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Abstract. To be credible, economic analysis should restrict itself to the

use of only those Nash equilibria that are viable. To assess the viability of

an equilibrium �, I study simple dual indices: a formation index, F (�), that

speci�es the number of loyalists needed to form �; and a defection index,

D(�), that speci�es the number of defectors that � can sustain.

Surprisingly, these simple indices (1) predict the performance of Nash

equilibria in social systems and lab experiments, and (2) uncover new prop-

erties of Nash equilibria and stability issues that have so far eluded game

theory re�nements.

JEL Classi�cation Codes: C0, C7, D5, D9.

1. Overview

Current economic analysis often relies on the notion of a Nash equilibrium.

Yet there are mixed opinions about the viability of this notion. On the one

hand, many equilibria, referred to as viable in this paper, play critical roles

in functioning social systems and perform well in lab and �eld experiments.
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Unviable Nash equilibria, on the other hand, fail to perform well in such ex-

periments and are not observed in functioning social systems.1 As a result,

the uses of unviable Nash equilibria in many recent theory and applied theory

papers seem contrived and unproductive.

This paper focuses on the subject of equilibrium viability. As a starting

point, we study simple dual economic indices that succeed in assessing the vi-

ability of an equilibrium � of an n- person strategic game �: a formation index,

F (�), that re�ects the di¢ culty of forming the equilibrium �; and a defection

index, D(�), that re�ects the ability of a formed equilibrium � to sustain defec-

tion. As illustrated by examples in the paper, viable Nash equilibria perform

well on these indices, whereas unviable equilibria perform poorly. The indices

also identify new issues concerning Nash equilibrium stability that so far have

eluded game theory re�nements.2

Our view is that viability assessments are subjective, and it is better to

base them on multivalued indices than on binary game-theory re�nements.

This view is illustrated through the use of E(X) and SD(X) by an economic

agent who wishes to assess the viability of an investment X. While no index

or re�nement tells her whether or not the investment X is viable, E(X) and

SD(X) are useful for forming a subjective assessment of X�s viability. The

subjective part of the assessments enables one to consider additional informa-

tion such as the history, context, and objective of an equilibrium; and other

considerations that are not part of the formal description of the game.

1The literature on these issues is too large to survey here. Some key examples and references
may be found in Smith (1982), Erev and Roth (1998), Crawford (1998), Kahneman and
Tversky (2000), Goeree and Holt (2001), Camerer (2003), and many of their follow-up
papers.
2Some key examples are Aumann (1959), Selten (1975), Myerson (1978), Basu and Weibull
(1991), Kreps and Wilson (1982), Kalai and Samet (1984), Kohlberg and Mertens (1986),
Bernheim, Peleg, and Whinston (1987), Young (1993), Kandori, Mailath, and Rob (1993),
Moreno and Wooders (1996), and Myerson and Weibull (2015).
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This paper deliberately makes a minimal departure from the concept of Nash

equilibria. It keeps the anonymity and ordinality properties of Nash equilib-

ria.3 Its only deviation from the concept of Nash equilibria is in eliminating

the assumption that "no opponent is a potential defector" and replacing it by

a single variable that describes the "number of opponents who are potential

defectors." This single departure means that all the new observations made in

the paper are due solely to the inclusion of this particular variable. Moreover,

the minimality of the departure means that the indices stay away from various

re�nements of Nash equilibria and thus (1) remain relevant to a broad range

of applications, and (2) rely on simple best-response computations that are

comprehensible to most players.

In the concluding section we point to applications that call for more re�ned

viability indices. However, since such re�nements may require di¤erent and

inconsistent modi�cations to the notion of Nash equilibrium, their study is left

for future research.

1.1. RELATED LITERATURE. Low viability may be viewed as a non-

binary re�nement of Nash equilibrium. As such, it presents concerns about

stability that existing game theory re�nements have not addressed. More

speci�cally, this paper presents examples of equilibria that pass most re�ne-

ment tests, but would be considered to have low viability in the context in

which they are played.

Due to the natural interpretations of the indices in strategic games, it is not

surprising that they appear in earlier game theoretic discussions.

Formally, the D index may be viewed as the level of subgame perfection4 in

a two-stage play of �, in which the players are allowed to revise their chosen

3Nash asks only whether some player has an incentive to defect; he has no concerns about
the defector�s identity and her role in the game, or about the (cardinal) strength of her
incentives to defect.
4See Kalai and Neme (1992)
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strategies after learning the choices of their opponents in stage one. Choosing

� in the �rst stage and playing the second stage with no revisions is k subgame-

perfect if and only if k < D(�).5

In applications, D has its roots in the computer science literature on distrib-

utive computing; see, for example, Ben-Or et al. (1988). Motivated by this

literature, Eliaz (2002) provides an implementation procedure for economic

environments with faulty players. To do so, Eliaz introduces the concept of a

k-fault-tolerant equilibrium; in section 9 below, we show that an equilibrium �

is k-fault-tolerant if and only if k < D(�).

In addition to Eliaz (2002), two other papers pertinent here are Abraham

et al. (2006) and Gradwohl and Reingold (2014). The level of resilience

used by Abraham et al. (2006) in their implementation of secret-sharing and

distributive-computing games is the same as the index D used in this paper.

And Gradwohl and Reingold (2014) develop a notion of fault tolerance that

holds in equilibria of large games.

The F index is new to this paper, but it is related to the earlier literature

through its duality relationship with D, namely, F = n�D.

However, this paper deals with applications that cannot be addressed by the

papers cited above. An important di¤erence is that in this paper we address

the incentives of rational players to defect, in addition to the irrational faulty-

players defections discussed in the papers above. As a result, the indices are

useful in addressing questions such as when rational players choose to defect,

how to modify a game to turn potential defectors into loyalists and vice versa,

and how to form or switch an equilibrium in a game played by rational players.

5More explicitly, in stage one every player i declares the strategy (pure or mixed) &i that she
intends to play. In stage two, with full knowledge of the entire pro�le of intentions &, she
chooses her actual strategy �i = �i(&). The payo¤ of the two-stage game is ui(&; �) = ui(�),
if her &i = �i; otherwise ui(&; �) = w, where w is the lowest possible payo¤ of any player
in �. Consider the strategy pro�le � = (�; �e) in which & = �, and �ei (&) = &i. It follows
directly from the de�nitions that � is k-perfect i¤ k < D(�).
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2. Viability Indices

2.1. GAME THEORETIC PERSPECTIVE. A game theory story that

motivates the de�nitions of the indices below concerns n rational players about

to play a focal strategy pro�le �. However, each of these rational players is

concerned that a number of her opponents may fail to play their � strategies

(despite their seeming optimality) and asks herself whether, in view of her

concerns, her � strategy is optimal. This is a di¢ cult question since there are

many such concerns, and they are often di¢ cult to formulate. One concern

is that some of her opponents are simply "faulty," i.e., irrational and unpre-

dictable as described by Eliaz (2002). But she may even have concerns about

the strategies chosen by rational opponents. Examples include pro�table de-

fections by groups of rational opponents, outside bribes and threats applied

to rational opponents, rational opponents� desire to build their reputations

for future games, as well as many other concerns not included in the formal

description of the game under consideration.

Addressing the concerns above by standard Bayesian methods is impractical.

It would require listing the large number of such concerns that each player

holds about each of her opponents, and assigning a prior probability to each

such concern.

Notice, however, that these concerns become irrelevant when the player�s

� strategy is dominant in the game under consideration, since her strategy is

the best regardless of the strategies her opponents end up choosing. For this

reason, a pro�le � that consists of all dominant strategies (i.e., a dominant-

strategy equilibrium) is most viable according to the indices of this paper, i.e.,

F (�) = 0 and D(�) = n. But when � is not a dominant-strategy equilibrium,

we may ask a related and less demanding question: against howmany potential

defectors are the players�strategies dominant? Such questions underlie the

de�nitions of D(�) and F (�) below.
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2.2. GAME-THEORETIC NOTIONS. This paper focuses on a strategic

n-person game � = (N;A = �i2NAi; u = (ui)i2N). N is a �nite set of n

players. Subsets of N are called groups or coalitions, and N is the grand

coalition. Elements of Ai are the strategies of player i, and strategy pro�les,

or pro�les for short, are functions of the form � = (�i)i2N 2 A � �iAi, which

assign to every player i an element �i 2 Ai. We assume that � has no dummy

players, i.e., jAij � 2.6

For a group G and a pro�le �, de�ne �
G
= (�j)j2G. The pro�le in which

the players in G defect from � to a pro�le � is de�ned by: (�NnG : �G)j = �j

for j =2 G, and (�NnG : �G)j = �j for j 2 G. A strategy �i of player i is a

best response to a pro�le �, if ui(�Nni : �i) � ui(�Nni : �i) for any strategy �i
of player i.7.8 A pro�le � is a best response to a pro�le � if every �i is a best

response to �; and a pro�le � is a Nash equilibrium if it is a best response to

itself.

A strategy �i is dominant if �i is a best response to any pro�le; and a pro�le

� is a dominant-strategy equilibrium if each �i is dominant. The notions of

best response and domination are weak, in the sense that they are de�ned by

weak inequalities.

Throughout the rest of the paper, � = (�i)i2N denotes one arbitrary, �xed

focal pro�le. The implicit assumption that � is focal explains why we may

think of � as an equilibrium in cases in which best-response functions involve

indi¤erence. Similarly, the de�nitions of the indices below are motivated by

this implicit assumption.

Given the �xed pro�le �, for any pro�le � and player i, i is a �-defector at

�, or a defector for short, if �i 6= �i; and i is a �-loyalist at �, or a loyalist for

short, if �i = �i.

6jSj denotes the number of elements in a set S.
7When it is clear from the context, we sometimes omit the brackets and replace fig by i .
8For the obvious reasons, whether �i is a best response to � is independent of the �i
coordinate.
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For a pro�le � and a group G, it is useful to consider the (sub)game induced

on the members of G when the players outside G are committed to their �

strategies.

De�nition 1. The game played by G under �, ��G , is de�ned as follows:

the set of players is G; the strategy set of every i 2 G, Ai, is the same as in

�; and the payo¤ of every player i 2 G at any pro�le �G is the same as her

payo¤ in � at the concatenated pro�le (�NnG : �G).

Below is an example of an asymmetric game, used to illustrate the concepts

de�ned in the following sections.

Example 1. The Party Line Game: Simultaneously, each of three De-

mocrats and �ve Republicans selects one of two choices, E or F . The payo¤ of

a player is the number of opposite-party players whose choice she mismatches.

We will consider the divisive equilibrium, Div, in which all the Democrats

choose F and all the Republicans choose E.

2.3. DEFINITIONS AND PROPERTIES OF THE INDICES. Even

though several of the de�nitions and properties below are dual and equivalent,

they highlight di¤erent useful aspects of the indices. Some examples in the

paper illustrate uses of D(�) in addressing coalition defections, F (�) in ad-

dressing equilibrium formation, and the Nash critical mass NCM(�) in Eliaz

(2002) implementation. It is natural to think of each of the indices as the

primitive in its own set of applications.

The reader should be aware that the concepts and the relationships described

below involve signi�cant subtleties, and that the short combinatorial proofs

of the propositions are the consequence of careful de�nitions and the order of

presentation chosen. For example, the �nal argument thatNCM(�) = F (�)+

1 makes careful use of the original de�nition of D(�), the dual relation of D(�)

with F (�), and the interpretation of F (�) as the formation index. In addition,
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this argument and other arguments throughout this section make repeated

use of the anonymity and coalitional-monotonicity properties in the notions of

defection deterrence and equilibrium formation. In turn, this monotonicity is

a result of the anonymity and domination properties used in the de�nitions of

defection deterrence and formation.

2.3.1. The defection index: con�dence in individual strategies. The

next de�nition explains why a high value ofD(�) assures every player i that her

�i strategy is optimal, no matter what strategies a large number of potential

defectors end up playing.

De�nition 2. The defection index D(�) is the smallest integer d = 0; 1; 2; :::; n

such that � is not a best response to some d-defectors pro�le � . If � is a best

response to all pro�les �, then de�ne D(�) = n.

For example, the divisive equilibrium of the previous section has D(Div) =

2. To see this, observe that if two Democrats choose E instead of F , then E

is no longer a best response of any Republican, so D(Div) � 2; and since no

single player�s choice can motivate any player to defect from Div, it follows

that D(Div) > 1.

2.3.2. Deterring multiplayer defections. Under the equivalent de�nition

below, D(�) expands the Nash equilibrium property that any single defector

(weakly) loses, to the property that every member of any group G of defectors

loses, for all Gs with jGj � D(�).

De�nition 3. Defection deterrence:

1. The pro�le � (strongly) deters defection of a group G if �g is a dominant

strategy in the (defection) game ��G for every player g 2 G.

2. The pro�le � (strongly) deters d defectors, if it deters the defection of

any d-player group G.
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Item 2 above requires that � deters the defection of the players in any known

group of d potential defectors G. It is straightforward to formulate a Bayesian

game with d-potential defectors, Bd, that shows that such a player is deterred

even if she has no information about the identity of her potential codefectors.9

The word strongly was inserted (in parentheses) in the de�nition above to

emphasize that �g is required to be a dominant strategy and not just an op-

timal one. This distinction does not come up in the case of single defectors

treated by Nash, but it must be addressed when we discuss multiplayer de-

fections. The choice of strong deterrence means that a high value of D is a

strong condition and that a low value may require further examination.

Notice also that the anonymity and domination properties in the de�nition

above imply a monotonicity in group deterrence: if � deters d defectors, then

it deters d0 defectors for any d0 < d.

The next proposition shows that D(�) can be equivalently de�ned to be the

maximal number of defectors that � deters.

Proposition 1. Defection Deterrence: The pro�le � deters d defectors if and

only if d � D(�).

Proof. Let G be any group of size jGj < D(�) and consider any player g 2 G.

If �g is not dominant in ��G, then there is a � pro�le �, with fewer than D(�)

defectors, to which �g is not a best response. This contradicts the minimality

condition in the de�nition of D(�). So � deters the defection of any group G

with jGj < D(�).

9Bd starts with a random draw of a group G of d potential defectors according to a prior
probability distribution �. Every member of G is informed only of her selection and is asked
to select a defecting strategy from her set of strateagies Ai. Her �nal payo¤ is the payo¤
computed at the underlying game �, when all the selected defectors use their defecting
strategies and all the other players play their � strategies. Notice that in Bd each player has
only one information set; thus, its play consists of a single choice of a strategy �i 2 Ai for
every player i. It is straightforward to verify that � deters d defectors as de�ned above if
and only if � is a dominant (defecting) strategy equilibrium in the Bayesian defection game
Bd for every prior �.
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For the converse, observe that if � deters d defectors, then for every player

i, �i is a best response to any pro�le � with d � 1 or fewer defectors. Since

this is true for every player i, � is a best response to any pro�le � with d� 1

or fewer defectors, i.e. D(�) > d� 1, or D(�) � d. �

In the Div equilibrium, for example, no member of a pair of potential de-

fectors can imagine gaining from her defection, regardless of the strategies she

ascribes to her fellow defector; so Div deters two defectors. But Div may fail

to deter three defectors. For example, if one Republican and two Democrats

are potential defectors, then the single Republican can imagine that, if the two

Democrats choose E he is better o¤ switching to F .

2.3.3. The formation index and duality.

De�nition 4. The formation index of � is de�ned by F (�)= n�D(�).

Next we show that the formation index can be equivalently de�ned to be

the smallest number of players that can form �, and that it is dual to the

defection index.

De�nition 5. Equilibrium formation:

(1) A group L forms � if �i is a dominant strategy in the game ��NnL for

every i 2 NnL.

(2) For any l, l (players) form �, if any l-player group forms �.

Lemma 1. Duality: The pro�le � deters d defectors if and only if n�d players

form �.

Proof. As is clear from the de�nitions of the two concepts, any group L forms

� i¤ � deters the defection of the group NnL. This implies that any group of

l-player group forms � i¤� deters defection of any group of (n� l) players. �
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As is the case for group defection deterrence, the anonymity and domination

properties in the de�nition of group formation imply a monotonicity in group

formation: l players form � implies that l0 players form � for any l0 � l.

Proposition 2. Equilibrium Formation: l players form � i¤ l � F (�).

Proof. l � F (�) i¤n� l � n�F (�), i.e., i¤n� l � D(�). By the last Lemma,

the last condition is equivalent to l players forming �. �

At the divisive equilibrium of the Party Line game, for example, any six

players who commit to play Div make it a dominant choice for each of the

remaining two players to play Div. This is so because any group of six players

must either (i) include all the players of one of the two parties, or (ii) have a

majority in both parties; in either case their commitment to play their Div

strategies makes the Div strategies dominant for each of the two remaining

players. But a �ve-player commitment to play Div may not be su¢ cient for

Div formation. For example, the commitments of one Democrat and four

Republicans to their Div strategies does not make E a dominant strategy for

the �fth Republican.

As should be clear, our de�nitions are restricted to anonymous one-shot

equilibrium formation. The reader is referred to our discussion of future

research for an elaboration on the complex subject of nonanonymous dynamic

equilibrium formation.

2.3.4. Nash critical mass, small worlds, and faulty players. A small-

world property of Nash equilibria (see Mertens (1992)) provides an alternative

characterization of the formation index. This property states that an equi-

librium � de�ned for a "large-world game" that consists of n players can be

played in isolation in a "smaller-world game" that consists of a subset of the

players. More speci�cally, Nash incentives in the small world hold, no matter

what the players outside the small world choose to play. The concept of Nash
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fault tolerance, used by Eliaz (2002), is an equivalent condition that illustrates

a strong economic application of this condition. To describe the condition we

use a concept of a uniform Nash equilibrium.

De�nition 6. For any group G, � is a uniform Nash equilibrium of G, if �

is a Nash equilibrium of the game ��G for every pro�le �.

The Nash critical mass of �, NCM(�), is the smallest integer b such that

� is a uniform Nash equilibrium of any group G with jGj � b.

Proposition 3. Nash critical mass of a small world: NCM(�) = F (�) + 1.

Proof. If jGj � F (�)+1, then for every g 2 G, it is the case that Gng forms �.

Therefore �g is g�s best response to � in the game �
�
G for any �. This shows

that � is a uniform Nash equilibrium of G for any G with jGj � F (�) + 1.

For the converse, observe that there is a D(�)-defectors pro�le � with a

player i for whom �i is not a best response. Consider the two cases: (1)

�i = �i, and (2) �i 6= �i. Without loss of generality, we can change �i to be

�i to obtain the existence of a pro�le � with a number of loyalists � F (�),

to which �i is not a best response for one of the loyalists. This means that

we can �nd an F (�)-loyalists group G with a member i for whom �i is not a

best response to �. In other words, � is not a uniform Nash equilibrium of

G. Since G has F (�) members, NCM(�) must be greater than F (�). �

For example, the Nash critical mass of the divisive equilibrium of the Party

Line game is NCM(Div) = 7(= F (Div) + 1). It is a Nash equilibrium for

any seven players to "follow the party line," even if they are not sure who the

excluded player is and what she may play. But in a six-player game played

by all the Republicans and one Democrat, following the party line may fail to

be a uniform Nash equilibrium. For example, the Republicans are not best

responding if the two excluded players are Democrats who choose E.
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It is important to emphasize that the statement "l players play �" is qual-

itatively stronger for l � F (�) + 1 than for l � F (�). The latter statement

means that the l players incentivize the remaining n � l players to play their

� strategies, but it does not address the incentive of the l players to do so

themselves. On the other hand, l � F (�)+ 1 means that in addition to incen-

tivizing the others, the l players themselves have Nash-equilibrium incentives

to play their � strategies.

2.3.5. Nash equilibrium progressions. The properties and observations

discussed above introduce a view of Nash equilibria of n-person games as a

progression formed by the rungs in a ladder of sustainability/domination. The

least sustainable are pro�les � that are not Nash equilibria with D(�) = 0, i.e.,

they fail to deter some single-player defectors. Progressively, the next levels

correspond to Nash equilibria � with D(�) = 1; 2; :::; n � 1, where D(�) = d

includes the equilibria that deter up to d defectors. The most sustainable are

the dominant-strategy equilibria with D(�) = n, which deter any number of

defectors.

Notice that this is also a classi�cation that presents a decreasing progression

in domination. At the top are the dominant-strategy equilibria �, with F (�) =

0. Their formation requires the commitment of no players. Progressively, the

next levels correspond to Nash equilibria with F (�) = 1; 2; :::; n � 1, where

F (�) = f includes the equiliria that require the commitment of at least f

players to make � a dominant strategy for the rest. F (�) = n includes the

remaining non-Nash-equilibrium pro�les, in which the commitment of all n

players is needed to secure the play of �.

The Ride Sharing game, Example 7, shows that all the levels of these pro-

gressions, 0; 1; :::; n, are obtained in simple games that require only reasonable

levels of computational ability.
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Proposition 4. Classi�cation of Nash equilibria: � is not a Nash equilibrium

i¤ D(�) = 0 (or F (�) = n); � is a dominant-strategy equilibrium i¤ D(�) = n

(or F (�) = 0); and the intermediary values D(�) = 1; :::; n � 1 (or F (�) =

n � 1; :::; 1) partition all remaining Nash equilibria into increasing levels of

defection deterrence (or increasing ease of formation).

Proof. From the de�nition of D, � is not a Nash equilibrium i¤ D(�) = 0,

and thus � is a Nash equilibrium i¤ D(�) > 0. Also from the de�nition of

D, � is a dominant-strategy equilibrium i¤ D(�) = n. This means that the

remaining intermediary values must be assigned to all non-dominant-strategy

Nash equilibria. �

3. Subjective viability assessments

The �rst two examples contrast a high D-value equilibrium with one of low

D-value.

Example 2. A (Language) Matching Game.

Simultaneously, each of 200M players selects one option (say, a language)

from a set of possible choices. For any choice X, the payo¤ of a player who

chooses X equals the number of opponents she matches, i.e., the number of

other players who also choose X.

Consider the pro�le eE in which every player chooses E. It is easy to see

that eE is a Nash equilibrium; but beyond the Nash condition, eE deters

defections of groups of players. For example, for any player who is one of 1M

potential defectors, staying with E is a dominant strategy: she would match at

least 199M opponents by choosing E and match at most 1M � 1 opponents if

she defects. This group deterrence property holds for any group of d potential

defectors for ds up to 100M .
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In contrast to the large defection-deterrence value D = 100M above, the

defection deterrence of the next equilibrium is only D = 1, barely enough to

be classi�ed as a Nash equilibrium.

Example 3. A Confession Game (a stag-hunt game that only sounds like

a prisoner�s dilemma).10

Simultaneously in separate rooms, 36 partners in a crime are interrogated by

the police. If none of the suspects confesses, everyone will be released with no

penalty. However, if one or more confess, then every suspect will be sentenced

to ten years in prison, except for the confessors, who will be sentenced to only

three years instead of ten.

The cooperative pro�le nC in which nobody confesses is a Nash equilibrium.

However, nC fails to deter (with certainty) the defection of a player who be-

lieves that at least one more player is a potential defector: if another player

confesses, than she is better o¤ confessing herself. Since nC deters sole poten-

tial defectors, but fails to deter defection in the presence of one more potential

defector, it is a Nash equilibrium but with the low D value , D(nC) = 1.

Next, we focus on newly proposed equilibria and contrast one with a high

F -value with one with a low F -value.

For the high F -value, consider the language-choice game above, but with

an equilibrium in which everybody chooses Swahili, eS. Just like the eE

equilibrium in the game, D(eS) = 100M , and by the duality of the two indices,

F (eS) = 200M � D(eS) = 100M . So it would take 100M players to choose

S, to make S a dominant strategy for the others.

In contrast to the di¢ cult-to-form equilibrium just above, with F (eS) =

100M , the next game illustrates an equilibrium that is easy to form; its F

value is 10.
10The author thanks Adam Kalai for suggesting this example.
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Example 4. A New Communication Network is o¤ered for subscription

in a population of 200M potential users, at an individual cost of $9:99. The

payo¤ of a subscriber is k � 9:99, where k is the number of opponents who

subscribe. The payo¤ of a nonsubscriber is zero.

Consider the equilibrium in which everybody subscribes, eSub. It is easy

and natural to compute the formation index of this equilibrium directly: Sub-

scribing is a dominant strategy if and only if at least ten other players sub-

scribe; thus, F (eSub) = 10. Notice that this computation does not even

require knowledge of n, which would be needed for the indirect computations

F = n�D. But now we can use the duality to conclude that if formed, eSub

should be highly sustainable, D(eSub) = 200M � 10.

The chart titled "Subjective viability assessments" illustrates how one may

assess viability for the equilibria discussed above.

The bottom layer of the chart refers to equilibria similar to the nobody-

confesses equilibrium, which have a low D value, i.e., even if formed, their

sustainability is questionable. In addition, for a reasonable number of play-

ers n, they have a relatively high formation index, i.e., they are di¢ cult to

form. In our Confession example, F (nC) = 35; thus, a player must be highly

con�dent that all her 35 partners in crime will not confess, to adopt the no
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confession strategy herself. Given the di¢ cult formation and the low sustain-

ability even if formed, one would reasonably consider nC to be an equilibrium

of low viability.

It is also easy to assign viability to equilibria in the top layer of the chart.

Our example in which everybody subscribes to the new cheap network, eSub,

has a formation index F (eSub) = 10 and a defection indexD(eSub) = 200M�

10. An entrepreneur who owns the network should �nd it easy to form the

equilibrium, as he would need to recruit only 10 out of the 200M players

to subscribe. Given the relatively easy formation and high sustainability if

formed, one would reasonably consider eSub and similar equilibria to be highly

viable.

The middle layer in the chart is more interesting. For large values of n we

may obtain equilibria that have both a largeD value and a large F value. Such

equilibria should be di¢ cult to form but also highly sustainable if formed. If

such an equilibrium were already formed �for example, due to some historical

evolution �it should be highly sustainable. But if it is not yet formed, the

di¢ cult formation makes this equilibrium unviable. For example, in the US

all-choose-English is a viable equilibrium whereas all-choose-Swahili is not.

4. Viable equilibria in social systems and the lab

4.1. Highly sustainable equilibria in social systems. Many conventions

and social arrangements in large populations rely on highly sustainable Nash

equilibria, similar to the everybody-choosing-English equilibrium above. Some

examples of such viable equilibria are: everybody choosing Spanish, Mandarin,

or one of many other languages spoken in di¤erent populations; everybody us-

ing dollars, euros, or other currencies used in various markets; everybody obey-

ing tra¢ c signals; everybody using the same communication software and/or

the same hardware; and the choice of market locations made by sellers and
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buyers as places to trade. Dress codes, food culture, and many social mores

also follow such equilibria.

4.2. Unsustainable examples in social systems. With D(nC) = 1, play-

ers may think of the no-confession equilibrium nC discussed above to be of

low viability. Below are three familiar examples of equilibria with D = 1 often

discussed in the context of social systems and lab and �eld experiments.

In the beauty-contest game, each of n judges submits a real number

ri 2 [0; 100]. The judges whose submitted number is closest to two-thirds

of the average submitted number, 2
3

Pn
i=1 ri=n, are each paid one, while the

others are paid zero. The only Nash equilibrium � in which all the judges

submit the zero score, eZero �is rarely observed in lab and �eld experiments.

The nonviability of this (strict Nash) equilibrium can be explained by its low

defection index, D(eZero) = 1. Indeed, the low viability of this equilibrium

has given rise to a large literature that o¤ers alternative models of behavior

for this and similar games; see Nagel (1995), Crawford et. al. (2013), and

Mauersberger and Nagel (2018) for theoretical and empirical references.

Mixed-strategy equilibria are often minimally sustainable, as can be seen

again in the Language Matching game. Consider the equilibrium in which

every one of the 200M players chooses English or Spanish with equal probabil-

ity. If one player changes her choice probabilities to 2=3 on choosing Spanish

and 1=3 on choosing English, then every player�s best response is to choose

Spanish with probability one. So the mixed-strategy equilibrium has the min-

imal defection level D(eE) = 1. This type of low viability is the case for many

mixed-strategy equilibria; we refer the reader to O�Neill (1987) and follow-up

papers for empirical studies.

Simple production lines rely on equilibria with a low defection index,

D = 1. Consider a group of n workers who stand to receive a bonus if and

only if they all report to work. A player�s payo¤ is positive if everyone reports
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to work and she receives the bonus; it is zero if she does not report to work; and

it is negative if she reports to work but receives no bonus because somebody

else did not report to work. Having everybody report to work is an appealing

equilibrium, but one with a defection index of only 1, since one worker not

showing up incentivizes others to also not show up. This low sustainability

level is one of the reasons that companies such as Toyota use more sophisticated

production lines with higher levels of sustainability (see Mishina (1992)).11

5. Comparison with equilibrium refinements

The nobody-confesses pro�le nC of the Confession Game is a Nash equi-

librium with the lowest possible level of defection deterrence, D(nC) = 1.

However, considerations of standard game theory lead one to conclude that

nC is an appealing equilibrium. As one can see in the payo¤ graph of the

two-player case, u(nC) strongly and uniquely Pareto-dominates every feasible

payo¤ in the game. Any defection �whether deterministic or probabilistic,

and whether by individuals or groups �is certain to strictly decrease the ex-

pected payo¤s of all the players, including the defectors. As Aumann and Sorin

(1989) argue, this should be the undisputed outcome of this game. Indeed,

this equilibrium is perfect à la Selten (1975), proper à la Myerson (1978), strong

à la Aumann (1959), and coalition-proof à la Bernheim, Peleg, and Whinston

(1987).

It seems, however, that crime syndicates are not impressed by nC�s high

acclaim among game theorists. They are more concerned that somebody

11The author thanks Sunil Chopra and Martin Lariviere for providing this reference.
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would confess out of fear that others might, a concern that coincides with the

reasons for ��s low D value. Crime-syndicate remedies, such as killing con-

fessors, change the game�s payo¤ functions to make no-confession a dominant

strategy with the maximal D value n. Similar concerns lead more respectable

organizations, such as high-tech and bio-research companies, to demand that

their employees sign no-disclosure agreements.

The nC equilibrium above also reinforces our earlier point that the reasoning

behind our stability index is simple enough to be understood even by players

with limited computational ability. Players simply have to fear the outcomes

if other players defect.

The next example illustrates a di¤erence between the defection index D

and re�nements based on evolutionary stability. In particular, an evolutionary

stable equilibrium may still be minimally sustainable.

Example 5. Match The Center. The boss, B, and n subordinates each

selects one element from a given set of choices. B�s payo¤ is 1 if he chooses

E, zero otherwise; and every subordinate�s payo¤ is 1 if her choice matches

B�s choice, zero otherwise.

The game has a unique equilibrium eE, in which every player chooses E.

This equilibrium has a large basin of attraction and it is stochastically stable

in the sense of Young (1993) and Kandori et al (1993).12

However, eE is only minimally sustainable, i.e., D(eE) = 1. All the subor-

dinates are vulnerable because the optimality of their choice depends entirely

on the choice of one player, B. Yet they may have concerns about B�s com-

mitment to his strategy, his ability to withstand pressure coming from outside

the game, his desire to create a reputation for future games, possible miscal-

culations, and so forth.

12For further discussion and references, we refer the reader to Ellison (2000).
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It is important to note that, unlike the dynamic approach of evolutionary

game theory, our model deals with a game that is played just once. Moreover,

in many evolutionary models deviations from equilibrium are controlled by

forcing mutation probabilities to approach zero. Here, on the other hand,

imagined deviations from equilibrium are controlled only by bounding the

number of players who may deviate, but not the probabilities and magnitude

of deviations.

As a side remark about centrally controlled games, notice that the sustain-

ability of the eE equilibrium can be increased if the center is occupied by

a group of bosses. For example, if there are three bosses, all having E as a

dominant strategy, and the subordinates all wish to match the majority choice

of the bosses (e.g., a politburo instead of a dictator), then D(eE) = 2, and

not 1 as it is for a single boss.

6. Information, signals, and signal duplication

Our next example illustrates the fact that duplicating information can be

used to increase equilibrium sustainability, even if the duplicated information

is common knowledge. The example is a simple version of a Crawford-Sobel

(1982) sender-receiver game, in which the senders, their information, and their

strategies are simply duplicated.

Example 6. Signalling Game with duplicated senders: A two-element

set T = f�; �g denotes two possible states, two possible signals, and two pos-

sible actions in the game. There are three recommenders, of whom two are

honest and one is malicious, and there are 100 decision makers (DMs). Each

of the recommenders is informed about the true state � 2 T , and recommends

an action si 2 T . The DMs are informed of which state is the most recom-

mended (i.e., recommended by the majority of recommenders), and each one
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selects an action �i 2 T . The payo¤ of each DM and each of the honest recom-

menders equals the number of DMs who choose �. The payo¤ of the malicious

recommender equals the number of DMs who fail to choose �.

We consider the straightforward equilibrium, SF , in which each of the hon-

est recommenders recommends the true state �, the malicious recommender

recommends the false state, and each of the DMs chooses the most recom-

mended action. It is easy to see that D(SF ) = 1, because a defection by one

honest recommender may push the DMs to switch to the minority recommen-

dation.

As the reader can see, if we alter the game to have four honest recommenders,

D(SF ) would be 2, because now it would take a defection by two honest

recommenders to convince the DMs to switch to the minority recommendation.

The fact that the SF equilibrium in the altered game is more sustainable

than in the unaltered game is somewhat surprising, since the two games are

"common-knowledge equivalent." It reveals a concern not captured by stan-

dard Bayesian equilibria, namely, that one of the two recommenders in the

unaltered game may fail to play the equilibrium for the various reasons dis-

cussed in the introduction. This concern is reduced in the altered game, in

which two recommenders have to fail. Notice also that the malicious recom-

mender can decrease the sustainability of the SF equilibrium by increasing

the number of malicious recommenders.

It seems that the sustainability of the equilibrium may itself be subject to

strategic considerations. This is a partial explanation of why political par-

ties send many representatives to repeat the same exact "talking points" in

di¤erent public presentations.
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7. Simple rational reasoning supports all index values

The next example shows that any integer, 0; 1; :::; n, is a possible value of

a defection index of some equilibrium of an n-person game. Moreover, these

levels can be arrived at by simple rational reasoning, compatible with the

computational ability of most players.

Example 7. Ride-Sharing Game: Eight individuals from a small town sign

up to attend an event at a speci�c time and place in a nearby city. For trans-

portation, they each have to sign up and commit to one of two options: riding

a private taxi that costs $80, or sharing a ride on a bus that can comfortably

take any number of them. The cost of the bus, $180, will be shared equally by

the riders who sign up for it. Assuming that the only consideration of every

rider is to minimize her transportation cost, what would they choose?

The table titled "Defection-deterrence computations of eT" illustrates the

simplicity of computing the defection index for the pro�le in which everybody

chooses the taxi, eT , as a function of the cost of riding the taxi, c.

When c = 80, as in the example above, we look at the third row of the table,

the case in which 60 < c � 90. A single player�s defection from a taxi to the

bus can result only in a loss, raising her cost from $80 to $180, so eT is a Nash

equilibrium. But what about multiplayer defections?

Even in the presence of one other potential defector, a player who switches

from the taxi to the bus is sure to lose: her best possible outcome after switch-

ing is a cost of $90 (= $180=2) for the bus, instead of $80 for the taxi. But

eT does not deter defections by groups of three or more players, because now

a defection may actually improve the player�s outcome, by reducing her costs

from $80 for the taxi to $60 (= $180=3) for the bus. This leads us to say that

eT deters two defectors but does not deter three defectors, and to conclude
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that the deterrence index of eT is D(eT ) = 2. The table shows how this rea-

soning applies to all values of taxi costs to generate all the levels of defection

deterrence, 0; 1; :::8.

The eT equilibrium also illustrates the type of defections that players may

consider. Do they consider individual or coordinated defections? Three

people moving from the taxi line to the bus may come about through ex-

plicit communication: for example, when a ride seeker standing in a taxi line

approaches two others to coordinate a money-saving joint defection. But al-

ternatively, a ride seeker may switch to the bus, counting on the likelihood

that, for similar reasons, at least two others will switch. In either case, hav-

ing a higher D value, i.e., requiring the participation of more switchers, makes

such defections less likely.

8. Forming, switching, and undoing equilibria

8.1. Entrepreneurial uses of the formation index. In the ride-sharing

game above, it was clear that defecting from the taxi to the bus would be

pro�table to three or more riders.

Alternatively, direct consideration of the equilibrium in which everybody

takes the bus, eB, reveals its low formation value, F (eB) = 2. This is useful

information for the bus company, which can guide an equilibrium formation
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process to eB through the use of sales, promotions, etc. For example, if the

bus company guarantees the �rst two bus-riding candidates that their cost will

never exceed $79, no matter what the other riders do, they can count on the

rationality of the �rst two to take the bus and on the others to follow. Notice

that this manipulation by the bus company involves little risk, due to the low

formation index, F (eB) = 2.

A similar use of the formation index was mentioned in our Example 4, in

which players choose whether to subscribe to the new communication network.

Recall that the potential pool of subscribers was 200M players, the individual

cost of subscription was $9.99, and the bene�t of a subscriber was k � 9:99,

where k is the number of opponents who subscribe (a zero payo¤ for players

who do not subscribe).

The network provider may be interested in the equilibrium in which every

player subscribes, eSub. It is easy to see that F (eSub) = 10, i.e., if only

ten people subscribe, subscribing becomes a dominant strategy for the rest.

This information suggests some relatively easy ways to launch the use of the

network.

Both examples above illustrate the importance of the formation index for

entrepreneurs, policy makers, regulators, and others. Moreover, the minimal

information needed for the computations above suggests that it may be easy

to compute F , or just to �nd useful bounds for it in more complex games. This

is especially important now, due to the explosion of web devices that gives rise

to many new possible games and equilibria.

8.2. Nonviable switch: changing the US measurement system. Con-

sider a large game of matching measurement systems, similar to the (language)

matching game but in which each player has to select one of the two choices:

the metric system, MT , or the US measurement system, US. The two Nash

equilibria, namely, eMT , in which every player chooses MT , and eUS, in
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which every player chooses US, are both di¢ cult to form, as indicated by

their high formation index, F = 100M . Thus, establishing either one of these

equilibria in a new population would be challenging.

Moreover, in an existing population in which the equilibrium eUS is already

established, forming (switching to) the equilibrium eMT would be even more

challenging. For every player i and every pro�le of opponents�choices, ��i,

the gain from choosing MT over US, ui(MTi; ��i)� ui(USi; ��i), is lower in

the established population due to the associated transition costs and other

such considerations. This means that in this population, defections fromMT

to US are easier to make than defections from US to MT , which means that

F (eMT ) > 100M . In other words, it is even harder to move a population in

which everybody uses US toMT than it is to guide a new population to have

everybody choose MT .

The US experience with measurement systems illustrates this type of di¢ -

culty. Attempts to switch the US population from the use of the US mea-

surement system to the metric system keep failing despite strong encouraging

actions taken by the US government and the Congress, in 1866, 1873, 1893,

1968, 1975, and 1988. It seems that encouraging a change does not overcome

the high F value. What would be helpful �and perhaps indispensable �is

a law imposing penalties for use of the US system. With su¢ ciently high

penalties, the use of the metric system would become a dominant strategy

with minimal formation di¢ culty.

9. Implementation in the presence of faulty players

Eliaz (2002) studies implementation in an environment in which k of n

players may be faulty. Implementation in such an environment is di¢ cult

because (1) as faulty players, they are irrational and choose unpredictable

strategies, and (2) the identity of the k faulty players is unknown. Thus, an
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"Eliaz implementor" can rely on the rational behavior of only n� k unknown

players. And like the implementor, every rational player knows that she is

making choices in an environment with k unknown faulty players.

Eliaz (2002) succeeds in providing a Maskin (1999) type of implementation

method for this highly challenging environment by making use of Nash equi-

libria that he calls k-fault-tolerant Nash equilibria (k-FTNE). A pro�le � is

a k-FTNE if playing �i is a best response for every rational player i when it

is common knowledge that the number of faulty players is at most k. Through

the use of this concept, Eliaz (2002) shows that the implementor can accom-

plish his goal, provided that the social-welfare function satis�es appropriate

monotonicity conditions.

While the objectives of the current paper are di¤erent from the objective of

Eliaz (2002), the viability indices discussed here provide a simple interpretation

of Eliaz�s �ndings. In particular, Eliaz�s faulty players may be viewed as a

speci�c type of defectors in the current paper, and his equilibrium concept may

therefore be stated through the notion of Nash critical mass presented here.

More speci�cally, saying that "� is k-FTNE" in Eliaz�language is the same

as saying in the terminology of this paper that "the number of rational players

exceeds the Nash critical mass of �," i.e., n�k � NCM(�) = F (�)+1. This

means that n- F (�) � k+1, i.e., that D(�) � k+1. So � is k-FTNE if and

only if D(�) > k.

We conclude that in an environment with faulty-players, Eliaz implemen-

tors can implement a social-welfare function that satis�es Eliaz�s monotonicity

condition, provided that they use an equilibrium � with a D(�) that strictly

exceeds the number of faulty players.

As already noted, the current paper deals with issues that cannot be address

by the model in Eliaz (2002). While the faulty players of Eliaz are a special
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type of defectors in the current paper, the current paper also studies the in-

centives of rational (nonfaulty) players to defect or to join an equilibrium. As

examples in this paper have shown, we can address questions such as when

rational players choose to defect, how to modify a game to turn potential de-

fectors into loyalists and vice versa, and how to form or switch an equilibrium

in a game played by rational players.

The relationship of this paper to the implementation problem studied by

Abraham et al. (2006) is similar to its relationship to Eliaz (2002). Abraham

et al. (2006) study implementation in secret-sharing and in multiplayer com-

putation games, and use what they call resilient equilibria in order to overcome

di¢ culties due to faulty players. As stated in the introduction, the index of

defection deterrence, D, in this paper is the same as the level of resilience

they use; and in the language of this paper their results show the existence of

classes of games that have equilibria with high D values.

Other positive results related to faulty play are presented in Gradwohl and

Reingold (2014), who use results about the robustness of equilibria of large

games (see Kalai (2004)) to show that such equilibria can sustain a signi�cant

number of defectors.

10. Matching in networks

Games on networks, as in Jackson and Zenou (2015), provide an understand-

ing of the viability of Nash equilibria as determined by social connectivity. It

is easy to compute the defection index for equilibria of a network matching

game, described as follows.

The set of players N consists of the vertices in a graph with a set of directed

edges E � f(i; j) 2 N �N : i 6= jg. The set of (outward-directed) neighbors

of a player i is de�ned by �b(i) = fj 2 N : (i; j) 2 Eg. Every player selects
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a choice X from a set of possible choices, and her payo¤ is the number of her

neighbors that her choice matches.

Let C denote the set of connected players, i.e., players i with �b(i) 6= ;, and

think of any player v 2 C as most vulnerable, if she is minimally connected

among all connected players, i.e., j�b(v)j = minj2C j�b(j)j.

Proposition 5. The defection index in network matching games: The

defection index of the pro�le in which every player chooses X, eX, is:

D(eE) = n if no player is connected, i.e., C = ?; otherwise,

D(eE) = [j�b(v)j=2] + 1, where v is any most vulnerable player. In other

words, D(eE) is the strict majority of the neighbors of a least connected

player.13

Proof. Let M denote the strict majority of the neighbors of a most vulnerable

player. If the number of eE defectors at a pro�le � is strictly smaller than

M , then eE must be a best response to �. So D(eE) �M .

Conversely, consider a pro�le � in which all but M of the neighbors of

some most vulnerable player choose E and the rest of the neighbors choose

the same alternative A; then eE is not a best response to �. It follows that

D(eE) =M . �

A similar analysis can easily be conducted for problems of mismatching in a

network. For illustration, consider the divisive equilibrium Div of the Party

Line game of the introduction, in which all three Democrats choose F and

all �ve Republicans choose E. This game may be described by a bipartite

graph, connecting every player to all the players of the opposite party, with a

player�s payo¤ being the number of her neighbors that her choice mismatches.

Following the logic above, every Republican is most vulnerable, since he is

connected only to the three Democrats, whereas each Democrat is connected

13Recall that [x] is the largest integer that is strictly smaller than x.
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to the �ve Republicans. Conducting the same analysis as above, we conclude

that D(Div) = [3=2] + 1 = 2.

10.1. Centralized vs. decentralized interaction. The Language Choice

Game, Example 2, is a network matching game based on a complete graph,

i.e., every two distinct players are connected (in both directions). In this game

every player has 200M�1 neighbors, so D(eE) = [(200M�1)=2]+1 = 100M .

This is in contrast to the low defection-deterrence level of centralized inter-

action, as discussed in the Match-the-Center game, Example 5. That game is

based on a star-shaped graph in which the boss, B, is the center vertex, and

n subordinate players are vertices connected only to him. In that game the

subordinates are the most vulnerable players, as they are each connected only

to one player, and the equilibrium eE has the minimal value D(eE) = 1.

The contrast in defection-deterrence levels of the two games just cited has

implications in a variety of contexts. In a political context, it suggests that

matching equilibria are signi�cantly more sustainable (in the sense de�ned in

this paper) in free societies than in dictatorships. For games of currency

choices, it suggests that a free-trade equilibrium is more sustainable than a

centralized-trade equilibrium. In supply-chain games it means that relying

on a single source is risky, and backup sources for supplies are important for

sustainability.

As already discussed, the low defection-deterrence value of the star-shaped

graph is due to the total dependence of the subordinate players on the boss,

B. If B defects from the equilibrium �due, for example, to threats and bribes

or to miscalculations �the e¤ect on all the subordinates may be devastating.

11. Future research

11.1. Expanding Nash�s theorem. Nash�s existence theorem provides suf-

�cient conditions for the existence of a Nash equilibrium, i.e., a pro�le � with
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D(�) � 1. For applications in which the low level of sustainability D(�) = 1

is unsatisfactory, it is important have su¢ cient conditions for the existence of

a pro�le � with D(�) � k, for k = 2; 3; :::; n.

11.2. More re�ned indices. As discussed in the introduction, in order to

stay within the Nash equilibrium approach, the viability indices discussed in

this paper deal only with ordinal anonymous defections. i.e., they consider

only whether players may gain a positive payo¤ by defection, disregarding the

amount that they may gain; and they only study the number of potential

defectors, disregarding the identity and role of the defectors in the game.14

The severe limitation of the ordinality assumption can be seen in the Con-

fession game, Example 3. If the seven-year sentence reduction awarded to

a confessor were changed to a one-hour sentence reduction, the unviable no-

confession equilibrium (with D(nC) = 1) should become more viable and be

assigned a signi�cantly higher D value, unlike our ordinal index.

The importance of the role of defectors in the game is illustrated next by

considering the common language equilibrium, eE, of Example 2, played in

the following three communication graphs:

(1) Kn is the complete graph on n players;

(2) K+
n amends Kn by the addition of one player H who is connected only

to one of the original players W; and

(3) Sn is the star-shaped graph in which n players are each connected to

only one central player.

The signi�cant discrepancy between DKn(eE) � n=2 and DK+
n
(eE) = 1

ignores the fact that to all but one player, the reliability of communications in

the two networks are the same. This discrepancy suggests the construction

of viability indices that average viability levels from individual points of view.

14Substantial discussion of this subject with highly revealing examples is provided by Goeree
and Holt (2001) and their follow-up papers.
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A disturbing lack of discrepancy can be seen when we compare DK+
n
(eE) =

1 with DSn(eE) = 1. In both games one player�s defection can undo the

equilibrium. But the defection of the central player in S has devastating

consequences to the rest of the players, whereas the defection of W in K+
n is

signi�cant to only one player.

The structural issues illustrated above suggest a need for nonanonymous

indices that take into account defecting players�position in the game under

consideration.

11.3. Nonanonymous indices and equilibrium formation. Nonanony-

mous indices may be more applicable, but may also require more demanding

computations. We proceed to show how concepts discussed in this paper may

�t into such a broader discussion.

Our anonymous formation index F (�) is the minimal number of � loyalists

that guarantees the formation of �. But as discussed below, if we can target

and select the players who form �, its formation may require a smaller number.

Recall our earlier de�nition that a coalition C forms the equilibrium � if

the play of � by C makes � a dominant strategy for the remaining players;

and that �-formation de�nes a monotonic partial order over the coalitions of

the game (if C forms �; so does any of its supersets), with the grand coalition

N being its unique maximal element.

Since our underlying game has a �nite number of players, we can identify

the minimal forming coalitions �the roots.

De�nition 7. A �-root is a minimal �-forming coalition, i.e., no strict subset

of the coalition forms �.

Clearly, a coalition forms � if and only if it contains a root, and a coalition

is incentivized to play � if and only if its complement contains a root. Also,

any coalition C of size jCj � F (�) must contain a root.
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Consider, for example, the divisive equilibrium, Div, of the Party Line game

in which the three Democrats all choose F and the �ve Republicans all choose

E, Example 1. It is easy to verify that Div has the following roots: (i) the

coalition of all the Democrats, Ds, (ii) the coalition of all the Republicans, Rs,

and (iii) any coalition that consists of three Republicans and two Democrats,

C3Rs;2Ds.

With this in mind, we may consider the following four ways of forming the

equilibrium Div:

CDs: Convince the three Democrats to choose F .

CRs: Convince the �ve Republican to choose E.

CC3Rs;2Ds: Convince any group of 3 Republicans and 2 Democrats to choose

their divisive strategies.

C6: Convince any six players to choose their divisive strategies.

CDs, CRs, and CC3Rs;2Ds work, because they target roots by name. C6 is

anonymous and it works because 6 = F (Div).

As this example illustrates, it may be more e¢ cient to form an equilibrium

through the use of nonanonymous coalitions. But due to the multiplicity of

roots, the decision of which root to target may require more information and

computations.

11.4. Sequential formation processes. Sequential formation processes may

be developed by replacing the one-step formation with multistage ones.15 For

example, the Div equilibrium of the Party Line game may be triggered by

recruiting only two of the Democrats to choose F ; this in turn will incentivize

the �ve Republicans to choose E, which in turn will incentivize the remaining

(third) Democrat to choose F .

15For a more general study of dynamic processes of equilibrium formation, we refer the
reader to Chwe (1994).
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While the more re�ned multistage approach is useful in many applications,

it involves a larger number of possible procedures, which in turn requires more

complex computations. Indeed, the genius of dictators lies in their ability to

navigate a multistage formation process leading to an equilibrium in which all

the players follow their wishes.

Computations of multistage equilibrium formation are related to compu-

tations of sequential elimination of dominated strategies (see, for example,

Gilboa et al. (1993) and Marx and Swinkels (1997)). Indeed, as shown in

Gilboa et al. (1993), such computations are NP-complete.
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