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Abstract

We introduce a simple model of dynamic matching in networked markets, where
agents arrive and depart stochastically, and the composition of the trade network de-
pends endogenously on the matching algorithm. We show that if the planner can
identify agents who are about to depart, then waiting to thicken the market is highly
valuable, and if the planner cannot identify such agents, then matching agents greedily
is close to optimal. We characterize the optimal waiting time (in a restricted class of
mechanisms) as a function of waiting costs and network sparsity. The planner’s deci-
sion problem in our model involves a combinatorially complex state space. However,
we show that simple local algorithms that choose the right time to match agents, but
do not exploit the global network structure, can perform close to complex optimal al-
gorithms. Finally, we consider a setting where agents have private information about
their departure times, and design a continuous-time dynamic mechanism to elicit this
information.
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1 Introduction

The theory of matching has guided the design of many markets, from school choice, to kidney

exchange, to the allocation of medical residents. In a series of classic papers, economists have

extensively characterized good matching algorithms for static settings.1 In the canonical set-

up, a social planner faces a set of agents who have preferences over partners, contracts, or

combinations thereof. The planner’s goal is to find a matching algorithm with desirable

properties (e.g. stability, efficiency, or strategy-proofness). The algorithm is run, a match is

made, and the problem ends.

Of course, many real-world matching problems are dynamic. In a dynamic matching

environment, agents arrive gradually over time. A social planner continually observes the

agents and their preferences, and chooses how to match agents. Matched agents leave the

market. Unmatched agents either persist or depart. Thus, the planner’s decision today

affects the sets of agents and options tomorrow.

Some seasonal markets, such as school choice systems and the National Resident Matching

Program, are well-described as static matching problems without intertemporal spillovers.

However, some markets are better described as dynamic matching problems. Some examples

include:

• Kidney exchange: In paired kidney exchanges, patient-donor pairs arrive over time.

They stay in the market until either they are matched to a compatible pair, or their

condition deteriorates so that they leave the market unmatched.

• Markets with brokers: Some markets, such as real estate, aircraft, and ship charters,

involve intermediary brokers who receive requests to buy or sell particular items. A

broker facilitates transactions between compatible buyers and sellers, but does not hold

inventory. Agents may withdraw their request if they find an alternative transaction.

• Allocation of workers to time-sensitive tasks: Both within firms and online

labor markets, such as Uber and oDesk, planners allocate workers to tasks that are

profitable to undertake. Tasks arrive continuously, but may expire. Workers are suited

to different tasks, but may cease to be available.

1See Gale and Shapley (1962); Crawford and Knoer (1981); Kelso Jr and Crawford (1982); Roth and
Sotomayor (1992); Abdulkadiroglu and Sonmez (2003); Roth et al. (2004); Hatfield and Milgrom (2005);
Abdulkadiroglu et al. (2005a,b); Roth et al. (2007); Hatfield and Kojima (2010); Hatfield et al (2013);
Kominers and Sonmez (2013).
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Figure 1: Waiting expands the set of options. If the planner matches agent 1 to agent 2 at
time t, then the planner will be unable to match agents 3 and 4 at time t+ 1.

In dynamic settings, the planner must decide not only which agents to match, but also

when to match them. In choosing when to match agents, the planner faces a trade-off

between matching agents quickly and waiting to thicken the market. If the planner matches

agents frequently, then matched agents will not have long to wait, but it will be less likely

that any remaining agent has a potential match (a thin market). On the other hand, if

the planner matches agents infrequently, then there will be more agents available, making

it more likely that any given agent has a potential match (a thick market). For example, in

Figure 1, where each node represents an agent and each link represents a potential ‘match’,

if the planner matches agent 1 to agent 2 at time t, then the planner will be unable to match

agents 3 and 4 at time t+ 1. By contrast, if the planner waits until t+ 1, he can match all

four agents by matching 1 to 4 and 2 to 3.

The problem is more subtle if agents depart stochastically. Then, one drawback of waiting

is that agents may depart. However, waiting might bring information about which agents will

soon depart, enabling the planner to give priority to those agents. For example, in Figure 2,

the planner learns at t + 1 that agent 3 will imminently leave the market. If the planner

matches agent 1 to agent 2 at time t, then he will be unable to react to this information at

t+ 1.

This paper deals with identifying features of optimal matching algorithms in dynamic

environments. The previous examples illustrate that static matching models do not capture

important features of dynamic matching markets. In a static setting, the planner chooses

the best algorithm for an exogenously given set of agents and their preferences. By contrast,

in a dynamic setting, the set of agents and trade options at each point in time depend

endogenously on the matching algorithm. Only in a dynamic framework can we study the

trade-off between the option value of waiting and the potential costs of waiting.
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Figure 2: Waiting resolves uncertainties about agents’ departure times. The planner will
learn at t + 1 that agent 3 will depart imminently, and waiting allows him to use this
information.

The optimal timing policy in a dynamic matching problem is not obvious a priori. In

practice, many paired kidney exchanges enact static matching algorithms (‘match-runs’) at

fixed intervals.2 Even then, matching intervals differ substantially between exchanges: The

Alliance for Paired Donation conducts a match-run once a weekday, the United Network

for Organ Sharing conducts a match-run once a week3, the South Korean kidney exchange

conducts a match-run once a month, and the Dutch kidney exchange conducts a match-run

once a quarter (Akkina et al., 2011). This shows that policymakers select different timing

policies when faced with seemingly similar dynamic matching problems. It is therefore

useful to identify good timing policies, and to investigate how policy should depend on the

underlying features of the problem.

In this paper, we create and analyze a stylized model of dynamic matching on networks,

motivated mainly by the problem of kidney exchange. Agents arrive and depart stochasti-

cally. We use binary preferences, where a pairwise match is either acceptable or unacceptable,

generated according to a known distribution. These preferences are persistent over time, and

agents may discount the future. The set of agents (vertices) and the set of potential matches

(edges) form a random graph. Agents do not observe the set of acceptable transactions, and

are reliant upon the planner to match them to each other. We say that an agent perishes if

she leaves the market unmatched.

The planner’s problem is to design a matching algorithm; that is, at any point in time,

to select a subset of acceptable transactions and broker those trades. The planner observes

the current set of agents and acceptable transactions, but has only probabilistic knowledge

2In graph theory, a matching is a set of edges that have no nodes in common.
3See http://www.unos.org/docs/Update_MarchApril13.pdf
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about the future. The planner may have knowledge about which agents’ needs are urgent,

in the sense that he may know which agents will perish imminently if not matched. The

goal of the planner is to maximize the sum of the discounted utilities of all agents. In the

important special case where the cost of waiting is zero, the planner’s goal is equivalent to

minimizing the proportion of agents who perish. We call this the loss of an algorithm.

We can interpret this model as a stylized representation of paired kidney exchange. Ver-

tices in the graph represent patient-donor pairs, and there is an edge between two vertices if

the donor in each pair is compatible with the patient in the other pair. In kidney exchanges

with highly-sensitized patients, the feasibility of a match depends on both blood-type and

tissue-type compatibility. Tissue-type, or human leukocyte antigens (HLA), is a combination

of the level of six proteins, which implies a very large type space for patient-donor pairs. To

make the model tractable, we make the simplifying assumption that any patient-donor pair

is compatible with any other patient-donor pair with some independent probability. This

interpretation abstracts from k-cycles, for k > 2.

What are the key features of the optimal matching algorithm? Since we explicitly model

the network of potential matches, the resulting Markov Decision Problem is combinatorially

complex. Thus, it is not feasible to compute the optimal solution with standard dynamic

programming techniques. Instead, we employ a different approach: First, we derive bounds

on optimum performance. Then, we formulate simple and tractable matching algorithms

with different properties, and compare them to those bounds. If a simple algorithm is close

to optimal, then that suggests that it has the essential features of the optimal matching

algorithm.

The simple algorithms are as follows: The Greedy algorithm attempts to match each

agent upon arrival; it treats each instant as a static matching problem without regard for

the future.4 The Patient algorithm attempts to match only urgent agents (potentially to a

non-urgent partner). Both these algorithms are local, in the sense that they look only at the

immediate neighbors of the agent they attempt to match rather than at the global graph

structure5. We also study the Patient(α) algorithm, a family of algorithms that speeds up

the trade frequency of the Patient algorithm. This algorithm attempts to match urgent

cases, and additionally attempts to match each non-urgent case at some rate determined by

4The Greedy policy is inspired by some real-world markets, such as the Alliance for Paired Donation’s
policy of conducting a ‘match-run’ everyday. Our analysis of the Greedy Algorithm encompasses waiting list
policies where brokers make transactions as soon as they are available, giving priority to agents who arrived
earlier.

5Example 3.5 shows a case in which ‘locality’ of the Patient algorithm makes it suboptimal.
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α6.

We have three families of results. First, we analyze the performance of algorithms with

different timing properties, in the benchmark setting where the planner can identify urgent

cases. Second, we relax our informational assumption, and thereby establish the value of

short-horizon information about urgent cases. Third, we exhibit a dynamic mechanism that

truthfully elicits such information from agents. To state our results, we define the density

parameter of the model, d. For each agent, d is the average number of new acceptable

partners that arrive at the market before her needs are urgent.7

Our first family of results concerns the value of thickness in dynamic matching markets.

First, we establish that the loss of the Patient algorithm is exponentially smaller than

the loss of the Greedy algorithm, where the exponent is in d. For example, in a market

where d = 8, the loss of the Patient algorithm is no more than 15% of the loss of the Greedy

algorithm. This entails that if waiting costs are negligible, for a wide range of parameters,

the Patient algorithm substantially outperforms the Greedy algorithm. This shows that the

upper bound on the value of waiting is large.

Thickness in matching markets is analogous to liquidity in financial markets. Many finan-

cial models imply that liquidity is desirable because it facilitates time-sensitive transactions.

Our model shows that this intuition extends even to markets that do not have prices, where

agents have heterogeneous preferences over trading partners. Since the Greedy algorithm

conducts matches as soon as they become available, the market that remains is very thin

(illiquid). Consequently, it is not feasible to match urgent cases. By contrast, the Patient

algorithm maintains a thick (liquid) market. Thus, the planner can match urgent cases with

high probability.

The second finding in our first family of results establishes that the loss of the Patient

algorithm is “close to” the loss of the optimum algorithm. Recall that the Patient algorithm

is local; it looks only at the immediate neighborhood of the agents it seeks to match. By

6More precisely, every non-urgent agent is treated as urgent when an exogenous “exponential clock” ticks
and attempted to be matched either in that instance, or when she becomes truly urgent.

7Some approximate, back of the envelope calculations on the data of national kidney registry are helpful
in having a reasonable estimate for the range of d. In the national kidney registry data NKR Quarterly
Report (2013), the arrival rate of pairs (in 2013) was 467 pairs per year. Patients’ average waiting time, if
they are not matched, is nearly 3 years (Sonmez and Ünver (2015)). So m ' 1400. In addition, p is the
probability that two random pairs are cross compatible, which is p̄2, where p̄ is the probability that a random
patient is compatible to a random donor. p̄ is a function of the patients’ ethnicity, age, sex, and many other
factors, so it is hard to have an exact estimate, but given PRA and blood-type distribution data, p̄ can be
estimated to be a number between 0.05 and 0.1, implying p̄2 = p ∈ [.0025, .01] and d ∈ [3.5, 14]. For the
purpose of our results, it is worthwhile to remember the magnitude of d.
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contrast, the optimum algorithm chooses the optimal time to match agents, as well as the

optimal agents to match: It is global and potentially very complex, since the matchings it

selects depend on the entire network structure. When we compare the performance of the

(practically popular) Greedy algorithm to the optimum algorithm, we find that most of the

gain is achieved merely by being patient and thickening the market, rather than optimizing

over the network structure.8

Third, we find that it is possible to accelerate the Patient algorithm and still achieve

exponentially small loss9. That is, we establish a bound for the tuning parameter α such

that the Patient(α) algorithm has exponentially small loss. For instance, if agents stay in the

market for 1 year on average before getting urgent, and if d = 8, then under the Patient(α)

algorithm, the planner can promise to match agents in less than 4 months (in expectation)

while the loss is at most 55% of the loss of the Greedy algorithm. Thus, even moderate

degrees of waiting can substantially reduce the proportion of perished agents.

Fourth, we examine welfare under discounting. We show that for a range of discount

rates, the Patient algorithm delivers higher welfare than the Greedy algorithm, and for a

wider range of discount rates, there exists α such that the Patient(α) algorithm delivers

higher welfare than the Greedy algorithm. Then, in order to capture the trade-off between

the trade frequency and the thickness of the market, we solve for the optimal waiting time as

a function of the market parameters. Our comparative statics show that the optimal waiting

time is increasing in the sparsity of the graph.

Our second family of results relaxes the informational assumptions in the benchmark

model. Suppose that the planner cannot identify urgent cases; i.e. the planner has no

individual-specific information about departure times. We find that the loss of the optimum

algorithm that lacks such information is exponentially more than the loss of the Patient

algorithm, which näıvely exploits urgency information.

On the other hand, suppose that the planner has more than short-horizon information

about agent departures. The planner may be able to forecast departures long in advance, or

foresee how many new agents will arrive, or know that certain agents are more likely than

others to have new acceptable transactions. We prove that no expansion of the planner’s

information allows him to achieve a better-than-exponential loss. Taken as a pair, these

results suggest that short-horizon information about departure times is especially valuable

to the planner. Lacking this information leads to large losses, and having more than this

8This result on the near-optimality of a “local” algorithm (Theorem 3.6) also contributes to the literature
of local algorithms and local computation mechanism design in theoretical computer science (Suomela, 2013).

9As before, the exponent is in the average degree of agents.

6



information does not yield large gains.

In some settings, however, agents know when their cases are urgent, but the planner

does not. For instance, doctors know whether their patients have urgent needs, but kidney

exchange pools do not. Our final result concerns the incentive-compatible implementation of

the Patient(α) algorithm.10 Under private information, agents may have incentives to mis-

report their urgency so as to hasten their match or to increase their probability of getting

matched. We show that if agents are not too impatient, a dynamic mechanism without

transfers can elicit such information. The mechanism treats agents who report that their

need is urgent, but persist, as though they had left the market. This means that as an agent,

I trade off the possibility of a swifter match (by declaring that I am in urgent need now)

with the option value of being matched to another agent before I truly become urgent. We

prove that it is arbitrarily close to optimal for agents to report the truth in large markets.

The rest of the paper is organized as follows. Section 2 introduces our model and defines

the objective. Section 3 presents our main contributions; we recommend that readers consult

this section to see a formal statement of our results without getting into the details of the

proofs. Section 4 models our algorithms as Markov Chains and bounds their mixing times.

Section 5 goes through a deep analysis of the Greedy algorithm, the Patient algorithm, and

the Patient(α) algorithm and bounds their performance. Section 6 considers the case where

the urgency of an agent’s need is private information, and exhibits a truthful direct reve-

lation mechanism. Section 7 discusses key assumptions and suggests extensions. Section 8

concludes.

1.1 Related Work

There have been several studies on dynamic matching in the literatures of economics, com-

puter science, and operations research. To the best of our knowledge, no prior work has

examined dynamic matching on a general graph, where agents stochastically depart.

Kurino (2009) and Bloch and Houy (2012) study an overlapping generations model of

the housing market. In their models, agents have deterministic arrivals and departures.

In addition, the housing side of the market is infinitely durable and static, and houses do

not have preferences over agents. In the same context, Leshno (2012) studies a one-sided

dynamic housing allocation problem in which houses arrive stochastically over time, and

the waiting list is overloaded, and characterizes desirable queuing policies while incentive

10Note that the Patient(α) algorithm contains the Patient algorithm as a special case.
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constraints exist. In a subsequent independent paper, Baccara et al. (2015) study the problem

of dynamic matching in a two-sided model with ‘high’ and ‘low’ types on each side; every

agent on one side is compatible with every agent on the other side. In their setting, the

optimal mechanism matches agents assortatively, while accumulating uneven pairs up to a

threshold.

In the context of live-donor kidney exchanges, Ünver (2010) studies a model of dynamic

kidney exchange in which agents have multiple types. In his model, agents never perish.

Thus, one insight of his model is that waiting to thicken the market is not helpful when only

bilateral exchanges are allowed. We show that this result does not continue to hold when

agents depart stochastically. In a more recent study, Sonmez and Ünver (2015) introduce

a continuum model of organ transplantation. Their goal is to study the effects of various

transplantation technologies, including a new incentive scheme they introduce to increase the

number of compatible pairs. In the Operations Research and Computer Science literatures,

dynamic kidney matching has been extensively studied, see e.g., (Zenios, 2002; Su and Zenios,

2005; Awasthi and Sandholm, 2009; Dickerson et al., 2012). Ashlagi et al. (2013) construct

a discrete-time finite-horizon model of dynamic kidney exchange. Unlike our model, agents

who are in the pool neither perish, nor bear any waiting cost, and so they are not concerned

with criticality time, or agents’ incentives to misreport departure time’s information. Finally,

a follow-up paper uses our conceptual framework and techniques to model the competition

of two platforms with Greedy and Patient algorithms (Das et al., 2015).

In an independent concurrent work, Anderson et al. (2014) analyze a model in which

the main objective is to minimize the average waiting time, and agents never perish. They

analyze both pairwise and 3-way cycles and show that when only pairwise exchanges are

allowed, the Greedy algorithm is optimal in the class of ‘periodic Markov policies’, which is

similar to Theorem 3.10 in this paper. Our paper, on top of that, shows that when agents’

departure times are observable, then Greedy performs weakly, and the option value of waiting

can be huge. In another independent concurrent study, Arnosti et al. (2014) model a two-

sided dynamic matching market. Their main goal is to analyze congestion in decentralized

dynamic markets, whereas we study the role of timing and information in dynamic markets

from a central planning perspective.

Some recent papers study the problem of stability in dynamic matching markets. Livne

and Du (2014); Kadam and Kotowski (2014); Doval (2015) all study the problem of dynamic

stability in a two-period model, but with different environments and preference structures.

The literature on online advertising is also related to our work. In this setting, adver-
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tisements are static, but queries arrive adversarially or stochastically over time. Unlike our

model, queries persist in the market for exactly one period. Karp et al. (1990) introduced

the problem and designed a randomized matching algorithm. Subsequently, the problem has

been considered under several arrival models with pre-specified budgets for the advertisers,

(Mehta et al., 2007; Goel and Mehta, 2008; Feldman et al., 2009; Manshadi et al., 2012;

Blum et al., 2014).

The problem of dynamic matching has been extensively studied in the literature of labor

search and matching in labor markets. Shimer and Smith (2001) study a decentralized search

market and discuss efficiency issues. This paper and its descendants are different from ours in

at least two ways: First, rather than modeling market thickness via a fixed match-function,

we explicitly account for the network structure that affects the planner’s options. This allows

market thickness to emerge as an endogenous phenomenon. In addition, in Shimer and Smith

(2001), the benefit of waiting is in increasing the match quality, whereas in our model we

show that even if you cannot increase match quality, waiting can still be beneficial because

it increases the number of agents who get matched. Ebrahimy and Shimer (2010) study a

decentralized version of the Greedy algorithm from a labor-search perspective.

In contrast to dynamic matching, there are numerous investigations of dynamic auctions

and dynamic mechanism design. Budish et al. (2013) study the problem of timing and

frequent batch auctions in the high frequency setting. Parkes and Singh (2003) general-

ize the VCG mechanism to a dynamic setting. Athey and Segal (2007) construct efficient

and incentive-compatible dynamic mechanisms for private information settings. We refer

interested readers to Parkes (2007) for a review of the dynamic mechanism design literature.

2 The Model

In this section, motivated by the problem of kidney exchange, we provide a stylized stochastic

continuous-time model for a bilateral matching market that runs in the interval [0, T ]. Agents

arrive at the market at rate m according to a Poisson process. Hence, in any interval [t, t+1],

m new agents enter the market in expectation. Throughout the paper we assume m ≥ 1.

For t ≥ 0, let At be the set of the agents in our market at time t, and let Zt := |At|. We refer

to At as the pool of the market. We start by describing the evolution of At as a function

of t ∈ [0, T ]. Since we are interested in the limit behavior of At, without loss of generality,

9



we may assume A0 = ∅. We use Ant to denote11 the set of agents who enter the market at

time t. Note that with probability 1, |Ant | ≤ 1. Also, let |Ant0,t1| denote the set of agents who

enter the market in time interval [t0, t1].

Each agent becomes critical according to an independent Poisson process with rate λ.

This implies that, if an agent a enters the market at time t0, then she becomes critical

at some time t0 + X where X is an exponential random variable with parameter λ. Any

critical agent leaves the market immediately; so the last point in time that an agent can get

matched is the time that she gets critical. We say an agent a perishes if a leaves the market

unmatched.12

We assume that an agent a ∈ At leaves the market at time t, if any of the following three

events occur at time t:

• a is matched with another agent b ∈ At,

• a becomes critical and gets matched

• a becomes critical and leaves the market unmatched, i.e., a perishes.

It is essential to note that the arrival of the criticality event with some Poisson rate is not

equivalent to discounting with the same rate, because the criticality event might be observed

by the planner and the planner can react to that information. Stochastic departure is a

key feature of our model, for which we consider several informational structures: When the

planner has perfect foresight; when the planner knows the set of critical agents at each point

in time; and when the planner does not know anything about critical agents.

Say a enters the pool at time t0 and becomes critical at time t0 + X where X is an

exponential random variable with parameter λ. By the above discussion, for any matching

algorithm, a leaves the pool at some time t1 where t0 ≤ t1 ≤ t0 +X (note a may leave sooner

than t0 +X if she gets matched before becoming critical). The sojourn of a is the length of

the interval that a is in the pool, i.e., s(a) := t1 − t0.

We use Act to denote the set of agents that are critical at time t.13 Also, note that for

11As a notational guidance, we use subscripts to refer to a point in time or a time interval, while superscripts
n, c refer to new agents and critical agents, respectively.

12We intend this as a term of art. In the case of kidney exchange, perishing can be interpreted as a
patient’s medical condition deteriorating in such a way as to make transplants infeasible. In the case of
Uber, perishing can be interpreted as the point where a potential customer chooses an alternative mode of
transportation, or when a driver disconnects from the platform.

13In our proofs, we use the fact that Act ⊆ ∪0≤τ≤tAτ . In the example of the text, we have a ∈ Act0+X .
Note that even if agent a is matched before getting critical (i.e., t1 < t0 +X), we still have that a ∈ Act0+X .
Hence, Act is not necessarily a subset of At since it may have agents who are already matched and left the
pool. This generalized definition of Act is helpful in our proofs.
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any t ≥ 0, with probability 1, |Act | ≤ 1.

For any pair of agents, the probability that a bilateral transaction between them is

acceptable is p, where 0 ≤ p ≤ 1, and these probabilities are independent. Let d = mp

be the density parameter of the model. Note that d is the number of expected acceptable

transactions of agents if the planner does not match anyone.14 In the paper, we use this

definition and replace p with d/m. In proofs, we may employ p and q = 1− d/m to simplify

notation. For any t ≥ 0, let Et ⊆ At × At be the set of acceptable bilateral transactions

between the agents in the market (the set of edges) at time t, and let Gt = (At, Et) be the

exchange possibilities graph at time t. Note that if a, b ∈ At and a, b ∈ At′ , then (a, b) ∈ Et
if and only if (a, b) ∈ Et′ , i.e. the acceptable bilateral transactions are persistent throughout

the process. For an agent a ∈ At we use Nt(a) ⊆ At to denote the set of neighbors of a in

Gt. It follows that, if the planner does not match any agents, then for any fixed t ≥ 0, Gt

is distributed as an Erdös-Réyni graph with parameter d/m and d is the average degree15 of

agents (Erdös and Rényi, 1960).

Let A = ∪t≤TAnt , let E ⊆ A × A be the set of acceptable transactions between agents

in A, and let G = (A,E)16. Observe that any realization of the above stochastic process

is uniquely defined given Ant , A
c
t for all t ≥ 0 and the set of acceptable transactions, E. A

vector (m, d, λ) represents a dynamic matching market. Without loss of generality, we can

scale time so that λ = 1 (by normalizing m and d). Therefore, throughout the paper, we

assume λ = 1, unless otherwise specified17.

Online Matching Algorithms. A set of edges Mt ⊆ Et is a matching if no two edges

share the same endpoints. An online matching algorithm, at any time t ≥ 0, selects a

(possibly empty) matching, Mt, in the current acceptable transactions graph Gt, and the

endpoints of the edges in Mt leave the market immediately. We assume that any online

matching algorithm at any time t0 only knows the current graph Gt for t ≤ t0 and does not

know anything about Gt′ for t′ > t0. In the benchmark case that we consider, the online

algorithm can depend on the set of critical agents at time t; nonetheless, we will extend

several of our theorems to the case where the online algorithm does not have this knowledge.

14In principle, for a given market, one can measure m (the arrival rate of agents) and p (the probability
that two random agents have an acceptable trade) and calculate d.

15In an undirected graph, degree of of a vertex is equal to the total number of edges connected to that
vertex.

16Note that E ⊇ ∪t≤TEt, and the two sets are not typically equal, since two agents may find it acceptable
to transact, even though they are not in the pool at the same time because one of them was matched earlier.

17See Proposition 5.12 for details of why this is without loss of generality.
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As will become clear, this knowledge has a significant impact on the performance of any

online algorithm.

We emphasize that the random sets At (the set of agents in the pool at time t), Et

(the set of acceptable transactions at time t), Nt(a) (the set of an agent a’s neighbors), and

the random variable Zt (pool size at time t) are all functions of the underlying matching

algorithm. We abuse notation and do not include the name of the algorithm when we analyze

these variables.

The Goal. The goal of the planner is to design an online matching algorithm that maxi-

mizes social welfare, i.e., the sum of the utility of all agents in the market. Let ALG(T ) be

the set of matched agents by time T ,

ALG(T ) := {a ∈ A : a is matched by ALG by time T}.

We may drop the T in the notation ALG(T ) if it is clear from context.

An agent receives zero utility if she leaves the market unmatched. If she is matched, she

receives a utility of 1 discounted at rate r. More formally, if s(a) is the sojourn of agent a,

then we define the utility of agent a as follows:

u(a) :=

e−rs(a) if a is matched

0 otherwise.

We define the social welfare of an online algorithm to be the expected sum of the utility

of all agents in the interval [0, T ], divided by a normalization factor:

W(ALG) := E

[
1

mT

∑
a∈A

u(a)

]

In this model, the passage of time brings two costs. First, agents discount the future, so

later matches are less valuable than earlier matches. Second, agents may perish, in which

case they cannot be matched at all. In a stylized way, these stochastic departures represent

medical emergencies such as vascular access failure (Roy-Chaudhury et al., 2006), which may

be difficult to predict far ahead of time (Polkinghorne and Kerr, 2002).

It is instructive to consider the special case where r = 0, i.e., the cost of waiting is

negligible compared to the cost of leaving the market unmatched. In this case, the goal of

the planner is to match the maximum number of agents, or equivalently to minimize the

12



number of perished agents. The loss of an online algorithm ALG is defined as the ratio of

the expected18 number of perished agents to the expected size of A,

L(ALG) :=
E [|A− ALG(T )− AT |]

E [|A|]
=

E [|A− ALG(T )− AT |]
mT

.

When we assume r = 0, we will use the L notation for the planner’s loss function. When

we consider r > 0, we will use the W notation for social welfare.

Each of the above optimization problems can be modeled as a Markov Decision Problem

(MDP)19 that is defined as follows. The state space is the set of pairs (H,B) where H is

any undirected graph of any size, and if the algorithm knows the set of critical agents, B is

a set of at most one vertex of H representing the corresponding critical agent. The action

space for a given state is the set of matchings on the graph H. Under this conception, an

algorithm designer wants to minimize the loss or maximize the social welfare over a time

period T .

Although this MDP has infinite number of states, with small error one can reduce the

state space to graphs of size at most O(m).20 Even in that case, this MDP has an exponential

number of states in m, since there are at least 2(m2 )/m! distinct graphs of size m21, so for even

moderately large markets22, we cannot apply standard dynamic programming techniques to

find the optimum online matching algorithm.

Optimum Solutions. In many parts of this paper we compare the performance of an

online algorithm to the performance of an optimal omniscient algorithm. Unlike any online

algorithm, the omniscient algorithm has full information about the future, i.e., it knows the

full realization of the graph G.23 Therefore, it can return the maximum matching in this

graph as its output, and thus minimize the fraction of perished agents. Let OMN(T ) be

the set of matched agents in the maximum matching of G. The loss function under the

18It is a modeling choice to use expected value as the objective function. One may also be interested in
objective functions that depend on the variance of the performance, as well as the expected value. As we
later show, the performance of our algorithms are highly concentrated around their expected value, which
guarantees that the variance is very small in most of the cases.

19We recommend Bertsekas (2000) for background on Markov Decision Processes.
20This claim will be clarified later in the paper, when we prove our concentration bounds. The bounds

show that the probability of having a pool size larger than O(m) is exponentially small in m.
21This lower bound is derived as follows: When there are m agents, there are

(
m
2

)
possible edges, each

of which may be present or absent. Some of these graphs may have the same structure but different agent
indices. A conservative lower bound is to divide by all possible re-labellings of the agents (m!).

22For instance, for m = 30, there are more than 1098 states in the approximated MDP.
23In computer science, these are equivalently called offline algorithms.
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omnsicient algorithm at time T is

L(OMN) :=
E [|A−OMN(T )− AT |]

mT

Observe that for any online algorithm, ALG, and any realization of the probability space,

we have |ALG(T )| ≤ |OMN(T )|.24

It is also instructive to study the optimum online algorithm, an online algorithm that

has access to unlimited computational power. By definition, an optimum online algorithm

can solve the exponential-sized state space Markov Decision Problem and return the best

policy function from states to matchings. We first consider OPTc, the algorithm that knows

the set of critical agents at time t (with associated loss L(OPTc)). We then relax this

assumption and consider OPT, the algorithm that does not know these sets (with associated

loss L(OPT)).

Let ALGc be the loss under any online algorithm that knows the set of critical agents at

time t. It follows that

L(ALGc) ≥ L(OPTc) ≥ L(OMN).

Similarly, let ALG be the loss under any online algorithm that does not know the set of

critical agents at time t. It follows that25

L(ALG) ≥ L(OPT) ≥ L(OPTc) ≥ L(OMN).

3 Our Contributions

In this section, we present our main contributions for the limit cases, discuss intuitions,

and provide overviews of the proofs. The rest of the paper includes detailed analysis of the

model, exact statement of the results with no limits, and full proofs.

In our model, solving for the optimal matching algorithm is computationally complex.

Nevertheless, we can characterize key features of the optimal solution by employing some

algorithmic techniques. The first simple observation is that we are not fully agnostic about

the optimal algorithm. In particular, we know that when waiting cost is negligible (i.e.

r = 0), OPTc has two essential characteristics:

24This follows from a straightforward revealed-preference argument: For any realization, the optimum
offline policy has the information to replicate any given online policy, so it must do weakly better.

25Note that |ALG| and |OPT| are generally incomparable, and depending on the realization of G we may
even have |ALG| > |OPT|.
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i) A pair of agents a, b get matched in OPTc only if one of them is critical. Since r = 0, if

a, b can be matched and neither of them is critical, then we are weakly better off if we

wait and match them later.

ii) If an agent a is critical at time t and Nt(a) 6= ∅ then OPTc matches a. This property is a

corollary of the simple fact that matching a critical agent does not increase the number

of perished agents in any online algorithm.

OPTc is patient: It waits until some agent gets critical and if an agent is critical and has

some acceptable partner, then OPTc matches that agent. But the choice of match partner

depends on the entire network structure, which is what makes the problem combinatorially

complex. Our goal here is to detach these two effects: How much is achieved merely by being

patient? And how much more is achieved by optimizing over the network structure?

To do this, we start by designing a matching algorithm (the Greedy algorithm), which

mimics ‘match-as-you-go’ algorithms used in many real marketplaces26. It delivers maximal

matchings at any point in time, without regard for the future.

Definition 3.1 (Greedy Algorithm:). If any new agent a enters the market at time t, then

match her with an arbitrary agent in Nt(a) whenever Nt(a) 6= ∅. We use L(Greedy) and

W(Greedy) to denote the loss and the social welfare under this algorithm, respectively.

Note that since |Ant | ≤ 1 almost surely, we do not need to consider the case where more

than one agent enters the market at any point in time. Observe that the graph Gt in the

Greedy algorithm is almost always an empty graph. Hence, the Greedy algorithm cannot

use any information about the set of critical agents.

To detach the value of waiting from the value of optimizing over the network structure,

we design a second algorithm which chooses the optimal time to match agents, but ignores

the network structure.

Definition 3.2 (Patient Algorithm). If an agent a becomes critical at time t, then match

her uniformly at random with an agent in Nt(a) whenever Nt(a) 6= ∅. We use L(Patient)

and W(Patient) to denote the loss and the social welfare under this algorithm, respectively.

To run the Patient algorithm, we need access to the set of critical agents at time t. We do

not intend the timing assumptions about critical agents to be interpreted literally. An agent’s

point of perishing represents the point at which it ceases to be socially valuable to match

26For instance, the Alliance for Paired Donation conducts a ‘match-run’ everyday.
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that agent. Letting the planner observe the set of critical agents is a modeling convention

that represents high-accuracy short-horizon information about agents’ departures.27 Note

that the Patient algorithm exploits only short-horizon information about urgent cases, as

compared to the Omniscient algorithm which has full information about the future. We

discuss implications of relaxing our informational assumptions in Subsection 3.3.

We also design a class of algorithms that interpolates between the Greedy and the Patient

algorithms. The idea of this algorithm is to assign independent exponential clocks with rates

1/α where α ∈ [0,∞) to each agent a. If agent a’s exponential clock ticks, the market-maker

attempts to match her. If she has no neighbors, then she remains in the pool until she gets

critical, where the market-maker attempts to match her again.

A technical difficulty with the above matching algorithm is that it is not memoryless;

since when an agent gets critical and has no neighbors, she remains in the pool. Therefore,

instead of the above algorithm, we study a slightly different matching algorithm (with a

worse loss).

Definition 3.3 (The Patient(α) algorithm). Assign independent exponential clocks28 with

rate 1/α where α ∈ [0,∞) to each agent a. If agent a’s exponential clock ticks or if an agent

a becomes critical at time t, match her uniformly at random with an agent in Nt(a) whenever

Nt(a) 6= ∅. In both cases, if Nt(a) = ∅, treat that agent as if she has perished; i.e., never

match her again. We use L(Patient(α)) and W(Patient(α)) to denote the loss and the social

welfare under this algorithm, respectively.

It is easy to see that an upper bound on the loss of the Patient(α) algorithm is an upper

bound on the loss of our desired interpolating algorithm. Under this algorithm each agent’s

exponential clock ticks at rate 1
α

, so we search their neighbors for a potential match at rate

ᾱ := 1 + 1
α

. We refer to ᾱ as the trade frequency. Note that the trade frequency is a

decreasing function of α.

27An example of such information is the Model for End-Stage Liver Disease (MELD) score, which accu-
rately predicts 3-month mortality among patients with chronic liver disease. The US Organ Procurement
and Transplantation Network gives priority to individuals with a higher MELD score, following a broad
medical consensus that liver donor allocation should be based on urgency of need and not substantially on
waiting time. (Wiesner et al., 2003) Another example of such information is when a donor needs to donate
his/her kidney in a certain time interval.

28The use of exponential clocks is a modeling convention that enables us to reduce waiting times while
retaining analytically tractable Markov properties.
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Stylized Facts and Limit Results. Section 4 and Section 5 study the performance of

each algorithm as a function of m, T , and d, without taking limits. However, compatibility

graphs for kidney exchange tend to be both large (m > 500) and sparse (p < .02, d < 15).29

Consequently, we now state simplified results for the case of large markets with sparse graphs,

in the steady state: m → ∞, d is held constant, and T → ∞. Clearly, this implies that
d
m

= p → 0, which should not be taken literally. This method eliminates nuisance terms

that are small given typical parameter values for kidney exchange, and is a standard way to

state results for large but sparse graphs (Erdös and Rényi, 1960).

The results that follow do not depend sensitively on large values of m and T . Simulations

in Appendix H indicate that the key comparisons hold for small values of m. Moreover, the

algorithms we examine converge rapidly to the stationary distribution (Theorem 4.2). See

Theorem 5.1, Theorem 5.2, and Theorem F.1 for the dependence of our results on T .

3.1 Timing and Thickness in Dynamic Matching Markets

Does timing substantially affect the performance of dynamic matching algorithms? Our first

result establishes that varying the timing properties of simple algorithms has large effects

on their performance. In particular, we show that the number of perished agents under the

Patient algorithm is exponentially (in d) smaller than the number of perished agents under

the Greedy algorithm. This shows that gains from waiting can be substantial.

Theorem 3.4. For (constant) d ≥ 2, as T,m→∞,

L(Greedy) ≥ 1

2d+ 1

L(Patient) ≤ 1

2
· e−d/2

As a result,

L(Patient) ≤ (d+
1

2
) · e−d/2 · L(Greedy)

We already knew that the Patient algorithm outperforms the Greedy algorithm. What

this theorem shows is that, in a world with negligible waiting costs, the Patient algorithm

exponentially outperforms the Greedy algorithm. The intuition behind this finding is that,

under the Greedy algorithm, there are no acceptable transactions among the set of agents in

the market (the market is thin) and so all critical agents perish. On the contrary, under the

29See footnote 7 for a calculation using US data.
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a1 a2 a3 a4

Figure 3: If a2 gets critical in the above graph, it is strictly better to match him to a1

as opposed to a3. The Patient algorithm, however, chooses either of a1 or a3 with equal
probability.

Patient algorithm, pool is always an Erdös-Réyni random graph (see Proposition 4.1), and

so the market is thicker. This market thickness helps the planner to react to critical cases.

Theorem 3.4 provides an upper bound for the value of waiting: We shut down both

channels by which waiting can be costly (negligible discounting, while the planner observes

critical agents) and show that in this world, the option value of waiting is large. We will

soon see that waiting is not necessarily valuable if either of those two channels is open.

The next question is, are the gains from market thickness large compared to the total

gains from optimizing over the network structure and choosing the right agents to match?

First, in the following example, we show that the Patient algorithm is näıve in choosing the

right agent to match to a critical agent, because it ignores the global network structure.

Example 3.5. Let Gt be the graph shown in Figure 3, and let a2 ∈ Act , i.e., a2 is critical at

time t. Observe that it is strictly better to match a2 to a1 as opposed to a3. Nevertheless,

since the Patient algorithm makes decisions that depend only on the immediate neighbors

of the agent it is trying to match, it cannot differentiate between a1 and a3 and will choose

either of them with equal probability.

The next theorem shows that no algorithm achieves better than exponentially small loss.

Furthermore, the gains from the right timing decision (moving from the Greedy algorithm to

the Patient algorithm) are larger than the remaining gains from optimization (moving from

the Patient algorithm to the optimum algorithm).

Theorem 3.6. For (constant) d ≥ 2, as T,m→∞,

e−d

d+ 1
≤ L(OPTc) ≤ L(Patient) ≤ 1

2
· e−d/2.

This constitutes an answer to the “when to match versus whom to match” question.

Recall that OPTc is the globally optimal solution. In many settings, optimal solutions may

be computationally demanding and difficult to implement. Thus, this result suggests that,

under some conditions, it will often be more worthwhile for policymakers to find ways to

thicken the market, rather than to seek potentially complicated optimal policies.
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It is worth emphasizing that this result (as well as Theorem 3.10) proves that local

algorithms are close-to-optimal and since in our model agents are ex ante homogeneous, this

shows that “whom to match” is not as important as “when to match”. In settings where

agents have multiple types, however, the decision of “whom to match” can be an important

one even when it is local. For instance, suppose a critical agent has two neighbors, one who

is hard-to-match and one who is easy-to-match. Then, ceteris paribus, the optimal policy

should match the critical agent to the hard-to-match neighbor and breaking the ties in favor

of hard-to-match agents reduces the loss.

The planner may not be willing to implement the Patient algorithm for various reasons.

For instance, the cost of waiting is usually not zero; in other words, agents prefer to be

matched earlier (we discuss this cost in detail in Subsection 3.2). In addition, the planner

may be in competition with other exchange platforms and may be able to attract more

agents by advertising reasonably short waiting times.30 Hence, we study the performance of

the Patient(α) algorithm, which introduces a way to speed up the Patient algorithm. The

next result shows that when α is not ‘too small’ (i.e., the exponential clocks of the agents

do not tick at a very fast rate), then Patient(α) algorithm still (strongly) outperforms the

Greedy algorithm. In other words, even waiting for a moderate time can substantially reduce

perishings.

Theorem 3.7. Let ᾱ := 1/α + 1. For (constant) d ≥ 2 and α ≥ 0, as T,m→∞,

L(Patient(α)) ≤ (d+ 1) · e−d/2ᾱ · L(Greedy)

A numerical example clarifies the significance of this result. Consider the case of a kidney

exchange market, where 1000 new pairs arrive to the market every year, their average sojourn

is 1 year and they can exchange kidneys with a random pair with probability 1
100

; that is,

d = 10. The above result for the Patient(α) algorithm suggests that the market-maker can

promise to match pairs in less than 4 months (in expectation) while the fraction of perished

pairs is at most 37% of the Greedy algorithm. Note that if we employ the Patient algorithm,

the fraction of perished pairs will be at most 7% of the Greedy algorithm.

We now present the ideas behind the proofs of the theorems presented in this section.

30We do not explicitly model platform competition since it is beyond the scope of this paper. One follow-up
paper uses our conceptual framework and techniques to model platform competition (see Das et al. (2015)).
In that model agents and platforms are not “strategic” (in its game-theoretic sense). The analysis of the
Patient(α), nevertheless, can pave the way for studying competition in strategic settings, which is an area
of future research.
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The details of the proofs are discuss in the rest of the paper.

Proof Overview. [Theorem 3.4, Theorem 3.6, and Theorem 3.7] We first sketch the proof of

Theorem 3.4. We show that for large enough values of T and m, (i) L(Patient) ≤ e−d/2/2

and (ii) L(OPT) ≥ 1/(2d + 1). By the fact that L(Greedy) ≥ L(OPT) (since the Greedy

algorithm does not use information about critical agents), Theorem 3.4 follows immediately.

The key idea in proving both parts is to carefully study the distribution of the pool size, Zt,

under any of these algorithms.

For (i), we show that pool size under the Patient algorithm is a Markov chain, it has

a unique stationary distribution and it mixes rapidly to the stationary distribution (see

Theorem 4.2). This implies that for t larger than mixing time, Zt is essentially distributed

as the stationary distribution of the Markov Chain. We show that under the stationary

distribution, with high probability, Zt ∈ [m/2,m]. Therefore, any critical agent has no

acceptable transactions with probability at most (1− d/m)m/2 ≤ e−d/2. This proves (i) (see

Subsection 5.2 for the exact analysis of the Patient Markov chain).

To show that L(OPTc) ≥ e−d

d+1
, we prove a stronger result: we show that L(OMN) ≥ e−d

d+1
.

Note that L(OMN) is a lower bound for the loss of any algorithm. To see how we bound

L(OPT) and L(OMN), see the proof overview of Theorem 3.10, and for a detailed proof, see

Theorem B.1 and Theorem B.2.

We now sketch the idea of the proof of Theorem 3.7. By the additivity of the Poisson

process, the loss of Patient(α) algorithm in a (m, d, 1) matching market is equal to the loss

of the Patient algorithm in a (m, d, ᾱ) matching market, where ᾱ = 1/α + 1.

The next step is to show that a matching market (m, d, ᾱ) is equivalent to a matching

market (m/ᾱ, d/ᾱ, 1) in the sense that any quantity in these two markets is the same up to a

time scale (see Definition 5.11). By this fact, the loss of the Patient algorithm on a (m, d, ᾱ)

matching market at time T is equal to the loss of Patient algorithm on a (m/ᾱ, d/ᾱ, 1)

market at time ᾱT . But, we have already upper bounded the latter in Theorem 3.4.

One alternative interpretation of the above results is that information (i.e. knowledge

of the set of critical agents) is valuable, rather than that waiting is valuable. This is not

our interpretation at this point, since the Greedy algorithm cannot improve its performance

even if it has knowledge of the set of critical agents. The graph Gt is almost surely an

empty graph, so there is no possibility of matching an urgent case in the Greedy algorithm.

Because urgent cases depart imminently, maintaining market thickness at all times is highly

valuable. The Patient algorithm strongly outperforms the Greedy algorithm because it waits

20



long enough to create a thick market.

3.2 Welfare Under Discounting and Optimal Waiting Time

In this part we explictly account for the cost of waiting and study online algorithms that

optimize social welfare. It is clear that if agents are very impatient (i.e., they have very high

waiting costs), it is better to implement the Greedy algorithm. On the other hand, if agents

are very patient (i.e., they have very low waiting costs), it is better to implement the Patient

algorithm. Therefore, a natural welfare economics question is: For which values of r is the

Patient algorithm (or the Patient(α) algorithm) socially preferred to the Greedy algorithm?

Our next result shows that for small enough r, there exists a value of α such that the

Patient(α) algorithm is socially preferable to the Greedy algorithm.

Theorem 3.8. For any 0 ≤ r ≤ 1
8 log(d)

, there exists an α ≥ 0 such that as m,T →∞,

W(Patient(α)) ≥W(Greedy).

In particular, for r ≤ 1
2d

and d ≥ 5, we have

W(Patient) ≥W(Greedy).

A numerical example illustrates these magnitudes. Consider a barter market, where 100

new traders arrive at the market every week, their average sojourn is one week, and there

is a satisfactory trade between two random agents in the market with probability 0.05; that

is, d = 5. Then our welfare analysis implies that if the cost associated with waiting for one

week is less than 10% of the surplus from a typical trade, then the Patient(α) algorithm, for

a tuned value of α, is socially preferred to the Greedy algorithm.

When agents discount the future, how should the planner trade off the frequency of

transactions and the thickness of the market? To answer this, we characterize the optimal

trade frequency under the Patient(α) algorithm. Recall that under this algorithm each

agent’s exponential clock ticks at rate 1
α

, so we search their neighbors for a potential match

at rate ᾱ := 1 + 1
α

. The optimal ᾱ, the trade frequency, is stated in the following theorem.

Theorem 3.9. Given (constant) d, r, as m,T → ∞, there exists d̄ ∈ [d/2, d] as a function
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Figure 4: Optimal trade frequency (max{ᾱ, 1}) as a function of the discount rate for different
values of d. Our analysis shows that the optimal trade frequency is lower in sparser graphs.

of m, d31 such that the Patient( 1
max{ᾱ,1}−1

) algorithm where ᾱ is the solution of

r −
(
r + d̄+

d̄r

ᾱ

)
e−

d̄
ᾱ = 0, (3.1)

attains the largest welfare among all Patient(α) algorithms. In particular, if r < d̄/4, then

d̄/ log(d̄/r) ≤ ᾱ ≤ d̄/ log(2d̄/r).

In addition, if r < d/(2(e− 1)), then ᾱ∗ is weakly increasing in r and d.

Figure 4 illustrates max{ᾱ, 1} as a function of r. As one would expect, the optimal

trade frequency is increasing in r. Moreover, Theorem 3.9 indicates that the optimal trade

frequency is increasing in d. In Subsection 3.1, we showed that L(Patient) is exponentially

smaller in d than L(Greedy). This may suggest that waiting is mostly valuable in dense

graphs. By contrast, Theorem 3.9 shows that one should wait longer as the graph becomes

sparser. Intuitively, an algorithm performs well if, whenever it searches neighbors of a critical

agent for a potential match, it can find a match with very high probability. This probability

is a function of both the pool size and d. When d is smaller, the pool size should be larger

(i.e. the trade frequency should be lower) so that the probability of finding a match remains

31More precisely, d̄ := xd/m where x is the solution of equation (5.12).
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high. For larger values of d, on the other hand, a smaller pool size suffices.

Finally, we note that Patient (i.e. α =∞) has the optimal matching rate for a range of

parameter values. To see why, suppose agents discount their welfare, but never perish. The

planner would still wish to match them at some positive rate. For a range of parameters,

this positive rate is less than 1. In a world where agents perish, ᾱ is bounded below by 1,

and we have a corner solution for such parameter values.

Proof Overview. [Theorem 3.8 and Theorem 3.9] We first show that for large values of m

and T , (i) W(Greedy) ≤ 1− 1
2d+1

, and (ii) W(Patient(α)) ' 2
2−e−d/2ᾱ+r/ᾱ

(1− e−d/2ᾱ), where

ᾱ = 1 + 1/α. The proof of (i) is very simple: 1/(2d + 1) fraction of agents perish under

the Greedy algorithm. Therefore, even if all of the matched agents receive a utility of 1, the

social welfare is no more than 1− 1/(2d+ 1).

The proof of (ii) is more involved and includes multiple approximation techniques. The

idea is to define a random variable Xt representing the potential utility of the agents in the

pool at time t, i.e., if all agents who are in the pool at time t get matched immediately, then

they receive a total utility of Xt. We show that Xt can be approximated with a small error by

studying the evolution of the system through a differential equation. Given Xt and the pool

size at time t, Zt, the expected utility of an agent that is matched at time t is Xt/Zt. Using

our concentration results on Zt, we can then compute the expected utility of the agents that

are matched in any interval [t, t + dt]. Integrating over all t ∈ [0, T ] proves the claim. (See

Appendix F for an exact analysis of welfare under discounting for the Patient algorithm)

To prove Theorem 3.9, we characterize the unique global maximum of W(Patient(α)).

The key point is that the optimum value of ᾱ (= 1 + 1/α) is less than 1 for a range of

parameters. However, since α ≥ 0, we must have that ᾱ ∈ [1,∞). Therefore, whenever the

solution of Equation 3.1 is less than 1, the optimal ᾱ is 1 and we have a corner solution; i.e.

setting α =∞ (running the Patient algorithm) is optimal.

3.3 Value of Information and Incentive-Compatibility

Up to this point, we have assumed that the planner knows the set of critical agents; i.e. he has

accurate short-horizon information about agent departures. We now relax this assumption

in both directions.

First, we consider the case that the planner does not know the set of critical agents. That

is, the planner’s policy may depend on the graph Gt, but not the set of critical agents Act .

Recall that OPT is the optimum algorithm subject to these constraints. Second, we consider
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OMN, the case under which the planner knows everything about the future realization of

the market. Our main result in this section is stated below:

Theorem 3.10. For (constant) d ≥ 2, as T,m→∞,

1

2d+ 1
≤ L(OPT) ≤ L(Greedy) ≤ log(2)

d

e−d

d+ 1
≤ L(OMN) ≤ L(Patient) ≤ 1

2
· e−d/2.

Proof Overview. We employ a novel trick to bound L(OPT), without knowing anything

about the way OPT works. The idea is to provide lower bounds on the performance of any

matching algorithm as a function of its expected pool size. Let ζ be the expected pool size

of OPT. When the planner does not observe critical cases, all critical agents perish. Hence,

in steady state, L(OPT) ' ζ/m, which is the perishing rate divided by the arrival rate.

Note that this is an increasing function of ζ, so from this perspective the planner prefers to

decrease the pool size as much as possible.

Next, we count the number of agents who do not have any acceptable transactions during

their sojourn. No matching algorithm can match these agents and so the fraction of those

agents is a lower bound on the performance of any matching algorithm, including OPT. We

do this in Subsection B.1 and show that L(OPT) ≥ 1−ζ(d/m+d2/m2)
1+2d+d/m2 . From this perspective,

the planner prefers to increase the pool size as much as possible. One can easily show that

the optimal pool size (to minimize the loss) is 1/(2d+1). If ζ ≤ 1/(2d+1), then the fraction

of agents with no acceptable transactions is more than 1/(2d+ 1).

Providing a lower bound for the L(OMN) employs a similar idea. First, as a function of

the pool size, we count the fraction of agents who come to market and have no acceptable

transactions during their sojourn. This is a decreasing function of the pool size. But we

know that the expected pool size can never be more than m, because that is the expected

pool size when the planner does not match any agents. Hence, the fraction of agents with

no acceptable transactions when the expected pool size is m is a lower bound on the loss of

the OMN. (See Subsection B.2 for the details.)

Theorem 3.10 shows that the loss of OPT and Greedy are relatively close. This indicates

that waiting and criticality information are complements: Waiting to thicken the market is

substantially valuable only when the planner can identify urgent cases. Observe that OPT

could in principle wait to thicken the market, but the gains from doing so (compared to
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running the Greedy algorithm) are not large. Under these new information assumptions, we

once more find that local algorithms can perform close to computationally intensive global

optima. Moreover, Theorem 3.10 together show that criticality information is valuable, since

the loss of Patient, which näıvely exploits criticality information, is exponentially smaller

than the loss of OPT, the optimal algorithm without this information.

What if the planner knows more than just the set of critical agents? For instance, the

planner may have long-horizon forecasts of agent departure times, or the planner may know

that certain agents are more likely to have acceptable transactions in future than other

agents32. However, Theorem 3.10 shows that no expansion of the planner’s information set

yields a better-than-exponential loss. This is because L(OMN) is the loss under a maximal

expansion of the planner’s information. Taken together, these results suggest that criticality

information is particularly valuable.

However, in many settings, agents have privileged insight into their own departure times.

In such cases, agents may have incentives to misreport whether they are critical, in order

to increase their chance of getting matched or to decrease their waiting time. In kidney

exchange, for instance, doctors (and hospitals) have relatively accurate information about

the urgency of a patient-donor pair’s need, but kidney exchange pools are separate entities

and often do not have access to that information. We now exhibit a truthful mechanism

without transfers that elicits such information from agents, and implements the Patient(α)

algorithm.

We assume that agents are fully rational and know the underlying parameters, and that

they believe that the pool is in the stationary distribution when they arrive, but they do

not observe the actual realization of the stochastic process. That is, agents observe whether

they are critical, but do not observe Gt, while the planner observes Gt but does not observe

which agents are critical. Consequently, agents’ strategies are independent of the realized

sample path. Our results are sensitive to this assumption33; for instance, if the agent knew

that she had a neighbor, or knew that the pool at that moment was very large, she would

have an incentive under our mechanism to falsely report that she was critical.

The truthful mechanism, Patient-Mechanism(α), is described below.

32In our model, the number of acceptable transactions that a given agent will have with the next N agents
to arrive is Bernoulli distributed. If the planner knows beforehand whether a given agent’s realization is
above or below the 50th percentile of this distribution, it is as though agents have different ‘types’.

33This assumption is plausible in many settings; generally, centralized brokers know more about the current
state of the market than individual traders. Indeed, frequently agents approach centralized brokers because
they do not know who is available to trade with them.
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Definition 3.11 (Patient-Mechanism(α)). Assign independent exponential clocks with rate

1/α to each agent a, where α ∈ [0,∞). Ask agents to report when they get critical. If

agent’s exponential clock ticks or if she reports becoming critical, the market-maker attempts

to match her to a random neighbor. If the agent has no neighbors, the market-maker treats

her as if she has perished, i.e., she will never be matched again.

Each agent a selects a mixed strategy by choosing a function ca(·); at the interval [t, t+dt]

after her arrival, if she is not yet critical, she reports being critical with rate ca(t)dt, and

when she truly becomes critical she reports that immediately. Our main result in this section

asserts that if agents are not too impatient, then the Patient-Mechanism(α) is incentive-

compatible in the sense that the truthful strategy profile is a strong ε-Nash equilibrium.34

Theorem 3.12. Suppose that the market is in the stationary distribution and35 d = polylog(m).

Let ᾱ = 1/α + 1 and β = ᾱ(1 − d/m)m/ᾱ. Then, for 0 ≤ r ≤ β, ca(t) = 0 for all a, t (i.e.,

truthful strategy profile) is a strong ε-Nash equilibrium for Patient-Mechanism(α), where

ε→ 0 as m→∞.

In particular, if d ≥ 2 and 0 ≤ r ≤ e−d/2, the truthful strategy profile is a strong ε-Nash

equilibrium for Patient-Mechanism(∞), where ε→ 0 as m→∞.

Proof Overview. There is a hidden obstacle in proving that truthful reporting is incentive-

compatible: Even if one assumes that the market is in a stationary distribution at the point

an agent enters, the agent’s beliefs about pool size may change as time passes. In particular,

an agent makes inferences about the current distribution of pool size, conditional on not

having been matched yet, and this conditional distribution is different from the stationary

distribution. This makes it difficult to compute the payoffs from deviations from truthful

reporting. We tackle this problem by using the concentration bounds from Proposition 5.9,

and focusing on strong ε-Nash equilibrium, which allows small deviations from full optimality.

The intuition behind this proof is that an agent can be matched in one of two ways

under Patient-Mechanism(∞): Either she becomes critical and has a neighbor, or one of

her neighbors becomes critical and is matched to her. By symmetry, the chance of either

happening is the same, because with probability 1 every matched pair consists of one critical

agent and one non-critical agent. When an agent declares that she is critical, she is taking her

chance that she has a neighbor in the pool right now. By contrast, if she waits, there is some

34Any strong ε-Nash equilibrium is an ε-Nash equilibrium. For a definition of strong ε-Nash equilibrium,
see Definition 6.1.

35polylog(m) denotes any polynomial function of log(m). In particular, d = polylog(m) if d is a constant
independent of m.
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probability that another agent will become critical and be matched to her. Consequently,

for small r, agents will opt to wait.

The key insight of Theorem 3.12 is that remaining in the pool has a “continuation value”:

The agent, while not yet critical, may be matched to a critical agent. If agents are not too

impatient, then the planner can induce truth-telling by using punishments that decrease

this continuation value. Patient-Mechanism(α) sets this continuation value to zero, but in

principle softer punishments could achieve the same goal. For instance, if there are multiple

potential matches for a critical agent, the planner could break ties in favor of agents who have

never mis-reported. However, such mechanisms can undermine the Erdös-Réyni property

that makes the analysis tractable.

3.4 Technical Contributions

As alluded to above, most of our results follow from concentration results on the distribution

of the pool size for each of the online algorithms that are stated in Proposition 5.5 and

Proposition 5.9. In this last part we describe ideas behind these crucial results.

For analyzing many classes of stochastic processes one needs to prove concentration

bounds on functions defined on the underlying process by means of central limit theorems,

Chernoff bounds or Azuma-Hoeffding bounds. In our case many of these tools fail. This is

because we are interested in proving that for any large time t, a given function is concentrated

in an interval whose size depend only on d,m and not t. Since t can be significantly larger

than d or m, a direct proof fails.

Instead, we observe that Zt is a Markov Chain for a large class of online algorithms.

Building on this observation, first we show that the underlying Markov Chain has a unique

stationary distribution and it mixes rapidly. Then we use the stationary distribution of the

Markov Chain to prove our concentration bounds.

However, that is not the end of the story. We do not have a closed form expression

for the stationary distribution of the chain, because we are dealing with an infinite state

space continuous time Markov Chain where the transition rates are complex functions of the

states. Instead, we use the following trick. Suppose we want to prove that Zt is contained in

an interval [k∗− f(m, d), k∗+ f(m, d)] for some k∗ ∈ N with high probability, where f(m, d)

is a function of m, d that does not depend on t. We consider a sequence of pairs of states

P1 := (k∗−1, k∗+ 1), P2 := (k∗−2, k∗+ 2), etc. We show that if the Markov Chain is at any

of the states of Pi, it is more likely (by an additive function of m, d) that it jumps to a state

of Pi−1 as opposed to Pi+1. Using balance equations and simple algebraic manipulations, this
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implies that the probability of states in Pi geometrically decrease as i increases. In other

words Zt is concentrated in a small interval around k∗. We believe that this technique can

be used in studying other complex stochastic processes.

4 Modeling an Online Algorithm as a Markov Chain

In this section, we establish that under both of the Patient and Greedy algorithms, the

random processes Zt are Markovian, have unique stationary distributions, and mix rapidly to

the stationary distribution. We refer readers to the Appendix C for the necessary background

on Markov Chains and mixing times.

First, we argue that the pool size Zt is a Markov process under the Patient and Greedy

algorithms. This follows from the following simple observation.

Proposition 4.1. Under either of Greedy or Patient algorithms, for any t ≥ 0, conditioned

on Zt, the distribution of Gt is uniquely defined. So, given Zt, Gt is conditionally independent

of Zt′ for t′ < t.

Proof. Under the Greedy algorithm, at any time t ≥ 0, |Et| = 0. Therefore, conditioned on

Zt, Gt is an empty graph with |Zt| vertices.

For the Patient algorithm, note that the algorithm never looks at the edges between

non-critical agents, so the algorithm is oblivious to these edges. It follows that under the

Patient algorithm, for any t ≥ 0, conditioned on Zt, Gt is an Erdös-Rényi random graph

with |Zt| vertices and parameter d/m.

The following is the main theorem of this section.

Theorem 4.2. For the Patient and Greedy algorithms and any 0 ≤ t0 < t1,

P [Zt1|Zt for 0 ≤ t < t1] = P [Zt1|Zt for t0 ≤ t < t1] .

The corresponding Markov Chains have unique stationary distributions and mix in time

O(log(m) log(1/ε)) in total variation distance:

τmix(ε) ≤ O(log(m) log(1/ε)).

The proof of the theorem can be found in the Appendix D.

This theorem is crucial in justifying our focus on long-run results in Section 3, since these

Markov chains converge very rapidly (in O(log(m)) time) to their stationary distributions.
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5 Performance Analysis

In this section we upper bound L(Greedy) and L(Patient) as a function of d, and we upper

bound L(Patient(α)) as a function of d and α.

We prove the following three theorems.36

Theorem 5.1. For any ε ≥ 0 and T > 0,

L(Greedy) ≤ log(2)

d
+
τmix(ε)

T
+ 6ε+O

( log(m/d)√
dm

)
, (5.1)

where τmix(ε) ≤ 2 log(m/d) log(2/ε).

Theorem 5.2. For any ε > 0 and T > 0,

L(Patient) ≤ max
z∈[1/2,1]

(
z + Õ(1/

√
m)
)
e−zd +

τmix(ε)

T
+
εm

d2
+ 2/m, (5.2)

where τmix(ε) ≤ 8 log(m) log(4/ε).

Theorem 5.3. Let ᾱ := 1/α + 1. For any ε > 0 and T > 0,

L(Patient(α)) ≤ max
z∈[1/2,1]

(
z + Õ(

√
ᾱ/m)

)
e−zd/ᾱ +

τmix(ε)

ᾱT
+
εmᾱ

d2
+ 2ᾱ/m,

where τmix(ε) ≤ 8 log(m/ᾱ) log(4/ε).

We will prove Theorem 5.1 in Subsection 5.1, Theorem 5.2 in Subsection 5.2 and The-

orem 5.3 in Subsection 5.3. Note that the limit results of Section 3 are derived by taking

limits from Equation 5.1 and Equation 5.2 (as T,m→∞).

5.1 Loss of the Greedy Algorithm

In this part we upper bound L(Greedy). We crucially exploit the fact that Zt is a Markov

Chain and has a unique stationary distribution, π : N → R+. Our proof proceeds in three

steps: First, we show that L(Greedy) is bounded by a function of the expected pool size.

Second, we show that the stationary distribution is highly concentrated around some point

k∗, which we characterize. Third, we show that k∗ is close to the expected pool size.

36We use the operators O and Õ in the standard way. That is, f(m) = O(g(m)) iff there exists a positive
real number N and a real number m0 such that |f(m)| ≤ N |g(m)| for all m ≥ m0. Õ is similar but ignores
logarithmic factors, i.e. f(m) = Õ(g(m)) iff f(m) = O(g(m) logk g(m)) for some k.
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kk − 1 k + 1

Figure 5: An illustration of the transition paths of the Zt Markov Chain under the Greedy
algorithm

Let ζ := EZ∼µ [Z] be the expected size of the pool under the stationary distribution of

the Markov Chain on Zt. First, observe that if the Markov Chain on Zt is mixed, then the

agents perish at the rate of ζ, as the pool is almost always an empty graph under the Greedy

algorithm. Roughly speaking, if we run the Greedy algorithm for a sufficiently long time

then Markov Chain on size of the pool mixes and we get L(Greedy) ' ζ
m

. This observation

is made rigorous in the following lemma. Note that as T and m grow, the first three terms

become negligible.

Lemma 5.4. For any ε > 0, and T > 0,

L(Greedy) ≤ τmix(ε)

T
+ 6ε+

1

m
2−6m +

EZ∼π [Z]

m
.

The theorem is proved in the Appendix E.1.

The proof of the above lemma involves lots of algebra, but the intuition is as follows:

The EZ∼π [Z]
m

term is the loss under the stationary distribution. This is equal to L(Greedy)

with two approximations: First, it takes some time for the chain to transit to the stationary

distribution. Second, even when the chain mixes, the distribution of the chain is not exactly

equal to the stationary distribution. The τmix(ε)
T

term provides an upper bound for the loss

associated with the first approximation, and the term (6ε+ 1
m

2−6m) provides an upper bound

for the loss associated with the second approximation.

Given Lemma 5.4 , in the rest of the proof we just need to get an upper bound for EZ∼π [Z].

Unfortunately, we do not have any closed form expression of the stationary distribution, π(·).
Instead, we use the balance equations of the Markov Chain defined on Zt to characterize

π(·) and upper bound EZ∼π [Z].

Let us rigorously define the transition probability operator of the Markov Chain on Zt.

For any pool size k, the Markov Chain transits only to the states k + 1 or k − 1. It transits

to state k + 1 if a new agent arrives and the market-maker cannot match her (i.e., the new
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agent does not have any edge to the agents currently in the pool) and the Markov Chain

transits to the state k− 1 if a new agent arrives and is matched or an agent currently in the

pool gets critical. Thus, the transition rates rk→k+1 and rk→k−1 are defined as follows,

rk→k+1 := m
(

1− d

m

)k
(5.3)

rk→k−1 := k +m
(

1−
(

1− d

m

)k)
. (5.4)

In the above equations we used the fact that agents arrive at rate m, they perish at rate 1

and the probability of an acceptable transaction between two agents is d/m.

Let us write down the balance equation for the above Markov Chain (see equation (C.3)

for the full generality). Consider the cut separating the states 0, 1, 2, . . . , k− 1 from the rest

(see Figure 5 for an illustration). It follows that,

π(k − 1)rk−1→k = π(k)rk→k−1. (5.5)

Now, we are ready to characterize the stationary distribution π(·). In the following

proposition we show that there is a number k∗ ≤ log(2)m/d such that under the stationary

distribution, the size of the pool is highly concentrated in an interval of length O(
√
m/d)

around k∗.37

Proposition 5.5. There exists m/(2d+ 1) ≤ k∗ < log(2)m/d such that for any σ > 1,

Pπ
[
k∗ − σ

√
2m/d ≤ Z ≤ k∗ + σ

√
2m/d

]
≥ 1−O(

√
m/d)e−σ

2

.

Proof. Let us define f : R→ R as an interpolation of the difference of transition rates over

the reals,

f(x) := m(1− d/m)x − (x+m(1− (1− d/m)x)).

In particular, observe that f(k) = rk→k+1 − rk→k−1. The above function is a decreasing

convex function over non-negative reals. We define k∗ as the unique root of this function.

Let k∗min := m/(2d+ 1) and k∗max := log(2)m/d. We show that f(k∗min) ≥ 0 and f(k∗max) ≤ 0.

This shows that k∗min ≤ k∗ < k∗max.

f(k∗min) ≥ −k∗min −m+ 2m(1− d/m)k
∗
min ≥ 2m

(
1− k∗mind

m

)
− k∗min −m = 0,

f(k∗max) ≤ −k∗max −m+ 2m(1− d/m)k
∗
max ≤ −k∗max −m+ 2me−(k∗max)d/m = −k∗max ≤ 0.

37In this paper, log x refers to the natural log of x.
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In the first inequality we used equation (A.4) from Appendix A.

It remains to show that π is highly concentrated around k∗. In the following lemma, we

show that stationary probabilities decrease geometrically.

Lemma 5.6. For any integer k ≥ k∗

π(k + 1)

π(k)
≤ e−(k−k∗)d/m.

And, for any k ≤ k∗, π(k − 1)/π(k) ≤ e−(k∗−k+1)d/m.

This has been proved in Subsection E.2.

By repeated application of the above lemma, for any integer k ≥ k∗, we get38

π(k) ≤ π(k)

π(dk∗e)
≤ exp

(
− d

m

k−1∑
i=dk∗e

(i− k∗)
)
≤ exp(−d(k − k∗ − 1)2/2m). (5.6)

We are almost done. For any σ > 0,

∞∑
k=k∗+1+σ

√
2m/d

π(k) ≤
∞∑

k=k∗+1+σ
√

2m/d

e−d(k−k∗−1)2/2m =
∞∑
k=0

e−d(k+σ
√

2m/d)2/2m

≤ e−σ
2

min{1/2, σ
√
d/2m}

The last inequality uses equation (A.1) from Appendix A. We can similarly upper bound∑k∗−σ
√

2m/d

k=0 π(k).

Proposition 5.5 shows that the probability that the size of the pool falls outside an interval

of length O(
√
m/d) around k∗ drops exponentially fast as the market size grows. We also

remark that the upper bound on k∗ becomes tight as d goes to infinity.

The following lemma exploits Proposition 5.5 to show that the expected value of the pool

size under the stationary distribution is close to k∗.

Lemma 5.7. For k∗ as in Proposition 5.5 ,

EZ∼π [Z] ≤ k∗ +O(
√
m/d log(m/d)).

38dk∗e indicates the smallest integer larger than k∗.
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This has been proved in Subsection E.3.

Now, Theorem 5.1. follows immediately by Lemma 5.4 and Lemma 5.7 because we have

EZ∼π [Z]

m
≤ 1

m
(k∗ +O(

√
m logm)) ≤ log(2)

d
+ o(1)

5.2 Loss of the Patient Algorithm

Let π : N → R+ be the unique stationary distribution of the Markov Chain on Zt, and let

ζ := EZ∼π [Z] be the expected size of the pool under that distribution.

Once more our proof strategy proceeds in three steps. First, we show that L(Patient) is

bounded by a function of EZ∼π
[
Z(1− d/m)Z−1

]
. Second, we show that the stationary dis-

tribution of Zt is highly concentrated around some point k∗. Third, we use this concentration

result to produce an upper bound for EZ∼π
[
Z(1− d/m)Z−1

]
.

By Proposition 4.1, at any point in time Gt is an Erdös-Réyni random graph. Thus, once

an agent becomes critical, he has no acceptable transactions with probability (1−d/m)Zt−1.

Since each agent becomes critical with rate 1, if we run Patient for a sufficiently long time,

then L(Patient) ≈ ζ
m

(1−d/m)ζ−1. The following lemma makes the above discussion rigorous.

Lemma 5.8. For any ε > 0 and T > 0,

L(Patient) ≤ 1

m
EZ∼π

[
Z(1− d/m)Z−1

]
+
τmix(ε)

T
+
εm

d2
.

Proof. See Appendix E.4.

So in the rest of the proof we just need to lower bound EZ∼π
[
Z(1− d/m)Z−1

]
. As in the

Greedy case, we do not have a closed form expression for the stationary distribution, π(·).
Instead, we use the balance equations of the Markov Chain on Zt to show that π is highly

concentrated around a number k∗ where k∗ ∈ [m/2,m].

Let us start by defining the transition probability operator of the Markov Chain on Zt.

For any pool size k, the Markov Chain transits only to states k + 1, k − 1, or k − 2. The

Markov Chain transits to state k + 1 if a new agent arrives, to the state k − 1 if an agent

gets critical and the the planner cannot match him, and it transits to state k− 2 if an agent

gets critical and the planner matches him.

Remember that agents arrive with the rate m, they become critical with the rate of 1 and

the probability of an acceptable transaction between two agents is d/m. Thus, the transition
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k + 1k k + 2

Figure 6: An illustration of the transition paths of the Zt Markov Chain under the Patient
Algorithm

rates rk→k+1, rk→k−1, and rk→k−2 are defined as follows,

rk→k+1 := m (5.7)

rk→k−1 := k
(

1− d

m

)k−1

(5.8)

rk→k−2 := k
(

1−
(

1− d

m

)k−1)
. (5.9)

Let us write down the balance equation for the above Markov Chain (see equation (C.3)

for the full generality). Consider the cut separating the states 0, 1, 2, . . . , k from the rest (see

Figure 6 for an illustration). It follows that

π(k)rk→k+1 = π(k + 1)rk+1→k + π(k + 1)rk+1→k−1 + π(k + 2)rk+2→k (5.10)

Now we can characterize π(·). We show that under the stationary distribution, the size of

the pool is highly concentrated around a number k∗ where k∗ ∈ [m/2−2,m−1]. Remember

that under the Greedy algorithm, the concentration was around k∗ ∈ [ m
2d+1

, log(2)m
d

], whereas

here it is at least m/2.

Proposition 5.9 (Patient Concentration). There exists a number m/2 − 2 ≤ k∗ ≤ m − 1

such that for any σ ≥ 1,

Pπ
[
k∗ − σ

√
4m ≤ Z

]
≥ 1− 2

√
me−σ

2

, P
[
Z ≤ k∗ + σ

√
4m
]
≥ 1− 8

√
me
− σ2√m

2σ+
√
m .

Proof Overview. The proof idea is similar to Proposition 5.5. First, let us rewrite (5.10) by

replacing transition probabilities from (5.7), (5.8), and (5.9):

mπ(k) = (k + 1)π(k + 1) + (k + 2)
(

1−
(

1− d

m

)k+1)
π(k + 2) (5.11)
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Let us define a continous f : R→ R as follows,

f(x) := m− (x+ 1)− (x+ 2)(1− (1− d/m)x+1). (5.12)

It follows that

f(m− 1) ≤ 0, f(m/2− 2) > 0,

so f(.) has a root k∗ such that m/2− 2 < k∗ < m. In the rest of the proof we show that the

states that are far from k∗ have very small probability in the stationary distribution, which

completes the proof of Proposition 5.9. This part of the proof involves lost of algebra and

is essentially very similar to the proof of the Proposition 5.5. We refer the interested reader

to the Subsection E.5 for the complete proof of this last step.

Since the stationary distribution of Zt is highly concentrated around k∗ ∈ [m/2−2,m−1]

by the above proposition, we derive the following upper bound for EZ∼π
[
Z(1− d/m)Z

]
,

which is proved in the Appendix E.6.

Lemma 5.10. For any d ≥ 0 and sufficiently large m,

EZ∼π
[
Z(1− d/m)Z

]
≤ max

z∈[m/2,m]
(z + Õ(

√
m))(1− d/m)z + 2.

Now Theorem 5.2 follows immediately by combining Lemma 5.8 and Lemma 5.10.

5.3 Loss of the Patient(α) Algorithm

Our idea is to slow down the process and use Theorem 5.2 to analyze the Patient(α) algo-

rithm. More precisely, instead of analyzing Patient(α) algorithm on a (m, d, 1) market we

analyze the Patient algorithm on a (m/ᾱ, d/ᾱ, 1) market. First we need to prove a lemma

on the equivalence of markets with different criticality rates.

Definition 5.11 (Market Equivalence). An α-scaling of a dynamic matching market (m, d, λ)

is defined as follows. Given any realization of this market, i.e., given (Act , A
n
t , E) for any

0 ≤ t ≤ ∞, we construct another realization (Act
′, Ant

′, E ′) with (Act
′, Ant

′) = (Acα·t, A
n
α·t) and

the same set of acceptable transactions. We say two dynamic matching markets (m, d, λ)

and (m′, d′, λ′) are equivalent if one is an α-scaling of the other.

It turns out that for any α ≥ 0, and any time t, any of the Greedy, Patient or Patient(α)

algorithms (and in general any time-scale independent online algorithm) the set of matched
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agents at time t of a realization of a (m, d, λ) matching market is the same as the set of

matched agents at time αt of an α-scaling of that realization. The following proposition

makes this rigorous.

Proposition 5.12. For any m, d, λ the (m/λ, d/λ, 1) matching market is equivalent to the

(m, d, λ) matching market.39

Now, Theorem 5.3 follows simply by combining the above proposition and Theorem 5.2.

First, by the additivity of the Poisson process, the loss of the Patient(α) algorithm in a

(m, d, 1) matching market is equal to the loss of the Patient algorithm in a (m, d, ᾱ) matching

market, where ᾱ = 1/α + 1. Second, by the above proposition, the loss of the Patient

algorithm on a (m, d, ᾱ) matching market at time T is the same as the loss of this algorithm

on a (m/ᾱ, d/ᾱ, 1) market at time ᾱT . The latter is upper-bounded in Theorem 5.2.

6 Incentive-Compatible Mechanisms

In this section we design a dynamic mechanism to elicit the departure times of agents. As

alluded to in Subsection 3.3, we assume that agents only have statistical knowledge about

the rest of the market: That is, each agent knows the market parameters (m, d, 1), her

own status (present, critical, perished), and the details of the dynamic mechanism that the

market-maker is executing. Agents do not observe the graph Gt and their prior belief is the

stationary distribution.

Each agent a chooses a mixed strategy, that is she reports getting critical at an infinitesi-

mal time [t, t+dt] with rate ca(t)dt. In other words, each agent a has a clock that ticks with

rate ca(t) at time t and she reports criticality when the clock ticks. We assume each agent’s

strategy function, ca(·) is well-behaved, i.e., it is non-negative, continuously differentiable

and continuously integrable. Note that since the agent can only observe the parameters of

the market ca(·) can depend on any parameter in our model but this function is constant in

different sample paths of the stochastic process.

A strategy profile C is a vector of well-behaved functions for each agent in the market,

that is, C = [ca]a∈A. For an agent a and a strategy profile C, let E [uC(a)] be the expected

utility of a under the strategy profile C. Note that for any C, a, 0 ≤ E [uC(a)] ≤ 1. Given a

strategy profile C = [ca]a∈A, let C − ca + c̃a denote a strategy profile same as C but for agent

a who is playing c̃a rather than ca. The following definition introduces our solution concept.

39The proof is by inspection.
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Definition 6.1. A strategy profile C is a strong ε-Nash equilibrium if for any agent a and

any well-behaved function c̃a(.),

1− E [uC(a)] ≤ (1 + ε)(1− E [uC−ca+c̃a ]).

Note that the solution concept we are introducing here is slightly different from the usual

definition of an ε-Nash equilibrium, where the condition is either E [uC(a)] ≥ E [uC−ca+c̃a ]− ε,
or E [uC(a)] ≥ (1− ε)E [uC−ca+c̃a ]. The reason that we are using 1−E [uC(a)] as a measure of

distance is because we know that under Patient(α) algorithm, E [uC(a)] is very close to 1, so

1−E [uC(a)] is a lower-order term. Thus, this definition restricts us to a stronger equilibrium

concept, which requires us to show that in equilibrium agents can neither increase their

utilities, nor the lower-order terms associated with their utilities by a factor of more than ε.

Throughout this section let k∗ ∈ [m/2 − 2,m − 1] be the root of (5.12) as defined in

Proposition 5.9, and let β := (1 − d/m)k
∗
. In this section we show that if r (the discount

rate) is no more than β, then the strategy vector ca(t) = 0 for all agents a and t is an ε-mixed

strategy Nash equilibrium for ε very close to zero. In other words, if all other agents are

truthful, an agent’s utility from being truthful is almost as large as any other strategy.

Theorem 6.2. If the market is at stationary and r ≤ β, then ca(t) = 0 for all a, t is a strong

O(d4 log3(m)/
√
m)-Nash equilibrium for Patient-Mechanism(∞).

By our market equivalence result (Proposition 5.12), Theorem 6.2 leads to the following

corollary.

Corollary 6.3. Let ᾱ = 1/α+ 1 and β(α) = ᾱ(1− d/m)m/ᾱ. If the market is at stationary

and r ≤ β(α), then ca(t) = 0 for all a, t is a strong O((d/ᾱ)4 log3(m/ᾱ)/
√
m/ᾱ)-Nash

equilibrium for Patient-Mechanism(α).

The proof of the above theorem is involved but the basic idea is very easy. If an agent

reports getting critical at the time of arrival she will receive a utility of 1− β. On the other

hand, if she is truthful (assuming r = 0) she will receive about 1 − β/2. In the course of

the proof we show that by choosing any strategy vector c(·) the expected utility of an agent

interpolates between these two numbers, so it is maximized when she is truthful.

The precise proof of the theorem is based on Lemma 6.4. In this lemma, we upper-bound

the the utility of an agent for any arbitrary strategy, given that all other agents are truthful.
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Lemma 6.4. Let Z0 be in the stationary distribution. Suppose a enters the market at time

0. If r < β, and 10d4 log3(m) ≤
√
m, then for any well-behaved function c(.),

E [uc(a)] ≤ 2(1− β)

2− β + r
+O

(
d4 log3(m)/

√
m
)
β,

Proof. We present the sketch of the proof here. The full proof can be found in Appendix G.

For an agent a who arrives the market at time t0, let P [a ∈ At+t0 ] be the probability that

agent a is in the pool at time t+t0. Observe that an agent gets matched in one of the following

two ways: First, a becomes critical in the interval [t, t+ ε] with probability ε ·P [a ∈ At] (1 +

c(t)) and if she is critical she is matched with probability E
[
(1− (1− d/m)Zt−1|a ∈ At

]
.

Second, a may also get matched (without being critical) in the interval [t, t + ε]. Observe

that if an agent b ∈ At where b 6= a becomes critical she will be matched with a with

probability (1 − (1 − d/m)Zt−1)/(Zt − 1). Therefore, the probability that a is matched at

[t, t+ ε] without being critical is

P [a ∈ At] · E
[
ε · (Zt − 1)

1− (1− d/m)Zt−1

Zt − 1
|a ∈ At

]
= ε · P [a ∈ At]E

[
1− (1− d/m)Zt−1|a ∈ At

]
,

and the probability of getting matched at [t, t+ ε] is:

ε(2 + c(t))E
[
1− (1− d/m)Zt−1|a ∈ At

]
P [a ∈ At] .

Based on this expression, for any strategy of agent a we have,

E [uc(a)] ≤ β

m
+

∫ t∗

t=0

(2 + c(t))E
[
1− (1− d/m)Zt−1|a ∈ At

]
P [a ∈ At] e−rtdt

where t∗ is the moment where the expected utility that a receives in the interval [t∗,∞)

is negligible, i.e., in the best case it is at most β/m.

In order to bound the expected utility, we need to bound P [a ∈ At+t0 ]. We do this by

writing down the dynamical equation of P [a ∈ At+t0 ] evolution, and solving the associated

differential equation. In addition, we need to study E
[
1− (1− d/m)Zt−1|a ∈ At

]
to bound

the utility expression. This is not easy in general; although the distribution of Zt remains

stationary, the distribution of Zt conditioned on a ∈ At can be a very different distribution.

Therefore, we prove simple upper and lower bounds on E
[
1− (1− d/m)Zt−1|a ∈ At

]
using

the concentration properties of Zt. The details of all these calculations are presented in Ap-
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pendix G, in which we finally obtain the following closed form upper-bound on the expected

utility of a:

E [uc(a)] ≤ 2dσ5

√
m
β +

∫ ∞
t=0

(1− β)(2 + c(t)) exp
(
−
∫ t

τ=0

(2 + c(τ)− β)dτ
)
e−rtdt. (6.1)

Finally, we show that the right hand side is maximized by letting c(t) = 0 for all t. Let

Uc(a) be the right hand side of the above equation. Let c be a function that maximizes

Uc(a) which is not equal to zero. Suppose c(t) 6= 0 for some t ≥ 0. We define a function

c̃ : R+ → R+ and we show that if r < β, then Uc̃(a) > Uc(a). Let c̃ be the following function,

c̃(τ) =



c(τ) if τ < t,

0 if t ≤ τ ≤ t+ ε,

c(τ) + c(τ − ε) if t+ ε ≤ τ ≤ t+ 2ε,

c(τ) otherwise.

In words, we push the mass of c(.) in the interval [t, t+ ε] to the right. We remark that the

above function c̃(.) is not necessarily continuous so we need to smooth it out. The latter

can be done without introducing any errors and we do not describe the details here. In

Appendix G, we show that Uc̃(a)−Uc(a) is non-negative as long as r ≤ β, which means that

the maximizer of Uc(a) is the all zero function. Plugging in c(t) = 0 into (6.1) completes the

proof of Lemma 6.4.

The proof of Theorem 6.2 follows simply from the above analysis.

Proof of Theorem 6.2. All we need to do is to lower-bound the expected utility of an agent

a if she is truthful. We omit the details as they are essentially similar. So, if all agents are

truthful,

E [u(a)] ≥ 2(1− β)

2− β + r
−O

(d4 log3(m)√
m

)
β.

This shows that the strategy vector corresponding to truthful agents is a strongO(d4 log3(m)/
√
m)-

Nash equilibrium.
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7 Assumptions and Extensions

In order to make this setting analytically tractable, we have made several important simpli-

fying assumptions. Here we discuss how relaxing those assumptions would have implications

for our results.

First, we assumed that agents are ex ante homogeneous: They have in expectation

the same average degrees.40 What would happen if the planner knew that certain agents

currently in the pool were more likely to have edges with future agents? Clearly, algorithms

that treat heterogeneous agents identically could be inefficient. However, it is an open

question whether there are local algorithms, sensitive to individual heterogeneity, that are

close to optimal.

Second, we assumed that agents’ preferences are binary: All acceptable matches are

equally good. We made this assumption so that waiting cannot raise welfare by improving

the quality of matches. Our model shows that, even when this channel is not present, waiting

can improve welfare by increasing the size of the matching. One could extend the model

by permitting acceptable matches to vary in quality. We suspect that this would reinforce

our existing results, since waiting to thicken the market could allow planners to make better

matches, in addition to increasing the size of the matching.41

Third, we assumed that agents have the memoryless property; that is, they become

critical at some constant Poisson rate. One might ask what would be different if the planner

knew ahead of time which agents would be long-lived or short-lived. Our performance bounds

on the Omniscient algorithm provide a partial answer to this question: Such information may

be gainful, but a large proportion of the gains can be realized via the Patient algorithm, which

uses only short-horizon information about agent’s departure times.

In addition, our assumption on agents’ departure processes can be enriched by assuming

agents have a range of sequential states, while an independent process specifies transition

rates from one state to the next, and agents who are at the “final” state have some exogenous

criticality rate. The full analysis of optimal timing under discounting in such environment is

a subject of further research. Nevertheless, our results suggest that for small waiting costs,

40Note, however, that agents are ex post heterogeneous as they have different positions in the trade network.
41To take one natural extension, suppose that the value of an acceptable match is v for both agents

involved, where v is a random variable drawn iid across pairs of agents from some distribution F (·). Suppose
that the Greedy and Patient algorithms are modified to select the highest match-value among the acceptable
matches. Then the value to a matched agent under Greedy is (roughly) the highest among N draws from
F (·), where N is distributed Binomial(k∗Greedy,

d
m ). By contrast, the value to a matched agent under Patient

is (roughly) the highest among N draws from F (·), where N is distributed Binomial(k∗Patient,
d
m ). By our

previous arguments, k∗Patient > k∗Greedy, so this strengthens our result.
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if the planner observes critical agents, the Patient algorithm is close-to-optimal, and if the

planner cannot observe the critical agents, waiting until agents transit to the final state (as

there is no risk of agents perishing before that time) and then greedily matching those agents

who have a risk of perishing is close to optimal.

Finally, our theoretical bounds on error terms, O( 1√
m

), are small only if m is relatively

large. What happens if the market is small, e.g. if m < 100? To check the robustness of

our results to the large market assumptions, we simulated our model for small markets. Our

simulations (see Appendix H) suggest that our results also hold in small markets.

8 Conclusion

There are many real-world markets where the matching algorithm affects not only who gets

matched today, but also what the composition of options will be tomorrow. Some examples

are paired kidney exchanges, dating agencies, and labor markets such as Uber. In such

markets, policymakers face a trade-off between the speed of transactions and the thickness

of the market. It is natural to ask, “Should the matching algorithm wait to thicken the

market? How much should it wait?”

Our analysis indicates that the answer depends on three factors: First, can the planner

accurately identify urgent cases? Second, what is the discount rate? Third, how sparse is

the graph of potential transactions? Waiting can yield large gains if the planner can identify

urgent cases and the discount rate is not too high. This is because a thick market allows the

planner to match urgent cases with high probability. If the planner cannot identify urgent

cases or if the discount rate is high, then greedily and frequently matching agents is close

to optimal. In general, the optimal waiting time increases if the planner can identify urgent

cases, if the discount rate decreases, or if the graph becomes sparser.

The previous results show that it is valuable for the planner to identify urgent cases, such

as by paying for predictive diagnostic testing or monitoring agents’ outside options. When

the urgency of individual cases is private information, we exhibit a mechanism without

transfers that elicits such information from sufficiently patient agents.

A recurring theme of our results is that the welfare effects of timing are large compared

to the total gains from optimization. In our setting, the optimal algorithm depends on a

combinatorially complex state space. However, for a variety of parameters and informational

assumptions, näıve local algorithms that choose the right time to match come close to optimal

benchmarks that exploit the whole graph structure. This suggests that the dimension of
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time is a first-order concern in many matching markets, with welfare implications that static

models do not capture.

Much remains to be done in the theory of dynamic matching. As market design expands

its reach, re-engineering markets from the ground up, economists will increasingly have to

answer questions about the timing and frequency of transactions. Many dynamic matching

markets have important features (outlined above) that we have not modeled explicitly. We

offer this paper as a step towards systematically understanding matching problems that take

place across time.
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Ünver, M. U. (2010). Dynamic kidney exchange. The Review of Economic Studies, 77(1):372–

414. 8

Wiesner, R., Edwards, E., Freeman, R., Harper, A., Kim, R., Kamath, P., Kremers, W.,

Lake, J., Howard, T., Merion, R. M., Wolfe, R. A., and Krom, R. (2003). Model for

end-stage liver disease (meld) and allocation of donor livers. Gastroenterology, 124(1):91

– 96. 16

Zenios, S. A. (2002). Optimal control of a paired-kidney exchange program. MS, 48(3):328–

342. 8

A Auxiliary Inequalities

In this section we prove several inequalities that are used throughout the paper. For any

a, b ≥ 0,

∞∑
i=a

e−bi
2

=
∞∑
i=0

e−b(i+a)2 ≤
∞∑
i=0

e−ba
2−2iab = e−ba

2
∞∑
i=0

(e−2ab)i

=
e−ba

2

1− e−2ab
≤ e−ba

2

min{ab, 1/2}
. (A.1)

The last inequality can be proved as follows: If 2ab ≤ 1, then e−2ab ≤ ab, otherwise e−2ab ≤
1/2.

For any a, b ≥ 0,

∞∑
i=a

(i− 1)e−bi
2 ≤

∫ ∞
a−1

xe−bx
2

dx =
−1

2b
e−bx

2 |∞a−1=
e−b(a−1)2

2b
. (A.2)
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For any a ≥ 0 and 0 ≤ b ≤ 1,

∞∑
i=a

ie−bi = e−ba
∞∑
i=0

(i+ a)e−bi = e−ba
( a

1− e−b
+

1

(1− e−b)

)
≤ e−ba(2ba+ 4)

b2
. (A.3)

The Bernoulli inequality states that for any x ≤ 1, and any n ≥ 1,

(1− x)n ≥ 1− xn. (A.4)

Here, we prove for integer n. The above equation can be proved by a simple induction on n.

It trivially holds for n = 0. Assuming it holds for n we can write,

(1− x)n+1 = (1− x)(1− x)n ≥ (1− x)(1− xn) = 1− x(n+ 1) + x2n ≥ 1− x(n+ 1).

B Performance of the Optimum Algorithms

In this section we lower-bound the loss of the optimum solutions. In particular, we prove

the following theorems.

Theorem B.1. If m > 10d, then for any T > 0

L(OPT) ≥ 1

2d+ 1 + d2/m
.

Theorem B.2. If m > 10d, then for any T > 0,

L(OMN) ≥ e−d−d
2/m

d+ 1 + d2/m

Before proving the above theorems, it is useful to study the evolution of the system in

the case of the inactive algorithm, i.e., where the online algorithm does nothing and no

agents ever get matched. We later use this analysis in this section, as well as Section 4 and

Section 5.

We adopt the notation Ãt and Z̃t to denote the agents in the pool and the pool size in

this case. Observe that by definition for any matching algorithm and any realization of the

process,

Zt ≤ Z̃t. (B.1)

Using the above equation, in the following fact we show that for any matching algorithm
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E [Zt] ≤ m.

Proposition B.3. For any t0 ≥ 0,

P
[
Z̃t0 = `

]
≤ m`

`!
.

Therefore, Z̃t is distributed as a Poisson random variable of rate m(1− e−t0), so

E
[
Z̃t0

]
= (1− e−t0)m.

Proof. Let K be a random variable indicating the number agents who enter the pool in the

interval [0, t0]. By Bayes rule,

P
[
Z̃t0 = `

]
=
∞∑
k=0

P
[
Z̃t0 = `,K = k

]
=
∞∑
k=0

P
[
Z̃t0 = `|K = k

]
· (mt0)ke−mt0

k!
,

where the last equation follows by the fact that arrival rate of the agents is a Poisson random

variable of rate m.

Now, conditioned on the event that an agent a arrives in the interval [0, t0], the probability

that she is in the pool at time t0 is at least,

P [Xai = 1] =

∫ t0

t=0

1

t0
P [s(ai) ≥ t0 − t] dt =

1

t0

∫ t0

t=0

et−t0dt =
1− e−t0

t0
.

Therefore, conditioned on K = k, the distribution of the number of agents at time t0 is a

Binomial random variable B(k, p), where p := (1− e−t0)/t0. Let µ = m(1− e−t0), we have

P
[
Z̃t0 = `

]
=

∞∑
k=`

(
k

`

)
· p` · (1− p)k−` (mt0)ke−mt0

k!

=
∞∑
k=`

mke−mt0

`!(k − `)!
(1− e−t0)`(t0 − 1 + e−t0)k−`

=
m`e−mt0µ`

`!

∞∑
k=`

(mt0 − µ)k−`

(k − `)!
=
µ`e−µ

`!
.
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B.1 Loss of OPT

In this section, we prove Theorem B.1. Let ζ be the expected pool size of the OPT,

ζ := Et∼unif[0,T ] [Zt]

Since OPT does not know Act , each critical agent perishes with probability 1. Therefore,

L(OPT) =
1

m · T
E
[∫ T

t=0

Ztdt

]
=

ζT

mT
= ζ/m. (B.2)

To finish the proof we need to lower bound ζ by m/(2d+ 1 + d2/m). We provide an indirect

proof by showing a lower-bound on L(OPT) which in turn lower-bounds ζ.

The key idea is to lower-bound the probability that an agent does not have any acceptable

transactions throughout her sojourn, and this directly gives a lower-bound on L(OPT) as

those agents cannot be matched under any algorithm. Fix an agent a ∈ A. Say a enters the

market at a time t0 ∼ unif[0, T ], and s(a) = t, we can write

P [N(a) = ∅] =

∫ ∞
t=0

P [s(a) = t] · E
[
(1− d/m)|At0 |

]
· E
[
(1− d/m)|A

n
t0,t+t0

|
]
dt (B.3)

To see the above, note that a does not have any acceptable transactions, if she doesn’t have

any neighbors upon arrival, and none of the new agents that arrive during her sojourn are

not connected to her. Using the Jensen’s inequality, we have

P [N(a) = ∅] ≥
∫ ∞
t=0

e−t · (1− d/m)E[Zt0 ] · (1− d/m)E[|Ant0,t+t0 |]dt

=

∫ ∞
t=0

e−t · (1− d/m)ζ · (1− d/m)mtdt

The last equality follows by the fact that E
[
|Ant0,t+t0|

]
= mt. Since d/m < 1/10, 1− d/m ≥

e−d/m−d
2/m2

,

L(OPT) ≥ P [N(a) = ∅] ≥ e−ζ(d/m+d2/m2)

∫ ∞
t=0

e−t(1+d+d2/m)dt ≥ 1− ζ(1 + d/m)d/m

1 + d+ d2/m
(B.4)

Putting (B.2) and (B.4) together, for β := ζd/m we get

L(OPT) ≥ max{1− β(1 + d/m)

1 + d+ d2/m
,
β

d
} ≥ 1

2d+ 1 + d2/m
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where the last inequality follows by letting β = d
2d+1+d2/m

be the minimizer of the middle

expression.

B.2 Loss of OMN

In this section, we prove Theorem B.2. This demonstrates that no expansion of the planner’s

information can yield a faster-than-exponential decrease in losses.

The proof is very similar to Theorem B.1. Let ζ be the expected pool size of the OMN,

ζ := Et∼unif[0,T ] [Zt] .

By (B.1) and Proposition B.3,

ζ ≤ Et∼unif[0,T ]

[
Z̃t

]
≤ m.

Note that (B.2) does not hold in this case because the omniscient algorithm knows the set

of critical agents at time t.

Now, fix an agent a ∈ A, and let us lower-bound the probability that N(a) = ∅. Say a

enters the market at time t0 ∼ unif[0, T ] and s(a) = t, then

P [N(a) = ∅] =

∫ ∞
t=0

P [s(a) = t] · E
[
(1− d/m)Zt0

]
· E
[
(1− d/m)|A

n
t0,t+t0

|
]
dt

≥
∫ ∞
t=0

e−t(1− d/m)ζ+mtdt ≥ e−ζ(1+d/m)d/m

1 + d+ d2/m
≥ e−d−d

2/m

1 + d+ d2/m
.

where the first inequality uses the Jensen’s inequality and the second inequality uses the fact

that when d/m < 1/10, 1− d/m ≥ e−d/m−d
2/m2

.

C Markov Chains: Background

We establish that under both of the Patient and Greedy algorithms the random processes Zt

are Markovian, have unique stationary distributions, and mix rapidly to the stationary dis-

tribution. To do so, this section contains a brief overview on continuous time Markov Chains.

We refer interested readers to Norris (1998); Levin et al. (2006) for detailed discussions.

Let Zt be a continuous time Markov Chain on the non-negative integers (N) that starts

from state 0. For any two states i, j ∈ N, we assume that the rate of going from i to j is
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ri→j ≥ 0. The rate matrix Q ∈ N× N is defined as follows,

Q(i, j) :=

ri→j if i 6= j,∑
k 6=i−ri→k otherwise.

Note that, by definition, the sum of the entries in each row of Q is zero. It turns out that

(see e.g., (Norris, 1998, Theorem 2.1.1)) the transition probability in t units of time is,

etQ =
∞∑
i=0

tiQi

i!
.

Let Pt := etQ be the transition probability matrix of the Markov Chain in t time units. It

follows that,
d

dt
Pt = PtQ. (C.1)

In particular, in any infinitesimal time step dt, the chain moves based on Q · dt.
A Markov Chain is irreducible if for any pair of states i, j ∈ N, j is reachable from i with

a non-zero probability. Fix a state i ≥ 0, and suppose that Zt0 = i, and let T1 be the first

jump out of i (note that T1 is distributed as an exponential random variable). State i is

positive recurrent iff

E [inf{t ≥ T1 : Zt = i}|Zt0 = i] <∞ (C.2)

The ergodic theorem (Norris, 1998, Theorem 3.8.1) entails that a continuous time Markov

Chain has a unique stationary distribution if and only if it has a positive recurrent state.

Let π : N → R+ be the stationary distribution of a Markov chain. It follows by the

definition that for any t ≥ 0, Pt = πPt. The balance equations of a Markov chain say that

for any S ⊆ N, ∑
i∈S,j /∈S

π(i)ri→j =
∑

i∈S,j /∈S

π(j)rj→i. (C.3)

Let zt(.) be the distribution of Zt at time t ≥ 0, i.e., zt(i) := P [Zt = i] for any integer

i ≥ 0. For any ε > 0, we define the mixing time (in total variation distance) of this Markov

Chain as follows,

τmix(ε) = inf
{
t : ‖zt − π‖TV :=

∞∑
k=0

|π(k)− zt(k)| ≤ ε
}
. (C.4)

51



D Proof of Theorem 4.2

D.1 Stationary Distributions: Existence and Uniqueness

In this part we show that the Markov Chain on Zt has a unique stationary distribution under

each of the Greedy and Patient algorithms. By Proposition 4.1, Zt is a Markov chain on the

non-negative integers (N) that starts from state zero.

First, we show that the Markov Chain is irreducible. First note that every state i > 0 is

reachable from state 0 with a non-zero probability. It is sufficient that i agents arrive at the

market with no acceptable bilateral transactions. On the other hand, state 0 is reachable

from any i > 0 with a non-zero probability. It is sufficient that all of the i agents in the

pool become critical and no new agents arrive at the market. So Zt is an irreducible Markov

Chain.

Therefore, by the ergodic theorem it has a unique stationary distribution if and only if

it has a positive recurrent state (Norris, 1998, Theorem 3.8.1). In the rest of the proof we

show that state 0 is positive recurrent. By (B.1) Zt = 0 if Z̃t = 0. So, it is sufficient to show

E
[
inf{t ≥ T1 : Z̃t = 0}|Z̃t0 = 0

]
<∞. (D.1)

It follows that Z̃t is just a continuous time birth-death process on N with the following

transition rates,

r̃k→k+1 = m and r̃k→k−1 := k (D.2)

It is well known (see e.g. (Grimmett and Stirzaker, 1992, p. 249-250)) that Z̃t has a stationary

distribution if and only if
∞∑
k=1

r̃0→1r̃1→2 . . . r̃k−1→k

r̃1→0 . . . r̃k→k−1

<∞.

Using (D.2) we have

∞∑
k=1

r̃0→1r̃1→2 . . . r̃k−1→k

r̃1→0 . . . r̃k→k−1

=
∞∑
k=1

mk

k!
= em − 1 <∞

Therefore, Z̃t has a stationary distribution. The ergodic theorem (Norris, 1998, Theorem

3.8.1) entails that every state in the support of the stationary distribution is positive recur-

rent. Thus, state 0 is positive recurrent under Z̃t. This proves (D.1), so Zt is an ergodic

Markov Chain.
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D.2 Upper bounding the Mixing Times

In this part we complete the proof of Theorem 4.2 and provide an upper bound the mixing

of Markov Chain Zt for the Greedy and Patient algorithms. Let π(.) be the stationary

distribution of the Markov Chain.

D.2.1 Mixing time of the Greedy Algorithm

We use the coupling technique (see (Levin et al., 2006, Chapter 5)) to get an upper bound

for the mixing time of the Greedy algorithm. Suppose we have two Markov Chains Yt, Zt

(with different starting distributions) each running the Greedy algorithm. We define a joint

Markov Chain (Yt, Zt)
∞
t=0 with the property that projecting on either of Yt and Zt we see the

stochastic process of Greedy algorithm, and that they stay together at all times after their

first simultaneous visit to a single state, i.e.,

if Yt0 = Zt0 , then Yt = Zt for t ≥ t0.

Next we define the joint chain. We define this chain such that for any t ≥ t0, |Yt−Zt| ≤
|Yt0 − Zt0|. Assume that Yt0 = y, Zt0 = z at some time t0 ≥ 0, for y, z ∈ N. Without loss

of generality assume y < z (note that if y = z there is nothing to define). Consider any

arbitrary labeling of the agents in the first pool with a1, . . . , ay, and in the second pool with

b1, . . . , bz. Define z + 1 independent exponential clocks such that the first z clocks have rate

1, and the last one has rate m. If the i-th clock ticks for 1 ≤ i ≤ y, then both of ai and bi

become critical (recall that in the Greedy algorithm the critical agent leaves the market right

away). If y < i ≤ z, then bi becomes critical, and if i = z + 1 new agents ay+1, bz+1 arrive

to the markets. In the latter case we need to draw edges between the new agents and those

currently in the pool. We use z independent coins each with parameter d/m. We use the

first y coins to decide simultaneously on the potential transactions (ai, ay+1) and (bi, bz+1)

for 1 ≤ i ≤ y, and the last z − y coins for the rest. This implies that for any 1 ≤ i ≤ y,

(ai, ay+1) is an acceptable transaction iff (bi, bz+1) is acceptable. Observe that if ay+1 has at

least one acceptable transaction then so has bz+1 but the converse does not necessarily hold.

It follows from the above construction that |Yt − Zt| is a non-increasing function of t.

Furthermore, this value decreases when either of the agents by+1, . . . , bz become critical (we

note that this value may also decrease when a new agent arrives but we do not exploit this

situation here). Now suppose |Y0 − Z0| = k. It follows that the two chains arrive to the

same state when all of the k agents that are not in common become critical. This has the
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same distribution as the maximum of k independent exponential random variables with rate

1. Let Ek be a random variable that is the maximum of k independent exponentials of rate

1. For any t ≥ 0,

P [Zt 6= Yt] ≤ P
[
E|Y0−Z0| ≥ t

]
= 1− (1− e−t)|Y0−Z0|.

Now, we are ready to bound the mixing time of the Greedy algorithm. Let zt(.) be the

distribution of the pool size at time t when there is no agent in the pool at time 0 and let

π(.) be the stationary distribution. Fix 0 < ε < 1/4, and let β ≥ 0 be a parameter that

we fix later. Let (Yt, Zt) be the joint Markov chain that we constructed above where Yt is

started at the stationary distribution and Zt is started at state zero. Then,

‖zt − π‖TV ≤ P [Yt 6= Zt] =
∞∑
i=0

π(i)P [Yt 6= Zt|Y0 = i]

≤
∞∑
i=0

π(i)P [Ei ≥ t]

≤
βm/d∑
i=0

(1− (1− e−t)βm/d) +
∞∑

i=βm/d

π(i) ≤ β2m2

d2
e−t + 2e−m(β−1)2/2d

where the last inequality follows by equation (A.4) and Proposition 5.5. Letting β = 1 +√
2 log(2/ε) and t = 2 log(βm/d) · log(2/ε) we get ‖zt−π‖TV ≤ ε, which proves the theorem.

D.2.2 Mixing time of the Patient Algorithm

It remains to bound the mixing time of the Patient algorithm. The construction of the joint

Markov Chain is very similar to the above construction except some caveats. Again, suppose

Yt0 = y and Zt0 = z for y, z ∈ N and t0 ≥ 0 and that y < z. Let a1, . . . , ay and b1, . . . , bz be

a labeling of the agents. We consider two cases.

Case 1) z > y + 1. In this case the construction is essentially the same as the Greedy

algorithm. The only difference is that we toss random coins to decide on acceptable

bilateral transactions at the time that an agent becomes critical (and not at the

time of arrival). It follows that when new agents arrive the size of each of the pools

increase by 1 (so the difference remains unchanged). If any of the agents by+1, . . . , bz

become critical then the size of second pool decrease by 1 or 2 and so is the difference

of the pool sizes.
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Case 2) z = y + 1. In this case we define a slightly different coupling. This is because, for

some parameters and starting values, the Markov chains may not visit the same

state for a long time for the coupling defined in Case 1 . If z � m/d, then with

a high probability any critical agent gets matched. Therefore, the magnitude of

|Zt−Yt| does not quickly decrease (for a concrete example, consider the case where

d = m, y = m/2 and z = m/2 + 1). Therefore, in this case we change the coupling.

We use z + 2 independent clocks where the first z are the same as before, i.e., they

have rate 1 and when the i-th clock ticks bi (and ai if i ≤ y) become critical. The

last two clocks have rate m, when the z+ 1-st clock ticks a new agent arrives to the

first pool and when z + 2-nd one ticks a new agent arrives to the second pool.

Let |Y0 − Z0| = k. By the above construction |Yt − Zt| is a decreasing function of t unless

|Yt − Zt| = 1. In the latter case this difference goes to zero if a new agent arrives to the

smaller pool and it increases if a new agent arrives to the bigger pool. Let τ be the first time

t where |Yt − Zt| = 1. Similar to the Greedy algorithm, the event |Yt − Zt| = 1 occurs if the

second to maximum of k independent exponential random variables with rate 1 is at most

t. Therefore,

P [τ ≤ t] ≤ P [Ek ≤ t] ≤ (1− e−t)k

Now, suppose t ≥ τ ; we need to bound the time it takes to make the difference zero.

First, note that after time τ the difference is never more than 2. Let Xt be the (continuous

time) Markov Chain illustrated in Figure 7 and suppose X0 = 1. Using m ≥ 1, it is easy to

see that if Xt = 0 for some t ≥ 0, then |Yt+τ −Zt+τ | = 0 (but the converse is not necessarily

true). It is a simple exercise that for t ≥ 8,

P [Xt 6= 0] =
∞∑
k=0

e−ttk

k!
2−k/2 ≤

t/4∑
k=0

e−ttk

k!
+ 2−t/8 ≤ 2−t/4 + 2−t/8. (D.3)

Now, we are ready to upper-bound the mixing time of the Patient algorithm. Let zt(.) be

the distribution of the pool size at time t where there is no agent at time 0, and let π(.) be

the stationary distribution. Fix ε > 0, and let β ≥ 2 be a parameter that we fix later. Let

(Yt, Zt) be the joint chain that we constructed above where Yt is started at the stationary
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Figure 7: A three state Markov Chain used for analyzing the mixing time of the Patient
algorithm.

distribution and Zt is started at state zero.

‖zt − π‖TV ≤ P [Zt 6= Yt] ≤ P [τ ≤ t/2] + P [Xt ≤ t/2]

≤
∞∑
i=0

π(i)P [τ ≤ t/2|Y0 = i] + 2−t/8+1

≤ 2−t/8+1 +
∞∑
i=0

π(i)(1− (1− e−t/2)i)

≤ 2−t/8+1 +

βm∑
i=0

(it/2) +
∞∑

i=βm

π(i) ≤ 2−t/8+1 +
β2m2t

2
+ 6e−(β−1)m/3.

where in the second to last equation we used equation (A.4) and in the last equation we used

Proposition 5.9. Letting β = 10 and t = 8 log(m) log(4/ε) implies that ‖zt−π‖TV ≤ ε which

proves Theorem 4.2.

E Proofs from Section 5

E.1 Proof of Lemma 5.4

Proof. By Proposition B.3, E [Zt] ≤ m for all t, so

L(Greedy) =
1

m · T
E
[∫ T

t=0

Ztdt

]
=

1

mT

∫ T

t=0

E [Zt] dt

≤ 1

mT
m · τmix(ε) +

1

mT

∫ T

t=τmix(ε)

E [Zt] dt (E.1)
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where the second equality uses the linearity of expectation. Let Z̃t be the number of agents

in the pool at time t when we do not match any pair of agents. By (B.1),

P [Zt ≥ i] ≤ P
[
Z̃t ≥ i

]
.

Therefore, for t ≥ τmix(ε),

E [Zt] =
∞∑
i=1

P [Zt ≥ i] ≤
6m∑
i=0

P [Zt ≥ i] +
∞∑

i=6m+1

P
[
Z̃t ≥ i

]
≤

6m∑
i=0

(PZ∼π [Z ≥ i] + ε) +
∞∑

i=6m+1

∞∑
`=i

m`

`!

≤ EZ∼π [Z] + ε6m+
∞∑

i=6m+1

2
mi

i!

≤ EZ∼π [Z] + ε6m+
4m6m

(6m)!
≤ EZ∼π [Z] + ε6m+ 2−6m. (E.2)

where the second inequality uses P
[
Z̃t = `

]
≤ m`/`! of Proposition B.3 and the last inequal-

ity follows by the Stirling’s approximation42 of (6m)!. Putting (E.1) and (E.2) proves the

lemma.

E.2 Proof of Lemma 5.6

Proof. For k ≥ k∗, by (5.3), (5.4), (5.5),

π(k)

π(k + 1)
=

(k + 1) +m(1− (1− d/m)k+1)

m(1− d/m)k
=
k − k∗ + 1−m(1− d/m)k+1 + 2m(1− d/m)k

∗

m(1− d/m)k

where we used the definition of k∗. Therefore,

π(k)

π(k + 1)
≥ −(1− d/m) +

2

(1− d/m)k−k∗
≥ 1

(1− d/m)k−k∗
≥ e−(k∗−k)d/m

42Stirling’s approximation states that

n! ≥
√

2πn
(n
e

)n
.

57



where the last inequality uses 1−x ≤ e−x. Multiplying across the inequality yields the claim.

Similarly, we can prove the second conclusion. For k ≤ k∗,

π(k − 1)

π(k)
=

k − k∗ −m(1− d/m)k + 2m(1− d/m)k
∗

m(1− d/m)k−1

≤ −(1− d/m) + 2(1− d/m)k
∗−k+1 ≤ (1− d/m)k

∗−k+1 ≤ e−(k∗−k+1)d/m,

where the second to last inequality uses k ≤ k∗.

E.3 Proof of Lemma 5.7

Proof. Let Let ∆ ≥ 0 be a parameter that we fix later. We have,

EZ∼π [Z] ≤ k∗ + ∆ +
∞∑

i=k∗+∆+1

iπ(i). (E.3)

By equation (5.6),

∞∑
i=k∗+∆+1

iπ(i) =
∞∑

i=∆+1

e−d(i−1)2/2m(i+ k∗)

=
∞∑
i=∆

e−di
2/2m(i− 1) +

∞∑
i=∆

e−di
2/2m(k∗ + 2)

≤ e−d(∆−1)2/2m

d/m
+ (k∗ + 2)

e−d∆2/2m

min{1/2, d∆/2m}
, (E.4)

where in the last step we used equations (A.1) and (A.2). Letting ∆ := 1+2
√
m/d log(m/d)

in the above equation, the right hand side is at most 1. The lemma follows from (E.3) and

the above equation.

E.4 Proof of Lemma 5.8

Proof. By linearity of expectation,

L(Patient) =
1

m · T
E
[∫ T

t=0

Zt(1− d/m)Zt−1dt

]
=

1

m · T

∫ T

t=0

E
[
Zt(1− d/m)Zt−1

]
dt.
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Since for any t ≥ 0, E
[
Zt(1− d/m)Zt−1

]
≤ E [Zt] ≤ E

[
Z̃t

]
≤ m, we can write

L(Patient) ≤ τmix(ε)

T
+

1

m · T

∫ T

t=τmix(ε)

∞∑
i=0

(π(i) + ε)i(1− d/m)i−1dt

≤ τmix(ε)

T
+

EZ∼π
[
Z(1− d/m)Z−1

]
m

+
εm

d2

where the last inequality uses the identity
∑∞

i=0 i(1− d/m)i−1 = m2/d2.

E.5 Proof of Proposition 5.9

Let us first rewrite what we derived in the proof overview of this proposition in the main

text. The balance equations of the Markov chain associated with the Patient algorithm

can be written as follows by replacing transition probabilities from (5.7), (5.8), and (5.9) in

(5.10):

mπ(k) = (k + 1)π(k + 1) + (k + 2)
(

1−
(

1− d

m

)k+1)
π(k + 2) (E.5)

Now define a continous f : R→ R as follows,

f(x) := m− (x+ 1)− (x+ 2)(1− (1− d/m)x+1). (E.6)

It follows that

f(m− 1) ≤ 0, f(m/2− 2) > 0,

which means that f(.) has a root k∗ such that m/2 − 2 < k∗ < m. In the rest of the proof

we show that the states that are far from k∗ have very small probability in the stationary

distribution

In order to complete the proof of Proposition 5.9, we first prove the following useful

lemma.

Lemma E.1. For any integer k ≤ k∗,

π(k)

max{π(k + 1), π(k + 2)}
≤ e−(k∗−k)/m.

Similarly, for any integer k ≥ k∗, min{π(k+1),π(k+2)}
π(k)

≤ e−(k−k∗)/(m+k−k∗).
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Proof. For k ≤ k∗, by equation (5.11),

π(k)

max{π(k + 1), π(k + 2)}
≤ (k + 1) + (k + 2)(1− (1− d/m)k+1)

m

≤ (k − k∗) + (k∗ + 1) + (k∗ + 2)(1− (1− d/m)k
∗+1)

m

= 1− k∗ − k
m

≤ e−(k∗−k)/m,

where the last equality follows by the definition of k∗ and the last inequality uses 1−x ≤ e−x.

The second conclusion can be proved similarly. For k ≥ k∗,

min{π(k + 1), π(k + 2)}
π(k)

≤ m

(k + 1) + (k + 2)(1− (1− d/m)k+1)

≤ m

(k − k∗) + (k∗ + 1) + (k∗ + 2)(1− (1− d/m)k∗+1)

=
m

m+ k − k∗
= 1− k − k∗

m+ k − k∗
≤ e−(k−k∗)/(m+k−k∗).

where the equality follows by the definition of k∗.

Now, we use the above claim to upper-bound π(k) for values k that are far from k∗.

First, fix k ≤ k∗. Let n0, n1, . . . be sequence of integers defined as follows: n0 = k, and

ni+1 := arg max{π(ni + 1), π(ni + 2)} for i ≥ 1. It follows that,

π(k) ≤
∏

i:ni≤k∗

π(ni)

π(ni+1)
≤ exp

(
−
∑

i:ni≤k∗

k∗ − ni
m

)
≤ exp

(
−

(k∗−k)/2∑
i=0

2i

m

)
≤ e−(k∗−k)2/4m,(E.7)

where the second to last inequality uses |ni − ni−1| ≤ 2.

Now, fix k ≥ k∗ + 2. In this case we construct the following sequence of integers,

n0 = bk∗ + 2c, and ni+1 := arg min{π(ni + 1), π(ni + 2)} for i ≥ 1. Let nj be the largest

number in the sequence that is at most k (observe that nj = k − 1 or nj = k). We upper-

bound π(k) by upper-bounding π(nj),

π(k) ≤ m · π(nj)

k
≤ 2

j−1∏
i=0

π(ni)

π(ni+1)
≤ 2 exp

(
−

j−1∑
i=0

ni − k∗

m+ ni − k∗
)

≤ 2 exp
(
−

(j−1)/2∑
i=0

2i

m+ k − k∗
)
≤ 2 exp

(−(k − k∗ − 1)2

4(m+ k − k∗)

)
.

(E.8)
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To see the first inequality note that if nj = k, then there is nothing to show; otherwise we

have nj = k − 1. In this case by equation (5.11), mπ(k − 1) ≥ kπ(k). The second to last

inequality uses the fact that |ni − ni+1| ≤ 2.

We are almost done. The proposition follows from (E.8) and (E.7). First, for σ ≥ 1, let

∆ = σ
√

4m, then by equation (A.1)

k∗−∆∑
i=0

π(i) ≤
∞∑
i=∆

e−i
2/4m ≤ e−∆2/4m

min{1/2,∆/4m}
≤ 2
√
me−σ

2

.

Similarly,

∞∑
i=k∗+∆

π(i) ≤ 2
∞∑

i=∆+1

e−(i−1)2/4(i+m) ≤ 2
∞∑
i=∆

e−i/(4+
√

4m/σ)

≤ 2
e−∆/(4+

√
4m/σ)

1− e−1/(4+
√

4m)
≤ 8
√
me

−σ2√m
2σ+
√
m

This completes the proof of Proposition 5.9.

E.6 Proof of Lemma 5.10

Proof. Let ∆ := 3
√
m log(m), and let β := maxz∈[m/2−∆,m+∆] z(1− d/m)z.

EZ∼π
[
Z(1− d/m)Z

]
≤ β +

m/2−∆−1∑
i=0

m

2
π(i)(1− d/m)i +

∞∑
i=m+∆

iπ(i)(1− d/m)m (E.9)

We upper bound each of the terms in the right hand side separately. We start with upper

bounding β. Let ∆′ := 4(log(2m) + 1)∆.

β ≤ max
z∈[m/2,m]

z(1− d/m)z +m/2(1− d/m)m/2((1− d/m)−∆ − 1) + (1− d/m)m∆

≤ max
z∈[m/2,m]

(z + ∆′ + ∆)(1− d/m)z + 1. (E.10)

To see the last inequality we consider two cases. If (1 − d/m)−∆ ≤ 1 + ∆′/m then the

inequality obviously holds. Otherwise, (assuming ∆′ ≤ m),

(1− d/m)∆ ≤ 1

1 + ∆′/m
≤ 1−∆′/2m,
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By the definition of β,

β ≤ (m+ ∆)(1− d/m)m/2−∆ ≤ 2m(1−∆′/2m)m/2∆−1 ≤ 2me∆′/4∆−1 ≤ 1.

It remains to upper bound the second and the third term in (E.9). We start with the

second term. By Proposition 5.9,

m/2−∆−1∑
i=0

π(i) ≤ 1

m3/2
. (E.11)

where we used equation (A.1). On the other hand, by equation (E.8)

∞∑
i=m+∆

iπ(i) ≤ e−∆/(2+
√
m)(

m

1− e−1/(2+
√
m)

+
2∆ + 4

1/(2 +
√
m)2

) ≤ 1√
m
. (E.12)

where we used equation (A.3).

The lemma follows from (E.9), (E.10), (E.11) and (E.12).

F Welfare under Discounting and Optimal Waiting Time

In this section, we provide closed form expressions for the welfare of the Greedy and Patient

algorithms. We first state the theorems and then prove them in the following sections.

Theorem F.1. There is a number m/2− 2 ≤ k∗ ≤ m (as defined in Proposition 5.9) such

that for any T ≥ 0, r ≥ 0 and ε < 1/2m2,

W(Patient) ≥ T − T0

T

( 1− qk∗+Õ(
√
m)

1 + r/2− 1
2
qk∗−Õ(

√
m)
− Õ(m−3/2)

)
W(Patient) ≤ 2T0

T
+
T − T0

T

( 1− qk∗−Õ(
√
m)

1 + r/2− 1
2
qk∗+Õ(

√
m)

+ Õ(m−3/2)
)

where T0 = 16 log(m) log(4/ε). As a corollary, for any α ≥ 0, and ᾱ = 1/α + 1,

W(Patient(α)) ≥ T − T0

T

( 1− qk∗/ᾱ+Õ(
√
m)

1 + r/2ᾱ− 1
2
qk∗/ᾱ−Õ(

√
m)
− Õ(m−3/2)

)
W(Patient(α)) ≤ 2T0

T
+
T − T0

T

( 1− qk∗/ᾱ−Õ(
√
m)

1 + r/2ᾱ− 1
2
qk∗/ᾱ+Õ(

√
m)

+ Õ(m−3/2)
)
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Theorem F.2. If m > 10d, for any T ≥ 0,

W(Greedy) ≤ 1− 1

2d+ 1 + d2/m
.

F.1 Welfare of the Patient Algorithm

In this section, we prove Theorem F.1. Say an agent a is arrived at time ta(a). We let Xt

be the sum of the potential utility of the agents in At:

Xt =
∑
a∈At

e−r(t−ta(a)),

i.e., if we match all of the agents currently in the pool immediately, the total utility that

they receive is exactly Xt.

For t0, ε > 0, let Wt0,t0+ε be the expected total utility of the agents who are matched in

the interval [t0, t0 + ε]. By definition the social welfare of an online algorithm, we have:

W(Patient) = E
[

1

T

∫ T

t=0

Wt,t+dtdt

]
=

1

T

∫ T

t=0

E [Wt,t+dt] dt

All agents are equally likely to become critical at each moment. From the perspective of

the planner, all agents are equally likely to be the neighbor of a critical agent. Hence, the

expected utility of each of the agents who are matched at time t under the Patient algorithm

is Xt/Zt. Thus,

W(Patient) =
1

mT

∫ T

t=0

E
[
2
Xt

Zt
Zt(1− (1− d/m)Zt)dt

]
=

2

mT

∫ T

t=0

E
[
Xt(1− (1− d/m)Zt)

]
dt

(F.1)

First, we prove the following lemma.

Lemma F.3. For any ε < 1/2m2 and t ≥ τmix(ε),

E [Xt]
(

1− qk∗+Õ(
√
m)
)
−O(m−1/2) ≤ E

[
Xt(1− qZt)

]
≤ E [Xt]

(
1− qk∗−Õ(

√
m)
)

+O(m−1/2).

Proof. Let ∆ := 3
√
m log(m). Let E be the event that Zt ∈ [k∗−∆, k∗+ ∆]. First, we show
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the following inequality and then we upper-bound E
[
Xt|E

]
P
[
E
]
.

E [Xt] (1− qk∗+∆)− E
[
Xt|E

]
P
[
E
]
≤ E

[
Xt(1− qZt)

]
≤ E [Xt] (1− qk∗−∆) + E

[
Xt|E

]
P
[
E
]

(F.2)

We prove the right inequality and the left can be proved similarly.

By definition of expectation,

E
[
Xt(1− qZt)

]
= E

[
Xt(1− qZt)|E

]
· P [E ] + E

[
Xt(1− qZt)|E

]
· P
[
E
]

≤ E [Xt|E ] (1− qk∗−∆) + E
[
Xt(1− qZt)|E

]
· P
[
E
]

Now, for any random variable X and any event E we have E [X|E ] ·P [E ] = E [X]−E
[
X|E

]
·

P
[
E
]
. Therefore,

E
[
Xt(1− qZt)

]
≤ (1− qk∗−∆)(E [Xt]− E

[
Xt|E

]
· P
[
E
]
) + E

[
Xt(1− qZt)|E

]
· P
[
E
]

≤ E [Xt] (1− qk∗−∆) + E
[
Xt|E

]
P
[
E
]

where we simply used the non-negativity of Xt and that (1 − qk∗−∆) ≤ 1. This proves the

right inequality of (F.2). The left inequality can be proved similarly.

It remains to upper-bound E
[
Xt|E

]
P
[
E
]
. Let π(.) be the stationary distribution of the

Markov Chain Zt. Since by definition of Xt, Xt ≤ Zt with probability 1,

E
[
Xt|E

]
P
[
E
]
≤ E

[
Zt|E

]
P
[
E
]

≤
k∗−∆∑
i=0

i(π(i) + ε) +
6m∑

i=k∗+∆

i(π(i) + ε) +
∞∑

i=6m+1

i · P
[
Z̃t = i

]
where the last term uses the fact that Zt is at most the size of the pool of the inactive policy

at time t, i.e., P [Zt = i] ≤ P
[
Z̃t = i

]
for all i > 0. We bound the first term of RHS using

Proposition 5.9, the second term using (E.12) and the last term using Proposition B.3.

E
[
Xt|E

]
P
[
E
]
≤ 4√

m
+ 6mε+

∞∑
i=6m

mi

i!
≤ 4√

m
+

3

m
+ 2−6m.

It remains to estimate E [Xt]. This is done in the following lemma.
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Lemma F.4. For any ε < 1/2m2, t1 ≥ 16 log(m) log(4/ε) ≥ 2τmix(ε),

m−O(m−1/2)

2 + r − qk∗−Õ(
√
m)
≤ E [Xt1 ] ≤ m+O(m−1/2)

2 + r − qk∗+Õ(
√
m)

Proof. Let η > 0 be very close to zero (eventually we let η → 0). Since we have a (m, d, 1)

matching market, using equation (C.1) for any t ≥ 0 we have,

E [Xt+η|Xt, Zt] = Xt(e
−ηr) +mη − ηZt

(Xt

Zt
qZt
)
− 2ηZt

(Xt

Zt
(1− qZt)

)
±O(η2)

The first term in the RHS follows from the exponential discount in the utility of the agents

in the pool. The second term in the RHS stands for the new arrivals. The third term stands

for the perished agents and the last term stands for the the matched agents. We use the

notation A = B ± C to denote B − C ≤ A ≤ B + C.

We use e−x = 1− x+O(x2) and rearrange the equation to get,

E [Xt+η|Xt, Zt] = mη +Xt − η(1 + r)Xt − ηXt(1− qZt)±O(η2).

Using Lemma F.3 for any t ≥ τmix(ε) we can estimate E
[
Xt(1− qZt)

]
. Taking expectation

from both sides of the above inequality we get,

E [Xt+ε]− E [Xt]

η
= m− E [Xt] (2 + δ − qk∗±Õ(

√
m))±O(m−1/2)−O(η)

Letting η → 0, and solving the above differential equation from τmix(ε) to t1 we get

E [Xt1 ] =
m±O(m−1/2)

2 + δ − qk∗±Õ(
√
m)

+ C1 exp
(
− (δ + 2− qk∗±Õ(

√
m))(t1 − τmix(ε))

)
.

Now, for t1 = τmix(ε) we use the initial condition E
[
Xτmix(ε)

]
≤ E

[
Zτmix(ε)

]
≤ m, and we can

let C1 ≤ m. Finally, since t1 ≥ 2τmix(ε) and t1/2 ≥ 2 log(m) we can upper-bound the latter

term with O(m−1/2).

Let T0 = 16 log(m) log(4/ε). Since (for any matching algorithm) the sum of the utilities

of the agents that leave the market before time T0 is at most mT0 in expectation, by the

65



above two lemmas, we can write

W(Patient) =
2

mT

(
mT0 +

∫ T

T0

E
[
Xt(1− qZt)

]
dt
)

≤ 2T0

T
+

2

mT

∫ T

T0

(m(1− qk∗−Õ(
√
m))

r + 2− qk∗+Õ(
√
m)

+ Õ(m−1/2)
)
dt

≤ 2T0

T
+
T − T0

T

( 1− qk∗−Õ(
√
m)

1 + r/2− 1
2
qk∗+Õ(

√
m)

+ Õ(m−3/2)
)

Similarly, since the sum of the utilities of the agents that leave the market by time T0 is

non-negative, we can show that

W(Patient) ≥ T − T0

T

( 1− qk∗+Õ(
√
m)

1 + r/2− 1
2
qk∗−Õ(

√
m)
− Õ(m−3/2)

)
F.2 Welfare of the Greedy Algorithm

Here, we upper-bound the welfare of the optimum online algorithm, OPT, and that imme-

diately upper-bounds the welfare of the Greedy algorithm. Recall that by Theorem B.1, for

any T > 0, 1/(2d+ 1 + d2/m) fraction of the agents perish in OPT. On the other hand, by

the definition of utility, we receive a utility at most 1 from any matched agent. Therefore,

even if all of the matched agents receive a utility of 1, (for any r ≥ 0)

W(Greedy) ≤W(OPT) ≤ 1− 1

2d+ 1 + d2/m
.

F.3 Optimal α

One can show that as m,T → ∞, then the closed form expression for the welfare of the

limm,T→∞W(Patient(α)) ' 2
2−e−d̄/ᾱ+r/ᾱ

(1 − e−d̄/ᾱ), where we have used the fact that k∗ ∈
[m/2−2,m−1] with very high probability and for large values of m, (1−d/m)k

∗ → e−dk
∗/m.

Hence, it is enough to find the value of ᾱ that maximizes W(Patient(α)).

The first-order condition implies that the optimal value of ᾱ solves g(ᾱ) = 0, where

g(ᾱ) = r −
(
r + d̄+

d̄r

ᾱ

)
e−

d̄
ᾱ .

To have an estimate of ᾱ, note that g(.) is an increasing function of ᾱ and g(d̄/ log(d̄/r)) <

0 and if r < d̄/4, then g(d̄/ log(2d̄/r)) > 0. Thus, we must have that the solution of g(ᾱ) = 0
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satisfies:

d̄/ log(d̄/r) ≤ ᾱ ≤ d̄/ log(2d̄/r)

F.4 Welfare Comparative Statics

Assume r < d
2(e−1)

. We know that, as T →∞, m→∞, W(Patient(α)) ' 2
2−e−d/2ᾱ+r/ᾱ

(1−
e−d/2ᾱ), where ᾱ = 1 + 1/α. Note that ᾱ ∈ [1,∞).

Define

W̃(Patient(α)) ≡ 2

2− e−d/2ᾱ + r/ᾱ
(1− e−d/2ᾱ)

=
2

1+ r
ᾱ

1−e−
d

2ᾱ
+ 1

.

Maximizing W̃(Patient(α)) is equivalent to maximizing (with respect to ᾱ):

Q(ᾱ, d, r) ≡ 1− e− d
2ᾱ

1 + r
ᾱ

∂Q

∂ᾱ
=
e−

d
2ᾱ (ᾱ(2r(e

d
2ᾱ − 1)− d)− dr)

2ᾱ(ᾱ + r)2

Since r < d
2(e−1)

, if ᾱ ≥ d
2
, then ∂Q

∂ᾱ
< 0; so the value of ᾱ that maximizes Q is never

above d
2
. Thus, maximizing Q is equivalent to maximizing (with respect to ᾱ):

Q̂(ᾱ, d, r) ≡

Q(ᾱ, d, r) if ᾱ < d
2

Q(d
2
, d, r) otherwise

Define ᾱ∗ ≡ arg maxᾱ Q̂(ᾱ, d, r) = arg maxᾱQ(ᾱ, d, r). Now note that

∂Q

∂d
=
e−

d
2ᾱ ( 1

2ᾱ
)

1 + r
ᾱ

=
e−

d
2ᾱ

2(ᾱ + r)

67



As a result,

∂2Q

∂d∂ᾱ
=

e−
d

2ᾱ

2(ᾱ + r)2
((ᾱ + r)

d

2ᾱ2
− 1)

=
e−

d
2ᾱ

2(ᾱ + r)2
((ᾱ + r)

d

2ᾱ2
− 1)

=
e−

d
2ᾱ

2(ᾱ + r)2
(
d

2ᾱ
+

rd

2ᾱ2
− 1)

(F.3)

The right-hand side of Equation F.3 is positive if ᾱ < d/2. Q̂(ᾱ, d, r) is differentiable

almost everywhere and continuous. Consequently, Q̂(ᾱ, d, r) has increasing differences in

(ᾱ, d). Thus, by Topkis’ Theorem, ᾱ∗ is weakly increasing in d.

Similarly, maximizing W̃ is equivalent to maximizing

R(ᾱ, d, r) ≡ −
1 + r

ᾱ

1− e− d
2ᾱ

⇒ ∂R

∂r
= − 1

ᾱ(1− e− d
2ᾱ )

As a result,

∂2R

∂ᾱ∂r
=

(1− e− d
2ᾱ )− d

2ᾱ
e−

d
2ᾱ

ᾱ2(1− e− d
2ᾱ )2

=
e−

d
2ᾱ (e

d
2ᾱ − 1− d

2ᾱ
)

ᾱ2(1− e− d
2ᾱ )2

(F.4)

Observe that e
d

2ᾱ −1− d
2ᾱ

= 0 when d = 0. Moreover, ∂
∂d

(e
d

2ᾱ −1− d
2ᾱ

= 0) ≥ 0 for d > 0.

Thus, e
d

2ᾱ − 1− d
2ᾱ
≥ 0 Consequently, ∂2R

∂ᾱ∂r
≥ 0, which entails that R(ᾱ, d, r) has increasing

differences in (ᾱ, r). Thus, by Topkis’ theorem, ᾱ∗ is weakly increasing in r.

G Proofs from Section 6

G.1 Proof of Lemma 6.4

In this section, we present the full proof of Lemma 6.4. We prove the lemma by writing a

closed form expression for the utility of a and then upper-bounding that expression.
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In the following claim we study the probability a is matched in the interval [t, t+ ε] and

the probability that it leaves the market in that interval.

Claim G.1. For any time t ≥ 0, and ε > 0,

P [a ∈Mt,t+ε] = ε · P [a ∈ At] (2 + c(t))E
[
1− (1− d/m)Zt|a ∈ At

]
±O(ε2) (G.1)

P [a /∈ At+ε, a ∈ At] = P [a ∈ At] (1− ε(1 + c(t) + E
[
1− (1− d/m)Zt−1|a ∈ At

]
)±O(ε2))

(G.2)

Proof. The claim follows from two simple observations. First, a becomes critical in the

interval [t, t + ε] with probability ε · P [a ∈ At] (1 + c(t)) and if he is critical he is matched

with probability E
[
(1− (1− d/m)Zt−1|a ∈ At

]
. Second, a may also get matched (without

getting critical) in the interval [t, t + ε]. Observe that if an agent b ∈ At where b 6= a gets

critical she will be matched with a with probability (1− (1−d/m)Zt−1)/(Zt−1),. Therefore,

the probability that a is matched at [t, t+ ε] without getting critical is

P [a ∈ At] · E
[
ε · (Zt − 1)

1− (1− d/m)Zt−1

Zt − 1
|a ∈ At

]
= ε · P [a ∈ At]E

[
1− (1− d/m)Zt−1|a ∈ At

]
The claim follows from simple algebraic manipulations.

We need to study the conditional expectation E
[
1− (1− d/m)Zt−1|a ∈ At

]
to use the

above claim. This is not easy in general; although the distribution of Zt remains stationary,

the distribution of Zt conditioned on a ∈ At can be a very different distribution. So,

here we prove simple upper and lower bounds on E
[
1− (1− d/m)Zt−1|a ∈ At

]
using the

concentration properties of Zt. By the assumption of the lemma Zt is at stationary at any

time t ≥ 0. Let k∗ be the number defined in Proposition 5.9, and β = (1− d/m)k
∗
. Also, let

69



σ :=
√

6 log(8m/β). By Proposition 5.9, for any t ≥ 0,

E
[
1− (1− d/m)Zt−1|a ∈ At

]
≤ E

[
1− (1− d/m)Zt−1|Zt < k∗ + σ

√
4m, a ∈ At

]
+ P

[
Zt ≥ k∗ + σ

√
4m|a ∈ At

]
≤ 1− (1− d/m)k

∗+σ
√

4m +
P
[
Zt ≥ k∗ + σ

√
4m
]

P [a ∈ At]

≤ 1− β + β(1− (1− d/m)σ
√

4m) +
8
√
me−σ

2/3

P [a ∈ At]

≤ 1− β +
2σdβ√
m

+
β

m2 · P [a ∈ At]
(G.3)

In the last inequality we used (A.4) and the definition of σ. Similarly,

E
[
1− (1− d/m)Zt−1|a ∈ At

]
≥ E

[
1− (1− d/m)Zt−1|Zt ≥ k∗ − σ

√
4m, a ∈ At

]
· P
[
Zt ≥ k∗ − σ

√
4m|a ∈ At

]
≥ (1− (1− d/m)k

∗−σ
√

4m)
P [a ∈ At]− P

[
Zt < k∗ − σ

√
4m
]

P [a ∈ At]

≥ 1− β − β((1− d/m)−σ
√

4m − 1)− 2
√
me−σ

2

P [a ∈ At]

≥ 1− β − 4dσβ√
m
− β3

m3 · P [a ∈ At]
(G.4)

where in the last inequality we used (A.4), the assumption that 2dσ ≤
√
m and the definition

of σ.

Next, we write a closed form upper-bound for P [a ∈ At]. Choose t∗ such that
∫ t∗
t=0

(2 +

c(t))dt = 2 log(m/β). Observe that t∗ ≤ log(m/β) ≤ σ2/6. Since a leaves the market with

rate at least 1 + c(t) and at most 2 + c(t), we can write

β2

m2
= exp

(
−
∫ t∗

t=0

(2 + c(t))dt
)
≤ P [a ∈ At∗ ] ≤ exp

(
−
∫ t∗

t=0

(1 + c(t))dt
)
≤ β

m
(G.5)

Intuitively, t∗ is a moment where the expected utility of that a receives in the interval [t∗,∞)

is negligible, i.e., in the best case it is at most β/m.
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By Claim G.1 and (G.4), for any t ≤ t∗,

P [a ∈ At+ε]− P [a ∈ At]
ε

≤ −P [a ∈ At]
(

2 + c(t)− β − 4dσβ√
m
− β3

m3 · P [a ∈ At]
±O(ε)

)
≤ −P [a ∈ At]

(
2 + c(t)− β − 5dσβ√

m
±O(ε)

)
where in the last inequality we used (G.5). Letting ε → 0, for t ≤ t∗, the above differential

equation yields,

P [a ∈ At] ≤ exp
(
−
∫ t

τ=0

(
2+c(τ)−β− 5dσβ√

m

)
dτ
)
≤ exp

(
−
∫ t

τ=0

(2+c(τ)−β)dτ
)

+
2dσ3β√

m
.

(G.6)

where in the last inequality we used t∗ ≤ σ2/6, ex ≤ 1+2x for x ≤ 1 and lemma’s assumption

5dσ2 ≤
√
m .

Now, we are ready to upper-bound the utility of a. By (G.5) the expected utility that a

gains after t∗ is no more than β/m. Therefore,

E [uc(a)] ≤ β

m
+

∫ t∗

t=0

(2 + c(t))E
[
1− (1− d/m)Zt−1|a ∈ At

]
P [a ∈ At] e−rtdt

≤ β

m
+

∫ t∗

t=0

(2 + c(t))((1− β)P [a ∈ At] + β/
√
m)e−rtdt

≤ β

m
+

∫ t∗

t=0

(2 + c(t))
(

(1− β) exp
(
−
∫ t

τ=0

(2 + c(τ)− β)dτ
)

+
3dσ3

√
m
β
)
e−rtdt

≤ 2dσ5

√
m
β +

∫ ∞
t=0

(1− β)(2 + c(t)) exp
(
−
∫ t

τ=0

(2 + c(τ)− β)dτ
)
e−rtdt.

In the first inequality we used equation (G.3), in second inequality we used equation (G.6),

and in the last inequality we use the definition of t∗. We have finally obtained a closed form

upper-bound on the expected utility of a.

Let Uc(a) be the right hand side of the above equation. Next, we show that Uc(a) is

maximized by letting c(t) = 0 for all t. This will complete the proof of Lemma 6.4. Let c

be a function that maximizes Uc(a) which is not equal to zero. Suppose c(t) 6= 0 for some

t ≥ 0. We define a function c̃ : R+ → R+ and we show that if r < β, then Uc̃(a) > Uc(a).
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Let c̃ be the following function,

c̃(τ) =



c(τ) if τ < t,

0 if t ≤ τ ≤ t+ ε,

c(τ) + c(τ − ε) if t+ ε ≤ τ ≤ t+ 2ε,

c(τ) otherwise.

In words, we push the mass of c(.) in the interval [t, t+ ε] to the right. We remark that the

above function c̃(.) is not necessarily continuous so we need to smooth it out. The latter

can be done without introducing any errors and we do not describe the details here. Let

S :=
∫ t
τ=0

(1 + c(t) + β)dτ . Assuming c̃′(t)� 1/ε, we have

Uc̃(a)− Uc(a) ≥ −ε · c(t)(1− β)e−Se−rt + ε · c(t)(1− β)e−S−ε(2−β)e−r(t+ε)

+ε(1− β)(2 + c(t+ ε))(e−S−ε(2−β)e−r(t+ε) − e−S−ε(2+c(t)−β)e−r(t+ε))

= −ε2 · c(t)(1− β)e−S−rt(2− β + r) + ε2(1− β)(2 + c(t+ ε))e−S−rtc(t)

≥ ε2 · (1− β)e−S−rtc(t)(β − r).

Since r < β by the lemma’s assumption, the maximizer of Uc(a) is the all zero function.

Therefore, for any well-behaved function c(.),

E [uc(a)] ≤ 2dσ5

√
m
β +

∫ ∞
t=0

2(1− β) exp
(
−
∫ t

τ=0

(2− β)dτ
)
e−rtdt

≤ O(
d4 log3(m)√

m
)β +

2(1− β)

2− β + r
.

In the last inequality we used that σ = O(
√

log(m/β)) and β ≤ e−d. This completes the

proof of Lemma 6.4.

H Small Market Simulations

In Proposition 5.5 and Proposition 5.9, we prove that the Markov chains of the Greedy

and Patient algorithms are highly concentrated in intervals of size O(
√
m/d) and O(

√
m),

respectively. These intervals are plausible concentration bounds when m is relatively large.

In fact, most of our theoretical results are interesting when markets are relatively large.

Therefore, it is natural to ask: What if m is relatively small? And what if the d is not small

72



0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

d

 

 

L(Greedy)

L(Patient)

L(OMN)

Figure 8: Simulated Losses for m = 20. For very small market sizes and even for relatively
large values of d, the Patient algorithm outperforms the Greedy Algorithm.

relative to m?

Figure 8 depicts the simulation results of our model for small m and small T . We simu-

lated the market for m = 20 and T = 100 periods, repeated this process for 500 iterations,

and computed the average loss for the Greedy, Patient, and the Omniscient algorithms. As

it is clear from the simulation results, the loss of the Patient algorithm is lower than the

Greedy for any d, and in particular, when d increases, the Patient algorithm’s performance

gets closer and closer to the Omniscient algorithm, whereas the Greedy algorithm’s loss

remains far above both of them.
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