\times\mathbb{R}_+} (p-c)D(p)\bar{\gamma}(\mathrm{d}p|D,c')\bar{\sigma}(\mathrm{d}D|c') - \bar{\tau}(c')$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
A Relax	ed Prol	blem			

$$\int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c)D(p)\bar{\gamma}(\mathrm{d}p|D,c')\bar{\sigma}(\mathrm{d}D|c') - \bar{\tau}(c')$$
$$= \int_{\mathscr{D}\times\mathbb{R}_{+}} pD(p)\bar{\gamma}(\mathrm{d}p|D,c')\bar{\sigma}(\mathrm{d}D|c') - \bar{\tau}(c') - cq(c')$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
A Relax	ed Prol	blem			

$$\begin{split} &\int_{\mathscr{D}\times\mathbb{R}_{+}}(p-c)D(p)\bar{\gamma}(\mathrm{d}p|D,c')\bar{\sigma}(\mathrm{d}D|c')-\bar{\tau}(c')\\ &=\int_{\mathscr{D}\times\mathbb{R}_{+}}pD(p)\bar{\gamma}(\mathrm{d}p|D,c')\bar{\sigma}(\mathrm{d}D|c')-\bar{\tau}(c')-cq(c')\\ &=\int_{\mathscr{D}\times\mathbb{R}_{+}}pD(p)\gamma(\mathrm{d}p|D,c')\sigma(\mathrm{d}D|c')-\tau(c')-cq(c') \end{split}$$

Introduction	Model	Optimal Mechanism	Implications	Discussion	Appendix
A Relax	ed Prol	olem			

$$\begin{split} &\int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c)D(p)\bar{\gamma}(\mathrm{d}p|D,c')\bar{\sigma}(\mathrm{d}D|c') - \bar{\tau}(c') \\ &= \int_{\mathscr{D}\times\mathbb{R}_{+}} pD(p)\bar{\gamma}(\mathrm{d}p|D,c')\bar{\sigma}(\mathrm{d}D|c') - \bar{\tau}(c') - cq(c') \\ &= \int_{\mathscr{D}\times\mathbb{R}_{+}} pD(p)\gamma(\mathrm{d}p|D,c')\sigma(\mathrm{d}D|c') - \tau(c') - cq(c') \\ &= \int_{\mathscr{D}\times\mathbb{R}_{+}} (p-c)D(p)\gamma(\mathrm{d}p|D,c')\sigma(\mathrm{d}D|c') - \tau(c') \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Therefore, (σ, τ, γ) satisfies (R-IC) & (R-IR) $\Rightarrow (\bar{\sigma}, \bar{\tau}, \bar{\gamma})$ satisfies (R-IC) & (R-IR).