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ABSTRACT

This paper studies Wald-type tests in the presence of a possibly singular (asymptotic) covariance matrix, eithe
in finite samples or asymptotically. Such difficulties occur in many statistical and econometric problems, such
as causality and cointegration analysis in time series, (locally) redundant restrictions, (locally) redundant momen
equations in GMM, tests on the determinant of a coefficient matrix (reduced rank hypotheses), etc. Two different
types of singularity are considereHirst, the estimated covariance matrix Hal rank but converges to aingu-

lar covariance matrix, so the Wald statistic can be computed as usual, but regularity conditions for the standarc
asymptotic chi-square distribution do not hol8econdthe estimated covariance matrix does not have full rank
and converges to a possibly singular matrix whose rank may differ from the finite-sample rank of the covariance
matrix estimate. The proposed procedure works in all cases regardless of the finite-sample and asymptotic rank
To address such difficulties, we introduce a novel mathematical objeatedhbkarized inversevhich is related to
generalizednverses, although different. We exploit general results on eigenprojections combinedvaitarece
regularizing function(VRF) which modifies small eigenvalues (using a threshold). The eigenprojection technique
entails that the regularized inverse always exists and is unique. The proposed class of regularized inverse matrice
includes as special cases several regularization methods such as spectral cut-off approaches and Tikhonov-type
verses, mainly used for estimation purposes. Under general regularity conditions, we show that sample regularize
inverse matrices converge to their regularized asymptotic counterparts. We pregokeized Wald statistics
obtained by replacing the usual inverse of the estimated covariance matrix (or the generalized inverse) by a reg
ularized inverse, allowing for both Gaussian and non-Gaussian parameter estimates. We consider two classes
regularized Wald statistics. The first one admits a nonstandard asymptotic distribution, which corresponds to a lin:
ear combination of chi-square variables when the estimator used is asymptotically Gaussian. In this case, we sho
that the asymptotic distribution Boundedby the usual (full-rank) chi-square distribution, so standard critical val-
ues yield valid tests. In more general cases, we show that the asymptotic distribution can be simulated or bounde
by simulation. The second class allows the threshold to vary with the sample size, but additional information is
needed. This class of test statistics includes the spectral cut-off statistic proposed by Litkepohl and Burda (1997,
Econometrickas a special case. The regularized statistics are consistent against global alternatives, with a loss ©
power (in certain directions) for the spectral cut-off Wald statistic. An application to U.S. data illustrates how the
procedure works when testing for noncausality between saving, investment, growth and foreign direct investment

Key words: Asymptotic singularity; Regularized Wald test; Moore-Penrose inverse; spectral cut-off and Tikhonov
regularizations; Bounded distribution; Monte Carlo tests; Redundant restrictions; Noncausality tests.
JEL classification: C1, C13, C12, C15, C32



1. Introduction

This paper examines Wald-type tests in the presence of possibly singular covariance matrices, either in finite
samples or asymptotically, so the usual regularity conditions that lead to a chi-square asymptotic distribution (with
possibly reduced rank) may not hold. The method we propose consists in regularizing the relevant covariance
matrix, so the latter has full rank both in finite samples and asymptotically. Our approach is “rank robust” in the
sense that the rank of the covariance matrix is arbitrary in finite samples and can converge to a matrix of any
rank (which may differ from the finite-sample rank). In particular, our method allows for a sequence of statistics
for which the rank of the covariance matrix varies with the sample size. This rules out the cumbersome task
of determining the asymptotic rank. Furthermore, we obtain valid inference for both types of singularity, finite
sample or asymptotic, even though we emphasize the case of asymptotic singularity in the distributional results
The regularization method is valid even in the worst-case scenario where the covariance matrix converges to a zet
matrix.

In regular setups, the regularized statistic is (asymptotically) identical to the standard one, while it is robust
to rank deficiencies in problematic casesAsymptotically valid tests can thus be performed regardless of the
asymptotic rank. More specifically, a bound is easily obtained for the full-rank regularized statistic. The bound
is appealing, because it relies on usual critical points for the full rank case and is invariant to the degree of rank
deficiency. These results only require information on the distribution of the estimated restricted parameters, no
the data generating process (DGP). The distribution of the estimator need not be Gaussian. Should the test bas
on the bound be conservative, this feature can be alleviated through simulation as soon as some information on tt
DGP is available.

If the covariance matrix estimator of an asymptotically normal random vector converges to a singular matrix,
using its generalized inversg-{nverse) — rather than thginverse of the limit in the corresponding normalized
guadratic form that defines a Wald-type statistic — yields a statistic whose asymptotic distribution is chi-square
with a reduced number of degrees of freedom, provided the ranks of the estimated covariance matrix converges t
the rank of the limit matrix; see Andrews (1987). Otherwise, the asymptotic distribution of the quadratic form is
typically modified. In particular, when testing nonlinear restrictions, this can happen if an asymptotic rank defi-
ciency obtains on sets of Lebesgue measure zegp 4t isolated points) in the parameter space. Problems of this
type are quite varied in econometrics, such as many test problems in time series, (locally) redundant restrictions
(locally) redundant moment equations in GMM, tests on the determinant of a coefficient matrix (for reduced rank
hypotheses), etc.

More specifically, in time series, situations that lead to asymptotic rank deficiencies include: tests on impulse
response coefficients in VAR models, tests of Granger non-causality in VARMA models [Boudjellaba, Dufour and
Roy (1992, 1994)], tests of noncausality at multiple horizons [Dufour and Renault (1998), Dufour, Pelletier and
Renault (2006)], tests on the coefficients of cointegrated VAR processes [Sims, Stock and Watson (1990)], tests c
long-run relationships in cointegrated systems [Gonzalo and Lee (1998)], stochastic discount factor specificatior
tests in a GMM framework [Marin (1996), Kan and Robotti (2009), Pefiaranda and Sentana (20£2)], etc.

Finite-sample and asymptotic singularities arise naturally with redundant constraints. When dealing with non-
linear conditional moment restrictions as in Gallant and Tauchen (1989) for the I-CAPM model, many parametric

1This paper does not deal with deficient ranks due to (first-order) underidentification. For those interested in such issues, see Dovonol
and Renault (2009), and Poétscher (1985). More generally, for those interested in weak identification issues in IV/GMM, see Dufour (1997),
Stock and Wright (2000), Stock, Wright and Yogo (2002), Dufour and Taamouti (2005, 2007) , Antoine and Renault (2009). Nevertheless,
we allow for situations ofveakidentification ofg only to the extent that the transformatigrd) is identified.

2Kan and Robotti (2009) note in a footnote on page 3461:

"that we should not perform a Wald test & : 7, = 5,, ¥ = Ox,+k,. This is because the asymptotic variance of

Vi, — B,9']" is singular undeiH,, and the Wald test statistic does not have the standard asympiotic.. ; ., +1
distribution. The proof is available upon request.”



restrictions turn out to be redundant; this creates collinearity problems for the Jacobian matrix. Redundant mo-
ment restrictions also arise in a dynamic panel GMM setting, when linear moment conditions imply nonlinear
moment conditions under additional initial conditions on the dependent variable [Arellano and Bond (1991), Ahn
and Schmidt (1995), Blundell, Bond and Windmeijer (2000), Doran and Schmidt (2006)] or when the number of
parameters exceed the number of observations [Satchachai and Schmidt (2008)]. In view of such difficulties, Car
rasco and Florens (2000), Carrasco, Chernov, Florens and Ghysels (2007), Carrasco, Florens and Renault (200
and Carrasco (2012) regularize estimators when a continuum of moments is used in a GMM/IV framework. Gen-
eral work on estimation that uses regularization techniques for high dimensional covariance matrices can be foun
in Bickel and Levina (2004), Bickel and Levina (2092008). On the estimation of high-dimensional covariance
matrices for portfolio allocation and risk management, see also Ledoit and Wolf (2003, 2004), Fan, Fan and Lv
(2008), Fan, Liao and Mincheva (2011), and Carrasco and Noumon (2011).

In this paper, we focus on testing issues. We propose a general approach to regularize singular covarianc
matrices in order to conduct valid Wald-type tests in two different ways: (1) relatively simple asymptotic bounds,
and (2) a simulation-based approach that can handle non-standard distributions in the context we consider. T
overcome the problem of asymptotic singularity, Litkepohl and Burda (1997) propose to reduce the rank of the
matrix estimator in order to satisfy Andrews’s rank condition. In doing so, they set to zero the small problematic
eigenvalues to produce a consistent estimator for the rank of the asymptotic covariance matrix. In the same veir
Gill and Lewbel (1992), Cragg and Donald (1996, 1997), Robin and Smith (2000) and Kleibergen and Paap (2006)
focus on tests for the rank of a matrix that is unobserved, but for whigh aonsistent estimator is available. In
contrast, we do not drop small problematic eigenvalues, which can increase power in finite samples. Unlike Cragc
and Donald (1996, 1997) , Robin and Smith (2000) and Kleibergen and Paap (2006) who assume Gaussianit
for the limiting distribution of the covariance matrix estimator, our methodology [based on the theory developed
by Eaton and Tyler (1994)] is more general, since the availability gfraasymptotically Gaussian estimator
is not required for the asymptotic covariance matrixal-Sadoon (2015) describes a general structure of rank
test statistics; those are shown to be functions of implicit estimators of the null spaces of the matrix of interest.
See also Doran and Schmidt (2006) for a reduced-rank weighting matrix estimate in highly-overidentified GMM
setups; like Lutkepohl and Burda (1997), they discard the smallest eigenvalues to improve finite-sample propertie:
of the estimate. Further, Gouriéroux and Jasiak (2009) have shown that the asymptotic distribution of the Wald
statistic for testing the noninvertibility of a matrix based upon the estimated determinant is seriously affected
when A = 0. Moreover, the asymptotic distribution of a reduced-rank estimater isfdifferent depending upon
whetherA = 0 or A # 0; size distortions may result from using quantiles of the standard asymptotic distribution
(i.e. those fromA £ 0).

When dealing with singular covariance matrices, usual inverses are discarded and replaagedhwvetbes
[see Moore (1977), Andrews (1987) for the generalized Wald tests] or modified inverses proposed by Litkeponhl
and Burda (1997). However, when usiggnverses, it is important to remain aware of two difficultigsrst,
the continuous mapping theorem so widely used in econometrics to derive asymptotic distributional results does
not apply anymore becaugenverses are not (necessarily) continuous [see Andrews (1987)]. Unlike eigenvalues,
eigenvectors are not continuous functions of the elements of the m&eisondwhen using the singular value
decomposition of a matrix, the eigenvectors corresponding to the eigenvalues with multiplicity larger than one,
are not uniquely defined, which rules out convergence in the usual sense. Ignoring these difficulties can lead t
distributional results which argtricto senswrong.

To address such difficulties, we introduce a clasegfilarizedinverses whose convergence properties exploit
the technique ofotal eigenprojectioni.e. an eigenprojection operator taken over a subset of the spectral set.
Following Kato (1966) and Tyler (1981), we work widigenprojectioroperators to overcome the discontinuity

SEstimating the rank as Liitkepohl and Burda (1997), Robin and Smith (2000) do may not be the right thing to do when it comes to
assess the finite sample distribution of such estimators. Our results somehow validate the intuition of Leeb and P&tscher (2003, 2005) wh
are very critical of post-model selection estimators.



and non-uniqueness of eigenvectors. A lemma given by Tyler (1981) states the continuity propertytditalthe
eigenprojection As a result, the important continuity property is preserved for eigenvalues and eigenprojections
even though eigenvectors amet continuous. We further define a perturbation function of the inverse of the
eigenvalues called theariance regularizing functiofVRF). The VRF modifies the small eigenvalues that fall
below a certain threshold so that their inverse is well behaved whereas the large eigenvalues remain unchange
Under specific regularity conditions, the regularized inverse converges to its regularized population counterpart
The distributional theory of the test statistic resulting from the total eigenprojection technique is therefore valid.

Our contributions can be summarized as followsst, we introduce a novel mathematical objectegular-
ized inversewhich is contrasted witlg-inverses. This new class of inverses fidkrank, and satisfies a decom-
position property: aegular component based on large eigenvalues, andraegularcomponent based on small
eigenvalues which may be associated with small or zero eigenvalues of the asymptotic covariance matrix. This
matrix decomposition determines a corresponding decomposition of the regularized Wald statistic. Under simple
conditions on the VRF, we show that the regularized inverse converges to its full rank regularized counterpart; the
convergence holds component by component. Besides, the class of regularized inverses is general, including
special cases the spectral cut-off type inverse and a Tikhonov-type in8asendwe define a regularized Wald
statistic that relies on a fixed value of the threshold in the YRE c). Another version allows the threshold to vary
with the sample size, but requires more information about the behavior of estimated eigenvalues. The first regular
ized Wald statistic admits a nonstandard asymptotic distribution in the general case, which corresponds to a linee
combination of chi-square variables if the restrictions are Gaussiaongervative bouni then obtained for the
distribution of the regularized Wald statistic. Hence, the teasisnptotically valid usual critical points (given by
the chi-square variable wittall rank) can be used, but are conservative. Interestingly, the bound is invariant to the
degree of rank deficiency of the covariance matrix. When the threshold goes to zero with the sample size, we ob
tain the spectral cut-off modified Wald statistic proposed by Litkepohl and Burda (1997) as a special case. Unde|
normality, the test statistic has the chi-square asymptotic distribution whose reduced rank is given by the numbe
of eigenvalues greater than zero. Note that Lutkepohl and Burda’s (1997) result only holds for distinct eigenvalues
whereas our result accounts for eigenvalues with multiplicity larger thanTdriel, to complement our bound, we
propose three alternative ways to conduct the (regularized) Wald test by simu(gtiwhen a DGP is completely
specified, the distribution of the test statistic can be simulated by simulating the @Gkhen the DGP is not
available, but the asymptotic distribution of the estimator is known (at least in large sample), the test statistic can be
simulated by simulating the estimatdiij) when the restrictions (evaluated at the unrestricted parameter estimate)
can be simulated, this also provides a way of simulating the test statistic. These three approaches require differel
amounts of information on the model and the estimator employed, so they have different reliabilities with respect
to asymptotic error, nonlinearity and identification. For example, simulating under the law of the restrictions may
allow one to bypass identification problems raised by the presence of unidentified parameters.

We investigate in a Monte Carlo experiment the finite and large-sample properties of the regularized test statis:
tics. Our findings can be summarized as follows.Regarding level control, the standard Wald statistie. (
W) suffers from severe over-rejections in small samples, or from under-rejections in large samples in non-regulal
setups. Similarly, the reduced rank Wald statistie. (/1. g) displays the same poor, finite sample behavior as
the standard statistic in non-regular setups, with critical size distortions when parameter values approach the nor
stationary region. However, it exhibits good size properties asymptotically. In contrast, the full-rank regularized
statistic that uses the bound is conservative. We observe that this feature can be alleviated by using simulatior
based versions of the regularized statistics. If one directly simulates the DGP, one can control the level of the tes
for the full-rank regularized statistic even in small samples. Thus, it is very important to simulate from a well-
behaved statistic to produce a reliable tagt.In terms of power, the full-rank regularized test statistics do not
entail a significant loss of power under the alternative compared to their oversized infeasible comipétitus
Wi in small samples for the asymptotic tests. Finally, the most striking result is the sewadeperformance
of the reduced rank statistid¢’z, 5 in a regular setup. As already mentioned by Litkepohl and Burda (1997), by



underestimating the true rank of the covariance matrix, this reduced rank statistic puts more weight on the first
restriction that remains fulfilled in this case. A violation of the null hypothesis coming from the second restriction
will not be detected by a statistic that underestimates the rank; a full-rank regularized statistic dominates in suct
a case. Thus, these results on power reinforce the better properties of the full-rank regularized statistics over th
spectral cut-off one.

iif) We finally illustrate the procedure on U.S. data by conducting noncausality tests at several horizons to asses
any causal relation between Saving, Investment, Growth and Foreign Direct Investment (FDI) (in the presence o
(locally) redundant restrictions). While most of the procedures are not able to reject the null hypothesis that Saving
does not cause Growth at all horizons, we unambiguously find that Growth causes Saving, and that Investmer
causes Growth in the presence of FDI on U.S. data. Our findings support the original literature by Houthakker
(1961, 1965), and Modigliani (1970) at the cross-country level. Moreover, our findings confirm Dufour and Renault
(1998, Proposition 4.5)'s results that in a VAR(1) model, it is sufficient to have noncausality up to horizon 2 for
noncausality to hold at all horizons.

The paper is organized as follows. In Section 2 we describe a general framework with minimal assumptions. In
Section 3, we provide specific examples in the presence of (asymptotic) singular covariance matrices. In Section 4
we introduce the class oégularizedinverses. Theegularizedtest statistic is presented in Section 5. In Section 6,
we review and adapt some results on total eigenprojections. In Section 7, we establish the asymptotic properties c
the new regularized inverse based on a fixed threshold. In Section 8, we state new asymptotic distributional result
for the regularized Wald test statistic that uses a fixed threshold. We exploit the decomposition of the regularizec
statistic to derive an upper bound. In Section 9, we obtain, as a special case, the Lutkepohl and Burda'’s (1997) resu
in the Gaussian case. In Section 10, we propose three alternative ways to conduct the (regularized) test throuc
simulations depending upon the available information: from the DGP, from the distribution of the estimator of the
parameters, or from the restrictions. Furthermore, the finite and large sample properties of the regularized statistic
are assessed through Monte Carlo experiments in Section 11. Finally, we illustrate the procedure by conductin
noncausality tests at several horizons on U.S. data in Section 12. Concluding remarks follow while the proofs are
gathered in the appendix.

2. Framework

Consider a family of probability spacd$., Az, Py) : 6 € 2}, whereL is a sample spacel, is ao-algebra

of subsets ofZ, andPy is a probability measure on the measurable sgaced,) indexed by a parametérin

2 C RP. The sets, A, and(? are all nonempty. Suppose we are interested by a transformatiagy — ¥,
defined on a nonempty subset of {2 on which we want to test hypotheses of the fakn () : ¥(0) = v .

Let Iy be a nonempty subset &f, 2 = {0 € 21 C RP :¢(0) € Iy C R?}. We also assume that the séls
and¥ possess metric space structures. In this case, inferencestatouid) will be based ond,.-measurable
observation (vectory” = (Y7, Y3,...,Y,,) inaspacé, with n denoting the sample size. The complete measurable
spacg), Ay) induced byy” on) is the same for alt € (2. The probability measure determinedihyon (), Ay)

is denoted byPy = Py(y) for anyd € (2. A usual test statistic for testing the null hypothesis is the Wald-type
statistic as soon as a consistent estimé;t,pof the restrictions is available. We first consider a general Wald-type
statistic based on an arbitrary weighting matdix:

Wa (o) = a2y, — o] Anlthy, — ] - (2.1)

W, is continuous with respect to (w.r.t) the restrictions and the weighting mdgyixvhich allows fairly weak
conditions. Usually4,, is the inverse of a covariance matrix estimatgy for zpn However, this specification
allows more general forms of the weighting matdy. More generally, this setup includes as special cases either
the well-known standard case whenever the estimator and its limit have full rank - in thatigase ¥, ! -



or deficient ranks withd,, = X}.. In other words, the method we propose is applicable under more general
assumptions: it is valid even though the finite sample (covariance) n&jris not invertible (hence requiring a

g-inverse), or is invertible but converges to a singular population matrikor notations = , 3 and- denote

n—oo

the convergence in law, the almost sure convergence and the convergence in probability respectivgly )and
denotes the law ok . Let,, satisfy the following assumption.

Assumption 2.1 CONVERGENCE IN LAW OF THE RESTRICTIONS LetX,, and X be random vectors iRR?. a,,
is a sequence of real constants such that— co, and X, = a, (¢, — v) £ X , whereL(X) is known.
n—oo

Assumption2.1 significantly enlarges the family of admissible laws ib,t;; the typical Gaussian distribution
for X can easily be replaced by a chi-square distribution, or a Cauchy distribution. Generally speaking, any
distribution that can be consistently estimated by simulations is admissible. Thereff)ifis not known, but
can be simulated through bootstrap technigees, then the techniques proposed in this paper can be applied to
providevalid tests under nonregular conditions. More importantly, note that Assumptioonly requires that
1 is identified; in other words can be unidentified, but there exist transformation8,dfe. v)(6), that can be
identified. In regression problems, it is frequent to encounter situations where only certain components of the
parameter of interest are identified; in such a case, inference is limited to the identified components. Whereas
Litkepohl and Burda (1997) assume the availability of an asymptotically Gaussian estimatasah equation
(2.4), that unnecessarily restricts to situations wheigidentified, we relax this assumption here. In doing so, we
allow for situations ofweakidentification only to the extent that(6) is identified. Note that) will alternately
equaly, under the null hypothesis, @r; under the alternative. Of course, the distributions characterizing the null
and the alternative are distinct.

Further, a general condition given by Eaton and Tyler (1994) states the convergence result for the weighting
matrix A,, (or a set of parameters).

Assumption 2.2 EATON-TYLER CONDITION. A, is a sequence gf x ¢ real random matrices and isap x ¢

real nonstochastic matrix such th@, = b, (A, — A) £ Q , whereb,, is a sequence of real constants such

n—oo
thatb,, — +o0, and@ a random matrix.

Note that Assumptior2.2 is less restrictive than Robin and Smith (2000, Assumption 2.2) and Kleibergen and
Paap (2006, Assumption 1, p. 103). Indeed, Assump?i@ullows situations whose matrix estimator is not
asymptotically Gaussian. The Eaton-Tyler condition is stated for rectangular matrices, but most of the time we
will consider square matrices that are symmetric with real eigenvalues. Assumptloarsd 2.2 will define the
cornerstone for the validity of the distributional results developed further. In particular, the convergence of ranks
property between the sample matrix and its population counterpart is not required in the full-rank regularization
case contrary to the reduced-rank one. It is also important to note that the generality of Assuhfxtioables

a mixture of a continuous distribution and of a Delta-Dirac distribution at an eigensatde:. Therefore, it is

not superfluous to examine this case, especially for non-continuous distributions of matrices and their eigenvalues
to provide a thorough and comprehensive distributional theory. Note that Assur@ionplies that4,, 2 A.

Under Assumption®.1 and 2.2, we can easily obtain the distribution of the Wald stati$iig () given in a
general form.

Lemma 2.3 Under AssumptioR.1and2.2, the statisticdV,,(¢,) defined in equatiof2.1) is such that:

Wo(y) = X'AX. (2.2)

n—oo



The general form of the statistid’,, (1)) in equation (2.1) based on the general weighting matsixbypasses
any issue related to the invertibility of the covariance matrix estimator As soon as a pseudo-inverse can be
found, one can conduct the test, at the cost of a slightly more intricate distributional theory. Most of the time, the
Wald test is implemented using the inverse of the covariance matrix of the restrictions under normality. Indeed,
if normality is assumed as in Assumpti@rb below, the Wald statistic follows a chi-square distribution with the
degree of freedom given by the rank of the asymptotic covariance matrix. Intentiomalig, equation (2.1)
represents a convergence rate that maglifierentfrom the conventional/n to precisely allow situations where
some components af,,, or linear combinations of them, may converge faster or slower tffan It is well-
known in the faster case thatiperconsistergstimators can raise asymptotic singularity problemsipy when
not suitably scaled; see Hamilton (1994, chapter 16, page 457-460) for a simple time trend model.

While ¢(6) in Assumption2.1 can accommodate some identification problems on some componehti of
might involve some discontinuity at some specific valueg, {6 = (01,02) € 2 : 03 = 0} for ¢(6) = 601/6-.
In this case, one should rather work witland place oneself under the alternative assumption:

Assumption 2.4 CONVERGENCE IN LAW OF THE ESTIMATOR OF THE PARAMETER LetX,, and X be random

vectors inR”. a, is a sequence of real constants such that— oo, and X,, = a, (6, — 0) £ X , Where

L(X) is known.

Finally, a data generating process (DGP) may be available in specific settings. One could exploit the DGP (or the
corresponding parametric model) to derive the distributiofy,adr that ofi(6,,), as established in the assumptions
above. Let us express the usual Wald statistic as a function of the par@meter

The knowledge of the parametércompletely specifies the distribution of the data. Most of the time, the
weighting matrixA4, as well as its sample analoly,, is interpreted as a covariance matrix. Nevertheless, such an
interpretation is very restrictive and discards distributions whose moments do noeaxishe Cauchy distribu-
tion. Therefore, Assumptioria1and2.2 are purposely formulated to allow such degenerate distributions. Let us
now focus on the usual case where the weighting matrixn Assumption2.2is equal toY,, i.e., a consistent
estimator of the limiting covariance matri of the restrictions.

A special case of Assumptiozsl and2.2that is usually encountered in the econometric literature consists in
specifying a Gaussian distribution f6f whose parametrization hinges éhwith a,, = \/n as in Litkepohl and
Burda (1997).

Assumption 2.5 ROOT-n ASYMPTOTIC NORMALITY. Let X,, and X be random vectors iR?. X, =

V(i (6,) —¥(6)) £ X ,whereL(X) = N(0,X) and X' is a fixedg x ¢ matrix.

n—oo

Note that Assumptio.5 allows for the most degenerate case corresponditlg £0 0. In this cased; = 0, with
m(0) = q. Usually, one derives the asymptotic normality of the restrictions from the root-n asymptotic normality
of the estimato#,, of the underlying parametérthrough the delta methode.,

Vil —0) 5 N(0,Zp) . (2.4)
This requires the continuously differentiability of the restrictions unlike Assumgihnn doing so, econometri-
cians unnecessatrily restrict the family of admissible restrictions to those for which the delta method is applicable.
Thus, when the delta method is applied to the Gaussian estimator given in equation (2.4), the covariance matri:
has the typical form~ = P(0)XyP(0)" which critically hinges on the differentiability of the restriction.
P(0) = 0(0)/0¢ as in Litkepohl and Burda (1997). By contrast, Andrews (1987, Theorem 1) does not rely on

6



the differentiability property of the restrictions, nor on the delta method, but on the Gaussian distribution of the
random variableX, and on the consistency of the sampbtwvariancematrix to its population counterpart. Indeed,
any weighting matrix can be used in the Wald statistic but onlycthariancematrix of the restrictions yields the
standard chi-square distribution. If a different weighting matrix is used instead, the distribution may be modified
as seen further.

Further, among regularity conditions usually made when conducting tests based on quadratic forms such a
Wald-type tests, is the well-known rank condition for the covariance matrix. Whemd X, have full ranks,
we are in the regular case with thex g-weighting matrixX' being nonsingular, and therefoV&, (1) has an
asymptoticy?(q) distribution. This is not necessarily true, howevep;ifs singular. In this case, does not admit
a usual inverse, but can still be inverted by means of a generalized inverse. However, when the population matri;
X’ has a reduced rank, the rank of the sample matrix has to converge almost surely (a.s.) towatig#dterank
of the population matrix for the quadratic form to have a limiting chi-square distribution, with fewer degrees of
freedom, when the restrictions are assumed to be asymptotically Gaussian. This is the case covered by Andrev
(1987). We shall relax this assumption in the paper.

3. Examples

In this section, we provide examples of asymptotic singularity for the covariance matrix that may affect the distri-
bution of the Wald test statistic.

3.1. Multistep noncausality

As already observed by Liutkepohl and Burda (1997), when testing for noncausality with a Wald test statistic, one
may encounter singular asymptotic covariance matrices. For the sake of comparison, we examine the exampl
studied by Lutkepohl and Burda (1997). For simplicity, a VAR(1) process is considered (8 thd ) vector

vt = [z y 2]’ as follows:

Tt Tt—1 Oz exy 0z Tt—1 Ug,t
Y| = A1 Y1 | tur = Hym Hyy Hyz Yt—1| + Uyt
2t 2t—1 ezx ezy 92z Zt—1 Uzt

Suppos€” = (y1,...,yn) » B= (A1), Zt =[yil, Z=(Zo,---sZn-1) , U = [wtlt=1,.n = (u1,...,un) ,
whereu; = [ug; uy ¢+ uz,)’ is a white noise with 43 x 3) nonsingular covariance matri,. Using the standard
column stacking operatorec, let§ = vec(A4;) = vec(B), whereB is (3 x 3) andY, Z andU are (3 x n).

(c0)
Testing the null hypothesis of multi-step noncausality running fgamz, i.e. Hy: y: /4 x4, requires to test 2

restrictions or¢ of the following form [see Dufour and Renault (1998)]:

- Oy |0
vie) = 0220y + O2ybyy + szezzj a [0} '

These restrictions are fulfilled in the following three parameter settings:
Opy =0:.=0, 0., #0

exy = sz = 07 ezrz 7é 0
Oy = O = 0y = 0 . (3.1)



We observe that the first-order partial derivative of the restrictions leads to a singular matrix

1 0 0 0 00
Ors +0yy Ony Opz 0. 0 O

o [0

N _ 3.2
00" |0y (3.2)

0 0
0 0
if (3.1) holds. Under such circumstances, the Wald test statistic does not have the standard chi-square distributio
under the null.

3.2. Jacobian matrix degenerate at isolated values for a stochastic volatility model

A two-step GMM-type estimator for estimatifig= (a.,, 7, r)’ has been proposed by Dufour and Valéry (2009)
in the context of a lognormal stochastic volatility model:

Y =cy—1+ur, e <1,
u = [ry exp(wt/2)]z

W = QuWi—1 + Tl ,  |aw| <1

based on the following moment conditions; (6) = E(uf) = r2exp[(1/2)r2 /(1 — a2)] , uy(0) = E(uf) =
3ry, exp[?ri/_(l —a?)], 2, 2(1]0) = E[u?u?ﬁll] = ryexp[rs,/(1 — ay)] . Testing for homoskedasticity,, =
rw = 0) in this model can be writtert(6) = 0 with ¢/(0) = (a4, r)’; there are two restrictions, and the derivative

matrix of the restrictions -
1 00
P<9)_aa/‘<0 1 0>

has full rank two, so it is regular. However, the Jacobian of the moment conditions does not have full rank when
evaluated at a point that satisfies the null hypothesis: it is easily shown that

0 0 2r

o Y

50 = 0 0 12r) (3.3)
00 4r

Y

whena,, = r,, = 0, so that the Jacobiady/9¢’ has at most rank one (instead of three in the full-rank case). But
GMM identification requires a full-rank Jacobian; see Newey and McFadden (1994, p. 2127).

Thus,du/06" typically has full rank when it is evaluated at a point that does not satisfy the null hypothesis,
for example at an unrestricted point estimat® ofis in Wald-type statistics. Therefore, the rankpf/96’, when
evaluated at an unrestricted point estimaté,afenerally exceeds the rank@f./9¢’ evaluated at the trugéwhen
a,n = 1 = 0 holds. This again violates the standard regularity condition entailing a non-regular asymptotic
distribution for the Wald statistic.

3.3. (Locally) singular restrictions

In their paper, Dufour, Renault and Zinde-Walsh (2014) provide a general characterization of the asymptotic distri-
bution of the Wald statistic under asymptotic singularity. They derive a wide array of asymptotic distributions for
the original Wald statistic (without modification) possibly involving nuisance parameters for a given null hypoth-
esis; bounds are also derived. Although very general, the characterization of the Wald statistic in irregular setup:
is very complicated. For instance, suppose one wants to test a null hypothesis of théffprn?,6, = 0 and

61 = 0 where the second restriction is clearly redundant. In this ¢&8e= [60,62, 6], and

o[ 4]
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Suppose an asymptotically Gaussian estimator is availablé, fice., \/ﬁ(én —0) Loz oN [0, I] When

61 = 0 andf, # 0, the rank ofP(6) above evaluated at these values clearly boils down to one instead of two. The
covariance matrix

202
Y =P0)1P(9) = ( 9;91 912 )
2

whose inverse corresponds to

(0307 — 03) \ =02 0307 )
Thus as shown in Dufour et al. (2014), the Wald statistic is equal to:
A, A ~ A2 I
W, =np(0)' S7(0) = nb) = x*(1) < x*(2),
with X corresponding to a consistent estimatebfHence, standard critical values based3(®) are conserva-
tive. For more examples of irregular Wald statistics, please see Dufour et al. (2014).

4. Regularized inverses

The methodology proposed applies to any symmetric matrices (covariance matrices). We first introduce some
notations. Let\ = (\1,...,\,) whereh; > Ay > ... > )\, are the eigenvalues of@ax ¢ (covariance) matrix

X, andV an orthogonal matrix such that = VAV’, whereA = diag(\i,..., ;). Specifically,V consists

of eigenvectors of the matriX’ ordered so that’V = V A. Letm(\) be the multiplicity of the eigenvalug.
Although the matrixA is uniquely defined, the matrik” consisted of the eigenvectors is not uniquely defined
when there is an eigenvalue with multiplicity(\) > 1. The eigenvectors which correspond to eigenvalues with
m(A) > 1 are uniquely defined only up to post-multiplication byra\) x m(\) orthogonal matrix. Moreover,
let 2}, be a consistent estimator &f with eigenvalues\; (X,,) > A2(X),) > ... > \(X),,) andV}, an orthogonal
matrix such that™,, = V,4,V,, whered,, = diag[A1(Z,),...,\(Xn)]. Forc > 0, we denotey(X, c) the
number of eigenvalues such that\ > ¢ andq(X,,, ¢) the number of eigenvalueg X,,) such that\(X,) > c.

If rank(X,,) = rank'X) = ¢ with probability 1,i.e. both matrices are a.s. nonsingular, so the invefses =
VAV and Xt = V, A1V, are a.s. well defined. However, if raii®) < ¢ and rankX,,) < ¢, we need to
make adjustments. For this, we defineegularizedinverse of a (covariance) matriX as below.

Definition 4.1 DEFINITION OF THE REGULARIZED INVERSE. X' is aq x ¢ real symmetric semidefinite pos-
itive matrix with rankY) < q. Its regularized inverse i£f(c) = VAl (c)V’ whereAf(c) = AT\ =
diag[g(\i;¢)],_, , + diag(-) represents a diagonal matrix/(\; c) > 0, withc > 0; g(\;¢) = 1 for A > ¢, and
g(X;c)is bounded.

The scalar functiory()\; ¢) modifies the inverse of the eigenvalues for the inverse to behave in a neighborhood
of the true values. We shall call it th@ariance) regularization functiofVRF). The VRF perturbs the small
eigenvalues in order to stabilize their inverse, preventing them from exploding.

We now introduce a partition of the matrik (¢) into three submatrices whereepresents a threshold which
may depend on the sample size and possibly on the sampleiiiself= c[n, Y,,]:

Alxeg 0 0
Af(e) = 0  AlNd 0 : (4.1)
0 0 Al



Let ¢; = dim AI[X;C], fori = 1,2,3, with ¢t = ¢(X,¢), ¢ = m(c) andgs = ¢ — ¢1 — 2. m(c)
denotes the multiplicity of the eigenvalue = ¢ (if any). The three components correspond/ltﬁX; c =
diag[g(A15¢),...,9(Ng30)]  for X > ¢ | A;[j\; d = glge)l, for A =c¢ A;[;\;c] =
diag[g()\qlJquH;c), e ,g()\q;c)] for A < ¢ . More specifically, the large eigenvalues that fall above the
thresholde remain unchanged whereas those equal to or smaller than the threshold are (possibly) modified to sta
bilize their inverse. Thus, the first component is "regular* and remains unmodified, while the others may not be
“regular”. In particular, the third component requires a regularization. Indeed, because of the invertibility difficul-
ties raised from small values of we shall replace the latter with eigenvalues bounded away from zero. Instead
of using a spectral cut-off Moore Penrose inverse, we propdsk-@nk regularized matrix. This regularization
encompasses the spectral cut-off type regularization as a special case. Indeed, the spectral cut-off Moore Penrao
inverse sets to zero all small problematic eigenvali.lesAg[X; o = Ag [\; ] = 0, yielding areduced-ranknatrix.

Let V1 be ag x ¢; matrix whose columns are the eigenvectors associated with the eigenyatuesrranged
in the same order as the eigenvalues. The eigenvectors associatexl withform a basis for the eigenspace
corresponding to\. If m(\) = 1, these eigenvectors are uniquely defined, otherwise not. The same holds for
the ¢ x g2 matrix Vo, whose columns are the eigenvectors associated with the eigenvalges and for the
g % g3 matrix V3 whose columns are the eigenvectors associated with the eigenvalues. AI A(Zn); cl,
A; A (Zn); c],/lg A(Zn); ], Vin, Vo, andVs,, denote the corresponding quantities based on the sample atialog
with dim A1 [A(X,);¢] = ¢1 = card{i € I : \;(X),) > ¢}, dim A2[A(X),);¢] = Go = card{i € I : \j(X),) = ¢},
dim Az[A(Xy);c] = ¢3 = card{i € I : N\;(X,) < c}, respectively. Using (4.1), theegularizedinverse can be
decomposed as follows:

AN 0 0 v/ 3
IRe) = VANV = [V Vo Vs 0 AlXd 0 Vil =Y xfe) (4.2)
0 0 A/ V5] =t

whereX%(c) = Vi/lj(c)vg’ i=1,2,3 andAj(c) = AZT [\; ¢] for the sake of notational simplicity. Likewisg can
be decomposed as:

3 3
D=VAV' =) Zi(e) =) Vidi(c)V] . (4.3)
=1 =1

whereX;;(c) = V;Ai(e)V/; Ai(c) = diag(A) e, A2(c) = diag(A) =, andA3(c) = diag(\)r<.. In the absence
3 3
of zero eigenvalues, the usual inverse can be computetfas= VA~V = S 51 e) = Y Vid; He)V] . Let
=1 =1
us establish some useful properties for the regularized inverses]pddnoting a conformable identity matrix.

Property 1 PROPERTY OF THE REGULARIZED INVERSES LetY = VAV’ be a positive semidefinite matrix,
such that\; > --- > A, > 0. LetAg(\;c) < 1 V A. Then, the regularized inversg’i(c) of X, defined in.1,
satisfies the following relations.

1. 0]

2. XX0(e) = XR(e)Y < I

3. TYR(e)T < I, , whereT = V AY/2V" is the square root of ;
4. DXR()Y < ¥

5. if g(A;c) > 0, then(ZF(c)) ™" > ¥
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6. if A > 0 theng(A; ) > 0 andrank(X7(c)) > rank(X) .

It is important to notice that any transformation of the original maftithat diminishes the inverse?(c)
satisfies relatioriv). Note that the generalized inverses usually denoted'byshare properties) andiii) with
theregularizedinverses. By contrast, properiyi) appears as a dominance relation for tbgularizedinverse as
opposed ta@-inverses for whicho' X~ X = ¥, Resultv) is well known forg-inverses and is related to generalized
inverse with maximal rank. See Rao and Mitra (1971, Lemmas 2.2.1 and 2.2.3 page 20-21)] foriigsaiftd
v) regardingg-inverses. Finally, note that) is another way of formulating), and can be useful for sandwich
estimators.

5. Regularized Wald statistic

In this section, we introduce the concept of regularized tests which embed three possibl€aasdsorresponds
to the regular setup where the estimator of the covariance matrix converges to a full-rank fixed matrix. In this case
regularizing is useless, and decomposition (4.3) amounts to a single block with. Case 2corresponds to a
sample covariance matrix that converges to a singular limiting matrix but satisfies Andrews’s rank condition. In
such a case, the limiting distribution is modified only through an adjustment of the degree of freedom. Finally
case 3makes use of a sample covariance matrix which violates the typical rank condition. Also, the regularized
weighting matrix converges to an object that is different from the original population matrix. This yields a valid
test but at the cost offally modifiedasymptotic distribution.

Based on decomposition (4.3), the original Wald statigfjg,) defined in equation (2.1) enjoys the following
decomposition

Wn(ﬂ)o) = Wln(C) + WQn(C) + Wgn(c) , (51)

whereWin(c) = a2 (v, — 1) Ziih(€) (¥, — o), With £ (¢) = Vin A () Vi, fori = 1,2,3, and A7} (c) =

A7HN(Z,); ). Fori = 2,3, Wi, (c) = 0, eventually. Note that decomposition (4.3) produces the sum of three

independent random variables. When Andrews’s rank condition does not hold, the Wald test statistic has to be
regularizedto account for such irregularities, as introduced next.

Definition 5.1 DEFINITION OF THE REGULARIZED WALD STATISTIC.  The regularized Wald statistic is
- p -
Wit(c) = X)X (e) Xn = an (¥, — ¥o) TR (C)an (¥, — o) -

Built on decomposition (4.2) and its sample analog,rdgeilarizedWald statistic can be decomposed as follows.

3
Wh(e) = X, ZF)Xn = al (b, — o) Ze) (b — o) = al (b, — o) Y _Zf,(0) (¥, — o)
=1
= W)+ WE(e) + Wi, (5.2)

whereW/(c) = a2 (v, — ¥o) ZF,.(0) (¥, — ¥o) 5 ZE () = Vin Al (c) V7, for i = 1,2,3, denotes the sample
analog of the elements in decomposition (4.2).

By partitioning the inverse of the eigenvalue mattiX(c) into three bIocksAI(c) for A > ¢, Ag(c) for A =c¢
andAg(c) for A < ¢, we have identified a convenient decomposition for the statistic into three components: the first
component builds on the "large" eigenvalues that remain unchanged; the second component gathers the eigenvalt
exactly equal to the threshotd(if any), while the third incorporates the small modified eigenvalues. This decom-
position sheds light on the structure of the distribution ofrdgularizedtest statistic. By contrast, Litkepohl and
Burda (1997) only keep the eigenvalues greater than the threshwltdch cancels out the last two components,

Wit (e) = Wi (¢) = 0. Thus discarding the small eigenvalues might reduce information. However, as Liitkepohl
and Burda (1997) use @ distribution with fewer degrees of freedom, a deeper investigation is required to gauge
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power. More importantly, in finite samples it will be difficult to disentangle the estimates that really correspond
to A = ¢ from those close to but distinct from This complicates the asymptotic distribution and the estimation
procedure. Note thdl’;,,(c) = W (c) for this is the regular component common to both statistics. Moreover,
when there is no eigenvalues exactly equal,ta.(c) = 0, and the second component vanishes.

6. Eigenprojections

6.1. Discontinuities of eigenvectors: an illustration

We now discuss some non-uniqgueness and discontinuity issues regarding the eigenvectors of a given matrix.
is well-known in spectral theory that eigenvectors corresponding to multiple eigenvalues are not uniquely defined
(only up to the post multiplication by am () x m(A) orthogonal matrix withm(\) indicating the multiplicity

of the eigenvalue). However, econometricians are not always aware of such technical details that could jeopardiz
asymptotic results. Further, whereas eigenvalues are generally known to be continuous functions in the elemen
of the matrix, eigenvectors not. The main pitfall consists of deriving convergence results for the estimates of the
eigenvectors based on the consistency of the sample matrix; this critically hinges on the continuity assumption o
eigenvectors (w.r.t. the elements of the matrix). Even in the deterministic case, eigenvectors are not necessaril
continuous functions of the elements of the matrix. We illustrate such a discontinuity in a simple counter-&xample

Example 6.1 Let A(z) be the matrix function defined as:

([1
tro 0 e o
i 0 1—=x
1
1 ifz>0 .
rx 1

This matrix function is clearly continuous at= 0, with A(0) = I,. However, forz < 0, the spectral decomposi-
tion of A(z) is:

A(z) = (1 + 2) H 1 0] +(1—a) m 0 1] 6.2)
with (1 4+ z) and(1 — x) being the eigenvalues aitd, 0)’ and(0, 1)’ the eigenvectors, while far > 0, it is
A@%:1(1+@[1[11]+1(1—@[1]ﬂ 1] (6.3)
V2 ! V2 1
with (1 + z) and (1 — =) being the eigenvalues an%(l, 1) and %(1, —1)" the eigenvectors. Clearly, the

eigenvalueg1 + z) and (1 — z) are continuous at = 0 whereas the eigenvectors are not the same whether
x— 0T orz — 0.

Being unaware of this caveat may leadvirong distributional results by mistakenly applying the continuous
mapping theorem to objects that aret continuous. Nevertheless, there exist functions of eigenvectors that are
continuous w.r.t. the elements of the matrix. Specifically, for an eigenvaltiee projection matrix”(\) that
projects onto the space spanned by the eigenvectors associated-ilitheigenspacé’ () - is continuous in the
elements of the matrix. This follows from the fact tHaf)\) is invariant to the choice of the basis. For further
discussion of this important property, see Rellich (1953), Kato (1966) and Tyler (1981).

“We are grateful to Russell Davidson for this example.
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6.2. Continuity properties of eigenvalues and total eigenprojections

In order to derive the asymptotic distribution of the regularized test statistics, it will be useful to review and adapt
some results on spectral theory used in Tyler (1981). 4(ef') denote the spectral set d&f, i.e. the set of all
eigenvalues of’. Theeigenspacef X' associated with\ is defined as all the linear combinations from a basis of
eigenvectors;, i = 1,...,m()), i.e.

Clearly,dim V(\) = m()\) . SinceX'is ag x ¢ matrix symmetric in the metric of a real positive definite symmetric
matrix T, i.e. TX is symmetric [see Tyler (1981, p.725)], we have:

RT= > V(). (6.5)
)

AeS(E

Theeigenprojectiorof X' associated with\, denotedP (), is the projection operator onid(\) w.r.t. decomposi-
tion (6.5) ofR9. For any set of vectors; in V() such thak/Tx; = ¢,;, whered;; denotes the Kronecker’ s delta,
P()) has the representation

m(\)
P =) xxT. (6.6)
j=1
P(\) is symmetric in the metric df. This yields

=Y AP, Zu= ) AMEZ)PAE)] (6.7)
)

AES(Z A(Zn)ES(5n)

If v is any subset of the spectral s¢t), then thetotal eigenprojectiorfor X associated with the eigenvalues in

v is defined to b& _, ., P(\). Below we report a lemma given by Tyler (1981, Lemma 2.1, p. 726) that states
an important continuity property for eigenvalues and eigenprojections on eigenspaces for non-random symmetri
matrices from which consistency of sample regularized inverses will follow.

Lemma 6.2 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS LetX, be ag x g real matrix symmetric
in the metric of a real positive definite symmetric maifjxwith eigenvalues.; (X,) > Aa(X,) > ... > X (Xh).
Let P, .(X),) represent the total eigenprojection fai, associated with\, (%) ... A\(X,) fort > k. If X}, — ¥
asn — oo, then:

) Ae(Zn) = Ae(2), and
i) Prt(Xn) — Pre(X) providedA,—1 (X) # Ap(X) and A (L) # A1 (X)) -

This lemma tells us that the eigenvalues are continuous functions in the elements of the matrix. The same continuit
property holds for the projection operators [or equivalently for the projection matrices for there exists a one-to-one
mapping relating the operator to the matrix w.r.t. the basis] associated with the eigenvalues and transmitted tc
their sum. No matter what the multiplicity of the eigenvalues involved in the total eigenprojetigry’), this
continuity property holds provided that we can find one eigenvalue before and one after that are distinct. It will
be useful to extend Lemm&2to random symmetric matrices. To the best of our knowledge, these results are not
explicitly stated elsewhere.

Lemma 6.3 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONSALMOST SURE CONVERGENCE Let
X, be ag x ¢ real random matrix symmetric in the metric of a real positive definite symmetric random rhatrix
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and with eigenvalues; (X)) > Xo(X,) > ... > A\(Xy). Let P (X)) represent the total eigenprojection for
X, associated with\, (X,) ... \(Xy,) fort > k. If X, % ¥ asn — oo, then:

I) )\k(En) €3 )\k(E), and
i) Pri(2,) %S Pyy(X) providedy_1(2) # M\ (X) and A\ (X)) # Ay1(X)

We can now show that the continuity property of the eigenvalues and eigenprojections established in the a.s
case, remain valid in the case of convergence in probability .

Lemma 6.4 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS CONVERGENCE IN PROBABILITY.

Let X, be aq x ¢ real random matrix symmetric in the metric of a real positive definite symmetric random matrix
T, with eigenvalues\ (X,,) > Xo(X) > ... > N\(Xh). Let P, (X)) represent the total eigenprojection féi,
associated with,(%,,), ..., \(Z,) fort > k. If £, & Y asn — oo, then:

) Ae(Zn) 2 A(X), and
i) Ppy(5,) 2 Pry(X) provided;, 1 (%) # M\ (E) and A (X)) # A1 (%)

6.3. Asymptotic distribution of eigenvalues

In this subsection, we summarize general results on the sample eigenvalue behavior established by Eaton and Tyl
(1991, 1994) . Before establishing convergence results for the regularized covariance matrices and the regularize
tests statistics, we shall first study the convergence rate of the eigenvalues in the general case where the covariarn
matrix may be singular with (possibly) multiple eigenvalues. To do so, we shall apply a general result given by
Eaton and Tyler (1994) where they generalize classical results due to Anderson (1963, 1987) on the behavior o
the sample roots (of a determinantal equation). Specifically under relatively weak conditions, Eaton and Tyler

(1994) show the following: if a sequence of randgpnx ¢)—matricesy, satisfies the conditiod, (X, — X) £
@ where X' is a nonstochastic matrix, then the sample eigenvalues will have the same convergence rate, with
ba[F(Z,) — W(D)] 5 [Hp (3@, + Q11]), ¥(Qa)]" . Hp(.) and¥(.) are vector-valued functions stacking
the eigenvalues of the corresponding objects. A more detailed definition of those vectors will follow. For our
purpose, the convergence rajeof the sample eigenvalues is the only thing we need in deriving the convergence
property of the regularized covariance matrices.

Letd; > ds > --- > dj denote the distinct eigenvalues ofjax ¢ symmetric matrixC' and letm; be the

multiplicity of d;,i = 1,...,k, 1 < k < ¢q. Given the eigenvalue multiplicities @f, it is possible to partition the
matrix C' into blocks such ag’;; is them; x m; diagonal block ofC andC;; them; x m; off-diagonal blocks,
i,7=1,...,k. Thus, a functior ong¢ x ¢ symmetric matrices can be defined by
p(C11)
p(C
Hee - | 1 (6.8)
p(Crk)
H(C) takes values ifR? and p(C;;) consists of then;-vector of ordered eigenvalues of the diagonal blagk
i=1,...,k. LetI" be an orthogonal matrix such that
I'AI' =D, (6.9)

where the diagonal matrik consists of the ordered eigenvalues of a nonrandom symmetric matBaton and
Tyler (1991) first establish the distributional theory for symmetric matrices before extending it to genetal
matrices.
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Lemma 6.5 DISTRIBUTION OF THE EIGENVALUES OF A SYMMETRIC SQUARE MATRIX LetS,, be a sequence
of ¢ x ¢ random symmetric matrices. Suppose there exists a nonrandom symmetric Anafrika sequence of
constants$,, — -+oo such that

Wi = b (S, — A) 5 W . (6.10)

Then
bu(p(Sn) — p(A)) & H(IWT'). (6.11)

For anyp x ¢ real matrix X, the ¥(.) function is a vector-valued function that stacks the eigenvalues of the
corresponding object as defined below:

V& NG
V(D)= fp(ZD) = | ¢ | with f@)=| : (6.12)
V& Nen

where¢; > --- > ¢, > 0 are the eigenvalues &' ¥ Let

T = (df(¢)) = %diag(fl_lm, €YY (6.13)

In the first part of the theorem below, we gather the special cases where the mairay have rank = 0 or
r = ¢ before giving the general result in the second part. In the second part of the theorem, write ghaatrix
X in the form

0 0

wherel; (I3)is ap x p (resp.q x ¢) orthogonal matrix, and is ar x r diagonal matrix.D consists of the strictly
positive singular values oYf'. Partition the matrix,, as

a1l Y12
X, = " 6.15
" <En21 En22> (6.15)

y=1 <D 0) I (6.14)

whereX, 11 isr x r, Xpi2isr x (g —1r), Xpo1 1S (p— 1) x rand X900 is (p — ) x (¢ — r). Partition the random

limit matrix @ accordingly. The- x r diagonal matrixD = diag( 1/2, ce ,1/2) defines a functiotHp onr x r
symmetric matrices. Léfp = %diag(gl_m, e ,5;1/2). The general cask < r < ¢ can be thought as gluing

together the two special cases= 0 andr = q.

Theorem 6.6 DISTRIBUTION OF THE EIGENVALUES OF RECTANGULAR MATRICES IN THE GENERAL CASE
Let¥(-) be defined as i(6.12), and suppose Assumpti@r® holds.

i) If X =0,then
b ((2,) — (X)) & w(Q) . (6.16)
i) If X has full rankg, then
b (T(2,) —¥(X)) S TH(T[2'Q+ QXTI (6.17)

whereH, I" andT are defined in6.8),(6.9) and (6.13).
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i) If rank(X) =r,1<r <gq,then

¢ [Hp(A[Q) +
bal(2) - w(m)] & | M2+ Qu) (6.18)
whereQ = [g“ glﬂ is a well-defined random element, wihy; being anr x r matrix and Q.2 a
21 22
(p—r) x (¢ —r) matrix. Ther x r diagonal matrixD = diag(d/z, el ,1/2) consisted of the strictly positive

singular values o defines a functio{p onr x r symmetric matrices a# is defined in(6.8) ongq x ¢
symmetric matrices.

Note the generality of the theorem that allows for convergence rates other than the standard root-n one; it does ne
critically hinges upon the normal limiting distribution for the sample eigenvalues, a desirable feature for positive
eigenvalues. For our purposes, we do not need to know the whole distribution but only the convergehce rate
of the sample eigenvalues to establish the convergence property of the regularized inversevavfenwith the
sample size. Again, the knowledge of the sample convergence rate is unnecessary for the regularized inverse bas
upon the fixed threshold case. See Eaton and Tyler (1994, Propositions 3.1 and 3.4 and Theorem 4.2) for a proc
of the theorem.

Before presenting the asymptotic properties of the regularized inverse, we shall first discuss some condition:
under which the asymptotic distribution of the empirical eigenvalues could be uniform. The rare cases where the
asymptotic distribution of the empirical eigenvalues could be uniform would correspond to situations where all the
population eigenvalues are greater than zero (The@@ncase ii), or all are equal to zero (Theoré&m, case
i). Otherwise, the distribution cannot be uniform: the inspection of The@®mase iii that examines a strictly
positive butincomplete rank shows that the structure of the distribution is different on thesfingular values than
on the lasy — r ones. Similarly, the finite-sample distribution of the sample eigenvalues will depend on the rank of
the sample matrix; if the sample matrix has full rank, the probability to have a zero sample eigenvalue is zero. Yet,
the number of the empirical eigenvalues greater than the threshotd:() will vary with the sample size. Thus,
the small empirical eigenvalues will eventually fall below the threshold as the sample size grows; meanwhile the
large empirical ones will converge to their population counterparts which determines the asymptotic rank. Finally,
if the asymptotic distribution of the eigenvalues is not degeneratgda mixture of a continuous distribution and
of a Delta-Dirac distribution at), there is a nonzero probability that a certain empirical eigenvalue converges to
the threshold; in such a case, a superconsistent estimator can overcome such complications.

7. Asymptotic properties of the regularized inverse

In this section, we derive asymptotic results for thgularizedinverse that hold for a general variance regular-
ization function (VRF) family. More specifically, in Subsection 7.1, we introduce a family of general variance
regularization functions that exploits a threshold. This VRF family is general as it embeds both cases, continuous
VRFs (see case ii, equation (7.3)), or discontinuous VRFs (see case i, equation (7.2)). Such a regularization af
proach based on a cut-off point to disentangle large eigenvalues from small eigenvalues enables us to recover ¢
important strand of the statistical literature that estimates the rank of a matrix; see Gill and Lewbel (1992), Cragg
and Donald (1996, 1997) , Robin and Smith (2000) and others. In the same vein, the approach introduced by
Latkepohl and Burda (1997) yields a modified reduced-rank estimator for the covariance matrix; we generalize it
to non-Gaussian estimators in the presence of possible multiple eigenvalues.Liitkepohl and Burda (1997) propos
to reduce the rank of the matrix estimator to satisfy Andrews’s rank condition. The asymptotic rank is meaningful,
especially if one wants to recover the asymptotic chi-square distribution for the test statistic. Basically, we wanted
to be ecumenical by allowing all rank possibilities, from reduced ranks to full ranks. Besides, the threshold method
is attractive because it leads to a genuine bound for the nonstandard distribution. Finally, Subsection 7.2 review
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well-known continuous regularization schemes extensively used in ill-posed inverse problems. Such continuous
VRFs do not make use of a threshold, hence the resulting distributional theory is easier. Those regularization tool
can be cast into th@. VRF family for a specific choice of the threshold. See Carrasco, Florens and Renault (2007)
for a comprehensive review on regularization tools in ill-posed inverse problems in structural econometrics.

7.1. The family of admissible Variance Regularization Function (VRF)

We now define the VRF family, and provide a few examples.

Definition 7.1 THE FAMILY OF ADMISSIBLE VRF. G, is the class of admissible scalar VRFs, such as for a real
scalarc > 0 :
g(,e): Ry — Ry
A = g\

g(\; ¢) is continuous almost everywhere (a.e.) wXtexcept possibly at = ¢, (w.r.t. the Lebesgue measure);
is a function that takes bounded values everywhgig;non-increasing im\; lim+g()\; ¢) = g(\;0)
c— 0

Note that we allow a discontinuity & = ¢ to precisely embed a spectral cut-off type regularization such as a
modified Moore-Penrose inverse that is cleambf continuous around = ¢ for ¢ > 0, see (7.2). Some possible
choices for the VRF could be:

= if A>c
g(Xe) = { ) - (7.1)
m if A é C

with v > 0. This VRF can be viewed asmodifiedHodges’ estimator applied to the eigenvalues. See Hodges and
Lehmann (1950), LeCam (1953). Interesting special cases include:

1. )]

2. vy =o00,¢c >0, hence

Lt A>e¢
. —J A
s ={3 s 72)

and thereforel’(c) = A*(c), where
AT (c) = diag[l/MI(A > ¢),..., 1/ A I1(A\g > ¢),0,...,0]

corresponds to a spectral cut-off regularization scheme [see Carrasco (2012), Carrasco, Florens and Renal
(2007) and the references thereifs) is equal to 1 if the relation is satisfied. In particulati™(c) is a
modified versionof the Moore-Penrose inverse of

A =diag[MI(A1 > 0), .., A I( Mgy > 0), Agua1l(Agya1 > 0) ..o, AL (Ag > 0)]

used by Lutkepohl and Burda (1997). We also consider the case where some eigenvalues may be smalle
than the threshold, with ¢ # 0.

3. v = 0 ande = ¢, with ¢ # 0, hence

L if A>e
—J A
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4. v > 0withy = ﬁ,a > 0, ande = A, with ¢ # 0, hence

1 if A>c
. — A
s ={ L 32 7.4

which corresponds to a variation around the Tikhonov regularization (related to the ridge regression) since
1 A

1
My(ec=A) T Aa/A T N4al

Based on the spectral decomposition defined in equation (6.7), we immediately deduce a spectral decompos
tion for the regularized inverses:

She)=vAIV' = > gxaPN), ZHe)=Vudl(Vi= > g[AZ)id PAZ)] -
AES(X) AN(Zn)ES(Zn)
(7.5)
Thus, the dependence enof the regularized inverses comes from the VRR;c¢). The threshold:- may be
size-dependente., g(\, ¢,). This is a special case offixed and will be studied in Section 9.

7.2. The Variance Regularization Functions: the continuous case without threshold

Well-known continuous regularization schemes that do not use any threshold are the Tikhonov regularization anc
the Landweber Fridman iterative regularization. For readers interested in regularization tools in ill-posed inverse
problems in structural econometrics, see Carrasco, Florens and Renault (2007), Carrasco (2012).The Tikhonc
regularization scheme is closely related to the ridge regression. In this gase= ﬁ ,a > 0. For the
1/

Landweber Fridman iterative regularization schepgie,) = w ,v >0, a > 0. This class of VRF
that does not make use of a threshold can be recast intg_ tii@mily by selecting the threshold such that

¢ > Amaz, Wherel,,., denotes the largest eigenvalueXofi.e. g(\) = g(A; ¢) with ¢ > A\jaq.-

Without a threshold, the convergence of the regularized inverse is straightforward; it follows from the continuity
property ofg(-) and of the total eigenprojections. However, there is a trade-off between the simplicity of the
continuous regularization schemes above - that simplifies the asymptotic theory - and the maintained hypothesi
of a chi-square distribution with reduced rank. Indeed, the threshold allows us to disentangle the large eigenvalue
from the small problematic ones; this observation enables to exploit the chi-square distribution. Especially when
the rank of the limiting matrix is reduced, it may be helpful to exploit it. Estimating the reduced rank of a matrix
is an interesting problem that has drawn much attention in the statistical and econometric literature; our approacl
encompasses the two extreme limiting cases: the reduced rank statistic that still follows a chi-square distribution
but may have reduced power (as some restrictions are removed); and the modified full-rank statistic that has
nonstandard distribution but may have more power in some directions. In between, there is the chi-square uppe
bound whose main appeal is simplicity: one can use the standard critical point instead. Although the chi-square
upper bound is conservative, it enjoys good power properties as shown later on in simulations.

7.3. Asymptotic properties of the regularized inverse wherm is fixed

Because the random objects considered here are matrices, we must choose a norm suitable to matrices. For tl
reason, we consider the finite dimensional inner product s@@ge< -, - >), whereS, is the vector space afx ¢
symmetric matricessS, is equipped with the inner produet X, ¥y >= tr[X]Xs], wheretr denotes the trace
operator. Lef| - || » denote the Frobenius norm induced by this inner prodiect|| X||% = tr[X’Y]. Recall that

AR (c) denote the regularized inverse of & q real symmetric matrixd. In the sequel, lef = {1,2,...,q} denote

the set of indices such that > A\, > ... > \;,andJ = {1,2,..., k} the subset of corresponding to the indices
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k
associated with the distinct eigenvaluesiafi.e. d; > dy > ... > d; > ... > di, sothat)  m(d;) = ¢ > 1and
j=1
1 < k < ¢, with m(d;) denoting the multiplicity ot/;. Let us define a partition af, denotedP (1) such that:

k
PI)={IcljeJ:L(\L=0J=1}, T={1,...,q}, (7.6)
j#l j=1
with
Ij={iel: \=d;}, cardI;=m(dy) (7.7)
and
Ic)={iel: \y=dj=c},, cardI(c)=m(c) (7.8)

We adopt the convention thdi{c) = @, if there is no eigenvalues equal to The vector spac®? can be
decomposed aR? = V(dy) ® --- ® V(d;) @ --- ® V(di) . Eachu € R? can be expressed in the form
w = u + -+ uj +- -+ u Withu; € V(d;), j € Jin a unique way. The operatd?; = P(d;)

is such that: Pju = u; is the eigenprojection operator that projects onto the eigenspéatg along N; =
V(d) ® -+ dV(dj—1) @ V(djs1) @ -+ ® V(dg) . Thus,P;(X) = P(d;)(X) , projectsX onto the eigenspace
V(d;) alongN;. Forallj = 1,....k, with 1 < k < g, the B(d;)’s, such thatB(d;) = [v(d;)i]i=1,...,m(a;) form
an orthonormal basis for the eigenspadd;) = {v € RY,| Yv =d;v} . Let

(X) = P(d;)(¥) = B(d;)B(d;)", (7.9)

when it is expressed in the Euclidean metric. The Euclidean metric specified here implies that thelmetric
in equation (6.6) is equal to the identity matrix, thatAg\) = Z;ﬁ:(i) xjxg.T , with T" = Id. Furthermore,
Z;‘f’:l P; =1, PyP;=0;,P;,withé;, =0forj# kandd;, = 1forj = k. There is a one-to-one mapping
from J to P(I) such that:

Vied: j — I (7.10)

where the total eigenprojection operafey (e) applied toX,,, with X, 2, ¥, yields by Lemmab.4ii)
Pr,(2,) = Pj(¥) = P(d;)(%) (7.11)

and

k k
dim Py, = dim P; = m(d;) = dim V(d;) with 1= Pj=) P . (7.12)
Jj=1 Jj=1

Property 2 UNIQUE REPRESENTATION OF THE REGULARIZED INVERSE For a given VRFy(.,¢) in the G,
family, the regularized invers&%(c) = V Af(¢)V’ of a symmetric matrix. and its sample analog’?(c) =
VnAL(c)V,fL admit an unique representation of the form:

k

SR(e) = gldy; ) Py(%) (7.13)
Jj=1
and i
S8E) = YR (5 s S oo (7.14)
j=1 7 Ger;



>

where thed;’s denote the distinct eigenvalues Bfwith multiplicity m(d;), A;
are defined at equationg.9)-(7.12) with I; defined at equatio7.7). If X
9(0;¢)P(0)(X) = g(0;¢)1q -

The unigueness of the representation of the regularized inverse immediately follows from the uniqueness of the
decomposition involving only distinct eigenvalues. In particular, this representation exploits the Spectral Theorem;
please see Eaton (2007, Theorem 1.2a, p.53), and the references therein. Thus, there is a one-to-one relati
between the regularized inverse and the (REc) in the G, family. An interesting case producing a nonstandard
asymptotic distribution corresponds to a fixed threslpkh upper bound can be derived in the Gaussian case (see
Corollary8.3).

Let us first define a superconsistent estimator of the eigenvaluesThe estimaton(c) = (\i(c))i=1....q Of
the eigenvalues of @ x ¢ positive semidefinite matriX’ satisfies:

Ai(2n)

= A; ) P[j(zn) ande(E)
0, P(0)(X) = I,

and X (c) =

. i i [Ai— > v
Nile) = o bn 7.15
(c) {c if \)\i—c|§1/2—z, ( )
for eachi = 1,...,q whereb, is the speed of convergence of the sample eigenvalues as defined in Tlge@rem

en is chosen such that, — oo with = — 0 asn grows to infinity, and- is an arbitrary strictly positive constant.

;\i(c) corresponds to a Hodges estimator; see Hodges and Lehmann (1950), LeCam?119&&), and Potscher
(2008).

Assumption 7.2 REGULARITY CONDITIONS FOR THE CONVERGENCE OF THE REGULARIZED INVERSEThe
VRFg € G.,and fori = 1,...,¢, \; = \;(X) are the eigenvalues of @x ¢ positive semidefinite matriX'. At
least, one of the following conditions holds:

i) the VRFyg is continuous af; = ¢
iii) the estimator);(c) of \; defined in equation7.15) is superconsistent at i.e. P[\;(c) =¢] — 1.

As long as one of the above conditions holds, both convergence results of the regularized inverse (Proposition
7.3and7.4) will hold, otherwise they may break down. Let us now state the a.s. convergence for the regularized
inverse where is fixed.

Proposition 7.3 ALMOST SURE CONVERGENCE OF THE REGULARIZED INVERSE Letg € G.. Suppose”
and X, are ¢ x ¢ symmetric matrices withank(X) = r < ¢ . Let the regularized inverses satisfy equations
(7.13) and(7.14). Let Assumptioid.2 hold. If £, “3 X, then

SRe) S 2R () . (7.16)

Proposition 7.4 CONVERGENCE IN PROBABILITY OF THE REGULARIZED INVERSE Suppose. and Y, are
g % g symmetric matrices such thaink(X) = r < ¢ . Suppose Assumpti@m®holds withp = ¢, and Assumption
7.2holds. Let the regularized inverses satisfy equatighs3) and (7.14), and decompositiofy.2). Then

Ze) = B u(0) + 25 (e) + 245, (e) (7.17)
where . i
IMOE ZPIj(En)@Zg(ii,c) 5 Y gldje)Py(2) = Zfi(e) (7.18)
j=1 i€l; J=1
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1 .
55 nlc) = P](c)(En)m D g(hie) B gl )l (g,—q Pio(Z) = Tah(c) (7.19)

i€l(c)
k k
1 .
= ) sz(En)m(d,)Zg(Ai,C) L Y gldiioP(X) = Zf(c) . (7.20)
j:k1+1{dj:c}+l J i€l j:k1+1{dj:c}+l
IRy B 2l . (7.21)

k
k1 = > 1{a;>c}, k is the number of distinct eigenvalues Bf and P;.)(X) = P(d;)(X) for d;j = ¢, where
j=1

P;(X) = P(d;)(X) is defined at equatiofi??). I; and I(c) are defined in(7.7) and (7.8). m(d;) andm(c)
denote the multiplicity of ; and c respectively.

The problematic component for the convergence of the regularized inverse is the second one involving the eigen
value)\; = d; = c. If the VRF g is continuous ah; = d; = ¢, equation (7.19) holds; if there are no eigenvalues

Ai = dj = ¢, I(¢) =0, 1{4,—¢; = 0, and the convention adopted is to 8&% ,,(c) = X55(c) = 0; if there exists a
superconsistent estimator of the eigenvalue &1.19) holds. Otherwise’,; % (c) may not converge t&>#(c) . In

other words, the conditions stated in Assumpffo®are necessary conditions for (7.16) and (7.21) to hold.

8. Asymptotic distribution of the regularized Wald tests with a fixed threshold

In this section, we characterize the asymptotic distribution of the regularized Wald statistic for general distribu-
tions, before presenting the Gaussian case. The decomposition of the regularized statistic into three independe
components provides an insight on the structure of the distribution; an upper bound can be derived in the Gaussia
case. Power and consistency properties of the test are next established.

Proposition 8.1 CHARACTERIZATION OF THE REGULARIZED WALD STATISTIC WHEN THE THRESHOLD IS
FIXED. Supposel and X, are ¢ x ¢ symmetric matrices such thatnk(X) = r < ¢. Suppose Assump-
tions 2.1 with ¢p = v, 2.2with p = ¢, and7.2 hold. Let the regularized inverses satisfy equations3) and

k

(7.14), decompositior{4.2), and the eigenprojection is expressed as in equatiof). Letk; = > 1. be
j=1

the number of distinct eigenvalues Bflarger thanc, and W% (c) is defined in(5.1). ThenW2(c) 5 WE(c),
k

whereWf(c) = X'XE(c)X = Y g(dj;¢)X'B(dj)B(d;) X = WE(c) + WE(c) + Wi(c) , and W (c) =
j=1

k
X'2fi(0X = ilg(dj;C)X’B(dj)B(dj)’X , Wil(e) = X'ZE()X = g(;0)lga,=q X'B(c)B(c)'X
]:

k
W?f%(c) = X’E:%(c)X = > g(dj;c)X’B(dj)B(dj)'X .
J=kitla,=cy+1

Interestingly when¥ = 0 the distribution ofi¥’ *(c) can still be characterized; the regularized weighting matrix

is given by X (c) = g(0;¢)I,, so the regularized Wald statistic simplifiesgi@®; ¢) X’ X in the general case. In

the Gaussian case, wheén = 0, d; = 0 with multiplicity ¢, the limiting statistic is equal to zero (see equation
(8.1), whereWWfi(¢) = 0). Note also that the components are independent due to the specific decomposition of
the regularized weighting matrix. We can now easily consider the special case Wher&aussian, with the
Lutkepohl and Burda (1997)’s result obtained as a special case of Cor®laesides, if there is no eigenvalues
such that\; = d; = ¢, Wf(c) = 0 due to the indicator function, and ?(c) = W{t(c) + W(c) for all the
subsequent results stated in this section.
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Corollary 8.2 THE REGULARIZED WALD STATISTIC WITH A FIXED THRESHOLD: THE GAUSSIAN CASE
SupposeX and X, are ¢ x ¢ symmetric matrices such thatnk(X) = r < ¢ . Under Assumption®.2 with
p = q, 2.5with¢(0) = 1y, and7.2, let the regularized inverses satisfy equationd3) and(7.14), decomposition

k
(4.2), and the eigenprojection is expressed as in equatiof). Letk; = > l{4;>¢) be the number of distinct
j=1

eigenvalues of larger thanc, and W (c) is defined in(5.1). Let B(d;)'X = z;, wherez; ~ N0, djLin(a,))s
forj =1,...,k, orequivalentlyr; = \/dju;, withu; ~ N[0, I;yq;)]-

i) If ¥ =0,d; =0withm(0) = ¢, then

WEe) 5 Wh(e) = X'$™(e) X = djul,g(0;¢)Tu; = 0 . (8.1)
i) If X0, then
Wike) 5 Whe) (8.2)
whereW (c) = X' SE(c) X = ilg(dj; c)djv; = Wi(e) + Wit(c) + WE(c)
iz
with Wi (c) = X' 2f{ ()X = ﬁlg(dj; c)djvj , W3t(e) = X' £ ()X = g(c; ¢) 1= i) »
iz

W) = X'XE ()X = ij g(dj; c)djvj, wherev; ~ x?(m(d;))vj) ~ x*(m(c)) .

J=k1tlgg =) +1

We can see from this corollary that the three components can be interpreted as a linear combination of chi-squar
variables with the degree of freedom given by the multiplicity of the distinct eigenvalues. Note thattumas

rankr < ¢, the last componeﬁﬁ/ﬁ(c) contains a zero eigenvalues. d;, = 0, whenc # 0. Whenc = 0, in this
caseWs(0) = WL(0) = 0 andW{#(0) = W (0); we obtain the Litkepohl and Burda (1997) result as a special
case. Note that their result only holds for distinct eigenvalues.

Corollary 8.3 CHARACTERIZATION OF THE BOUND: THE GAUSSIAN CASE  Supposel and X, are g X ¢

symmetric matrices such thaink(X) = r < ¢ . Under Assumption8.2with p = ¢, 2.5with ¢(0) = 1, and

7.2, let the regularized inverses satisfy equatignd 3) and (7.14), decompositiori4.2), and the eigenprojection
k

is expressed as in equatigf.9). Letk; = > (4,5} be the number of distinct eigenvaluesXfiarger than
j=1

¢, and WE(c) is defined in(5.1). Let B(d;)'X = x;, wherex; ~ N[0, djlpay), forj = 1,...,k, . Let
g(.;¢) € G, with a fixed threshold such that

g(dj;e)d; <1 Vj=1,....k
then
Wit(e) < (@) . W3'(e) < x*(m(e), Wit(e) < x*(g3)

and
k

Whe) < D v ~ x(q)

j=1

k1 k
wherev; ~ X2 (m(dj)), q1 = Elm(dj), g3 =q—q1 —m(c),andq = Zlm(dj).
j= j=
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In the Gaussian case we obtain a chi-square as an upper bound fegulerizedstatistic, whert is fixed. Each
component is distributed as a chi-square variable with the degree of freedom given by the sum of the multiplicities
of the distinct eigenvalues involved in the sum. As the decomposition involves three independent chi-square
variables, the resulting distribution for the overall statistic is also chi-square due to its stability; the degree of
freedom is then given by the sum of the degrees of freedom of each component. As a result, the critical point
given by the standard chi-square distributionXifs Gaussian) can be used to provideasgmptotically validest.
However, improved power over this conservative bound could be achieved by simulations. We shall now show that
the regularized statistic is consistent against a global alternative Whdaollows a general distribution.

Proposition 8.4 CONSISTENCY PROPERTY OF THE TESTSuppose.’ and X, are ¢ x ¢ symmetric matrices such
thatrank(X) = r < ¢ . Suppose AssumptioB2 with p = ¢ and7.2hold. Let the regularized inverses satisfy

k
Property 2, decompositiofit.2), and the eigenprojection is expressed as in equation). Letk, = > 145
j=1

be the number of distinct eigenvaluesXflarger thanc, and W2 (c) is defined in5.1 Suppose also that there
exist some eigenvalues of the limiting matkixsuch thatd; # 0 under the alternative. Suppose furth&, =
an (v, — 1) satisfies Assumptich1, with o) = ;. If 1, — hy = A # 0, and A’ZE(¢) A > 0, then

Whe) - . (8.3)
n—oo
We also characterize the behavior the regularized Wald statistic under local alternatives as in the next proposi
tion.

Proposition 8.5 LOCAL POWER CHARACTERIZATION Supposel and X, are ¢ x ¢ symmetric matrices such
that rank(X) = r < ¢. Under Assumptior2.2 with p = ¢, and under Assumptio.2, let the regularized

k
inverses satisfy Property 2. L&t = > 1¢4;>c) be the number of distinct eigenvaluesflarger thanc, and
j=1

W (c) is defined in%.1). Suppose there exist some eigenvalues of the limiting ma&tsuch thatd; # 0 under
the alternative. Suppose furthéf,, = a,,(1,, — 1,,) satisfies Assumpticd 1 If a, (¢, — ¥y) — A # 0, and
A'SE()A > 0, then
WE(c) nféo X'ZR(0)X 4+ 2X' ZB(e)A+ A ZE()A . (8.4)

We can observe from this result that the limiting quantity involves three components: the first component is
still a quadratic form inX in accordance with the null hypothesis; the second component is a linear fofilire
third one represents a noncentrality parameter. Only the last two components will contribute to power. Note that in
the Lutkepohl and Burda (1997) case, the noncentrality parameter based on the modified Moore-Penrose invers
A'XF Ais expected to be smaller than the noncentrality param®ter(c) A, which may entail a loss of power
even though the chi-square distribution with reduced degrees of freedom yields a smaller critical point. Indeed,
there may exist some directions for the alternative, where a spectral cut-off type Moore-Penrose inverse that set
to zero the small eigenvalues, may destroy power as shown in the next corollary.

Corollary 8.6 LOCAL POWER CHARACTERIZATION DELTA IN THE NULL EIGENSPACE Suppose the assump-
tions of Propositior8.5are satisfied. Suppose further thate V(0), then

c
£

n—oo

WE(e) X'ZR()X +29(0;0) X' A+ g(0;0)A'A . (8.5)

We do not expect the test to be consistent against all types of alternatives. There may exist some directions whel
power is reduced or eventually destroyed, whethéies in the eigenspade(0) associated with the null eigenvalue
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or not. In such a case, the choicegd; ) is critical for power considerations. By settipf); ¢) = 0, the spectral
cut-off Moore Penrose inverse used by Lutkepohl and Burda (1997) will destroy power.

9. The case with a varying threshold:,

We shall now present the convergence results for the regularized inverse that are fundamental to obtain well
behaved regularized test statistics when the threshold varies with the sample sige=Let Y) and\; = \;(X,)
for notational simplicity. First when designing the VBEX; ¢,,), the varying threshold,, must be selected so that

P[‘j‘z - )\z| > Cn] = P[‘bn(j\z - )\2)| > bncn] n——)>oo 0 (9.1)
with ¢, — 0 andb,, ¢, — oo as n grows to infinity. Thus;,, declines to 0 slower thah/b,,, andb,c, — o
slower tharb,,. Indeed, the threshold must not decline to zero either too fast, or too slow. Selgctinthis way
ensures that the nonzero eigenvalues of the covariance matrix will eventually be greater than the threshold, whils
the true zero eigenvalues will fall below the threshold and are set to zero at least in large samples. In most cases,
natural choice fob,, = v/n and a suitable choice fet, is ¢,, = n~1/3. This convergence rate plays a crucial role
in Propositior9.1 below.

Proposition 9.1 CONVERGENCE OF THE REGULARIZED INVERSE WHEN THE THRESHOLD VARIES WITH THE
SAMPLE SIZE LetX be aq x g real symmetric positive semidefinite nonstochastic matrix Bpd sequence
of ¢ x ¢ real symmetric random matrices. L&t and X, satisfy Assumptio@.2withp = ¢ and letg € &,
with g(0;0) = 0. Let); = A\(X) andA; = A\i(Z,), with A1 > A\ > 0,7 = 1,...,¢q andd,’s denote the
distinct eigenvalues oF. Suppose further that, — 0andb,c, — oo. If X7(0) and £%(c,) have the

n—oo n—oo

representation$7.13) and (7.14) respectively, then
SR 2 2R(0) . (9.2)

In other words, if>),, — X in probability, then the regularized inverseXsf will converge towards the regularized
inverse ofY. In the following, we establish eéharacterizatiorof the asymptotic distribution of thregularizedtest
statistic in the general case. This characterization makes use of the decompositioregfithezedstatistic into
a regular component and a regularized one.

Proposition 9.2 ASYMPTOTIC CHARACTERIZATION OF THE REGULARIZEDWALD STATISTIC WITH VARYING
THRESHOLD. LetX be ag x ¢ real symmetric positive semidefinite honstochastic matrix Bpdh sequence
of ¢ x ¢ real symmetric random matrices. L&tand X, satisfy Assumptio@.2withp = gandg € G, with
g(0;0) = 0. Suppose,, — 0andb,c, — oo.LetXf(0)and X% (c,) have the representatior{3.13) and
n—oo n—oo
(7.14) respectively. Suppose also Assump@chholds, andrank(X) = ¢;. Letk; be the number of non-zero
k1 <
distinct eigenvalued; of ¥, i.e, > m(d;) = ¢1 > 1, ¢(d;;0) =0,V j > ki + 1, and\; = X\;(2,). Then,

J=1
underHo (1) : ¥(00) = g »
WE(en) = X, S8 () X & X' ZR(0)X = WE(0) (9.3)
W, (cn) = Wik (cn) + Wap(cn) (9.4)
Wit (en) = XLZR L (en) Xn £ X' 2R 0)x = WE(0) (9.5)
Wit (cn) = X}, X35 . (cn) Xy, such thatP[Wii(c,) =0] — 1. (9.6)
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Thus, when the thresholg, converges to zero at an appropriate rate, based on the sample eigenvalues’ con-
vergence rate, the limitingegularizedinverse boils down to the modified Moore-Penrose inverse, which cancels
the nonregular componeft’f(0). Moreover, if we restrict the convergence in law above to the sole standard
Gaussian distributiori,e., [X,, = an (¢, — ¥y) = V¥ (0) — ¢y] — N0, 5]], we obtain the result given
by Lutkepohl and Burda (1997, Proposition 2, page 318) as a special case (see C8r8)latyg this case, the
regularized Wald test is asymptotically distributed ag’éy; ) variable withq; < ¢. Further, note that Liitkepohl
and Burda (1997, Proposition 2, page 318)’s result only holds for distinct eigenvalues, unlike Prof@o2itiat
is valid for multiple eigenvalues.

Corollary 9.3 ASYMPTOTIC DISTRIBUTION OF THE REGULARIZEDWALD STATISTIC IN THE GAUSSIAN CASE
WITH VARYING THRESHOLD. LetX be aq x ¢ real symmetric positive semidefinite nonstochastic matrix and
XY, a sequence af x ¢ real symmetric random matrices. Suppose Assumibmolds, andrank(X) = g¢;.
Suppose also that Assumptidh@ with p = ¢, and2.5hold. Letg € G, with g(0;0) = 0. Suppose,, T 0

andb,c, — oo. Let X(0) and X%(c,) have the representatior§.13) and (7.14) respectively. Let the

eigenprojection be expressed as in equatior). Letk; be the number of non-zero distinct eigenvaldg®of
ki .

X, e, Zm(d]) =q > 1, g(dj;O) =0,V j >k +1, and \; = )\1(271) LetB(dj),X = xj, with
j=1

wj ~ N[0,djlna;)] forall j, orequivalentlys; = \/dju; , uj ~ N[0, L)) . Letg(dj;0) = 7,V j <kt

and 0 otherwise. Then, undéfy () : ¥ (6p) = 1,

Woik(en) = n[th(0) — wol S (en) [ (0) — o] = Wik (en) + Wik(en)

with ) )
Wik (en) = n[vo(8) — o] L% 1 (cn) [10(0) — o] , (9.7)
Wik (cn) = n[yp(0) — o) T35, (cn) [1(8) — 1)) , (9.8)
and
Wit (ca) 5 WHH0) ~ x*(q1) and P[W4(c,) =0] — 1. (9.9)

When the threshold goes to zero at the appropriate speed, the limiting regularized statistic has a standard cl
square distribution with the degree of freedom given by the multiplicity of the nonzero eigenvalues. Meanwhile,
the nonregular component collapses to zero due to the spectral cut-off Moore-Penrose inverse.

10. Alternative simulation-based approaches

In this section, we propose three alternative simulation-based approaches that rely on the technique of Monte Carl
tests to enhance the performance of the (regularized) Wald test; see Dufour (2006) and the references therein f
a detailed presentation of the technique of Monte Carlo tests. To test the null hypdigesigs(0) = ¢, , we
consider different ways of simulating the asymptotic distribution of the (regularized) Wald statistic. The approaches
differ through the strength of the assumptions made on the asymptotic distribution. They can be described a:
follows.

1. )]

2. Simul-R approach: This approach requires the minimal assumption, and relies on the asymptotic distri-
bution of the restrictions without the need to specify that of the parameter of intereBy focusing
on the restrictions, this approach can accommodate situations where some compofents bt iden-
tified but whose transformations are. Thus, we simulate from the distribution of the restrigteans,
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Vi, — ) S N(0,X) , with ¢, = ¥ + Uw x © , wheret ~ NJ[0,I]. The estimate of

Xis given by, = UJ, x Uy, providedU, is available. We can then easily build the statistic as:

Sn(lz]n) = \/ﬁw}n - 1/]0]/25(6)\/5[12]71 - ¢0] ’
whereX*(c) denotes the regularized inverseXsf.

3. Simul-E approach: This approach is more restrictive than Simul-R to the extent that it requires the identifi-
cation of the whole parameter vectband situations for whom the delta method applies. Nevertheless, it
can accommodate some discontinuities in the restrictiems (atios of parameters with null values in the
denominator). Thus, we simulate from the distribution of the estimatér of

Vil —00) 5 N(0, %), (10.10)
using:
N 1
provided is available;U’ x U = %y, where Yy, is an estimator 0%y, ando ~ N[0, 1]. Apply-
ing the delta method, we can deduce the distribution of the restricti@ns,/n (¢ (6,) — ¥ (o)) £

n—o0

N(0,X), with ¥ = I'YyI"” ;andI” corresponds to the derivative of the restrictions wé.tWe can then
easily build the statistic as:

Sn(0n) = V() = ¥ (00)] ER()V/nlib(6n) — b (60)] -

4. Simul-DGP approach: This approach is the most restrictive since it requires the highest level of information.
Thus, when the full DGP is specified, one can simulate from ¢an be expressed as a functiordof.e.
yj = f(0,9;), j = 1,...,n wherev; is a random variable angl’ = (y1,...,y,). For instance, one can
simulate from a parametric Gaussian model under the null and build the statistic such as:

Su(Wi's 0n) = 0[O (y1)) — ¥ (00)) ZR () [(On(y1)) — ¥(00)]

In the following, we shall denot&(® the i-th replication of the simulated statistic associated withithie
random vectos, for i = 1,..., N. Please note that refers to the sample size whil§ to the number of
replications of the Monte Carlo test. For= 0, let S(0 = 5©)(y),) refer to the test statistic computed from
observed data when the true parameter vectgi(fy) = v,. Note that the technique of Monte Carlo tests does
not require the number of replicatiordé to be large, and the validity of the procedure holds forfixed; for
exampleN = 19 is sufficient to control the level of the test irrespective of the sample size. In other words, if one
simulates from the exact distribution of the test statistic instead of the asymptotic approximation, the Monte Carlo
test would yield an exact test.

Suppose now that we use the Simul-R approach giver) provided Uw exists. Letos(® ~ N(0,I) for
i=1,...,N such that:

5 (1)

o, LU{Z,T;(” or equivalently vl — ] = U)o

:w0+\/ﬁ
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1 - ) N N
wiN) U,,5™) or equivalently \/ﬁ[wELN) — o) = Ujp™

=19y + n
whose nuisance parameter is givenby= U Uy, and its estimator corresponds¥y = Uq’pﬁw = Vi AN Z)]Va.

The corresponding regularized counterpart corresponds’@) = V/AT[A(X,);]V;, . Fori = 1,...,N, we
simulate N replications of the statistic under the null,

SO () = vl = vol SRV — vy

(N)

M () = Vbl — ol SRV — vy -

Let us now state the assumptions required for the validity of the asymptotic Monte Carlo test based on a
consistent point estimate.

Assumption 10.1 (A): Let 3 ¢ = 1,..., N bei.i.d. with distribution functionP[s() < z] = ~(z) and
the simulated statlstlcés(l)( V), ...,S,SN)(qﬁ)) bei.i.d. each one with distribution functioB[S! (v) < ] =

F.(z|v) V¢ € Iy, for I, a nonempty subset @f. For the sake of notations) will characterize the
parameters of the distribution, including nuisance parameters such as the parameters of variance and covariance

(B): For n > I, 50 andq),, are both measurable w.r.t. the probability spade, Az, Py) : 0 € £2}. SO
and Fn(S,(lo) l¢b,,) are random variables.
(C):Ve >0,Ye >0,3 > 0and a sequence of open subsBg (ey) in R such thatlim ianP[S,SO) €
Dpo(€0)] > 1 —¢pand|tp — ¢yl <0 = limsup{ sup( )]Fn[z:\w] — Fulz|ye]|} < e .
n—oo  xeDyolen
Note that the.i.d. assumption fo(S,(Ll)(z/}), 8 (1)) can be relaxed to the exchangeability assumption. Let
Sn(N,¢) = (S (1)(1/;), e s (1)), and the sample distribution and p-value functions be defined as:

1 N
nn (@) = Fanls Sa(N )] = = 3

1(SP () < ) (10.12)
i=1
1 N
wN (@[1) = Grn[; S Nzl (10.13)
=1
. _ NGun(z|) +
an(ely) = SN (10.14)
Thus,
1 & . 1 &
Gnn(Snolt)) = NZI(SS)(@&) >5y") = NZ SO
i=1 i—1
1 al N+1-R
IR N (i) (0)y] — n0
= 1-+l 1+;1(Sn (W) < S =——

whereR,,o = ZfVO 1(5( )(?Z)) < sy )) is the rank ofS”) when theN +1 variabless_” S,(ll)w), e ST(LN)(w) are

)

ranked in nondecreasing order. By considering properly randomized distribution, tail area and p-value functions,
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we allow for statistics with general (possibly discrete) distributions.

Fun(x]th) = Funla; Uo, Sn(N, ), Z 1[( ) < (2, Up)] (10.15)
1:1
=1~ Gan[e; Su(N,9)] + TnN[x- Us, Su(N, ), UN)] (10.16)
T [2;Uo, Su(N, ¥), 26 S () — «]1(U; < Up) (10.17)
- - 1 N )
G (1) = G2 Uo, Sn(N90), UN) = = > 1S (@), Us) = (2, Up)] (10.18)
i=1
=1- FnN[x§ Sn(N, w)] + TnN[:E; Uo, Sn(N, w)a U(N)] ) (10.19)
N
Tl U, Su(N. ). fVZ& SI(0) ~ 21 (U5 > Up) (10.20)

N+1 ’

pan (z|) = (10.21)

whereU (N) = (U1, ...,Uy) andUp, Uy, ..., Uy "% U(0,1) and independent of,, (N, v)). Next we report

the asymptotic validity of bootstrap p-values based on a consistent point estimate that is established in Dufoul
(2006, Proposition 6.1, p.464). The proof of the proposition relies on the continuity and convergence property of
the bootstrap p-values stated in two lemmas; readers interested in the proofs, please see Dufour (2006, Lemn
Al-A2, p.471 and 473). The proposition states the validity of bootstrap p-values for general sequences of randon
variables with (possibly discrete) distributions (when ties may have nonzero probability).

Proposition 10.2 (Asymptotic validity of bootstrap p-values) Under Assumptiori0.1 (A)}(C) and notations
(10.12)-(10.14) and (10.15)-(10.21), suppose the random variables” and v, are independent af,, (N, )
andUy. If ¢, & ¢, thenfor0 < a; <1land0 < a <1,

Uim {P[Gn (SP1,) < ] = P[Gan (S ) < aa]} = lim {P[Can (S ]dhy) < 1] = P[Gun (S 00) < en]}
-0 (10.22)

and

Lim AP [pan (S[9) < o] =P[Ban (S |10) < @]} = lim {P[pun (S 9) < @] =P [pan (S |th) < a]} = 0.
(10.23)

11. Simulation results: Multi-step noncausality

In this section, we perform Monte Carlo experiments to assess the empirical behavior of the (regularized) Wald
statistics in the presence of asymptotic singularity. We consider the following VAR(1) process

Tt Ti—1 0z Ha:y 0z Ti—1
e | = Al Yt—1| T ur = ayac ayy Gyz Ye—1| +ug, (111)
2t 2t—1 0.2 sz 0 2t—1
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fort =1,...,n, whereu; = [ug; uy; u.,)’ is a Gaussian noise with(a x 3) nonsingular covariance matri,.
We are interested in testing for multi-step noncausalkty

) _ Oy 10
Ho: 9(0) = emexywxyeyywmezy] = M ' (11.2)

using three different versions of the Wald statistie, W% (c) = ni(0,,)' 5 (c)y(0,,). As pointed out in Section
3.1, singularity problems arise under parameter setting (3.1)y:Let[x; y; 2] , Y = (y1,...,¥n) , B = (41)
Zi=1ytl, Z=(Zo,...,Zn-1),U = [ut)t=1,..n = (u1,...,uy) Using the standard column stacking operator
vec, letf = vec(A;) = vec(B), whereB is (3 x 3) andY, Z andU are(3 x n). We use the multivariate LS
estimator of). Applying the column stacking operatesc on:

Y =BZ+U (11.3)
we have:
vec(Y) = vec(BZ) + vec(U) (11.4)
y = (Z' @ Is)vec(B) + vec(U) (11.5)
y=(Z2'®I3)0+u (11.6)

whereE(uu’) = I,, ® X,. The multivariate LS estimatdk, is given by:

0, = ((zz’)—12®13)y, (11.7)
such that: )

Vb, —60) 5 N(0, %) (11.8)
whereX, = 2~ '® X,; see?. Provided the delta method applies, the restrictions are also asymptotically Gaussian:

Va((0,) = $(60)) = N(0, ) (11.9)
where - o
A consistent estimator of’ is easily obtained as:
o - o' -

by plugging in a consistent estimator bf, i.e, S, = 27! ® X, with 2 = 1 ZZ and 2, = L 37 | iy =
%Y[In — Z'(Z2Z")7'Z]Y’' . We examine three different parameter settings for the VAR(1) coefficidnts=

0:{::5 exy sz
Oy Oyy Oy.
0.0 0.y 0

. The first two parameter setups correspond to:

zZ

099  Op  Oa

A=A = 0 —-0.99 0.5 ] , Ai=A»=| 0 -09 05

0 0 -0.99 0 0 =09

0.9 64y Oa. ]
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Table 1. Notations of the statistics

Notations of the statistics

Notations Definition
w Standard Wald statistic using the standard critical point
Wpy (bound) | Full-rank regularized Wald statistic using the asymptotic bound and a fixed threshold
Wre LB Reduced-rank Wald statistic based on the modified Moore-Penrose inverse and a threshold that varies with the sample size
Whoise Modified Wald statistic resulting from adding a noise to the restrictions; using the the standard critical point
Simul-R Monte Carlo tests - simulated version of the corresponding statistic using the distribution of the restrictions
Simul-E Monte Carlo tests - simulated version of the corresponding statistic using the distribution of the estimator of the parameter
Simul-DGP Monte Carlo tests - simulated version of the corresponding statistic using a specified DGP
2
Simul-Mixt Simulated version of the linear combination of modified chi-square variables as in eq. §8,2)}\;; ¢)A;v;, where thev;'s are independent
j=1
and random draws fromxg? (1) .

where the problem of singularity is obtained tof, = ... = 6., = 0. The key parameter to disentangle between
the regularity point and singularity point under this setuf,is with 6,.. = 0 corresponding to a singularity point,

0.3 0Opy 0
andf,, # 0 to a regularity point. A third parameter setup is examinied, A, = A;; = |0.7 0.3 0.25
0.5 04 0.3

whered,, = 0,. = 0, andd,,, = 0.4 # 0 yields a regular setup. The first two parameter settings involve parame-
ters close to the nonstationary region, whereas the third one falls inside the stationaryuegidn, ; w, + . +]’
is a Gaussian noise with nonsingular covariance matfixwhose values have been set to

1.5 =07 0.3
2u=1-07 05 -04
03 -—-04 1

in the simulation design. Its determinant is different from zem, det(X,,) = 0.143. The threshold values have

been set te,, = \yn~'/3 in the case of a varying threshold andcte= 0.1 for the fixed threshold. We also use

cn = An~1/2 sporadically; it performs better in the regular setup in terms of power because it regularizes less
often. Note that the choice of, = A\in~'/3, (or ¢, = A\in~/2) only applies to the spectral cut-off regularized
Wald statistic recommended by Litkepohl and Burda (1997), whereas we propose the fixed valué dffor

the full-rank regularized statistic. Concerning it has been normalized by the largest eigenvalues to account for
scaling issues of the data. We use 5000 replications in all simulation experiments. The nominal size to perform the
tests has been fixed 005, with critical points for the chi-square distribution with full rank given b, (2) =

5.99, or with reduced rank given bx§5%(1) = 3.84 for the spectral cut-off regularized Wald statistic. In the
tables belowJV denotes the standard Wald statistitpy (bound) the full-rank regularized Wald statistic that

uses the bound and the fixed threshaldV; p denotes the spectral cut-off Wald statistic that uses the varying
thresholdc,,. For comparison purposes, we also report the modified Wald statistic that results from adding noise
to the restrictions to make them less efficient; it is dendiéd;s.. See Liutkepohl and Burda (1997, Proposition

1, page 317) for its form. Note th&t;, 5 andWy ;s are the two modified Wald statistics proposed by Litkepohl
and Burda (1997). We propose to implement the LB reduced-rank statistic through Monte Carlo tests (Simul-R,
simul-E, Simul-DGP) that help to reduce size distortions in finite samples.
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11.1. Level assessment

We study the empirical behavior of the test statistics under the null hypothesis:

: Oy 0

o 0=y, 0.0,) = o]
first in irregular setups (see Table 2, panéls A; = AjpandB : A; = Agg), then in a regular setup (see Table
2, panelC : A; = Ayq). ltis clear from Table 2, panels A and B that the standard Wald statigtjajoes not
have its usual asymptotic distribution in non-regular setups, either suffering from severe over-rejections in small
samples, or from under-rejections in large samples. Its behavior gets worse when parameter values approach tl
nonstationary region (Table 2, Panel A). Similarly, the reduced rank Wald statigtig, displays the same finite
sample behavior a8’ in non-regular setups, with severe size distortions when parameters values get close to the
nonstationary region, but exhibits good size properties asymptotically. In contrast, the full-rank regularized statistic
that uses the boundlypy (bound), does not suffer from over-rejection under the null hypothesis, but under-rejects
instead. Nevertheless, if one simulates directly from the DGP provided it is specified, one can correct for the
underrejection of the bound by using the Simul-DGP approach. The Simul-DGP approdthforemarkably
dominates its competitodd” andW g particularly in small samples (see Table 2, patel A; = A1, n = 50).
Thus, it is very important to simulate from a well-behaved statistic to produce a reliable test. To the extent that
all testing procedures, including the Monte Carlo tests, rely on asymptotic arguments, it is not surprising that all
tests approach the nominal level of 0.05 as soon as the sample size gets sufficiently large. In particular, all thre
simulation-based approaches exhibit good level properties for large sample sizes. Regarding the regular setu
shown in Table 2, panel C, all statistics display the correct expected level of 0.05. Note also that we have tried
different values for the fixed threshalgland we recommend= 0.1. Its impact on power will be examined next.
Thus, the less one regularizés. one chooses = 0.01 instead ofc = 0.1, the more the full-rank regularized
statistic behaves like the standard Wald statistic. Regarding the reduced rank stadfistidyehaves slightly
differently depending on the choice of the varying threshgldn regular setups; in nonregular setups, whatever
choice ofc, is usedj.e, ¢, = A\in~ Y3 orc, = \in~/2, the results are identical. Power will differ markedly
w.r.t. ¢, in the regular setup. Onky, = Xln—l/i” is used in the simulated versions of thg, g test statistic. Note
also the correct asymptotic level of the simulated version of the linear combination of chi-square variables as in eq

(8.2): Zg( s )/\ vj, where they;’s are independent and random draws fromzél) In the regular setup, the
level of the corresponding procedure is controlled for all sample sizes. Finally, althBnygh. enables to control
size under the null, this procedure is not recommendable from the viewpoint of power as shown next.
11.2. Power assessment

We also study the empirical power for alternatives close to a singularity @gint 0:

Hy: 9¥(9) = [(gmfeyy)(ﬂ 7 {8] 7

with 6, = 0, (6 = 0.1264 or 6 = 0.04) whose empirical power is reported in Table 3, panels A and B. We also
consider a second type of alternative for a violation of the second restriction only, while maintaining fulfilled the
first restriction as in Litkepohl and Burda (199i78,

Hy: (0) = [(9902 2 sz)] ? [8} 7

with 0., = 6 = 0.1264, 6., = 0.4 andf,, = 0, under a regular design:
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see Table 3, panel C. First of all, all power frequencies reported in Table 3 have been locally corrected for level
distortions (only for over-rejections and not for under-rejections) for a fair comparison across statistics. See Table
6 in appendix A for level correction.

In Table 3, though conservative, the full-rank regularized test statistic that uses the beuhidyy (bound)
exhibits higher power than its oversized competifdrand¥; g for alternatives sufficiently far from the nullg.
for values ofd sufficiently different from zero (see Table 3, panel/A= 50 that corresponds t6 = 0.1264).
However, when is close to zero, which corresponds to a local alternative, power is reduc&d fpXbound)
(see Table 3, panel B, = 50 with § = 0.04). Indeed for local alternative$l’;, g benefits from a reduced critical
point. In that respect, the simulated versions of the full rank statistic, especially the Simul-DGP ver8ign of
performs as well a8l’; 5 in terms of power as soon as the sample size reacked 00 for local alternatives (see
Table 3, panel By = 100 with 6 = 0.04). In particular forlWpy, we can observe as af= 100 that power tends
to increase when moving from Simul-R to Simul-E to Simul-DGP, with the highest power achieved for Simul-DGP
which is also the most demanding procedure in terms of information. More importantly, the locally-level corrected
statisticsiV and W g areinfeasibletests in practice, because this level correction requires the knowledge of the
true, unknown parameter values unliKé&,y (bound) whose level is controlled in all scenarios. The superiority
of the simulated version dfVpy over the simulated version of the standard Wald statistic in small samyes (
n = 50,100 in panels A and B) is remarkable. Further, the behavior of the modified Wald statistic that results
from adding noise to the restrictions to make them less efficient, as suggested by Litkepohl and Burda (1997
Proposition 1, page 317), displays correct level under the null. However, such a noise tends to destroy powe
under the alternative and is not the approach we would recommend; colipate’s performance in panel B, for
n=50,..., 1000 relative to its competitors. Finally, the most striking result is the semdeg-performancef the
reduced rank statistid’; 5 in a regular setup (panel C) whep = A\;n /3. As already mentioned by Liitkepohl
and Burda (1997), by underestimating the true rank of the covariance matrix, this reduced rank statistic puts more
weight on the first restriction that remains fulfilled in this case. A violation of the null hypothesis coming from the
second restriction will not be detected by a statistic that underestimates the rank; a full-rank regularized statistic
dominates in this respect. Thus, these results on power reinforce the better properties of the full-rank regularize
statistics over the spectral cut-off type. However, whagn= \1n~'/2, power is restored fofV; 5 in regular
setups. Indeed, in regular setups where regularization is unnecessary, dropping some restrictions might dama
power significantly. Thus, the choice @f is critical in regular setups because it can diminish power substantially.
The contrasting results displayed 1., 5 in panel C highlights the superiority of full-rank statistics over reduced-
rank ones. Overall, we recommeRidyy (bound) along with the Simul-DGP version ¥ py, as both procedures
control level while achieving reasonably good power in small samples under both setups (regular and irregular).

12. Empirical application to Multistep noncausality: saving-to-growth causation

In this section, we conduct noncausality tests to assess any causal relation between investment, saving and grow
Indeed, there is no consensus in the literature whether higher saving results in higher growth or the other way
around in cross-country data. Especially, East Asian economies had experienced high growth rates long befor
they had high saving rates. Levine and Renelt (1992) argue that the investment rate is the key variable that i
correlated with growth. They claim that the saving-to-growth causation reflects the same causal channel, but witt
the additional linkage that high saving leads to high investment. We shall investigate this relation in a single-country
data set, focusing on U.S. data. The data come from the World Development Indicator’s database (WDI), and are
yearly observations spanning from 1972 to 2012. The data have been differenced once to account for the presen
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of unit roots since the Augmented Dickey-Fuller tests detected the presence of unit roots at a 0.05 significance
level. We use Saving that represents the gross domestic savifig ginGDP), Investment that corresponds to
gross capital formation (ific of GDP) and GDP growth (in annuél). The gross capital formation consists of
additions to the fixed assets of the economy plus net changes in the level of inventories. We also use Foreign direc
Investment (FDI) (irfo of GDP); FDI are the net inflows of investment to acquire 10% or more of voting stocks in
an enterprise operating in an economy other than that of the investor.

In this section, we conduct noncausality tests of the form:

Hy:(0) =0, (12.1)

for several horizong,e., at horizonsH = 1,2, 3,4 and5. Dufour and Renault (1998, Proposition 4.5) state that
in a VAR(1) model it is sufficient to have noncausality up to horizon 2 for noncausality to hold at all horizons;
therefore testing for noncausality at horizons 3, 4 and 5 is superfluous and adds redundancy uselessly.

The Monte Carlo tests are simulated under the null of noncausality Wgieg 99 simulated statistics. The
estimate of the parameters are based on the real data; we then construct an ad-hoc restricted estimate by zero
the corresponding parameters such thét) = 0. Using an unrestricted estimatorc(6), we built the restricted
version of the estimator,e., vec(0) = (01, o, 03, 0, 05, 0, 0, fs, Hy)’. We use this ad-hoc restricted estimate
to simulate the distribution of the test statistic under the null hypothesis. Recall that the Wald test is based on
an unrestricted estimator, although its distribution is simulated under the null in the Monte Carlo procedure. The
nominal level used in the test has been fixed at 0.05.

In addition to Panels A and B of Table 4, in which no redundant restrictions are added to the genuine restric-
tions, we purposely add redundant restrictions to assess their effect on the testing procedures; see panels C, D a
E. More specifically, Panel A only tests (¢) = 6., = 0 while Panel B focuses on testing two restrictions:

B Oy 10
V2O = 19,000, + 01y +9meZJ - H (12.2)
which corresponds to the case of no redundant restrictions with the following Jacobian
o) 0 00 1 0O 0 0 00
89?: Oy 0 0 Opp+0y 0ny 0m0 60, 0 0O

In the trivariate VAR(1) model, in which

Tt Growth
ye | = Saving ,
2t Investment

the corresponding unrestricted estimates of the parameters and their estimated standard deviation are the followin

~ ~ A~ A~ ~ ~ ~ ~ ~

R 91’90 gyac ezz eazy eyy Gzy exz eyz sz
6 = [—-0.1466 —0.8969 —0.4203 0.3928 0.3176 0.5392 —0.4411 —0.4741 —0.3438
b1 G2 G3 G4 G5 G6 b7 b8 b9

77 12,149 3.2311 2.5876 0.6313 0.9505 0.7612 1.8284 2.7531 2.2048

In Table 4, we test for noncausality between Saving, Investment and Growth. In panel A, the rediilts for
Wpv (bound) andWp  coincide regardless of the procedure used, asymptotic or simulated, since regularization is
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unnecessary in this case. We next observe that when redundant restrictions are added, the reported determinant
the estimated covariance matrix diminishes. The behavior of the standard Wald test statistic seriously deteriorate:
This poor behavior is striking in Panel E about the Investment-Growth causation; the value of the statistic jumps
from 3.2388 (Panel D: Investment-Growth causation) to 11.7251 (Panel E: Investment-Growth causation) forc-
ing the standard statistic to erroneously reject the null of noncausation. Similarly, the standard Wald test statistic
steadily misbehaves as the determinant approaches zero in the Growth-Saving causality analysis. While the asym
totic standard test still rejects the null of noncausation from Growth to Saving with a value of 40.5742 (Panel E:
Growth-to-Saving), its simulated counterpart fails to reject the null with a p-value of 0.12 (Panel E: Growth-to-
Saving). Thus, simulating from a misbehaved statistic does not produce reliable inference; a severe contradictio
arises between the decision based on the asymptotic critical value and the simulated procedure. Further, the di
crepancy between the standard Wald statigtiand the full-rank regularized Wald statisticpy (bound) widens

with the number of redundant restrictions added (Panel E: Investment-to-Growth, Growth-to-Saving). Note also
the puzzling conclusion produced by the simulated test based on the spectral cut-off $igfjsti®Vhen redun-

dant restrictions are added, the simulated procedure inverts the decision of the test when one moves from Panel
to panel C and so on in the Saving-to-Growth causation.

While most of the procedures are not able to reject the null hypothesis that Saving does not cause Growth at al
horizons, we unambiguously find that Growth causes Saving for U.S. data. Our findings support the original liter-
ature by Houthakker (1961, 1965), and Modigliani (1970) at the cross-country level. However, our single-country
results on U.S. data do not support Levine and Renelt (1992)’s cross-country findings that high investment cause
high growth. Importantly, in the presence of redundant restrictions the simulated version of the full-rank regu-
larizedWpy (bound) test steadily produces results consistent with those obtained without redundant restrictions.
These results confirm those predicted from the theory: as stated in Dufour and Renault (1998, Proposition 4.5), ir
a VAR(1) model it is sufficient to have noncausality up to horizon 2 for noncausality to hold at all horizons. In
other words, our findings at horizons 3,4 and 5 corroborate the results obtained at horizon 2.

Next, when replacing Saving by FDI in Table 5, all tests are not able to reject the null that FDI does not cause
Growth, nor that Growth does not cause FDI. Nevertheless all tests, regardless of the approach used, asymptot
or simulated, unambiguously reject the null that Investment does not cause Growth at all horizons. As predictec
by the theory in a VAR(1) model, decisions obtained at horizon 2 are not reversed at higher horizons. Again,
singularity critically impacts the behavior of the standard Wald statistic, triggering an erroneous rejection of the
null that FDI does not cause Growth in panel E.

13. Conclusion

In this paper, we examine and propose Wald-type tests statistics that deal with asymptotic singular covarianc
matrices. To do so, we introduce a new classegfularizedinverses, as opposed to generalized inverses, that
embeds the spectral cut-off and Tikhonov regularized inverses known in the statistical literature. We propose &
regularized Wald statistic that produces valid inference under fairly weak assumptions: the full-rank statistic relies
on a fixed value for the threshold in the VRFEX; ¢) and does not require the knowledge of the asymptotic rank
nor the Gaussianity distribution. In contrast, the reduced rank Wald statistic that lets the threshold vary with the
sample size requires more information about the sample behavior of the eigenvalues. By exploiting eigenprojectior
techniques, we show that the first regularized Wald statistic admits a nonstandard asymptotic distribution in the
general case, which corresponds to a linear combinatiog®ofariables if the restrictions are Gaussian. An
upper bound which is invariant to the degree of rank deficiency, is then derived for the full-rank regularized
statistic that corresponds to@ variable withfull rank under Gaussianity. Hence, the tesagymptotically valigl
meaning that the usual critical point can be used, but is conservative. Instead of using the asymptotic bound, w
propose three ways to conduct the regularized Wald test by simulations through the technique of Monte Carlc
tests: one may simulate under the DGP if available, or from the distribution of the estimator of the parameters
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(or of the restrictions) to correct for size distortions. One can also simulate from the linear combination of chi-

square variables to produce an asymptotically valid test for the full-rank regularized statistic. Finally, when the
threshold goes to zero with the sample size, we obtain the spectral cut-off modified Wald statistic of Litkepohl
and Burda (1997) as a special case. Under normality, the test has the usual asymptotic distribution whose reduce
rank is given by the number of eigenvalues greater than zero. Note that Litkepohl and Burda (1997)’s result
only holds for distinct eigenvalues whereas our result accounts for multiple eigenvalues. We also show that the
regularized statistics are consistent against global alternatives, but the spectral cut-off Wald statistic has reduce
power in some directions of the alternative. Besides, our approach is easy to implement: it only requires to
compute eigenvalues and eigenvectors. It is therefore simple, systematic, and robust to all kinds of setups. Mor
generally, the regularization techniques developed in this paper to deal with asymptotic singularity and deficient
rank problems are not restricted to the sole Wald statistic, but can easily be applied to other statistics such as th
Lagrange multiplier statistic, or score-type test statistics.

39



A. Appendix: Rejection rules to correct size distortions

Insert Table 6 that is displayed below here.

B. Appendix: Proofs

Proof of Lemma 2.3By Assumption2.2, (b, (A4, — A) £ Q) = (A, 5 A)andbyAssumption
2.1we have:
Wi (1) = [an ({ﬁn - wo)],(An - A)lan ({bn - 7%)] + [an ({bn - ¢0)],A[an ({bn - Qpo)]
£ X'0X + X'AX .

O

Proof of Property 1 Using Definitiond.1and (4.3), we hav& X% (c) = VAV'V AT (c)V' = V AAT(¢)V’ since

the Vi's are orthogonal. For all, 0 < Ag(A;c) < 1, so thaty X7 (c) = Vdiag[Ajg(Ajic)] ., . V' < I,
Regardingi), we have:
TER(OT = VAVPV'VAT (V' VAY2V = VAVZAT () AV2V! = Vdiag [ \jg(\;; NV <1

sincel < Ag(A;¢) < 1forall A . Regardingii), we have:

Y-23R0)r>0e 2(1,-2)E)> 0= I,- X)X >0
sinceX' is semi definite positive. The last implication holds®y As for iv), for all A > 0, g(); ¢) bounded, and
if g(A;c) > 0, we have(Ag(Xic) < 1) = (0<g(he)< + <o) = ([g()\;c)]‘l -2 >0 > Hence,

(ER(c))*1 - ¥ = V'diaug[(g(/\j;c)f1 — )\j]jzl ..,V' = 0.Finally forv), the rank is given by the number
of eigenvalues greater than zero. B (c) = Vdiag[g()\;; c)]j qV’, hence(A > 0 = g(X\c) >0) =
(rank(X%(c)) > rank(X)) .

=1,
O

PROOF of Lemma 6.3If %, 3 ¥, then the eventl = {w: X,(w) — X} has probability onei.e.
P(A) = 1. Foranyw € A, we have by Lemm&.2

n—oo

DenotingB = {w : \j(X,(w)) — X;(2)}, we haved C B, hence we have with probability one resi)lt By

the same argument, we have regtijtfor the eigenprojections.
0

PROOF of Lemma 6.4
If ¥, 2 X with eigenvalues|\;(~,)}, then every subsequenge’,, } with eigenvalues{\(X),, )}, also

satisfies?,,, %> X. By ?, there exist{ %,,,} C {X,, } such that”,,, “> . Hence by Lemm&.3, we have
1. [

40



Table 6. Empirical levels of Multistep noncausality te&g: ¢(¢) = 0 and modified rejection rules.

Hy : ¢(6) = 0 ; nominal size= 0.05, ¢, = \yn~ /3, ¢ =0.1;
Panel A: irregular setup

Hy :(0) =0 withwith 6, =0,, =0,, =0 andf,, = 0,, =0.. = —0.99 , A; = Ao, ¢, = \in"1/3,c=0.1;

n =50
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/4.13 when pv< 0.01 | 0.0499 | 1/1.81 whenpv< 0.01 | 0.0499 0.0515
Wpv 1/2.11 when pv< 0.01 0.0499 1/1.67 when pv< 0.01 0.0500 0.0430
WrB 1/2.10 when pv< 0.01 | 0.0500 | 1/2.108 when pv< 0.01 | 0.0500 0.0358

n = 100
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
w 1/2.88 when pv< 0.01 | 0.0500 | 1/1.503 when pv< 0.01 | 0.0499 0.0527
Wpv 1/1.34 when pv< 0.01 0.0500 | 1/1.245 when pv< 0.01 | 0.0499 0.0476
WrB 1/1.335 when pv< 0.01 | 0.0500 | 1/1.49 when pv< 0.01 | 0.0500 0.0486

n = 500
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv.< 0.03 0.0502 1/1 when pv.< 0.02 0.0342 0.0486
Wpv 1/1 when pv.< 0.02 0.0238 1/1 when pv.< 0.02 0.0290 0.0340
Wie 1/1 when pv.< 0.02 0.0238 1/1 when pv.< 0.02 0.0302 0.0436

n = 1000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
w 1/1 when pv.< 0.05 0.0506 1/1 when pv.< 0.03 0.0418 0.0436
Wpv 1/1 when pv.< 0.04 0.0496 1/1 when pv.< 0.03 0.0370 0.0318
Wrp 1/1 when pv.< 0.04 0.0496 1/1 when pv.< 0.03 0.0372 0.0470

n = 2000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
%% 1/1 when pv.< 0.05 0.0300 1/1 when pv.< 0.04 0.0440 -
Wpv 1/1 when pv.< 0.04 0.0414 1/1 when pv.< 0.04 0.0414 -
Wie 1/1 when pv.< 0.04 0.0414 1/1 when pv.< 0.04 0.0418 -

n = 5000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
w 1/1 when pv.< 0.05 0.0142 1/1 when pv.< 0.05 0.0384 -
Wpv 1/1 when pv.< 0.05 0.0368 1/1 when pv.< 0.05 0.0378 -
Wi 1/1 when pv.< 0.05 0.0368 1/1 when pv.< 0.05 0.0380 -

See Table 1 for the definition of the acronyms.
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2. 0(Zm) “N(5),
3. Pjt(Xm,) S Pjy(X) provided\;_1(X) # A;(X) and A (E) # Ar1(X) .

As {X,,,} € {X,,.} € {X,} with the corresponding eigenvalugs;(X,,,)} € {\;j(X,,)} € {\;j(Zn)}, by
? it suffices that every subsequence (X, )} of {\;(X),)} contains a subsequen{g; (X, )} which converges
a.s. to get\;(X,) 2, Aj(X) . By the same argument, we haig, (X)) 2 it (X))
O

PROOF of Proposition 7.31f X, “5 ¥, then by Lemmab.3 i), we have); “5 d;, Vi € I; , where
I; = {i € I : )\ = d;}. Under the additional Assumption2, and the a.e. continuity of(.,c), we have
g(Nisc) “3 g(dj;c) Vi € 1; . Moreover, by Lemma.3ii), we havePy, (X,) “3 P;(¥) . Hence,

k k
0 = 3P (B gy S (i) = 3P (5 [gwj;c) g4, | ]
=1 zEI j=1 zel
k k
Z dj; e +ZPI )Z [9(Aise) = g(dji0)] “5 D Pi(2)g(djic)
j=1 d; i€l j=1

sinceg(d;; c) = —

_
X
2
S
SN—
<
—~
&
)
~
|
—

mid 2icr; 9(djs c) andg(\i;¢) “3 g(dj;c) Vie I, .

PROOF of Proposition 7.4Using decomposition (4.2) and equation (7.14), we have:

k
Z i n = ZPIj( (
j=1
k1
Zinle) =P,

Zg Ai, ¢) Where
ZEI

k
Zg fOfd >c k= Zl{dj>c}
j=1

j=1 d;) i€l
1
Z’%,n(c) m(c Z (\i,c), ford; = c
el(c
k
Eﬁ}n(c) = Z Zg c)ford; <c.
j:k1+1{dj:c}+1 zeI

Note that Assumptio@.2impliesX,, 2 X, hence by Lemma@.4i) and ii), eigenvalues and total eigenprojections
are continuous; together with Assumptiar, we have:y i € I; ,g(\i,c) % g(dj;c), and P (X,) -
P;(X¥) . Also,

k1 k1
15006 = S s S (i) = 3P (5 [atdsie) — ol o)+ s S gl
j=1 1 e, j=1 Zg[
k1 k1 k1
= Pr(Zn)g(dj;c) + ZPIj(En)m(zj) > l9ise) —gldjie)] 5 D glds;0)Pi(X) = i(c)
Jj=1 Jj=1 i€l j=1
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~

g(Ni,c) ER g(c; ), henceﬂgvn(c) PI(C( )mc) > g( Z,c) EX g(c;c)l{dj:C}Pj(c)(E) = Eé% ¢).The
i€l(c

proof for X5 | (c) is similar to that of U} | (c) . Hence,Eff( ) L DE(e) = XE(e) + 5 (c) + Dh(e) .

sinceg(djic) = gy x mldj)g(djic) = gy Yier, 9(djic) - Under Assumptior?.2, if A = d; = «c,
(

O]

PROOF of Proposition 8.1By Proposition7.4, we haveX(¢c) % x%(¢) and under Assumptiof.1,

X, 5 X, henceWl(c) = X'SE(e)X, = X'YR(c)X = WE(c) . Using representation (7.13) for

YE(c) ,and the formP;(X) = B(d;)B(d;)’, we can write:
k k k
Wh(e) = X' 2 ()X = X' (Zg(dj; c)Pj(E)>X = 9(dj; ) X'Pi(2)X = g(dj; ) X'B(d;)B(d;)' X .
j=1 j=1 J=1
We can further decompose the overall statistic into three blocks depending whether the eigenvalues are larger («
k

smaller) thare, with k1 = > 1(4,5¢, 1.8,
j=1
k
Wite) = X'S{(eX =) g(dj;0) L0 X'F(2)X
j=1

kl k'l
= > 9(dj;)X'Pi(2)X = g(dj; ) X'B(d;)B(d;)'X .
j=1 j=1

Similarly, W3*(c) = X' X8 (c) X = g(¢; ¢)1{a,=c} X' Pj(e) (X)X = g(¢; ¢)1{g,=} X' B(c) B(¢)' X. And

k k
Wit(e) = X' SR (o)X = gldji )14, < X' Pj(2)X = > g(dj; ¢)X'B(d;)B(d;)' X .
j=1 j:k1+1{dj:c}+1

PROOF of Corollary 8.2 In the Gaussian case, we havé(d;)'X = x;, wherex; ~ N[0,d;ly4,)], 0
equivalentlyz; = \/dju; with uj ~ N[0, I, ], hence

k k
W) = X' 2B ()X = X’<Zg e >X = 9(dj;0)X'B(dj)B(d;)' X = g(dy; c)djufu;
j=1 Jj=1 j=1
with the three blocks corresponding to
k‘l kl
Wi (e) = X' 2R ()X =3 g(dy: ) X' B(dy) B(d;)' X = > g(dys e)djuyu; |
7j=1 7=1

W) = X' R ()X = g(c; c)l{dj:C}X/B(c)B(c)’X =g(¢; c)l{djzc}cu;-uj ,

k k
andWii(e) = X'SBOX = Y gldidX'BA)BAYX = Y gldjodadu; .
J=kitla,=cy+1 J=kitlia,=cy+1
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PROOF of Proposition 8.4The quantitya,, [+, — 1] can be written as:
(7% Wn - ¢0] = an [{ﬁn - 1/’1 + 7/’1 - 1/’0] = an[fbn - ¢1] + an Wl - 7!)0] . (B-l)
As X, = an[{bn — wl] satisfies AssumptioB.1, we have

Wi (c)

{an[n — 1] + an[1 = do] VR (Han[n — 1] + an[thr = wo]}

= Qan wjn - 7/)1],25(0)% [@z’n - 7/)1] + 2an[{bn - ¢1]/E§(C)an [¢1 - 71’0]

+an [y — wo]’Eff(c)an (41 — o]

X! YR X, + 22X R (c)an A + a2 A'XE(c) A

X'ZR ()X 4+ 2X' 5 ()anA + a2 A X ()A — oo (B.2)

sl

sinceX, 5 X, SR() & $R(c), andan (v, — 1y) = anA — 00, aSa, grows to infinity. HenceéV2(c)
converges to infinity with probability 1. The quantity

X' SR X +2X' 2R (c)a, A+ a2 AN () A

is asymptotically equivalent t’ X% (c) X + a2 A’ X% (c) A due to the dominance principle ef A’ X (c) A over
2X'YR(c)A, e,

X'SR()X +2X' ZR(e)an A+ a2 A SE () A = X' DR ()X + a, [2X' 28 () A + a, A’ EF () A] .

PROOF of Proposition 8.5
Under the local alternative, (v1,, — 1g) — A # 0, then

Whe) = anlth, — 1) ZRC)anlt, — 1] + 20, — 1) ZE(C)an [t1, — o]
+an [¥1, — o) S (C)an V1, — o]
= X, Z5(0) X0+ 2X, ZE(c)an [$1, — Vo] + an 1, — o) ZE(e)an [t1, — o)
S X'SR(O)X 42X 5B () A+ A DR (e)A (B.3)

n—oo

sinceX, 5 X, E(c) & $E(c).

PROOF of corollary 8.6 From Propositior8.5, we have:

L
=

n—oo

Wi(e) X' 2R X +2X' 2R (e) A4+ AZR(e)A .
As A € V(0), P(0)(X)A = A, and we have:

SR(e)A = g(ds; ) Pi(2)A = g(0;¢) P(0)(2) A = g(0;¢0) A
d;
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sinceP;(X) A = 0 for all eigenprojections on the eigenspaces different fiti). Hence,

WEe) 5 X'SR(E)X +29(0;¢) X A+ g(0;0) A A

n—oo

O]

Proof of Proposition 9.1We need to show thatm,, ... P[|| X (c,) — ZF(0)|| > €] = 0 for everye > 0. Let

r denote the rank of the matrix of interest Three possible cases will be considered in the proef ¢, r = 0

andl <r <gq. Letl ={1,2,...,g} suchthat\; > Ao > ... > X\; > ... > A\, > 0,andJ = {1,2,...,k} the

subset off corresponding to the indices of the distinct eigenvalueS'ofl; > dy > ... > d; > ... > d, > 0
k

where the multiplicity of the distinct eigenvalug is denotedn(d;), so that)  m(d;) = ¢ > 1 andl < k < q.

j=1
Forj € J, letI; denote the subset dfsuch thatl; = {i € I : \; = d;}, hence thd;’s are disjoint sets such as

k
‘Ullj = {1,...,¢}. If zero is an eigenvalue, thefy, = 0. Let P;(X) = P(d;)(X) represent the eigenprojection
j:

operator projecting onto the eigenspade;) associated witld;. First we show that

lim Pllg(\i; cn) — 9(dj;0)| > el =0 Viel;, Ve>0 (B.4)
as it is used later on in the proof. By Lemr@ati), we have for all € I}, 5\i EX d;. Besides, ag, — 0, we
have A )

P“)\l — dj| > Cn] = Pﬂbn()\l — dj)‘ > bncn] — 0 (B5)

n—oo

sinceb,c,, — oo andb,, (5\,~ - dj) converges in distribution by Theorefn6. Note that forj\i = \(X,), we can
write

lim Pllg[Ai(Zn); en] — g(dj; 0)] > el =~ lim_ Pllg[Ai(Zn); em] — g(dj; 0) > €] - (B.6)

n—oo n—0o0, Mm—00o

It is equivalent to write

|9[Ai(Zn)s em] = g(dj; 0)| = [g[Ai(Zn); em] — g[Ai(Z0); 0] + g[Ai(Zn); 0] — g(d;3 0)]
< glAi(Zn); em] = glAi(Zn); 0] + [g[Ai(2n); 0] — g(d;; 0)] -
(B.7)
Hence, lim  P{|g[\i(Xn);cm] — g[Ni(2n);0]] > €} = 0 since lirg+ g(A;e) = g(A;0) . Further,

lim P{|g[\i(Z,); 0] — g[d;;0]| > ¢} = 0, sincel; = N(%,) 2 d;, Vi € I; andg € G. is continuous
a.e. w.r.t.\, hence (B.4) follows.

Consider first the case where the limiting mattbhas full rankj.e. rank(X) = r =¢. Forallj € J: d; >0
sincer = ¢, then by (B.4) and by Lemm@4i) and ii), we have:

~

g(N\isen) B g(dj;0) ,and Pr(2,) & Pi(X),

provided\;_; # X\; and\; # A1 . Sinceg(d;;0) = W x m(d;)g(d;;0) = ﬁdj) > ier, 9(d;;0) , we have

J
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k
after adding and substracting the quanfity P, (X,)g(d;; 0) simultaneously:
j=1

k

Sien) = ZPIj(Zn);ZQ(S\ﬁCn)
m(dj>z‘elj

J=1

k
= Zsz(Zn)[g(dj;O) 9(d;;0) + Z!J ucn]
j=1

ZGI

k k
:Zamﬁwm+&“ZMMWw@mﬂﬂmeMm:ﬁ@,
j=1 J j=1

i€l

sincePy, (£,) 5 P;(X) and|g(\i; cn) — g(d;;0)| 2 0 by (B.4).

Second, consider the case whefe= 0 with multiplicity m(0) = ¢. In this case X, > X = 0,i.e. %,
converges to a zero matrix so that the range’as R(X) = {0} and its null-space i3/ (X)) = RY. Let P,(X)
denote the eigenprojection operator dfassociated with its zero eigenvalug (= 0) which projects onto the
corresponding eigenspat¥0), with dim[V(0)] = ¢. After adding and substracting the quantity (,,)g(0; 0)
simultaneously, we have:

Zrlz%(cn) = Pn(X Zg)\ucn Pr (X )[ (0;0) — Zg i3 Cn)
'LEI ze[l
:&Hmm&m&@mmwmm
icly
5 g(0;0)PL(X) = £7(0) (B.8)

since by Lemmé6.4 i), we have Py, (2,) % Pi(X), Py, (%,) = O,(1) and by (B.4), we have witd; = 0:
lg(Nis en) — g(0;0)| 2> 0 ,Viel .
Finally, suppose, = 0 andd; # 0. Then

k
(Aiien) = D _Pi(2)g(dy; 0)|

ze] 7

k
|25 (en) — ZR(0)]| = HZPIJ-(E
j=1

=1
k
—||ZPI [ (dj;0) — g(d;j;0) + ZQ } ZPJ 9(d;; 0)||

zEI

k
_’ZPIJ(Z”)m(ld,)Z[(A 9(d;;0)] +ZP[ g(dj;0) — ZP] g(d;; 0)|

(ld. > [9(his en) = 9(ds; 0)] 1 + Hzg(dj; 0)[Pr, () — Pj(D)]|
i€l; j=1
k
(1d, > l9(hisen) = g(d 01+ D lg(dy: )| Pry (Z0) = Pi(2)]

icl; j=1
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- dJ,OHHZ!gdmO!HPI( n) — B(2)]
ZEI Jj=1

Z?

k
ZHPI

(B.9)

sincePr, (2,) = Op(1), |g(Ai; cn) — g(0;0)] & 0,Vi € I; by (B.4),9(d;;0) = O(1) and|| Pr, (£,) — P;(2)|| =
0, by Lemma6.4ii). We can finally conclude that:

lim P[|| 2 (c,) — ZF(0)]| > ¢] = 0.

n—oo

]
PROOF of Proposition 9.2
By Proposition9.1, we haveX#(c,) % $%(0) and by Assumptio®.1, X,, 5 X, hence
WE(c,) = X, ZR(c) X, 5 X'SR0)X . (B.10)
The statistic can be decomposed as:
Wf(cn) = Wﬁ(cn) + Wzlfz(cn)
whereW i (c,,) = X, X[t (cn) X, ,for i =1,2 and
k 1 A k1 1 A
(Cn) = ZPIj(En)ng(/\ivcn) = Z Zg zacn + Z (d')zg()‘iycn) .
j=1 Vel j=1 j>k1+1 Vel
Let’s focus on the first component:
k1
Eﬁ,n(cn) = Z Zg 15 n ZPI |: d],O) (Cl],O iy Cp, :|
j=1 ZEI ze[
(B.11)
= ZPI g9(d;j;0) + ZPI Z (\is ) — g(dj;0)] (B.12)

Jj=1 €l;

sinceg(d;; 0) = ﬁdj) Zidj g(d;;0). Using the continuity property of the eigenvalues and total eigenprojections
givenin Lemméb.4i) and ii) provided we can find distinct eigenvalue before and after, we Rave.),) TN P;(X)

and by (B.4We > 0, lim IP’[|g(;\i; cn)—g(d;; 0)| > e] = 0Vi € I;. Besides, as projection operators are bounded
in probability, we ha?v::(:)o

k1 1
Eﬁvn(cn) 2 Zg(dj; 0)P;(X) = X (0) , with Zm(dj) = ¢1 =rank [Eﬁ(O)] = dimV(q1) . (B.13)
i=1 =

Hence, we have:
c
Wil(en) = X, 20 1 (cn) Xn = X' 215 (0)X = WH(0) .
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For the second part of the statistic, the: ¢ matrix X' is such thatank(X) = ¢1, sodg,+1 = 0 with multiplicity
m(dk,+1) = ¢ — ¢1. The regularization operates such that:

n (B.14)

If \i = dig,+1 =0, then
Pg(Ai;cn) = 0] = P[by|Ni] < bnen] — 1Vi€ Iy,

sinceb, (A — \;) = Oy(1) Vi, andb,c, —  oo. Afortiori, it still holds for P[ 3~ g(\i,cn) =0] — 1.

n— oo .
161k1+1

. 1 o
Wit (cn) = X 235, (cn) X With 25 (c,) = P,klﬂ(zn)id > g(hiscn)
m( kl+1)i€lkl+1

SincePr, ,,(Zn) = Oy(1), thenP [Py, . (Z,) > g(\isen) = 0] — 1 ; this implies thatP [ X35 . (cn) =

ieIle

0] — 1,hence, we haveP[W ] (c,) =0] — 1.
O

PROOF of Corollary 9.3

Apply the results of PropositioB.2 with X,, = /n[(0,) — 1) L4 N[0,X] = X . Following equation
(7.9), P{(¥) = B(d;)B(d;) andB(d;)'X = x;, wherex; ~ N[0,d;lq,] , or equivalentlyz; = /dju;,
with wj ~ N(0, I;y,a;)) , We can write:

k1 k1
W) = X'ZH0)X = X'(D g(ds; o) Pi(2)) X =) _g(dy; o) X P(2)X
j=1 =1
k1 k1 k1 1 k1
= > _9(d; )X'Bd))B(d;) X =) _g(dj; c)ajw; = Y _—dyuuy = Y uju; ,
j=1 j=1 j=1" j=1

k1
whereu; ~ N (0, I,4,)) - Hencewsu; ~ x(m(dy)). As Y m(d;) = q1, henceW{¥(0) ~ x(q1).

J=1
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