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ABSTRACT

This paper studies Wald-type tests in the presence of a possibly singular (asymptotic) covariance matrix, either
in finite samples or asymptotically. Such difficulties occur in many statistical and econometric problems, such
as causality and cointegration analysis in time series, (locally) redundant restrictions, (locally) redundant moment
equations in GMM, tests on the determinant of a coefficient matrix (reduced rank hypotheses), etc. Two different
types of singularity are considered.First, the estimated covariance matrix hasfull rank but converges to asingu-
lar covariance matrix, so the Wald statistic can be computed as usual, but regularity conditions for the standard
asymptotic chi-square distribution do not hold.Second, the estimated covariance matrix does not have full rank
and converges to a possibly singular matrix whose rank may differ from the finite-sample rank of the covariance
matrix estimate. The proposed procedure works in all cases regardless of the finite-sample and asymptotic ranks.
To address such difficulties, we introduce a novel mathematical object: theregularized inversewhich is related to
generalizedinverses, although different. We exploit general results on eigenprojections combined with avariance
regularizing function(VRF) which modifies small eigenvalues (using a threshold). The eigenprojection technique
entails that the regularized inverse always exists and is unique. The proposed class of regularized inverse matrices
includes as special cases several regularization methods such as spectral cut-off approaches and Tikhonov-type in-
verses, mainly used for estimation purposes. Under general regularity conditions, we show that sample regularized
inverse matrices converge to their regularized asymptotic counterparts. We proposeregularized Wald statistics
obtained by replacing the usual inverse of the estimated covariance matrix (or the generalized inverse) by a reg-
ularized inverse, allowing for both Gaussian and non-Gaussian parameter estimates. We consider two classes of
regularized Wald statistics. The first one admits a nonstandard asymptotic distribution, which corresponds to a lin-
ear combination of chi-square variables when the estimator used is asymptotically Gaussian. In this case, we show
that the asymptotic distribution isboundedby the usual (full-rank) chi-square distribution, so standard critical val-
ues yield valid tests. In more general cases, we show that the asymptotic distribution can be simulated or bounded
by simulation. The second class allows the threshold to vary with the sample size, but additional information is
needed. This class of test statistics includes the spectral cut-off statistic proposed by Lütkepohl and Burda (1997,J.
Econometrics) as a special case. The regularized statistics are consistent against global alternatives, with a loss of
power (in certain directions) for the spectral cut-off Wald statistic. An application to U.S. data illustrates how the
procedure works when testing for noncausality between saving, investment, growth and foreign direct investment.

Key words: Asymptotic singularity; Regularized Wald test; Moore-Penrose inverse; spectral cut-off and Tikhonov
regularizations; Bounded distribution; Monte Carlo tests; Redundant restrictions; Noncausality tests.
JEL classification: C1, C13, C12, C15, C32
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1. Introduction

This paper examines Wald-type tests in the presence of possibly singular covariance matrices, either in finite
samples or asymptotically, so the usual regularity conditions that lead to a chi-square asymptotic distribution (with
possibly reduced rank) may not hold. The method we propose consists in regularizing the relevant covariance
matrix, so the latter has full rank both in finite samples and asymptotically. Our approach is “rank robust” in the
sense that the rank of the covariance matrix is arbitrary in finite samples and can converge to a matrix of any
rank (which may differ from the finite-sample rank). In particular, our method allows for a sequence of statistics
for which the rank of the covariance matrix varies with the sample size. This rules out the cumbersome task
of determining the asymptotic rank. Furthermore, we obtain valid inference for both types of singularity, finite
sample or asymptotic, even though we emphasize the case of asymptotic singularity in the distributional results.
The regularization method is valid even in the worst-case scenario where the covariance matrix converges to a zero
matrix.

In regular setups, the regularized statistic is (asymptotically) identical to the standard one, while it is robust
to rank deficiencies in problematic cases.1 Asymptotically valid tests can thus be performed regardless of the
asymptotic rank. More specifically, a bound is easily obtained for the full-rank regularized statistic. The bound
is appealing, because it relies on usual critical points for the full rank case and is invariant to the degree of rank
deficiency. These results only require information on the distribution of the estimated restricted parameters, not
the data generating process (DGP). The distribution of the estimator need not be Gaussian. Should the test based
on the bound be conservative, this feature can be alleviated through simulation as soon as some information on the
DGP is available.

If the covariance matrix estimator of an asymptotically normal random vector converges to a singular matrix,
using its generalized inverse (g-inverse) – rather than theg-inverse of the limit in the corresponding normalized
quadratic form that defines a Wald-type statistic – yields a statistic whose asymptotic distribution is chi-square
with a reduced number of degrees of freedom, provided the ranks of the estimated covariance matrix converges to
the rank of the limit matrix; see Andrews (1987). Otherwise, the asymptotic distribution of the quadratic form is
typically modified. In particular, when testing nonlinear restrictions, this can happen if an asymptotic rank defi-
ciency obtains on sets of Lebesgue measure zero (e.g., at isolated points) in the parameter space. Problems of this
type are quite varied in econometrics, such as many test problems in time series, (locally) redundant restrictions,
(locally) redundant moment equations in GMM, tests on the determinant of a coefficient matrix (for reduced rank
hypotheses), etc.

More specifically, in time series, situations that lead to asymptotic rank deficiencies include: tests on impulse
response coefficients in VAR models, tests of Granger non-causality in VARMA models [Boudjellaba, Dufour and
Roy (1992, 1994)], tests of noncausality at multiple horizons [Dufour and Renault (1998), Dufour, Pelletier and
Renault (2006)], tests on the coefficients of cointegrated VAR processes [Sims, Stock and Watson (1990)], tests of
long-run relationships in cointegrated systems [Gonzalo and Lee (1998)], stochastic discount factor specification
tests in a GMM framework [Marin (1996), Kan and Robotti (2009), Peñaranda and Sentana (2012)], etc.2

Finite-sample and asymptotic singularities arise naturally with redundant constraints. When dealing with non-
linear conditional moment restrictions as in Gallant and Tauchen (1989) for the I-CAPM model, many parametric

1This paper does not deal with deficient ranks due to (first-order) underidentification. For those interested in such issues, see Dovonon
and Renault (2009), and Pötscher (1985). More generally, for those interested in weak identification issues in IV/GMM, see Dufour (1997),
Stock and Wright (2000), Stock, Wright and Yogo (2002), Dufour and Taamouti (2005, 2007) , Antoine and Renault (2009). Nevertheless,
we allow for situations ofweakidentification ofθ only to the extent that the transformationψ(θ) is identified.

2Kan and Robotti (2009) note in a footnote on page 3461:

"that we should not perform a Wald test ofH0 : η1 = β1, ψ = 0K2+K3 . This is because the asymptotic variance of√
n
[
η̂′1 − β̂

′
1, ψ̂

′]′
is singular underH0, and the Wald test statistic does not have the standard asymptoticχ2

K1+K2+K3+1

distribution. The proof is available upon request."
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restrictions turn out to be redundant; this creates collinearity problems for the Jacobian matrix. Redundant mo-
ment restrictions also arise in a dynamic panel GMM setting, when linear moment conditions imply nonlinear
moment conditions under additional initial conditions on the dependent variable [Arellano and Bond (1991), Ahn
and Schmidt (1995), Blundell, Bond and Windmeijer (2000), Doran and Schmidt (2006)] or when the number of
parameters exceed the number of observations [Satchachai and Schmidt (2008)]. In view of such difficulties, Car-
rasco and Florens (2000), Carrasco, Chernov, Florens and Ghysels (2007), Carrasco, Florens and Renault (2007),
and Carrasco (2012) regularize estimators when a continuum of moments is used in a GMM/IV framework. Gen-
eral work on estimation that uses regularization techniques for high dimensional covariance matrices can be found
in Bickel and Levina (2004), Bickel and Levina (2008b, 2008a). On the estimation of high-dimensional covariance
matrices for portfolio allocation and risk management, see also Ledoit and Wolf (2003, 2004) , Fan, Fan and Lv
(2008), Fan, Liao and Mincheva (2011), and Carrasco and Noumon (2011).

In this paper, we focus on testing issues. We propose a general approach to regularize singular covariance
matrices in order to conduct valid Wald-type tests in two different ways: (1) relatively simple asymptotic bounds,
and (2) a simulation-based approach that can handle non-standard distributions in the context we consider. To
overcome the problem of asymptotic singularity, Lütkepohl and Burda (1997) propose to reduce the rank of the
matrix estimator in order to satisfy Andrews’s rank condition. In doing so, they set to zero the small problematic
eigenvalues to produce a consistent estimator for the rank of the asymptotic covariance matrix. In the same vein,
Gill and Lewbel (1992), Cragg and Donald (1996, 1997), Robin and Smith (2000) and Kleibergen and Paap (2006)
focus on tests for the rank of a matrix that is unobserved, but for which a

√
n consistent estimator is available. In

contrast, we do not drop small problematic eigenvalues, which can increase power in finite samples. Unlike Cragg
and Donald (1996, 1997) , Robin and Smith (2000) and Kleibergen and Paap (2006) who assume Gaussianity
for the limiting distribution of the covariance matrix estimator, our methodology [based on the theory developed
by Eaton and Tyler (1994)] is more general, since the availability of a

√
n asymptotically Gaussian estimator

is not required for the asymptotic covariance matrix.3 Al-Sadoon (2015) describes a general structure of rank
test statistics; those are shown to be functions of implicit estimators of the null spaces of the matrix of interest.
See also Doran and Schmidt (2006) for a reduced-rank weighting matrix estimate in highly-overidentified GMM
setups; like Lütkepohl and Burda (1997), they discard the smallest eigenvalues to improve finite-sample properties
of the estimate. Further, Gouriéroux and Jasiak (2009) have shown that the asymptotic distribution of the Wald
statistic for testing the noninvertibility of a matrixA based upon the estimated determinant is seriously affected
whenA ≡ 0. Moreover, the asymptotic distribution of a reduced-rank estimator ofA is different depending upon
whetherA ≡ 0 or A 6= 0; size distortions may result from using quantiles of the standard asymptotic distribution
(i.e. those fromA 6= 0).

When dealing with singular covariance matrices, usual inverses are discarded and replaced withg-inverses
[see Moore (1977), Andrews (1987) for the generalized Wald tests] or modified inverses proposed by Lütkepohl
and Burda (1997). However, when usingg-inverses, it is important to remain aware of two difficulties.First,
the continuous mapping theorem so widely used in econometrics to derive asymptotic distributional results does
not apply anymore becauseg-inverses are not (necessarily) continuous [see Andrews (1987)]. Unlike eigenvalues,
eigenvectors are not continuous functions of the elements of the matrix.Second, when using the singular value
decomposition of a matrix, the eigenvectors corresponding to the eigenvalues with multiplicity larger than one,
are not uniquely defined, which rules out convergence in the usual sense. Ignoring these difficulties can lead to
distributional results which arestricto sensuwrong.

To address such difficulties, we introduce a class ofregularizedinverses whose convergence properties exploit
the technique oftotal eigenprojection, i.e. an eigenprojection operator taken over a subset of the spectral set.
Following Kato (1966) and Tyler (1981), we work witheigenprojectionoperators to overcome the discontinuity

3Estimating the rank as Lütkepohl and Burda (1997), Robin and Smith (2000) do may not be the right thing to do when it comes to
assess the finite sample distribution of such estimators. Our results somehow validate the intuition of Leeb and Pötscher (2003, 2005) who
are very critical of post-model selection estimators.
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and non-uniqueness of eigenvectors. A lemma given by Tyler (1981) states the continuity property for thetotal
eigenprojection. As a result, the important continuity property is preserved for eigenvalues and eigenprojections
even though eigenvectors arenot continuous. We further define a perturbation function of the inverse of the
eigenvalues called thevariance regularizing function(VRF). The VRF modifies the small eigenvalues that fall
below a certain threshold so that their inverse is well behaved whereas the large eigenvalues remain unchanged.
Under specific regularity conditions, the regularized inverse converges to its regularized population counterpart.
The distributional theory of the test statistic resulting from the total eigenprojection technique is therefore valid.

Our contributions can be summarized as follows.First, we introduce a novel mathematical object: aregular-
ized inverse,which is contrasted withg-inverses. This new class of inverses hasfull rank, and satisfies a decom-
position property: aregular component based on large eigenvalues, and anonregularcomponent based on small
eigenvalues which may be associated with small or zero eigenvalues of the asymptotic covariance matrix. This
matrix decomposition determines a corresponding decomposition of the regularized Wald statistic. Under simple
conditions on the VRF, we show that the regularized inverse converges to its full rank regularized counterpart; the
convergence holds component by component. Besides, the class of regularized inverses is general, including as
special cases the spectral cut-off type inverse and a Tikhonov-type inverse.Second, we define a regularized Wald
statistic that relies on a fixed value of the threshold in the VRFg(λ; c). Another version allows the threshold to vary
with the sample size, but requires more information about the behavior of estimated eigenvalues. The first regular-
ized Wald statistic admits a nonstandard asymptotic distribution in the general case, which corresponds to a linear
combination of chi-square variables if the restrictions are Gaussian. Aconservative boundis then obtained for the
distribution of the regularized Wald statistic. Hence, the test isasymptotically valid: usual critical points (given by
the chi-square variable withfull rank) can be used, but are conservative. Interestingly, the bound is invariant to the
degree of rank deficiency of the covariance matrix. When the threshold goes to zero with the sample size, we ob-
tain the spectral cut-off modified Wald statistic proposed by Lütkepohl and Burda (1997) as a special case. Under
normality, the test statistic has the chi-square asymptotic distribution whose reduced rank is given by the number
of eigenvalues greater than zero. Note that Lütkepohl and Burda’s (1997) result only holds for distinct eigenvalues
whereas our result accounts for eigenvalues with multiplicity larger than one.Third, to complement our bound, we
propose three alternative ways to conduct the (regularized) Wald test by simulation:(i) when a DGP is completely
specified, the distribution of the test statistic can be simulated by simulating the DGP;(ii) when the DGP is not
available, but the asymptotic distribution of the estimator is known (at least in large sample), the test statistic can be
simulated by simulating the estimator;(iii) when the restrictions (evaluated at the unrestricted parameter estimate)
can be simulated, this also provides a way of simulating the test statistic. These three approaches require different
amounts of information on the model and the estimator employed, so they have different reliabilities with respect
to asymptotic error, nonlinearity and identification. For example, simulating under the law of the restrictions may
allow one to bypass identification problems raised by the presence of unidentified parameters.

We investigate in a Monte Carlo experiment the finite and large-sample properties of the regularized test statis-
tics. Our findings can be summarized as follows.i) Regarding level control, the standard Wald statistic (i.e.,
W ) suffers from severe over-rejections in small samples, or from under-rejections in large samples in non-regular
setups. Similarly, the reduced rank Wald statistic (i.e., WLB) displays the same poor, finite sample behavior as
the standard statistic in non-regular setups, with critical size distortions when parameter values approach the non-
stationary region. However, it exhibits good size properties asymptotically. In contrast, the full-rank regularized
statistic that uses the bound is conservative. We observe that this feature can be alleviated by using simulation-
based versions of the regularized statistics. If one directly simulates the DGP, one can control the level of the test
for the full-rank regularized statistic even in small samples. Thus, it is very important to simulate from a well-
behaved statistic to produce a reliable test.ii) In terms of power, the full-rank regularized test statistics do not
entail a significant loss of power under the alternative compared to their oversized infeasible competitorsW and
WLB in small samples for the asymptotic tests. Finally, the most striking result is the severeunder-performance
of the reduced rank statisticWLB in a regular setup. As already mentioned by Lütkepohl and Burda (1997), by
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underestimating the true rank of the covariance matrix, this reduced rank statistic puts more weight on the first
restriction that remains fulfilled in this case. A violation of the null hypothesis coming from the second restriction
will not be detected by a statistic that underestimates the rank; a full-rank regularized statistic dominates in such
a case. Thus, these results on power reinforce the better properties of the full-rank regularized statistics over the
spectral cut-off one.

iii) We finally illustrate the procedure on U.S. data by conducting noncausality tests at several horizons to assess
any causal relation between Saving, Investment, Growth and Foreign Direct Investment (FDI) (in the presence of
(locally) redundant restrictions). While most of the procedures are not able to reject the null hypothesis that Saving
does not cause Growth at all horizons, we unambiguously find that Growth causes Saving, and that Investment
causes Growth in the presence of FDI on U.S. data. Our findings support the original literature by Houthakker
(1961, 1965), and Modigliani (1970) at the cross-country level. Moreover, our findings confirm Dufour and Renault
(1998, Proposition 4.5)’s results that in a VAR(1) model, it is sufficient to have noncausality up to horizon 2 for
noncausality to hold at all horizons.

The paper is organized as follows. In Section 2 we describe a general framework with minimal assumptions. In
Section 3, we provide specific examples in the presence of (asymptotic) singular covariance matrices. In Section 4,
we introduce the class ofregularizedinverses. Theregularizedtest statistic is presented in Section 5. In Section 6,
we review and adapt some results on total eigenprojections. In Section 7, we establish the asymptotic properties of
the new regularized inverse based on a fixed threshold. In Section 8, we state new asymptotic distributional results
for the regularized Wald test statistic that uses a fixed threshold. We exploit the decomposition of the regularized
statistic to derive an upper bound. In Section 9, we obtain, as a special case, the Lütkepohl and Burda’s (1997) result
in the Gaussian case. In Section 10, we propose three alternative ways to conduct the (regularized) test through
simulations depending upon the available information: from the DGP, from the distribution of the estimator of the
parameters, or from the restrictions. Furthermore, the finite and large sample properties of the regularized statistics
are assessed through Monte Carlo experiments in Section 11. Finally, we illustrate the procedure by conducting
noncausality tests at several horizons on U.S. data in Section 12. Concluding remarks follow while the proofs are
gathered in the appendix.

2. Framework

Consider a family of probability spaces{(L,AL, P̄θ) : θ ∈ Ω}, whereL is a sample space,AL is a σ-algebra
of subsets ofL, andP̄θ is a probability measure on the measurable space(L,AL) indexed by a parameterθ in
Ω ⊂ Rp. The setsL,AL, andΩ are all nonempty. Suppose we are interested by a transformationψ : Ω1 → Ψ ,
defined on a nonempty subsetΩ1 of Ω on which we want to test hypotheses of the formH0(ψ0) : ψ(θ) = ψ0 .
Let Γ0 be a nonempty subset ofΨ , Ω0 = {θ ∈ Ω1 ⊂ Rp : ψ(θ) ∈ Γ0 ⊂ Rq}. We also assume that the setsΩ
andΨ possess metric space structures. In this case, inferences aboutθ or ψ(θ) will be based onAL-measurable
observation (vector)Y = (Y1, Y2, . . . , Yn) in a spaceY, with n denoting the sample size. The complete measurable
space(Y,AY) induced byY onY is the same for allθ ∈ Ω. The probability measure determined byP̄θ on(Y,AY)
is denoted byPθ = Pθ(y) for any θ ∈ Ω. A usual test statistic for testing the null hypothesis is the Wald-type
statistic as soon as a consistent estimatorψ̂n of the restrictions is available. We first consider a general Wald-type
statistic based on an arbitrary weighting matrixAn:

Wn(ψ0) = a2
n[ψ̂n − ψ0]

′An[ψ̂n − ψ0] . (2.1)

Wn is continuous with respect to (w.r.t) the restrictions and the weighting matrixAn which allows fairly weak
conditions. UsuallyAn is the inverse of a covariance matrix estimatorΣn for ψ̂n. However, this specification
allows more general forms of the weighting matrixAn. More generally, this setup includes as special cases either
the well-known standard case whenever the estimator and its limit have full rank - in that caseAn = Σ−1

n -
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or deficient ranks withAn = Σ†
n. In other words, the method we propose is applicable under more general

assumptions: it is valid even though the finite sample (covariance) matrixΣn is not invertible (hence requiring a

g-inverse), or is invertible but converges to a singular population matrixΣ. For notations
L→

n→∞,
a.s.→ and

p→ denote

the convergence in law, the almost sure convergence and the convergence in probability respectively, andL(X)
denotes the law ofX. Let ψ̂n satisfy the following assumption.

Assumption 2.1 CONVERGENCE IN LAW OF THE RESTRICTIONS. LetXn andX be random vectors inRq. an

is a sequence of real constants such thatan →∞, andXn ≡ an(ψ̂n − ψ) L→
n→∞ X , whereL(X) is known.

Assumption2.1 significantly enlarges the family of admissible laws forψ̂n; the typical Gaussian distribution
for X can easily be replaced by a chi-square distribution, or a Cauchy distribution. Generally speaking, any
distribution that can be consistently estimated by simulations is admissible. Therefore, ifL(X) is not known, but
can be simulated through bootstrap techniques,e.g., then the techniques proposed in this paper can be applied to
providevalid tests under nonregular conditions. More importantly, note that Assumption2.1 only requires that
ψ is identified; in other words,θ can be unidentified, but there exist transformations ofθ, i.e. ψ(θ), that can be
identified. In regression problems, it is frequent to encounter situations where only certain components of the
parameter of interestθ are identified; in such a case, inference is limited to the identified components. Whereas
Lütkepohl and Burda (1997) assume the availability of an asymptotically Gaussian estimator ofθ, as in equation
(2.4), that unnecessarily restricts to situations whereθ is identified, we relax this assumption here. In doing so, we
allow for situations ofweakidentification only to the extent thatψ(θ) is identified. Note thatψ will alternately
equalψ0 under the null hypothesis, orψ1 under the alternative. Of course, the distributions characterizing the null
and the alternative are distinct.

Further, a general condition given by Eaton and Tyler (1994) states the convergence result for the weighting
matrixAn (or a set of parameters).

Assumption 2.2 EATON-TYLER CONDITION. An is a sequence ofp× q real random matrices andA is ap× q

real nonstochastic matrix such thatQn = bn(An − A) L→
n→∞ Q , wherebn is a sequence of real constants such

that bn → +∞, andQ a random matrix.

Note that Assumption2.2 is less restrictive than Robin and Smith (2000, Assumption 2.2) and Kleibergen and
Paap (2006, Assumption 1, p. 103). Indeed, Assumption2.2 allows situations whose matrix estimator is not
asymptotically Gaussian. The Eaton-Tyler condition is stated for rectangular matrices, but most of the time we
will consider square matrices that are symmetric with real eigenvalues. Assumptions2.1 and2.2 will define the
cornerstone for the validity of the distributional results developed further. In particular, the convergence of ranks
property between the sample matrix and its population counterpart is not required in the full-rank regularization
case contrary to the reduced-rank one. It is also important to note that the generality of Assumption2.2 enables
a mixture of a continuous distribution and of a Delta-Dirac distribution at an eigenvalueλ = c. Therefore, it is
not superfluous to examine this case, especially for non-continuous distributions of matrices and their eigenvalues,
to provide a thorough and comprehensive distributional theory. Note that Assumption2.2 implies thatAn

p→ A.
Under Assumptions2.1 and2.2, we can easily obtain the distribution of the Wald statisticWn(ψ0) given in a
general form.

Lemma 2.3 Under Assumption2.1and2.2, the statisticWn(ψ0) defined in equation(2.1) is such that:

Wn(ψ0)
L→

n→∞ X ′AX . (2.2)
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The general form of the statisticWn(ψ0) in equation (2.1) based on the general weighting matrixAn bypasses
any issue related to the invertibility of the covariance matrix estimatorΣn. As soon as a pseudo-inverse can be
found, one can conduct the test, at the cost of a slightly more intricate distributional theory. Most of the time, the
Wald test is implemented using the inverse of the covariance matrix of the restrictions under normality. Indeed,
if normality is assumed as in Assumption2.5 below, the Wald statistic follows a chi-square distribution with the
degree of freedom given by the rank of the asymptotic covariance matrix. Intentionally,an in equation (2.1)
represents a convergence rate that may bedifferentfrom the conventional

√
n to precisely allow situations where

some components of̂ψn, or linear combinations of them, may converge faster or slower than
√

n. It is well-
known in the faster case thatsuperconsistentestimators can raise asymptotic singularity problems forΣn, when
not suitably scaled; see Hamilton (1994, chapter 16, page 457-460) for a simple time trend model.

While ψ(θ) in Assumption2.1 can accommodate some identification problems on some components ofθ, it
might involve some discontinuity at some specific values,e.g., {θ = (θ1, θ2) ∈ Ω : θ2 = 0} for ψ(θ) = θ1/θ2.
In this case, one should rather work withθ and place oneself under the alternative assumption:

Assumption 2.4 CONVERGENCE IN LAW OF THE ESTIMATOR OF THE PARAMETER. LetX̃n andX̃ be random

vectors inRp. ãn is a sequence of real constants such thatãn → ∞, andX̃n ≡ ãn(θ̂n − θ) L→
n→∞ X̃ , where

L(X̃) is known.

Finally, a data generating process (DGP) may be available in specific settings. One could exploit the DGP (or the
corresponding parametric model) to derive the distribution ofθ̂n or that ofψ(θ̂n), as established in the assumptions
above. Let us express the usual Wald statistic as a function of the parameterθ:

Wn(θ̂n, An) = a2
n[ψ(θ̂n)− ψ(θ)]′An[ψ(θ̂n)− ψ(θ)] . (2.3)

The knowledge of the parameterθ completely specifies the distribution of the data. Most of the time, the
weighting matrixA, as well as its sample analogAn, is interpreted as a covariance matrix. Nevertheless, such an
interpretation is very restrictive and discards distributions whose moments do not exist,e.g., the Cauchy distribu-
tion. Therefore, Assumptions2.1and2.2are purposely formulated to allow such degenerate distributions. Let us
now focus on the usual case where the weighting matrixAn in Assumption2.2 is equal toΣn, i.e., a consistent
estimator of the limiting covariance matrixΣ of the restrictions.

A special case of Assumptions2.1and2.2 that is usually encountered in the econometric literature consists in
specifying a Gaussian distribution forX whose parametrization hinges onΣ with an =

√
n as in Lütkepohl and

Burda (1997).

Assumption 2.5 ROOT-n ASYMPTOTIC NORMALITY. Let Xn and X be random vectors inRq. Xn ≡√
n(ψ(θ̂n)− ψ(θ)) L→

n→∞ X , whereL(X) = N(0, Σ) andΣ is a fixedq × q matrix.

Note that Assumption2.5allows for the most degenerate case corresponding toΣ = 0. In this case,dj = 0, with
m(0) = q. Usually, one derives the asymptotic normality of the restrictions from the root-n asymptotic normality
of the estimator̂θn of the underlying parameterθ through the delta method,i.e.,

√
n(θ̂n − θ) L→

n→∞ N(0, Σθ) . (2.4)

This requires the continuously differentiability of the restrictions unlike Assumption2.1. In doing so, econometri-
cians unnecessarily restrict the family of admissible restrictions to those for which the delta method is applicable.
Thus, when the delta method is applied to the Gaussian estimator given in equation (2.4), the covariance matrix
has the typical formΣ = P (θ)ΣθP (θ)′ which critically hinges on the differentiability of the restrictions,i.e.
P (θ) = ∂ψ(θ)/∂θ′ as in Lütkepohl and Burda (1997). By contrast, Andrews (1987, Theorem 1) does not rely on
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the differentiability property of the restrictions, nor on the delta method, but on the Gaussian distribution of the
random variableX, and on the consistency of the samplecovariancematrix to its population counterpart. Indeed,
any weighting matrix can be used in the Wald statistic but only thecovariancematrix of the restrictions yields the
standard chi-square distribution. If a different weighting matrix is used instead, the distribution may be modified
as seen further.

Further, among regularity conditions usually made when conducting tests based on quadratic forms such as
Wald-type tests, is the well-known rank condition for the covariance matrix. WhenΣ andΣn have full ranks,
we are in the regular case with theq × q-weighting matrixΣ being nonsingular, and thereforeWn(ψ0) has an
asymptoticχ2(q) distribution. This is not necessarily true, however, ifΣ is singular. In this case,Σ does not admit
a usual inverse, but can still be inverted by means of a generalized inverse. However, when the population matrix
Σ has a reduced rank, the rank of the sample matrix has to converge almost surely (a.s.) towards thereduced rank
of the population matrix for the quadratic form to have a limiting chi-square distribution, with fewer degrees of
freedom, when the restrictions are assumed to be asymptotically Gaussian. This is the case covered by Andrews
(1987). We shall relax this assumption in the paper.

3. Examples

In this section, we provide examples of asymptotic singularity for the covariance matrix that may affect the distri-
bution of the Wald test statistic.

3.1. Multistep noncausality

As already observed by Lütkepohl and Burda (1997), when testing for noncausality with a Wald test statistic, one
may encounter singular asymptotic covariance matrices. For the sake of comparison, we examine the example
studied by Lütkepohl and Burda (1997). For simplicity, a VAR(1) process is considered for the(3 × 1) vector
yt = [xt yt zt]′ as follows:




xt

yt

zt


 = A1




xt−1

yt−1

zt−1


 + ut =




θxx θxy θxz

θyx θyy θyz

θzx θzy θzz







xt−1

yt−1

zt−1


 +




ux,t

uy,t

uz,t


 .

SupposeY ≡ (y1, . . . , yn) , B ≡ (A1) , Zt ≡ [yt], Z ≡ (Z0, . . . , Zn−1) , U ≡ [ut]t=1,...,n = (u1, . . . , un) ,
whereut = [ux,t uy,t uz,t]′ is a white noise with a(3× 3) nonsingular covariance matrixΣu. Using the standard
column stacking operatorvec, let θ = vec(A1) = vec(B), whereB is (3 × 3) andY , Z andU are (3 × n).

Testing the null hypothesis of multi-step noncausality running fromy to x, i.e. H0 : yt

(∞)

6→ xt, requires to test 2
restrictions onθ of the following form [see Dufour and Renault (1998)]:

ψ(θ) =
[

θxy

θxxθxy + θxyθyy + θxzθzy

]
=

[
0
0

]
.

These restrictions are fulfilled in the following three parameter settings:

θxy = θxz = 0, θzy 6= 0

θxy = θzy = 0, θxz 6= 0

θxy = θxz = θzy = 0 . (3.1)
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We observe that the first-order partial derivative of the restrictions leads to a singular matrix

∂ψ

∂θ′
=

[
0 0 0 1 0 0 0 0 0

θxy 0 0 θxx + θyy θxy θxz θzy 0 0

]
(3.2)

if (3.1) holds. Under such circumstances, the Wald test statistic does not have the standard chi-square distribution
under the null.

3.2. Jacobian matrix degenerate at isolated values for a stochastic volatility model

A two-step GMM-type estimator for estimatingθ = (aw, rw, ry)′ has been proposed by Dufour and Valéry (2009)
in the context of a lognormal stochastic volatility model:

yt = cyt−1 + ut , |c| < 1 ,

ut = [ry exp(wt/2)]zt ,

wt = awwt−1 + rwvt , |aw| < 1

based on the following moment conditions:µ2(θ) = E(u2
t ) = r2

y exp[(1/2)r2
w/(1 − a2

w)] , µ4(θ) = E(u4
t ) =

3r4
y exp[2r2

w/(1 − a2
w)] , µ2, 2(1|θ) = E[u2

t u
2
t−1] = r4

y exp[r2
w/(1 − aw)] . Testing for homoskedasticity(aw =

rw = 0) in this model can be writtenψ(θ) = 0 with ψ(θ) = (aw, rw)′; there are two restrictions, and the derivative
matrix of the restrictions

P (θ) =
∂ψ

∂θ′
=

(
1 0 0
0 1 0

)

has full rank two, so it is regular. However, the Jacobian of the moment conditions does not have full rank when
evaluated at a point that satisfies the null hypothesis: it is easily shown that

∂µ

∂θ′
=




0 0 2ry

0 0 12r3
y

0 0 4r3
y


 (3.3)

whenaw = rw = 0, so that the Jacobian∂µ/∂θ′ has at most rank one (instead of three in the full-rank case). But
GMM identification requires a full-rank Jacobian; see Newey and McFadden (1994, p. 2127).

Thus,∂µ/∂θ′ typically has full rank when it is evaluated at a point that does not satisfy the null hypothesis,
for example at an unrestricted point estimate ofθ, as in Wald-type statistics. Therefore, the rank of∂µ/∂θ′, when
evaluated at an unrestricted point estimate ofθ, generally exceeds the rank of∂µ/∂θ′ evaluated at the trueθ when
aw = rw = 0 holds. This again violates the standard regularity condition entailing a non-regular asymptotic
distribution for the Wald statistic.

3.3. (Locally) singular restrictions

In their paper, Dufour, Renault and Zinde-Walsh (2014) provide a general characterization of the asymptotic distri-
bution of the Wald statistic under asymptotic singularity. They derive a wide array of asymptotic distributions for
the original Wald statistic (without modification) possibly involving nuisance parameters for a given null hypoth-
esis; bounds are also derived. Although very general, the characterization of the Wald statistic in irregular setups
is very complicated. For instance, suppose one wants to test a null hypothesis of the form:H0 : θ1θ2 = 0 and
θ1 = 0 where the second restriction is clearly redundant. In this caseψ(θ) = [θ1θ2, θ1], and

P (θ) =
[

θ2 θ1

1 0

]
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Suppose an asymptotically Gaussian estimator is available forθ, i.e.,
√

n
(
θ̂n − θ̄

) L−→
n→∞ Z ∼ N [0, I] When

θ1 = 0 andθ2 6= 0, the rank ofP (θ) above evaluated at these values clearly boils down to one instead of two. The
covariance matrix

Σ = P (θ)′IP (θ) =
(

θ2
2θ

2
1 θ2

θ2 1

)

whose inverse corresponds to

Σ−1 =
1

(θ2
2θ

2
1 − θ2

2)

(
1 −θ2

−θ2 θ2
2θ

2
1

)
.

Thus as shown in Dufour et al. (2014), the Wald statistic is equal to:

Wn = nψ(θ̂)′Σ̂−1ψ(θ̂) = nθ̂
2

1
L→ χ2(1) ≤ χ2(2) ,

with Σ̂ corresponding to a consistent estimate ofΣ. Hence, standard critical values based onχ2(2) are conserva-
tive. For more examples of irregular Wald statistics, please see Dufour et al. (2014).

4. Regularized inverses

The methodology proposed applies to any symmetric matrices (covariance matrices). We first introduce some
notations. Let̄λ = (λ1, . . . , λq)′ whereλ1 ≥ λ2 ≥ . . . ≥ λq are the eigenvalues of aq × q (covariance) matrix
Σ, andV an orthogonal matrix such thatΣ = V ΛV ′, whereΛ = diag(λ1, . . . , λq). Specifically,V consists
of eigenvectors of the matrixΣ ordered so thatΣV = V Λ. Let m(λ) be the multiplicity of the eigenvalueλ.
Although the matrixΛ is uniquely defined, the matrixV consisted of the eigenvectors is not uniquely defined
when there is an eigenvalue with multiplicitym(λ) > 1. The eigenvectors which correspond to eigenvalues with
m(λ) > 1 are uniquely defined only up to post-multiplication by anm(λ) ×m(λ) orthogonal matrix. Moreover,
let Σn be a consistent estimator ofΣ with eigenvaluesλ1(Σn) ≥ λ2(Σn) ≥ . . . ≥ λq(Σn) andVn an orthogonal
matrix such thatΣn = VnΛnV ′

n whereΛn = diag
[
λ1(Σn), . . . , λq(Σn)

]
. For c > 0, we denoteq(Σ, c) the

number of eigenvaluesλ such thatλ > c andq(Σn, c) the number of eigenvaluesλ(Σn) such thatλ(Σn) > c.
If rank(Σn) = rank(Σ) = q with probability 1, i.e. both matrices are a.s. nonsingular, so the inversesΣ−1 =
V Λ−1V ′ andΣ−1

n = VnΛ−1
n V ′

n are a.s. well defined. However, if rank(Σ) < q and rank(Σn) ≤ q, we need to
make adjustments. For this, we define aregularizedinverse of a (covariance) matrixΣ as below.

Definition 4.1 DEFINITION OF THE REGULARIZED INVERSE. Σ is a q × q real symmetric semidefinite pos-
itive matrix with rank(Σ) ≤ q. Its regularized inverse isΣR(c) = V Λ†(c)V ′ whereΛ†(c) = Λ†[λ̄; c] =
diag

[
g(λi; c)

]
i=1,...,q

; diag(·) represents a diagonal matrix;g(λ; c) ≥ 0, with c ≥ 0; g(λ; c) = 1
λ for λ > c, and

g(λ; c) is bounded.

The scalar functiong(λ; c) modifies the inverse of the eigenvalues for the inverse to behave in a neighborhood
of the true values. We shall call it the(variance) regularization function(VRF). The VRF perturbs the small
eigenvalues in order to stabilize their inverse, preventing them from exploding.

We now introduce a partition of the matrixΛ†(c) into three submatrices wherec represents a threshold which
may depend on the sample size and possibly on the sample itself,i.e. c = c[n, Yn]:

Λ†(c) =




Λ†1[λ̄; c] 0 0
0 Λ†2[λ̄; c] 0
0 0 Λ†3[λ̄; c]


 . (4.1)
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Let qi = dim Λ†i [λ̄; c], for i = 1, 2, 3, with q1 = q(Σ, c), q2 = m(c) and q3 = q − q1 − q2. m(c)
denotes the multiplicity of the eigenvalueλ = c (if any). The three components correspond toΛ†1[λ̄; c] =
diag

[
g(λ1; c), . . . , g(λq1 ; c)

]
for λ > c , Λ†2[λ̄; c] = g(c; c)Iq2 for λ = c , Λ†3[λ̄; c] =

diag
[
g(λq1+q2+1; c), . . . , g(λq; c)

]
for λ < c . More specifically, the large eigenvalues that fall above the

thresholdc remain unchanged whereas those equal to or smaller than the threshold are (possibly) modified to sta-
bilize their inverse. Thus, the first component is "regular" and remains unmodified, while the others may not be
"regular". In particular, the third component requires a regularization. Indeed, because of the invertibility difficul-
ties raised from small values ofλ, we shall replace the latter with eigenvalues bounded away from zero. Instead
of using a spectral cut-off Moore Penrose inverse, we propose afull-rank regularized matrix. This regularization
encompasses the spectral cut-off type regularization as a special case. Indeed, the spectral cut-off Moore Penrose
inverse sets to zero all small problematic eigenvalues,i.e. Λ†2[λ̄; c] = Λ†3[λ̄; c] = 0, yielding areduced-rankmatrix.

Let V1 be aq × q1 matrix whose columns are the eigenvectors associated with the eigenvaluesλ > c arranged
in the same order as the eigenvalues. The eigenvectors associated withλ > c form a basis for the eigenspace
corresponding toλ. If m(λ) = 1, these eigenvectors are uniquely defined, otherwise not. The same holds for
the q × q2 matrix V2 whose columns are the eigenvectors associated with the eigenvaluesλ = c and for the
q × q3 matrix V3 whose columns are the eigenvectors associated with the eigenvaluesλ < c. Λ†1[λ(Σn); c],
Λ†2[λ(Σn); c],Λ†3[λ(Σn); c], V1n, V2n andV3n denote the corresponding quantities based on the sample analogΣn,
with dim Λ1[λ(Σn); c] = q̂1 = card{i ∈ I : λi(Σn) > c}, dim Λ2[λ(Σn); c] = q̂2 = card{i ∈ I : λi(Σn) = c},
dim Λ3[λ(Σn); c] = q̂3 = card{i ∈ I : λi(Σn) < c}, respectively. Using (4.1), theregularizedinverse can be
decomposed as follows:

ΣR(c) = V Λ†(c)V ′ = [V1 V2 V3]




Λ†1[λ̄; c] 0 0
0 Λ†2[λ̄; c] 0
0 0 Λ†3[λ̄; c]







V ′
1

V ′
2

V ′
3


 =

3∑

i=1

ΣR
ii (c) (4.2)

whereΣR
ii (c) = ViΛ

†
i (c)V

′
i i = 1, 2, 3 andΛ†i (c) = Λ†i [λ̄; c] for the sake of notational simplicity. LikewiseΣ can

be decomposed as:

Σ = V ΛV ′ =
3∑

i=1

Σii(c) =
3∑

i=1

ViΛi(c)V ′
i . (4.3)

whereΣii(c) = ViΛi(c)V ′
i ; Λ1(c) = diag(λ)λ>c, Λ2(c) = diag(λ)λ=c andΛ3(c) = diag(λ)λ<c. In the absence

of zero eigenvalues, the usual inverse can be computed asΣ−1 = V Λ−1V ′ =
3∑

i=1
Σ−1

ii (c) =
3∑

i=1
ViΛ

−1
i (c)V ′

i . Let

us establish some useful properties for the regularized inverses, withIq denoting a conformable identity matrix.

Property 1 PROPERTY OF THE REGULARIZED INVERSES. Let Σ = V ΛV ′ be a positive semidefinite matrix,
such thatλ1 ≥ · · · ≥ λq ≥ 0 . Letλg(λ; c) ≤ 1 ∀ λ. Then, the regularized inverseΣR(c) of Σ, defined in4.1,
satisfies the following relations.

1. [i)]

2. ΣΣR(c) = ΣR(c)Σ ≤ Iq ;

3. TΣR(c)T ≤ Iq , whereT = V Λ1/2V ′ is the square root ofΣ ;

4. ΣΣR(c)Σ ≤ Σ ;

5. if g(λ; c) > 0 , then
(
ΣR(c)

)−1 ≥ Σ ;
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6. if λ > 0 theng(λ; c) > 0 andrank
(
ΣR(c)

) ≥ rank(Σ) .

It is important to notice that any transformation of the original matrixΣ that diminishes the inverseΣR(c)
satisfies relationiv). Note that the generalized inverses usually denoted byΣ− share propertiesi) andiii) with
the regularizedinverses. By contrast, propertyiii) appears as a dominance relation for theregularizedinverse as
opposed tog-inverses for whichΣΣ−Σ = Σ. Resultv) is well known forg-inverses and is related to generalized
inverse with maximal rank. See Rao and Mitra (1971, Lemmas 2.2.1 and 2.2.3 page 20-21)] for resultsiii) and
v) regardingg-inverses. Finally, note thatii) is another way of formulatingi), and can be useful for sandwich
estimators.

5. Regularized Wald statistic

In this section, we introduce the concept of regularized tests which embed three possible cases.Case 1corresponds
to the regular setup where the estimator of the covariance matrix converges to a full-rank fixed matrix. In this case,
regularizing is useless, and decomposition (4.3) amounts to a single block withc = 0. Case 2corresponds to a
sample covariance matrix that converges to a singular limiting matrix but satisfies Andrews’s rank condition. In
such a case, the limiting distribution is modified only through an adjustment of the degree of freedom. Finally
case 3makes use of a sample covariance matrix which violates the typical rank condition. Also, the regularized
weighting matrix converges to an object that is different from the original population matrix. This yields a valid
test but at the cost of afully modifiedasymptotic distribution.

Based on decomposition (4.3), the original Wald statisticWn(ψ0) defined in equation (2.1) enjoys the following
decomposition

Wn(ψ0) = W1n(c) + W2n(c) + W3n(c) , (5.1)

whereWin(c) = a2
n

(
ψ̂n − ψ0

)′
Σ−1

ii,n(c)
(
ψ̂n − ψ0

)
, with Σ−1

ii,n(c) = VinΛ−1
in (c)V ′

in for i = 1, 2, 3, andΛ−1
in (c) =

Λ−1
i [λ(Σn); c]. For i = 2, 3, Win(c) = 0, eventually. Note that decomposition (4.3) produces the sum of three

independent random variables. When Andrews’s rank condition does not hold, the Wald test statistic has to be
regularizedto account for such irregularities, as introduced next.

Definition 5.1 DEFINITION OF THE REGULARIZED WALD STATISTIC. The regularized Wald statistic is
WR

n (c) = X ′
nΣR

n (c)Xn = an

(
ψ̂n − ψ0

)′
ΣR

n (c)an

(
ψ̂n − ψ0

)
.

Built on decomposition (4.2) and its sample analog, theregularizedWald statistic can be decomposed as follows.

WR
n (c) = X ′

nΣR
n (c)Xn = a2

n

(
ψ̂n − ψ0

)′
ΣR

n (c)
(
ψ̂n − ψ0

)
= a2

n

(
ψ̂n − ψ0

)′ 3∑

i=1

ΣR
ii,n(c)

(
ψ̂n − ψ0

)

= WR
1n(c) + WR

2n(c) + WR
3n(c) , (5.2)

whereWR
in(c) = a2

n

(
ψ̂n − ψ0

)′
ΣR

ii,n(c)
(
ψ̂n − ψ0

)
; ΣR

ii,n(c) = VinΛ†in(c)V ′
in for i = 1, 2, 3, denotes the sample

analog of the elements in decomposition (4.2).
By partitioning the inverse of the eigenvalue matrixΛ†(c) into three blocks,Λ†1(c) for λ > c, Λ†2(c) for λ = c

andΛ†3(c) for λ < c, we have identified a convenient decomposition for the statistic into three components: the first
component builds on the "large" eigenvalues that remain unchanged; the second component gathers the eigenvalues
exactly equal to the thresholdc (if any), while the third incorporates the small modified eigenvalues. This decom-
position sheds light on the structure of the distribution of theregularizedtest statistic. By contrast, Lütkepohl and
Burda (1997) only keep the eigenvalues greater than the thresholdc, which cancels out the last two components,i.e.
WR

2n(c) = WR
3n(c) = 0. Thus discarding the small eigenvalues might reduce information. However, as Lütkepohl

and Burda (1997) use aχ2 distribution with fewer degrees of freedom, a deeper investigation is required to gauge
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power. More importantly, in finite samples it will be difficult to disentangle the estimates that really correspond
to λ = c from those close to but distinct fromc. This complicates the asymptotic distribution and the estimation
procedure. Note thatW1n(c) = WR

1n(c) for this is the regular component common to both statistics. Moreover,
when there is no eigenvalues exactly equal toc, m(c) = 0, and the second component vanishes.

6. Eigenprojections

6.1. Discontinuities of eigenvectors: an illustration

We now discuss some non-uniqueness and discontinuity issues regarding the eigenvectors of a given matrix. It
is well-known in spectral theory that eigenvectors corresponding to multiple eigenvalues are not uniquely defined
(only up to the post multiplication by anm(λ) × m(λ) orthogonal matrix withm(λ) indicating the multiplicity
of the eigenvalue). However, econometricians are not always aware of such technical details that could jeopardize
asymptotic results. Further, whereas eigenvalues are generally known to be continuous functions in the elements
of the matrix, eigenvectors not. The main pitfall consists of deriving convergence results for the estimates of the
eigenvectors based on the consistency of the sample matrix; this critically hinges on the continuity assumption of
eigenvectors (w.r.t. the elements of the matrix). Even in the deterministic case, eigenvectors are not necessarily
continuous functions of the elements of the matrix. We illustrate such a discontinuity in a simple counter-example4.

Example 6.1 Let A(x) be the matrix function defined as:

A(x) =





[
1 + x 0

0 1− x

]
if x < 0

[
1 x

x 1

]
if x ≥ 0 .

(6.1)

This matrix function is clearly continuous atx = 0, with A(0) = I2. However, forx < 0, the spectral decomposi-
tion of A(x) is:

A(x) = (1 + x)
[
1
0

] [
1 0

]
+ (1− x)

[
0
1

] [
0 1

]
(6.2)

with (1 + x) and(1− x) being the eigenvalues and(1, 0)′ and(0, 1)′ the eigenvectors, while forx > 0, it is

A(x) =
1√
2
(1 + x)

[
1
1

] [
1 1

]
+

1√
2
(1− x)

[
1
−1

] [
1 −1

]
(6.3)

with (1 + x) and (1 − x) being the eigenvalues and1√
2
(1, 1)′ and 1√

2
(1,−1)′ the eigenvectors. Clearly, the

eigenvalues(1 + x) and (1 − x) are continuous atx = 0 whereas the eigenvectors are not the same whether
x → 0+ or x → 0−.

Being unaware of this caveat may lead towrong distributional results by mistakenly applying the continuous
mapping theorem to objects that arenot continuous. Nevertheless, there exist functions of eigenvectors that are
continuous w.r.t. the elements of the matrix. Specifically, for an eigenvalueλ, the projection matrixP (λ) that
projects onto the space spanned by the eigenvectors associated withλ - theeigenspaceV (λ) - is continuous in the
elements of the matrix. This follows from the fact thatV (λ) is invariant to the choice of the basis. For further
discussion of this important property, see Rellich (1953), Kato (1966) and Tyler (1981).

4We are grateful to Russell Davidson for this example.
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6.2. Continuity properties of eigenvalues and total eigenprojections

In order to derive the asymptotic distribution of the regularized test statistics, it will be useful to review and adapt
some results on spectral theory used in Tyler (1981). LetS(Σ) denote the spectral set ofΣ, i.e. the set of all
eigenvalues ofΣ. Theeigenspaceof Σ associated withλ is defined as all the linear combinations from a basis of
eigenvectorsxi, i = 1, . . . ,m(λ), i.e.

V (λ) = {xi ∈ Rq|Σxi = λxi} . (6.4)

Clearly,dimV (λ) = m(λ) . SinceΣ is aq×q matrix symmetric in the metric of a real positive definite symmetric
matrixT, i.e. TΣ is symmetric [see Tyler (1981, p.725)], we have:

Rq =
∑

λ∈S(Σ)

V (λ) . (6.5)

Theeigenprojectionof Σ associated withλ, denotedP (λ), is the projection operator ontoV (λ) w.r.t. decomposi-
tion (6.5) ofRq. For any set of vectorsxi in V (λ) such thatx′iTxj = δij , whereδij denotes the Kronecker’ s delta,
P (λ) has the representation

P (λ) =
m(λ)∑

j=1

xjx′jT . (6.6)

P (λ) is symmetric in the metric ofT. This yields

Σ =
∑

λ∈S(Σ)

λP (λ) , Σn =
∑

λ(Σn)∈S(Σn)

λ(Σn)P [λ(Σn)] . (6.7)

If v is any subset of the spectral setS(Σ), then thetotal eigenprojectionfor Σ associated with the eigenvalues in
v is defined to be

∑
λ∈v P (λ). Below we report a lemma given by Tyler (1981, Lemma 2.1, p. 726) that states

an important continuity property for eigenvalues and eigenprojections on eigenspaces for non-random symmetric
matrices from which consistency of sample regularized inverses will follow.

Lemma 6.2 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS. LetΣn be aq×q real matrix symmetric
in the metric of a real positive definite symmetric matrixTn with eigenvaluesλ1(Σn) ≥ λ2(Σn) ≥ . . . ≥ λq(Σn).
LetPk,t(Σn) represent the total eigenprojection forΣn associated withλk(Σn) . . . λt(Σn) for t ≥ k. If Σn → Σ
asn →∞, then:

i) λk(Σn) → λk(Σ), and

ii) Pk,t(Σn) → Pk,t(Σ) providedλk−1(Σ) 6= λk(Σ) andλt(Σ) 6= λt+1(Σ) .

This lemma tells us that the eigenvalues are continuous functions in the elements of the matrix. The same continuity
property holds for the projection operators [or equivalently for the projection matrices for there exists a one-to-one
mapping relating the operator to the matrix w.r.t. the basis] associated with the eigenvalues and transmitted to
their sum. No matter what the multiplicity of the eigenvalues involved in the total eigenprojectionPk,t(Σ), this
continuity property holds provided that we can find one eigenvalue before and one after that are distinct. It will
be useful to extend Lemma6.2 to random symmetric matrices. To the best of our knowledge, these results are not
explicitly stated elsewhere.

Lemma 6.3 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS: ALMOST SURE CONVERGENCE. Let
Σn be aq × q real random matrix symmetric in the metric of a real positive definite symmetric random matrixTn
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and with eigenvaluesλ1(Σn) ≥ λ2(Σn) ≥ . . . ≥ λq(Σn). Let Pk,t(Σn) represent the total eigenprojection for

Σn associated withλk(Σn) . . . λt(Σn) for t ≥ k. If Σn
a.s.→ Σ asn →∞ , then:

i) λk(Σn) a.s.→ λk(Σ), and

ii) Pk,t(Σn) a.s.→ Pk,t(Σ) providedλk−1(Σ) 6= λk(Σ) andλt(Σ) 6= λt+1(Σ) .

We can now show that the continuity property of the eigenvalues and eigenprojections established in the a.s.
case, remain valid in the case of convergence in probability .

Lemma 6.4 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS: CONVERGENCE IN PROBABILITY.
LetΣn be aq × q real random matrix symmetric in the metric of a real positive definite symmetric random matrix
Tn with eigenvaluesλ1(Σn) ≥ λ2(Σn) ≥ . . . ≥ λq(Σn). LetPk,t(Σn) represent the total eigenprojection forΣn

associated withλk(Σn), . . . , λt(Σn) for t ≥ k. If Σn
p→ Σ asn →∞ , then:

i) λk(Σn)
p→ λk(Σ), and

ii) Pk,t(Σn)
p→ Pk,t(Σ) providedλk−1(Σ) 6= λk(Σ) andλt(Σ) 6= λt+1(Σ) .

6.3. Asymptotic distribution of eigenvalues

In this subsection, we summarize general results on the sample eigenvalue behavior established by Eaton and Tyler
(1991, 1994) . Before establishing convergence results for the regularized covariance matrices and the regularized
tests statistics, we shall first study the convergence rate of the eigenvalues in the general case where the covariance
matrix may be singular with (possibly) multiple eigenvalues. To do so, we shall apply a general result given by
Eaton and Tyler (1994) where they generalize classical results due to Anderson (1963, 1987) on the behavior of
the sample roots (of a determinantal equation). Specifically under relatively weak conditions, Eaton and Tyler

(1994) show the following: if a sequence of random(p× q)−matricesΣn satisfies the conditionbn(Σn −Σ) L→
Q whereΣ is a nonstochastic matrix, then the sample eigenvalues will have the same convergence rate, with

bn[Ψ(Σn) − Ψ(Σ)] L→ [
HD

(
1
2 [Q′

11 + Q11]
)
, Ψ(Q22)

]′
. HD(.) andΨ(.) are vector-valued functions stacking

the eigenvalues of the corresponding objects. A more detailed definition of those vectors will follow. For our
purpose, the convergence ratebn of the sample eigenvalues is the only thing we need in deriving the convergence
property of the regularized covariance matrices.

Let d1 > d2 > · · · > dk denote the distinct eigenvalues of aq × q symmetric matrixC and letmi be the
multiplicity of di, i = 1, . . . , k, 1 ≤ k ≤ q. Given the eigenvalue multiplicities ofC, it is possible to partition the
matrix C into blocks such asCii is themi ×mi diagonal block ofC andCij themi ×mj off-diagonal blocks,
i, j = 1, . . . , k. Thus, a functionH on q × q symmetric matrices can be defined by

H(C) =




ρ(C11)
ρ(C22)

...
ρ(Ckk)


 (6.8)

H(C) takes values inRq andρ(Cii) consists of themi-vector of ordered eigenvalues of the diagonal blockCii,
i = 1, . . . , k. Let Γ be an orthogonal matrix such that

ΓAΓ ′ = D, (6.9)

where the diagonal matrixD consists of the ordered eigenvalues of a nonrandom symmetric matrixA. Eaton and
Tyler (1991) first establish the distributional theory for symmetric matrices before extending it to generalp × q
matrices.
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Lemma 6.5 DISTRIBUTION OF THE EIGENVALUES OF A SYMMETRIC SQUARE MATRIX. LetSn be a sequence
of q × q random symmetric matrices. Suppose there exists a nonrandom symmetric matrixA and a sequence of
constantsbn → +∞ such that

Wn = bn(Sn −A) L→ W . (6.10)

Then
bn

(
ρ(Sn)− ρ(A)

) L→ H
(
ΓWΓ ′

)
. (6.11)

For anyp × q real matrixΣ, the Ψ(.) function is a vector-valued function that stacks the eigenvalues of the
corresponding object as defined below:

Ψ(Σ) = f(ρ(Σ′Σ)) =




√
ξ1
...√
ξq


 with f(x) =




√
x1
...√
xq


 (6.12)

whereξ1 ≥ · · · ≥ ξq > 0 are the eigenvalues ofΣ′Σ. Let

T =
(
df(ξ)

)
=

1
2
diag(ξ−1/2

1 , . . . , ξ−1/2
q ) . (6.13)

In the first part of the theorem below, we gather the special cases where the matrixΣ may have rankr = 0 or
r = q before giving the general result in the second part. In the second part of the theorem, write thep× q matrix
Σ in the form

Σ = Γ ′1

(
D 0
0 0

)
Γ ′2 (6.14)

whereΓ1 (Γ2) is ap×p (resp.q×q) orthogonal matrix, andD is ar×r diagonal matrix.D consists of the strictly
positive singular values ofΣ. Partition the matrixΣn as

Σn =
(

Σn11 Σn12

Σn21 Σn22

)
(6.15)

whereΣn11 is r× r, Σn12 is r× (q− r), Σn21 is (p− r)× r andΣn22 is (p− r)× (q− r). Partition the random

limit matrix Q accordingly. Ther × r diagonal matrixD = diag(ξ1/2
1 , . . . , ξ

1/2
r ) defines a functionHD on r × r

symmetric matrices. LetTD = 1
2diag(ξ−1/2

1 , . . . , ξ
−1/2
r ). The general case1 ≤ r < q can be thought as gluing

together the two special casesr = 0 andr = q.

Theorem 6.6 DISTRIBUTION OF THE EIGENVALUES OF RECTANGULAR MATRICES IN THE GENERAL CASE.
LetΨ(·) be defined as in(6.12), and suppose Assumption2.2holds.

i) If Σ = 0, then

bn

(
Ψ(Σn)− Ψ(Σ)

) L→ Ψ(Q) . (6.16)

ii) If Σ has full rankq, then

bn

(
Ψ(Σn)− Ψ(Σ)

) L→ TH
(
Γ

[
Σ′Q + Q′Σ

]
Γ ′

)
(6.17)

whereH, Γ andT are defined in(6.8),(6.9) and(6.13).
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iii) If rank(Σ) = r, 1 ≤ r < q, then

bn

[
Ψ(Σn)− Ψ(Σ)

] L→
[
HD

(
1
2 [Q′

11 + Q11]
)

Ψ(Q22)

]
(6.18)

whereQ =
[
Q11 Q12

Q21 Q22

]
is a well-defined random element, withQ11 being anr × r matrix andQ22 a

(p−r)× (q−r) matrix. Ther×r diagonal matrixD = diag(ξ1/2
1 , . . . , ξ

1/2
r ) consisted of the strictly positive

singular values ofΣ defines a functionHD on r × r symmetric matrices asH is defined in(6.8) on q × q
symmetric matrices.

Note the generality of the theorem that allows for convergence rates other than the standard root-n one; it does not
critically hinges upon the normal limiting distribution for the sample eigenvalues, a desirable feature for positive
eigenvalues. For our purposes, we do not need to know the whole distribution but only the convergence ratebn

of the sample eigenvalues to establish the convergence property of the regularized inverse whenc varies with the
sample size. Again, the knowledge of the sample convergence rate is unnecessary for the regularized inverse based
upon the fixed threshold case. See Eaton and Tyler (1994, Propositions 3.1 and 3.4 and Theorem 4.2) for a proof
of the theorem.

Before presenting the asymptotic properties of the regularized inverse, we shall first discuss some conditions
under which the asymptotic distribution of the empirical eigenvalues could be uniform. The rare cases where the
asymptotic distribution of the empirical eigenvalues could be uniform would correspond to situations where all the
population eigenvalues are greater than zero (Theorem6.6, case ii), or all are equal to zero (Theorem6.6, case
i). Otherwise, the distribution cannot be uniform: the inspection of Theorem6.6 case iii that examines a strictly
positive but incomplete rank shows that the structure of the distribution is different on the firstr singular values than
on the lastq−r ones. Similarly, the finite-sample distribution of the sample eigenvalues will depend on the rank of
the sample matrix; if the sample matrix has full rank, the probability to have a zero sample eigenvalue is zero. Yet,
the number of the empirical eigenvalues greater than the threshold (c or cn) will vary with the sample size. Thus,
the small empirical eigenvalues will eventually fall below the threshold as the sample size grows; meanwhile the
large empirical ones will converge to their population counterparts which determines the asymptotic rank. Finally,
if the asymptotic distribution of the eigenvalues is not degenerated (e.g.a mixture of a continuous distribution and
of a Delta-Dirac distribution atc), there is a nonzero probability that a certain empirical eigenvalue converges to
the thresholdc; in such a case, a superconsistent estimator can overcome such complications.

7. Asymptotic properties of the regularized inverse

In this section, we derive asymptotic results for theregularizedinverse that hold for a general variance regular-
ization function (VRF) family. More specifically, in Subsection 7.1, we introduce a family of general variance
regularization functions that exploits a threshold. This VRF family is general as it embeds both cases, continuous
VRFs (see case ii, equation (7.3)), or discontinuous VRFs (see case i, equation (7.2)). Such a regularization ap-
proach based on a cut-off point to disentangle large eigenvalues from small eigenvalues enables us to recover an
important strand of the statistical literature that estimates the rank of a matrix; see Gill and Lewbel (1992), Cragg
and Donald (1996, 1997) , Robin and Smith (2000) and others. In the same vein, the approach introduced by
Lütkepohl and Burda (1997) yields a modified reduced-rank estimator for the covariance matrix; we generalize it
to non-Gaussian estimators in the presence of possible multiple eigenvalues.Lütkepohl and Burda (1997) propose
to reduce the rank of the matrix estimator to satisfy Andrews’s rank condition. The asymptotic rank is meaningful,
especially if one wants to recover the asymptotic chi-square distribution for the test statistic. Basically, we wanted
to be ecumenical by allowing all rank possibilities, from reduced ranks to full ranks. Besides, the threshold method
is attractive because it leads to a genuine bound for the nonstandard distribution. Finally, Subsection 7.2 reviews
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well-known continuous regularization schemes extensively used in ill-posed inverse problems. Such continuous
VRFs do not make use of a threshold, hence the resulting distributional theory is easier. Those regularization tools
can be cast into theGc VRF family for a specific choice of the threshold. See Carrasco, Florens and Renault (2007)
for a comprehensive review on regularization tools in ill-posed inverse problems in structural econometrics.

7.1. The family of admissible Variance Regularization Function (VRF)

We now define the VRF family, and provide a few examples.

Definition 7.1 THE FAMILY OF ADMISSIBLE VRF. Gc is the class of admissible scalar VRFs, such as for a real
scalarc ≥ 0 :

g(., c) : R+ → R+

λ → g(λ; c)

g(λ; c) is continuous almost everywhere (a.e.) w.r.t.λ, except possibly atλ = c, (w.r.t. the Lebesgue measure);g
is a function that takes bounded values everywhere;g is non-increasing inλ; lim

c→ 0+
g(λ; c) = g(λ; 0)

Note that we allow a discontinuity atλ = c to precisely embed a spectral cut-off type regularization such as a
modified Moore-Penrose inverse that is clearlynot continuous aroundλ = c for c > 0, see (7.2). Some possible
choices for the VRF could be:

g(λ; c) =
{ 1

λ if λ > c
1

ε+γ(c−λ) if λ ≤ c
(7.1)

with γ ≥ 0. This VRF can be viewed as amodifiedHodges’ estimator applied to the eigenvalues. See Hodges and
Lehmann (1950), LeCam (1953). Interesting special cases include:

1. [i)]

2. γ = ∞, c ≥ 0, hence

g(λ; c) =
{

1
λ if λ > c
0 if λ ≤ c

(7.2)

and thereforeΛ†(c) = Λ+(c), where

Λ+(c) = diag[1/λ1I(λ1 > c), . . . , 1/λq1I(λq1 > c), 0, . . . , 0 ]

corresponds to a spectral cut-off regularization scheme [see Carrasco (2012), Carrasco, Florens and Renault
(2007) and the references therein];I(s) is equal to 1 if the relations is satisfied. In particular,Λ+(c) is a
modified versionof the Moore-Penrose inverse of

Λ = diag[λ1I(λ1 > 0), ..., λq1I(λq1 > 0), λq1+1I(λq1+1 > 0) . . . , λqI(λq > 0)]

used by Lütkepohl and Burda (1997). We also consider the case where some eigenvalues may be smaller
than the thresholdc, with c 6= 0.

3. γ = 0 andε = c, with c 6= 0, hence

g(λ; c) =
{

1
λ if λ > c
1
c if λ ≤ c .

(7.3)
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4. γ > 0 with γ = α
λ×(c−λ) , α > 0, andε = λ, with c 6= 0, hence

g(λ; c) =
{ 1

λ if λ > c
λ

λ2+α
if λ ≤ c ,

(7.4)

which corresponds to a variation around the Tikhonov regularization (related to the ridge regression) since
1

λ+γ(c−λ) = 1
λ+α/λ = λ

λ2+α
.

Based on the spectral decomposition defined in equation (6.7), we immediately deduce a spectral decomposi-
tion for the regularized inverses:

ΣR(c) = V Λ†(c)V ′ =
∑

λ∈S(Σ)

g(λ; c)P (λ) , ΣR
n (c) = VnΛ†n(c)V ′

n =
∑

λ(Σn)∈S(Σn)

g
[
λ(Σn); c

]
P

[
λ(Σn)

]
.

(7.5)
Thus, the dependence onc of the regularized inverses comes from the VRFg(λ; c). The thresholdc may be
size-dependent,i.e., g(λ, cn). This is a special case ofc fixed and will be studied in Section 9.

7.2. The Variance Regularization Functions: the continuous case without threshold

Well-known continuous regularization schemes that do not use any threshold are the Tikhonov regularization and
the Landweber Fridman iterative regularization. For readers interested in regularization tools in ill-posed inverse
problems in structural econometrics, see Carrasco, Florens and Renault (2007), Carrasco (2012).The Tikhonov
regularization scheme is closely related to the ridge regression. In this case,ḡ(λ) = λ

λ2+α
, α > 0. For the

Landweber Fridman iterative regularization scheme,ḡ(λ) =
1−

(
1−γλ2

)1/α
λ

λ , γ > 0, α > 0. This class of VRF
that does not make use of a threshold can be recast into theGc family by selecting the thresholdc such that
c > λmax, whereλmax denotes the largest eigenvalue ofΣ, i.e. ḡ(λ) = g(λ; c̄) with c̄ > λmax.

Without a threshold, the convergence of the regularized inverse is straightforward; it follows from the continuity
property of ḡ(·) and of the total eigenprojections. However, there is a trade-off between the simplicity of the
continuous regularization schemes above - that simplifies the asymptotic theory - and the maintained hypothesis
of a chi-square distribution with reduced rank. Indeed, the threshold allows us to disentangle the large eigenvalues
from the small problematic ones; this observation enables to exploit the chi-square distribution. Especially when
the rank of the limiting matrix is reduced, it may be helpful to exploit it. Estimating the reduced rank of a matrix
is an interesting problem that has drawn much attention in the statistical and econometric literature; our approach
encompasses the two extreme limiting cases: the reduced rank statistic that still follows a chi-square distribution,
but may have reduced power (as some restrictions are removed); and the modified full-rank statistic that has a
nonstandard distribution but may have more power in some directions. In between, there is the chi-square upper
bound whose main appeal is simplicity: one can use the standard critical point instead. Although the chi-square
upper bound is conservative, it enjoys good power properties as shown later on in simulations.

7.3. Asymptotic properties of the regularized inverse whenc is fixed

Because the random objects considered here are matrices, we must choose a norm suitable to matrices. For this
reason, we consider the finite dimensional inner product space(Sq, < ·, · >), whereSq is the vector space ofq× q
symmetric matrices.Sq is equipped with the inner product< Σ1, Σ2 >= tr[Σ′

1Σ2], wheretr denotes the trace
operator. Let‖ · ‖F denote the Frobenius norm induced by this inner product,i.e. ‖Σ‖2

F = tr[Σ′Σ]. Recall that
AR(c) denote the regularized inverse of aq×q real symmetric matrixA. In the sequel, letI = {1, 2, . . . , q} denote
the set of indices such thatλ1 ≥ λ2 ≥ . . . ≥ λq, andJ = {1, 2, . . . , k} the subset ofI corresponding to the indices
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associated with the distinct eigenvalues ofΣ, i.e. d1 > d2 > . . . > dj > . . . > dk, so that
k∑

j=1
m(dj) = q ≥ 1 and

1 ≤ k ≤ q, with m(dj) denoting the multiplicity ofdj . Let us define a partition ofI, denotedP(I) such that:

P(I) = {Ij ⊂ I, j ∈ J : Ij

⋂
Il

j 6=l

= ∅,
k⋃

j=1

Ij = I} , I = {1, . . . , q}, (7.6)

with
Ij = {i ∈ I : λi = dj} , card Ij = m(dj) (7.7)

and
I(c) = {i ∈ I : λi = dj = c} , , card I(c) = m(c) (7.8)

We adopt the convention thatI(c) = ∅, if there is no eigenvalues equal toc. The vector spaceRq can be
decomposed asRq = V(d1) ⊕ · · · ⊕ V(dj) ⊕ · · · ⊕ V(dk) . Eachu ∈ Rq can be expressed in the form
u = u1 + · · · + uj + · · · + uk, with uj ∈ V(dj), j ∈ J in a unique way. The operatorPj = P (dj)
is such that:Pju = uj is the eigenprojection operator that projects onto the eigenspaceV(dj) along Nj =
V(d1) ⊕ · · · ⊕ V(dj−1) ⊕ V(dj+1) ⊕ · · · ⊕ V(dk) . Thus,Pj(Σ) = P (dj)(Σ) , projectsΣ onto the eigenspace
V(dj) alongNj . For all j = 1, . . . , k, with 1 ≤ k ≤ q, theB(dj)’s, such thatB(dj) = [v(dj)l]l=1,...,m(dj) form
an orthonormal basis for the eigenspaceV(dj) = {v ∈ Rq, | Σv = djv} . Let

Pj(Σ) = P (dj)(Σ) = B(dj)B(dj)′ , (7.9)

when it is expressed in the Euclidean metric. The Euclidean metric specified here implies that the metricT

in equation (6.6) is equal to the identity matrix, that isP (λ) =
∑m(λ)

j=1 xjx′jT , with T = Id. Furthermore,∑k
j=1 Pj = Iq, PkPj = δjkPj , with δjk = 0 for j 6= k andδjk = 1 for j = k. There is a one-to-one mapping

from J toP(I) such that:
∀j ∈ J : j 7−→ Ij (7.10)

where the total eigenprojection operatorPIj (•) applied toΣn, with Σn
p→ Σ, yields by Lemma6.4 ii)

PIj (Σn)
p→ Pj(Σ) = P (dj)(Σ) (7.11)

and

dim PIj = dim Pj = m(dj) = dim V(dj) with 1 =
k∑

j=1

Pj =
k∑

j=1

PIj . (7.12)

Property 2 UNIQUE REPRESENTATION OF THE REGULARIZED INVERSE. For a given VRFg(., c) in theGc

family, the regularized inverseΣR(c) = V Λ†(c)V ′ of a symmetric matrixΣ and its sample analogΣR
n (c) =

VnΛ†n(c)V ′
n admit an unique representation of the form:

ΣR(c) =
k∑

j=1

g(dj ; c)Pj(Σ) (7.13)

and

ΣR
n (c) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; c) (7.14)
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where thedj ’s denote the distinct eigenvalues ofΣ with multiplicity m(dj), λ̂i = λi(Σn); PIj (Σn) andPj(Σ)
are defined at equations(7.9)-(7.12) with Ij defined at equation(7.7). If Σ = 0, P (0)(Σ) = Iq, andΣR(c) =
g(0; c)P (0)(Σ) = g(0; c)Iq .

The uniqueness of the representation of the regularized inverse immediately follows from the uniqueness of the
decomposition involving only distinct eigenvalues. In particular, this representation exploits the Spectral Theorem;
please see Eaton (2007, Theorem 1.2a, p.53), and the references therein. Thus, there is a one-to-one relation
between the regularized inverse and the VRFg(., c) in theGc family. An interesting case producing a nonstandard
asymptotic distribution corresponds to a fixed thresholdc; an upper bound can be derived in the Gaussian case (see
Corollary8.3).

Let us first define a superconsistent estimator of the eigenvalues atc. The estimator̂λ(c) = (λ̂i(c))i=1,...,q of
the eigenvalues of aq × q positive semidefinite matrixΣ satisfies:

λ̂i(c) =
{

λ̂i if |λ̂i − c| > ν en
bn

c if |λ̂i − c| ≤ ν en
bn

,
(7.15)

for eachi = 1, . . . , q wherebn is the speed of convergence of the sample eigenvalues as defined in Theorem6.6;
en is chosen such thaten → ∞ with en

bn
→ 0 asn grows to infinity, andν is an arbitrary strictly positive constant.

λ̂i(c) corresponds to a Hodges estimator; see Hodges and Lehmann (1950), LeCam (1953),?, Leeb and Pötscher
(2008).

Assumption 7.2 REGULARITY CONDITIONS FOR THE CONVERGENCE OF THE REGULARIZED INVERSE. The
VRFg ∈ Gc , and fori = 1, . . . , q, λi = λi(Σ) are the eigenvalues of aq × q positive semidefinite matrixΣ. At
least, one of the following conditions holds:

i) the VRFg is continuous atλi = c

ii) @ λi : λi = c

iii) the estimatorλ̂i(c) of λi defined in equation(7.15) is superconsistent atc, i.e. P
[
λ̂i(c) = c

] →
n→∞ 1 .

As long as one of the above conditions holds, both convergence results of the regularized inverse (Propositions
7.3and7.4) will hold, otherwise they may break down. Let us now state the a.s. convergence for the regularized
inverse whenc is fixed.

Proposition 7.3 ALMOST SURE CONVERGENCE OF THE REGULARIZED INVERSE. Let g ∈ Gc. SupposeΣ
andΣn are q × q symmetric matrices withrank(Σ) = r ≤ q . Let the regularized inverses satisfy equations
(7.13) and(7.14). Let Assumption7.2hold. If Σn

a.s.→ Σ, then

ΣR
n (c) a.s.→ ΣR(c) . (7.16)

Proposition 7.4 CONVERGENCE IN PROBABILITY OF THE REGULARIZED INVERSE. SupposeΣ andΣn are
q×q symmetric matrices such thatrank(Σ) = r ≤ q . Suppose Assumption2.2holds withp = q, and Assumption
7.2holds. Let the regularized inverses satisfy equations(7.13) and(7.14), and decomposition(4.2). Then

ΣR
n (c) = ΣR

11,n(c) + ΣR
22,n(c) + ΣR

33,n(c) (7.17)

where

ΣR
11,n(c) =

k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c)
p→

k1∑

j=1

g(dj ; c)Pj(Σ) ≡ ΣR
11(c) (7.18)
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ΣR
22,n(c) = PI(c)(Σn)

1
m(c)

∑

i∈I(c)

g(λ̂i, c)
p→ g(c; c)1{dj=c}Pj(c)(Σ) ≡ ΣR

22(c) (7.19)

ΣR
33,n(c) =

k∑

j=k1+1{dj=c}+1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c)
p→

k∑

j=k1+1{dj=c}+1

g(dj ; c)Pj(Σ) ≡ ΣR
33(c) . (7.20)

ΣR
n (c)

p→ ΣR(c) . (7.21)

k1 =
k∑

j=1
1{dj>c}, k is the number of distinct eigenvalues ofΣ, andPj(c)(Σ) = P (dj)(Σ) for dj = c, where

Pj(Σ) = P (dj)(Σ) is defined at equation(??). Ij and I(c) are defined in(7.7) and (7.8). m(dj) and m(c)
denote the multiplicity ofdj andc respectively.

The problematic component for the convergence of the regularized inverse is the second one involving the eigen-
valueλi = dj = c. If the VRFg is continuous atλi = dj = c, equation (7.19) holds; if there are no eigenvalues
λi = dj = c, I(c) = ∅, 1{dj=c} = 0, and the convention adopted is to setΣR

22,n(c) = ΣR
22(c) = 0; if there exists a

superconsistent estimator of the eigenvalue atc, (7.19) holds. Otherwise,ΣR
n (c) may not converge toΣR(c) . In

other words, the conditions stated in Assumption7.2are necessary conditions for (7.16) and (7.21) to hold.

8. Asymptotic distribution of the regularized Wald tests with a fixed threshold

In this section, we characterize the asymptotic distribution of the regularized Wald statistic for general distribu-
tions, before presenting the Gaussian case. The decomposition of the regularized statistic into three independent
components provides an insight on the structure of the distribution; an upper bound can be derived in the Gaussian
case. Power and consistency properties of the test are next established.

Proposition 8.1 CHARACTERIZATION OF THE REGULARIZED WALD STATISTIC WHEN THE THRESHOLD IS

FIXED. SupposeΣ and Σn are q × q symmetric matrices such thatrank(Σ) = r ≤ q . Suppose Assump-
tions 2.1 with ψ = ψ0, 2.2 with p = q, and7.2 hold. Let the regularized inverses satisfy equations(7.13) and

(7.14), decomposition(4.2), and the eigenprojection is expressed as in equation(7.9). Let k1 =
k∑

j=1
1{dj>c} be

the number of distinct eigenvalues ofΣ larger thanc, andWR
n (c) is defined in(5.1). ThenWR

n (c) L→ WR(c),

whereWR(c) = X ′ΣR(c)X =
k∑

j=1
g(dj ; c)X ′B(dj)B(dj)′X = WR

1 (c) + WR
2 (c) + WR

3 (c) , and WR
1 (c) =

X ′ΣR
11(c)X =

k1∑
j=1

g(dj ; c)X ′B(dj)B(dj)′X , WR
2 (c) = X ′ΣR

22(c)X = g(c; c)1{dj=c}X ′B(c)B(c)′X ,

WR
3 (c) = X ′ΣR

33(c)X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)X ′B(dj)B(dj)′X .

Interestingly whenΣ = 0 the distribution ofWR(c) can still be characterized; the regularized weighting matrix
is given byΣR(c) = g(0; c)Iq, so the regularized Wald statistic simplifies tog(0; c)X ′X in the general case. In
the Gaussian case, whenΣ = 0, dj = 0 with multiplicity q, the limiting statistic is equal to zero (see equation
(8.1), whereWR(c) = 0). Note also that the components are independent due to the specific decomposition of
the regularized weighting matrix. We can now easily consider the special case whereX is Gaussian, with the
Lütkepohl and Burda (1997)’s result obtained as a special case of Corollary8.2. Besides, if there is no eigenvalues
such thatλi = dj = c, WR

2 (c) = 0 due to the indicator function, andWR(c) = WR
1 (c) + WR

3 (c) for all the
subsequent results stated in this section.
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Corollary 8.2 THE REGULARIZED WALD STATISTIC WITH A FIXED THRESHOLD: THE GAUSSIAN CASE.
SupposeΣ andΣn are q × q symmetric matrices such thatrank(Σ) = r ≤ q . Under Assumptions2.2 with
p = q, 2.5with ψ(θ) = ψ0, and7.2, let the regularized inverses satisfy equations(7.13) and(7.14), decomposition

(4.2), and the eigenprojection is expressed as in equation(7.9). Let k1 =
k∑

j=1
1{dj>c} be the number of distinct

eigenvalues ofΣ larger thanc, andWR
n (c) is defined in(5.1). LetB(dj)′X = xj , wherexj ∼ N [0, djIm(dj)],

for j = 1, . . . , k, or equivalentlyxj =
√

djuj , with uj ∼ N [0, Im(dj)].

i) If Σ = 0, dj = 0 with m(0) = q, then

WR
n (c) L→ WR(c) = X ′ΣR(c)X = dju

′
jg(0; c)Iquj = 0 . (8.1)

ii) If Σ 6= 0, then

WR
n (c) L→ WR(c) (8.2)

whereWR(c) = X ′ΣR(c)X =
k∑

j=1
g(dj ; c)djvj = WR

1 (c) + WR
2 (c) + WR

3 (c)

with WR
1 (c) = X ′ΣR

11(c)X =
k1∑

j=1
g(dj ; c)djvj , WR

2 (c) = X ′ΣR
22(c)X = g(c; c)1{dj=c}cvj(c) ,

WR
3 (c) = X ′ΣR

33(c)X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)djvj , wherevj ∼ χ2
(
m(dj)

)
,vj(c) ∼ χ2

(
m(c)

)
.

We can see from this corollary that the three components can be interpreted as a linear combination of chi-square
variables with the degree of freedom given by the multiplicity of the distinct eigenvalues. Note that whenΣ has
rankr < q, the last componentWR

3 (c) contains a zero eigenvalue,i.e. dk = 0, whenc 6= 0. Whenc = 0, in this
caseWR

2 (0) = WR
3 (0) = 0 andWR

1 (0) = W+(0); we obtain the Lütkepohl and Burda (1997) result as a special
case. Note that their result only holds for distinct eigenvalues.

Corollary 8.3 CHARACTERIZATION OF THE BOUND: THE GAUSSIAN CASE. SupposeΣ andΣn are q × q
symmetric matrices such thatrank(Σ) = r ≤ q . Under Assumptions2.2with p = q, 2.5with ψ(θ) = ψ0, and
7.2, let the regularized inverses satisfy equations(7.13) and(7.14), decomposition(4.2), and the eigenprojection

is expressed as in equation(7.9). Let k1 =
k∑

j=1
1{dj>c} be the number of distinct eigenvalues ofΣ larger than

c, and WR
n (c) is defined in(5.1). Let B(dj)′X = xj , wherexj ∼ N [0, djIm(dj)], for j = 1, . . . , k, . Let

g(.; c) ∈ Gc, with a fixed thresholdc such that

g(dj ; c)dj ≤ 1 ∀ j = 1, . . . , k

then
WR

1 (c) ≤ χ2(q1) , WR
2 (c) ≤ χ2(m(c)), WR

3 (c) ≤ χ2(q3)

and

WR(c) ≤
k∑

j=1

vj ∼ χ2(q)

wherevj ∼ χ2
(
m(dj)

)
, q1 =

k1∑
j=1

m(dj), q3 = q − q1 −m(c), andq =
k∑

j=1
m(dj).

22



In the Gaussian case we obtain a chi-square as an upper bound for theregularizedstatistic, whenc is fixed. Each
component is distributed as a chi-square variable with the degree of freedom given by the sum of the multiplicities
of the distinct eigenvalues involved in the sum. As the decomposition involves three independent chi-square
variables, the resulting distribution for the overall statistic is also chi-square due to its stability; the degree of
freedom is then given by the sum of the degrees of freedom of each component. As a result, the critical point
given by the standard chi-square distribution (ifX is Gaussian) can be used to provide anasymptotically validtest.
However, improved power over this conservative bound could be achieved by simulations. We shall now show that
the regularized statistic is consistent against a global alternative whenXn follows a general distribution.

Proposition 8.4 CONSISTENCY PROPERTY OF THE TEST. SupposeΣ andΣn areq×q symmetric matrices such
that rank(Σ) = r ≤ q . Suppose Assumptions2.2with p = q and7.2hold. Let the regularized inverses satisfy

Property 2, decomposition(4.2), and the eigenprojection is expressed as in equation(7.9). Letk1 =
k∑

j=1
1{dj>c}

be the number of distinct eigenvalues ofΣ larger thanc, andWR
n (c) is defined in5.1. Suppose also that there

exist some eigenvalues of the limiting matrixΣ such thatdj 6= 0 under the alternative. Suppose furtherXn =
an(ψ̂n − ψ1) satisfies Assumption2.1, with ψ = ψ1. If ψ1 − ψ0 = ∆ 6= 0, and∆′ΣR(c)∆ > 0, then

WR
n (c) →

n→∞ ∞ . (8.3)

We also characterize the behavior the regularized Wald statistic under local alternatives as in the next proposi-
tion.

Proposition 8.5 LOCAL POWER CHARACTERIZATION. SupposeΣ andΣn are q × q symmetric matrices such
that rank(Σ) = r ≤ q . Under Assumption2.2 with p = q, and under Assumption7.2, let the regularized

inverses satisfy Property 2. Letk1 =
k∑

j=1
1{dj>c} be the number of distinct eigenvalues ofΣ larger thanc, and

WR
n (c) is defined in (5.1). Suppose there exist some eigenvalues of the limiting matrixΣ such thatdj 6= 0 under

the alternative. Suppose furtherXn = an(ψ̂n − ψ1n) satisfies Assumption2.1. If an(ψ1n − ψ0) → ∆ 6= 0, and
∆′ΣR(c)∆ > 0, then

WR
n (c) L→

n→∞ X ′ΣR(c)X + 2X ′ΣR(c)∆ + ∆′ΣR(c)∆ . (8.4)

We can observe from this result that the limiting quantity involves three components: the first component is
still a quadratic form inX in accordance with the null hypothesis; the second component is a linear form inX; the
third one represents a noncentrality parameter. Only the last two components will contribute to power. Note that in
the Lütkepohl and Burda (1997) case, the noncentrality parameter based on the modified Moore-Penrose inverse
∆′Σ+

c ∆ is expected to be smaller than the noncentrality parameter∆′ΣR(c)∆, which may entail a loss of power
even though the chi-square distribution with reduced degrees of freedom yields a smaller critical point. Indeed,
there may exist some directions for the alternative, where a spectral cut-off type Moore-Penrose inverse that sets
to zero the small eigenvalues, may destroy power as shown in the next corollary.

Corollary 8.6 LOCAL POWER CHARACTERIZATION: DELTA IN THE NULL EIGENSPACE. Suppose the assump-
tions of Proposition8.5are satisfied. Suppose further that∆ ∈ V(0), then

WR
n (c) L→

n→∞ X ′ΣR(c)X + 2g(0; c)X ′∆ + g(0; c)∆′∆ . (8.5)

We do not expect the test to be consistent against all types of alternatives. There may exist some directions where
power is reduced or eventually destroyed, whether∆ lies in the eigenspaceV(0) associated with the null eigenvalue
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or not. In such a case, the choice ofg(0; c) is critical for power considerations. By settingg(0; c) = 0, the spectral
cut-off Moore Penrose inverse used by Lütkepohl and Burda (1997) will destroy power.

9. The case with a varying thresholdcn

We shall now present the convergence results for the regularized inverse that are fundamental to obtain well-
behaved regularized test statistics when the threshold varies with the sample size. Letλi = λi(Σ) andλ̂i = λi(Σn)
for notational simplicity. First when designing the VRFg(λ; cn), the varying thresholdcn must be selected so that

P
[|λ̂i − λi| > cn

]
= P

[|bn(λ̂i − λi)| > bncn

] →
n→∞ 0 (9.1)

with cn → 0 andbncn → ∞ as n grows to infinity. Thus,cn declines to 0 slower than1/bn, andbncn → ∞
slower thanbn. Indeed, the threshold must not decline to zero either too fast, or too slow. Selectingcn in this way
ensures that the nonzero eigenvalues of the covariance matrix will eventually be greater than the threshold, while
the true zero eigenvalues will fall below the threshold and are set to zero at least in large samples. In most cases, a
natural choice forbn =

√
n and a suitable choice forcn is cn = n−1/3. This convergence rate plays a crucial role

in Proposition9.1below.

Proposition 9.1 CONVERGENCE OF THE REGULARIZED INVERSE WHEN THE THRESHOLD VARIES WITH THE

SAMPLE SIZE. Let Σ be aq × q real symmetric positive semidefinite nonstochastic matrix andΣn a sequence
of q × q real symmetric random matrices. LetΣ and Σn satisfy Assumption2.2 with p = q and letg ∈ Gc,
with g(0; 0) = 0. Let λi = λi(Σ) and λ̂i = λi(Σn), with λi+1 ≥ λi ≥ 0, i = 1, . . . , q and dj ’s denote the
distinct eigenvalues ofΣ. Suppose further thatcn →

n→∞ 0 and bncn →
n→∞ ∞. If ΣR(0) and ΣR

n (cn) have the

representations(7.13) and(7.14) respectively, then

ΣR
n (cn)

p→ ΣR(0) . (9.2)

In other words, ifΣn → Σ in probability, then the regularized inverse ofΣn will converge towards the regularized
inverse ofΣ. In the following, we establish acharacterizationof the asymptotic distribution of theregularizedtest
statistic in the general case. This characterization makes use of the decomposition of theregularizedstatistic into
a regular component and a regularized one.

Proposition 9.2 ASYMPTOTIC CHARACTERIZATION OF THE REGULARIZEDWALD STATISTIC WITH VARYING

THRESHOLD. Let Σ be aq × q real symmetric positive semidefinite nonstochastic matrix andΣn a sequence
of q × q real symmetric random matrices. LetΣ andΣn satisfy Assumption2.2 with p = q andg ∈ Gc, with
g(0; 0) = 0. Supposecn →

n→∞ 0 andbncn →
n→∞ ∞. LetΣR(0) andΣR

n (cn) have the representations(7.13) and

(7.14) respectively. Suppose also Assumption2.1 holds, andrank(Σ) = q1. Let k1 be the number of non-zero

distinct eigenvaluesdj of Σ, i.e.,
k1∑

j=1
m(dj) = q1 ≥ 1, g(dj ; 0) = 0, ∀ j ≥ k1 + 1, and λ̂i = λi(Σn). Then,

underH0(ψ0) : ψ(θ0) = ψ0 ,

WR
n (cn) = X ′

nΣR
n (cn)Xn

L→ X ′ΣR(0)X = WR(0) (9.3)

WR
n (cn) = WR

1n(cn) + WR
2n(cn) (9.4)

WR
1n(cn) = X ′

nΣR
11,n(cn)Xn

L→ X ′ΣR
11(0)X ≡ WR

1 (0) (9.5)

WR
2n(cn) = X ′

nΣR
22,n(cn)Xn such thatP

[
WR

2n(cn) = 0
] → 1 . (9.6)
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Thus, when the thresholdcn converges to zero at an appropriate rate, based on the sample eigenvalues’ con-
vergence rate, the limitingregularizedinverse boils down to the modified Moore-Penrose inverse, which cancels
the nonregular componentWR

2 (0). Moreover, if we restrict the convergence in law above to the sole standard
Gaussian distribution,i.e.,

[
Xn = an(ψ̂n − ψ0) =

√
n[ψ(θ̂) − ψ0] → N [0, Σ]

]
, we obtain the result given

by Lütkepohl and Burda (1997, Proposition 2, page 318) as a special case (see Corollary9.3). In this case, the
regularized Wald test is asymptotically distributed as aχ2(q1) variable withq1 < q. Further, note that Lütkepohl
and Burda (1997, Proposition 2, page 318)’s result only holds for distinct eigenvalues, unlike Proposition9.2 that
is valid for multiple eigenvalues.

Corollary 9.3 ASYMPTOTIC DISTRIBUTION OF THE REGULARIZEDWALD STATISTIC IN THE GAUSSIAN CASE

WITH VARYING THRESHOLD. Let Σ be aq × q real symmetric positive semidefinite nonstochastic matrix and
Σn a sequence ofq × q real symmetric random matrices. Suppose Assumption2.1 holds, andrank(Σ) = q1.
Suppose also that Assumptions2.2with p = q, and2.5hold. Letg ∈ Gc, with g(0; 0) = 0. Supposecn →

n→∞ 0

and bncn →
n→∞ ∞. Let ΣR(0) and ΣR

n (cn) have the representations(7.13) and (7.14) respectively. Let the

eigenprojection be expressed as in equation(7.9). Let k1 be the number of non-zero distinct eigenvaluesdj of

Σ, i.e.,
k1∑

j=1
m(dj) = q1 ≥ 1, g(dj ; 0) = 0, ∀ j ≥ k1 + 1, and λ̂i = λi(Σn). Let B(dj)′X = xj , with

xj ∼ N
[
0, djIm(dj)

]
for all j, or equivalentlyxj =

√
djuj , uj ∼ N

[
0, Im(dj)

]
. Letg(dj ; 0) = 1

dj
, ∀ j ≤ k1

and 0 otherwise. Then, underH0(ψ0) : ψ(θ0) = ψ0

WR
n (cn) = n[ψ(θ̂)− ψ0]

′ΣR
n (cn)[ψ(θ̂)− ψ0] = WR

1n(cn) + WR
2n(cn) ,

with
WR

1n(cn) = n[ψ(θ̂)− ψ0]
′ΣR

11,n(cn)[ψ(θ̂)− ψ0] , (9.7)

WR
2n(cn) = n[ψ(θ̂)− ψ0]

′ΣR
22,n(cn)[ψ(θ̂)− ψ0] , (9.8)

and
WR

1n(cn) L→ WR
1 (0) ∼ χ2(q1) and P

[
WR

2n(cn) = 0
] → 1 . (9.9)

When the threshold goes to zero at the appropriate speed, the limiting regularized statistic has a standard chi
square distribution with the degree of freedom given by the multiplicity of the nonzero eigenvalues. Meanwhile,
the nonregular component collapses to zero due to the spectral cut-off Moore-Penrose inverse.

10. Alternative simulation-based approaches

In this section, we propose three alternative simulation-based approaches that rely on the technique of Monte Carlo
tests to enhance the performance of the (regularized) Wald test; see Dufour (2006) and the references therein for
a detailed presentation of the technique of Monte Carlo tests. To test the null hypothesisH0 : ψ(θ) = ψ0 , we
consider different ways of simulating the asymptotic distribution of the (regularized) Wald statistic. The approaches
differ through the strength of the assumptions made on the asymptotic distribution. They can be described as
follows.

1. [i)]

2. Simul-R approach: This approach requires the minimal assumption, and relies on the asymptotic distri-
bution of the restrictions without the need to specify that of the parameter of interestθ. By focusing
on the restrictions, this approach can accommodate situations where some components ofθ are not iden-
tified but whose transformations are. Thus, we simulate from the distribution of the restrictions,i.e.,
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√
n(ψ̂n − ψ0)

L→
n→∞ N(0, Σ) , with ψ̂n = ψ0 + 1√

n
Û ′

ψ × ṽ , whereṽ ∼ N [0, I]. The estimate of

Σ is given byΣn = Û ′
ψ × Ûψ, providedÛψ is available. We can then easily build the statistic as:

Sn(ψ̂n) =
√

n[ψ̂n − ψ0]
′ΣR

n (c)
√

n[ψ̂n − ψ0] ,

whereΣR
n (c) denotes the regularized inverse ofΣn.

3. Simul-E approach: This approach is more restrictive than Simul-R to the extent that it requires the identifi-
cation of the whole parameter vectorθ and situations for whom the delta method applies. Nevertheless, it
can accommodate some discontinuities in the restrictions (e.g., ratios of parameters with null values in the
denominator). Thus, we simulate from the distribution of the estimator ofθ:

√
n(θ̂n − θ0)

L→
n→∞ N(0, Σθ) , (10.10)

using:

θ̂n = θ0 +
1√
n

Û ′ × ṽ (10.11)

providedÛ is available;Û ′ × Û = Σθ,n, whereΣθ,n is an estimator ofΣθ, and ṽ ∼ N [0, I]. Apply-

ing the delta method, we can deduce the distribution of the restrictions,i.e.
√

n(ψ(θ̂n) − ψ(θ0))
L→

n→∞
N(0, Σ), with Σ = ΓΣθΓ

′ , andΓ corresponds to the derivative of the restrictions w.r.t.θ. We can then
easily build the statistic as:

Sn(θ̂n) =
√

n[ψ(θ̂n)− ψ(θ0)]′ΣR
n (c)

√
n[ψ(θ̂n)− ψ(θ0)] .

4. Simul-DGP approach: This approach is the most restrictive since it requires the highest level of information.
Thus, when the full DGP is specified, one can simulate from it;y can be expressed as a function ofθ, i.e.
yj = f(θ, ṽj), j = 1, . . . , n whereṽj is a random variable andyn

1 = (y1, . . . , yn). For instance, one can
simulate from a parametric Gaussian model under the null and build the statistic such as:

Sn(yn
1 , θ̂n) = n[ψ(θ̂n(yn

1 ))− ψ(θ0)]′ΣR
n (c)[ψ(θ̂n(yn

1 ))− ψ(θ0)]

In the following, we shall denoteS(i) the i-th replication of the simulated statistic associated with thei-th
random vector̃v(i), for i = 1, . . . , N . Please note thatn refers to the sample size whileN to the number of
replications of the Monte Carlo test. Fori = 0, let S(0) = S(0)(ψ0) refer to the test statistic computed from
observed data when the true parameter vector isψ(θ0) = ψ0. Note that the technique of Monte Carlo tests does
not require the number of replicationsN to be large, and the validity of the procedure holds forN fixed; for
exampleN = 19 is sufficient to control the level of the test irrespective of the sample size. In other words, if one
simulates from the exact distribution of the test statistic instead of the asymptotic approximation, the Monte Carlo
test would yield an exact test.

Suppose now that we use the Simul-R approach given ini) providedÛψ exists. Letṽ(i) ∼ N(0, I) for
i = 1, . . . , N such that:

ψ̂
(1)

n = ψ0 +
1√
n

Û ′
ψṽ(1) or equivalently

√
n[ψ̂

(1)

n − ψ0] = Û ′
ψṽ(1)

...
...

...
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ψ̂
(N)

n = ψ0 +
1√
n

Û ′
ψṽ(N) or equivalently

√
n[ψ̂

(N)

n − ψ0] = Û ′
ψṽ(N)

whose nuisance parameter is given byΣ = U ′
ψUψ and its estimator corresponds toΣn = Û ′

ψÛψ = V ′
nΛ[λ(Σn)]Vn.

The corresponding regularized counterpart corresponds toΣR
n (c) = V ′

nΛ†[λ(Σn); c]Vn . For i = 1, . . . , N , we
simulate N replications of the statistic under the null,

S(1)
n (ψ̂n) =

√
n[ψ̂

(1)

n − ψ0]
′ΣR

n (c)
√

n[ψ̂
(1)

n − ψ0]
...

S(N)
n (ψ̂n) =

√
n[ψ̂

(N)

n − ψ0]
′ΣR

n (c)
√

n[ψ̂
(N)

n − ψ0] .

Let us now state the assumptions required for the validity of the asymptotic Monte Carlo test based on a
consistent point estimate.

Assumption 10.1 (A): Let ṽ(i) i = 1, . . . , N be i.i.d. with distribution functionP[ṽ(i) ≤ x] = γ(x) and

the simulated statistics(S(1)
n (ψ), . . . , S(N)

n (ψ)) be i.i.d. each one with distribution functionP[Si
n(ψ) ≤ x] =

Fn(x|ψ) ∀ ψ ∈ Γ0 , for Γ0 a nonempty subset ofΨ . For the sake of notations,ψ will characterize the
parameters of the distribution, including nuisance parameters such as the parameters of variance and covariance.

(B): For n ≥ I0, S
(0)
n and ψ̂n are both measurable w.r.t. the probability space{(L,AL, P̄θ) : θ ∈ Ω}. S

(0)
n

andFn(S(0)
n |ψ̂n) are random variables.

(C): ∀ ε0 > 0 , ∀ ε1 > 0 , ∃ δ > 0 and a sequence of open subsetsDn0(ε0) in R such thatlim inf
n→∞ P[S(0)

n ∈
Dn0(ε0)] ≥ 1− ε0 and‖ψ − ψ0‖ ≤ δ ⇒ lim sup

n→∞
{ sup

x∈Dn0(ε0)
|Fn[x|ψ]− Fn[x|ψ0]|} ≤ ε1 .

Note that thei.i.d. assumption for(S(1)
n (ψ), . . . , S(N)

n (ψ)) can be relaxed to the exchangeability assumption. Let

Sn(N, ψ) = (S(1)
n (ψ), . . . , S(N)

n (ψ)), and the sample distribution and p-value functions be defined as:

F̂nN (x|ψ) ≡ F̂nN [x; Sn(N, ψ)] =
1
N

N∑

i=1

1(S(i)
n (ψ) ≤ x) (10.12)

ĜnN (x|ψ) ≡ ĜnN [x; Sn(N,ψ)] =
1
N

N∑

i=1

1(S(i)
n (ψ) ≥ x) (10.13)

p̂nN (x|ψ) =
NĜnN (x|ψ) + 1

N + 1
. (10.14)

Thus,

ĜnN (Sn0|ψ) =
1
N

N∑

i=1

1(S(i)
n (ψ) ≥ S(0)

n ) = 1− 1
N

N∑

i=1

1(S(i)
n (ψ) ≤ S(0)

n )

= 1− 1
N

[−1 +
N∑

i=0

1(S(i)
n (ψ) ≤ S(0)

n )] =
N + 1−Rn0

N

whereRn0 =
∑N

i=0 1(S(i)
n (ψ) ≤ S

(0)
n ) is the rank ofS(0)

n when theN +1 variablesS(0)
n , S

(1)
n (ψ), . . . , S(N)

n (ψ) are
ranked in nondecreasing order. By considering properly randomized distribution, tail area and p-value functions,
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we allow for statistics with general (possibly discrete) distributions.

F̃nN (x|ψ) ≡ F̃nN [x; U0, Sn(N,ψ), U(N)] =
1
N

N∑

i=1

1[(S(i)
n (ψ), Ui) ≤ (x,U0)] (10.15)

= 1− ĜnN [x; Sn(N, ψ)] + TnN [x; U0, Sn(N,ψ), U(N)] , (10.16)

TnN [x;U0, Sn(N, ψ), U(N)] =
1
N

N∑

i=1

δ[S(i)
n (ψ)− x]1(Ui ≤ U0) (10.17)

G̃nN (x|ψ) ≡ G̃nN [x; U0, Sn(N, ψ), U(N)] =
1
N

N∑

i=1

1[(S(i)
n (ψ), Ui) ≥ (x,U0)] (10.18)

= 1− F̂nN [x; Sn(N, ψ)] + T̄nN [x; U0, Sn(N,ψ), U(N)] , (10.19)

T̄nN [x;U0, Sn(N, ψ), U(N)] =
1
N

N∑

i=1

δ[S(i)
n (ψ)− x]1(Ui ≥ U0) (10.20)

p̃nN (x|ψ) =
NG̃nN (x|ψ) + 1

N + 1
, (10.21)

whereU(N) = (U1, . . . , UN ) andU0, U1, . . . , UN
i.i.d.∼ U(0, 1) and independent ofSn(N,ψ). Next we report

the asymptotic validity of bootstrap p-values based on a consistent point estimate that is established in Dufour
(2006, Proposition 6.1, p.464). The proof of the proposition relies on the continuity and convergence property of
the bootstrap p-values stated in two lemmas; readers interested in the proofs, please see Dufour (2006, Lemma
A1-A2, p.471 and 473). The proposition states the validity of bootstrap p-values for general sequences of random
variables with (possibly discrete) distributions (when ties may have nonzero probability).

Proposition 10.2 (Asymptotic validity of bootstrap p-values)Under Assumption10.1 (A)-(C) and notations
(10.12)-(10.14) and (10.15)-(10.21), suppose the random variablesS(0)

n and ψ̂n are independent ofSn(N, ψ)
andU0. If ψ̂n

p→ ψ0 then for0 ≤ α1 ≤ 1 and0 ≤ α ≤ 1,

lim
n→∞{P

[
G̃nN (S(0)

n |ψ̂n) ≤ α1

]− P[G̃nN (S(0)
n |ψ0) ≤ α1

]} = lim
n→∞{P

[
ĜnN (S(0)

n |ψ̂n) ≤ α1

]− P[ĜnN (S(0)
n |ψ0) ≤ α1

]}
= 0 (10.22)

and

lim
n→∞{P

[
p̃nN (S(0)

n |ψ̂n) ≤ α
]−P[p̃nN (S(0)

n |ψ0) ≤ α
]} = lim

n→∞{P
[
p̂nN (S(0)

n |ψ̂n) ≤ α
]−P[p̂nN (S(0)

n |ψ0) ≤ α
]} = 0 .

(10.23)

11. Simulation results: Multi-step noncausality

In this section, we perform Monte Carlo experiments to assess the empirical behavior of the (regularized) Wald
statistics in the presence of asymptotic singularity. We consider the following VAR(1) process




xt

yt

zt


 = A1




xt−1

yt−1

zt−1


 + ut =




θxx θxy θxz

θyx θyy θyz

θzx θzy θzz







xt−1

yt−1

zt−1


 + ut , (11.1)
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for t = 1, . . . , n, whereut = [ux,t uy,t uz,t]′ is a Gaussian noise with a(3× 3) nonsingular covariance matrixΣu.
We are interested in testing for multi-step noncausalityi.e.,

H0 : ψ(θ) =
[

θxy

θxxθxy + θxyθyy + θxzθzy

]
=

[
0
0

]
. (11.2)

using three different versions of the Wald statistic,i.e., WR
n (c) = nψ(θ̂n)′ΣR

n (c)ψ(θ̂n). As pointed out in Section
3.1, singularity problems arise under parameter setting (3.1). Letyt = [xt yt zt]′ , Y ≡ (y1, . . . , yn) , B ≡ (A1)
Zt ≡ [yt], Z ≡ (Z0, . . . , Zn−1) , U ≡ [ut]t=1,...,n = (u1, . . . , un) Using the standard column stacking operator
vec, let θ = vec(A1) = vec(B), whereB is (3 × 3) andY , Z andU are(3 × n). We use the multivariate LS
estimator ofθ. Applying the column stacking operatorvec on:

Y = BZ + U (11.3)

we have:

vec(Y ) = vec(BZ) + vec(U) (11.4)

y =
(
Z ′ ⊗ I3

)
vec(B) + vec(U) (11.5)

y =
(
Z ′ ⊗ I3

)
θ + u (11.6)

whereE(uu′) = In ⊗Σu. The multivariate LS estimator̂θn is given by:

θ̂n =
(

(ZZ ′)−1Z ⊗ I3

)
y , (11.7)

such that: √
n(θ̂n − θ0)

L→ N
(
0, Σθ

)
(11.8)

whereΣθ = Ω−1⊗Σu; see?. Provided the delta method applies, the restrictions are also asymptotically Gaussian:

√
n(ψ(θ̂n)− ψ(θ0))

L→ N
(
0, Σ

)
(11.9)

where

Σ =
∂ψ

∂θ′
(θ)Σθ

∂ψ′

∂θ
(θ) . (11.10)

A consistent estimator ofΣ is easily obtained as:

Σn =
∂ψ

∂θ′
(θ̂n)Σθ,n

∂ψ′

∂θ
(θ̂n) (11.11)

by plugging in a consistent estimator ofΣθ, i.e., Σθ,n = Ω̂−1 ⊗ Σ̂u with Ω̂ = 1
nZZ ′ andΣ̂u = 1

n

∑n
t=1 ûtû

′
t =

1
nY

[
In − Z ′(ZZ ′)−1Z

]
Y ′ . We examine three different parameter settings for the VAR(1) coefficientsA1 =


θxx θxy θxz

θyx θyy θyz

θzx θzy θzz


 . The first two parameter setups correspond to:

A1 = A10 =



−0.99 θxy θxz

0 −0.99 0.5
0 0 −0.99


 , A1 = A20 =



−0.9 θxy θxz

0 −0.9 0.5
0 0 −0.9


 ,
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Table 1. Notations of the statistics

Notations of the statistics
Notations Definition
W Standard Wald statistic using the standard critical point
WDV (bound) Full-rank regularized Wald statistic using the asymptotic bound and a fixed threshold
WLB LB Reduced-rank Wald statistic based on the modified Moore-Penrose inverse and a threshold that varies with the sample size
WNoise Modified Wald statistic resulting from adding a noise to the restrictions; using the the standard critical point
Simul-R Monte Carlo tests - simulated version of the corresponding statistic using the distribution of the restrictions
Simul-E Monte Carlo tests - simulated version of the corresponding statistic using the distribution of the estimator of the parameter
Simul-DGP Monte Carlo tests - simulated version of the corresponding statistic using a specified DGP

Simul-Mixt Simulated version of the linear combination of modified chi-square variables as in eq. (8.2):
2∑

j=1

g(λ̂j ; c)λ̂jvj , where thevj ’s are independent

and random draws from aχ2
(
1
)

.

where the problem of singularity is obtained forθxy = θxz = θzy = 0. The key parameter to disentangle between
the regularity point and singularity point under this setup isθxz, with θxz = 0 corresponding to a singularity point,

andθxz 6= 0 to a regularity point. A third parameter setup is examined,i.e., A1 = A11 =




0.3 θxy θxz

0.7 0.3 0.25
0.5 0.4 0.3




whereθxy = θxz = 0, andθzy = 0.4 6= 0 yields a regular setup. The first two parameter settings involve parame-
ters close to the nonstationary region, whereas the third one falls inside the stationary region.ut = [ux,t uy,t uz,t]′

is a Gaussian noise with nonsingular covariance matrixΣu, whose values have been set to

Σu =




1.5 −0.7 0.3
−0.7 0.5 −0.4
0.3 −0.4 1




in the simulation design. Its determinant is different from zero,i.e.,det(Σu) = 0.143. The threshold values have
been set tocn = λ̂1n

−1/3 in the case of a varying threshold and toc = 0.1 for the fixed threshold. We also use
cn = λ̂1n

−1/2 sporadically; it performs better in the regular setup in terms of power because it regularizes less
often. Note that the choice ofcn = λ̂1n

−1/3, (or cn = λ̂1n
−1/2) only applies to the spectral cut-off regularized

Wald statistic recommended by Lütkepohl and Burda (1997), whereas we propose the fixed value ofc = 0.1 for
the full-rank regularized statistic. Concerningcn, it has been normalized by the largest eigenvalues to account for
scaling issues of the data. We use 5000 replications in all simulation experiments. The nominal size to perform the
tests has been fixed to0.05, with critical points for the chi-square distribution with full rank given byχ2

95%(2) =
5.99, or with reduced rank given byχ2

95%(1) = 3.84 for the spectral cut-off regularized Wald statistic. In the
tables below,W denotes the standard Wald statistic,WDV (bound) the full-rank regularized Wald statistic that
uses the bound and the fixed thresholdc; WLB denotes the spectral cut-off Wald statistic that uses the varying
thresholdcn. For comparison purposes, we also report the modified Wald statistic that results from adding noise
to the restrictions to make them less efficient; it is denotedWnoise. See Lütkepohl and Burda (1997, Proposition
1, page 317) for its form. Note thatWLB andWNoise are the two modified Wald statistics proposed by Lütkepohl
and Burda (1997). We propose to implement the LB reduced-rank statistic through Monte Carlo tests (Simul-R,
simul-E, Simul-DGP) that help to reduce size distortions in finite samples.
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11.1. Level assessment

We study the empirical behavior of the test statistics under the null hypothesis:

H0 : ψ(θ) =
[

θxy

θxxθxy + θxyθyy + θxzθzy

]
=

[
0
0

]
,

first in irregular setups (see Table 2, panelsA : A1 = A10 andB : A1 = A20), then in a regular setup (see Table
2, panelC : A1 = A11). It is clear from Table 2, panels A and B that the standard Wald statistic,W , does not
have its usual asymptotic distribution in non-regular setups, either suffering from severe over-rejections in small
samples, or from under-rejections in large samples. Its behavior gets worse when parameter values approach the
nonstationary region (Table 2, Panel A). Similarly, the reduced rank Wald statistic,WLB, displays the same finite
sample behavior asW in non-regular setups, with severe size distortions when parameters values get close to the
nonstationary region, but exhibits good size properties asymptotically. In contrast, the full-rank regularized statistic
that uses the bound,WDV (bound), does not suffer from over-rejection under the null hypothesis, but under-rejects
instead. Nevertheless, if one simulates directly from the DGP provided it is specified, one can correct for the
underrejection of the bound by using the Simul-DGP approach. The Simul-DGP approach forWDV remarkably
dominates its competitorsW andWLB particularly in small samples (see Table 2, panelA : A1 = A10, n = 50).
Thus, it is very important to simulate from a well-behaved statistic to produce a reliable test. To the extent that
all testing procedures, including the Monte Carlo tests, rely on asymptotic arguments, it is not surprising that all
tests approach the nominal level of 0.05 as soon as the sample size gets sufficiently large. In particular, all three
simulation-based approaches exhibit good level properties for large sample sizes. Regarding the regular setup
shown in Table 2, panel C, all statistics display the correct expected level of 0.05. Note also that we have tried
different values for the fixed thresholdc, and we recommendc = 0.1. Its impact on power will be examined next.
Thus, the less one regularizes,i.e. one choosesc = 0.01 instead ofc = 0.1, the more the full-rank regularized
statistic behaves like the standard Wald statistic. Regarding the reduced rank statistic,WLB behaves slightly
differently depending on the choice of the varying thresholdcn in regular setups; in nonregular setups, whatever
choice ofcn is used,i.e., cn = λ̂1n

−1/3 or cn = λ̂1n
−1/2, the results are identical. Power will differ markedly

w.r.t. cn in the regular setup. Onlycn = λ̂1n
−1/3 is used in the simulated versions of theWLB test statistic. Note

also the correct asymptotic level of the simulated version of the linear combination of chi-square variables as in eq.

(8.2):
2∑

j=1
g(λ̂j ; c)λ̂jvj , where thevj ’s are independent and random draws from aχ2

(
1
)

. In the regular setup, the

level of the corresponding procedure is controlled for all sample sizes. Finally, althoughWNoise enables to control
size under the null, this procedure is not recommendable from the viewpoint of power as shown next.

11.2. Power assessment

We also study the empirical power for alternatives close to a singularity pointθxz = 0:

H1 : ψ(θ) =
[

δ
(θxx + θyy)δ

]
6=

[
0
0

]
,

with θxy = δ, (δ = 0.1264 or δ = 0.04) whose empirical power is reported in Table 3, panels A and B. We also
consider a second type of alternative for a violation of the second restriction only, while maintaining fulfilled the
first restriction as in Lütkepohl and Burda (1997),i.e.

H1 : ψ(θ) =
[

0
(θxz × θzy)

]
6=

[
0
0

]
,

with θxz = δ = 0.1264, θzy = 0.4 andθxy = 0, under a regular design:
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A1 = A11 =




0.3 0 θxz

0.7 0.3 0.25
0.5 0.4 0.3


 ;

see Table 3, panel C. First of all, all power frequencies reported in Table 3 have been locally corrected for level
distortions (only for over-rejections and not for under-rejections) for a fair comparison across statistics. See Table
6 in appendix A for level correction.

In Table 3, though conservative, the full-rank regularized test statistic that uses the bound,i.e.,WDV (bound)
exhibits higher power than its oversized competitorsW andWLB for alternatives sufficiently far from the null,i.e.
for values ofδ sufficiently different from zero (see Table 3, panel A,n = 50 that corresponds toδ = 0.1264).
However, whenδ is close to zero, which corresponds to a local alternative, power is reduced forWDV (bound)
(see Table 3, panel B,n = 50 with δ = 0.04). Indeed for local alternatives,WLB benefits from a reduced critical
point. In that respect, the simulated versions of the full rank statistic, especially the Simul-DGP version ofWDV

performs as well asWLB in terms of power as soon as the sample size reachesn = 100 for local alternatives (see
Table 3, panel B,n = 100 with δ = 0.04). In particular forWDV , we can observe as ofn = 100 that power tends
to increase when moving from Simul-R to Simul-E to Simul-DGP, with the highest power achieved for Simul-DGP
which is also the most demanding procedure in terms of information. More importantly, the locally-level corrected
statisticsW andWLB areinfeasibletests in practice, because this level correction requires the knowledge of the
true, unknown parameter values unlikeWDV (bound) whose level is controlled in all scenarios. The superiority
of the simulated version ofWDV over the simulated version of the standard Wald statistic in small samples (i.e.,
n = 50, 100 in panels A and B) is remarkable. Further, the behavior of the modified Wald statistic that results
from adding noise to the restrictions to make them less efficient, as suggested by Lütkepohl and Burda (1997,
Proposition 1, page 317), displays correct level under the null. However, such a noise tends to destroy power
under the alternative and is not the approach we would recommend; compareWnoise’s performance in panel B, for
n=50,..., 1000 relative to its competitors. Finally, the most striking result is the severeunder-performanceof the
reduced rank statisticWLB in a regular setup (panel C) whencn = λ̂1n

−1/3. As already mentioned by Lütkepohl
and Burda (1997), by underestimating the true rank of the covariance matrix, this reduced rank statistic puts more
weight on the first restriction that remains fulfilled in this case. A violation of the null hypothesis coming from the
second restriction will not be detected by a statistic that underestimates the rank; a full-rank regularized statistic
dominates in this respect. Thus, these results on power reinforce the better properties of the full-rank regularized
statistics over the spectral cut-off type. However, whencn = λ̂1n

−1/2, power is restored forWLB in regular
setups. Indeed, in regular setups where regularization is unnecessary, dropping some restrictions might damage
power significantly. Thus, the choice ofcn is critical in regular setups because it can diminish power substantially.
The contrasting results displayed forWLB in panel C highlights the superiority of full-rank statistics over reduced-
rank ones. Overall, we recommendWDV (bound) along with the Simul-DGP version ofWDV , as both procedures
control level while achieving reasonably good power in small samples under both setups (regular and irregular).

12. Empirical application to Multistep noncausality: saving-to-growth causation

In this section, we conduct noncausality tests to assess any causal relation between investment, saving and growth.
Indeed, there is no consensus in the literature whether higher saving results in higher growth or the other way
around in cross-country data. Especially, East Asian economies had experienced high growth rates long before
they had high saving rates. Levine and Renelt (1992) argue that the investment rate is the key variable that is
correlated with growth. They claim that the saving-to-growth causation reflects the same causal channel, but with
the additional linkage that high saving leads to high investment. We shall investigate this relation in a single-country
data set, focusing on U.S. data. The data come from the World Development Indicator’s database (WDI), and are
yearly observations spanning from 1972 to 2012. The data have been differenced once to account for the presence
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of unit roots since the Augmented Dickey-Fuller tests detected the presence of unit roots at a 0.05 significance
level. We use Saving that represents the gross domestic saving (in% of GDP), Investment that corresponds to
gross capital formation (in% of GDP) and GDP growth (in annual%). The gross capital formation consists of
additions to the fixed assets of the economy plus net changes in the level of inventories. We also use Foreign direct
Investment (FDI) (in% of GDP); FDI are the net inflows of investment to acquire 10% or more of voting stocks in
an enterprise operating in an economy other than that of the investor.

In this section, we conduct noncausality tests of the form:

H0 : ψ(θ) = 0 , (12.1)

for several horizons,i.e., at horizonsH = 1, 2, 3, 4 and5. Dufour and Renault (1998, Proposition 4.5) state that
in a VAR(1) model it is sufficient to have noncausality up to horizon 2 for noncausality to hold at all horizons;
therefore testing for noncausality at horizons 3, 4 and 5 is superfluous and adds redundancy uselessly.

The Monte Carlo tests are simulated under the null of noncausality usingN = 99 simulated statistics. The
estimate of the parameters are based on the real data; we then construct an ad-hoc restricted estimate by zeroing
the corresponding parameters such thatψ(θ̂) = 0. Using an unrestricted estimatorvec(θ̂), we built the restricted
version of the estimator,i.e., vec(θ̃) = (θ̂1, θ̂2, θ̂3, 0, θ̂5, 0, 0, θ̂8, θ̂9)′. We use this ad-hoc restricted estimate
to simulate the distribution of the test statistic under the null hypothesis. Recall that the Wald test is based on
an unrestricted estimator, although its distribution is simulated under the null in the Monte Carlo procedure. The
nominal level used in the test has been fixed atα = 0.05.

In addition to Panels A and B of Table 4, in which no redundant restrictions are added to the genuine restric-
tions, we purposely add redundant restrictions to assess their effect on the testing procedures; see panels C, D and
E. More specifically, Panel A only testsψ1(θ) = θxy = 0 while Panel B focuses on testing two restrictions:

ψ2(θ) =
[

θxy

θxxθxy + θxyθyy + θxzθzy

]
=

[
0
0

]
(12.2)

which corresponds to the case of no redundant restrictions with the following Jacobian

∂ψ2

∂θ′
=




0 0 0 1 0 0 0 0 0
θxy 0 0 θxx + θyy θxy θxz θzy 0 0


 .

In the trivariate VAR(1) model, in which



xt

yt

zt


 =




Growth
Saving

Investment


 ,

the corresponding unrestricted estimates of the parameters and their estimated standard deviation are the following:

θ̂ =




θ̂xx θ̂yx θ̂zx θ̂xy θ̂yy θ̂zy θ̂xz θ̂yz θ̂zz

−0.1466 −0.8969 −0.4203 0.3928 0.3176 0.5392 −0.4411 −0.4741 −0.3438




σ̂ =
[

σ̂1 σ̂2 σ̂3 σ̂4 σ̂5 σ̂6 σ̂7 σ̂8 σ̂9

2.149 3.2311 2.5876 0.6313 0.9505 0.7612 1.8284 2.7531 2.2048

]
.

In Table 4, we test for noncausality between Saving, Investment and Growth. In panel A, the results forW ,
WDV (bound) andWLB coincide regardless of the procedure used, asymptotic or simulated, since regularization is
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unnecessary in this case. We next observe that when redundant restrictions are added, the reported determinant of
the estimated covariance matrix diminishes. The behavior of the standard Wald test statistic seriously deteriorates.
This poor behavior is striking in Panel E about the Investment-Growth causation; the value of the statistic jumps
from 3.2388 (Panel D: Investment-Growth causation) to 11.7251 (Panel E: Investment-Growth causation) forc-
ing the standard statistic to erroneously reject the null of noncausation. Similarly, the standard Wald test statistic
steadily misbehaves as the determinant approaches zero in the Growth-Saving causality analysis. While the asymp-
totic standard test still rejects the null of noncausation from Growth to Saving with a value of 40.5742 (Panel E:
Growth-to-Saving), its simulated counterpart fails to reject the null with a p-value of 0.12 (Panel E: Growth-to-
Saving). Thus, simulating from a misbehaved statistic does not produce reliable inference; a severe contradiction
arises between the decision based on the asymptotic critical value and the simulated procedure. Further, the dis-
crepancy between the standard Wald statisticW and the full-rank regularized Wald statisticWDV (bound) widens
with the number of redundant restrictions added (Panel E: Investment-to-Growth, Growth-to-Saving). Note also
the puzzling conclusion produced by the simulated test based on the spectral cut-off statisticWLB. When redun-
dant restrictions are added, the simulated procedure inverts the decision of the test when one moves from Panel B
to panel C and so on in the Saving-to-Growth causation.

While most of the procedures are not able to reject the null hypothesis that Saving does not cause Growth at all
horizons, we unambiguously find that Growth causes Saving for U.S. data. Our findings support the original liter-
ature by Houthakker (1961, 1965), and Modigliani (1970) at the cross-country level. However, our single-country
results on U.S. data do not support Levine and Renelt (1992)’s cross-country findings that high investment causes
high growth. Importantly, in the presence of redundant restrictions the simulated version of the full-rank regu-
larizedWDV (bound) test steadily produces results consistent with those obtained without redundant restrictions.
These results confirm those predicted from the theory: as stated in Dufour and Renault (1998, Proposition 4.5), in
a VAR(1) model it is sufficient to have noncausality up to horizon 2 for noncausality to hold at all horizons. In
other words, our findings at horizons 3,4 and 5 corroborate the results obtained at horizon 2.

Next, when replacing Saving by FDI in Table 5, all tests are not able to reject the null that FDI does not cause
Growth, nor that Growth does not cause FDI. Nevertheless all tests, regardless of the approach used, asymptotic
or simulated, unambiguously reject the null that Investment does not cause Growth at all horizons. As predicted
by the theory in a VAR(1) model, decisions obtained at horizon 2 are not reversed at higher horizons. Again,
singularity critically impacts the behavior of the standard Wald statistic, triggering an erroneous rejection of the
null that FDI does not cause Growth in panel E.

13. Conclusion

In this paper, we examine and propose Wald-type tests statistics that deal with asymptotic singular covariance
matrices. To do so, we introduce a new class ofregularizedinverses, as opposed to generalized inverses, that
embeds the spectral cut-off and Tikhonov regularized inverses known in the statistical literature. We propose a
regularized Wald statistic that produces valid inference under fairly weak assumptions: the full-rank statistic relies
on a fixed value for the threshold in the VRFg(λ; c) and does not require the knowledge of the asymptotic rank
nor the Gaussianity distribution. In contrast, the reduced rank Wald statistic that lets the threshold vary with the
sample size requires more information about the sample behavior of the eigenvalues. By exploiting eigenprojection
techniques, we show that the first regularized Wald statistic admits a nonstandard asymptotic distribution in the
general case, which corresponds to a linear combination ofχ2 variables if the restrictions are Gaussian. An
upper bound, which is invariant to the degree of rank deficiency, is then derived for the full-rank regularized
statistic that corresponds to aχ2 variable withfull rank under Gaussianity. Hence, the test isasymptotically valid,
meaning that the usual critical point can be used, but is conservative. Instead of using the asymptotic bound, we
propose three ways to conduct the regularized Wald test by simulations through the technique of Monte Carlo
tests: one may simulate under the DGP if available, or from the distribution of the estimator of the parameters
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(or of the restrictions) to correct for size distortions. One can also simulate from the linear combination of chi-
square variables to produce an asymptotically valid test for the full-rank regularized statistic. Finally, when the
threshold goes to zero with the sample size, we obtain the spectral cut-off modified Wald statistic of Lütkepohl
and Burda (1997) as a special case. Under normality, the test has the usual asymptotic distribution whose reduced
rank is given by the number of eigenvalues greater than zero. Note that Lütkepohl and Burda (1997)’s result
only holds for distinct eigenvalues whereas our result accounts for multiple eigenvalues. We also show that the
regularized statistics are consistent against global alternatives, but the spectral cut-off Wald statistic has reduced
power in some directions of the alternative. Besides, our approach is easy to implement: it only requires to
compute eigenvalues and eigenvectors. It is therefore simple, systematic, and robust to all kinds of setups. More
generally, the regularization techniques developed in this paper to deal with asymptotic singularity and deficient
rank problems are not restricted to the sole Wald statistic, but can easily be applied to other statistics such as the
Lagrange multiplier statistic, or score-type test statistics.
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A. Appendix: Rejection rules to correct size distortions

Insert Table 6 that is displayed below here.

B. Appendix: Proofs

Proof of Lemma 2.3By Assumption2.2,
(
bn(An −A) L→

n→∞ Q ) ⇒ ( An
p→

n→∞ A ) and by Assumption

2.1we have:

Wn(ψ0) = [an

(
ψ̂n − ψ0

)
]′(An −A)[an

(
ψ̂n − ψ0

)
] + [an

(
ψ̂n − ψ0

)
]′A[an

(
ψ̂n − ψ0

)
]

L→
n→∞ X ′0X + X ′AX .

Proof of Property 1 Using Definition4.1and (4.3), we haveΣΣR(c) = V ΛV ′V Λ†(c)V ′ = V ΛΛ†(c)V ′ since
theVi’s are orthogonal. For allλ, 0 ≤ λg(λ; c) ≤ 1 , so thatΣΣR(c) = V diag

[
λjg(λj ; c)

]
j=1,··· ,qV

′ ≤ Iq .

Regardingii), we have:

TΣR(c)T ′ = V Λ1/2V ′V Λ†(c)V ′V Λ1/2V ′ = V Λ1/2Λ†(c)Λ1/2V ′ = V diag
[
λjg(λj ; c)

]
j=1,...,q

V ′ ≤ Iq

since0 ≤ λg(λ; c) ≤ 1 for all λ . Regardingiii), we have:

Σ −ΣΣR(c)Σ ≥ 0 ⇔ Σ
(
Iq −ΣR(c)Σ

) ≥ 0 ⇒ Iq −ΣR(c)Σ ≥ 0

sinceΣ is semi definite positive. The last implication holds byi). As for iv), for all λ ≥ 0, g(λ; c) bounded, and

if g(λ; c) > 0, we have
(
λg(λ; c) ≤ 1

) ⇒ (
0 < g(λ; c) ≤ 1

λ ≤ ∞ ) ⇒
(

[g(λ; c)]−1 − λ ≥ 0
)

. Hence,
(
ΣR(c)

)−1 − Σ = V diag
[(

g(λj ; c)
)−1 − λj

]
j=1,··· ,qV

′ ≥ 0 . Finally for v), the rank is given by the number

of eigenvalues greater than zero. AsΣR(c) = V diag
[
g(λj ; c)

]
j=1,··· ,qV

′, hence
(
λ > 0 ⇒ g(λ; c) > 0

) ⇒(
rank

(
ΣR(c)

) ≥ rank(Σ)
)

.

PROOF of Lemma 6.3If Σn
a.s.→ Σ, then the eventA = {ω : Σn(ω) →

n→∞ Σ} has probability one,i.e.

P(A) = 1. For anyω ∈ A , we have by Lemma6.2:

[Σn(ω) →
n→∞ Σ] ⇒ [λj(Σn(ω)) → λj(Σ), j = 1, . . . , J ] .

DenotingB = {ω : λj(Σn(ω)) →
n→∞ λj(Σ)}, we haveA ⊆ B, hence we have with probability one resulti). By

the same argument, we have resultii) for the eigenprojections.

PROOF of Lemma 6.4
If Σn

p→ Σ with eigenvalues{λj(Σn)}, then every subsequence{Σnk
} with eigenvalues{λ(Σnk

)}, also

satisfiesΣnk

p→ Σ. By ?, there exists{Σml
} ⊆ {Σnk

} such thatΣml

a.s.→ Σ. Hence by Lemma6.3, we have

1. [i)]
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Table 6. Empirical levels of Multistep noncausality testsH0 : ψ(θ) = 0 and modified rejection rules.

H0 : ψ(θ) = 0 ; nominal size= 0.05, cn = λ̂1n
−1/3, c = 0.1;

Panel A: irregular setup
H0 : ψ(θ) = 0 with with θxy = θxz = θzy = 0 andθxx = θyy = θzz = −0.99 , A1 = A10, cn = λ̂1n

−1/3, c = 0.1;
n = 50

Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/4.13 when pv.≤ 0.01 0.0499 1/1.81 when pv.≤ 0.01 0.0499 0.0515
WDV 1/2.11 when pv.≤ 0.01 0.0499 1/1.67 when pv.≤ 0.01 0.0500 0.0430
WLB 1/ 2.10 when pv.≤ 0.01 0.0500 1/ 2.108 when pv.≤ 0.01 0.0500 0.0358

n = 100
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/2.88 when pv.≤ 0.01 0.0500 1/1.503 when pv.≤ 0.01 0.0499 0.0527
WDV 1/1.34 when pv.≤ 0.01 0.0500 1/1.245 when pv.≤ 0.01 0.0499 0.0476
WLB 1/ 1.335 when pv.≤ 0.01 0.0500 1/ 1.49 when pv.≤ 0.01 0.0500 0.0486

n = 500
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv.≤ 0.03 0.0502 1/1 when pv.≤ 0.02 0.0342 0.0486
WDV 1/1 when pv.≤ 0.02 0.0238 1/1 when pv.≤ 0.02 0.0290 0.0340
WLB 1/ 1 when pv.≤ 0.02 0.0238 1/ 1 when pv.≤ 0.02 0.0302 0.0436

n = 1000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv.≤ 0.05 0.0506 1/1 when pv.≤ 0.03 0.0418 0.0436
WDV 1/1 when pv.≤ 0.04 0.0496 1/1 when pv.≤ 0.03 0.0370 0.0318
WLB 1/1 when pv.≤ 0.04 0.0496 1/1 when pv.≤ 0.03 0.0372 0.0470

n = 2000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv.≤ 0.05 0.0300 1/1 when pv.≤ 0.04 0.0440 -
WDV 1/1 when pv.≤ 0.04 0.0414 1/1 when pv.≤ 0.04 0.0414 -
WLB 1/1 when pv.≤ 0.04 0.0414 1/1 when pv.≤ 0.04 0.0418 -

n = 5000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv.≤ 0.05 0.0142 1/1 when pv.≤ 0.05 0.0384 -
WDV 1/1 when pv.≤ 0.05 0.0368 1/1 when pv.≤ 0.05 0.0378 -
WLB 1/1 when pv.≤ 0.05 0.0368 1/1 when pv.≤ 0.05 0.0380 -

See Table 1 for the definition of the acronyms.
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2. λj(Σml
) a.s.→ λj(Σ),

3. Pj,t(Σml
) a.s.→ Pj,t(Σ) providedλj−1(Σ) 6= λj(Σ) andλt(Σ) 6= λt+1(Σ) .

As {Σml
} ⊆ {Σnk

} ⊆ {Σn} with the corresponding eigenvalues{λj(Σml
)} ⊆ {λj(Σnk

)} ⊆ {λj(Σn)} , by
? it suffices that every subsequence{λj(Σnk

)} of {λj(Σn)} contains a subsequence{λj(Σml
)} which converges

a.s. to getλj(Σn)
p→ λj(Σ) . By the same argument, we havePj,t(Σn)

p→ Pj,t(Σ) .

PROOF of Proposition 7.3 If Σn
a.s.→ Σ, then by Lemma6.3 i), we haveλ̂i

a.s.→ dj , ∀i ∈ Ij , where
Ij = {i ∈ I : λi = dj}. Under the additional Assumption7.2, and the a.e. continuity ofg(., c), we have
g(λ̂i; c)

a.s.→ g(dj ; c) ∀i ∈ Ij . Moreover, by Lemma6.3 ii), we havePIj (Σn) a.s.→ Pj(Σ) . Hence,

ΣR
n (c) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; c) =
k∑

j=1

PIj (Σn)
[
g(dj ; c)− g(dj ; c) +

1
m(dj)

∑

i∈Ij

g(λ̂i; c)
]

=
k∑

j=1

PIj (Σn)g(dj ; c) +
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; c)− g(dj ; c)

] a.s.→
k∑

j=1

Pj(Σ)g(dj ; c)

sinceg(dj ; c) = 1
m(dj)

×m(dj)g(dj ; c) = 1
m(dj)

∑
i∈Ij

g(dj ; c) andg(λ̂i; c)
a.s.→ g(dj ; c) ∀i ∈ Ij .

PROOF of Proposition 7.4Using decomposition (4.2) and equation (7.14), we have:

ΣR
n (c) =

3∑

i=1

ΣR
ii,n(c) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c) where

ΣR
11,n(c) =

k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c) for dj > c, k1 =
k∑

j=1

1{dj>c}

ΣR
22,n(c) = PI(c)(Σn)

1
m(c)

∑

i∈I(c)

g(λ̂i, c), for dj = c

ΣR
33,n(c) =

k∑

j=k1+1{dj=c}+1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, c) for dj < c .

Note that Assumption2.2impliesΣn
p→ Σ, hence by Lemma6.4i) and ii), eigenvalues and total eigenprojections

are continuous; together with Assumption7.2, we have:∀ i ∈ Ij , g(λ̂i, c)
p→ g(dj ; c), and PIj (Σn)

p→
Pj(Σ) . Also,

ΣR
11,n(c) =

k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; c) =
k1∑

j=1

PIj (Σn)
[
g(dj ; c)− g(dj ; c) +

1
m(dj)

∑

i∈Ij

g(λ̂i; c)
]

=
k1∑

j=1

PIj (Σn)g(dj ; c) +
k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; c)− g(dj ; c)

] p→
k1∑

j=1

g(dj ; c)Pj(Σ) ≡ ΣR
11(c)
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sinceg(dj ; c) = 1
m(dj)

× m(dj)g(dj ; c) = 1
m(dj)

∑
i∈Ij

g(dj ; c) . Under Assumption7.2, if λi = dj = c,

g(λ̂i, c)
p→ g(c; c), henceΣR

22,n(c) = PI(c)(Σn) 1
m(c)

∑
i∈I(c)

g(λ̂i, c)
p→ g(c; c)1{dj=c}Pj(c)(Σ) ≡ ΣR

22(c) . The

proof forΣR
33,n(c) is similar to that ofΣR

11,n(c) . Hence,ΣR
n (c)

p→ ΣR(c) = ΣR
11(c) + ΣR

22(c) + ΣR
33(c) .

PROOF of Proposition 8.1By Proposition7.4, we haveΣR
n (c)

p→ ΣR(c) and under Assumption2.1,

Xn
L→ X, henceWR

n (c) = X ′
nΣR

n (c)Xn
L→ X ′ΣR(c)X = WR(c) . Using representation (7.13) for

ΣR(c) ,and the formPj(Σ) = B(dj)B(dj)′, we can write:

WR(c) = X ′ΣR(c)X = X ′
( k∑

j=1

g(dj ; c)Pj(Σ)
)

X =
k∑

j=1

g(dj ; c)X ′Pj(Σ)X =
k∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X .

We can further decompose the overall statistic into three blocks depending whether the eigenvalues are larger (or

smaller) thanc, with k1 =
k∑

j=1
1{dj>c}, i.e.,

WR
1 (c) = X ′ΣR

11(c)X =
k∑

j=1

g(dj ; c)1{dj>c}X ′Pj(Σ)X

=
k1∑

j=1

g(dj ; c)X ′Pj(Σ)X =
k1∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X .

Similarly, WR
2 (c) = X ′ΣR

22(c)X = g(c; c)1{dj=c}X ′Pj(c)(Σ)X = g(c; c)1{dj=c}X ′B(c)B(c)′X. And

WR
3 (c) = X ′ΣR

33(c)X =
k∑

j=1

g(dj ; c)1{dj<c}X ′Pj(Σ)X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)X ′B(dj)B(dj)′X .

PROOF of Corollary 8.2 In the Gaussian case, we have:B(dj)′X = xj , wherexj ∼ N
[
0, djIm(dj)

]
, or

equivalentlyxj =
√

djuj with uj ∼ N
[
0, Im(dj)

]
, hence

WR(c) = X ′ΣR(c)X = X ′
( k∑

j=1

g(dj ; c)Pj(Σ)
)

X =
k∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X =
k∑

j=1

g(dj ; c)dju
′
juj

with the three blocks corresponding to

WR
1 (c) = X ′ΣR

11(c)X =
k1∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X =
k1∑

j=1

g(dj ; c)dju
′
juj ,

WR
2 (c) = X ′ΣR

22(c)X = g(c; c)1{dj=c}X ′B(c)B(c)′X = g(c; c)1{dj=c}cu′juj ,

andWR
3 (c) = X ′ΣR

33(c)X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)X ′B(dj)B(dj)′X =
k∑

j=k1+1{dj=c}+1

g(dj ; c)dju
′
juj .
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PROOF of Proposition 8.4The quantityan

[
ψ̂n − ψ0

]
can be written as:

an

[
ψ̂n − ψ0

]
= an

[
ψ̂n − ψ1 + ψ1 − ψ0

]
= an[ψ̂n − ψ1

]
+ an

[
ψ1 − ψ0

]
. (B.1)

As Xn = an[ψ̂n − ψ1

]
satisfies Assumption2.1, we have

WR
n (c) = {an[ψ̂n − ψ1

]
+ an

[
ψ1 − ψ0

]}′ΣR
n (c){an[ψ̂n − ψ1

]
+ an

[
ψ1 − ψ0

]}
= an[ψ̂n − ψ1

]′
ΣR

n (c)an[ψ̂n − ψ1

]
+ 2an[ψ̂n − ψ1

]′
ΣR

n (c)an

[
ψ1 − ψ0

]

+an

[
ψ1 − ψ0

]′
ΣR

n (c)an

[
ψ1 − ψ0

]

= X ′
nΣR

n (c)Xn + 2X ′
nΣR

n (c)an∆ + a2
n∆′ΣR

n (c)∆
L→ X ′ΣR(c)X + 2X ′ΣR(c)an∆ + a2

n∆′ΣR(c)∆ → ∞ (B.2)

sinceXn
L→ X, ΣR

n (c)
p→ ΣR(c), andan(ψ1 − ψ0) = an∆ → ∞, asan grows to infinity. HenceWR

n (c)
converges to infinity with probability 1. The quantity

X ′ΣR(c)X + 2X ′ΣR(c)an∆ + a2
n∆′ΣR(c)∆

is asymptotically equivalent toX ′ΣR(c)X + a2
n∆′ΣR(c)∆ due to the dominance principle ofan∆′ΣR(c)∆ over

2X ′ΣR(c)∆, i.e.,

X ′ΣR(c)X + 2X ′ΣR(c)an∆ + a2
n∆′ΣR(c)∆ = X ′ΣR(c)X + an

[
2X ′ΣR(c)∆ + an∆′ΣR(c)∆

]
.

PROOF of Proposition 8.5
Under the local alternativean(ψ1n − ψ0) → ∆ 6= 0, then

WR
n (c) = an[ψ̂n − ψ1n

]′
ΣR

n (c)an[ψ̂n − ψ1n

]
+ 2an[ψ̂n − ψ1n

]′
ΣR

n (c)an

[
ψ1n − ψ0

]

+an

[
ψ1n − ψ0

]′
ΣR

n (c)an

[
ψ1n − ψ0

]

= X ′
nΣR

n (c)Xn + 2X ′
nΣR

n (c)an

[
ψ1n − ψ0

]
+ an

[
ψ1n − ψ0

]′
ΣR

n (c)an

[
ψ1n − ψ0

]
L→

n→∞ X ′ΣR(c)X + 2X ′ΣR(c)∆ + ∆′ΣR(c)∆ (B.3)

sinceXn
L→ X, ΣR

n (c)
p→ ΣR(c) .

PROOF of corollary 8.6 From Proposition8.5, we have:

WR
n (c) L→

n→∞ X ′ΣR(c)X + 2X ′ΣR(c)∆ + ∆′ΣR(c)∆ .

As ∆ ∈ V(0), P (0)(Σ)∆ = ∆, and we have:

ΣR(c)∆ =
∑

dj

g(dj ; c)Pj(Σ)∆ = g(0; c)P (0)(Σ)∆ = g(0; c)∆
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sincePj(Σ)∆ = 0 for all eigenprojections on the eigenspaces different fromV(0). Hence,

WR
n (c) L→

n→∞ X ′ΣR(c)X + 2g(0; c)X ′∆ + g(0; c)∆′∆ .

Proof of Proposition 9.1We need to show thatlimn→∞P
[‖ΣR

n (cn)−ΣR(0)‖ > ε
]

= 0 for everyε > 0. Let
r denote the rank of the matrix of interestΣ. Three possible cases will be considered in the proof:r = q, r = 0
and1 ≤ r < q. Let I = {1, 2, . . . , q} such thatλ1 ≥ λ2 ≥ . . . ≥ λi ≥ . . . ≥ λq ≥ 0, andJ = {1, 2, . . . , k} the
subset ofI corresponding to the indices of the distinct eigenvalues ofΣ: d1 > d2 > . . . > dj > . . . > dk ≥ 0

where the multiplicity of the distinct eigenvaluedj is denotedm(dj), so that
k∑

j=1
m(dj) = q ≥ 1 and1 ≤ k ≤ q.

For j ∈ J , let Ij denote the subset ofI such thatIj = {i ∈ I : λi = dj}, hence theIj ’s are disjoint sets such as
k⋃

j=1
Ij = {1, . . . , q}. If zero is an eigenvalue, thendk = 0. Let Pj(Σ) = P (dj)(Σ) represent the eigenprojection

operator projecting onto the eigenspaceV(dj) associated withdj . First we show that

lim
n→∞P[|g(λ̂i; cn)− g(dj ; 0)| > ε] = 0 ∀ i ∈ Ij , ∀ ε > 0 (B.4)

as it is used later on in the proof. By Lemma6.4 i), we have for alli ∈ Ij , λ̂i
p→ dj . Besides, ascn →

n→∞ 0, we

have
P
[|λ̂i − dj | > cn

]
= P

[|bn(λ̂i − dj)| > bncn

] →
n→∞ 0 (B.5)

sincebncn → ∞ andbn

(
λ̂i − dj

)
converges in distribution by Theorem6.6. Note that forλ̂i = λi(Σn), we can

write
lim
n→∞P[|g[λi(Σn); cn]− g(dj ; 0)| > ε] = lim

n→∞, m→∞P[|g[λi(Σn); cm]− g(dj ; 0)| > ε] . (B.6)

It is equivalent to write

|g[λi(Σn); cm]− g(dj ; 0)| = |g[λi(Σn); cm]− g[λi(Σn); 0] + g[λi(Σn); 0]− g(dj ; 0)|
≤ |g[λi(Σn); cm]− g[λi(Σn); 0]|+ |g[λi(Σn); 0]− g(dj ; 0)| .

(B.7)

Hence, lim
n→∞, m→∞P{|g[λi(Σn); cm] − g[λi(Σn); 0]| > ε} = 0 since lim

c→ 0+
g(λ; c) = g(λ; 0) . Further,

lim
n→∞P{|g[λi(Σn); 0] − g[dj ; 0]| > ε} = 0 , sinceλ̂i = λi(Σn)

p→ dj , ∀ i ∈ Ij andg ∈ Gc is continuous

a.e. w.r.t.λ, hence (B.4 ) follows.
Consider first the case where the limiting matrixΣ has full rank,i.e. rank(Σ) = r = q. For allj ∈ J : dj > 0

sincer = q, then by (B.4) and by Lemma6.4 i) and ii), we have:

g(λ̂i; cn)
p→ g(dj ; 0) , and PIj (Σn)

p→ Pj(Σ) ,

providedλi−1 6= λi andλj 6= λj+1 . Sinceg(dj ; 0) = 1
m(dj)

×m(dj)g(dj ; 0) = 1
m(dj)

∑
i∈Ij

g(dj ; 0) , we have
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after adding and substracting the quantity
k∑

j=1
PIj (Σn)g(dj ; 0) simultaneously:

ΣR
n (cn) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; cn)

=
k∑

j=1

PIj (Σn)
[
g(dj ; 0)− g(dj ; 0) +

1
m(dj)

∑

i∈Ij

g(λ̂i; cn)
]

=
k∑

j=1

PIj (Σn)
[
g(dj ; 0) +

1
m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]] p→
k∑

j=1

Pj(Σ)g(dj ; 0) = ΣR(0) ,

sincePIj (Σn)
p→ Pj(Σ) and|g(λ̂i; cn)− g(dj ; 0)| p→ 0 by (B.4).

Second, consider the case whered1 = 0 with multiplicity m(0) = q. In this case,Σn
p→ Σ = 0, i.e. Σn

converges to a zero matrix so that the range ofΣ isR(Σ) = {0} and its null-space isN (Σ) = Rq. Let P1(Σ)
denote the eigenprojection operator ofΣ associated with its zero eigenvalue (d1 = 0) which projects onto the
corresponding eigenspaceV(0), with dim

[V(0)
]

= q. After adding and substracting the quantityPI1(Σn)g(0; 0)
simultaneously, we have:

ΣR
n (cn) = PI1(Σn)

1
m(d1)

∑

i∈I1

g(λ̂i; cn) = PI1(Σn)
[
g(0; 0)− g(0; 0) +

1
m(0)

∑

i∈I1

g(λ̂i; cn)
]

= PI1(Σn)g(0; 0) + PI1(Σn)
1

m(0)

∑

i∈I1

[
g(λ̂i; cn)− g(0; 0)

]

p→ g(0; 0)P1(Σ) = ΣR(0) , (B.8)

since by Lemma6.4 ii), we havePI1(Σn)
p→ P1(Σ), PI1(Σn) = Op(1) and by (B.4), we have withd1 = 0:

|g(λ̂i; cn)− g(0; 0)| p→ 0 , ∀ i ∈ I1 .
Finally, supposedk = 0 andd1 6= 0. Then

‖ΣR
n (cn)−ΣR(0)‖ = ‖

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i; cn)−
k∑

j=1

Pj(Σ)g(dj ; 0)‖

= ‖
k∑

j=1

PIj (Σn)
[
g(dj ; 0)− g(dj ; 0) +

1
m(dj)

∑

i∈Ij

g(λ̂i; cn)
]
−

k∑

j=1

Pj(Σ)g(dj ; 0)‖

= ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]
+

k∑

j=1

PIj (Σn)g(dj ; 0)−
k∑

j=1

Pj(Σ)g(dj ; 0)‖

≤ ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]‖+ ‖
k∑

j=1

g(dj ; 0)
[
PIj (Σn)− Pj(Σ)

]‖

≤ ‖
k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]‖+
k∑

j=1

|g(dj ; 0)|‖PIj (Σn)− Pj(Σ)‖
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≤
k∑

j=1

‖PIj (Σn)‖ 1
m(dj)

∑

i∈Ij

|g(λ̂i; cn)− g(dj ; 0)|‖+
k∑

j=1

|g(dj ; 0)|‖PIj (Σn)− Pj(Σ)‖

(B.9)

sincePIj (Σn) = Op(1), |g(λ̂i; cn)−g(0; 0)| p→ 0 , ∀i ∈ Ij by (B.4),g(dj ; 0) = O(1) and‖PIj (Σn)−Pj(Σ)‖ p→
0, by Lemma6.4 ii). We can finally conclude that:

lim
n→∞P

[‖ΣR
n (cn)−ΣR(0)‖ ≥ ε

]
= 0 .

PROOF of Proposition 9.2

By Proposition9.1, we haveΣR
n (cn)

p→ ΣR(0) and by Assumption2.1, Xn
L→ X, hence

WR
n (cn) = X ′

nΣR
n (cn)Xn

L→ X ′ΣR(0)X . (B.10)

The statistic can be decomposed as:

WR
n (cn) = WR

1n(cn) + WR
2n(cn)

whereWR
in(cn) = X ′

nΣR
ii,n(cn)Xn , for i = 1, 2 and

ΣR
n (cn) =

k∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, cn) =
k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, cn)+
∑

j≥k1+1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, cn) .

Let’s focus on the first component:

ΣR
11,n(cn) =

k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

g(λ̂i, cn) =
k1∑

j=1

PIj (Σn)
[
g(dj ; 0)− g(dj ; 0) +

1
m(dj)

∑

i∈Ij

g(λ̂i, cn)
]

(B.11)

=
k1∑

j=1

PIj (Σn)g(dj ; 0) +
k1∑

j=1

PIj (Σn)
1

m(dj)

∑

i∈Ij

[
g(λ̂i; cn)− g(dj ; 0)

]
(B.12)

sinceg(dj ; 0) = 1
m(dj)

∑
i∈Ij

g(dj ; 0). Using the continuity property of the eigenvalues and total eigenprojections

given in Lemma6.4i) and ii) provided we can find distinct eigenvalue before and after, we havePIj (Σn)
p→ Pj(Σ)

and by (B.4)∀ε > 0, lim
n→∞P

[|g(λ̂i; cn)−g(dj ; 0)| > ε
]

= 0 ∀i ∈ Ij . Besides, as projection operators are bounded

in probability, we have:

ΣR
11,n(cn)

p→
k1∑

j=1

g(dj ; 0)Pj(Σ) ≡ ΣR
11(0) , with

k1∑

j=1

m(dj) = q1 = rank
[
ΣR

11(0)
]

= dimV(q1) . (B.13)

Hence, we have:

WR
1n(cn) = X ′

nΣR
11,n(cn)Xn

L→ X ′ΣR
11(0)X ≡ WR

1 (0) .
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For the second part of the statistic, theq × q matrixΣ is such thatrank(Σ) = q1, sodk1+1 = 0 with multiplicity
m(dk1+1) = q − q1. The regularization operates such that:

g(λ̂i; cn) =
{ 1

λ̂i
if λ̂i > cn

0 if λ̂i ≤ cn

(B.14)

If λi = dk1+1 = 0, then

P
[
g(λ̂i; cn) = 0

]
= P

[
bn|λ̂i| ≤ bncn

] →
n→∞ 1 ∀ i ∈ Ik1+1 ,

sincebn(λ̂i − λi) = Op(1) ∀i, andbncn →
n→∞ ∞. A fortiori, it still holds for P

[ ∑
i∈Ik1+1

g(λ̂i, cn) = 0
] →

n→∞ 1 .

WR
2n(cn) = X ′

nΣR
22,n(cn)Xn with ΣR

22,n(cn) = PIk1+1
(Σn)

1
m(dk1+1)

∑

i∈Ik1+1

g(λ̂i, cn)

SincePIk1+1
(Σn) = Op(1), thenP

[
PIk1+1

(Σn)
∑

i∈Ik1+1

g(λ̂i; cn) = 0
] → 1 ; this implies thatP

[
ΣR

22,n(cn) =

0
] → 1 , hence, we have:P

[
WR

2n(cn) = 0
] → 1 .

PROOF of Corollary 9.3

Apply the results of Proposition9.2 with Xn =
√

n
[
ψ(θ̂n) − ψ0

] L→ N
[
0, Σ

]
= X . Following equation

(7.9), Pj(Σ) = B(dj)B(dj)′ andB(dj)′X = xj , wherexj ∼ N
[
0, djIm(dj)

]
, or equivalentlyxj =

√
djuj ,

with uj ∼ N(0, Im(dj)) , we can write:

WR
1 (0) = X ′ΣR

11(0)X = X ′( k1∑

j=1

g(dj ; c)Pj(Σ)
)
X =

k1∑

j=1

g(dj ; c)X ′Pj(Σ)X

=
k1∑

j=1

g(dj ; c)X ′B(dj)B(dj)′X =
k1∑

j=1

g(dj ; c)x′jxj =
k1∑

j=1

1
dj

dju
′
juj =

k1∑

j=1

u′juj ,

whereuj ∼ N(0, Im(dj)) . Hence,u′juj ∼ χ(m(dj)). As
k1∑

j=1
m(dj) = q1, henceWR

1 (0) ∼ χ(q1).
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