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Abstract

We introduce a new model of repeated games in large populations with ran-
dom matching, overlapping generations, and limited records of past play. We
prove that steady-state equilibria exist under general conditions on records. We
then focus on “trigger-strategy” equilibria. When the updating of a player’s
record can depend on the actions of both players in a match, steady-state equi-
libria in trigger strategies can support the play of a wide range of actions, includ-
ing any action that Pareto-dominates a static Nash equilibrium. When updates
can depend only on a player’s own actions, fewer actions can be supported by
steady-state equilibria. We provide sufficient conditions for trigger equilibria to
support a given action, along with somewhat more permissive necessary condi-
tions. When players have access to a form of decentralized public randomization,
the sufficient conditions expand to match the necessary conditions.
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1 Introduction

In many settings of economic interest, individuals interact with different partners over

time, and bad behavior against one partner causes a negative response by other mem-

bers of society. Moreover, people often have fairly limited information about the past

play of their partners, and little to no information about the play of people with whom

their partners previously interacted. Yet, in some situations groups nevertheless main-

tain outcomes that are more efficient than those consistent with myopic incentives.1

To study these situations, we introduce a new class of repeated games with anony-

mous random matching. Our goals are to better understand what sorts of information

suffice for good community outcomes, and to provide a foundation for the analysis of

relatively simple strategies that we think are descriptively plausible. To this end, we

suppose there is a continuum of players, which rules out both the contagion equilibria

of Kandori (1992) and Ellison (1994) and the block belief-free equilibria constructed

in Deb, Sugaya, and Wolitzky (2018). We assume that each player has a geometrically

distributed lifetime, that the total mass of players is constant (with an inflow of new

players replacing those who exit), and that the time horizon is doubly infinite, so there

is no commonly known start date or notion of calendar time on which the players can

coordinate their play. We then investigate how steady-state cooperation can be sup-

ported by simple strategies under various sorts of “record systems,” which provide each

player with some summary of the reputation or standing of their current opponent.

To place our work in context, recall that in the standard repeated game model,

a fixed finite set of players interact repeatedly with a commonly known start date

and a common notion of calendar time. When each player’s signals are sufficient to

statistically identify the vector of their opponents’ actions, equilibria that support

1Examples of such “community enforcement” or “indirect reciprocity” include Milgrom, North,
and Weingast (1990), Greif (1993), Greif, Milgrom, and Weingast (1994), Bernstein (1992), and Clay
(1997) on merchant coalitions; Ostrom (1990) and Ellickson (1991) on managing public resources;
Klein and Leffler (1981), Resnick and Zeckhauser (2002), and Dellarocas (2005) on seller reputation;
Klein (1992), Padilla and Pagano (2000), and Bhaskar and Thomas (2018) on credit ratings; Friedman
and Resnick (2001) on online ratings; and Fearon and Laitin (1996) on ethnic conflict.
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cooperation usually exist when players are patient, but the most efficient equilibria are

typically “complicated” if there is any noise in the monitoring structure. This model

seems natural for studying some long-term relationships with well-defined start dates

among a relatively small number of relatively sophisticated players, such as business

partnerships or collusive agreements among firms. However, repeated games have also

been used to model cooperation in large populations, as in the references in footnote

1. For these applications the assumptions of a fixed population, a common start date,

and common calendar time seem less appropriate.2

In our model, when a pair of players match, each of them observes the other’s

record before taking an action. A record system then updates the players’ records

based on their current records and the actions they choose. We allow these systems to

be stochastic, where the noise is due to either recording errors or to differences between

a player’s intended action and the action that is implemented.

To begin, we prove that steady states exist for fairly general record systems, which

allow the update of a player’s record to depend on both their own action and record

as well as on the action and record of their opponent. The key requirement for this

existence theorem is that the record update function be “finite partitional,” which

means that for a given player record, there is a finite partition of the record space

such that the update function depends on the opponent’s record in the same way for

all opponent records in a given partition element. Along with our restriction to finite

stage games, this assumption implies that for any given record, the record update

function has a finite domain. We use this property together with geometric player

lifespans to establish existence.

We then examine what sorts of actions can be fully supported by various record

systems, meaning that there are equilibria in which the action is played by almost

everyone when lifetimes are long and there is little noise. Here we restrict attention

2Even in repeated games with fixed partners, laboratory studies suggest that many subjects use
fairly simple strategies. See e.g. Fudenberg, Rand, and Dreber (2012) and the survey by Dal Bó and
Fréchette (2018).
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to equilibria of a simple and plausible form, which we call trigger systems. These are

pairs of strategy and record system such that the records can be partitioned into two

classes—“good” and “bad”—where the prescribed play in a match depends only on

the class of each player’s record, and the bad class is absorbing. This restriction lets us

handle the set of possible equilibrium outcomes for general stage games; our companion

paper Clark, Fudenberg, and Wolitzky (2019) analyzes more general strategies in the

prisoner’s dilemma. We also show that steady-state equilibria in trigger strategies have

desirable stability and convergence properties that cannot be guaranteed for general

strategies, which further motivates the restriction to trigger strategies in this paper.

The record systems we start with are second-order records, which allow record

updates to depend on the player’s own record and action as well as the partner’s

action, but not the partner’s record. Thus, a second-order record system is able to

update a player’s record based solely on the outcomes of their own interactions, without

needing to know about the outcomes of their partner’s past interactions. In this sense,

second-order records are more informationally robust than more general interdependent

records. With second-order records, so long as players in good standing take different

actions than players in bad standing when matched with good-standing opponents,

trigger strategies can penalize players who deviate against good-standing partners by

switching them to bad standing, without penalizing good-standing players for punishing

bad-standing opponents. For this reason, second-order records enable trigger strategies

to fully support a wide range of actions, including any action that Pareto-dominates a

static Nash equilibrium. To show this, we use strategies of the following form: Players

in good standing play the target action a with each other, and play a punishment

action b against bad-standing players. Bad-standing players play a static equilibrium

with each other and a best response c to the punishment action when facing good-

standing opponents. Players start out in good standing and stay that way until they

have accumulated sufficiently many “black marks,” where black marks are earned each

time their outcome is recorded as anything other than a versus a or b versus c. The

proof shows how to choose the threshold number K of black marks as a function of the
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expected lifetime and the noise level to create a sequence of equilibria that converges to

everyone playing a as the players’ expected lifetimes grow long and the noise vanishes.3

We then turn to first-order record systems, which require that a player’s record

is updated based only on their own record and action. These record systems cannot

support as many actions, and in particular cannot support a Nash-threat folk theorem,

because first-order records cannot distinguish “justified” deviations from the target

profile (a, a) from “unjustified” ones. For example, in the prisoner’s dilemma, if a

player is penalized for playing Defect against Cooperate, they must also be penalized

for playing Defect against Defect. This makes it much harder to support a steady state

with a high share of players in good standing.

We provide a sufficient condition for an action to be fully supported with first-

order records using trigger strategies that require the punishment action b to be an

“unprofitable deviation” against the target action a (that is, u(a, a) > u(b, a)) and

moreover to be a better response than a against an action c that is a best response to

b. Of course, such an action b is not guaranteed to exist; the sufficient condition for

our proof is that one does.4 In our construction, players acquire black marks any time

they are recorded as playing anything other than a or b (regardless of their partners’

play), and switch permanently to bad status once they have a sufficient number of

black marks. Once again, the heart of the proof is showing that there is a way to tune

the threshold level of black marks to the parameters of the system so that there is a

limit of equilibria in which everyone plays a.

We then provide a less restrictive sufficient condition for actions to be fully sup-

ported when records and strategies can can depend on “personal public randomiza-

tions,” a decentralized form of public randomization. Finally we show that these less

restrictive sufficient conditions are in fact necessary for the action to be fully sup-

3A subtlety is that the target action a must be distinct from the bad-standing best response action
c, or else good-standing players may undetectably deviate from b to a against bad-standing opponents.
This explains why trigger strategies cannot always support every individually rational action.

4Special cases of unprofitable punishments include “avoiding” the opponent or “burning money” to
render a potentially tempting action unprofitable. We will discuss these special cases in some detail.
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ported (barring knife-edge cases). Moreover, when these randomizations are available

the strategies no longer need to keep a running tally of a player’s black marks; it is

enough to know whether a player is in good or bad standing.

1.1 Related Work

In finite population models, Rosenthal (1979) and Rosenthal and Landau (1979) intro-

duced the study of repeated games with random matching. Rosenthal (1979) consid-

ered the special case of first-order information where players observe only their current

opponent’s most recent action, and established the existence of Markovian equilibria

(which we call pairwise-public equilibria).5

Kandori (1992) and Ellison (1994) show that cooperation in the prisoner’s dilemma

can be enforced by contagion equilibria when players have no information at all about

each other’s past actions. These equilibria cannot exist in continuum-population mod-

els, or when a finite population is large compared to the discount factor.

Nowak and Sigmund (1998) and many subsequent papers study the enforcement of

cooperation using image scoring, which means that each player has first-order infor-

mation about their partner, but conditions their action only on their partner’s record

and not on their own record. These strategies are never a strict equilibrium, and are

typically unstable in environments with noise (Panchanathan and Boyd, 2003).

In models with a continuum population, Okuno-Fujiwara and Postlewaite (1995)

show that records that track a player’s “status” based on the actions and status levels of

their opponents permit a folk theorem in the absence of noise.6 Takahashi (2010) shows

how cooperation can be supported in the prisoner’s dilemma when players observe their

partner’s entire past history of actions—all first-order information—but no higher-order

5Rosenthal and Landau (1979) study two particular record systems in an asymmetric battle of
the sexes game. Their “comparative records” update based on both players’ records; their second,
simpler, model has first-order records.

6Sugden (1986) and Kandori (1992) prove related results for finite populations. Steady-state equi-
libria in models with “status” also appear in the literature on fiat money following Kiyotaki and
Wright (1993) and Kocherlakota (1998).
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information. This construction relies on belief-free mixed strategies, which we will rule

out. Takahashi also shows how cooperation can be supported in strict equilibrium

when the prisoner’s dilemma stage game is strictly supermodular: that is, the loss

from cooperation is lower when the partner cooperates.

Heller and Mohlin (2018) suppose players observe a finite sample of their current

partner’s past actions, which is a particular form of first-order information. Players live

infinitely long and are completely patient, and are restricted to stationary strategies

that depend only on their samples of their partner’s actions and not on their own

histories. Their paper assumes a small fraction of players are commitment types, so

that the partner’s past actions are a noisy signal of their type and thus of how they

are likely to play today.7

Our interest in “simple” strategies in repeated games is shared with papers that

study various notions of simplicity in fixed-partner repeated games, e.g. Rubinstein

(1986), Abreu and Rubinstein (1988), Möbius (2001), Joe et al. (2012), and Compte and

Postlewaite (2015). Repeated games with overlapping generations of players have also

been studied by e.g. Cremer (1986), Kandori (1992), Salant (1991), and Smith (1992);

however, these papers are less directly relevant as they consider non-anonymous players.

Finally, the random matching model of Fudenberg and He (2018, 2019) is similar to

ours in several respects, including countably infinite agent histories, geometric agent

lifetimes, and a doubly infinite time horizon.

2 Framework

We consider a discrete-time random matching model with a constant unit mass of

players, each of whom has a geometrically-distributed lifetime with continuation prob-

ability γ ∈ (0, 1), with exits balanced by a steady inflow of new entrants. The time

horizon is doubly infinite. When two players match, they play a finite symmetric game

7Bhaskar and Thomas (2018) study first-order information in a sequential-move game with one-
sided incentive constraints.
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with action space A and payoff function u : A× A→ R.

This section presents our model of records, states, and steady-state equilibria with

general pairwise-public strategies; in later sections of the paper we specialize to equi-

libria in trigger strategies.

2.1 Record Systems

Every player carries a record, and when two players meet, each sees the other’s record

but no further information. Each player’s record is updated at the end of every period

in a “decentralized” way that depends only on their own action and record and their

current partner’s action and record.

Definition 1. A record system R is a triple (R,D, ρ) comprised of a countable set R

(the record set), a countable set D ⊂ R2×A2 (the update domain), and a function

ρ : D → ∆(R) (the update rule).

We assume that all newborn players have the same record, which we denote by 0.

Our main results extend to the case of a non-degenerate, exogenous distribution over

initial records.

An update rule thus specifies a probability distribution over records as a function

of a player’s record and action and their current partner’s record and action. We

refer to the general case where D = R2 × A2 as an interdependent record system.

An interdependent record system is finite-partitional if for each r ∈ R there exists

a finite partition
⋃
m=1,...,M(r)Rm = R such that, whenever r′, r′′ ∈ Rm for some m,

ρ(r, r′, a, a′) = ρ(r, r′′, a, a′) for all a, a′ ∈ A. Kandori (1992)’s “local information

processing” and Okuno-Fujiwara and Postlewaite (1995)’s “status levels’ are two prior

examples of finite-partitional interdependent record systems.

Many simple and realistic record systems fall into a more restricted class, where

a player’s update does not depend directly on their opponent’s record, so that the

player’s record can be updated even when the opponent’s record is not available.
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We say a record system is second-order if D = R × A2, so the update can depend

on both players’ actions but only on the player’s own record. With a second-order

system, a player’s record can be computed based only on their own history of stage-

game outcomes.8 A record system is first-order if the update can depend only on

the player’s own action and record as in e.g. Nowak and Sigmund (1998), Takahashi

(2010), and Heller and Mohlin (2018). Here D = R × A. We consider second-order

systems in Section 4 and first-order systems in Section 5.

Note that we allow stochastic update rules. This can represent errors in recording,

and it can also model imperfect implementation of the intended action. To apply the

latter interpretation with first-order records, the outcome of the game must have a

product structure in the sense of Fudenberg, Levine, and Maskin (1994), so that a

player’s record update does not depend on the opponent’s action.

2.2 Strategies, States, and Steady States

In principle, each player can condition their play on the entire sequence of outcomes

and past opponent records that they have seen. However, since there is a continuum

of players, only the player’s current record and that of their current partner matter

for the player’s current payoff, and only the player’s own record will matter in the

future. For this reason, all strategies that condition only on payoff-relevant variables

are pairwise-public, meaning that they condition only on information that is public

knowledge between the two partners, namely their records. We restrict attention to

such strategies. We write pure pairwise-public strategies as functions s : R × R → A,

with the convention that the first coordinate is the player’s own record and the second

coordinate is that of the partner, and similarly write mixed pairwise-public strategies

8If the record system tracks the time periods in which each pair of actions occurs, and contrary to
our assumptions it is “centralized” in the sense of having access to all players’ records, then second-
order records could be used to compute and track the “status levels” implied by a more general
interdependent record system. However, this is not true for the decentralized records we consider
(where the update domain is a subset of R2 × A2), and even with centralized records a simple count
of the number of times each action profile occurred would not suffice to reproduce interdependent
records. Kocherlakota (1998) makes a similar point in the context of macroeonomic matching models.
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as functions σ : R × R → ∆(A). For simplicity, we also assume that all players

use the same strategy. Note that every strict equilibrium in a symmetric, continuum-

population model is symmetric, so this restriction would be without loss if we restricted

attention to strict equilibria. For generic stage games, the equilibria we construct in

this paper are strict if the stage game admits a strict and symmetric Nash equilibrium.

The state of the system is the share of players with each possible record; we denote

this by µ ∈ ∆(R). To operationalize random matching in a continuum population, we

specify that, when the current state of the system is µ, the distribution of matches

is given by µ × µ, so that, for each (r, r′) ∈ R2 with r 6= r′, the fraction of matches

between players with record r and r′ is 2µrµr′ , while the fraction of matches between

two players with record r is µ2
r.

Given a record system R and a pairwise-public strategy σ, we can define an update

map as follows: First, when all players use strategy σ, denote the distribution over

next-period records of a player with record r who meets a player with record r′ by

φr,r′(σ) =
∑
a

∑
a′

σ(r, r′)[a]σ(r′, r)[a′]ρ(r, r′, a, a′) ∈ ∆(R).9

Then, the update map fσ : ∆(R)→ ∆(R) is given by

fσ(µ)[0] := 1− γ + γ
∑
r′

∑
r′′

µr′µr′′φr′,r′′(σ)[0],

fσ(µ)[r] := γ
∑
r′

∑
r′′

µr′µr′′φr′,r′′(σ)[r] for r 6= 0.

A steady state under σ is a state µ such that fσ(µ) = µ.

Theorem 1.

• Under any first or second-order record system and any pairwise-public strategy,

9This equation applies for general interdependent records. To apply it to the other sorts of records
we embed their domains in the general one in the obvious way: for second-order records, the depen-
dence of ρ on its second argument is trivial; for first-order records, the dependence on the fourth
argument is also trivial.
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a steady state exists.

• Under any finite-partitional interdependent record system and any pairwise-public

strategy, a steady state exists.

• For interdependent record systems that are not finite-partitional, a steady state

may fail to exist.

The proof is in A.1 of the Appendix; all other omitted proofs can be found in either

the Appendix (A) or the Online Appendix (OA).10 In outline, we relabel records so that

two players with different ages can never share the same record, define a set M̄ that

contains all feasible distributions over records, and show that M̄ and the update map

jointly satisfy the conditions for a fixed-point theorem. Intuitively, the combination of

the finite domain of the record-update function (due to finiteness of the stage game

and, for interdependent record systems, the finite-partition property) and geometrically

distributed lifetimes imply that most players have records in a finite subset of the set⋃
t≤T R(t) for bounded T , so M̄ resembles a finite-dimensional space, and in particular

is compact in the sup norm. We then show that f maps M̄ to itself and is continuous in

the sup norm so, since M̄ is also convex, we can appeal to a fixed point theorem. When

instead the record-update function does not have finite domain, the update map can

map any state to one with more weight in the upper tail in such a way that no steady

state exists. The proof shows that this is the case for example if whenever players with

records r and r′ meet, both of their records update to max{r, r′}+ 1.

Note that Theorem 1 does not assert that the steady state for a given strategy

is unique, and it is easy to construct examples where it is not.11 Intuitively, this

multiplicity corresponds to different initial conditions at time t = −∞.
10Fudenberg and He (2018) use the same fixed-point theorem that we do to prove that steady states

exist in their random matching model with geometric lifetimes and countably many records. In their
model records are updated based on both players’ actions, but players don”t observe each other’s
records.

11For instance, suppose that R = {0, 1, 2}, the action set is singleton, and newborn players have
record 0. When matched with a player with record 0 or 1, the record of a player with record 0 or 1
increases by 1 with probability ε and remains constant with probability 1 − ε, but it increases by 1
with probability 1 when the player is matched with a player with record 2. When a player’s record
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2.3 Steady-State Equilibria

We focus on those steady states that derive from equilibrium play. Given a record

system R, strategy σ, and state µ, define the flow payoff of a player with record r as

πr(σ, µ) =
∑
r′

µr′u(σ(r, r′),σ(r′, r)).

Next, denote the probability that a player with record r today has record r′ t periods

from now (assuming the player is still alive then) by φtr(σ, µ)[r′]. This is defined

recursively by

φ1
r(σ, µ)[r′] =

∑
r′′

µr′′φr,r′′(σ)[r′]

and, for t > 1,

φtr(σ, µ)[r′] =
∑
r′′

(
φt−1r (σ, µ)[r′′]

) (
φ1
r′′(σ, µ)[r′]

)
.

The continuation value of a player with record r is then given by

Vr(σ, µ) = (1− γ)
∞∑
t=0

γt
∑
r′

(
φtr(σ, µ)[r′]

)
(πr′(σ, µ)) .

Note that we have normalized continuation payoffs by (1 − γ) to express them in

per-period terms.

A pair (σ, µ) is an equilibrium if µ is a steady-state under σ and, for each own

record r and opponent’s record r′, we have

a ∈ arg max
ã∈A

[
(1− γ)u(ã,σ(r′, r)) + γ

∑
r′′

∑
a′

σ(r′, r)[a′]ρ(r, r′, ã, a′)[r′′]Vr′′(σ, µ)

]

for all a such that σ(r, r′)[a] > 0. Thus, a player’s objective is to maximize their

expected undiscounted lifetime payoff. An equilibrium is strict if the argmax is unique

reaches 2, it remains so for the remainder of their lifetime. Depending on the parameters γ and ε,
there can be between one and three steady states.
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for all pairs of records (r, r′), so that the player has a strict preference for following the

equilibrium strategy. As noted above, every strict equilibrium is pairwise-public, pure,

and symmetric.

Corollary 1. Under any first or second-order record system, an equilibrium exists.

The same is true for any finite-partitional interdependent record system.

Proof. Fix a symmetric stage game Nash equilibrium α∗, and let σ recommend α∗ at

every record pair (r, r′). Then (σ, µ) is an equilibrium for any steady state µ. �

In contrast, the existence of a strict equilibrium is not guaranteed. A sufficient

condition for strict equilibrium existence is for the stage game to have a strict and

symmetric Nash equilibrium.

Corollary 2. Under any first or second-order record system, a strict equilibrium exists

if the stage game has a strict and symmetric Nash equilibrium. The same is true for

any finite-partitional interdependent record system.

The proof of Corollary 2 is identical to that of Corollary 1, except α∗ is taken to

be a strict and symmetric stage game Nash equilibrium.

3 Trigger Strategies and Noisy Counts

3.1 Trigger Strategies

Given a steady state µ for pure pairwise-public strategy s and record system R, record

r′ is reachable from r if there is a t with φts,µ(r)[r′] > 0.

Definition 2. The record system (D, R, ρ) and associated (s, µ) are a trigger system

if

1. there are maps ψ : R → {G,B} and ξ : {G,B} → A such that s(r, r′) =

ξ(ψ(r), ψ(r′)), and
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2. if ψ(r) = B then ψ(r′) = B for all r′ that are reachable from r.

When this is the case we say that s is a trigger strategy.

Condition (1) says that the records can be partitioned into two classes so that

the prescribed play in a match depends only on the class of each player’s record, and

condition (2) says that the “bad” class B is absorbing. We call these “trigger strategies”

because of their resemblance to the trigger strategies used by e.g. Friedman (1971), but

those strategies only prescribed two distinct actions, one on the path of play and one

as a response to deviations. Here a trigger strategy can prescribe up to four distinct

actions, one for each of the four ordered pairs of classes. The actions for each pair are

not required to be distinct; for example, a game with a pure strategy Nash equilibrium

has an equilibrium in trigger strategies for any record system, as we can specify that

all records are in B and all records play the (same) Nash equilibrium action.

The restriction that records can be partitioned into two classes, with play depending

on records only via their class, does involve a loss of generality, even in games with

only two actions. For example, in Clark, Fudenberg, and Wolitzky (2019), for some

parameters of the prisoner’s dilemma the only equilibrium with two classes is Always

Defect, while equilibria with three classes can yield more efficient outcomes. The

requirement that one state be absorbing is also restrictive, as in some cases “cyclic”

strategies with two classes can outperform trigger strategies. Nevertheless, the space

of trigger strategies is rich enough to allow efficient equilibria in some cases. Unlike

the space of all record-dependent strategies, it is also sufficiently tractable that we

will be able to give necessary and sufficient conditions for these strategies to support

steady-state equilibria where almost everyone plays a given action.

Note that, since the bad class is absorbing, when two players with bad records meet

they must play a static Nash equilibrium. To respect our restriction to symmetric, pure

strategies, our positive results thus assume that the stage game admits a symmetric,

pure equilibrium; this can be relaxed by letting bad-standing players play a mixed

equilibrium.
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3.2 Noisy Counts

Our sufficient conditions use trigger strategies that operate on a simple class of record

systems, where the records simply count the number of times each action profile

(second-order system) or own action (first-order system) occurred in a player’s his-

tory. Let n = |A|, order the action profiles in A2 as ((a, a′)1, ..., (a, a
′)n2), and let

e(a,a′) be the unit vector corresponding to (a, a′); similarly, order the actions in A as

(a1, ..., an), and let ea be the unit vector corresponding to a.

Definition 3. A second-order record system is a noisy count if the record r can

be written as a vector (r1, r2, ..., rn2) where new players have record (0, 0, ..., 0) and

ρ(r, a, a′) = (1− (n2 − 1)ε)(r + e(a,a′)) +
∑

(ã,ã′)6=(a,a′) ε(r + e(ã,ã′)), for some ε ∈ (0, 1).

A first-order record system is a noisy count if the record r can be written as a

vector (r1, r2, ..., rn) where new players have record (0, 0, ..., 0) and ρ(r, a) = (1− (n−

1)ε)(r + ea) +
∑

ã6=a ε(r + eã), for some ε ∈ (0, 1).

With noisy second-order counts, the intended action profile can be mis-recorded

as some other profile. With noisy first-order counts, the intended action can be mis-

recorded as another action. For simplicity, we state the noisy count definitions with

exactly the same level of noise on each action, but we have verified that the construc-

tions used in our positive results (Theorems 2, 3, and 4) are all valid for an open

interval of noise levels.

Noisy counts are very special record systems. However, since partners can always

agree not to condition their behavior on jointly observed random variables, all of our

results for noisy counts hold a fortiori for any systems where records convey additional

information, for example information about the time path of the partner’s actions.

The trigger strategies we will construct on noisy count record systems all lie in the

following simple class, where a record is classified as “good” if and only if the sum of

the counts of some actions or action profiles is less than a fixed cutoff score K ∈ N.

Definition 4. Given a noisy count record system, a trigger system is a count trigger

system if there exist indices m1, . . . ,mM and a cutoff score K ∈ N such that, for
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each record r = (r1, . . . , rn2) (for second-order records) or (r1, . . . , rn) (for first-order

records), we have φ(r) = G if and only if
∑mM

m=m1
rm < K. Strategies in a count trigger

system are count trigger strategies.

The set of equilibria depends on both the amount of noise in the system and the

players’ expected lifetimes. In what follows, we ask which actions can be played by

almost the entire population when there is vanishingly little noise and players live a

long time. To make this precise, for any a ∈ A, let µ̄aγ,ε be the supremum of the share

of players playing a in a steady-state strict equilibrium for parameters (γ, ε).

Definition 5. Action a can be fully limit-supported if lim(γ,ε)→(0,0)µ
a(γ, ε)) = 1.

4 Second-Order Records

This section shows how to fully support a wide range of actions with noisy second-order

counts. Because second-order records allow a player’s record update to depend on both

players’ actions, we can construct strategies that punish opportunistic actions but avoid

punishing players who punish others when they are supposed to. For example, in the

prisoner’s dilemma our strategies count Defect vs. Cooperate as a “bad” outcome, but

not Defect vs. Defect, a distinction that cannot be made using first-order records.

Theorem 2. Fix an action a and suppose there exist actions b and c such that c 6= a,

c is a best-response to b, and u(a, a) > u(c, b). Then under noisy second-order counts

action a can be fully limit-supported by trigger strategies.

The requirements that a 6= c, c is a best-response to b, and u(a, a) > u(c, b) together

imply that a 6= b; however, the theorem allows b = c. For example, in the prisoner’s

dilemma, trigger strategies in which a = Cooperate and b = c = Defect, so that

the intended action profile is (Cooperate, Cooperate) when two good-standing players

match but is otherwise (Defect,Defect), can fully support cooperation in the limit.

More generally, if the stage game admits a pure Nash equilibrium (d, d), taking b = c =
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d implies that any action a such that u(a, a) > u(d, d) can be fully limit-supported;

this gives a “Nash-threat folk theorem.” In addition, say that an action a is “not

uniquely optimal against minmax” if there exists a pure strategy minmax action b

against which a is not the unique best response. Theorem 2 implies that any strictly

individually rational action that is not uniquely optimal against minmax can be fully

limit-supported.

Here is an outline of the proof of Theorem 2, which is in A.2.2. Let (d, d) denote a

pure static Nash equilibrium. The proof defines a score k ∈ N for each player, which

equals the number of times their outcome was recorded as anything other than (a, a) or

(b, c) (i.e., the player playing b against an opponent who plays c). Players are in good

standing for k strictly less than some cutoff score K, and are otherwise in bad standing.

Players in good standing play a when they are matched with a fellow good-standing

player, and play b against bad-standing players. Players in bad standing play c when

matched with good-standing players, and play d against fellow bad-standing players.

To prove the theorem, it suffices to find a cutoff score K as a function of γ and

ε such that the corresponding strategy profile is an equilibrium and the steady-state

share of good-standing players is close to 1 when (γ, ε) ≈ (1, 0). Note that K cannot

be fixed independent of (γ, ε); for example, for any fixed K, if 1 − γ is much smaller

than ε then the steady-state share of good-standing players will be close to 0. However,

K also cannot be too large, as otherwise newborn players (who are the farthest from

reaching bad standing) will deviate.

To show that an appropriate cutoff exists, define a function α : (0, 1)2 → (0, 1) by

α(γ, ε) =
γν(ε)

1− γ + γν(ε)
, (1)

where ν(ε) = (n2− 2)ε is the probability that a good-standing player’s count increases

in a given period, so α(γ, ε) gives the probability that a good-standing player lives to

see their score increase by at least 1.

Lemma 1. There is a constant z > 0 (independent of γ and ε) such that the trigger
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strategy with tolerance K has an equilibrium with share of good-standing players µG if

the feasibility constraint

µG = 1− α(γ, ε)K

and the incentive constraint

1− µG

ν(ε)
(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d))) > z

are satisfied.

The proof of Lemma 1 is in A.2.1. The feasibility constraint comes from calculating

the steady-state shares µk for the trigger strategy and then setting µG =
∑K−1

k=0 µk.

Intuitively, because α(γ, ε)K is the probability that a newborn player lives to see their

score exceed K (at which point they enter bad standing), it also equals 1−µG, the share

of bad-standing players in steady-state. The incentive constraint comes from solving

the value functions Vk and then evaluating the incentives of the good-standing players

to follow the prescribed play. For a good-standing player with score 0, the expected

increase in the number of periods they will spend in bad standing rather than good

standing when their score increases by 1 equals the ratio of 1 − µG, the probability a

player with score 0 ultimately reaches bad standing, and ν(ε), the probability a good-

standing player’s score increases in a given period. Since µG(u(a, a) − u(c, b)) + (1 −

µG)(u(b, c)− u(d, d)) is the difference in good-standing and bad-standing flow payoffs,

when the product of this term and (1 − µG)/ν(ε) is sufficiently high, good-standing

players with score 0 (who are the players most tempted to cheat) play according to

the prescribed strategy both when matched against good-standing players and when

matched with bad-standing players.

The proof of Theorem 2 then proceeds by setting the tolerance level K(γ, ε) to be

the smallest integer larger than ln(η)/ ln(α(γ, ε)) for fixed η ∈ (0, 1). Note that this is

the smallest tolerance level such that the corresponding µG is larger than 1 − η. The

proof shows that this K(γ, ε) is small enough that that the incentive constraints of
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score 0 good-standing players are satisfied. In particular, as (γ, ε) → (1, 0), the ratio

(1 − µG(γ, ε))/ν(ε) blows up, which leads to the incentive constraints being satisfied

in the limit when η is sufficiently small.

Okuno-Fujiwara and Postlewaite (1995)’s Theorem 1 shows that with “status” (a

form of interdependent record) any actions that Pareto-dominate the pure-strategy

minmax payoffs can be implemented in equilibrium without noise. Their proof uses

grim trigger strategies and hence is not robust to noise. Nonetheless, Theorem 2

shows that the theorem’s conclusion does not require interdependent records (provided

a 6= c), and extends to cases with overlapping generations and noise. This establishes

that a range of equilibrium behavior can arise in large populations under more general

conditions than past work had indicated.

To illustrate the need for a 6= c in Theorem 2, consider the following game.

A B
A 2, 2 1, 3
B 3, 1 0, 0

Here action A cannot be supported by trigger strategies, as bad-standing players

must play their best response A to the punishing action B, but then good-standing

players will play A against bad-standing opponents as well as good-standing ones. Us-

ing similar arguments as in the proof of Theorem 2, we can show that A can however

be fully limit-supported with “cyclic” strategies, where the promise of eventually re-

turning to good standing motivates bad-standing players to play B; indeed, for any

stage game, any action that Pareto-dominates the pure strategy minmax payoffs can

be fully limit-supported by cyclic strategies with second-order records.12 In addition,

essentially the same argument as the proof of Theorem 2 shows that any action that

Pareto-dominates pure strategy minmax can be fully limit-supported by trigger strate-

gies with interdependent records: in this case, the a 6= c requirement can be dropped,

because the record system can distinguish between (equilibrium) plays of (a, a) against

a good-standing opponent and (deviant) plays of (a, a) against an opponent in bad

12The proof is available from the authors upon request.
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standing.

5 First-Order Records

Now we turn to first-order record systems, where the updating of a player’s record

depends only on their own play. As discussed in the introduction, such records cannot

support as many actions, and in particular the folk theorem fails.13 The space of all

possible strategies using any conceivable first-order record system is very large, and

completely characterizing when a given action can be fully supported using general

strategies is beyond the scope of this paper. We instead restrict attention to trigger

strategies, a simple and tractable class. We provide two sets of sufficient conditions for

trigger strategies to fully support a given action: one with the noisy first-order counts

defined above, and a second when these records are augmented with “personal public

randomization” (PPR). We then show that the sufficient conditions with PPR are also

necessary for an action to be fully supported with trigger strategies.

5.1 Unprofitable Punishments

An important case where trigger strategies can fully support action a in the limit is

when there exists a punishing action b and a best response c to b such that u(a, a) >

u(c, b) (so that facing b is indeed a punishment), u(a, a) > u(b, a) (so that deviating

from a to b is unprofitable for a player whose opponent plays a), and u(b, c) > u(a, c)

(so the punishing action is a better response to c than the target action). We say that

in this case b is an “unprofitable punishment” for a.

13The failure of the folk theorem with first-order records does not depend on restricting to trigger
strategies. Clark, Fudenberg, and Wolitzky (2019) show that the only pure-strategy equilibrium
in the prisoner’s dilemma is Always Defect when the gain from playing Defect is strictly greater
when the opponent Cooperates rather than Defects. In a related model, Takahashi (2010) shows that
cooperation can be fully supported in the prisoner’s dilemma if belief-free mixed equilibria are allowed.
We exclude these equilibria since they may not be purifiable (Bhaskar, Mailath, and Morris, 2008) or
evolutionarily stable (Heller, 2017).
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Definition 6. Action b is an unprofitable punishment for action a if there exists

a best response c to b such that

1. u(a, a) > u(c, b),

2. u(a, a) > u(b, a), and

3. u(b, c) > u(a, c).

Theorem 3. With noisy first-order counts, any action a for which there is an unprof-

itable punishment can be fully limit-supported with count trigger strategies.
The proof, which is in A.3.2, is similar to the proof of Theorem 2. Intuitively, since

the punishment action b is not a profitable deviation from the target profile (a, a), the

fact that first-order records cannot distinguish justified plays of b from deviations does

not undermine the players’ incentives. In particular, a player’s score does not need to

increase when they play b.

To sketch the proof in more detail, let (d, d) be a static pure equilibrium. Let a

player’s score k be the number of times their action was recorded as anything other

than a or b. Players are in good standing for k < K for some cutoff score K, and are

otherwise in bad standing. Players in good standing play a when they are matched

with a fellow good-standing player, and play b against bad-standing players. Players

in bad standing play c when matched with good-standing players, and play d against

fellow bad-standing players.

Define the function β : (0, 1)2 → (0, 1) by

β(γ, ε) =
γ(n− 2)ε

1− γ + γ(n− 2)ε
. (2)

Note that β(γ, ε) gives the probability that a good-standing player lives to see their

score increase by at least 1. Let y represent the greatest one-shot gain that a good-

standing player can obtain by playing their static best response to either a or c.14

14That is, y = max {maxx u(x, a)− u(a, a),maxx u(x, c)− u(b, c)}.
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Lemma 2 adapts Lemma 1’s result about general punishments with second-order records

to unprofitable punishments with first-order records (proof in A.3.1).

Lemma 2. The trigger strategy with tolerance K has an equilibrium with share of

good-standing players µG if the feasibility constraint

µG = 1− β(γ, ε)K

and the incentive constraint

1− nε
(n− 2)ε

(1− µG)(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d))) > y

are satisfied.

The proof of Theorem 3 then proceeds by setting the tolerance level K(γ, ε) to be

the smallest integer larger than ln(η)/ ln(β(γ, ε)). Similar to the proof of Theorem 2,

the proof then shows that as (γ, ε) → (1, 0), this tolerance level induces a population

share of good-standing players that is larger than 1 − η, but is not so large that the

good-standing players’ incentive constraints are violated.

We now present two leading cases in which an action a has an unprofitable punish-

ment, and can therefore be fully limit-supported with count trigger strategies.

The first case arises when b = c = d in the definition of an unprofitable punishment,

so that (b, b) is a stage-game Nash equilibrium, and trigger strategies support (a, a)

through Nash reversion.

Corollary 3. If there is an action b such that (b, b) is a Nash equilibrium of the stage

game and u(a, a) > max{u(b, a), u(b, b)}, then a can be fully limit-supported with count

trigger strategies.

For example, suppose the stage game is a prisoner’s dilemma with an exit option E.

In this game, when either player plays E, both players receive the same payoff, which is

less than the cooperative payoff u(C,C) but more than the “sucker’s payoff” u(C,D),
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and not more than the non-cooperative payoff u(D,D). Note that both (E,E) and

(D,D) are static equilibria, but E is not a profitable deviation against C, unlike D.

Corollary 3 says that Nash reversion to (E,E) can fully support cooperation in the

limit.

This example is closely related to a debate regarding the role of punishment in the

evolution of human cooperation. The difficulty in distingushing a warranted punish-

ment from an unwarranted deviation has led Bowles and Gintis (2011), Boyd et al.

(2003), and Gintis et al. (2003) (among others) to argue that the enforcement of hu-

man cooperation cannot be explained without appealing to social preferences. Other

authors (Baumard (2010), Guala (2012)) argue that human cooperation is better ex-

plained by simply avoiding deviators, rather than actively punishing them. The fact

that trigger strategies can support full limit cooperation in the prisoner’s dilemma with

second-order records but not with first-order records supports the argument that the

inability to distinguish justified and unjustified plays of Defect is a serious obstacle

to cooperation in the prisoner’s dilemma. However, this obstacle evaporates when a

simple exit option is added to the game, consistent with the position of Baumard and

Guala

The second special case arises when “money-burning” is available, in that players

can observably reduce their own utility by any amount, simultaneously with taking

a stage-game action. In this case, whenever 0 < u(b, a) − u(a, a) < u(b, c) − u(a, c),

the action “play b and burn some amount of utility in between u(b, a) − u(a, a) and

u(b, c) − u(a, c)” is an unprofitable punishment in the sense of Definition 6. That is,

whenever the gain from playing b rather than a is greater when the opponent plays

c as opposed to a, there exists an appropriate amount of money that can be burned

along with playing b to make this punishment unprofitable.

22



5.2 Personal Public Randomizations

We now show that enriching the information structure to allow a simple class of ran-

domizing devices, which we call personal public randomizations (PPR), expands the set

of actions that can be fully limit-supported by trigger strategies with noisy first-order

counts. In the next subsection, we will show that any action outside this expanded set

cannot be fully supported by trigger strategy for any noisy first-order record system

(except for knife-edge cases). Thus, when PPR are available, we essentially completely

characterize the set of actions that can be fully supported by trigger strategies with all

noisy first-order record systems that include action counts.

With PPR, whenever a player’s action is recorded, this action is associated in the

player’s record with an indelible random variable ω that has the uniform distribution

on [0, 1]. Here, we assume that players observe the entire history of their opponent’s

noisily recorded actions along with the corresponding PPR, so that the record of these

PPR can be used by the player’s future partners to condition their play. PPR are

thus a “decentralized” form of public randomization (since it attaches to each player’s

record separately), and lead to some simpler and cleaner results, similarly to how

public randomization is often a useful simplification in fixed-partner repeated games.

Covering the two extreme cases of no correlating devices and PPR, as we do here,

seems likely to give a good sense of the boundary of what could be achieved with more

realistic, imperfect forms of correlation.

Theorem 4. With noisy first-order counts and PPR, trigger strategies can fully support

action a in the limit if either

• (a, a) is a Nash equilibrium of the stage game, or

• there exist actions b and c such that c is a best response to b and

1. u(a, a) > u(c, b),

2. u(b, a)− u(a, a) < u(b, c)− u(a, c),
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3. u(b, c) > u(a, c),

4. u(b, a)− u(a, a) < u(a, a)− u(c, b).

Note that if b is an unprofitable punishment for a then Conditions 1–4 of Theorem

4 are satisfied: Conditions 1 and 3 of Theorem 4 are the same as Conditions 1 and 3 in

the definition of an unprofitbale punishment, and Conditions 2 and 4 of Theorem 4 are

satisfied because Condition 2 in the definition of an unprofitable punishment implies

that u(b, a)− u(a, a) is negative, while Conditions 1 and 3 imply that u(b, c)− u(a, c)

and u(a, a)− u(c, b) are both positive. Theorem 4 thus extends Theorem 3 to the case

where b is a “slightly profitable” deviation, in that u(b, a)− u(a, a) is positive but less

than min{u(b, c)− u(a, c), u(a, a)− u(c, b)}. 15

Turning to the proof, the case where (a, a) is a Nash equilibrium is immediate. The

proof for the second case (in A.4) extends the trigger strategy construction of Theorem

3 by constructing strategies that use PPR to govern the way that records move through

two “phases” labelled G (“good standing”) and B (“bad standing”). Players start out

in G, and they transition to B with probability τa when they are recorded playing a,

with probability τ b when they are recorded playing b, and with probability χ when

they are recorded playing any other action.

The proof proceeds by showing that it is feasible to target any share of good-

standing players µG ∈ (0, 1) in the (γ, ε) → (1, 0) limit by appropriately choosing the

transition probabilities τa(γ, ε), τ b(γ, ε), and χ(γ, ε). This comes from the fact that

with any fixed transition probability, good-standing players are very likely to eventually

transition to bad standing when γ is large, so the desired share µG can be implemented

by making the transition probabilities smaller as γ gets closer to 1.

Moreover, the proof shows that the transition probabilities can also be chosen so

that the incentive constraints are satisfied in the limit when µG is sufficiently close

15The construction in Theorem 3 updates records in the same way after a and after b, while the
strategies we construct to prove Theorem 4 make action a less likely to send a good-standing player
to bad-standing than action b. We have not explored what can be supported by analogous trigger
strategies that don’t use PPR.
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to 1. Conditions 1 and 4 guarantee that when µG = 1, the difference between the

flow payoff to good standing and that to bad standing is larger than the payoff gain a

good-standing player would experience by playing b when they are supposed to play a.

Since u(b, c) > u(a, c) and u(b, a) − u(a, a) < u(b, c) − u(a, c), when µG is sufficiently

close to 1, we can choose the transition probability after playing b to be sufficiently

larger than the transition probability after playing a to prevent good-standing players

from playing b when they are supposed to play a, but also not so much larger that the

good-standing players prefer to play a when they should play b. Furthermore, we can

choose the transition probability after playing any x 6= a, b to be much larger than the

transition probability after either a or b, intuitively because it is much less likely that

a good-standing player is recorded as playing some x 6= a, b than either a or b when

ε is very small. This deters the good-standing players from playing any action other

than a or b, regardless of the increase in stage-game payoff they could achieve.

5.3 Necessary Conditions

This section shows that weak versions of the sufficient conditions of Theorem 4 are

also necessary for trigger strategies to fully support action a for any “noisy” first-order

record system (a much richer class than noisy first-order counts).

Definition 7. A first-order record system is noisy if for each record r and i, j ∈

{1, ..., n} there exist qi(r) ∈ ∆(R) and νi,j(r) ∈ (0, 1) such that
∑

i νi,j(r) = 1 and

ρ(r, aj) =
∑

i∈{1,...,n} νi,j(r)qi(r).

Here qi(r) represents the distribution over records after “a recording of ai is fed

into the record system” and νi,j(r) is the probability that this occurs when a record-r

player plays aj. This noise can come from either the recording system itself (“recording

errors”) or in the map from intended to realized actions (“implementation errors”).

Theorem 5. For any noisy first-order record system, if for every η > 0 there exist

some γ and ε for which trigger strategies support share at least 1− η of the population
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playing a, then there exist actions b, c, and d (not necessarily distinct), such that c is

a best response to b, (d, d) is a Nash equilibrium of the stage game, and

1. u(a, a) ≥ u(c, b),

2. u(b, a)− u(a, a) ≤ u(b, c)− u(a, c),

3. u(b, c) ≥ u(a, c), and

4. u(b, a)− u(a, a) ≤ u(a, a)− u(c, b).

We now explain the specific necessary conditions required by Theorem 5, For more

than half the population to play a in a trigger strategy equilibrium, the strategy must

dictate that either good-standing players play a against fellow good-standing players,

or bad-standing players play a against fellow bad-standing players. If (a, a) is not a

Nash equilibrium, the latter is impossible, so good-standing players must play a against

fellow good-standing players.16

Consider the class of trigger strategies in which good-standing players play a against

fellow good-standing players and action b against bad-standing players, and bad-

standing players play c against good-standing players and d against bad-standing play-

ers. Because the bad class is absorbing, c must be a best response to b, and (d, d) is a

Nash equilibrium. To establish the remaining four conditions (assuming (a, a) is not a

Nash equilibrium), it will be helpful to first show that a 6= b.

Lemma 3. If trigger strategies can support an arbitrarily large share of the population

playing a, then b 6= a.

Proof. If instead b = a, any player can achieve a strictly higher stage-game payoff than

u(a, a) when matched with good-standing players, namely maxx u(x, a). Thus, this

class of trigger strategies cannot sustain equilibria for arbitrarily high µG, because the

expected lifetime payoff of newborn players becomes arbitrarily close to u(a, a) as µG

16Note that the necessary conditions of Theorem 5 are always satisfied when (a, a) is a Nash equi-
librium, as can be seen by taking b = c = d = a.
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converges to 1, while players can secure a payoff arbitrarily close to maxx u(x, a) >

u(a, a) as µG converges to 1. �

A preliminary result is that when there are noisy first-order records and (a, a) is not

a Nash equilibrium of the stage game, there must be a positive share of bad-standing

players (µG < 1) in any trigger strategy equilibrium.17

Lemma 4. In any trigger strategy equilibrium with noisy first-order records, µG < 1.

Proof. Suppose that µG = 1. Because records are noisy, a player at a good-standing

record could play their best response to a, and be assured of remaining in good-standing

record for the rest of their life with probability 1. Thus, it is strictly better for a

good-standing player to play their best response to a when matched with a fellow

good-standing player rather than follow the prescribed trigger strategy. �

The remainder of the proof of Theorem 5 (omitted details of which are given in A.5)

establishes Conditions 1-4 in turn. For some intuition, Condition 1 is the limit as the

share of good-standing players approaches 1 of the requirement that the flow payoff

of a good-standing player exceeds that of a bad-standing player, which is obviously

necessary for trigger strategies to be an equilibrium when (a, a) is not a static Nash

equilibrium. Condition 2 is an increasing differences condition; it is necessary for a

good-standing player to prefer to play a rather than b when the opponent plays a,

while preferring b when the opponent plays c.

Conditions 3 and 4 are more subtle. Condition 3 says that b is a better response to c

than a, and Condition 4 says that the difference in flow payoff between good-standing

and bad-standing players exceeds the short-term gain from playing b rather than a

against a. The rest of this subsection explains these conditions in more detail; it is not

needed to understand what follows.

17The fact that equilibria with noisy records must have µG < 1 is what leads to the necessary
conditions in Theorem 5. The alternative hypothesis, “For any (possibly non-noisy) first-order record
system, if for every η > 0 there exist some γ and ε for which trigger strategies support share 1− η <
µG < 1 of the population playing a,” would give the same conclusion.
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For simplicity, suppose that newborn players are in good standing and have the

highest continuation values in the population (as is the case for count trigger strategies).

Note that the continuation payoff V0 of a newborn player equals the average payoff in

the population, because the expected fraction of a player’s lifetime spent at record r is

equal to the fraction of the population with record r (and there is no discounting, so

both V0 and the population-average payoff are given by
∑

r µrπr). The average payoff

in the population is µGπG + (1− µG)πB, where πG = µGu(a, a) + (1− µG)u(b, c) is the

flow payoff to good-standing players and πB = µGu(c, b) + (1 − µG)u(d, d) is the flow

payoff to bad-standing players.

Since a good-standing player plays a when matched with a fellow good-standing

player and b when matched with a bad-standing player, V0 = (1 − γ)πG + γµGV a
0 +

γ(1 − µG)V b
0 , where V a

0 and V b
0 are the expected continuation payoffs of a newborn

player after playing a and b, respectively. Since V0 ≥ Vr for all r ∈ R, both V a
0 ≤ V0

and V b
0 ≤ V0. Moreover, for a newborn player to prefer to play a rather than b against

a partner playing a, it must be that V b
0 ≤ V a

0 − (1−γ)(u(b, a)−u(a, a))/γ, which after

substitutions implies (1−µG)(u(b, a)−u(a, a)) ≤ (1−µG)(πG−πB). When µG < 1 (as

is necessarily the case with noise), this inequality holds iff u(b, a)− u(a, a) ≤ πG− πB.

As µG → 1, this gives u(b, a)−u(a, a) ≤ u(a, a)−u(c, b), or Condition 4. Similarly, for

a newborn player to prefer to play b rather than a against a partner playing c, it must

be that V a
0 ≤ V b

0 + (1 − γ)(u(b, c) − u(a, c))/γ, which implies µG(u(b, c) − u(a, c)) ≥

(1− µG)(πB − πG).

As µG → 1, this gives u(b, c) ≥ u(a, c), or Condition 3. The actual proof re-

laxes the assumptions that newborn players are in good standing and have the highest

continuation value, and instead shows that there exists some good-standing record at

which an argument concerning incentive constraints similar to that given above implies

Conditions 3 and 4.
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6 Convergence

So far, we have focused on steady states without discussing stability or convergence

properties. For general record systems and general strategies, we cannot say much

about this. However, we now show that for the trigger strategies analyzed in Sections

4 and 5, there is always a unique steady state, and there is convergence to this steady

state from an arbitrary initial distribution of records.18

Theorem 6. Under the trigger strategies in Sections 4 and 5.1, there is a unique steady

state, and the period-t state µt converges to the steady state from any initial state µ0.

To see why this is the case, consider the trigger strategies in Section 5. For simplic-

ity, consider just the shares corresponding to good-standing player scores. Since the

probability that a given good-standing player increases their score in a given period is

(n− 2)ε, these score shares in the population evolve according to

µt+1
0 = 1− γ + γ(1− (n− 2)ε)µt0,

µt+1
k = γ(n− 2)εµtk−1 + γ(1− (n− 2)ε)µtk for 0 < k < K.

Note that the evolution of µt0 depends only on its previous value, and since γ(1− (n−

2)ε) < 1, µt0 must converge to a unique value, namely (1 − γ)/(1 − γ + γ(n − 2)ε).

Although the evolution of µt1 depends on the previous value of µt0 in addition to its own

previous value, a similar argument shows that µt1 converge to a unique value because

µt0 is approximately constant when t is high. This argument iterates to higher k so

that each µtk converges to a unique value. The proof is in A.6.

Likewise, there is also convergence to the unique steady state for the PPR trigger

strategies in Section 5.2.

18This result depends on the uniformity of noise, which we assumed for the constructions in both
sections. When noise is not uniform, there is not necessarily a unique steady state, but there are simple
conditions on the initial population shares which guarantee convergence to the steady state with the
highest share of good-standing players, and analogous conditions which guarantee convergence to the
steady state with the lowest share of good-standing players.
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Theorem 7. Under the PPR trigger strategies in Section 5.2, there is a unique steady

state, and the period-t state µt converges to the steady state from any initial state µ0.

Here the proof uses an equation governing the dynamics of the share of good-

standing records to show that there must be a unique steady state, and shows that the

value of µt+1,G is increasing in its previous value µt,G, which results in convergence to

the steady state from arbitrary initial population shares.

Finally, we note that for all of these strategy classes, the share of good-standing

players remains arbitrarily close to its steady-state value over time if the initial popu-

lation shares are sufficiently close to their steady-state values. Since the equilibria in

this paper are all strict, it follows that they remain equilibria even when the population

is not at steady-state, as long as the initial population shares are close enough to the

steady state.

7 Discussion

This paper introduces a new environment for the study of repeated social interactions,

where players interact with a sequence of anonymous and random opponents, and their

limited information about opponents’ past play (and the play of those their opponents

have played, etc.) is summarized by “records.” Unlike other papers with these features,

our model does not have an initial time, supposes that players have geometrically

distributed lifetimes, features noise, and emphasizes strict equilibria. We have focused

here on the question of which outcomes can be fully supported by trigger strategies.

Our headline results are that almost any outcome can be fully supported with second-

order records, while with first-order records an outcome can be fully supported if it has

a corresponding unprofitable punishment, but often cannot be supported otherwise.

We conclude by discussing some possible extensions and alternative models.

More complex strategies. This paper focuses on trigger strategies, and it would be

interesting to consider more complex classes of strategies. In Clark, Fudenberg, and
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Wolitzky (2019), we do this for the prisoner’s dilemma, where we give necessary and

nearly-sufficient conditions for supporting cooperation in the class of all strategies that

satisfy a “coordination-proofness” condition (a class that greatly generalizes trigger

strategies). Performing a similar analysis for other games, or characterizing cooperation

under non-coordination-proof strategies in the prisoner’s dilemma, are left for future

work. We note however that there is no obvious single notion of “general strategies”

in our model. For example, it can make a difference whether or not PPR are allowed,

and also whether some type of symmetry-breaking device is allowed when two players

with the same record meet. This ambiguity is another reason why we have focused on

relatively simple strategies.

Sequential moves. The trigger strategies used to prove Theorem 2 specify that a

good-standing player plays b against a bad-standing player (who is supposed to play

c). This would not be a perfect equilibrium with sequential moves if the bad-standing

player moves first: If a bad-standing player with a good-standing opponent could play

a and the opponent observes this before taking their own action, the opponent would

prefer to play a as well, and then the bad-standing player would receive u(a, a), which

exceeds the punishment payoff u(c, b).

More generally, with any first-order or second-order record system, if any player

can “jump the gun” when matched with an opponent with record r′, that player can

guarantee a payoff of maxr u(s(r, r′), s(r′, r)) in this match. This implies that all players

must receive the same payoff when matched with each possible opponent, which in turn

implies that only stage game equilibrium behavior can be supported.

We have three responses to this observation. First, jumping the gun is often im-

possible: our model applies not only when actions are literally simultaneous, but also

whenever both players must choose their actions before observing the opponent’s ac-

tion, which seems like a natural reduced-form model for the often-realistic case where

cooperative behavior unfolds gradually within each match. Second, all of our results go

through with sequential moves when good-standing players move before bad-standing

players. Thus, our results are unchanged when moves are sequential and the timing
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of moves can be specified as a part of equilibrium behavior. Finally, if one requires

equilibria to be robust to all possible sequential move orders, then the trigger strategies

used to prove Theorem 2 remain applicable if records are interdependent rather than

second order. Thus, while second-order records are more informationally robust than

interdependent records, interdependent records are more robust against manipulations

to the order of moves.

More general interaction structures. Our model assumes that each player is matched

to play the game every period. The same model describes the steady states when some

constant non-zero share of players is selected at random to play each period, with γ

now interpreted as the probability of surviving for one more interaction. If different

players are matched to play the game at different frequencies, the steady-state equations

would be the same, but different players would face different incentive constraints. This

extension seems interesting but we do not cover it here, except to note that, since our

equilibria are strict, they are robust to small differences in interaction frequencies.

Multiple populations. It is easy to adapt our model to settings with multiple pop-

ulations of players. One interesting observation here is that efficient outcomes can

always be fully supported in situations with one-sided incentive problems.19 For exam-

ple, suppose a population of player 1’s and a population of player 2’s repeatedly play

the product choice game, where only player 1 faces binding moral hazard at the effi-

cient action profile (and player 2 wants to match player 1’s action). Here the efficient

outcome can always be supported with the following trigger strategies (with K chosen

appropriately as a function of γ and ε): in each match, both partners play C if player

1’s record is k < K, and both play D if player 1’s record is k ≥ K.

Endogenous records. This paper has considered how features of an exogenously

given information structure (e.g. whether records are first-order, second-order, or in-

terdependent) determine the range of equilibrium outcomes. A natural next step is

to endogenize the record system, for example by letting players strategically report

their observations, either to a central database or directly to other individual players.

19Proposition 4 of Kandori (1992) is a similar result in a fixed-population model without noise.
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Intuitively, first-order information is relatively easy to extract, as if a player is asked to

report only their partner’s behavior, they have no reason to lie as this information does

not affect their own future record. Whether and how society can obtain higher-order

information is an interesting question for future study.20
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Appendix

A.1 Proof of Theorem 1

Without loss, relabel records so that two players with different ages can never share

the same record. Let R(t) be the set of feasible records for an age-t player, and fix a

pairwise-public strategy σ. The proof relies on the following lemma.

Lemma 5. There exists a family of finite subsets of R, {L(t, η)}t∈N,η>0, such that

1. L(t, η) ⊂ R(t) for all t ∈ N, η > 0,

2. For any µ ∈ ∆(R),
∑

r∈L(0,η) fσ(µ)[r] ≥ (1− η)(1− γ) for all η > 0, and

3. For any µ ∈ ∆(R) and t > 0, if
∑

r∈L(t−1,η) µr ≥ (1− η)(1− γ)γt−1 for all η > 0,

then
∑

r∈L(t,η) fσ(µ)[r] ≥ (1− η)(1− γ)γt for all η > 0.

Proof. We construct the {L(t, η)} by iteratively defining subfamilies of subsets of R

that satisfy the necessary properties. First, take L(0, η) = {0} for all η > 0. Conditions

1 and 2 are satisfied since R(0) = {0} and fσ(µ)[0] = 1− γ for every µ ∈ ∆(R).

Fix some t and take the subfamily of subsets corresponding to t − 1, that is

{L(t − 1, η)}η>0. For every η > 0, consider the set of records L(t − 1, η/2). Let

λ ∈ (0, 1) be such that λ > (1 − η)/(1 − η/2). For any record r ∈ L(t − 1, η/2),

opposing record class Rm, and action profile (a, a′) ∈ A2, we can identify a finite set

of “successor records” S(r,m, a, a′) such that a record r player who plays a against

an opponent in class Rm playing a′ moves to a record in S(r,m, a, a′) with prob-

ability larger than λ, i.e.
∑

r′′∈S(r,m,a,a′) ρ(r, r′, a, a′)[r′′] > λ for all r′ ∈ Rm. Let

L(t, η) =
⋃
r∈L(t−1,η/2)

⋃
m∈{1,...,M(r)}

⋃
(a,a′)∈A2 S(r,m, a, a′). Note that L(t, η) is finite.

Since records and exits are independent, the probability that a player with record in
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L(t − 1, η/2) has a next-period record in L(t, η) exceeds λ. For any µ ∈ ∆(R), it

then follows that
∑

r∈L(t−1,η/2) µr ≥ (1 − η/2)(1 − γ)γt−1 implies
∑

r∈L(t,η) fσ(µ)[r] >

(1− η)(1− γ)γt. �

The next corollary is an immediate consequence of Properties 2 and 3 of Lemma 5.

Corollary 4. For every µ ∈ ∆(R) and η > 0, we have
∑

r∈L(t,η) f
t′
σ (µ)[r] ≥ (1−η)(1−

γ)γt for all t′ > t, where f t
′

σ denotes the t′th iterate of the update map fσ.

Fix a family of finite subsets of R, {L(t, η)}t∈N,η>0, satisfying the three properties

in Lemma 5 and define M̄ , a subset of ∆(R), by

M̄ =

µ ∈ ∆(R) :
∑
r∈R(t)

µr = (1− γ)γt and
∑

r∈L(t,η)

µr ≥ (1− η)(1− γ)γt ∀t ∈ N, η > 0

 .

Note that M̄ is convex and, by Corollary 4, must contain every steady-state distri-

bution µ. The next lemma uses Corollary 4 to show that M̄ is non-empty.

Lemma 6. There exists µ ∈ ∆(R) satisfying
∑

r∈R(t) µr = (1−γ)γt and
∑

r∈L(t,η) µr ≥

(1− η)(1− γ)γt for every t ∈ N, η > 0.

Proof. Consider an arbitrary µ ∈ ∆(R). Set µ0 = µ, and, for every non-zero i ∈ N, set

µi = fs(µ
i−1). Since R is countable, a standard diagonalization argument implies that

there exists some µ̃ ∈ [0, 1]R and some subsequence {µij}j∈N such that limj→∞ µ
ij
r = µ̃r

for all r ∈ R.

For a given t ∈ N, we have by Corollary 4 that

∑
r∈L(t,η)

µijr ≥ (1− η)(1− γ)γt

for all η > 0 for all sufficiently high j ∈ N, so

∑
r∈L(t,η)

µ̃r ≥ (1− η)(1− γ)γt. (3)
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Moreover, for each t ∈ N,
∑

r∈R(t) µ
ij
r = (1−γ)γt for all j ∈ N, so

∑
r∈R(t) µ̃r ≤ (1−γ)γt.

Since (3) holds for all η ∈ (0, 1), this implies that
∑

r∈R(t) µ̃r = (1−γ)γt, which together

with (3) implies that µ̃ ∈ M̄ . �

The following three claims imply that fσ has a fixed point in M̄ .21

Claim 1. M̄ is compact in the sup norm topology.

Claim 2. fσ maps M̄ to itself.

Claim 3. fσ is continuous in the sup norm topology.

Proof of Claim 1. Since M̄ is a metric space under the sup norm topology, it suffices

to show that M̄ is sequentially compact. Consider a sequence {µi}i∈N of µi ∈ M̄ . A

similar argument to the proof of Lemma 6 shows that there exists some µ̃ ∈ M̄ and

some subsequence {µij}j∈N such that limj→∞ µ
ij
r = µ̃r for all r ∈ R.

Here we show that limj→∞ µ
ij = µ̃. For a given η > 0, there is a finite subset

of records L(η/2) ⊂ R such that
∑

r∈L(η) µr > 1 − η/2 for every µ ∈ M̄ . Thus,

|µijr − µ̃r| < η/2 for all r /∈ L(η/2) for all j ∈ N. Now, let J ∈ N be such that

|µijr − µ̃r| < η/2 for all r ∈ L(η/2) whenever j > J . Then supr∈R |µ
ij
r − µ̃r| < η for all

j > J . �

Proof of Claim 2. For any µ ∈ M̄ , Properties 2 and 3 of Lemma 5 imply that
∑

r∈L(t,η) fσ(µ)[r] ≥

(1 − η)(1 − γ)γt for all t ∈ N, η > 0. Furthermore, fσ(µ)[0] = 1 − γ, and for

all t > 0, γ
∑

r∈R(t−1) µr =
∑

r∈R(t) fσ(µ)[r], so
∑

r∈R(t−1) µr = (1 − γ)γt−1 gives∑
r∈R(t) fσ(µ)[r] = (1− γ)γt. �

Proof of Claim 3. Consider a sequence {µi}i∈N of µi ∈ M̄ with limi→∞ µ
i = µ̃ ∈ M̄ .

We will show that limi→∞ fσ(µi) = fσ(µ̃).

For a given η > 0, there is a finite subset of records L(η/4) ⊂ R such that∑
r∈L(η/4) µr > 1 − η/4 for every µ ∈ M̄ . By Claim 2, fσ(µ) ∈ M̄ for every µ ∈ M̄ .

21This follows from Corollary 17.56 (page 583) of Aliprantis and Border (2006), noting that every
normed space is a locally convex Hausdorff space.
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The combination of these facts means that it suffices to show that limi→∞ fσ(µi)[r] =

fσ(µ̃)[r] for all r ∈ R to establish limi→∞ fσ(µi) = fσ(µ̃). Additionally, since fσ(µ)[0] =

1− γ is constant across µ ∈ ∆(R), we need only focus on the case where r 6= 0.

For this case,

fσ(µi)[r] = γ
∑

(r′,r′′)∈R2

µir′µ
i
r′′φ(r′, r′′)[r],

and

fσ(µ̃)[r] = γ
∑

(r′,r′′)∈R2

µ̃r′µ̃r′′φ(r′, r′′)[r].

Because
∑

r∈L(η/4) µr > 1 − η/4 for every µ ∈ M̄ , γ ∈ (0, 1), and 0 ≤ φ(r′, r′′)[r] ≤ 1

for all r′, r′′ ∈ R, it follows that

|fσ(µi)[r]− fσ(µ̃)[r]| ≤ γ

∣∣∣∣∣∣
∑

(r′,r′′)∈L(η/4)2
(µir′µ

i
r′′ − µ̃r′µ̃r′′)φ(r′, r′′)[r]

∣∣∣∣∣∣
+ γ

∣∣∣∣∣∣
∑

(r′,r′′)/∈L(η/4)2
(µir′µ

i
r′′ − µ̃r′µ̃r′′)φ(r′, r′′)[r]

∣∣∣∣∣∣
<

∑
(r′,r′′)∈L(η/4)2

∣∣µir′µir′′ − µ̃r′µ̃r′′∣∣+
1

2
η.

Since limi→∞ µ
i = µ̃, there exists some I ∈ N such that

∑
(r′,r′′)∈L(η/4)2 |µir′µir′′ − µ̃r′µ̃r′′ | <

η/2 for all i > I, which gives |fσ(µi)[r]− fσ(µ̃)[r]| < η for all i > I. We thus conclude

that limi→∞ fσ(µi)[r] = fσ(µ̃)[r]. �

We now show that no steady state exists for the interdependent record system with

R = N and ρ(r, r′) = max{r, r′} + 1, whenever γ > 1/2. To see this, suppose toward

a contradiction that µ is a steady state. Let r∗ be the smallest record r such that∑∞
r′=r µr′ < 2− 1/γ, and let µ∗ =

∑∞
r=r∗ µr < 2− 1/γ. Note that µ∗ > 0, as a player’s

record is no less than their age, so for any record threshold, there is a positive measure

of players whose records exceed the threshold.

Note that every surviving player with record r ≥ r∗ retains a record higher than

r∗, and at least fraction µ∗ of the surviving players with record r < r∗ obtain a record
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higher than r∗ (since this is the fraction of players with record r < r∗ that match with

a player with record r ≥ r∗). Hence,

∞∑
r=r∗

f (µ) [r] ≥ γµ∗ + γ (1− µ∗)µ∗ > µ∗,

where the second inequality comes from 0 < µ∗ < 2 − 1/γ. But in a steady-state we

must have
∑∞

r=r∗ f (µ) [r] = µ∗, a contradiction.

A.2 Proof of Lemma 1 and Theorem 2

A.2.1 Proof of Lemma 1

The feasibility constraint of Lemma 1 comes from the following lemma, the proof of

which is in OA.1.1.

Lemma 7. In a trigger strategy equilibrium with tolerance K and share of good-

standing players µG, µk = α(γ, ε)k(1− α(γ, ε)) for k < K.

To see why the feasibility constraint of Lemma 1 comes from Lemma 7, note that

µG =
K−1∑
k=0

α(γ, ε)k(1− α(γ, ε)) = 1− α(γ, ε)K .

We turn to the incentives constraint in Lemma 1. The next lemma gives closed

forms for the equilibrium values as a function of the player’s score.

Lemma 8. In a trigger strategy equilibrium with tolerance K and share of good-

standing players µG,

Vk = (1−α(γ, ε)K−k)(µGu(a, a)+(1−µG)u(b, c))+α(γ, ε)K−k(µGu(c, b)+(1−µG)u(d, d))

for k < K, and

Vk = µGu(c, b) + (1− µG)u(d, d)
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for k ≥ K.

The proof of this lemma, which is simple algebra, is in OA.1.2.

To make use of this result, note that the payoff to a good-standing player with score

k from playing a against an opponent playing a is (1 − γ)u(a, a) + γ(1 − ν(ε))Vk +

γν(ε)Vk+1, while their payoff from playing some action x is (1 − γ)u(x, a) + γ(1 −

px(ε))Vk+γpx(ε)Vk+1, where px(ε) gives the probability that the player’s score increases

when they play x. Thus, a good-standing player with score k prefers to play a against

a rather than x against a iff

(1− ν(ε)− px(ε))
γ

1− γ
(Vk − Vk+1) > u(x, a)− u(a, a).

Using the expressions for the Vk in Lemma 8 gives

1− ν(ε)− px(ε)
ν(ε)

α(γ, ε)K−k(µG(u(a, a)−u(c, b))+(1−µG)(u(b, c)−u(d, d))) > u(x, a)−u(a, a).

Note that the left hand side of this inequality is increasing in k, so a necessary and

sufficient condition for all good-standing players to play a rather than any x against a

is the version of this inequality for k = 0, which using the fact that µG = 1−α(γ, ε)K ,

is equivalent to

1− ν(ε)− px(ε)
ν(ε)

(1−µG)(µG(u(a, a)−u(c, b))+(1−µG)(u(b, c)−u(d, d))) > max
x

u(x, a)−u(a, c).

Since 1 − ν(ε) − px(ε) is bounded above 0, it follows that there is some z such that

whenever

1

ν(ε)
(1− µG)(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d))) > z,

it is optimal for good-standing players to prefer to play a against a. A similar argument

shows that for sufficiently high z, this inequality implies that it is optimal for good-

standing players to prefer to play b against c.
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A.2.2 Proof of Theorem 2

Proof of Theorem 2. Fix η ∈ (0, 1). For arbitrary (γ, ε), consider the trigger strategy

with tolerance K(γ, ε) set by

K(γ, ε) =

⌈
ln(η)

ln(α(γ, ε))

⌉
,

so that K(γ, ε) is the smallest integer greater than or equal to ln(η)/ ln(α(γ, ε)). Note

that with this tolerance the corresponding share of good-standing players is µG(γ, ε) =

1−α(γ, ε)K(γ,ε). By construction, µG(γ, ε) ≥ 1−η for all (γ, ε), and, wheneverK(γ, ε) >

1, µG(γ, ε) ≤ 1− η2.

We will now argue that for small η, whenever γ is sufficiently large and ε is suffi-

ciently small, such a strategy (along with the corresponding steady state) constitutes

an equilibrium. In particular, suppose that η is such that the difference in flow payoff

between a good-standing player and a bad-standing player is strictly positive whenever

µG ≥ 1− η. That is, (1− η)(u(a, a)− u(c, b)) + η(u(b, c)− u(d, d)) > 0.

Consider first the case where K(γ, ε) > 1. Since limε→0 1/ν(ε) = ∞ and 1 − η ≤

µG(γ, ε) ≤ 1 − η2 whenever K(γ, ε) > 1, it follows that for ε sufficiently small, this

trigger strategy is an equilibrium whenever K(γ, ε) > 1.

Now consider the case where K(γ, ε) = 1. In this case, µG = 1− α(γ, ε), so

1

ν(ε)
(1− µG(γ, ε)) =

γ

1− γ + γν(ε)
.

Since lim(γ,ε)→(1,0) γ/(1− γ + γν(ε)) =∞, it follows that for γ sufficiently large and ε

sufficiently small, this trigger strategy is an equilibrium whenever K(γ, ε) = 1. �
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A.3 Proof of Lemma 2 and Theorem 3

A.3.1 Proof of Lemma 2

The feasibility constraint of Lemma 2 comes from the following lemma, which is proved

in OA.2.1.

Lemma 9. In a trigger strategy equilibrium with tolerance K and share of good-

standing players µG, for all k < K, µk = β(γ, ε)k(1− β(γ, ε)).

To see why the feasibility constraint of Lemma 2 comes from Lemma 9, note that

µG =
K−1∑
k=0

β(γ, ε)k(1− β(γ, ε)) = 1− β(γ, ε)K .

We turn to the incentives conditions in Lemma 1. The next lemma gives closed

forms for the equilibrium values as a function of the player’s score.

Lemma 10. In a trigger strategy equilibrium with tolerance K and share of good-

standing players µG,

Vk = (1−β(γ, ε)K−k)(µGu(a, a)+(1−µG)u(b, c))+β(γ, ε)K−k(µGu(c, b)+(1−µG)u(d, d))

for k < K, and

Vk = µGu(c, b) + (1− µG)u(d, d)

for k ≥ K.

The proof of this lemma, which is simple algebra, is in OA.2.2.

To make use of this result, note that the payoff to a good-standing player with score

k from playing a against an opponent playing a is (1− γ)u(a, a) + γ(1− (n− 2)ε)Vk +

γ(n− 2)εVk+1, while their payoff from playing some action x 6= a, b is (1− γ)u(x, a) +

γ2εVk + γ(1− 2ε)Vk+1.
22 Thus, a good-standing player with score k prefers to play a

22Because u(a, a) > u(b, a), we do not have to worry about a good-standing player playing b rather
than a against an opponent playing a.
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against a rather than x 6= a, b against a iff

(1− nε) γ

1− γ
(Vk − Vk+1) > u(x, a)− u(a, a).

Using the expressions for the Vk in Lemma 10 gives

1− nε
(n− 2)ε

β(γ, ε)K−k(µG(u(a, a)−u(c, b))+(1−µG)(u(b, c)−u(d, d))) > u(x, a)−u(a, a)

Note that the left hand side of this inequality is increasing in k, so a necessary and

sufficient condition for all good-standing players to play a rather than any x 6= a, b

against a is the version of this inequality for k = 0, which using the fact that µG =

1− β(γ, ε)K , is equivalent to

1− nε
(n− 2)ε

(1−µG)(µG(u(a, a)−u(c, b))+(1−µG)(u(b, c)−u(d, d))) > max
x

u(x, a)−u(a, c).

It can be similarly shown that a necessary and sufficient condition for all good-standing

players to prefer to play b rather than any x 6= a, b against c is

1− nε
(n− 2)ε

(1−µG)(µG(u(a, a)−u(c, b))+(1−µG)(u(b, c)−u(d, d))) > max
x

u(x, c)−u(b, c).

These two conditions together give the incentive constraint in Lemma 2.

A.3.2 Proof of Theorem 3

Proof of Theorem 3. Fix η ∈ (0, 1). For arbitrary (γ, ε), consider the trigger strategy

with tolerance K(γ, ε) set by

K(γ, ε) =

⌈
ln(η)

ln(β(γ, ε))

⌉
,

so that K(γ, ε) is the smallest integer greater than or equal to ln(η)/ ln(β(γ, ε)). Note

that with this tolerance the corresponding share of good-standing players is µG(γ, ε) =
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1−β(γ, ε)K(γ,ε). By construction, µG(γ, ε) ≥ 1−η for all (γ, ε), and, wheneverK(γ, ε) >

1, µG(γ, ε) ≤ 1− η2.

We will now argue that for small η, whenever γ is sufficiently large and ε is suffi-

ciently small, such a strategy constitutes an equilibrium. In particular, suppose that

η is such that the difference in flow payoff between a good-standing player and a bad-

standing player is strictly positive whenever µG ≥ 1 − η. That is, (1 − η)(u(a, a) −

u(c, b)) + η(u(b, c)− u(d, d)) > 0.

Consider first the case where K(γ, ε) > 1. Since limε→0(1 − nε)/((n − 2)ε) = ∞

and 1 − η ≤ µG(γ, ε) ≤ 1 − η2 whenever K(γ, ε) > 1, it follows that for ε sufficiently

small, this trigger strategy is an equilibrium whenever K(γ, ε) > 1.

Now consider the case where K(γ, ε) = 1. In this case, µG = 1− β(γ, ε), so

1− nε
(n− 2)ε

(1− µG(γ, ε)) =
γ(1− nε)

1− γ + γ(n− 2)ε
.

Since lim(γ,ε)→(1,0) γ(1− nε)/(1− γ + γ(n− 2)ε) =∞, it follows that for γ sufficiently

large and ε sufficiently small, this trigger strategy is an equilibrium whenever K(γ, ε) =

1. �

A.4 Proof of Theorem 4

Let hn : (0, 1)5 → R be the function given by

hn(γ, ε, µG, τa, χ) =
1− µG − (n− 2)µGε γ

1−γχ− (1− (n− 2)ε)µG γ
1−γ τa

(εµG + (1− µG)(1− (n− 1)ε))µG
. (4)

Lemma 11. There is an equilibrium with share µG of players in G iff the feasibility

constraint

τ b − τa =
1− γ
γ

hn(γ, ε, µG, τa, χ),

45



and incentive constraints

(a vs b|a) :(1− nε)hn(γ, ε, µG, τa, χ)(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d)))

>u(b, a)− u(a, a),

(b vs a|c) :(1− nε)hn(γ, ε, µG, τa, χ)(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d)))

<u(b, c)− u(a, c),

(a vs x|a) :(1− nε) γ

1− γ
(χ− τa)µG(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d)))

>max
x 6=a,b

u(x, a)− u(a, a),

(b vs x|c) :(1− nε) γ

1− γ
(χ− τ b)µG(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d)))

>max
x 6=a,b

u(x, c)− u(b, c),

are satisfied.

The proof of Lemma 11 is in OA.3. The feasibility constraints come from calculating

the relationship between the transition probabilities τa, τ b, and χ necessary to support

the steady-state share of µG in G. The incentive constraints come from solving V G and

V B (the value function of players in G and B), and using the transition probabilities

to evaluate the good-standing players’ incentives to follow the prescribed play.

Let κ ∈ (0, 1) be such that

u(b, a)− u(a, a)

u(a, a)− u(c, b)
< κ < min

{
u(b, c)− u(a, c)

u(a, a)− u(c, b)
, 1

}

Fix µG ∈ (0, 1), and let χ(γ, ε) be given by

χ(γ, ε) = min

{
1− γ
γε

(1− κ)(1− µG)

(n− 2)µG
, 1

}
,

τa(γ, ε) be given by

τa(γ, ε) =
1− γ

γ(1− (n− 2)ε)µG

(
(1− κ)(1− µG)− (n− 2)µGε

γ

1− γ
χ(γ, ε)

)
,
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and τ b(γ, ε) be given by

τ b(γ, ε) = τa(γ, ε) +
1− γ
γ

hn(γ, ε, µG, τa(γ, ε), χ(γ, ε)).

Note that χ(γ, ε), τa(γ, ε), τ b(γ, ε) ≥ 0 for all (γ, ε), χ(γ, ε) ≤ 1 for all (γ, ε),

lim(γ,ε)→(1,0) τa(γ, ε) = 0, and lim(γ,ε)→(1,0) τ b(γ, ε) = 0.

Lemma 12. For µG close enough to 1, this constitutes an equilibrium for (γ, ε) suffi-

ciently close to (1, 0).

Proof. We have already established that the feasibility constraints are satisfied for

(γ, ε) sufficiently close to 1. Thus, we need only show that the incentive constraints

are satisfied.

Note that

lim
(γ,ε)→(1,0)

(1− nε)hn(γ, ε, µG, τa(γ, ε), χ(γ, ε)) = κ.

Since

u(b, a)− u(a, a) < κ(u(a, a)− u(c, b)) < u(b, c)− u(a, c),

it thus follows that the (a vs b|a) constraint and the (b vs a|c) constraint are both

satisfied in the (γ, ε)→ (1, 0) limit when µG is sufficiently close to 1.

Additionally, note that

lim
(γ,ε)→(1,0)

(1−nε) γ

1− γ
(χ(γ, ε)−τa(γ, ε)) = lim

(γ,ε)→(1,0)
(1−nε) γ

1− γ
(χ(γ, ε)−τ b(γ, ε)) =∞.

Since u(a, a)− u(c, b) > 0, it follows that both the (a vs b|a) and (b vs a|c) constraints

are satisfied in the (γ, ε)→ (1, 0) limit when µG is sufficiently close to 1. �

A.5 Proof of Theorem 5

Throughout this section, we assume that (a, a) is not a stage-game Nash equilibrium,

and we restrict attention to the class of trigger strategies in which good-standing players
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play a against fellow good-standing players and action b against bad-standing players,

and bad-standing players play c against good-standing players and d against bad-

standing players. We denote the expected continuation payoff of a record r player who

plays action x by V x
r and denote the probability that a record r player plays x by pxr .

All omitted proofs are in OA.4.

Fix an equilibrium and let V = supr Vr and let {rn}n∈N be a sequence of records

such that limn→∞ Vrn = V . Note that V < ∞ and, since V0 (the expected lifetime

payoff of a newborn player) equals µGπG + (1− µG)πB (the average flow payoff in the

population), we have V ≥ V0 = µGπG + (1− µG)πB.

Lemma 13. For µG sufficiently close to 1, there is no sequence of bad-standing records

{rn}n∈N such that limn→∞ Vrn = V .

Lemma 14. If for every η > 0 there exist some γ and ε such that trigger strategies

support share at least 1− η of the population playing a, then u(a, a) ≥ u(c, b).

Lemma 15. If µG > 0, then u(a, a)− u(b, a) > u(a, c)− u(b, c).

Proof. For a good-standing player with record r to prefer to play a against a than b

against a, it must be that (1− γ)u(a, a) + γV a
r > (1− γ)u(b, a) + γV b

r , which implies

u(a, a) − u(b, a) > γ
1−γ (V b

r − V a
r ). Likewise, we can show that for a good-standing

player with record r to prefer to play b against c rather than a against c, it must

be that u(a, c) − u(b, c) < γ
1−γ (V b

r − V a
r ). Combining these two inequalities gives

u(a, a)− u(b, a) > u(a, c)− u(b, c). �

Let Da,b
r := γ(V a

r − V b
r )/(1− γ).

Lemma 16. Da,b
r = 1

1−µG

(
πG − Vr − γ

1−γ (Vr − V a
r )
)

= − 1
µG

(
πG − Vr − γ

1−γ (Vr − V b
r )
)
.

Proof. This follows immediately from Vr = (1− γ)πG + γµGV a
r + γ(1− µG)V b

r . �

Lemma 17. For µG sufficiently close to 1, there is some good-standing record r′ such

that

min

{
Vr′ −

γ

1− γ
(V a

r′ − Vr′), Vr′ −
γ

1− γ
(V b

r′ − Vr′)
}
≥ µGπG + (1− µG)πB. (5)
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Proof of Lemma 17. First consider the case where V = µGπG+(1−µG)πB. Then there

must be some record k′ such that Vk′ = µGπG + (1− µG)πB. By Lemma 13, such a k′

cannot be a bad-standing record. Moreover V a
k′ ≤ V , so Vk′ − (γ/(1− γ))(V a

k′ − Vk′) ≥

µGπG + (1− µG)πB. Likewise, V b
k′ ≤ V , so Vk′ − (γ/(1− γ))(V b

k′ − Vk′) ≥ µGπG + (1−

µG)πB.

Now, consider the case where V > µGπG+ (1−µG)πB. For any sequence of records

{rn}n∈N such that limn→∞ Vrn = V , limn→∞max{V a
r − Vr, V b

r − Vr, 0} = 0, so for all

sufficiently high n we have max{V a
r −Vr, V b

r −Vr} ≥ µGπG+ (1−µG)πB. Additionally,

by Lemma 13, for sufficiently high n, the record rn must be a good-standing record. �

Lemma 18. Consider a good-standing record r′ whose value and continuation values

satisfy the inequalities in (5). As µG → 1, Da,b
r′ < u(b, c) − u(a, c) implies u(b, c) ≥

u(a, c) and Da,b
r′ > u(b, a)− u(a, a) implies u(b, a)− u(a, a) ≤ u(a, a)− u(c, b).

Proof. Combining (5) with Lemma 16 and Da,b
r < u(b, c)− u(a, c) gives

−1− µG

µG
(πG − πB) < u(b, c)− u(a, c).

As µG → 1, the left-hand side of this inequality converges to 0, which gives u(b, c) ≥

u(a, c), or Condition 3. Likewise, Lemma 16 and Da,b
r > u(b, a)− u(a, a) requires that

πG − πB > u(b, a)− u(a, a). As µG → 1, the left-hand side of this inequality converges

to u(a, a)− u(b, a), which gives u(b, a)− u(a, a) ≤ u(a, a)− u(c, b), or Condition 4. �

A.6 Proof of Theorem 6

Fix parameters γ, ε ∈ (0, 1) and suppose that all players play according to the trigger

strategy with tolerance level K. Given the value of µtk, the population shares at the

various scores, at time t, the corresponding value of the shares at time t+ 1 are given
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by

µt+1
0 = 1− γ + γ(1− (n− 2)ε)µt0,

µt+1
k = γ(n− 2)εµtk−1 + γ(1− (n− 2)ε)µtk for 0 < k < K,

µt+1
K = γ(n− 2)εµtK−1 + γ2εµtK ,

µt+1
k = γ(1− 2ε)µtk−1 + γ2εµtk.

Next we show that limt→∞ µ
t
k = β(γ, ε)k(1 − β(γ, ε)) for all k < K by induction

over k. A similar argument can then be used to show that

lim
t→∞

µtk = β(γ, ε)K
(
γ(1− 2ε)

1− γ2ε

)k−K
1− γ

1− γ2ε

for all k ≥ K.

Note that µt+1
0 = 1−γ+γ(1−(n−2)ε)µt0 is equivalent to µt+1

0 −(1−β(γ, ε)) = γ(1−

(n−2)ε) (µt0 − (1− β(γ, ε))) . Thus µt0 = 1−β(γ, ε)+(γ(1−(n−2)ε))t (µ0
0 − (1− β(γ, ε))),

so limt→∞ µ
t
0 = 1− β(γ, ε) since limt→∞(γ(1− (n− 2)ε))t = 0.

Suppose that limt→∞ µ
t
k−1 = β(γ, ε)k−1(1 − β(γ, ε)). Note that µt+1

k = γ(n −

2)εµtk−1 + γ(1− (n− 2)ε)µtk is equivalent to

µt+1
k −β(γ, ε)µtk−1 = γ(1−(n−2)ε)(µtk−β(γ, ε)µt−1k−1)+γ(1−(n−2)ε)β(γ, ε)(µt−1k−1−µ

t
k−1),

which implies

µt+1
k − β(γ, ε)µtk−1 = γ(1− (n− 2)ε)t(µk1 − β(γ, ε)µ0

k−1)

+
t∑
i=1

γ(1− (n− 2)ε)iβ(γ, ε)(µt−ik−1 − µ
t−i+1
k−1 ).

This gives limt→∞ µ
t
k = β(γ, ε)k(1−β(γ, ε)) when limt→∞ µ

t
k−1 = β(γ, ε)k−1(1−β(γ, ε)).
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