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Abstract 

 

We develop a method to consistently estimate production functions when 

output prices and product quality are unobservable. Unobservable output prices 

and product quality are very likely to be correlated with inputs and can lead to 

serious bias in the estimates. We show that the markup can serve as a control 

function for unobserved prices and quality in production functions. The markup 

can be computed with candidate parameters and data, so our approach does not 

need more data than the traditional approach. While the traditional approach 

views revenue as a function of inputs and productivity, our approach views it as a 

function of inputs, productivity and markup, explicitly recognizing the role of prices 

and quality in determination of revenue. We implement our method as an extension 

of the proxy-variable approach of estimating production functions pioneered by 

Olley and Pakes (1996). The empirical results give strong and consistent support 

to our approach.  
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1. Introduction 

1.1. Description of the Problem 

Accurately estimating production functions has remained one of most challenging tasks in 

empirical economics, principally because many important variables related to the production 

process are unobservable to the econometrician. Since at least as early as Marschak and Andrews 

(1944), economists had been grappling with the problem that the productivity is unobservable to 

economists but is observable to firms and therefore affects their input decisions, a problem that 

is referred to as the transmission bias (Griliches and Mairesse, 1998). Economists have also 

discussed the problem of unobservable output prices (e.g., Klette and Griliches, 1996; Mairesse 

and Jaumandreu, 2005). Recently, economists have started discussing the problem caused by 

unobservable input prices (e.g., Paul et al., 2016). Unobservable output quality has yet to become 

a major concern for estimation of production functions, but it may be a problem as well since it 

is likely to be correlated with other variables in the production function. In this paper, we propose 

an approach to address unobservable prices and quality of products at the same time. Our 

approach can be nested in the methods that address the transmission bias. 

Unobservable product quality could bias the production function estimates since the omitted 

quality variable may be correlated with other variables in the production function. In the strict 

sense, a production function is the mapping between inputs and outputs that are measured in 

standard units across firms and over time. For output, information on quality is essential to its 

accurate measurement, but the data are rarely available. When the physical quantity is used as 

the output measure in the place of quality-adjusted output, both sides of the production function 

is normalized by the unobservable quality of firm 𝑖 in period 𝑡, 𝑄𝑖𝑡, which is usually subsumed 

into the error term. Had the variations in quality been uncorrelated with other variables in the 

production function, the omitted information on quality would be innocuous. Unfortunately, we 

have ample reasons to believe that the contrary is true. Productive and well-endowed firms are 

probably more likely to produce higher-quality goods. Product quality is also likely to be 

intertwined with firms’ pricing strategies, further complicating the situation when revenue is used 

as the output measure. In a brief pilot study, we find that using the physical quantity as output 

without further corrections would lead to serious symptoms when estimating production functions. 

Unobservable prices could bias the production function estimates when revenue is used as the 

output measure, since the omitted price variable is likely to be correlated with other variables in 

the production function. When the revenue is used as the output measure in place of quality-
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adjusted output and the price 𝑃𝑖𝑡  is unobservable, both sides of the production function is 

multiplied by 𝑃𝑖𝑡 and divided by 𝑄𝑖𝑡 , resulting in two omitted variables, or just one omitted 

variable if we view them as quality-adjusted price, 𝑃𝑖𝑡/𝑄𝑖𝑡. Economists have sought to purge the 

effects of unobserved price, but that hardly solve the problem since the model is still subject to 

the bias arising from unobservable quality. A more systematic approach is needed. 

1.2. Our Solution 

Our solution to the problem of unobserved output prices and quality relies on the observation 

that a firm has to use more input or better input to produce products of higher quality, keeping 

its productivity unchanged. It is not a strong assumption per se, but the functional form that we 

choose to relate unit cost (proxied by the marginal cost 𝑀𝐶𝑖𝑡) and output quality does need more 

empirical evidence. Fortunately, our empirical results indicate that our functional form assumption 

is probably not outrageously wrong. 

Given our assumption on unit cost and output quality, we show that the markup can serve as 

a control function for prices and quality, since the unobservable quality-adjusted price, 𝑃𝑖𝑡/𝑄𝑖𝑡, 

can be replaced by 𝑃𝑖𝑡/𝑀𝐶𝑖𝑡 and a term about productivity. The markup of a firm, 𝑃𝑖𝑡/𝑀𝐶𝑖𝑡, is 

usually unobservable, but it can be constructed with production function parameters and data 

using a methodology advanced by Robert Hall (1986, 1988, 1990). As such, our method does not 

require more data than the traditional approach does. When an estimator searches through the 

space of candidate parameters, markups of firms can be computed with candidate parameters and 

data. The role of prices and quality are explicitly recognized by the model, so the problems 

associated with unobservable prices and quality are avoided.  

To admit firm- and time-specific markups in our models, we follow De Loecker (2011) and De 

Loecker and Warzynski (2012) to use a translog function. We assume the intermediate goods to 

be the flexible input and use it to derive markup. The three-factor translog production function 

makes our estimation job a little challenging, since the dimension of parameter space triples vis-

à-vis the common Cobb-Douglas case. However, the increase in the parameter dimensions is 

necessary for solving the problems at hand. Moreover, the translog production function makes it 

possible to derive firm-level markups, a variable that is important in many economic inquiries (De 

Loecker, 2011). 

Besides the unobserved prices and quality, we also need to address the classic problem of 

unobserved productivity when estimating production functions. There has been a vastly rich 

literature on this problem and an array of solutions have been established. Our solution to the 
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unobservable prices and quality can be nested in any of these solutions. In this work, we choose 

to implement our method in the setting of the proxy-variable approach first developed by Olley 

and Pakes (1996). 

1.3. Two Ways to Understand Our Approach 

There are two ways to relate our approach to the traditional approach that uses revenue as 

the output measure. First, the two approaches have related but distinct theories on how to link 

revenue to inputs and other variables. The traditional approach views revenue as a function of 

inputs and technology (i.e., productivity), treating prices and quality as disturbances. Our 

approach views revenue as a function of inputs, productivity and markup, explicitly 

recognizing the role that prices and quality play in the determination of revenue. It holds that 

inputs and technology (i.e., productivity) generates quality-adjusted output, and that revenue is 

a function of the quality-adjusted output and a firm’s pricing decision, which is proxied by the 

markup (price/marginal cost). In so doing, the role of prices and product quality in the 

determination of revenue is rightfully recognized. Ideally, revenue should be treated as a function 

of quality-adjusted output and the price margin (price/average cost), but it remains unclear to us 

how to proceed from there. Our empirical results also suggest that the difference between markup 

and price margin may be negligible. 

Second, the two approaches can be viewed as two special cases of a more general econometric 

model. The more general model is the one where the logarithm of markup is added to a traditional 

model as an additional explanatory variable. According to our theory, the logarithm of markup 

serves as the control function for the unobservable prices and quality. The traditional approach 

does not include this control function, so it can be viewed as a model where the coefficient of the 

control function is restricted to be zero. Our models predicts that the coefficient on the control 

function is one, therefore it can be viewed as another restricted version of the nest model. The 

relation between these models can be used for testing the validity of our models. 

1.4. Empirical Evidence 

The ultimate test of our models would be to compare estimates of traditional approaches, 

those of our approach, and the “correct” estimates where prices and quality are observed. The 

problem is that product quality data are usually nonexistent, especially for samples that are large 

enough to estimate a three-factor translog production function with the proxy-variable approach. 

As an alternative, we check the returns-to-scale and the markups inferred with the estimated 

parameters and see if they accord well with textbook theories. We also examine the estimated 
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coefficient on the control function and see if it is close to the value predicted by our theory. Finally, 

we use the Model and Moment Selection Criteria (MMSC) developed by Andrews and Lu (2001) 

for GMM estimators to evaluate various models. The empirical results consistently support our 

proposition that the markup can and should serve as a control function of the unobservable prices 

and quality in the estimation of production functions. 

The multifaceted empirical analysis is conducted in a large array of diverse industries. The 13 

industries that we study features various degrees of product homogeneity, market concentration, 

and technology contents of products. We study the competing approaches both at the industry 

level and with the pooled sample. All empirical studies give consistent support to our model.   

1.5. Literature 

Our paper is related to the rich literature on transmission bias in estimations of production 

functions. Griliches and Mairesse (1998) and Ackerberg et al. (2007) provide excellent review on 

the literature of transmission bias. In light of these reviews, we will only give a brief account of 

this stream of work.  

Over the years, economists have developed methods that rely on fixed effects, instrumental 

variables, and proxy variables to address the transmission bias. Hoch (1955) proposes the fixed-

effect approach, which assumes the unobserved productivity to be predominantly firm-specific and 

time-invariant. This approach sidesteps the correlation between inputs and productivity by 

focusing on the within-firm variation in inputs and outputs. Griliches and Mairesse (1998) point 

out, however, this approach encounters both empirical and theoretical problems. A second 

approach to address the transmission bias is to use instrumental variables for inputs, or the first 

differences in inputs. Popular instruments includes factors that may affect input prices, lagged 

inputs, or other variables. The problem with this approach is that it is difficult to find truly good 

instruments.  

The latest approach to address the transmission bias is developed by Olley and Pakes (1996).  

In the proxy-variable approach, the unobservable productivity is written as a nonparametric 

function of inputs and the model is identified by the orthogonality conditions between innovations 

in productivity and current or lagged input choices. Olley and Pakes use investment as the proxy 

variable. Levinsohn and Petrin (2003)  argue that intermediate goods are a better proxy, since it 

is less lumpy than investment. Ackerberg et al. (2006) discuss the multicollinearity problem in 

the first stage estimation of the proxy-variable approach and propose to move the estimation of 
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all parameters to the second stage. Wooldridge (2009)  advances a one-step approach, but it is 

computationally intensive.   

Our paper is also related to the literature on unobservable firm-level output prices in the 

investigations of production activities. The literature has documented significant dispersions in 

output prices across firms and over time (e.g., Abbott, 1991;  Dunne and Roberts, 1992; Roberts 

and Supina, 1996, 2000; Beaulieu and Mattey, 1999; Bils and Klenow, 2004; Ornaghi, 2006; Foster, 

Haltiwanger, and Syverson, 2008; Kugler and Verhoogen, 2012). Prior to these studies, however, 

most researchers have used industry price deflator to construct measures of real output (e.g., 

Griliches and Mairesse, 1984, Clark and Griliches, 1984, Lichtenberg and Siegel, 1991, 

Kokkelenberg and Nguyen, 1989). Uniform industry-wise price is an innocuous assumption at the 

aggregate level, but economists realize that firm-level analysis is sensitive to it. Abbot (1991) first 

studies the bias that unobservable prices may cause to the estimates of production function and 

productivity growth equations. Klette and Griliches (1996) address this problem by adding a 

model of product demand to the estimation. 

Our work is also related to the literature on unobservable product quality. Most of these 

papers discuss how firms signal product quality to consumers (e.g., Rao et al., 1999, Kirmani and 

Rao, 2000, Shapiro, 1982, Allen, 1984, Milgrom and Roberts, 1986), or how to estimate the product 

quality (e.g., Hallak and Schott, 2011). These papers shed little light on how to address the 

unobserved quality when estimating production functions, but their topics attest to the elusiveness 

of quality information and the its correlation with other variables in the production function, 

suggesting that a method must be developed to address the omitted-variable problem associated 

with it in the estimation of production functions. 

1.6. Outline 

The rest of this paper is organized as follows. In the next section, we will use some data to 

briefly discuss problems of unobserved prices and quality in the estimation of production functions. 

In Section 3, we will cast the unobservable prices and quality in production functions as an 

omitted-variable problem and develop a solution to it. In Section 4, we will discuss details 

regarding the estimation procedure and give the exact forms of some related econometric models. 

Section 5 gives a brief introduction to the data to be used for our empirical analysis. Section 6 

reports the empirical results. Section 7 provides a few remarks on our approach and the results. 

The last section concludes. 
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2. Motivation 

In this section, we will have a brief discussion of the problems related to the missing 

information on price and quality in estimating production functions.  

2.1. Correlation between Unobserved Prices and Inputs 

The literature has documented significant dispersions in output prices across firms and over 

time. We find the same pattern in our sample as well. The high degree of variations in the 

unobserved prices, however, are not necessarily an incorrigible problem in estimating production 

functions. If the unobserved prices are uncorrelated with inputs, they merely make the estimation 

less accurate, a problem that can be remedied with a larger sample. Considering the literature on 

the magnitude of price dispersion and its innocuity in theory, we relegate our findings on the 

magnitude of output price dispersion to the appendix.  

A more serious problem associated with the unobservable prices is that they are very likely to 

be correlated with inputs. Abbott (1991) finds that output prices are correlated with factor prices 

in the hydraulic cement industry, which will in all probability affect firms’ input decisions. 

Griliches and Klette (1996) argue that in a static imperfectly competitive environment larger firms 

tend to charge lower prices. These studies all point to the possibility of inconsistency in the 

estimation of production functions when prices are unobservable. 

In this section we will have a brief look at the correlation between prices and inputs in our 

data. Our data are on medium or big firms in China during 2000-2007. Details about the data can 

be found in Section 5. 

In Table 1, we report the estimated coefficients when the log price is regressed on the logarithm 

of each factor for 13 industries and the pooled sample. The underlying econometric model is 

ln(𝑃𝑟𝑖𝑐𝑒𝑖𝑡) = 𝛾0 + 𝛾𝑣 ln(𝐹𝑎𝑐𝑡𝑜𝑟𝑣,𝑖𝑡) + 𝜖𝑖𝑡, where 𝑖, 𝑡, and 𝑣 index firms, time periods, and inputs, 

and 𝜖𝑖𝑡 is the error term. In total, the table reports results of 42 regressions. The standard errors 

are reported in the parentheses. The asterisks following the parentheses,  ***, **, and *, indicate 

significance levels of 1%, 5%, and 10% respectively. In the last row we report the results based on 

the pooled sample, where industry fixed effects are included in the econometric model.  

The results in Table 1 manifest a very clear and consistent pattern that prices and inputs are 

strongly correlated. In most cases, prices tend to increase with factor inputs in our samples, 

suggesting that larger firms tend to charge a higher price. This is not necessarily in contradiction 
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with Griliches and Klette’s (1996) assumption, since larger firms may be producing goods of higher 

quality. 

Table 1: Correlation between Price and Individual Inputs 

 ln(𝑃𝑟𝑖𝑐𝑒𝑖𝑡) = 𝛾0 + 𝛾𝑣 ln(𝐹𝑎𝑐𝑡𝑜𝑟𝑣,𝑖𝑡) + 𝜖𝑖𝑡 

Product 
(1) 

Capital 

(2) 

Labor 

(3) 

Intermediates 

(4) 

# Obs 

Bearings .29 (.03)*** .31 (.03)*** .38 (.03)*** 3471 

Cement .02 (.00)*** .05 (.00)*** .09 (.00)*** 27101 

Ceramics .04 (.02)* -.29 (.03)*** .43 (.03)*** 3514 

Engineered Wood .02 (.01)*** .10 (.01)*** .09 (.01)*** 9493 

Ferroalloys -.00 (.01) -.01 (.02) .23 (.01)*** 4412 

Furniture .12 (.01)*** -.02 (.02) .13 (.01)*** 8134 

Garments .17 (.00)*** .09 (.01)*** .32 (.00)*** 50428 

Leather Shoes .15 (.01)*** .12 (.01)*** .28 (.01)*** 8288 

Paperware .07 (.01)*** .14 (.01)*** .17 (.01)*** 11233 

Plastics .13 (.00)*** .23 (.01)*** .19 (.01)*** 31305 

Refractories .08 (.01)*** .03 (.02)** .23 (.01)*** 4672 

Traditional Medicines .25 (.02)*** .14 (.02)*** .34 (.02)*** 5557 

Valves .25 (.02)*** .39 (.02)*** .42 (.02)*** 3454 

All Industries .12 (.00)*** .12 (.00)*** .23 (.00)*** 171062 

Table 2 reports the estimation results when the logarithm of prices are regressed on the 

logarithms of all three factors at the same time. For the last row, industry fixed effects are included 

in the econometric model. In total, the table reports results of 14 regressions. The format of the 

statistics in each cell is the same as that in Table 1. There are significant changes in the estimated 

coefficients compared with Table 1, but the main message remains unchanged: prices are 

significantly correlated with inputs, and the pattern is observed in all industries studied here. 

The above results suggest that a new approach is needed to address the unobservable prices 

in estimating production functions. When revenue is used as the output measure and prices are 

unobserved, prices will be subsumed in the error term of the production function. The strong 

correlation evidenced by Table 1 and Table 2 is very likely to cause bias in the estimates, unless 

some other unobserved variable (e.g., quality) perfectly offset the variations in prices.  
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Table 2: Correlation between Price and All Inputs 

ln(𝑃𝑟𝑖𝑐𝑒𝑖𝑡) = 𝛾0 + 𝛾𝑘 ln(𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑡) + 𝛾𝑙 ln(𝐿𝑎𝑏𝑜𝑟𝑖𝑡) + 𝛾𝑚 ln(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑠𝑖𝑡) + 𝜖𝑖𝑡 

Product 
(1) 

Capital 

(2) 

Labor 

(3) 

Intermediates 

(4) 

# Obs 

Bearings .16 (.04)*** -.07 (.05) .28 (.05)*** 3471 

Cement -.04 (.00)*** -.01 (.01)* .13 (.00)*** 27101 

Ceramics .13 (.02)*** -.79 (.03)*** .73 (.03)*** 3514 

Engineered Wood -.04 (.01)*** .07 (.02)*** .10 (.01)*** 9493 

Ferroalloys -.06 (.01)*** -.28 (.02)*** .43 (.02)*** 4412 

Furniture .16 (.02)*** -.35 (.02)*** .23 (.02)*** 8134 

Garments .13 (.00)*** -.30 (.01)*** .38 (.01)*** 50428 

Leather Shoes .06 (.01)*** -.31 (.02)*** .46 (.01)*** 8288 

Paperware -.04 (.01)*** .04 (.02)** .18 (.02)*** 11233 

Plastics .02 (.01)*** .14 (.01)*** .09 (.01)*** 31305 

Refractories -.00 (.02) -.19 (.02)*** .33 (.02)*** 4672 

Traditional 

Medicines 
.17 (.02)*** -.51 (.04)*** .49 (.03)*** 5557 

Valves .02 (.02) .09 (.03)*** .35 (.03)*** 3454 

All Industries .04 (.00)*** -.12 (.00)*** .26 (.00)*** 171062 

2.2. Symptoms Caused by Unobservable Quality 

Information on prices is hard to come by, but information on product quality is largely 

nonexistent. Even if it is available to the econometrician, it remains unclear how to convert the 

physical output into standard units with the quality information. For instance, it is not 

immediately clear how to convert a bushel of Six-rowed Blue Malting barley into bushels of Two-

rowed barley, suppose the latter is selected as the stand unit.2 As a result, product quality is 

almost invariably treated as an unobservable variable in estimations of production functions. In 

this section, we show that the omitted information on quality may lead to serious symptoms for 

estimates of production functions. 

We estimate production functions using different output measures. We find that the estimates 

are particularly questionable when the physical quantity is used as the output measure. All 

estimations that we run are otherwise identical, so the elevated symptoms are likely arising from 

the measurement errors unique to the physical quantity. Since unobservable quality is a primary 

source of measurement errors embodied in the physical quantity, we have reasons to believe that 

the unobservable quality could be a quite damaging factor in the estimation of production 

functions. 

                                                            
2 Definitions for barley grades can be found at https://www.gipsa.usda.gov/fgis/standards/ 

810barley97.pdf. 
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Section 6 will provide a comprehensive analysis of the symptoms. To avoid introducing too 

many technical details, the brief motivational diagnosis here will be based on the estimated returns 

to scale and markups. We compute statistics on them for 13 industries and for the pooled sample 

using the estimates of various production functions. Results using the physical quantity as the 

output measure are reported in Columns (1), (2), (5) in Table 3. Those using revenue as the 

output measure are reported in Columns (3), (4), (6) in the same table. The inputs are capital, 

labor, and intermediate goods. We consider both Cobb-Douglas production functions and translog 

productions functions. We use the proxy-variable approach to address the transmission bias caused 

by unobservable productivity, which we will give more details in Section 4. 

Columns (1) and (2) show that when the physical quantity is used as the output measure 

without remedies, the estimated median returns to scale in many industries are far from unit. 

These figures are hard to believe since they suggest very strong incentives for firms to expand or 

downsize while we only observe mild changes in firm sizes over time. Columns (5) reveals that 

many industries have a median markup far below one. This is a serious contradiction with the 

theory, since the markup is supposed to be at least one. The last row of Table 3 reports the results 

based on the pooled sample. The results are just as problematic as those at the disaggregated 

level. 

 Table 3: Median Returns to Scale and Markups with Physical Quantity and Revenue as Output 

 Median Returns to Scale Median Markup 

Product 

(1) 

Physical 

Output, 

Cobb-Douglas 

(2) 

Physical 

Output, 

Translog 

(3) 

Revenue, 

Cobb-Douglas 

(4) 

Revenue, 

Translog 

(5) 

Physical 

Output, 

Translog 

(6) 

Revenue, 

Translog 

Bearings .70 .71 1.01 .97 1.05 1.30 

Cement 1.02 .24 1.02 .99 1.49 1.27 

Ceramics .82 1.02 1.03 .99 .84 1.24 

Engineered 

Wood 
1.16 .94 .98 .99 1.15 1.27 

Ferroalloys .92 .96 .98 .98 .63 1.28 

Furniture 1.03 1.08 1.00 1.00 .43 1.25 

Garments .87 .90 1.01 1.01 .86 1.19 

Leather Shoes .71 .84 1.01 1.01 .44 1.22 

Paperware .85 .92 1.02 1.00 1.01 1.23 

Plastics .86 .86 1.00 1.00 1.17 1.20 

Refractories .82 .87 1.02 1.01 .96 1.28 

Traditional 

Medicines 
1.20 .93 1.02 1.02 .60 1.36 

Valves .82 .96 1.02 1.02 1.22 1.22 

All Industries .67 .63 1.00 1.01 .41 1.22 
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Using the physical quantity as the output measure, we also estimate the product functions 

with other methods to address the unobservable productivity. We try fixed-effects estimator and 

Arellano-Bond estimator. They both yield returns to scale and markups that are just as doubtable 

as those observed in Table 3. 

Columns (3), (4), and (6) report the results when the revenue is used as the output measure. 

In these estimations, the unobservables are 𝑃𝑖𝑡 and 1/𝑄𝑖𝑡, or we can say the unobservable variable 

is the quality-adjusted price, 𝑃𝑖𝑡/𝑄𝑖𝑡. Columns (3) and (4) show that the estimated median returns 

to scale in all industries accord well with the theory and existing empirical results. Column (6) 

shows the estimated median markups also appear to be more reasonable. These results suggest 

that the omitted-variable problem caused by unobservable 𝑄𝑖𝑡 may be more seriously than that 

arises from unobservable 𝑃𝑖𝑡/𝑄𝑖𝑡. 

The above analysis provides evidence that prices are correlated with inputs, and that 

unobservable quality can cause serious problems for the estimation of production functions. The 

symptoms caused by unobservable quality discussed above alleviate when we let the unobservable 

quality and prices offset each other, but we are agnostic about to what extent the omitted-variable 

problem is cured. In the next section, we develop a framework that will address the problems 

caused by the both missing variables.  

3. Omitted-Variable Problem and Our Solution 

In this section we provide a theoretical analysis of the problems arising from unobservable 

prices and quality in the omitted-variable framework. We propose a solution based on an 

assumption about the relation between quality and per unit cost. Given this assumption, the 

revenue can be viewed as a function of inputs, productivity, and markup. The new econometric 

model recognizes the role of prices and quality in the determination of revenue, but does not 

require more data than the traditional approach does. 

3.1. Description of the Problem 

A production function relates the output of a production process to the inputs. When it is 

used to analyze production activities, the output of different firms should be measured on the 

same footing. In this work, we assume that quality-adjusted output is a proper standard measure 

of output. Suppose the quality-adjusted output of firm 𝑖 in period 𝑡, �̃�𝑖𝑡, is given by the following 

function 
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�̃�𝑖𝑡 = 𝐹(𝑋𝑖𝑡 , 𝛽) ∙ exp⁡(𝜔𝑖𝑡 + 𝜖𝑖𝑡), (1) 

where 𝑋𝑖𝑡 is a vector of inputs,⁡𝜔𝑖𝑡 is the productivity observed by the firm and thus affects the 

firm’s choice of inputs, 𝜖𝑖𝑡 is the shock to firm’s productivity that is not observed by the firm, 

and 𝛽 is a vector of parameters common to all firms.  

Equation (1) is the theoretic starting point of analyzing production activities, but it has little 

empirical relevance since quality-adjusted output, �̃�𝑖𝑡, is rarely observable. The physical quantity 

of output, which we denote with 𝑌𝑖𝑡, however, may be observable in some fortunate occasions. 

Suppose the quality-adjusted output equals 𝑌𝑖𝑡  times a quality measure, 𝑄𝑖𝑡 , then production 

function (1) can be written as 

𝑌𝑖𝑡 = 𝐹(𝑋𝑖𝑡, 𝛽) ∙ exp⁡(𝜔𝑖𝑡 + 𝜖𝑖𝑡)/𝑄𝑖𝑡. (2) 

There are various approaches to estimate Equation (2), depending on our assumptions regarding 

𝜔𝑖𝑡, 𝜖𝑖𝑡, and the unobservable 𝑄𝑖𝑡.  

As it was mentioned above, the physical quantities of output are seldom available to the 

econometrician. Revenue, which we denote with 𝑅𝑖𝑡, is usually the only observable output measure. 

Suppose the price is 𝑃𝑖𝑡, then the output, measured as revenue, is equal to 

𝑅𝑖𝑡 = 𝐹(𝑋𝑖𝑡 , 𝛽) ∙ exp(𝜔𝑖𝑡 + 𝜖𝑖𝑡) ∙ 𝑃𝑖𝑡/𝑄𝑖𝑡 . (3) 

Equation (3) is the model that has been frequently estimated to study topics related to 

production. The difficulty of consistently estimating the model lies in the fact that its right-hand 

side have three unobservable variables that are very likely to vary with the inputs: 𝜔𝑖𝑡, 𝑃𝑖𝑡, 𝑄𝑖𝑡. 

There has been a rich literature on how to handle the problem caused by the unobservable 𝜔𝑖𝑡, 

which is termed as the transmission bias, but there has been much less discussion on the 

unobservable 𝑃𝑖𝑡 and 𝑄𝑖𝑡. In this paper, we attempt to bridge this gap. 

Since the problem of unobservable prices and quality is similar to that of unobservable 

productivity, we might want to draw inspirations from the solutions that economists have 

developed for the transmission bias. As it was mentioned in the introduction, over the years, 

economists have tried fixed-effects, instrumental variables, and proxy-variable approaches to this 

end. The fixed-effect approach probably would not work very well in our case, since prices and 

quality are very likely to evolve over time. The instrumental-variable approach is appealing in 

theory, but it would be difficult to find good instruments for firm-level prices and quality. Any 
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variable that is correlated with prices or quality is most likely to be correlated with inputs. Proxy-

variable approaches would require us to develop theories on how prices and quality evolve over 

time and moment conditions, which would be a massive undertaking but probably a promising 

direction for future research. In this paper, we propose an approach that is similar to the proxy-

variable approach but less complicated. Like the proxy-variable approach, our approach also 

involves a control function of the unobservables. Unlike the proxy-variable approach, our method 

does not rely on assumptions on the evolutions of the unobservables to achieve identification. 

Instead, the functional form assumption dictate the coefficient on the extra term to be one and 

subsume an unidentified parameter in productivity. In the next section we present our assumption. 

3.2. Assumption on Quality and Marginal Cost 

It usually takes firms better or more inputs to produce products of higher quality, keeping 

their technology and the amount of output unchanged. For example, if the tire company Michelin 

wants to produce UTQG Grade AA tires instead of Grade A tires, it will most likely have to use 

better rubber and fabric, which will in all probability cost the company more money to produce 

a tire. As another example, if a publisher wants to produce manuscripts with fewer typos, it will 

probably have to ask its proofreaders to spend more time checking the manuscripts, which will 

lead to higher cost per manuscript.  

The positive correlation between quality and unit cost is self-evident, but it is probably 

difficult to defend any specific function that relates them. As a matter of fact, we simply choose 

a function that can most conveniently operationalize the above intuition. We use the marginal 

cost to represent the unit cost, and assume quality to be a product of marginal cost and 

productivity: 

Assumption: A firm’s product quality in period 𝑡 is given by 𝑄𝑖𝑡 = 𝑀𝐶𝑖𝑡 ∙ exp(𝜁(𝜔𝑖𝑡 + 𝜖𝑖𝑡)), 

where 𝜁 is a positive constant. 

Note that the marginal cost, 𝑀𝐶𝑖𝑡, is defined as the increase in cost incurred by an additional 

physical unit of product. Given a firm’s productivity, 𝜔𝑖𝑡 + 𝜖𝑖𝑡, the above assumption states that 

the product quality would be higher if the firm spends more money on a unit of output. If the 

firm becomes more productive, 𝑀𝐶𝑖𝑡 would decrease proportionally, ceteris paribus. However, if 

the firm decides to spend the same amount of money on each unit of product as before, the product 

quality will increase. 
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The main issue with the above assumption is that in a given production run the marginal cost 

varies with the output level, while the product quality is believed to be predetermined and 

invariant to the output level. The severity of the problem depends on how much the marginal 

cost varies from unit to unit. Our empirical results find that almost all firms in our sample have 

strict constant returns to scale. For example, estimated returns to scale of all firms of all time 

periods have a mean of 1.006 and a standard deviation of 0.005.3 Adjustment costs will cause 

marginal costs to deviate from average cost, but the estimated returns to scale give us some 

reassurance for using marginal cost as a proxy of unit cost.  

3.3. Revenue as a Function of Markup, Inputs and Productivity 

Given our assumption concerning quality, Equation (3) can be written in the following form: 

𝑟𝑖𝑡 = ln 𝜇𝑖𝑡 + 𝑓(𝑥𝑖𝑡 , 𝛽) + (1 − 𝜁)(𝜔𝑖𝑡 + 𝜖𝑖𝑡), (4) 

where 𝑟𝑖𝑡=ln 𝑅𝑖𝑡, 𝜇𝑖𝑡 = 𝑃𝑖𝑡/𝑀𝐶𝑖𝑡 is the markup, 𝑥𝑖𝑡 = ln𝑋𝑖𝑡, and 𝑓(𝑥𝑖𝑡 , 𝛽) = ln 𝐹(𝑋𝑖𝑡 , 𝛽). Equation 

(4) illustrates the main proposition of our method: revenue should be view as a function of inputs, 

productivity, and markup. The markup in the model explicitly recognizes the role of prices and 

quality in the determination of revenue, avoiding the problem they may cause when they are 

subsumed into the error term. 

In Appendix B, based on the theory developed by Hall (1986, 1988, 1990) and extended by 

De Loecker (2011), and De Loecker and Warzynski (2012), we show that under very weak 

assumptions, the markup of a firm equals 

𝜇𝑖𝑡 = 𝜃𝑖𝑡
𝑣 /𝑎𝑖𝑡

𝑣 , (5) 

where 𝜃𝑖𝑡
𝑣  is the physical output elasticity of input 𝑣, and 𝑎𝑖𝑡

𝑣  is the expenditure on input 𝑣 as a 

share of the firm’s revenue. Input 𝑣 in Equation (5) should be a flexible input. In this work, we 

assume the intermediate good is flexible. 

Given production function (2), the physical output elasticity of intermediate good is 

𝜃𝑖𝑡
𝑚(𝑥𝑖𝑡 , 𝛽) = 𝑓

𝑚
(𝑥𝑖𝑡, 𝛽) −

𝜕 ln 𝑄𝑖𝑡

𝜕𝑚𝑖𝑡

. (6) 

Equation (6) shows that the output elasticity of intermediate good consists of its effect on the 

quality adjusted output and its effect on the product quality. Incidentally, when changes in 𝑀𝑖𝑡 

                                                            
3 The results are a more accurate version of the one in the last row of Column (2) in Table 10.  
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causes in an increase in quality, a given amount of quality-adjusted products will be counted as 

fewer units of physical product, hence 
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
 enters Equation (6) with a negative sign. Given the 

output elasticity of the intermediate good, the revenue can be written as 

𝑟𝑖𝑡 = ln(𝜃𝑖𝑡
𝑚(𝑥𝑖𝑡, 𝛽)/𝑎𝑖𝑡

𝑚) + 𝑓(𝑥𝑖𝑡 , 𝛽) + (1 − 𝜁)(𝜔𝑖𝑡 + 𝜖𝑖𝑡). (7) 

Let �̃�𝑖𝑡 = (1 − 𝜁)𝜔𝑖𝑡 and 𝜖�̃�𝑡 = (1 − 𝜁)𝜖𝑖𝑡, then we have: 

𝑟𝑖𝑡 = ln(𝜃𝑖𝑡
𝑚(𝑥𝑖𝑡, 𝛽)/𝑎𝑖𝑡

𝑚) + 𝑓(𝑥𝑖𝑡 , 𝛽) + �̃�𝑖𝑡 + �̃�𝑖𝑡. (8) 

Once we parameterize 𝑓(𝑥𝑖𝑡 , 𝛽) we can write 𝜃𝑖𝑡
𝑚(𝑥𝑖𝑡 , 𝛽) as a function of 𝑥𝑖𝑡 and 𝛽. We assume 

the inputs include of capital, 𝐾𝑖𝑡, labor, 𝐿𝑖𝑡, and intermediate good, 𝑀𝑖𝑡. We assume that 𝑓(𝑥𝑖𝑡 , 𝛽) 

takes the translog form: 

𝑓(𝑥𝑖𝑡 , 𝛽) = 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑘𝑖𝑡
2 + 𝛽𝑙𝑙𝑙𝑖𝑡

2 + 𝛽𝑚𝑚𝑚𝑖𝑡
2 + 𝛽𝑘𝑙𝑘𝑖𝑡𝑙𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡𝑚𝑖𝑡

+ 𝛽𝑙𝑚𝑙𝑖𝑡𝑚𝑖𝑡 . 
(9) 

where 𝑘𝑖𝑡 , 𝑙𝑖𝑡 , and 𝑚𝑖𝑡  are the logarithms of 𝐾𝑖𝑡 , 𝐿𝑖𝑡 , and 𝑀𝑖𝑡 . Given the translog production 

function, the term 𝑓𝑚(𝑥𝑖𝑡 , 𝛽) in Equation (6) is 

𝑓𝑚(𝑥𝑖𝑡 , 𝛽) = 𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡 . (10) 

 In Appendix C, we show that 

𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
= −

2𝛽𝑚𝑚

𝑓𝑚(𝑥𝑖𝑡 , 𝛽)
− 𝑓𝑚(𝑥𝑖𝑡 , 𝛽) + 1. (11) 

Plugging Equations (9), (10), and (11) in Equation (8), we will be able to write 𝑟𝑖𝑡 as a long 

function of 𝑥𝑖𝑡, 𝛽, and 𝜁𝑖𝑡 

𝑟𝑖𝑡 = ln ((2(𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡)

+ 2𝛽𝑚𝑚/(𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡) − 1)/𝑎𝑖𝑡
𝑚) + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡

+ 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑘𝑖𝑡
2 + 𝛽𝑙𝑙𝑙𝑖𝑡

2 + 𝛽𝑚𝑚𝑚𝑖𝑡
2 + 𝛽𝑘𝑙𝑘𝑖𝑡𝑙𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡𝑚𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡𝑚𝑖𝑡

+ �̃�𝑖𝑡 + �̃�𝑖𝑡. 

(12) 

On the right-side hand of the above equation, the first term is the logarithm of the markup, ln 𝜇𝑖𝑡. 

The next nine terms are 𝑓(𝑥𝑖𝑡 , 𝛽). The last two terms are productivity terms. 
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A remark on 
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
 is in order. It is the term we calculate in Equation (11) and insert in the 

final equation. The term measures how the quality varies with the flexible input. In developing 

our assumption about quality and unit cost, however, we have in our mind a world where a firm’s 

product quality remains unchanged in a given period. To investigate the discrepancies, we consider 

an equation where 
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
 is restricted to be zero. With this constraint, Equation (8) becomes 

𝑟𝑖𝑡 = ln((𝛽
𝑚
+ 2𝛽

𝑚𝑚
𝑚𝑖𝑡 + 𝛽

𝑘𝑚
𝑘𝑖𝑡 + 𝛽

𝑙𝑚
𝑙𝑖𝑡)/𝑎𝑖𝑡

𝑚) + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑘𝑖𝑡
2

+ 𝛽𝑙𝑙𝑙𝑖𝑡
2 + 𝛽𝑚𝑚𝑚𝑖𝑡

2 + 𝛽𝑘𝑙𝑘𝑖𝑡𝑙𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡𝑚𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡𝑚𝑖𝑡 + �̃�𝑖𝑡 + �̃�𝑖𝑡. 
(13) 

On the right-side hand of the above equation, the first term is the logarithm of the markup, ln 𝜇𝑖𝑡. 

We refer to the new markup as the corrected markup. 

3.4. Bias Due to Unobservable Prices and Qualities 

It is of interest to have a theoretical analysis of the bias in estimated coefficients due to 

unobservable prices and quality. In order to focus on this question, let us temporarily assume 𝜔𝑖𝑡 

to be observable. We also assume 
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
= 0, since it will greatly simplify our analysis. With these 

assumptions, the population model is Equation (13), with the change that the term �̃�𝑖𝑡 is now 

observable up to a scale (since 𝜁  is unobserved). We use a second order Taylor series to 

approximate the logarithm of the markup, ln((𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡)/𝑎𝑖𝑡
𝑚) , and 

relegate the residual to the error term 𝜖�̃�𝑡. We expand ln 𝜇 around 1 since it is convenient and in 

most cases our estimated markups are not very far from 1. Thus the population model can be 

written as: 

𝑟𝑖𝑡 = (𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡)/𝑎𝑖𝑡
𝑚 − 1

−
1

2
((𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡)/𝑎𝑖𝑡

𝑚 − 1)
2
+ 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡

+ 𝛽𝑘𝑘𝑘𝑖𝑡
2 + 𝛽𝑙𝑙𝑙𝑖𝑡

2 + 𝛽𝑚𝑚𝑚𝑖𝑡
2 + 𝛽𝑘𝑙𝑘𝑖𝑡𝑙𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡𝑚𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡𝑚𝑖𝑡 + �̃�𝑖𝑡 + 𝜖�̃�𝑡 . 

(14) 

The expanded form of Equation (14) is quite long, so we will not report it here. Let us use �̇�𝑥 

to denote the coefficient on input 𝑥 in Equation (14). We have 
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�̇�𝑘 = 𝛽𝑘 + 2𝛽𝑘𝑚/𝑎𝑖𝑡
𝑚 − 𝛽𝑚𝛽𝑘𝑚/(𝑎𝑖𝑡

𝑚)2, (15) 

�̇�𝑙 = 𝛽𝑙 + 2𝛽𝑙𝑚/𝑎𝑖𝑡
𝑚 − 𝛽𝑚𝛽𝑙𝑚/(𝑎𝑖𝑡

𝑚)2, (16) 

�̇�𝑚 = 𝛽𝑚 + 4𝛽𝑚𝑚/𝑎𝑖𝑡
𝑚 − 2𝛽𝑚𝛽𝑚𝑚/(𝑎𝑖𝑡

𝑚)2, (17) 

�̇�𝑘𝑘 = 𝛽𝑘𝑘 − 𝛽𝑘𝑚
2 /(𝑎𝑖𝑡

𝑚)2, (18) 

�̇�𝑙𝑙 = 𝛽𝑙𝑙 − 𝛽𝑙𝑚
2 /(𝑎𝑖𝑡

𝑚)2, (19) 

�̇�𝑚𝑚 = 𝛽𝑚𝑚 − 2𝛽𝑚𝑚
2 /(𝑎𝑖𝑡

𝑚)2, (20) 

�̇�𝑘𝑙 = 𝛽𝑘𝑙 − 𝛽𝑘𝑚𝛽𝑙𝑚/(𝑎𝑖𝑡
𝑚)2, (21) 

�̇�𝑘𝑚 = 𝛽𝑘𝑚 − 2𝛽𝑚𝑚𝛽𝑘𝑚/(𝑎𝑖𝑡
𝑚)2, (22) 

�̇�𝑙𝑚 = 𝛽𝑙𝑚 − 2𝛽𝑚𝑚𝛽𝑙𝑚/(𝑎𝑖𝑡
𝑚)2. (23) 

Since 𝑎𝑖𝑡
𝑚 varies across firms and time, simple analytical forms of the bias in the coefficients 

generally do not exist. Nonetheless, it is clear from Equations (15)-(23) that all coefficients will 

be biased.  

To put the degree of the bias in perspective, let us consider a back-of-envelope calculation. 

Our empirical exercise shows that the estimated coefficients of first-order terms in the translog 

function (𝛽𝑘, 𝛽𝑙, and 𝛽𝑚) are on the order of 0.1 and those of second-order terms (e.g., 𝛽𝑘𝑘 , 𝛽𝑘𝑙 , …) 

are on the order of 0.01. In our sample, 𝑎𝑖𝑡
𝑚 is about 0.75 on average. In a case where 𝑎𝑖𝑡

𝑚 is 0.75 

for all firms, the bias in each estimated coefficients is probably a few percent to ten percent of the 

parameters’ true values. Take 𝛽𝑙𝑚 for instance. The percentage bias in it is (𝛽𝑙𝑚 − �̇�𝑙𝑚)/𝛽𝑙𝑚 =

2𝛽𝑚𝑚/(𝑎𝑖𝑡
𝑚)2 = 3.56𝛽𝑚𝑚, which is probably a few percent.  

4. Estimation of Our Models and Related Models 

This section explains how to estimate our models with the proxy-variable approach. In terms 

of coding, our method only makes a few simple changes to the proxy-variable approach. However, 

since the proxy-variable is a new and evolving method, we plan to give the details of our estimation 

procedure. 

4.1. The Proxy-Variable Approach 

We will use our workhorse models, Equations (12) and (13), to explain how the estimation 

procedure works. The procedure is largely the same for the estimation of some related models that 

we will introduce in the next section. 

The proxy-variable approach is one of the econometric methods developed to address the 

classical transmission bias caused by �̃�𝑖𝑡. Parameter �̃�𝑖𝑡 is unobservable to the econometrician 

but is observable to firms and will most likely affect the amounts of inputs, 𝑋𝑖𝑡. The main idea of 
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the proxy-variable approach is to assume (1) that there exists an input that monotonically 

increases with current-period productivity, such as contemporary investment or intermediate 

goods, (2) that the innovations in the productivity are orthogonal to input decisions that are made 

before the productivity is revealed to the firm.  

Ackerberg et al. (2006)  refine the two-stage method developed by Olley and Pakes (1996) and 

Levinsohn and Petrin (2003). Wooldridge’s (2009) one-step approach more efficient and can 

generate standard errors of estimates, but it is much more computationally intensive. In this work, 

we adopt Ackerberg, Caves, and Frazer’s approach. In what follows, we discuss the details of the 

procedure.  

First Stage: Estimating Unobserved Productivity Shock 𝝐𝒊𝒕 

The proxy approach is based on the monotonic functional relationship between inputs and the 

unobservable productivity. Following this line of literature, we assume that �̃�𝑖𝑡 can be written as 

a function of inputs, �̃�𝑖𝑡 = �̃�(𝑙𝑖𝑡 , 𝑘𝑖𝑡 , 𝑚𝑖𝑡). In our exercise, we assume that �̃�(∙) is a fourth-order 

polynomial. We assume ln 𝜇𝑖𝑡 can also be written as a fourth-order polynomial function of inputs. 

Then equations based on Equation (8) can be written as 

𝑟𝑖𝑡 = 𝜙(𝑘𝑖𝑡 , 𝑙𝑖𝑡 , 𝑚𝑖𝑡) + 𝜖�̃�𝑡 . (24) 

where 𝜙(𝑘𝑖𝑡 , 𝑙𝑖𝑡 , 𝑚𝑖𝑡) is defined as: 

𝜙(𝑘𝑖𝑡, 𝑙𝑖𝑡,𝑚𝑖𝑡) = ln(𝜃𝑖𝑡
𝑚(𝑥𝑖𝑡, 𝛽)/𝑎𝑖𝑡

𝑚) + ln 𝑓(𝑋𝑖𝑡 , 𝛽) + �̃� = ∑∑ ∑ 𝛾𝑓𝑔ℎ𝑘𝑖𝑡
𝑓
𝑙𝑖𝑡
𝑔
𝑚𝑖𝑡

ℎ

4−𝑓−𝑔

ℎ=0

4−𝑓

𝑔=0

4

𝑓=0

. (25) 

In the above equation, 𝛾𝑓𝑔ℎ is a coefficient on 𝑘𝑖𝑡
𝑓
𝑙𝑖𝑡
𝑔
𝑚𝑖𝑡

ℎ , where 𝑓, 𝑔, and ℎ are exponents. 

In the first stage of our estimation, we estimate 𝑟𝑖𝑡 = 𝜙(𝑘𝑖𝑡 , 𝑙𝑖𝑡 , 𝑚𝑖𝑡) + 𝜖�̃�𝑡  and store the 

predicted values �̂�𝑖𝑡 for later use. 

Second Stage: Searching Parameter Space 

In the second stage, we iterate through candidate production function parameters 𝛽′ and look 

for the ones that minimize the criterion function defined by the moment conditions, which will be 

introduced momentarily. 
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Given the candidate parameters 𝛽′ = (𝛽𝑙
′, 𝛽𝑘

′ , 𝛽𝑚
′ ⁡, 𝛽𝑘𝑘

′ , 𝛽𝑙𝑙
′ , 𝛽𝑚𝑚

′ , 𝛽𝑘𝑙
′ , 𝛽𝑘𝑚

′ , 𝛽𝑙𝑚
′ ), we can construct 

the implied value for �̃�𝑖𝑡 (refer to Equation (24)): 

�̂̃�𝑖𝑡(𝛽) = �̂�
𝑖𝑡
− ln(𝜃𝑖𝑡

𝑚(𝑥𝑖𝑡, 𝛽′)/𝑎𝑖𝑡
𝑚)− 𝑓(𝑥𝑖𝑡 , 𝛽

′). (26) 

If we regress �̂̃�𝑖𝑡 on �̂̃�𝑖𝑡−1 and other variables that may affect productivity, the residuals, 

𝜉𝑖𝑡⁡(𝛽), will be the innovations in the productivity shocks. 

The production function parameters are identified with the moment conditions that the 

innovation in productivity in period 𝑡, 𝜉𝑖𝑡(𝛽), is orthogonal to the fixed input in period 𝑡, 𝑘𝑖𝑡, the 

lagged value of the variable inputs, and the interactions between these variables. The 

orthogonality conditions are based on the timing of input decisions and productivity evolutions. 

More details on the theory behind these moment conditions can be found in Olley and Pakes 

(1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2006). Our three-factor translog model 

has at least nine parameters, so we will need a relatively large set of moment conditions. Let 𝑧𝑖𝑡 

be a vector of variables that are supposed to be orthogonal to the innovations in productivity: 

𝑧𝑖𝑡 = (1, 𝑘𝑖𝑡 , 𝑘𝑖𝑡−1, 𝑙𝑖𝑡−1, 𝑚𝑖𝑡−1, 𝑘𝑖𝑡
2 , , 𝑘𝑖𝑡−1

2 , 𝑙𝑖𝑡−1
2 , 𝑚𝑖𝑡−1

2 , 𝑘𝑖𝑡𝑘𝑖𝑡−1,⁡ 

𝑘𝑖𝑡𝑙𝑖𝑡−1, 𝑘𝑖𝑡𝑚𝑖𝑡−1, 𝑘𝑖𝑡−1𝑙𝑖𝑡−1, 𝑘𝑖𝑡−1𝑚𝑖𝑡−1, 𝑙𝑖𝑡−1𝑚𝑖𝑡−1)′⁡. 
(27) 

The moment conditions that will help us identify the parameters are  

𝐸(𝑧𝑖𝑡𝜉𝑖𝑡(𝛽)) = 0. (28) 

Since we have more moment conditions than the parameters, we have over-identifying 

conditions that can be used to test our model.  

The criterion function of the GMM estimator is 

∑[(∑∑𝜉𝑖𝑡(𝛽)𝑧𝑖,ℎ𝑡
𝑡𝑖

)

2

]

15

ℎ=1

, (29) 

where 𝑧𝑖,ℎ𝑡 is the ℎ𝑡ℎ element of 𝑧𝑖𝑡. Now we can use a program to search the optimal 𝛽 that 

minimizes criterion function (29). The resulting �̂� would be our estimate for the production 

function parameters. 
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4.2. Related Econometric Models 

Equations (12) and (13) represents the new method that we propose. Besides them, we will 

consider some other models. We will give the exact specifications of them in this section for clarity. 

Among these alternative models, four of them are traditional Cobb-Douglas or translog models 

that use either the physical quantity or revenue as the output measure: 

 Cobb-Douglas function with physical output as the dependent variable: 

𝑦𝑖𝑡 = 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 +𝜔𝑖𝑡 + 𝜖𝑖𝑡. (30) 

 Cobb-Douglas function with revenue as the dependent variable: 

𝑟𝑖𝑡 = 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 +𝜔𝑖𝑡 + 𝜖𝑖𝑡. (31) 

 Translog function with physical output as the dependent variable: 

𝑦𝑖𝑡 = 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑘𝑖𝑡
2 + 𝛽𝑙𝑙𝑙𝑖𝑡

2 + 𝛽𝑚𝑚𝑚𝑖𝑡
2 + 𝛽𝑘𝑙𝑘𝑖𝑡𝑙𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡𝑚𝑖𝑡

+ 𝛽𝑙𝑚𝑙𝑖𝑡𝑚𝑖𝑡 +𝜔𝑖𝑡 + 𝜖𝑖𝑡. 
(32) 

 Translog function with revenue as the dependent variable: 

𝑟𝑖𝑡 = 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑘𝑖𝑡
2 + 𝛽𝑙𝑙𝑙𝑖𝑡

2 + 𝛽𝑚𝑚𝑚𝑖𝑡
2 + 𝛽𝑘𝑙𝑘𝑖𝑡𝑙𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡𝑚𝑖𝑡

+ 𝛽𝑙𝑚𝑙𝑖𝑡𝑚𝑖𝑡 + 𝜖𝑖𝑡. 
(33) 

Besides these traditional models, we also consider extensions of our workhorse models. Our 

theory predicts that the coefficient of the control function,⁡ln 𝜇, is one. We also consider models 

in which the coefficient on ln 𝜇, denoted with 𝛽𝑀𝑎𝑟𝑘𝑢𝑝, is a free parameter: 

𝑟𝑖𝑡 = 𝛽𝑀𝑎𝑟𝑘𝑢𝑝 ln ((2(𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡)

+ 2𝛽𝑚𝑚/(𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡) − 1)/𝑎𝑖𝑡
𝑚) + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡

+ 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑘𝑘𝑖𝑡
2 + 𝛽𝑙𝑙𝑙𝑖𝑡

2 + 𝛽𝑚𝑚𝑚𝑖𝑡
2 + 𝛽𝑘𝑙𝑘𝑖𝑡𝑙𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡𝑚𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡𝑚𝑖𝑡

+ �̃�𝑖𝑡 + �̃�𝑖𝑡. 

(34) 

𝑟𝑖𝑡 = 𝛽𝑀𝑎𝑟𝑘𝑢𝑝 ln((𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡)/𝑎𝑖𝑡
𝑚) + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡

+ 𝛽𝑘𝑘𝑘𝑖𝑡
2 + 𝛽𝑙𝑙𝑙𝑖𝑡

2 + 𝛽𝑚𝑚𝑚𝑖𝑡
2 + 𝛽𝑘𝑙𝑘𝑖𝑡𝑙𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡𝑚𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡𝑚𝑖𝑡 + �̃�𝑖𝑡 + �̃�𝑖𝑡. 

(35) 

Equations (34) and (35) encompass the traditional approach (represented by Equation (33) ) and 

our approach as two special cases. 
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5. Data 

Out empirical analysis is based on the China Annual Survey of Industrial Firms and the China 

Industrial Output Database. Both are annual survey databases published by the National Bureau 

of Statistics of China. The former is more well-known in academia outside of China. 4 The 

databases include all firms with sales over 5 million Chinese Yuan (about 600,000 US dollars). 

Firms in the databases account for about 90 percent of output of the covered industries. The 

Annual Survey of Industrial Firms reports various administrative and financial facts of firms. The 

Output Database only has information on quantities of major outputs. The two databases have 

an overlapping coverage period from 2000 to 2007.  

The unit of observation in the databases is enterprise. About 98% of manufacturing firms have 

only one unit, which is a subdivision that usually focuses on a group of closely related products. 

On average each manufacturing firm has 1.05 units. Each firm has an organization registration 

code issued by the government. We use this code to identify firms.  

We discount all the monetary values in the Annual Survey of Industrial Firms with China’s 

GDP deflator. We delete observations that report very implausible growth in major variables. We 

also delete the 1-percent outliers in terms of input-input or input-output ratios. 

The Output Database records the annual information on the major products of firms. Due to 

economies of scope, multiple products are often produced at the same firm. For example, among 

firms that produce Wall-mounted Gas Water Heaters, 82.9 percent of them also produce Gas 

Ranges. Some of the products produced by the same firm may be very different in nature. For 

example, 58.6 percent of Sugar producers also produce electricity, presumably using bagasse – the 

fibrous residue left after sugarcane is crushed – as fuel. Production of multiple products at the 

same firm makes it difficult to calculate product prices with data at hand, since we only have the 

yearly total value of all products for each firm. Therefore, we try to focus on products that seldom 

have “siblings”. In these industries, we focus on observations where the firm only reports one 

product in the year. 

                                                            
4 For more details regarding the The Annual Survey of Industrial Firms, please refer to Song et al. (2011) 

and Hsieh and Klenow (2009). 



21 

 

Table 4: Sibling Shares of Selected Industries 

Product 

(1) 

# Obs in 

Output Data 

(2) 

# 

Producer 

(3) 

% Multi-

product 

(4) 

Sibling 1 

(5) 

Sibling 2 

Bearings 4268 1111 .04 Bricks (.01) Plastics (.01) 

Cement 36697 9193 .09 Electricity (.04) Coal (.03) 

Ceramics 4682 1329 .06 Refractories (.02) Cement (.01) 

Engineered 
Wood 

12435 4164 .08 Veneer (.02) Furniture (.02) 

Ferroalloys 6404 2275 .15 Electricity (.06) Calcium Carbide (.03) 

Furniture 10748 3439 .10 Engineered Wood (.02) Plastics (.02) 

Garments 65494 18543 .09 Knitted Products (.03) Fabrics (.02) 

Leather 

Shoes 
10644 2950 .06 Garments (.02) Rubber Boots (.01) 

Paperware 14651 4754 .15 Plastics (.05) Cardboard (.02) 

Plastics 40837 12146 .12 Paperware (.02) Electricity (.01) 

Refractories 6020 1787 .11 Steel (.03) Cement (.03) 

Traditional 
Medicines 

7660 2108 .10 
Pharmaceutical 
Materials (.07) 

Beverages (.01) 

Valves 4308 1246 .10 Valves (.03) Plastics (.01) 

Table 4 reports some statistics of the products we will investigate. Column (1) reports the 

number of observations where the output of the product by a firm in a given year is reported in 

the Output Database. Column (2) lists the number of producers. Column (3) lists the share of 

observations where information on at least one more product is also reported by the firm in the 

same year. We term this number as a product’s sibling propensity. Columns (4) and (5) report 

the top two siblings of the products and the shares of producers (out of those listed in Column 

(2)) that produce each byproduct.  

We decide to focus on products in Table 4 since they have a decent number of observations 

(>4000 in the Output Database) and a low sibling propensity (≤0.15). These industries give us a 

quite diverse sample. We have both very homogenous products, such as Cement (powder), and 

products that are quite heterogeneous, such as Traditional Medicines and Furniture (refer to 

Table 19 for price variations in each industry). Some industries are more concentrated, such as 

Ferroalloys, while others are populated by many small firms, such as Plastics. We believe that 

the diverse market structures and production modes of these industries will provide a good 

environment to test our method. 

We use the market value of the output from the Annual Survey of Industrial Firms and the 

physical quantity of output in the Output Database to calculate the prices. We delete observations 
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with extreme prices to mitigate the problem of misreporting5 and the probability that the reported 

product is fundamentally different from the majority of the output in the industry.6 We deem a 

price to be extreme if it is below one-twentieth or above twenty times the yearly median price in 

the industry.  

6. Results 

6.1. Technical Details Concerning Estimation 

It is a little difficult to estimate a 9-parameter model with the proxy-variable approach. We 

would like to make sure that our conclusions are not based on faulty optimization results, so we 

adopt a very elaborate estimation procedure. When we estimate each of the eight models 

(Equations (12), (13), (30), (31), (32), (33) , (34), and (35)), we try at least 20 batches of initial 

values for the optimization procedure. For each initial values, we try at least 6 optimization 

techniques (permutations of Modified Newton-Raphson, Davidon-Fletcher-Powell, Broyden-

Fletcher-Goldfarb-Shanno). Among all the 112 estimations we run (8 models by 13 industries plus 

pooled sample), 106 of them converge to the same results from at least two sets of initial values, 

and 101 of them converge to the same results from at least five sets of initial values.  

In Equations (12) and (13), the inferred markup enter the equations as a logarithm. Some 

candidate parameters can lead to a negative markup and cause problems to the estimation 

procedure. To circumvent this problem, we use the second-order Taylor series around 1 to 

approximate the logarithm of the inferred markup to speed up the estimation. We found that all 

the estimation results give positive markups for all observations in our sample. 

                                                            
5 For observations with abnormal prices, we find a high propensity of discrepancies between the major 

products reported in the Performance Database and that reported in the Output Database. 

6 For example, in the Leather Shoes industry, producers of static dissipative shoes report a much higher 

average price. In the Plastics industry, producers of medicine capsules also tend to feature much higher 

average prices. 
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To lessen the computational burden of our estimation procedure, we normalize monetary 

values (e.g., revenue, capital, and intermediate inputs), physical quantities of output, and 

employment with their respective industry-level normalizers.7 

6.2. A Quick Look at Estimated Coefficients 

In Table 5 through Table 8, we report the estimated coefficients of various versions of the 

translog productions functions. The caption of each table indicates the corresponding econometric 

model. In the proxy-variable approach, optimization is conducted on the fitted values generated 

in the first stage, the standard errors of the parameters need to be generated with time-consuming 

bootstrapping.8 To conserve our computational resources, we do not bootstrap the standard errors. 

Incidentally, the samples sizes are smaller than those reported in Table 4, since observations need 

to have additional information from the Performance Database and lagged values for all variables. 

Table 5 reports the estimated coefficients when the physical quantity is used as the output 

measure in a translog production function. We argued at the beginning of this paper that using 

physical quantity as the output measure without remedies would cause an omitted-variable 

problem due to the unobservable quality. A quick look at Table 5 will probably lead most of us 

to suspect that something is indeed wrong. Unlike the usual figures reported for translog estimates 

(e.g., Berndt and Christensen, 1973, Kim, 1992), the estimated coefficients on 𝑘 are a large 

negative number in many cases, those on 𝑙 are surprisingly large while those on 𝑚 are unusually 

small in many cases. The coefficients on second-order terms seem too large in absolute value. The 

last row reports the results for the pooled sample, which do not show any signs of consistence 

with results at the disaggregated level. In summary, when the physical quantity is used as the 

output measure for the translog production function, the estimated parameters seem gravely 

suspicious. 

  

                                                            
7 The product price statistics reported in this paper is based on data that do not go through this 

procedure. 

8 It takes a single-core processor about 2800 hours to finish a single run of all the estimations. 
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Table 5: Estimated Parameters of Production Function: Physical Quantity as Dependent Variable 

(Equation (32)) 

Product 
(1) 

Obs 

(2) 

𝑘 
(3) 

𝑙 
(4) 

𝑚 
(5) 

𝑘2 

(6) 

𝑙2 

(7) 

𝑚2 

(8) 

𝑘𝑙 
(9) 

𝑘𝑚 
(10) 

𝑙𝑚 

(11) 
p-value of 

Over-

identification 

Test 

(12) 

J Statistic 

Bearings 2050 .005 -.280 .882 .040 -.363 -.140 -.079 -.016 .530 .000 621.567 

Cement 18574 .016 -.892 1.095 -.000 -.095 .090 -.082 .108 -.206 .000 4022.078 

Ceramics 2167 -.137 .432 .689 -.032 -.095 -.120 .007 .004 .217 .000 194.517 

Engineered 

Wood 
5681 .091 -.135 .961 .046 -.101 -.057 -.117 .043 .126 .000 199.495 

Ferroalloys 2445 .017 .312 .628 .006 .128 -.063 -.148 .100 -.023 .000 89.663 

Furniture 4772 -.177 .993 .331 -.035 .009 .044 .071 .062 -.176 .000 200.591 

Garments 32164 -.199 .393 .774 -.032 .063 -.060 .019 .040 -.041 .000 388.665 

Leather 

Shoes 
5323 -.147 -.554 1.274 -.018 -.806 -.593 -.152 .136 1.364 .000 878.813 

Paperware 6852 .020 .278 .682 .000 .247 .144 -.062 .082 -.471 .000 238.311 

Plastics 19684 -.086 -.066 1.008 -.015 .004 -.030 -.039 .079 -.008 .000 610.603 

Refractories 3002 -.084 .255 .739 -.034 .145 -.003 .014 .042 -.122 .000 47.191 

Traditional 

Medicines 
3306 -.126 .737 .343 -.046 .207 .167 .166 -.041 -.390 .000 366.114 

Valves 2136 .147 -.106 1.028 .030 -.110 -.107 .027 -.041 .141 .000 131.549 

All 
Industries 

108156 1.433 -.464 -.132 .155 -.010 .218 .142 -.268 -.303 .000 116761 

Column (11) reports the p-values of the overidentification tests. The null is rejected in all 

cases, suggesting that the orthogonality assumptions are unlikely to be true. We experiment with 

different sets of moment conditions, but have little success. We turn to the fixed-effect estimator, 

which is based on the assumption that the unobservable productivity is firm-specific and largely 

time-invariant. We also try the Arellano-Bond estimator, which estimate a first-difference 

equation using levels of lagged inputs as instruments. However, both estimators generate equally 

erratic estimated parameters, returns to scale, and markups. 

We also try to estimate the above equation on firms that have always reported a single product, 

in the hope of mitigating the problem of omission of byproducts. Unfortunately, the results are 

equally questionable.  

Table 6 reports the estimated coefficients when revenue is used as the output measure in a 

translog production function. Most of the problems observed in Table 5 have vanished. A few red 

flags remain though. The over-identification tests reject the null for Cement, Plastics, and the 

pooled sample at the usual significance level, and almost reject it for Refractories.  



25 

 

Table 6: Estimated Parameters of Production Function: Revenue as Dependent Variable (Equation 

(33)) 

Product 
(1) 
Obs 

(2) 

𝑘 
(3) 

𝑙 
(4) 

𝑚 
(5) 

𝑘2 

(6) 

𝑙2 

(7) 

𝑚2 

(8) 

𝑘𝑙 
(9) 

𝑘𝑚 
(10) 

𝑙𝑚 

(11) 
p-value of 

Over-

identification 

Test 

(12) 
J Statistic 

Bearings 2050 .020 .003 .928 .003 -.011 .042 -.009 .013 -.032 .797 3.091 

Cement 18574 -.001 .007 .988 -.003 -.006 -.008 .010 .006 .005 .000 58.672 

Ceramics 2167 -.005 .096 .908 -.005 .017 .028 .012 .010 -.056 .441 5.844 

Engineered 

Wood 
5681 -.009 .039 .968 -.006 .006 .004 .012 .006 -.021 .195 8.633 

Ferroalloys 2445 .007 .032 .939 -.003 .007 .018 .002 .002 -.028 .999 .390 

Furniture 4772 .006 -.026 1.018 -.003 -.008 -.019 .001 .001 .027 .901 2.198 

Garments 32164 .027 .104 .883 .003 .028 .026 .001 -.006 -.051 .759 3.388 

Leather 

Shoes 
5323 .007 .115 .895 -.000 .035 .029 .004 .000 -.067 .992 .812 

Paperware 6852 .014 .031 .954 .001 .018 .011 -.004 -.001 -.020 .922 1.980 

Plastics 19684 .018 .044 .944 .001 .022 .010 -.000 -.003 -.027 .002 21.265 

Refractories 3002 -.033 .031 1.031 -.011 .004 -.020 .004 .028 -.007 .102 10.600 

Traditional 

Medicines 
3306 .041 .029 .946 .003 -.006 .008 .012 -.016 .001 .608 4.511 

Valves 2136 .040 .042 .948 .009 .017 .010 -.010 -.001 -.031 .942 1.738 

All 

Industries 
108156 .008 .052 .947 -.001 .013 .007 -.001 .003 -.021 .000 478.099 

Table 7 reports the estimated parameters of the translog production function where revenue 

is used as the output measure and the inferred markup is used as the control function of the 

unobservable prices and quality. Compared with Table 6, the most obvious and systematic change 

is that the J statistics, i.e., the objective function of the GMM estimator, decreases significantly, 

indicating an increase in the goodness of fit. As a result, none of the over-identification tests reject 

the null at the usual significance level. 

The underlying econometric model of Table 8 is very similar to that of Table 7. The only 

difference is that in the new model restricts that variations in the flexible input has no effect on 

quality, i.e., 
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
= 0. The change speeds up estimation about 40 percent,9 but the gain in 

estimation speed comes with the cost of goodness of fit. The J statistics increases in almost all 

industries and causes the over-identification test to reject the null in the Garments industry. 

                                                            
9 An estimation run for a set of initial values and optimization techniqe based on Equation (13) takes 

about 475 seconds on average, while that based on Equation Equation (12) takes about 666 seconds. 
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Table 7: Estimated Parameters of Production Function: Revenue as Dependent Variable, Markup as 

Control (Equation (12)) 

Product 
(1) 
Obs 

(2) 

𝑘 
(3) 

𝑙 
(4) 

𝑚 
(5) 

𝑘2 

(6) 

𝑙2 

(7) 

𝑚2 

(8) 

𝑘𝑙 
(9) 

𝑘𝑚 
(10) 

𝑙𝑚 

(11) 
p-value of 

Over-

identification 

Test 

(12) 
J Statistic 

Bearings 2050 .000 .011 .976 .001 .000 .004 -.001 .001 -.004 1.000 .021 

Cement 18574 -.002 .002 .998 -.000 -.000 -.000 .001 .001 -.000 .999 .352 

Ceramics 2167 -.002 .025 .975 -.001 .003 .004 .002 .001 -.007 1.000 .076 

Engineered 

Wood 
5681 -.002 .009 .995 -.001 .002 .001 .000 .001 -.003 1.000 .063 

Ferroalloys 2445 .000 .011 .985 -.000 .001 .002 .000 .000 -.004 1.000 .010 

Furniture 4772 .000 .015 .987 -.000 .002 .002 .001 .000 -.004 1.000 .080 

Garments 32164 .001 .048 .954 -.000 .007 .007 .000 .000 -.014 .217 8.297 

Leather 

Shoes 
5323 .001 .086 .933 -.000 .019 .012 .002 -.001 -.031 .999 .422 

Paperware 6852 .002 .021 .979 .000 .005 .004 .000 -.000 -.008 1.000 .032 

Plastics 19684 .004 .026 .970 .000 .004 .005 .001 -.001 -.008 .991 .827 

Refractories 3002 -.001 .030 .980 -.000 .005 .002 -.001 .001 -.008 1.000 .069 

Traditional 

Medicines 
3306 .011 .020 .976 .001 .004 .003 .001 -.002 -.006 .892 2.279 

Valves 2136 .005 .011 .989 .001 .002 .001 -.000 -.001 -.003 1.000 .013 

All 

Industries 
108156 -.000 .017 .985 -.000 .003 .002 -.000 .000 -.005 .341 6.787 

 

Table 8: Estimated Parameters of Production Function: Revenue as Dependent Variable, Corrected 

Markup as Control (Equation (13)) 

Product 
(1) 

Obs 

(2) 

𝑘 
(3) 

𝑙 
(4) 

𝑚 
(5) 

𝑘2 

(6) 

𝑙2 

(7) 

𝑚2 

(8) 

𝑘𝑙 
(9) 

𝑘𝑚 
(10) 

𝑙𝑚 

(11) 

p-value of 
Over-

identification 

Test 

(12) 

J Statistic 

Bearings 2050 .001 .007 .982 .001 .000 .005 -.001 .001 -.005 1.000 .031 

Cement 18574 -.001 .001 .998 -.000 -.000 -.000 .001 .001 -.000 .999 .344 

Ceramics 2167 -.001 .020 .979 -.001 .003 .004 .002 .001 -.008 1.000 .093 

Engineered 
Wood 

5681 -.002 .007 .995 -.001 .002 .001 .001 .001 -.003 1.000 .066 

Ferroalloys 2445 .001 .008 .988 -.000 .001 .002 .000 .000 -.004 1.000 .014 

Furniture 4772 .003 -.026 1.018 -.000 -.010 -.007 .000 -.001 .017 1.000 .105 

Garments 32164 .001 .042 .960 -.000 .009 .008 .000 .000 -.018 .020 14.998 

Leather 

Shoes 
5323 .000 .078 .941 -.001 .028 .017 .002 -.001 -.045 .982 1.082 

Paperware 6852 .002 .016 .984 .000 .006 .004 .000 -.000 -.009 1.000 .048 

Plastics 19684 .000 .005 .993 .000 .002 .001 -.001 .000 -.002 .974 1.251 

Refractories 3002 -.003 .003 1.002 -.001 .000 -.001 .000 .002 -.000 1.000 .068 

Traditional 

Medicines 
3306 .010 .015 .980 .001 .004 .004 .001 -.003 -.006 .810 2.988 

Valves 2136 .005 .008 .992 .001 .002 .001 -.000 -.001 -.003 1.000 .014 

All 

Industries 
108156 .000 .014 .987 -.000 .003 .002 -.000 .000 -.006 .193 8.674 
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To quantify the differences between the estimated parameters in Table 5 through Table 8, we 

test the hypothesis that a parameter estimated by two methods are the same. Since we do not 

have the bootstrap stand errors, we use the GMM standard errors instead. The results will be 

inaccurate, but will give us some perspective about the differences between the results of different 

models.  

Table 9 reports the number of rejections out of 126 tests (9 parameters by 14 samples) against 

the null that parameters in a pair of models are identical. The significance level is 5 percent. 

Column (1) shows that the null of parameter equality is rejected about 70 percent of the time 

when the results based on physical quantity are compared with others.  The Column (2) shows 

that adding a control function to the revenue production function makes significant differences. 

The null of parameter equality is reject about 65 percent of the time. The very last cell of the 

table shows that the null is rejected about 23 percent of the time when the estimates of two 

versions of our methods are compared.  

Table 9: Number of Rejected Nulls of Equality in Parameters at 5-Percent Significance Level 

 

 (1) 

 Quantity as Output 

 Translog 

 Equation (32) 

 (2) 

 Revenue as Output  

 Translog 

 Equation (33) 

 (3) 

 Revenue as Output 

 Translog+log(markup) 

 Equation (12) 

 Revenue as Output  

 Translog 

 Equation (33) 
89   

 Revenue as Output 

 Translog+log(markup) 

 Equation (12) 
92 81  

 Revenue as Output  

 Translog + 
log(corrected markup) 

 Equation (13) 

90 83 29 

6.3. Estimated Returns-to-Scale and Markups 

In this section we report statistics of inferred returns-to-scale and markups of various models. 

We intend to demonstrate (1) that the inferred returns-scale and the markups are very different 

from our expectation when the physical quantity is used as output measure without remedies for 

unobservable quality in the estimation of production functions, (2) that the two inferred measures 

changes considerably when we add a control function for unobservable prices and qualities in the 

production function with revenue as the output measure. 
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6.3.1. Estimated Returns to Scale 

Table 10 reports statistics of the estimated returns-to-scale for various models. To save space, 

we report four statistics in each cell. The first number in each cell is the median of the estimated 

returns-to-scale; the first number inside the parentheses is the standard deviation of the estimated 

returns-to-scale; the next two numbers are minimum and the maximum of the estimated returns-

to-scale. In almost all cases, the median is indistinguishable from the mean (not reported here). 

Columns (1) and (2) contain information that has being reported in Table 3, but provide more 

details. 

Table 10: Statistics of Estimated Returns to Scale 

Product 

 (1) 

 Quantity as Output 

 Translog 
 

 Equation (32) 
 

Median(SE,Min,Max) 

 (2) 

 Revenue as Output  

 Translog 
 

 Equation (33) 
 

Median(SE,Min,Max) 

 (3) 

 Revenue as Output 

 Translog+log(markup) 
 

 Equation (12) 
 

Median(SE,Min,Max) 

 (4) 

 Revenue as Output  

 Translog + 
log(corrected markup) 

 Equation (13) 
 

Median(SE,Min,Max) 

Bearings .71 (.22,-.07,1.53) .97 (.05,.76,1.20) .99 (.00,.97,1.01) 1.00 (.00,1.00,1.00) 

Cement .24 (.32,-1.08,1.77) .99 (.01,.93,1.05) 1.00 (.00,.99,1.01) 1.00 (.00,1.00,1.00) 

Ceramics 1.02 (.06,.74,1.26) .99 (.02,.93,1.07) 1.00 (.00,.99,1.01) 1.00 (.00,.99,1.01) 

Engineered 

Wood 
.94 (.12,.36,1.44) .99 (.01,.97,1.02) 1.00 (.00,1.00,1.00) 1.00 (.00,1.00,1.00) 

Ferroalloys .96 (.06,.69,1.28) .98 (.01,.93,1.02) 1.00 (.00,.99,1.00) 1.00 (.00,1.00,1.00) 

Furniture 1.08 (.09,.75,1.49) 1.00 (.01,.92,1.04) 1.00 (.00,1.00,1.00) 1.00 (.00,1.00,1.00) 

Garments .90 (.10,.10,1.39) 1.01 (.00,.98,1.03) 1.00 (.00,1.00,1.00) 1.01 (.00,.99,1.02) 

Leather 

Shoes 
.84 (.31,-.36,3.41) 1.01 (.01,.96,1.04) 1.02 (.01,.95,1.04) 1.01 (.00,.99,1.01) 

Paperware .92 (.12,.35,1.55) 1.00 (.01,.95,1.04) 1.00 (.00,.99,1.01) 1.00 (.00,1.00,1.00) 

Plastics .86 (.03,.72,1.02) 1.00 (.01,.93,1.06) 1.00 (.00,1.00,1.00) 1.00 (.00,.99,1.00) 

Refractories .87 (.14,.42,1.35) 1.01 (.02,.96,1.10) 1.01 (.00,1.00,1.02) 1.00 (.00,.99,1.00) 

Traditional 

Medicines 
.93 (.14,.31,1.41) 1.02 (.00,.99,1.03) 1.01 (.00,.99,1.01) 1.00 (.00,.99,1.01) 

Valves .96 (.12,.48,1.43) 1.02 (.01,.97,1.07) 1.00 (.00,1.00,1.01) 1.00 (.00,1.00,1.00) 

All 
Industries 

.63 (.24,-.68,1.94) 1.01 (.00,.98,1.03) 1.00 (.00,1.00,1.00) 1.00 (.00,1.00,1.00) 

As it was mentioned in Section 2.2, when the physical quantity is used as the output measure 

without remedies for unobservable quality (Column (1)), the estimated returns to scale are quite 

different from unit in many industries. There are also substantial variations in returns-to-scale 

across firms, which is evidenced by the standard error and the range. In Bearings, Cement, Leather 

Shoes and the pooled sample, some firms have negative estimated returns-to-scale, which cannot 

be rationalized. In other samples, some firms have extremely low or high estimated returns-to-
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scale. These extreme values of estimated returns-to-scale are hard to justify, since they indicate 

that firms should find it highly profitable to adjust their scale. We believe the erratic estimated 

returns-to-scale are an acute symptom of the omitted-variable problem caused by the unobservable 

quality. 

Column (2) shows the statistics of the returns-to-scale when revenue is used as the output 

measure. The medians of the estimated returns-to-scale are very close to unit and none of the 

firms have returns-to-scale that are far from the median.  

  Columns (3) and (4) show the estimated returns-to-scale based on the models that we 

propose, i.e., using the logarithm of the markup as the control function of unobservable prices and 

quality when the revenue is the available output measure. The estimated returns-to-scale appear 

to be reasonable. Compared with results in Column (2), estimated returns-to-scale generated by 

our models are more concentrated around unit. 

Results in Columns (2) – (4) suggest that almost all firms exhibit strict constant returns to 

scale. In a world without adjustment costs, this implies the marginal cost is constant and is equal 

to the average costs. This will lend more support to our assumption that quality is a function of 

the marginal cost and productivity. It will also render the markup to be exactly equal to the price 

margin, making it appropriate to view revenue as a function of inputs, productivity and markup 

in theory. 

Table 11: Correlation between Returns-to-Scale Based on Various Models 

 

 Quantity as Output 

 Translog 

 Equation (32) 

 Revenue as Output  

 Translog 

 Equation (33) 

 Revenue as Output 

 Translog+log(markup) 

 Equation (12) 

 Revenue as Output  

 Translog 

 Equation (33) 

-.06   

 Revenue as Output 

 Translog+log(markup) 

 Equation (12) 

-.22 .46  

 Revenue as Output  

 Translog + 
log(corrected markup) 

 Equation (13) 

.04 .52 .70 

Table 11 reports the correlation of firms’ estimated returns-to-scale based on estimates of 

various models at the industry level. We can see that the estimated returns-to-scale based 

Equation (32) (quantity as output) appear to be at odds with those based on other models. The 
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estimated returns to scale based on Equation (33) (Revenue as output, no further corrections) are 

highly correlated with those generated by our models, but far from identical. Finally, estimated 

returns to scale generated our two models seem to be consistent. We do not want to read too 

much into the correlation coefficients involving our models too much though, since the estimated 

returns to scale generated by them are almost exactly equal to unit for most firms. The lack of 

variation makes the correlation coefficient lose its economic significance. 

Table 12 reports some statistics of the estimated returns-to-scale generated by disaggregated 

and pooled samples for various models. When the physical quantity is used as the output measure, 

the mean returns to scale is below unit and the dispersion is large. For the next three models 

reported in the table, the mean progressively converges to one and the standard error successively 

decreases. In the last row, we report the correlation of the estimated returns to scale generated 

by the disaggregate samples and the pooled sample. Our models (Columns (3) and (4)) report a 

slightly lower coefficient of correlation. This is probably because there is not much variation in 

the returns to scale estimated by our models (refer to Table 10 for more details on standard 

deviations). 

Table 12: Statistics of Returns to Scale Generated by Disaggregated and Pooled Samples 

 

 (1) 

 Quantity as 

Output 

 Translog 
 

 

 Equation (32) 

 (2) 

 Revenue as 

Output  

 Translog 
 

 

 Equation (33) 

 (3) 

 Revenue as 

Output 

 Translog + 
log(markup) 

 

 Equation (12) 

 (4) 

 Revenue as 

Output  

 Translog + log 
(corrected 

markup) 

 Equation (13) 

Mean based on industry-

level estimation  
.942 1.003 1.001 1.001 

Mean based on pooled 

sample estimation 
.627 1.006 1.000 1.001 

Standard error based on 

industry-level estimation 
.190 .013 .007 .005 

Standard error based on 

pooled sample estimation 
.195 .005 .001 .001 

Correlation between returns 

to scale based on two 

estimations 

.304 .369 .225 .264 
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6.3.2. Estimated Markups 

Table 13 reports statistics of the estimated markups for various models. The structure of the 

table is the same as that of Table 10, except that we also report the percentage of observations 

with a markup greater than one. 

Results in Column (1) give some quite unbelievable statistics on markups when the physical 

quantity is used as output without remedies for unobservable quality. Many industries have 

markups that are far below unit. Firms in some industries even have negative markups. Overall, 

we believe that the symptoms in estimated markups signals the severity of the omitted-variable 

problem caused by unobservable quality when the physical quantity is used as output. 

Results in Column (2) are much more well-behaved. The median markup is in the range of 

1.19 to 1.36, which seem reasonable. Most firms have a markup greater than one, but in Bearings , 

Ceramics, Furniture, and Refractories, there are a tiny but noticeable portion of firms that have 

a markup below one. . 

Table 13: Statistics of Estimated Markups 

Product 

 (1) 

 Quantity as Output 

 Translog 

 

 Equation (32) 
Median 

(SE,Min,Max,%>1) 

 (2) 

 Revenue as Output  

 Translog 

 

 Equation (33) 
Median 

(SE,Min,Max,%>1) 

 (3) 

 Revenue as Output 

 Translog+log(markup

) 

 

 Equation (12) 
Median 

(SE,Min,Max,%>1) 

 (4) 

 Revenue as Output  

 Translog + 

log(corrected 

markup) 

 Equation (13) 
Median 

(SE,Min,Max,%>1) 

Bearings 1.05 (.56,-.82,2.90,.54) 1.30 (.21,.55,2.42,.99) 1.30 (.06,1,1.54,1) 1.35 (.06,1.09,1.69,1) 

Cement 1.49 (.29,.16,3.37,.97) 1.27 (.07,.85,1.93,1) 1.33 (.05,.95,1.89,1) 1.33 (.05,.95,1.88,1) 

Ceramics .84 (.33,-.34,2.27,.31) 1.24 (.10,.57,1.99,.99) 1.34 (.06,.78,1.60,1) 1.37 (.07,.82,1.68,1) 

Engineered 

Wood 

1.15 (.17,.50,2.23,.83) 1.27 (.04,.91,1.53,1) 1.33 (.04,.88,1.68,1) 1.33 (.04,.88,1.69,1) 

Ferroalloys .63 (.19,-.14,1.52,.01) 1.28 (.07,.80,1.64,1) 1.32 (.04,.99,1.60,1) 1.35 (.04,1,1.66,1) 

Furniture .43 (.16,-.40,1.52,.00) 1.25 (.15,.64,2.33,.99) 1.29 (.06,.90,1.87,1) 1.31 (.06,.93,1.92,1) 

Garments .86 (.21,-.13,3.18,.24) 1.19 (.06,.85,1.83,1) 1.24 (.07,1,2.61,1) 1.18 (.05,1.01,2.04,1) 

Leather 

Shoes 

.44 (1.52,-1.62,1.02,.33) 1.22 (.07,.55,2.21,1) 1.23 (.05,.69,1.89,1) 1.23 (.07,.73,2.10,1) 

Paperware 1.01 (.40,-1.33,3.38,.51) 1.23 (.03,.68,1.53,1) 1.24 (.04,.77,1.68,1) 1.26 (.05,.80,1.77,1) 

Plastics 1.17 (.14,.63,1.91,.91) 1.20 (.03,.78,1.82,1) 1.23 (.04,.88,1.95,1) 1.24 (.04,.88,2.00,1) 

Refractories .96 (.13,.39,1.52,.38) 1.28 (.14,.77,2.12,.99) 1.32 (.04,.74,1.57,1) 1.36 (.05,.75,1.66,1) 

Traditional 
Medicines 

.60 (.42,-1.56,2.52,.18) 1.36 (.06,.89,2.57,1) 1.42 (.07,.97,2.56,1) 1.51 (.08,1,2.68,1) 

Valves 1.22 (.30,.22,2.80,.76) 1.22 (.05,.89,1.67,1) 1.27 (.06,1.02,1.72,1) 1.28 (.06,1.02,1.75,1) 

All 

Industries 

.41 (.60,-3.17,2.56,.15) 1.22 (.04,.75,1.99,1) 1.29 (.06,.80,2.42,1) 1.29 (.06,.80,2.42,1) 
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Results in Columns (3) and (4) are based on our models that uses the logarithm of markup as 

the control function of unobservable prices and quality. The markups based on these models are 

similar to those based the model underlying Column (2), but differ from the latter in three respects. 

First, the markups generated by our models are on average greater. Second, the markups generated 

by our models are less dispersed. Finally, almost all firms have an estimated markup greater than 

one. 

Table 14 reports the correlation of the estimated markups based on estimates of various models 

at the industry level. The markups generated by Equation (32) (quantity as output) only has very 

weak correlation with those generated by other models. The estimated markups based on Equation 

(33) (revenue as output, no further corrections) are moderately correlated with those generated 

by our models. Finally, the large number in the very last cell indicates the internal consistency of 

our two models.  

Table 14: Correlation between Markups Based on Various Models 

 

 Quantity as Output 

 Translog 

 Equation (32) 

 Revenue as Output  

 Translog 

 Equation (33) 

 Revenue as Output 

 Translog+log(markup) 

 Equation (12) 

 Revenue as Output  

 Translog 

 Equation (33) 

.07   

 Revenue as Output 

 Translog+log(markup) 

 Equation (12) 

.20 .33  

 Revenue as Output  

 Translog + log(corrected 
markup) 

 Equation (13) 

.06 .34 .92 

Since economists use data at various aggregation level, they would like their econometric 

model to be robust to the aggregation. We checked the correlation of estimated returns to scale 

generated at different aggregation level, but the results are not very informative since the variation 

in the estimated returns to scale is extremely small. Table 13 shows that there is much more 

variations in the estimated markups than those reported in Table 10 for estimated returns to scale. 

In what follows, we check the correlation of estimated markups at different aggregation level and 

hope it can shed light on the validity of our models. 
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Table 15: Correlation of Markups Generated by Disaggregated and Pooled Samples 

 

 (1) 

 Quantity as 
Output 

 Translog 
 

 

 Equation (32) 

 (2) 

 Revenue as 
Output  

 Translog 
 

 

 Equation (33) 

 (3) 

 Revenue as 
Output 

 Translog + 
log(markup) 

 

 Equation (12) 

 (4) 

 Revenue as 
Output  

 Translog + log 
(corrected 

markup) 

 Equation (13) 

Mean based on industry-

level estimation  
1.037 1.226 1.265 1.301 

Mean based on pooled 

sample estimation 
.591 1.207 1.297 1.315 

Standard error based on 

industry-level estimation 
.489 .098 .070 .074 

Standard error based on 

pooled sample estimation 
.448 .065 .064 .068 

Mean based on industry-

level estimation  
-.293 .219 .715 .829 

Table 15 reports some statistics of the estimated markups generated by disaggregated and 

pooled samples for various models. We can see that using physical quantity as output without 

remedies for unobservable quality lead to a questionable negative correlation between the markups 

generated by disaggregated and pooled samples for the same firm. The mercuriality of the markups 

is probably due to the changes of the underlying quality metric in different industries, to which 

the econometric model is likely to be susceptible. Column (2) shows that when we use revenue as 

output without further corrections, there is a moderate correlation between the markups generated 

at different aggregation levels, indicating that estimates are probably more robust to the 

aggregation level. Columns (3) and (4) shows that our models are much more robust to the changes 

in the aggregation level, viewed through the lens of the estimated markup. 

In summary, the estimated returns-to-scale and markups are quite questionable when the 

physical output is used output without further corrections. Using revenue as output would greatly 

alleviate the symptoms. Adding the logarithm of markup as the control function of prices and 

quality would generate correlated but appreciably different returns-to-scale and markups, 

suggesting the importance of using our models. Among the models discussed above, our approach 

give much higher correlation between markups generated by disaggregated and pooled samples 

for the sample, showing that our models is more robust to the changes in the quality normalizer 

in different industries. 
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6.4. Coefficient on Control Function 

The difference between our approach and the traditional approach can be viewed as a matter 

of whether the coefficient on the control function is one or zero. Our approach holds that the 

coefficient on the control function, 𝛽𝑀𝑎𝑟𝑘𝑢𝑝, is equal to one (see Equation (4), or Equations (12) 

and (13)), while the traditional approach implicitly assume that 𝛽𝑀𝑎𝑟𝑘𝑢𝑝 is equal to zero (see 

Equation (33)). In this section, we check which theory has more support from the data. 

We estimate Equations (34) and (35), where the coefficient on the control function, ln 𝜇, is 

treated as a free parameter. We use the estimated coefficients for Equations (12) and (13), and 

ten arbitrary values for 𝛽𝑀𝑎𝑟𝑘𝑢𝑝,  as the initial values for the estimation procedure. In Table 16, 

we report the estimated value of 𝛽𝑀𝑎𝑟𝑘𝑢𝑝. In parentheses, we report the asymptotic standard error 

of the GMM estimator. The asterisks after the parentheses indicate the significance level of the 

test of the null 𝛽𝑀𝑎𝑟𝑘𝑢𝑝 = 1 using the asymptotic standard errors.  

Table 16: Estimated Coefficient on Markup in Equation (34) and (35) 

Product 

(1) 

𝛽𝑀𝑎𝑟𝑘𝑢𝑝 in Equation 

(34) 

(2) 

𝛽𝑀𝑎𝑟𝑘𝑢𝑝 in Equation (35) 

(Corrected Markup) 

Bearings 1.09 (.02)*** 1.09 (.01)*** 

Cement 1.11 (.02)*** 1.11 (.02)*** 

Ceramics 1.18 (.05)*** 1.19 (.05)*** 

Engineered 

Wood 
1.11 (.04)*** 1.12 (.04)*** 

Ferroalloys 1.10 (.02)*** 1.10 (.02)*** 

Furniture 1.19 (.05)*** 1.21 (.05)*** 

Garments .48 (.23)*** .22 (.33)*** 

Leather Shoes .86 (.14)* .81 (.18)* 

Paperware 1.10 (.03)*** 1.11 (.03)*** 

Plastics 1.20 (.08)*** 1.25 (.10)*** 

Refractories 1.10 (.01)*** 1.10 (.01)*** 

Traditional 

Medicines 
2.24 (.69)** 2.43 (.81)** 

Valves 1.12 (.04)*** 1.12 (.03)*** 

all Industries .99 (.05) 1.00 (.06) 

 The asterisks following the parentheses indicate the significance level of the test 𝛽𝑀𝑎𝑟𝑘𝑢𝑝 = 1. 

 ***, **, and * indicates significance levels of 1%, 5%, and 10% respectively 

Our first observation from Table 16 is that the estimated values of 𝛽𝑀𝑎𝑟𝑘𝑢𝑝 are obviously 

closer to the value predicted by our theory, namely, one, than the one implicitly assumed by the 
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traditional approach, that is, zero. If we need to decide whether to include ln 𝜇 in the production 

function when revenue is used as output, then the results in Table 16 suggest that the answer is 

definitely in the affirmative. 

When we use the asymptotic GMM standard errors to test the hypothesis 𝛽𝑀𝑎𝑟𝑘𝑢𝑝 = 1, we 

reject the hypothesis at the 5% level in 11 out of 22 cases. We are unfazed by the high rejection 

rate though, since in quite a few cases the null is rejected because the standard errors are rather 

small. In these cases, the small standard errors, in conjunction with the estimated values of 

𝛽𝑀𝑎𝑟𝑘𝑢𝑝, assure us that the population coefficient of control function is close to one.10  

Overall, we take results in Table 16 as encouraging news for the method that we propose. It 

shows that our approach is probably more appropriate than the traditional approach. Moreover, 

it assures us that our approach is not merely a mediocre remedy of the traditional approach, but 

probably a rather satisfactory treatment of the problem posed by the unobserved prices and 

qualities, since �̂�𝑀𝑎𝑟𝑘𝑢𝑝 is close to the theoretic value. 

6.5. Model and Moment Selection Criteria 

Andrews and Lu (2001) develop a set of consistent Model and Moment Selection Criteria 

(MMSC) for GMM estimation. Their criteria are based on the J statistic of GMM estimations 

and can select the correct model specification asymptotically. These criteria are similar to 

likelihood-based selection criteria AIC and BIC.  

In this work, we will use Andrews and Lu’s MMSC-AIC and MMSC-BIC to compare various 

models. Like traditional information criteria AIC and BIC, a model with a lower MMSC-AIC or 

MMSC-BIC is preferred. For details on how to compute the two criteria, we refer readers to 

Andrews and Lu (2001). 

                                                            
10 For the Traditional Medicines industry, �̂�𝑀𝑎𝑟𝑘𝑢𝑝 is quite large, but it also appears that there must be 

something special about this industry, since the standard error of �̂�𝑀𝑎𝑟𝑘𝑢𝑝 is considerably greater than in 

other industries. 



36 

 

Table 17 reports the MMSC-AIC of models that use revenue as the dependent variable. In the 

top row, we give a brief hint of the model specifications and the indexes of equations underlying 

the models. Judging from the MMSC-AIC scores, among the models that use revenue as the 

output measure, the Cobb-Douglas production function (Column (1)) is least preferred. It has by 

far the highest MMSC-AIC score for all industries. Adding a control function with its coefficient 

set to one (Columns (3) and (4)) leads to a lower MMSC-AIC than a traditional translog function 

does (Column (2)) for almost all industries. Correcting the markup does not cause significant 

changes in the information score, since the figures in Columns (3) and (4) are quite close.  Columns 

(5) and (6) reports the MMSC-AIC where the coefficient on the control function is set as a free 

parameter. The MMSC-AIC in these two columns are greater than those in Columns (3) and (4) 

for almost all industries, showing that the gain in the goodness of fit is outweighed by the loss of 

simplicity of the model (adding a parameter). Indeed, results in Table 16 show that the estimated 

coefficient on the control function is quite close to the value preset in our models (Columns (3) 

and (4)), so there is little to gain by setting it as a free parameter. 

Table 17: MMSC-AIC of Models Using Revenue as Output Measure 

Product 

(1) 

Cobb-Douglas 

 

Equation (31) 

(2) 

Translog 

 

 

Equation (33) 

(3) 

Translog + 

log(markup) 

 

Equation (12)  

(4) 

Translog + 

log(corrected 

markup) 

Equation (13) 

(5) 

Translog + 

𝛽*log(markup) 
 

Equation (34)  

(6) 

Translog + 

𝛽*log(corrected 
markup) 

Equation (35) 

Bearings 57.82 -8.91 -11.98 -11.97 -10.00 -10.00 

Cement 1535.47 46.67 -11.65 -11.66 -9.98 -9.98 

Ceramics -2.65 -6.16 -11.92 -11.91 -10.00 -10.00 

Engineered 

Wood 
276.10 -3.37 -11.94 -11.93 -10.00 -10.00 

Ferroalloys -.38 -11.61 -11.99 -11.99 -10.00 -10.00 

Furniture 411.72 -9.80 -11.92 -11.90 -9.98 -9.98 

Garments 1662.20 -8.61 -3.70 3.00 -8.31 -7.09 

Leather 
Shoes 

38.88 -11.19 -11.58 -10.92 -9.96 -9.93 

Paperware 226.14 -10.02 -11.97 -11.95 -9.99 -9.99 

Plastics 230.72 9.26 -11.17 -10.75 -9.51 -9.27 

Refractories 1522.82 -1.40 -11.93 -11.93 -9.99 -9.99 

Traditional 

Medicines 
25.02 -7.49 -9.72 -9.01 -9.64 -9.49 

Valves 58.03 -10.26 -11.99 -11.99 -10.00 -10.00 

All 

Industries 
4517.25 466.10 -5.21 -3.33 -3.23 -1.33 

Table 18 reports the MMSC-BIC of models that have revenue as the dependent variable. The 

patterns are very similar to those observed in Table 17 except that the Cobb-Douglas function 

fares very well in Ceramics, Ferroalloys, and Traditional Medicines. 
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Table 18: MMSC-BIC of Models Using Revenue as Output Measure 

Product 

(1) 

Cobb-Douglas 

 

 
Equation (31) 

(2) 

Translog 

 

 
Equation (33) 

(3) 

Translog + 

log(markup) 

 
Equation (12)  

(4) 

Translog + 

log(corrected 

markup) 
Equation (13) 

(5) 

Translog + 

𝛽*log(markup) 
 

Equation (34)  

(6) 

Translog + 

𝛽*log(corrected 
markup) 

Equation (35) 

Bearings -9.68 -42.66 -45.73 -45.72 -38.13 -38.13 

Cement 1441.51 -0.30 -58.63 -58.63 -49.13 -49.13 

Ceramics -70.83 -40.24 -46.01 -45.99 -38.41 -38.41 

Engineered 
Wood 

196.36 -43.24 -51.81 -51.80 -43.22 -43.22 

Ferroalloys -70.00 -46.42 -46.80 -46.80 -39.01 -39.01 

Furniture 334.07 -48.62 -50.74 -50.72 -42.33 -42.33 

Garments 1561.66 -58.88 -53.97 -47.27 -50.20 -48.98 

Leather 

Shoes 
-40.08 -50.67 -51.06 -50.40 -42.86 -42.83 

Paperware 144.15 -51.01 -52.96 -52.95 -44.15 -44.15 

Plastics 136.07 -38.06 -58.50 -58.07 -48.95 -48.71 

Refractories 1450.74 -37.44 -47.97 -47.97 -40.02 -40.02 

Traditional 
Medicines 

-48.22 -44.11 -46.34 -45.63 -40.15 -40.01 

Valves -9.97 -44.26 -45.99 -45.99 -38.33 -38.33 

All 

Industries 
4402.15 408.55 -62.76 -60.87 -51.18 -49.28 

To summarize, based on the MMSC-AIC and the MMSC-BIC, the models that we propose 

(Equation (12) or (13)) are most preferred among all the production function models that have 

revenue as the dependent variable.  

7. Discussion 

In this section, we discuss a few questions that are related to our work but do not seem to fall 

in a particular section elsewhere in this paper. 

7.1. Unobserved Quality: Misnomer of an Equally Difficult Problem? 

We would like to discuss an alternative explanation for the symptoms of the estimations when 

the physical quantity is used as the output measure in the production function.  

Our analysis on the symptoms is based on the assumption that the physical quantity of the 

output does not involve severe measurement error. As Roberts and Supina (2000) find out, 

however, virtually all plants produce more than one output in practice. It is likely that the single-

product firms that we focus on actually produce some amounts of byproducts that are not included 

in the Output Database. If the omission of byproducts in the data varies systematically with some 

variables in the production function, it will cause bias in the estimates. 
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As a robustness test, we estimate Equation (32) with data on firms that always report 

information on a single product, hoping that this is a strong signal that the firm does not have 

any other product worth reporting. Consequently, the sample size shrinks by about 4 percent. 

The estimation results are equally erratic as those in Table 3, Table 5, Table 10, and Table 13 for 

the production function that uses physical quantities as the output measure. 

If the robustness test does not dissipate our suspicion that the ill-behaved results may be due 

to unreported byproducts, then we are led to an inescapable dilemma when the physical quantity 

is used as the output measure, since we need to choose to deal with unobservable quality or to 

deal with the missing data on byproducts. Data on quality is seldom available, and the all-inclusive 

data on the quantities of all products of firms are just as scarce. Even if the all-inclusive output 

quantity data exist, converting them into a single output measure is probably just as difficult as 

converting physical output into quality-adjusted output, if not more difficult. 

Therefore, it might be a misnomer to refer to the omitted variable as product quality when 

the physical quantity is used as the output measure, but the underlying measurement problems 

associated with the physical quantity of output are real and equally difficult to solve.  

7.2. Recovering Productivity 

When we make the assumption that firm 𝑖’s product quality 𝑄𝑖𝑡 equals 𝑀𝐶𝑖𝑡 ∙ exp(𝜁(𝜔𝑖𝑡 +

𝜖𝑖𝑡)), we introduce a new parameter 𝜁. Our method does not provide a way to identity 𝜁, so the 

logarithm of productivity is only identifiable up to scale. That is, we can only identify (1 − 𝜁)𝜔𝑖𝑡. 

We have two remarks regarding the productivity in our model. 

First of all, with the problems of unobservable prices and quality being addressed, now we at 

least have more confidence in our estimates of (1 − 𝜁)𝜔𝑖𝑡. In the traditional approach where 

unobservable prices and quality are left discussed, the recovered productivity is most likely 

contaminated. 

Second, the recovered productivity increases with the firm size, suggesting that it is an 

increasing function of the true productivity. We regress the estimated value of (1 − 𝜁)𝜔𝑖𝑡 on the 

logarithm of the capital stock (𝑘) and find that the coefficient on 𝑘 are positive in 8 out of 10 

industries and positive in the pooled sample. The estimated coefficient is economically significant, 

falling in the range of 0.01-0.02. It is statistically significant in almost all cases. 
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7.3. Constant Quality and Variable Marginal Cost 

When we operationalize our assumption on the relation between quality and unit costs, we 

assume that quality is a function of marginal cost, that is, 𝑄𝑖𝑡 = 𝑀𝐶𝑖𝑡 ∙ exp(𝜁(𝜔𝑖𝑡 + 𝜖𝑖𝑡)). This 

leads to a contradiction between constant product quality and variable marginal cost for a given 

production run. Considering the evidence in our empirical results, we do not think this 

contradiction a serious empirical problem. 

 First of all, in most cases the estimated returns to scale are very close to one, so the marginal 

cost curve in each production run is probably very flat for firms in our sample. If the changes in 

marginal cost is negligible, the variation in quality loses its importance as a concern. 

Second, there is little difference between the results with and without the restriction 
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
=

0. There are only two systematic differences between two sets of results. The model with the 

restriction of constant quality seems to fit the data slightly better, judging from the J statistics 

from Table 7 and Table 8. The model with the restriction tend to be produce more consistent 

results as the aggregation level changes, evidence by the coefficients of correlation in  Table 12 

and Table 15.  

Third, the value of 
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
 implied by our model is very small. We compute 

𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
 with the 

estimated parameters of Equation (12) using Equation (11). The term has a mean of 0.014 and a 

standard error of 0.012, distributed over the range [-0.175, 0.111]. These figures assure us that the 

implication of variable quality arising from our assumption is not a serious empirical concern.  

7.4. Moment Conditions Concerning Markups 

In unreported trials, we include in our GMM estimators a few moment conditions involving 

markups. Most of these moment conditions are Olley-Pakes style orthogonality conditions between 

innovations in markups and lagged inputs. The additional orthogonal conditions can help the 

estimator converge much faster. However, in some cases they generate estimates that do not seem 

“reasonable”. It is beyond the scope of this paper to develop theories for the moment conditions 

concerning markups, so we do not conduct further investigations. Nonetheless, we would like to 

suggest that this might be worth further analysis.  
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8. Conclusion 

In this work, we develop a method to consistently estimate production functions when output 

prices and product quality are not observed. We show that under some weak assumptions the 

markup can serve as a control function for unobserved prices and quality. We utilize the theory 

first developed by Hall (1986, 1988, and 1990) to write the markup as a function of production 

function parameters. We implement our method as an extension of the proxy-variable approach 

of estimating production functions pioneered by Olley and Pakes (1996). Our empirical results 

give strong and consistent support to the approach that we propose. 
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Appendix A 

Dispersion in Prices 

Figure 1 is the histogram of the relative prices of firms from a host of industries. The relative 

price on the horizontal axis is a firm’s price normalized by the yearly industry median price. It is 

clear from the figure that many firms charge a price substantially different from the yearly 

industry median price.  

  

Figure 1: Histogram of Firm-level Prices Relative to Industry Median 

We find in our data show that firms with the lowest prices (1st percentile) charge a price that 

is about 9.6 percent of the industry median price, that firms with the highest prices (99t percentile) 

charge a price that is about 57.4 times of the industry median price. The standard deviation of 

the logarithm of the relative price is 1.14, which is a very large figure in the logarithm scale for 

variation. To further make sense of the variation in prices, we compute the Gini Coefficient of the 

relative prices. Even after we remove observations whose relative prices are below 0.05 or above 

20, the Gini Coefficient of prices still stands at 0.526, a number that is close to the income equality 

in Guatemala in 2014.11 

Table 19 reports statistics that can reveal the degree of price variations in individual industry 

after extreme prices are deleted. Columns (2) and (3) show that except for Cement, the cheapest 

                                                            
11 Guatemala ranks 11th among 149 countries in income inequality. Source: CIA Factbook at 

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html. 
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producers quote prices that are only a small fraction of the industry median price, while the most 

expensive producers enjoy prices that are several times above the industry median price. Column 

(4) reports the standard error of the logarithm of prices, which can be interpreted as the variations 

in the order (i.e., number of digits) of the prices. These figures implies large variations in prices 

for most of the industries at hand. Column (5) reports the coefficient of variation, showing that 

the standard error of prices in most industries are greater than the average price.  

Table 19: Price Variations 

Product 

(1) 

 

Obs 

(2) 

5th  Percentile of 

Relative Price 

(3) 

95th  Percentile of 

Relative Price 

(4) 

SE of Log 

Price 

(5) 

 

SE/Mean 

Bearings 3029 .17 7.96 1.23 1.62 

Cement 27016 .62 2.33 .51 .91 

Ceramics 3308 .20 9.12 1.18 1.43 

Engineered Wood 9344 .41 5.10 .79 1.31 

Ferroalloys 4241 .54 3.73 .65 1.35 

Furniture 7708 .13 9.33 1.26 1.49 

Garments 49605 .23 6.06 .98 1.36 

Leather Shoes 8182 .25 4.11 .90 1.22 

Paperware 10737 .33 8.67 1.01 1.44 

Plastics 30194 .39 7.46 .90 1.39 

Refractories 4580 .23 6.91 1.01 1.33 

Traditional 

Medicines 
5178 .10 1.63 1.41 1.50 

Valves 3309 .18 6.34 1.04 1.49 

All Industries 166431 .29 6.75 .99 1.37 

* The relative price is defined as the ratio of a firm’s price relative to the industry median price. 

* All prices are inflation-adjusted. 

* In the last row, the number of observations is the sum of observations in each. All other statistics are 

the simple average of industry-level values. 

To summarize, Table 19 shows that except for highly homogenous product like Cement, there 

are substantial price variations for most products in our sample. These results confirm the findings 

on price dispersions reported by Abbott (1991) and others.   
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Appendix B 

Production Function and Markup 

For the purpose of this section, it suffices to assume a very general function for the physical 

output: 

𝑌𝑖𝑡 = 𝑌𝑖𝑡(𝑋𝑖𝑡 , 𝜔𝑖𝑡 , 𝜖𝑖𝑡) (36) 

where 𝑋𝑖𝑡 = (𝑋𝑖𝑡
1 , 𝑋𝑖𝑡

2 , …𝑋𝑖𝑡
𝑉) are the quantities of the 𝑉  inputs. Without losing generality, we 

assume that the first 𝑉 − 1 inputs are perfectly variable and the last input is a fixed input.  

We assume that the firm minimizes the cost of producing 𝑌𝑖𝑡 units by choosing variable 

inputs (𝑋𝑖𝑡
1 , 𝑋𝑖𝑡

2 , … 𝑋𝑖𝑡
𝑉−1). The auxiliary Lagrangian function of the cost-minimization problem is: 

ℒ𝑖𝑡(𝑋𝑖𝑡
1 , 𝑋𝑖𝑡

2 , … 𝑋𝑖𝑡
𝑉 , 𝜔𝑖𝑡 , 𝜆𝑖𝑡) = ∑𝑃𝑖𝑡

𝑣𝑋𝑖𝑡
𝑣

𝑉

𝑣=1

+ 𝜆𝑖𝑡(𝑌𝑖𝑡 − 𝑌𝑖𝑡(∙)), (37) 

where 𝑃𝑖𝑡
𝑣  is the price for input 𝑣. The Lagrangian multiplier 𝜆𝑖𝑡 =

𝜕ℒ𝑖𝑡

𝜕𝑌𝑖𝑡
 is the marginal cost of 

output, 𝑀𝐶𝑖𝑡. 

The FOC concerning variable input 𝑣 is 

𝜆𝑖𝑡 =
𝑃𝑖𝑡
𝑣

𝜕𝑌𝑖𝑡(∙)/𝜕𝑋𝑖𝑡
𝑣 , 𝑣 ∈ {1,2, … , 𝑉 − 1}. (38) 

 

The markup of the firm, 𝜇𝑖𝑡, equals 

𝜇𝑖𝑡 =
𝑃𝑖𝑡

𝜆𝑖𝑡
=

𝑃𝑖𝑡
𝑃𝑖𝑡
𝑣

𝜕𝑌𝑖𝑡(∙)/𝜕𝑋𝑖𝑡
𝑣

=
𝜕𝑌𝑖𝑡(∙)

𝜕𝑋𝑖𝑡
𝑣 ∙

𝑋𝑖𝑡
𝑣

𝑌𝑖𝑡(∙)
⁡
𝑃𝑖𝑡𝑌𝑖𝑡(∙)

𝑃𝑖𝑡
𝑣𝑋𝑖𝑡

𝑣 =
𝜃𝑖𝑡
𝑣

𝑃𝑖𝑡
𝑣𝑋

𝑖𝑡

𝑣
/𝑃𝑖𝑡𝑌𝑖𝑡(∙)

=
𝜃𝑖𝑡
𝑣

𝑎𝑖𝑡
𝑣 , (39) 

where 𝜃𝑖𝑡
𝑣 =

𝜕𝑌𝑖𝑡(∙)

𝜕𝑋𝑖𝑡
𝑣 ∙

𝑋𝑖𝑡
𝑣

𝑌𝑖𝑡(∙)
 is the physical output elasticity of input 𝑣, and 𝑎𝑖𝑡

𝑣  is the expenditure on 

input 𝑣 as a share of the firm’s revenue.  

Equation (39) is derived with the very weak assumption that firms try to minimize their 

production cost.  
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Appendix C 

Output Elasticity of Intermediate Good 

With Equation (2), we can show that  

𝜃𝑖𝑡
𝑚(𝑥𝑖𝑡 , 𝛽) =

𝜕 ln𝑌𝑖𝑡
𝜕𝑚𝑖𝑡

=
𝜕𝑓(𝑥𝑖𝑡 , 𝛽)

𝜕𝑚𝑖𝑡
−
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
. (40) 

Given the translog function defined by Equation (9), 

𝜕𝑓(𝑥𝑖𝑡 , 𝛽)

𝜕𝑚𝑖𝑡
= 𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡 . (41) 

 The term 
𝜕 ln𝑄𝑖𝑡

𝜕𝑚𝑖𝑡
  in Equation (40) is the quality elasticity of intermediate good. If we assume that 

the product quality of a firm in a period is constant, then we have 

𝜃𝑖𝑡
𝑚(𝑥𝑖𝑡 , 𝛽) =

𝜕𝑓(𝑥𝑖𝑡 , 𝛽)

𝜕𝑚𝑖𝑡
= 𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡 . (42) 

If we would like to follow our assumption on the relation between 𝑄𝑖𝑡 and 𝑀𝐶𝑖𝑡 closely and 

define 𝑀𝐶𝑖𝑡 =
𝜕𝑇𝐶𝑖𝑡/𝜕𝑀𝑖𝑡

𝜕𝑌𝑖𝑡/𝜕𝑀𝑖𝑡
, we can derive 𝜃𝑖𝑡

𝑚(𝑥𝑖𝑡 , 𝛽) as follows.  

Since we assume 𝑄𝑖𝑡 = 𝑀𝐶𝑖𝑡 ∙ exp(𝜁(𝜔𝑖𝑡 + 𝜖𝑖𝑡)), the quality elasticity of intermediate good is 

𝜕 ln𝑄𝑖𝑡

𝜕 ln𝑀𝑖𝑡
=
𝜕 ln(𝑀𝐶𝑖𝑡 ∙ exp(𝜁(𝜔𝑖𝑡 + 𝜖𝑖𝑡)))

𝜕 ln𝑀𝑖𝑡
=
𝜕 ln𝑀𝐶𝑖𝑡
𝜕 ln𝑀𝑖𝑡

. (43) 

Note that 

𝑀𝐶𝑖𝑡 =
𝜕𝑇𝐶𝑖𝑡/𝜕𝑀𝑖𝑡

𝜕𝑌𝑖𝑡/𝜕𝑀𝑖𝑡
=

𝑃𝑖𝑡
𝑀

𝜕𝑌𝑖𝑡/𝜕𝑀𝑖𝑡
. (44) 

Then we have 

𝜕 ln𝑄𝑖𝑡

𝜕 ln𝑀𝑖𝑡
=
𝜕 ln𝑀𝐶𝑖𝑡
𝜕 ln𝑀𝑖𝑡

=
𝜕 ln

𝑃𝑖𝑡
𝑀

𝜕𝑌𝑖𝑡/𝜕𝑀𝑖𝑡

𝜕 ln𝑀𝑖𝑡
= −

𝜕 ln 𝜕𝑌𝑖𝑡/𝜕𝑀𝑖𝑡

𝜕 ln𝑀𝑖𝑡
. (45) 

Since 𝑌𝑖𝑡 = exp 𝑓(𝑥𝑖𝑡 , 𝛽) exp(𝜔𝑖𝑡 + 𝜖𝑖𝑡),  
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𝜕𝑌𝑖𝑡/𝜕𝑀𝑖𝑡 =
𝜕 exp𝑓(𝑥𝑖𝑡 , 𝛽) exp(𝜔𝑖𝑡 + 𝜖𝑖𝑡)

𝜕𝑀𝑖𝑡
 

=
𝜕𝑓(𝑥𝑖𝑡 , 𝛽)

𝜕𝑀𝑖𝑡
exp(exp𝑓(𝑥𝑖𝑡 , 𝛽)) exp(𝜔𝑖𝑡 + 𝜖𝑖𝑡) 

=
𝜕𝑓(𝑥𝑖𝑡 , 𝛽)

𝜕𝑀𝑖𝑡
𝑌𝑖𝑡 

=
𝜕𝑓(𝑥𝑖𝑡 , 𝛽)

𝜕𝑚𝑖𝑡

𝜕𝑚𝑖𝑡

𝜕𝑀𝑖𝑡
𝑌𝑖𝑡 

= 𝑓𝑚(𝑥𝑖𝑡, 𝛽)
𝑌𝑖𝑡
𝑀𝑖𝑡

. 

(46) 

Then 

𝜕 ln𝑄𝑖𝑡

𝜕 ln𝑀𝑖𝑡
= −

𝜕 ln 𝜕𝑌𝑖𝑡/𝜕𝑀𝑖𝑡

𝜕 ln𝑀𝑖𝑡
= −

𝜕 ln (𝑓𝑚(𝑥𝑖𝑡, 𝛽)
𝑌𝑖𝑡
𝑀𝑖𝑡

)

𝜕 ln𝑀𝑖𝑡
 

= −
𝜕 ln(𝑓𝑚(𝑥𝑖𝑡, 𝛽))

𝜕 ln𝑀𝑖𝑡
−

𝜕 ln 𝑌𝑖𝑡
𝜕 ln𝑀𝑖𝑡

+
𝜕 ln𝑀𝑖𝑡

𝜕 ln𝑀𝑖𝑡
 

= −
𝜕 ln(𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡)

𝜕𝑚𝑖𝑡
−

𝜕 ln𝑌𝑖𝑡
𝜕 ln𝑀𝑖𝑡

+ 1 

= −
2𝛽𝑚𝑚

𝑓𝑚(𝑥𝑖𝑡, 𝛽)
− 𝑓𝑚(𝑥𝑖𝑡, 𝛽) + 1. 

(47) 

Plug equations (47) into Equation (40): 

𝜃𝑖𝑡
𝑚(𝑥𝑖𝑡 , 𝛽) =

𝜕 ln 𝑓(𝑋𝑖𝑡 , 𝛽)

𝜕𝑚𝑖𝑡
−
𝜕 ln𝑄𝑖𝑡

𝜕𝑀𝑖𝑡
 

= 𝑓𝑚(𝑥𝑖𝑡, 𝛽) − (−
2𝛽𝑚𝑚

𝑓𝑚(𝑥𝑖𝑡, 𝛽)
− 𝑓𝑚(𝑥𝑖𝑡, 𝛽) + 1) 

= 2𝑓𝑚(𝑥𝑖𝑡, 𝛽) +
2𝛽𝑚𝑚

𝑓𝑚(𝑥𝑖𝑡, 𝛽)
− 1 

= 2(𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡) +
2𝛽𝑚𝑚

𝛽𝑚 + 2𝛽𝑚𝑚𝑚𝑖𝑡 + 𝛽𝑘𝑚𝑘𝑖𝑡 + 𝛽𝑙𝑚𝑙𝑖𝑡
− 1 

(48) 

 


