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Abstract

I analyze how a firm should elicit advice from an expert on when to terminate a

project with a stochastic lifespan. The firm cannot directly observe the project’s lifes-

pan, but imperfectly monitors its current state by observing incremental output. The

expert directly observes the state of the project, but prefers to delay termination as

much as possible. He possesses no capital and enjoys limited liability, so cannot be sold

the project. The optimal long-term contract involves termination payments to the ex-

pert and a stochastic project deadline, which is calculated based on the counterfactual

beliefs the firm would have held about the state of the project had it received no expert

advice. I sharply characterize the efficiency impact of hiring an expert, and show how

the optimal contract changes when the expert has initial capital, can be replaced, or

can be assigned busywork on the job.
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1 Introduction

Economic decision-makers commonly face the problem of deciding when to wind down tem-

porary projects on the basis of imperfectly informative signals about the project’s status.

A classic example is a firm operating a depreciating plant which must eventually be retired

or overhauled. The depreciation can manifest in various ways, such as a decline in average

output quality or an increase in downtime or frequency of equipment failure. A key feature

of this environment is that the firm cannot directly observe whether the plant has depreci-

ated, but instead sees only a noisy indicator of its status. For instance, it might observe the

quality of individual units of output; the market price of its output when demand fluctuates

exogenously; or the incidence of individual breakdowns when malfunctions occur at random

intervals. Other examples of this class of decision problem include private equity groups

deciding when to spin off portfolio companies, firms evaluating when to wrap up consulting

engagements, and sports teams determining when to cut aging or injured players.1

In these settings the decision-maker faces an optimal stopping problem of when to ter-

minate the project based on the history of public signals. In practice, many such decisions

are made with the assistance of experts who bring additional expertise to the table. For

instance, the plant owner might hire a manager to oversee the plant’s operation; by virtue of

the manager’s experience and proximity to day to day operations, she is likely to maintain

superior knowledge of the plant’s status. Similar insider information is possessed by the

senior executives employed at a PE group’s portfolio firms, the consultants engaged on a

project, and athletes with intimate knowledge of their health and day to day performance.

The firm would clearly benefit from incorporating the expert’s superior information into

the project termination decision. However, experts attached to lucrative projects often

possess misaligned incentives to prolong their involvement as long as possible, for instance

due to empire-building concerns, on-the-job perquisites, or job search frictions following

termination. They also typically possess capital constraints that prevent them from being

sold the project to align incentives. The presence of these frictions creates a fundamental

tradeoff for the firm between operational efficiency and fiscal economy. As the expert must

be compensated for revealing news which instigates early project termination, the firm may

choose to enforce a project deadline to economize on incentive payments.

In this paper I study how the firm should optimally incorporate the expert’s information

into its termination decision using long-term contracts with transfers, when both the expert

1A variant of this problem also appears in the operations research literature, in the context of detecting
when a signal has been received by a radar station. This setting is often referred to as the problem of quickest
detection, change-point detection, or the disorder problem. See Shiryaev (2010) for an overview.
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and firm are risk-neutral and discount cashflows at the same rate. I allow output to evolve

according to an arbitrary process with stationary independent increments in each state.

In particular, my model nests settings in which output evolves as a Brownian motion or

a Poisson process with upward or downward jumps. The Brownian case corresponds to

environments in which profit fluctuates incrementally with each unit of output produced,

while Poisson downward and upward jumps reflect environments with periodic “breakdowns”

and “breakthroughs”, respectively. I also permit arbitrary project lifespan distributions. In

particular, my model encompasses the case in which the project is surely viable initially but

decays at a constant rate, as well as the polar opposite case in which the project is either

viable forever or else immediately unviable.

In the absence of an informative signal about the project’s state, the firm’s optimal

contract would be very simple - the firm sets a deterministic public deadline at which the

project is surely terminated, and then pays the expert for any lost benefits up to that

deadline in case the expert advises the project should be shuttered early. The length of

the deadline is then chosen to balance the efficiency gains from longer project operation

against the incentive payments needed to make truthtelling optimal for the expert. When

the firm can additionally learn from the project’s output history, the problem becomes more

complex. On the one hand, conditioning the deadline on the quality of past output reduces

incentive payments by decreasing the project’s expected lifespan when it is unviable. On the

other hand, this variance increases the probability of early project termination, which due

to discounting reduces the firm’s expected profits.

An optimal public deadline balances these forces and conditions on the history of project

output in a very elegant way. I show that an optimal deadline is a potentially time-dependent

threshold rule in the firm’s “naive beliefs”, which are the beliefs the firm would have held

about the state of the project from monitoring output had it been operating the project

without expert advice. If the expert advises that the project be terminated prior to this

deadline, the firm does so, and compensates the expert with a termination payment large

enough to leave him precisely indifferent between recommending termination and staying

silent forever. If the project reaches the deadline, no termination payments are made.

I show that the belief threshold for termination is always lower than it would be if the firm

were deciding when to terminate the project without an expert. Hence the expert’s advice

improves the efficiency of project operation in every state of the world, but asymmetrically.

Whenever the project would have been operated past viability without an expert, it is now

operated ex post efficiently. But if the project would have been shuttered too soon without an

expert, its operational lifespan is prolonged, but not necessarily to the efficient termination
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point. In terms of comparative statics, the optimal termination threshold at each point in

time is decreasing in the informativeness of project output about the state, increasing in the

rate of state transitions, and increasing in the severity of the expert’s incentive misalignment.

An important step in the construction of an optimal contract is the calculation of the

firm’s “virtual profit function”, which eliminates incentive payments from the firm’s objec-

tive and characterizes an optimal deadline as the solution to an optimal stopping problem

maximizing virtual profits. This reduction is analogous to the classic Mirrleesian first-order

approach of canonical mechanism design; in that setting, the payments required to implement

an arbitrary allocation are first calculated via an envelope theorem argument, and the design

problem is then reduced to an optimization over a function of the allocation alone. While

my setting requires an entirely different technique to calculate optimal incentive-compatible

payments, the spirit of my approach is the same. The virtual profit formulation in my prob-

lem is very flexible and can be readily extended in various ways. In particular, I show how

to adapt my approach to environments in which the expert has initial capital to contribute

to the project, the firm can replace the expert rather than shuttering the project, and the

expert can be assigned busywork to reduce his incentive to prolong project operation. In

all of these extensions the basic naive belief threshold rule structure of an optimal deadline

survives, indicating the robustness of this result to alternative modeling assumptions.

1.1 Related literature

This paper contributes to the literature on dynamic mechanism design by developing tech-

niques for settings with limited liability, private types which are not directly payoff-relevant

to the agent, and imperfect public monitoring. These features depart significantly from the

assumptions of most existing models. I briefly discuss this literature with an eye toward

illustrating standard sets of assumptions and features of the associated optimal contracts.

One branch of the literature assumes fully flexible transfers and agent marginal valua-

tions for allocations which are increasing in type.2 Papers in this tradition can be thought of

as extending the canonical static model of Myerson (1981) to multi-period settings, though

they often also allow for more general agent preferences and types which enter the prin-

cipal’s objective function. Baron and Besanko (1984) and Courty and Li (2000) consider

two-period problems with a single agent, while Besanko (1985) and Battaglini (2005) study

infinite-horizon settings in discrete time with one agent and special type processes. Pavan,

Segal, and Toikka (2014) extend these results to an infinite horizon discrete-time setting

2This assumption is typically referred to as a “single crossing” or “strictly increasing differences” condi-
tion.
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with many agents and general type processes. Williams (2011) analyzes an infinite-horizon

problem in continuous time with one agent whose type evolves as an Ornstein-Uhlenbeck

process, yielding additional tractability compared to the general discrete-time problem. Typ-

ical analyses in this setting are characterization of implementable allocations, including the

possibility of efficiency, and optimal contracting.

In these papers the agent’s private information is elicited by substituting away from

monetary transfers and toward current and future allocations as reported type increases.3

By contrast, in my model the expert’s type is payoff-relevant only to the firm, and so tradeoffs

between payments and allocations cannot separate different types. Instead, the firm observes

public signals correlated with type and uses them to tie the expert’s payoff to his type. In

common between my setting and the papers above, optimal contracting boils down to a

tradeoff between allocational efficiency and the payment of information rents. However, as

emphasized in Eso and Szentes (2017), under fully flexible transfers the agent receives no

information rents for any (orthogonalized) private information received after time zero. (This

is true regardless of the allocation implemented.) Therefore the nature of the information

rents is quite different in the two settings, as my problem features information rents even in

case the expert possesses no time-zero private information.4

Garrett and Pavan (2012) retain fully flexible transfers but replace agent-payoff-relevant

types with imperfect public monitoring, bringing their setting closer to this paper. In their

model observable output is the sum of type and random noise as well as unobserved ef-

fort, building in a career concerns dynamic. The principal’s allocation decision is worker-

task matching, as he can replace the worker. As in my model, worker-firm match value is

ephemeral and the analysis focuses on characterizing the firm’s optimal termination policy.

Also in common with my model, type is payoff-relevant only to the principal but payments

can be linked to output to separate types.5 Unlike my model, the agent is not protected by

limited liability but can extract rents via time-zero private information. This distinction,

3A related paper, Kruse and Strack (2015), departs from the typical revelation contract framework by
restricting attention to contracts which delegate a decision to halt to the agent and receive no other commu-
nication. While this restricts the set of implementable allocations, a single-crossing condition leads to the
usual tradeoff between transfers and allocations (i.e. project lifespans).

4My model nests cases in which the project is known to be viable at time zero, and in which it may
be nonviable initially with positive probability. In the latter case the expert possesses private information
at time zero. However, the basic structure of an optimal contract is the same in both cases, and is not
fundamentally driven by the possible presence of initial private information.

5Interestingly, in the presence of career concerns the linkage of output to payments leads disutility of
effort to play the role typically served by consumption utility. See in particular their Proposition 4, which
casts joint implementability of effort and allocation in terms of a single crossing condition in disutility of
effort.
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along with the presence of career concerns, leads to starkly different optimal termination

dynamics. In particular, the decision to terminate is completely independent of the history

of output and can eventually become unresponsive to bad news from the agent.

A recent set of papers study dynamic delegation examine settings in which transfers are

completely absent. These papers typically impose assumptions on preferences analogous to a

single-crossing condition, with the agent’s preferred allocation sensitive to their private type.

Thus types can still be separated by conditioning allocations on reports, though the set of

implementable allocations is restricted relative to the case with transfers and becomes more

difficult to characterize. In particular, in the absence of transfers the possibility of dynamic

information rents reappears when types change over time; papers in this literature tend to

restrict attention to static types to retain tractability.

I highlight two recent papers in the dynamic delegation literature which complement my

findings on design of optimal termination policies. Guo (2016) considers an environment

with public experimentation by an agent who has private information about the true state

and a bias toward experimentation. She derives an optimal policy very similar to mine: the

principal delegates experimentation to the agent until a virtual belief about the state, which

is updated as if the agent’s actions were uninformative, reaches a threshold, after which

experimentation is cut off forever. Grenadier, A. Malenko, and N. Malenko (2016) study

elicitation of an agent’s information about the optimal exercise time of a real option, when

the agent has a bias for late exercise exactly equivalent to the flow of benefits specification of

my model. They also predict an outcome with distinct similarities to the optimal policy in

my model: the principal follows the agent’s exercise recommendation until a threshold in the

value of the underlying asset is reached, at which point the option is exercised immediately.

Finally, Varas (2017) and Green and Taylor (2016) are recent examples of work studying

long-term contracting problems with transfers, dynamic arrival of private information, and

limited liability. One key difference versus my setting is that in both papers the unobserved

state is endogeneous and evolves depending on the level of costly effort privately exerted

by the agent. In Varas (2017) the state is payoff-relevant only to the principal and can be

imperfectly monitored via a public output process as in my model. Unlike my model, the

agent does not benefit from longer project operation, and the length of the verification period

prior to making incentive payments is instead limited by an agent with a higher discount rate

than the principal. Meanwhile, in Green and Taylor (2016) the privately observed project

state is not payoff relevant to either party, and its reporting is instead used to partially

alleviate the underlying moral hazard problem.
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2 The model

2.1 The technology

A firm operates a project with a limited but uncertain scope. The project delivers average

output rG > 0 per unit time in continuous time up to a catastrophic failure time Λ ∈
R+ ∪ {∞}, after which it produces average output rB < 0 per unit time. I will refer to Λ as

the project’s lifespan, with θ the associated project state process, where θt = G if t < Λ and

θt = B otherwise.

The firm must decide when to terminate the project, with the goal of maximizing expected

discounted project output. However, it is uncertain ex ante about the value of Λ and cannot

directly observe the project’s state due to random output variability. Specifically, the firm

believes ex ante that Λ ∼ H(·), where H is an arbitrary distribution function over R+∪{∞}.
It learns about Λ by observing the process Y, where Yt is the project’s cumulative output up

to time t ∈ R+. I assume that

Yt = Y G
t∧Λ + (Y B

t − Y B
t∧Λ),

where Y G and Y B are càdlàg stochastic processes satisfying three properties:

1. Y G, Y B, and Λ are mutually independent;

2. Each Y θ has stationary, independent increments;

3. Each Y θ satisfies E[Y θ
t ] = rθt for all t.

In other words, Y evolves according to Y G as long as the project is good (i.e. in the Good

state), and evolves according to Y B when it is bad (in the Bad state). The increments of

Y θ have mean rθ per unit time, with random variability independent of the project lifespan

and past noise realizations.

This flexible specification nests the typical noise processes used in economic problems

with dynamic learning, in particular the Brownian and Poisson good and bad news settings.

The Brownian case corresponds to Y θ
t = rθt + σZθ

t with Zθ a standard Brownian motion.

And Poisson news is generated by Y θ
t = rt−DN θ

t , where N θ is a Poisson counting process

with rate λθ and r and D are chosen so that r−Dλθ = rθ. When λG < λB this construction

yields the bad news model, in which case r,D > 0, while λG > λB is the good news model, in

which case r,D < 0. More general signal structures are also permissible, such as compound
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Poisson processes and mixtures of Brownian and Poisson signals.6

To streamline statements of results, I do not formally allow for discrete-time production

processes. Such a process would correspond to Y θ
t =

∑btc
n=0X

θ
n for a sequence of iid random

variables {Xθ
n}∞n=0, which does not have stationary increments in continuous time. However,

all results of this paper would go through in discrete time, at the cost of significantly more

cumbersome notation.

Formally, I model the exogenous uncertainty of this setting by a complete probability

space (Ω,F ,P) supporting Λ, Y, and a public randomization device independent of both.7

For each T ∈ R+∪{∞}, let PT be the probability measure under which PT{Λ = T} = 1 and

Y is identical in law to Y G
t∧T + (Y B

t − Y B
t∧T ). The measure P is defined in terms of the PT as

P = H(0)P0 +

∫ ∞
0

PT dH(T ) + (1−H(∞))P∞.

I also define a pair of auxiliary measures which will prove very useful for constructing optimal

contracts. Let PG denote the measure under which Λ has distribution H and Y is identical

in law to Y G and independent of Λ; and similarly let PB denote the measure under which Λ

has distribution H and Y is identical in law to Y B and independent of Λ. These measures

induce the same marginal distribution over Λ as P, but assign probabilities to output paths

as if the state were “always Good” or “always Bad”. (All measures leave the distribution of

the randomization device and its independence of Y and Λ unchanged.)

I let FY = {FYt }t≥0 denote the P-augmented filtration of F generated by Y and the

randomization device; this filtration captures the information available to the firm from its

observation of past output. I write EYt for the conditional expectation under P with respect

to FYt . I also let F = {Ft}t≥0 denote the P-augmented filtration of F generated by both Y

and θ as well as the randomization device, with Et the conditional expectation under P with

respect to Ft.
The firm is a risk-neutral expected-profit maximizer with discount rate ρ. Supposing the

6Formally, I have assumed that each Y θ is a Lévy process, a class which nests each of these examples
as well as even richer jump structures. The Lévy-Itô decomposition shows that any Lévy process can be
decomposed into the sum of three independent processes: a Brownian motion with drift, a compound Poisson
process with jumps of size greater than 1, and a compensated compound Poisson process with jumps of size
less than 1. In the case that the Lévy process has finite mean, as in this paper, this decomposition may be
rewritten as the sum of a Browian motion with drift and a compensated compound Poisson process.

7Formally, the public randomization device can be modeled by an adding states to Ω and enlarging the
natural filtration F0 generated by Y and 1{Λ ≤ t}, such that the enlarged filtration F is a standard extension
of F0 under P. See Kallenberg (1997), pg. 298, for details.
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firm operates the project until some (FY -stopping) time τY , it receives expected profits

Π = E

[∫ τY

0

e−ρtdY

]
= E

[∫ τY

0

e−ρt(πtrG + (1− πt)rB) dt

]
, (1)

where πt = PYt {Λ > t} = EYt [1{Λ > t}] are the firm’s posterior beliefs at time t that the

project’s lifetime has not yet been exceeded, based on its observation of past output.

2.2 The agency problem

The firm employs an expert to oversee the project and monitor its state. The expert costlessly

and privately observes the state process θ in addition to the public output process Y. The

filtration F therefore captures the flow of information to the expert. Note that the expert

does not directly observe Λ; in particular, he possesses no ex ante private information about

the project’s lifespan except whether the project is initially viable. Rather, the expert

observes everything the firm does, plus precisely enough additional information to terminate

the project efficiently.

The expert may make reports on the state of the project to the firm to aid in decision-

making. However, he faces an agency problem discouraging honest communication: he enjoys

intrinsic benefits from employment, in the form of flow benefits b > 0 per unit time accrued

while the project operates, regardless of its state.8 I assume that rB + b < 0, so that it

is jointly unprofitable for the project to be operated in the Bad state.9 I also assume that

the flow benefits are unpledgeable, either because they are non-pecuniary or because they

are collected only after the expert separates from the firm (and cannot be borrowed against

during the project).

Finally, I assume that the firm has no technology for imposing non-pecuniary costs on

the expert. For instance, the firm cannot assign unpleasant busywork to offset the expert’s

flow benefits. This restriction best approximates environments in which the expert performs

additional non-monitoring tasks requiring attention and mental acuity that are significantly

degraded by busywork. In particular, if imposition of a dollar’s worth of flow costs on the

expert degrades the quality of other work performed by the expert by more than a dollar’s

8None of the results of this paper would impacted if the expert’s flow benefits were made state-contingent
so long as bG ≥ bB > 0. This is because, whenever bG ≥ bB , all incentive constraints for truthtelling when
the project is Good are slack in an optimal contract. Thus the optimal contract is independent of bG.

9When rB + b ≥ 0, the optimal contract under limited liability is uninteresting: the firm makes no
incentive payments and does not condition termination decisions on the expert’s reports. The logic behind
this result is simple: when rB + b ≥ 0 there is scope for gains from trade by operating the project in the
Bad state, but because the expert has no ability to pay the firm none of these gains can be realized.
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worth of output, nonpecuniary costs will never be imposed by the firm. In Section 5.6 I relax

this assumption and show how the optimal contract changes when the firm has access to a

convex-cost technology that reduces the expert’s flow benefits.

The expert is endowed with no initial wealth, has no access to capital markets to borrow,

and is protected by limited liability, so cannot be sold the project. (In Section 5.4 I show

how the optimal contract changes when the expert can contribute capital to the project.)

He is risk-neutral and possesses the same discount rate ρ as the firm.

2.3 Contracts

The firm commits to a long-term contract eliciting reports from the expert over time and

specifying a termination date τ and a path of cumulative payments Φ, which may condition

on the public history of output and the expert’s reports as well as the public randomization

device. I thus allow for randomized contracts in my framework. In accordance with the

revelation principle, I restrict attention to contracts eliciting a sequence of reports θ′t ∈
{G,B} of the current project state at each time t. Given that the state switches only once

irreversibly, a revelation contract equivalently elicits a single report at time Λ.

Formally, I assume that the expert makes a report Λ′ from the set of F-stopping times.

Definition 1. A reporting policy Λ′ is an F-stopping time. The associated reported state

process θ′ is the process defined by θ′t = G if t < Λ′ and θ′t = B otherwise.

Under a revelation contract the firm observes both Y and θ′, and commits to a payment

process Φ and a termination stopping time τ adapted to the natural filtration F′ generated

by Y and θ′.10

Definition 2. A revelation contract C = (Φ, τ) is a stochastic process Φ ≥ 0 and a stopping

time τ, both adapted to F′, such that Φ is right-continuous, increasing, and satisfies Φt = Φτ

for all t > τ.

Limited liability corresponds to the requirement that Φ be positive and increasing.11 To

simplify formulae, I assume that a revelation contract makes no transfers subsequent to

10This construction is somewhat informal, as Φ and τ are not well-defined processes on the exogenous
probability space, but are properly families of processes indexed by the choice of Λ′. As this technicality does
not impact the developments in the body of the paper, I leave a formal discussion of the details to Appendix
A.

11In fact, the optimal contract would be unchanged if I allowed any Φ ≥ 0, since the firm optimally defers
all compensation until termination.
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termination. This is without loss of generality, since both parties have linear consumption

utility with equal discount rates and no information arrives after termination.

The expected payoff to an expert under a revelation contract (Φ, τ) and reporting policy

Λ′ is

EΛ′
[∫ τ

0

e−ρt (b dt+ dΦt)

]
,

where EΛ′ averages over output and reported state paths conditional on the reporting policy

Λ′. Incentive-compatibility is then defined in the natural way:

Definition 3. A revelation contract (Φ, τ) is incentive-compatible, or an IC contract, if

EΛ

[∫ τ

0

e−ρt (b dt+ dΦt)

]
≥ EΛ′

[∫ τ

0

e−ρt (b dt+ dΦt)

]
for all reporting policies Λ′.

The firm’s profits under any IC contract C = (Φ, τ) are

Π[C] = EΛ

[∫ τ

0

e−ρt(dYt − dΦt)

]
.

The firm’s problem is to maximize Π[·] over all IC contracts. I refer to any contract achieving

this maximum as an optimal contract. Implicit in this formulation of the problem is the

assumption that the firm requires the expert to operate the project in addition to monitoring

it. Therefore the firm cannot terminate the expert without also ceasing operation of the

project.12

3 Economic fundamentals

Conceptually, the firm’s contract design problem can be divided into two optimization prob-

lems for scope and sensitivity. The scope optimization sets the average lifespan of the project,

while the sensitivity component calibrates how aggressively project scope responds to output

surprises during operations.

12In Section 5.5 I analyze alternative settings in which the firm can replace the expert at a cost or continue
operating the project on its own. The major qualitative features of an optimal contract remain unchanged,
though unsurprisingly the firm chooses a more aggressive termination policy given its improved outside
option.
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3.1 Optimizing project scope

The scope component of the design problem can be illustrated by shutting down the firm’s

information channel and restricting contracts to condition only on the expert’s report (but

not the history of output). Without observing output, the firm relies entirely on the expert’s

report to decide when to terminate the project. In particular, truthful reporting can’t be

checked by looking for good or bad runs of output. As a result, the firm can induce truthful

reporting only by compensating the expert for all fringe benefits lost if project termination

is sped up by the report.

Concretely, suppose the firm imposes a deterministic deadline T for termination absent

any reports, and the state switches at time t < T. If the firm responds to a truthful report of

the switch by terminating the project at time t′ ∈ [t, T ), the expert’s lost benefits discounted

from time t are e−ρ(t′−t) b
ρ
(1 − e−ρ(T−t′)). So the firm must make expected payments to the

expert of at least this amount following a report at time t to achieve incentive-compatibility.

Meanwhile the expected savings to the firm from terminating at time t′ rather than T

and avoiding losses after the state switch are e−ρ(t′−t) |rB |
ρ

(1 − e−ρ(T−t′)). Since |rB| > b by

assumption, these avoided losses are always greater than the associated incentive payment.

In fact, the net savings is increasing in T −t′, so the firm optimally sets t′ = t, i.e. terminates

as soon as the expert has reported a state switch. If the firm pays the expert nothing until

termination and then a lump sum equal to lost fringe benefits from termination until time

T, then the expert receives the same total utility regardless of when he reports the state

switch. Hence such a contract is incentive-compatible, and must surely be cost-minimizing

among all IC contracts with termination deadline T .

The analysis of the previous paragraph reduces the firm’s contracting problem to the

choice of a single deadline T, at which the project is shut down absent a report from the expert

that the state has switched. Any choice of T ∈ R+∪{∞} can be made incentive-compatible

through sufficiently large payments upon termination. And the minimum required payment

at time t < T to achieve incentive-compatibility is Ft = b
ρ
(1− e−ρ(T−t)), which is increasing

in T. Hence the firm faces a tradeoff between output and payments - the higher T is set, the

more output is collected when the project has a long lifespan, but the larger are payments

to the expert when the project is short-lived.

Define a family of contracts CT = (ΦT , τT ) for each T ∈ R+ ∪ {∞} by τT = Λ′ ∧ T and

ΦT
t =

b

ρ

(
1− e−ρ(T−τT )

)
1{t ≥ τT}.

When Y is unobserved, the arguments above show that the firm’s optimal contract must
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lie in this family of contracts for some choice of T. The following remark characterizes the

optimal T.

Remark. Let T = inf
{
t : 1−H(t)

H(t)
≤ b

rG

}
, with T = ∞ if 1−H(∞)

H(∞)
> b

rG
. Then if Y is

unobserved by the firm, CT is an optimal contract.

To derive this result, consider the effect on profits of increasing T by dT and moving

from contract CT to CT+dT . Whenever Λ > T, additional output is obtained on the margin,

yielding expected flow profits rGe
−ρT dT. Conversely, whenever Λ ≤ T, the terminal payment

to the expert must be increased by b
ρ
e−ρ(T−Λ)ρ dT, yielding a cost increase (discounted from

time zero) of be−ρT dT independent of the exact realization of Λ. The net change in expected

profits from increasing T by dT is therefore ((1−H(T )rG−H(T )b)e−ρT dT. These incremental

profits are positive so long as (1−H(T ))/H(T ) ≥ b/rG and negative otherwise, yielding the

optimal deadline in the remark.

This derivation illustrates the basic price-quantity tradeoff faced by the firm when setting

an optimal scope: discounting from time T , increasing T collects marginal quantity (1 −
H(T ))rG at unit price H(T )b. As marginal output is declining while price is increasing, the

benefits of extending the deadline diminish with T (and eventually turn negative, if Λ =∞
is sufficiently unlikely).

3.2 Optimizing project sensitivity

Section 3.1 shows how adjustment of a deterministic deadline T allows the firm to trade off

between allocative efficiency and payments to the expert. The firm has one additional tool

to ameliorate its agency problem - it can condition T on the history of output, moving from

a deterministic to a stochastic deadline.

Why is adding sochasticity to T helpful to the firm? Begin with a static deadline T ,

and construct a stochastic deadline τ by adding a mean-preserving spread to T. Formally,

τ = T + ε where ε is a random variable with zero mean conditional on the state remaining

Good until τ . This construction is useful because the firm can condition ε on the history of

output, and in particular can choose ε to be positively correlated with high output histories.

In this case whenever the expert delays reporting a state switch, he incurs a penalty to T due

to the decline in average output under the Bad state as compared to the Good state. In other

words, the mean of ε will be negative conditional on a delayed report by the expert. This

effect lowers the expected stream of fringe benefits available from delaying a report, and so

lowers the required payments to the expert to discourage late reporting. Adding stochasticy

to the deadline therefore allows the firm to shrink incentive payments to the expert.
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Unfortunately for the firm, there’s a catch - adding randomness to the deadline doesn’t

come for free. Increasing the spread of ε incurs a cost to expected discounted output, due

to the convexity of the discount factor e−ρt. If average output flow rG is collected up to the

termination time Λ ∧ τ, then total expected discounted output is E
[
rG
ρ

(
1− e−ρ(Λ∧τ)

)]
. As

1 − e−ρ(Λ∧τ) is concave, increasing the variability of τ lowers expected discounted output.

Therefore the firm faces a price-quantity tradeoff in designing the variability of τ as well

as its mean - the higher the spread, the lower the unit price of output but the less overall

output is obtained.

The substance of the analysis in this paper is how to optimally design the distribution

of ε. While the marginal distribution of ε can be chosen arbitrarily, its correlation with the

underlying state is constrained by the structure of the output process in a complex way. In

addition, the choice of T will affect the optimal choice of ε, and vice versa. In the next

section I show how to untangle these interactions and construct an optimal contract.

4 Deriving an optimal contract

4.1 Relaxing the incentive constraints

Incentive compatibility amounts to the requirement that the expert not benefit from falsely

reporting a state change either before or after Λ, regardless of when the state switches or

what run of output occurs. It will be very helpful to characterize incentive compatibility

as the concatenation of two sets of constraints which separately rule out deviations to early

and late reporting.

Definition 4. A revelation contract (Φ, τ) satisfies IC-G (respectively, IC-B) if

EΛ

[∫ τ

0

e−ρt (b dt+ dΦt)

]
≥ EΛ′

[∫ τ

0

e−ρt (b dt+ dΦt)

]
for all reporting policies Λ′ ≤ Λ (respectively, Λ′ ≥ Λ).

A contract satisfying IC-G (IC-B) ensures that no reporting policy which always reports

sooner (later) than Λ is preferable to truthful reporting. The IC-G and IC-B constraints

collectively represent only a subset of the constraints required for incentive-compatibility,

since an IC contract must also deter mixed misreporting policies that sometimes report early

and sometimes late. The following lemma verifies that IC-G and IC-B together nonetheless

rule out all such deviations and ensure incentive-compatibility.
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Lemma 1. A revelation contract is incentive-compatible iff it satisfies both IC-G and IC-B.

This partition of the set of IC constraints turns out to separate the constraints which

bind at the optimum from those which lie slack. In particular, the set of IC-G constraints

will be slack under an optimal contract and can be dropped from the optimization problem.

Intuitively, given the expert’s preference to delay project termination absent contractual

incentives, at least some of the IC-B constraints must bind. But since provisioning incentives

to report on-time is costly, the firm should impose them as lightly as possible. It would

therefore be surprising if the firm provided such strong incentives for reporting a switch

on-time that IC-G were violated and the expert profited by reporting a switch prematurely.

To validate this conjecture, I solve the relaxed problem of characterizing an optimal IC-B

contract. I then verify afterward that the resulting contract is indeed incentive-compatible

and therefore an optimal contract with respect to the full suite of incentive constraints.

4.2 Optimal usage of the expert’s report

Designing an optimal contract entails determining how payments and allocations should

respond both to runs of output and the timing of the expert’s report. In Section 3.1 I

showed that when the contract does not condition on output, the cost-minimizing IC contract

implementing any deadline terminates as soon as the expert reports a state switch and defers

all payments until the time of a report. I show now that this result generalizes to arbitrary IC-

B contracts which may condition on the history of output. Thus the design of the contract’s

output dependence can be cleanly separated from its response to the expert’s report.

Lemma 2 (No late termination). Suppose C = (Φ, τ) is an IC-B contract. Then there exists

an IC-B contract C ′ = (Φ′, τ ′) such that:

• τ ′ = τ ∧ Λ′;

• Π[C ′] ≥ Π[C];

• Π[C ′] > Π[C] if PΛ{τ > Λ} > 0.

This lemma establishes that optimal IC-B contracts never terminate inefficiently late -

that is, after the expert reports the state has switched. In principle late termination could

be desirable as a way to compensate the expert with flow benefits for truthful reporting.

However, the assumption that |rB| > b means that the firm can always compensate the

expert more cheaply with a monetary transfer at the time of the state switch. The proof

of Lemma 2 exploits this observation, modifying a given contract by halting at the time of
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a report and adding an additional transfer equal to the expert’s expected flow benefits plus

future transfers under the original contract. This change preserves IC-B while improving

profitability if the original contract continued operations in the Bad state with positive

probability.

Remark. There exist IC contracts for which the modified contract constructed in the proof

of Lemma 2 is not incentive-compatible.

To see this, consider a contract which provides large termination payments early in the

contract but attenuates these payments quickly as the project proceeds. Such setups create

an incentive for the expert to report a state switch early in order to maximize his termination

payment, endangering IC-G. Incentive-compatibility can be enforced by maintaining opera-

tions following a report in order to monitor output, punishing the expert for a misreport by

reducing the termination payment following good runs of output. If such a verification phase

were removed by truncating project operation, the transformed contract would violate IC-G

even if the initial contract is IC. It is therefore critical in Lemma 2 that the transformed

contract is allowed to be merely IC-B and not fully incentive-compatible. This caveat illus-

trates the tractability brought by passing to the relaxed problem, as well as the importance

of verifying that an optimal IC-B contract does not violate IC-G.

Lemma 3 (Backloading). Suppose C = (Φ, τ) is an IC-B contract satisfying τ ≤ Λ′ and

PΛ{τ <∞} = 1. Then there exists an FY -adapted process F ≥ 0, inducing payment process

Φ′t = Fτ1{t ≥ τ}, and an FY -stopping time τY such that C ′ = (Φ′, τY ∧ Λ′) is an IC-B

contract satisfying Π[C ′] ≥ Π[C].

This lemma affords several simplifications to the structure of contracts featuring no late

termination. First, any termination rule halting no later than the time of a report must base

termination only on public information whenever the project is terminated early. Hence an

optimal termination policy can always be formulated as a rule of the form “Terminate the

project as soon as the expert reports a state switch or τY has been reached, whichever comes

first,” for some public deadline τY which conditions only on the history of output.

Second, all payments can be backloaded to a single termination fee, denoted F, paid

when the project is shuttered. This result is straightforward - both parties are risk-neutral

and share the same discount rate, so profits and incentive-compatibility are undisturbed by

deferring all promised payments until termination and accruing interest on them at rate ρ.

Finally, the size of the fee need not be conditioned on the date of a past report, hence F

is FY -adapted. Establishing this result requires care, since C may pay the expert differently
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depending on whether he reports a state switch “just in time” when τY arrives. The proof

of the lemma shows that in this case C may always be modified to pay the lower of the

termination fees promised depending on whether or not the expert reports a switch at τY ,

without disturbing incentive-compatibility or firm profits.

In light of Lemmas 2 and 3, I restrict attention to IC-B contracts (Φ, τ) which may be

written τ = τY ∧ Λ′ and Φt = Fτ1{t ≥ τ} for some FY -adapted process F ≥ 0 and FY -

stopping time τY .13 Such contracts are summarizable by the pair (F, τY ). Crucially, both

F and τY condition only on the public output history and not the reports of the expert.

I therefore pass from the general problem of designing the contract’s dependence on both

reports and the history of output, to the simpler problem of designing just its dependence

on output.

4.3 Optimal implementation of public deadlines

I next solve the problem of how to optimally implement an arbitrary public deadline τY via

an IC-B contract. This step reduces the contractual design problem from the simultaneous

choice of both F and τY to the choice of τY only.

Definition 5. An FY -stopping time τY is implementable if there exists a termination fee

process F such that (F, τY ) is an IC-B contract. In this case, F implements τY .

Remark. Every τY is implementable via the fee schedule Ft = b/ρ.

This remark follows from the fact that if the firm fixes Ft = b/ρ for all time, then

the expert’s total profits are the same under any reporting strategy, ensuring he has no

incentives to delay reporting. (In fact, this argument shows that there exists a fully IC

contract implementing any τY .) Given this positive result, it is meaningful to search for a

profit-maximizing implementation of an arbitrary τY .

I derive the optimal implementation by solving a (further) relaxed problem which isolates

the binding subset of IC-B constraints. Suppose that the expert’s reporting strategy is

constrained to satisfy Λ′(ω) ∈ {Λ(ω),∞} for all ω ∈ Ω. In other words, the expert can either

13If Λ <∞ a.s., this restriction is without loss of generality. Otherwise, it excludes contracts which operate
the project forever with positive probability and disburse payments prior to termination in such histories.
This is because under such contracts, there is no terminal date at which to backload payments in some
histories.

Still, the profit of any such contract can be approximated arbitrarily closely by a sequence of IC-B contracts
with bounded termination dates. Optimality of a contract which never terminates and gives interim payments
would then manifest via the supremum of contractual profits being unattainable by backloaded contracts.
As I shall show, the supremum is achievable and so the restriction is innocuous.
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report a state switch immediately or not at all, but cannot deviate in any other way. This

is equivalent to a model in which the expert’s reports are verifiable, as the firm could then

costlessly deter any false reports by mandating immediate termination with no payments.

Definition 6. A contract C = (F, τY ) satisfies IC-∞ if

E

[∫ τY ∧Λ

0

e−ρtb dt+ e−ρ(τY ∧Λ)FτY ∧Λ

]
≥ E

[∫ τY ∧Λ′

0

e−ρtb dt+ e−ρ(τY ∧Λ′)FτY ∧Λ′

]

for all reporting policies Λ′ such that Λ′(ω) ∈ {Λ(ω),∞} for all ω ∈ Ω.

Clearly all IC-B contracts satisfy IC-∞, but not vice versa. I solve the relaxed problem of

maximizing profits while implementing τY subject to IC-∞, and then show that the resulting

contract satisfies IC-B as well.

To state the result, I define a new conditional expectation operator EBt which averages

over uncertainty in future output “assuming the state has already switched.”

Definition 7. For any random variable X, let EB[X] =
∫
X dPB. For each t ∈ R+, let

EBt [X] be the expectation of X under PB conditional on Ft.

Informally, one can think of EBt as satisfying EBt [X] = E[X | (Ys)s≤t,Λ ≤ t]. The latter

expression, however, is not a well-defined random variable, and isn’t meaningful if P{Λ ≤
t} = 0. Definition 7 resolves these issues through a more careful construction.

The following remarks highlight several simple properties satisfied by this conditional

expectation operator.

Remark. If X is FY∞-measurable, then EBt [X] is FYt -measurable for each t.

In general, because EBt [X] may condition on the history of the indicator variable 1{Λ ≤
t}, it is not measurable with respect to just the history of output. However, when X is

a function only of the path of output and the randomization device, then under PB its

distribution is independent of the value of Λ. Thus its expectation conditional on Ft is the

same as conditional on FYt .

Remark. Suppose X is a stochastic process and Λ′ is an F-stopping time satisfying Λ′ ≥ Λ.

Then EBΛ′ [XΛ′ ] = EΛ′ [XΛ′ ] a.s.

This remark simply reflects the fact that, after Λ, the conditional distribution over future

output under P is the same as under PB.
With the operator EBt in hand, I can characterize the optimal IC-∞ contract implement-

ing an arbitrary τY :
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Lemma 4. For any FY -stopping time τY , define a termination fee process F ∗ via

F ∗t = EBt

[∫ τY

t∧τY
e−ρ(s−t)b ds

]
.

Then F ∗ is an FY -adapted process, (F ∗, τY ) satisfies IC-∞, and F ∗Λ∧τY ≤ FΛ∧τY a.s. for

every F such that (F, τY ) satisfies IC-∞. In particular, (F ∗, τY ) maximizes expected profits

among all IC-∞ contracts (F, τY ).

This result is proven in the following way. Suppose that τY is implemented via IC-∞
fee process F. If the state switches at time t < τY , the expert has two options - report

immediately or withhold his report forever. The expert receives Ft from reporting immedi-

ately, versus EBt
[∫ τY

t
e−ρ(s−t)b ds+ e−ρ(τY −t)FτY

]
from withholding his report forever. IC-∞

therefore amounts to the requirement that

FΛ ≥ EBΛ

[∫ τY

Λ

e−ρ(s−Λ)b ds+ e−ρ(τY −Λ)FτY

]
= F ∗Λ + EBΛ

[
e−ρ(τY −Λ)FτY

]
whenever Λ < τY . In particular, given F ≥ 0, the weaker inequality FΛ ≥ F ∗Λ must also hold

whenever Λ < τY . And since F ∗τY = 0 by construction, it must be that FτY ∧Λ ≥ F ∗τY ∧Λ for

any IC-∞ fee process implementing τY . Hence if F ∗ itself satisfies IC-∞, it must be profit-

maximizing among all fee processes implementing τY . And indeed F ∗ is IC-∞ given F ∗τY = 0,

proving the lemma. Note that under F ∗, the expert obtains exactly the same expected payoffs

under the strategies Λ′ = Λ and Λ′ =∞; the payment he receives at the time of his report is

always just enough to make him indifferent between reporting immediately and withholding

his report forever.

The following lemma shows that the solution to the relaxed problem established in Lemma

4 satisfies IC-B and so solves the original unrelaxed problem.

Lemma 5. For any FY -stopping time τY , (F ∗, τY ) satisfies IC-B when F ∗ is as defined in

Lemma 4.

To understand this result, consider the expert’s payoff from delayed reporting strategy

under F ∗. Delaying a report leads to the collection of flow rents for some time, followed by

payment of F ∗, which by construction is exactly equal to the expected flow rents he would

have collected by continuing to withhold his report forever. Hence all delayed reporting

policies yield precisely the same expected payoff as the policy Λ′ =∞, which in turn provides

the same expected payoff as truthful reporting.
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The simplicity of this characterization flows from the stationarity of the setting once

the Bad state has been reached. Were it the case that the state continued to evolve after

the Bad state were reached, Lemma 4 would still hold under a suitable generalization of the

conditional expectation used to define F ∗. However, that fee process would not be guaranteed

to satisfy IC-B. This would be true in particular if the state could switch back from Bad to

Good. For in this case the expert’s payoff from delaying a report includes the option value

of waiting to see whether the state switches back before reporting. Since the optimal IC-∞
contract does not capture this option value, IC-B would be violated.

Similar complexities would arise if the expert received only an imperfect signal that the

state has switched. For in this case by delaying the expert would retain an option to observe

output and refine his belief about the true state before reporting. This option value is

similarly omitted from the construction of F ∗, and IC-B would fail to hold.

4.4 The firm’s virtual profit function

Lemmas 4 and 5 establish that any FY -stopping time τY is implementable by an IC-B

contract, with associated profit-maximizing fee process

F ∗t = EBt

[∫ τY

t

e−ρ(s−t)b ds

]
.

The following proposition leverages this fact to prove the first major result of the paper. The

following proposition establishes that when F ∗ is eliminated from the firm’s profit function,

the resulting optimization problem for τY can be stated elegantly in terms of maximizing an

expected discounted flow of virtual profits.

Proposition 1. Let τY be any FY -stopping time and Π[τY ] be the supremum of profits

achievable by IC-B contracts implementing τY assuming truthful reporting by the expert.

Then

Π[τY ] = E

[∫ τY

0

e−ρt(πtrG − (1− πt)b) dt

]
. (2)

Recall that πt = PYt {Λ > t} is the probability that the project’s lifespan has not yet

lapsed by time t, conditional on the history of output up to that time. Were the firm unable

to employ an expert, πt would also be the firm’s posterior beliefs about the current state

at time t. Of course, under truthful reporting by the expert the firm’s posterior beliefs are
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degenerate and equal to 1{Λ > t}, and πt possesses no inferential significance. Nonetheless,

it may still be computed by the firm, and turns out to be of great practical importance for

designing an optimal contract. Going forward, I will refer to the process π as the firm’s naive

beliefs about the state.

Proposition 1 establishes that the firm’s optimal termination time does not directly max-

imize expected discounted flow profits, but instead optimizes expected discounted virtual

profits, where virtual profits are rG per unit time while the state of the project is Good, and

−b per unit time afterward. The following heuristic argument explains why. Consider any

contract with termination policy τY and fee process as specified in Lemma 4. This contract

operates the project until either τY is reached or the state switches; in the latter case, the

projected is halted at the time of the switch and the firm pays the expert his expected dis-

counted flow of benefits from allowing the project to continue operating until τY . The firm’s

expected profits under such a contract are therefore identical to a counterfactual setting with

no expert in which the project operates until τY but yields flow profits −b rather than rB

when the state is Bad. And from an ex ante perspective, conditional on FYt the fraction of

the time the project is in the Good state is precisely πt. Thus instantaneous expected profits

at any time, conditional on FYt , are πtrG− (1−πt)b. Integrating discounted flow profits over

time and applying the law of conditional expectations yields equation (2).

Proposition 1 reduces the contracting problem with an expert to the solution of a par-

ticular virtual optimal stopping problem, closely related to the firm’s problem without an

expert (cf. equation (1)). In this virtual problem the firm learns about Λ as if no expert

were available but incurs a reduced average flow cost of operating the project in the bad

state of −b rather than rB.

Remark. Public randomization is unnecessary to achieve the optimum of Π[·].

This fact follows from the observation that, given the independence of the public ran-

domization device from Y and Λ, any τY employing randomization may be considered a

distribution over stopping times τY0 which don’t condition on the public randomization de-

vice. Hence one may write Π[τY ] = E[Π[τY0 ]], where Π[τY0 ] is a random variable measurable

with respect to the outcomes of the public randomization device. Then if τY is to optimize

Π[·], with probability 1 the randomization device must select a τY0 optimizing Π[·] among all

stopping times not using public randomization. As all such stopping times yield the same

expected profits, τY might as well be chosen not to employ randomization.
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4.5 Optimizing virtual profits

Proposition 1 reduces the firm’s optimal contracting problem to solving a single-person

optimal stopping problem. Notice that the firm’s virtual flow profits are increasing in πt,

and reach zero at the posterior odds ratio πt
1−πt = b/rG, or equivalently at posterior beliefs

πt = b/(b+ rG). Let τ † ≡ inf{t : πt ≤ b/(b+ rG)} be the stopping time at which the firm’s

virtual flow profits first drop below zero. Certainly the firm optimally continues operating

the project as long as flow profits are positive:

Remark. If τ ∗ is an optimal public deadline, then τ ∗ ≥ τ † a.s.

On average, πt declines over time due to the expected arrival of a state switch. Indeed,

for any times t and s > t, Et[πs | FYt ] = 1−H(s)
1−H(t)

πt ≤ πt. Thus if the firm had to make a once

and for all decision to stop or continue at τ †, it would optimally stop. But because the firm

may halt operations at any time, it retains a real option to continue the project temporarily

and halt later if its beliefs continue to deteriorate. Cast in the language of economics, the

optimization of Π[τY ] amounts to calculating the value of this real option.

If the firm learned very little about the state from output, say because of high output

variability, then the option to wait and learn would be worth very little, and τ † would be

an approximately optimal stopping rule. (In the limit of no learning, τ † would be exactly

optimal, as I showed in Section 3.1.) However, if output is sufficiently informative about the

current state, πt may often move upward. In this case the firm has an incentive to continue

operating past τ †, in the hopes of observing good runs of output that boost its beliefs about

the state. The optimal public deadline is therefore a belief threshold π(t) sufficiently low

that the value of waiting for possible good news is outweighed by the flow costs of operating

at the current low beliefs. The following result establishes this fact rigorously.

Proposition 2. There exists a function π : R+ → [0, b/(b + rG)] such that τ ∗ = inf{t :

πt ≤ π(t)} is an optimal public deadline, and if τ ∗∗ is any other optimal public deadline,

then τ ∗∗ ≥ τ ∗ a.s.

The optimal belief threshold will typically be time-varying given the inhomogeneity of

the state transition process. An important exception is when the state transition rate is

homogeneous, i.e. H(t) = H(0) + (1 − H(0))(1 − exp(−αt)) for some state transition rate

α ≥ 0. In that case current beliefs are a sufficient statistic for the state of the system, and

the optimal threshold is time-invariant.

For general output processes, which may exhibit rich jump distributions, the calculation
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of π(t) is complex.14 I will forgo a general formulation and instead describe the solution to

two important special cases which illustrate the forces shaping the optimal deadline.

First suppose that output follows a Poisson bad news process in each state: that is,

Y θ
t = rt − DN θ

t for Poisson counting processes N θ with rates λθ satisfying λB > λG ≥ 0,

where r,D > 0 are characterized by the relations r−Dλθ = rθ. Standard arguments15 show

that posterior beliefs evolve according to the stochastic differential equation

dπt = − πt− dH(t)

1−H(t−)
+

(λB − λG)πt−(1− πt−)

λGπt− + λB(1− πt−)
dZt,

where Z is an FY -martingale known as the innovation process which satisfies

dZt = D−1 (dYt − (rGπt− + rB(1− πt−)) dt) .

The first term in the evolution of πt captures the deterioration of beliefs due to the expected

arrival of a state switch. Meanwhile the second term is the adjustment to beliefs from

observation of the output flow. Because Z is a martingale, the average change in beliefs over

time would be zero if not for the arrival of the state switch. The arrival of bad news always

leads to a discrete downward adjustment of beliefs. On the other hand absence of bad news

leads to an upward revision from the learning term, but a downward revision from the state

switching term. Depending on the relative speeds of learning and state switching, as well as

the current level of beliefs, this drift can take either sign.

The following lemma characterizes an optimal stopping rule when the state transition

rate is sufficiently high. To state the result, I make use of the fact that H is a monotone

function and is therefore differentiable a.e., with derivative h.

Lemma 6. Suppose Y evolves as a Poisson bad news process in each state. Define α ≡
ess inft≥0

h(t)
1−H(t)

. Then if α ≥ λB−λG
1+b/rG

, τ † is an optimal public deadline.

Under the lower bound on the hazard rate of state switching in the lemma statement,

the state switches quickly enough that even absent bad news π drifts downward whenever

πt/(1 − πt) > b/rG. Hence once the posterior likelihood drops below b/rG, it can never

again rise above this level. So there is no option value in waiting for news, meaning τ † is

an optimal stopping policy. Note that beliefs may still drift upward absent news when the

14See Buonaguidi and Muliere (2016) for an example of solving an optimal stopping problem involving
learning from Lévy processes.

15See Peskir and Shiryaev (2006), pg. 357, for a derivation under the homogeneous state transition
distributionH(t) = H(0)+(1−H(0))(1−exp(−αt)). Their derivation extends to generalH straightforwardly.
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posterior likelihood is below b/rG. But this upward drift is decreasing in πt, and the bound in

the lemma statement ensures that the drift becomes nonpositive by the time the likelihood

reaches b/rG.

Now suppose that output is Brownian in each state: that is, Y θ
t = rθ dt + σ dZθ

t , where

each Zθ is a standard Brownian motion. In this setting beliefs evolve as16

dπt = − πt− dH(t)

1−H(t−)
+

(
rG − rB

σ

)
πt−(1− πt−) dZt,

where

dZt = σ−1 (dYt − (rGπt− + rB(1− πt−)) dt)

is a standard Brownian motion with respect to FY . Again there are two contributions to

belief updating - a downward revision due to the expected arrival of a state switch, and a

mean-zero revision due to learning about the state from output. The speed of learning is

modulated by the signal-to-noise ratio (rG− rB)/σ. The larger the difference in drifts, or the

smaller the noise in output, the larger are expected revisions to beliefs over time.

This problem is recursive in the state variable Xt = (πt, t), with time included in the

state due to the inhomogeneity of the transition process for θ. The value of the real option

at time t may therefore be denoted V (πt, t), where V is referred to as the problem’s value

function. For simplicity, I will assume that H is continuously differentiable with derivative

h, and define α(t) ≡ h(t)/(1−H(t)) to be the conditional hazard rate for arrival of the state

switch. If α is of bounded variation, then V is sufficiently smooth that it satisfies the HJB

equation

ρV (π, t) = πrG − (1− π)b− α(t)πVπ(π, t) +
1

2

(
rG − rB

σ

)2

π2(1− π)2Vππ(π, t) + Vt(π, t)

for beliefs π > π(t), where π(t) ≤ b/(b + rG) is the firm’s optimal termination thresh-

old. This threshold is calculated by solving the free boundary problem posed by the HJB

equation along with the value-matching and smooth-pasting conditions V (π(t), t) = 0 and

Vπ(π(t), t) = 0 at the termination boundary. Transversality conditions at π = 1 (where the

ODE becomes singular) and t = ∞ are also needed to eliminate spurious exploding solu-

tions. As the true value function lies in the interval [0, rG/ρ], it is sufficient to require that

V be a bounded function. Appendix B formally establishes that a solution to this problem

characterizes the optimal public deadline.

16See Peskir and Shiryaev (2006), pg. 309-10, for a derivation when the state transition rate is homoge-
neous.
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The HJB equation captures the costs and benefits to the firm of waiting for news about

the project’s state. The left-hand side is the total value of waiting, normalized by ρ to be

in flow units. On the right-hand side are the flow profits received by the firm, plus the

expected revisions to the project’s option value due to the passage of time. The second

term accounts for the fact that beliefs drift downward on average over time, diminishing the

value of waiting. Because flow profits are increasing in beliefs, V is monotone increasing in

the state and so this term is always negative. The third term captures the option value of

waiting, due to stochasticity in the belief process which might improve future beliefs. The

value function can be shown to be convex in beliefs due to this optionality (see the proof

of Proposition 2), so this term is always positive, and is increasing in the signal-to-noise

ratio (rG − rB)/σ of the process. The final term captures the inhomogeneity of the state

transition process. This term can be either positive or negative, depending on whether state

transitions speed up or slow down as time passes. In the case where α(t) = α for all time

and state transitions are homogeneous, Vt(π, t) = 0.

4.6 Verifying incentive compatibility

Recall that the contract induced by optimizing Π[τY ] solves only the relaxed contracting

problem which ignores all IC-G constraints. I now return to the problem of verifying that

this solution satisfies full incentive compatibility and thus is an optimal contract. To do

this, I develop a simple sufficient condition for incentive-compatibility which I then show is

satisfied by the optimal IC-B contract.

The sufficient condition involves the expert’s ex post utility process U . For a given

contract (F, τY ), this process is defined to be

Ut ≡
∫ t∧τY

0

e−ρsb ds+ e−ρ(t∧τY )Ft∧τY .

When F = F ∗, where F ∗ is the fee-minimizing payment process characterized in Lemma 4,

this process can be equivalently written

Ut = EBt

[∫ τY

0

e−ρsb ds

]
.

Ut captures the ex post total utility of the expert supposing he reports a state switch at time

t. The expert’s ex ante utility from reporting policy Λ′ is then just E[UΛ′ ].

It turns out that incentive-compatibility holds so long as U drifts upward whenever the
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state of the project is Good. This fact may be stated formally using the following definitions.

Definition 8. For any random variable X, let EG[X] =
∫
X dPG. For each t ∈ R+, let

EGt [X] be the expectation of X under PG conditional on Ft.

Analogously to EBt , this definition formalizes a notion of expected value “conditional on

the state never switching”.

Definition 9. Suppose X is an F-adapted process. Then X is a B-martingale if EBt [Xs] = Xt

for all s > t, and is a G-martingale if EGt [Xs] = Xt for all s > t. Super- and submartingales

are defined analogously.

Remark. U is a B-martingale.

The following lemma establishes a sufficient condition for incentive-compatibility.

Lemma 7. Suppose τY is an FY -stopping time, and let F ∗ be as defined in Lemma 4. If U

is a G-submartingale, then (F ∗, τY ) is incentive-compatible.

The proof of this lemma is very simple - if U is a G-submartingale, then the expert’s ex

post utility drifts upward over time so long as the state is Good. Thus the expected payoff

from waiting until Λ to report a state switch must be at least as high as from reporting at

any earlier time.

For general public deadlines, U is not guaranteed to be a G-submartingale. For instance,

if τY increases following bad runs of output and decreases following good runs, the fact that

U is a B-martingale implies that U drifts downward while the state is Good. However, dead-

lines which follow a time-dependent threshold rule in naive beliefs do not behave this way.

Because positive runs of output boost naive beliefs, any threshold rule will induce a positive

association between τY and past output. Therefore if U is a B-martingale, the increased in-

cidence of good runs of output under PG ensures that U will be a G-submartingale, implying

full incentive-compatibility by Lemma 7.

The following result verifies this intuition formally under a slight specialization of the

model to output processes whose jumps have sizes drawn from a finite set.17 For any pro-

cess X, define ∆Xt ≡ Xt − Xt− to be its jump process, which is nonzero only when X is

discontinuous.

17I conjecture that the result holds true as well for general output processes, which may follow any Lévy
process with general jump size distributions. However, the martingale representation theorem and belief
updating rule I use to formally prove the result are difficult to work with in the general case.
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Proposition 3. Suppose there exists a finite set D ⊂ R\{0} such that ∆Y θ is D∪{0}-valued

for each θ. Let τY be any FY -stopping time such that τY = inf{t : πt ≤ π(t)} for some

function π : R+ → [0, 1]. Then U is a G-submartingale.

Corollary. If Y satisfies the hypothesis of Proposition 3, then the optimal public deadline

τ ∗ characterized by Proposition 2 induces an incentive-compatible contract.

This proposition and its corollary close the loop on the construction of an optimal con-

tract, justifying my initial conjecture that none of the IC-G constraints bind for an optimal

contract.

5 Discussion and extensions

5.1 The impact of hiring an expert

Hiring an expert has a crisp, precisely characterizable impact on project dynamics versus a

setting in which the firm receives no expert advice. Recall that without an expert, the firm’s

expected profits from a given termination policy τY are

E

[∫ τY

0

e−ρt(πtrG + (1− πt)rB) dt

]
.

In this setting the process π reflects the firm’s true beliefs about the state, but its distribution

over paths is identical to the firm’s naive beliefs in the problem with an expert. In other

words, the firm “learns” about the state in the same way with or without the expert. Given

the assumption that |rB| > b, and in light of Proposition 1, the entire impact of the expert

on the firm’s optimal stopping problem is to lower the penalty for operating in the Bad state

from rB to −b.
In particular, it will still be the case without an expert that an optimal stopping rule is

a time-dependent threshold in beliefs, as in Proposition 2. But this threshold will be higher

at each moment in time without an expert versus with one, reflecting the increased cost of

operating the project in the Bad state without an expert. Since the distribution of paths

of beliefs is identical with and without an expert, this implies that the project is operated

for a shorter time without an expert almost surely, conditional on no state change having

occurred. In other words, the expert reduces the severity of Type I errors, in which the

project is terminated before the state has actually switched. Of course, even with an expert
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such errors are typically not eliminated entirely, as termination due to reaching the public

deadline is always inefficiently early ex post.

The presence of an expert exerts one additional major influence on project operation -

he ensures that the project never actually operates into the Bad state. Thus an optimal

contract with an expert does not exhibit Type II errors, in which the project continues

operating after the state has switched. The impact of an expert can therefore be succinctly

summarized as follows: he increases the ex post efficiency of project operation in every state

of the world, and reduces the severity of Type I errors while completely eliminating Type II

errors.

This result is a bit surprising, as the basic agency problem faced by the firm is the expert’s

desire to increase Type II errors. A first guess at the resolution of this conflict might therefore

be that the expert reduces or eliminates Type I errors at the cost of more Type II errors.

Yet the optimal contract actually exhibits the opposite asymmetry. This outcome crucially

depends on the firm’s ability to commit to terminal payments which compensate the expert

for reporting bad news that ends the project.

Finally, note that hiring of an expert is not payoff-equivalent equivalent to simply chang-

ing rB to −b in the single-person problem. Such a change would both change the payoff

structure and decrease the rate of learning, due to a reduction in the signal-to-noise ratio of

the output process. In contrast, the comparison of project dynamics just performed relies

crucially on the fact that the learning dynamics are identical across the two environments.

5.2 Comparative statics

Proposition 2 characterizes an optimal public deadline as a (generally time-dependent)

threshold rule π(t) in naive beliefs. Even without calculating π(t) explicitly, its characteriza-

tion as the solution to an option value problem allows for an easy discussion of comparative

statics.

I begin by precisely defining what is meant by several of the comparative statics exercises

discussed below. First, whenever each Y θ has a Brownian component with common18 volatil-

ity σ > 0, comparative statics on the drift of output rθ will be interpreted as a change in the

drift rate of Y θ, leaving its volatility and jump distribution constant. Such a shift may be

accomplished by decomposing Y θ as Y θ = r̃θt+σZθ + Ỹ θ, where Ỹ θ is a pure jump process,

with r̃θ = rθ−E[Ỹ θ
1 ]. A change in rθ will then be formally defined as a change in r̃θ, holding

fixed Zθ and Ỹ θ. When performing this comparative static, I will assume that r̃G > r̃B, so

18If the volatilities were not constant, the processes would be instantaneously distinguishable and the
comparative statics exercise would be uninteresting.
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that whenever rG increases, Y G and Y B become more distinguishable, while whenever rB

increases, they become less distinguishable. This holds whenever rG is sufficiently large, rB

is sufficiently small, or when each Y θ is continuous so that E[Ỹ θ] = 0.

If σ = 0, then a literal shift of the drift rate in the fashion just outlined would lead to

immediately distinguishable processes and be uninteresting. However, when Y θ has jumps of

a finite number of sizes, so that jumps of a given size d have a well-defined arrival intensity

λθ(d) under Y θ, then all comparative statics holding for an increase in rθ continue to hold

in the following sense. An increase in rG can be taken to be an increase in λG(d) for

jumps of some size d > 0, or a decrease in λG(d) for jumps of some size d < 0, for any d

such that d(λG(d) − λB(d)) > 0. And similarly, an increase in rB can be taken to be an

increase in λB(d) for jumps of some size d > 0, or a decrease in λB(d) for jumps of some

size d < 0, for any d such that d(λG(d) − λB(d)) < 0. The final condition in each of these

definitions ensures that when rG is increased, Y G and Y B become more distinguishable, while

whenever rB is increased, they become less distinguishable. This mimics the requirement

that r̃G > r̃B imposed when σ > 0. In particular, under a Poisson good news process

increasing rθ corresponds to increasing λθ, while under a Poisson bad news process increasing

rθ corresponds to decreasing λθ.

Next, I will define the hazard rate of a state switch by α(t) ≡ h(t)/(1−H(t)), where h is

the derivative of H, which exists a.e. given that H is monotone. Whenever H is absolutely

continuous, a shift in the hazard rate function α induces a new distribution over Λ via

H(t) = 1− (1−H(0)) exp

(
−
∫ t

0

α(s) ds

)
.

If H is not absolutely continuous, then an increase in the hazard rate distribution can be

taken as shorthand for a pointwise upward shift in H, or equivalently a downward shift in Λ

in the FOSD sense.

Finally, I will refer to the signal-to-noise ratio (SNR) of the output process when consid-

ering changes in the speed at which the underlying true state is extracted from observation of

the signal process. I will define this measure only when each Y θ has a Brownian component,

and will take it to be the inverse of the (common) volatility parameter σ of the Brownian

component of output. (If the volatility parameters are not equal in the two states, then the

states are immediately distinguishable and all comparative statics are trivial.)

I now consider how a parameter change impacts the level of the threshold. Any parameter

changes which raise the break-even virtual profit threshold will mechanically induce a higher

optimal termination threshold. Such changes include a decrease in rG or an increase in
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b. Also, any parameter changes which diminish the option value of continuing the project

will increase the optimal termination threshold. These changes include an increase in rB,

a decrease rG, or a decrease in the SNR, all of which decrease fluctuations in beliefs; an

increase in the discount rate, which increases the relative cost of operating below the break-

even point; or an increase in the future path of α, which push down the distribution of future

beliefs. Note that changing rG affects both the break-even point and the option value of the

project, but by assumption in the same direction. Table 1 summarizes these results.

Parameter Sign of ∆π(t)/∆Parameter
b +
rB +
ρ +

{α(s)}s>t +
rG -

SNR -

Table 1: Comparative statics of the termination threshold

Another important comparative statics exercise is how changes in parameter values im-

pact the total profits of the firm under an optimal contract. An increase in b increases flow

losses in the Bad state, decreasing firm profits under any contract and thus certainly un-

der the optimal contract. Meanwhile an increase in ρ decreases profits under the optimal

contract straightforwardly due to the resulting diminution of flow profits at each moment in

time.19 Next, an increase in the path of the state switching rate α straightforwardly decreases

achievable profits by decreasing the amount of time the project spends in the Good state.20

Finally, an increase in rG or the SNR or a decrease in rB all increase optimal profits, as they

speed learning and for rG boost flow profits while the project is Good. Table 2 summarizes

these results.

Unsurprisingly, the set of parameters that increase optimal profits are precisely the ones

which decrease the termination threshold. This equivalence reflects the fact that increased

optionality both increases optimal profits and decreases the threshold at which the project

should be terminated.

19This reasoning is valid only when comparing the optimal contract under different discount rates. For
a fixed contract, it’s possible for an increase in ρ to increase expected profits, if the contract suffers large
losses from operating long past a state switch. However, an optimal contract never operates this way and so
cannot benefit from an increase in the discount rate.

20As for ρ, for a fixed contract an increase in α might actually increase profits. In particular, if a contract
is sensitive to output early on but after a trial period operates forever, then faster switching early on can
lead the contract to terminate more often instead of operating forever with flow losses much of the time.
But an optimal contract will never exhibit such behavior.
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Parameter Sign of ∆Profits/∆Parameter
rG +

SNR +
b -
rB -
ρ -
α -

Table 2: Comparative statics of optimal profits

5.3 Dynamic verification

One important special case nested by my model is dynamic verification of a report about

a persistent project state. This case corresponds to H(t) = π0 for all t, where π0 ∈ (0, 1)

is the probability that a long-run project is worth undertaking forever. In this case the

optimal termination threshold is a constant π, and an optimal policy takes one of two forms:

if π0 < π, then the project isn’t worth undertaking at all (with or without an expert), and

it is simply abandoned immediately. Otherwise, the expert is asked to report at time zero

whether the project is worthwhile. If not, he is paid a lump-sum consulting fee and the

project is abandoned. Otherwise, the expert is employed and the project is operated until

and unless naive beliefs drop below π, at which point the project is terminated.

Note that in case the project is Good, the expert is paid no incentive bonuses - all

his compensation comes from the stream of flow benefits accrued during project operation.

The termination rule when the project is Good is therefore designed solely to limit the size

of the consulting fee that must be paid in case the project is initially Bad. The optimal

contract can be thought of as treating the expert’s recommendation that the project should

be undertaken with some skepticism, with the project’s subsequent performance used to

check the expert’s report. This sort of dynamic verification is very similar to that of Varas

(2017), with the difference that in that model, impatience of the agent relative to the principal

limits the length of the optimal verification period, whereas in my model excessively long

verification periods accrue inalienable rents to the expert and so offset the incentive effects

of the verification.

5.4 An expert with initial capital

So far I have considered an expert who arrives with no initial wealth to contribute to the

firm. Suppose instead the expert possessed total wealth W > 0 which can be paid into the

firm at any time. My analysis is readily adapted to incorporate this possibility.
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Without loss, any payments from the expert are made up front, with the contract then

respecting limited liability as in the benchmark model. For it will continue to be the case

that all payments, either to or from the expert, can be made at the time of termination of

the contract. Therefore the profit of any other IC contract could be replicated by charging

the expert the discounted value of his largest possible (negative) termination charge up

front, and then adding this amount, grown at the discount rate, onto all terminal payments,

yielding a contract with the same incentive structure and no negative payments after time

zero. This reduction also makes the contract robust to any dynamic IC constraints the firm

might otherwise face on extracting payments from the expert ex post.

When all payments from the expert are extracted up front, the firm’s problem can be

decomposed into two parts. First, the firm charges the expert an upfront amount W ′ ≤ W

to join the firm. Afterward, the firm solves an optimal contracting problem just as in the

benchmark model, but under an additional participation constraint for the expert. This

constraint amounts to

E

[∫ τY

0

e−ρtb dt

]
≥ W ′,

where the left-hand side is the total value of flow benefits plus termination payments antici-

pated by the expert under a given termination policy τY . (Lemma 4 continues to characterize

the optimal payments to the expert under a given termination policy.)

The solution to this problem depends on exactly how wealthy the expert is. If W ≤
W ≡ E

[∫ τ∗
0
e−ρtb dt

]
, with τ ∗ the optimal policy in the benchmark model, then the firm

optimally charges the expert his entire endowment and operates the project just as in the

benchmark model. On the other hand, if W > W = b/ρ, then the firm optimally charges

the expert exactly W and then operates the project efficiently, i.e. with τY =∞.
The interesting case is when the expert has intermediate wealth. In this case the firm

optimally charges the expert enough that the participation constraint binds, as otherwise it

could increase profits by keeping the termination policy fixed and charging more up-front.

However, the expert does not have enough wealth to pay the corresponding charge when

τ ∗ =∞. It is therefore necessary to explicitly account for the participation constraint in the

optimization problem. The firm’s problem may be represented by the Lagrangian

L (τY ,W ′;λ) = W ′ + E

[∫ τY

0

e−ρt(πtrG − (1− πt)b) dt

]
+ λ

(
E

[∫ τY

0

e−ρtb dt

]
−W ′

)
,

with λ the Lagrange multiplier on the participation constraint.

If λ ≥ 1, then the optimizer of the Lagrangian is (τY ,W ′) = (∞, 0), which is clearly not
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a maximizer of the true optimization problem. So λ < 1 for the saddle point corresponding

to a maximum of the problem. Then W ′ = W maximizes the Lagrangian, and dropping

terms not depending on τY from the Lagrangian leaves the reduced objective function

E

[∫ τY

0

e−ρt(πt(rG + λb)− (1− πt)b(1− λ)) dt

]
.

The solution to this problem is a time-dependent threshold rule in naive beliefs, just as in

the baseline problem. As flow profits in the Good state are higher and lower in the Bad

state the higher is λ, increasing λ decreases the optimal threshold at all times and increases

the optimal termination time τ ∗(λ) in every state of the world. λ is then chosen to be the

unique level, say λ∗(W ), such that the participation constraint just binds when W ′ = W.

Clearly τ ∗(λ∗(W )) is increasing in W almost surely, with the corresponding belief threshold

at each time decreasing.

The extension to an expert with capital therefore leads to the following changes to payoffs

and project outcomes. From the point of view of project operation, a nonzero amount of

wealth W is needed to yield any changes in project operation. Past this threshold level

of wealth, higher wealth increases the optimal deadline almost surely, until wealth hits an

upper threshold W, past which the project is operated efficiency. Firm profits are strictly

increasing in wealth up until W, at which point they are flat. Finally, the expert’s payoff

(above and beyond his initial wealth) from participating in the project is decreasing in total

wealth up until W, zero between W and W, and then increasing again beyond W.

A related question is how much better off the expert is from a unit of additional capital,

given the decreased rent extraction it entails. Between wealth levels 0 and W, the expert is

charged his entire wealth and receives a constant total amount of flow benefits from project

operation, so he has zero marginal utility of wealth at these wealth levels. Meanwhile above

W the expert’s participation constraint binds, and so his net utility including initial wealth

is exactly W and his marginal utility of wealth is 1. Thus while only the firm benefits from

injections of capital at low wealth levels, at higher wealth levels both parties benefit.

5.5 The post-termination world

In my model I assume that the expert is crucial to the operation of the project, above and

beyond his ability to identify the time of a state switch. Thus when he is terminated, the

project must also be shuttered. It is easy to adapt my framework to deal with alternative

post-termination options. In particular my framework can accommodate the hiring of a
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new expert or “going it alone” without one. Note that all the results of the benchmark

setting reducing the contracting problem to the design of a public deadline continue to hold

regardless of the firm’s post-termination options. Therefore the only change that must be

made to the analysis is the formulation of the firm’s virtual profit function.

Suppose first that, upon terminating the expert, the firm may continue to operate the

project on its own without expert advice. This problem may be solved in two steps, as

follows. Let Π̃(t) be the firm’s profits from optimally operating the project on its own, when

Λ is distributed as H̃(s; t) ≡ H(s)−H(t)
1−H(t)

. This function satisfies

Π̃(t) = sup
τY

Et
[∫ τY

0

e−ρs(πsrG + (1− πs)rB) ds

]
,

where Et takes expectations with respect to the probability measure under which Λ ∼ H̃(·; t).
It may be calculated just as optimal firm profits in the benchmark model are, with the optimal

stopping rule a time-dependent threshold in beliefs.

With the auxiliary function Π̃(t) in hand, the optimal stopping problem characterized in

Proposition 1 for obtaining an optimal contract may then be modified straightforwardly to

incorporate this post-termination option, yielding

Π∗ = sup
τY

E

[∫ τY

0

e−ρs(πsrG − (1− πs)b) ds+ e−ρτ
Y

πτY Π̃(t)

]
.

The added term reflects the discounted continuation value of optimally operating the project

without an expert, deflated by the probability that the project is still Good by the time τY

is reached.

This modification preserves the problem’s basic recursive structure in the state variable

Xs = (πs, s). In particular, a time-dependent termination threshold will continue to be

optimal. The sole modification to the technique comes when computing the option value of

continuing the project, where one must insert a termination payoff of πsΠ̃(t+ s) rather than

0 as in the benchmark problem. Unsurprisingly, this positive termination payoff will push

up the optimal termination threshold at all times compared to the setting with no ability to

operate post-termination.

Now suppose instead that, upon terminating the expert, the firm may hire a new one

at a cost K > 0. The expert may be replaced arbitrarily many times.21 This problem may

be written recursively as follows. Let Π∗(t) be the profit of an optimal contract, with the

21I will assume in this setting that the project cannot be operated without an expert.
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option to replace the expert, when Λ is distributed as H̃(s; t) ≡ H(s)−H(t)
1−H(t)

. Then Π†(t) =

max{Π∗(t) − K, 0} is the net profit from replacing the expert at time t when the state is

still Good. Incorporating this post-termination option into the optimal stopping problem

characterized in Proposition 1, Π∗(t) must satisfy

Π∗(t) = sup
τY

Et
[∫ τY

0

e−ρs(πsrG − (1− πs)b) ds+ e−ρτ
Y

πτY Π†(τY + t)

]
,

Note that the firm’s profits from an optimal contract of the full problem are in general

not Π∗(0), as that auxiliary problem conditions on the project not already being Bad at

time zero. Rather, the profits of an optimal contract may be written Π∗∗ = Π∗(0−), where

H̃(s; 0−) = H(s).

Fixing a function Π†(·) on the rhs, the optimal stopping problem characterizing each

Π∗(t) retains its basic recursive structure in the state variable Xs = (πs, s). In particular, a

time-dependent termination threshold will continue to be optimal. The only change comes

when computing the option value of continuing the project, where one must use a termination

payoff of πsΠ
†(t+ s) instead of 0 as in the benchmark problem. Unsurprisingly, this positive

termination payoff will push up the optimal threshold at all times compared to the setting

with no replacement. Also, the smaller is K, the higher this threshold will be.

The complex part of this exercise is solving what is essentially a fixed-point problem,

whereby the continuation profit function Π†(·) must be chosen to induce a solution to the

optimal stopping problem for each t consistent with the original choice of Π†(·). I will

illustrate this fact for the special case H(t) = 1 − exp(−αt), where the state is Good with

probability 1 at time 0 and the state transition rate is homogeneous. In this case Π∗∗ = Π∗(0)

and Π∗(t) = Π∗(0) for all time. Define a function f by

f(x) ≡ sup
τY

E

[∫ τY

0

e−ρs(πsrG − (1− πs)b) ds+ e−ρτ
Y

πτY max{x−K, 0}

]
.

Then Π∗∗ is a solution to the fixed point problem x = f(x). More precisely, it should be the

largest such fixed point in case there are several, but the following lemma ensures that there

is exactly one:

Lemma 8. There is exactly one solution to x = f(x).

An immediate corollary is that it is optimal to hire a replacement expert if and only if K

is less than the firm’s optimal profits Π[τ ∗] in the benchmark problem without replacement.
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This can be seen simply by noting that when K ≥ Π[τ ∗], then Π[τ ∗] = f(Π[τ ∗]), while

f(Π[τ ∗]) > Π[τ ∗] when K < Π[τ ∗].

When K < Π[τ ∗], the optimal contract may be solved iteratively, as follows. First guess

x and compute f(x). If f(x) > x, then x was chosen too high, and the true value of Π∗∗ must

lie below x. And conversely if f(x) < x, the true value of Π∗∗ lies above x. By repeatedly

guessing x and readjusting, the full problem may be solved numerically.

This solution may be easy adapted to the case where H(0) > 0, by first solving for

Π∗(0) as the fixed point of x = f(x), and then solving one more optimal stopping problem

for Π∗∗ using the true state transition distribution and Π∗(0) as the termination payoff.

In this case Π∗∗ < Π∗(0) given the cost of compensating the expert when the project is

bad immediately. However, conditional on employing the initial expert at all, the optimal

termination threshold for the first and all subsequent experts will be identical. The only

possible difference in treatment is that if H(0) is sufficiently large, the first expert will be

asked to advise on whether the project is initially viable and then fired immediately no

matter his response, in order to avoid costly incentive payments.

For the general inhomogeneous state transition setting, an analogous fixed point problem

must be solved. However, in this case the entire function Π∗(·) must be guessed at once, and

then checked against the resulting optimized profits at each time. The iterative procedure

outlined above must then be replaced by more sophisticated techniques of value function

iteration.

5.6 Busywork

Another important assumption of my model is that the expert’s flow rents are unpledgeable,

and in particular can’t be dissipated by verifiable activity which is costly to the expert. I

now relax this assumption and show how my analysis can be adapted to accommodate the

presence of a dissipative “busywork” technology which imposes costs on both the firm and

the expert.22

Suppose that the firm has access to a technology which can impose a utility cost of

k ∈ [0, b] on the expert at the expense of a reduction C(k) to the firm’s flow profits.23 (The

technology can be operated only while the project is active.) C is assumed to be twice

continuously differentiable, strictly increasing, and strictly convex, with C(0) = 0. The firm

22I thank Jeff Ely for suggesting this analysis.
23I assume that the firm cannot impose more busywork on the expert at any moment in time than he

receives in flow benefits. Otherwise the expert’s participation constraint might be violated, complicating the
analysis.
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can commit to a schedule of busywork along with payment and termination processes.

The virtual profit function derived in Proposition 1 is readily adapted to this setting. At

any time t following any history in which the project has not yet expired, the firm receives

flow profits rG and incurs a busywork cost C(kt). Meanwhile in any history in which the

project has expired, the firm incurs a virtual flow cost stemming from the terminal incentive

payment, which must compensate the expert for any flow benefits b minus any busywork kt

that would have been imposed had the project continued.24 Thus the firm’s virtual profit

function becomes

E

[∫ τY

0

e−ρt(πt(rG − C(kt))− (1− πt)(b− kt)) dt

]
.

The optimal amount of busywork k∗t at any time t < τY can then be read off of the integrand:

k∗t =


0, C ′(0) ≥ (1− πt)/πt
(C ′)−1

(
1−πt
πt

)
, C ′(b) > (1− πt)/πt > C ′(0)

b, (1− πt)/πt ≥ C ′(b).

Remark. The optimal busywork process k∗ can be chosen to be independent of the stopping

time τY , and for this process there exists a continuous, decreasing function κ : (0, 1]→ [0, b]

such that κ(1) = 0 and k∗t = κ(πt) for all time.

Because the optimal amount of busywork is a function of current naive beliefs, the prob-

lem retains its recursive structure. Further, the proof of Proposition 2 can be adapted to

show that an optimal termination rule continues to be a time-dependent threshold rule in

naive beliefs.25 And because imposition of busywork improves flow profits at every belief

level, the optimal threshold is lower at each moment in time with busywork than without.

Finally, note that busywork can lead to efficient project termination, i.e. a termination rule

τY = ∞, if and only if C(b) < rG. For when this inequality holds, the firm’s virtual profits

24The result that the firm stops the project immediately after the expert’s report is robust to the busywork
technology. For any IC-B contract imposing busywork after the report remains IC-B if no busywork is
imposed while improving the firm’s profits. So without loss busywork can be assumed to be imposed only
prior to a report, in which case the reasoning for never stopping the project late continues to hold.

25Interestingly, this is true even though virtual flow profits are no longer generally monotone in π under
the optimal busywork rule κ. One way to understand this result is to note that by the envelope theorem, the
derivative of virtual flow profits in πt is rG −C(κ(πt)) + b− κ(πt), and this is positive whenever flow profits
are non-negative. Thus virtual flow profits under the optimal busywork schedule cross zero exactly once. In
other words, the option value of waiting for news about the project below the breakeven point diminishes
the lower beliefs drop, implying optimality of a threshold rule.

37



are always positive at the optimal busywork level, and otherwise they continue to be negative

for sufficiently low beliefs.

6 Conclusion

In this paper I ask how a firm should optimally elicit expert advice on when to terminate a

project which may eventually become unviable, if the expert accrues private benefits from

prolonging the project as much as possible. Assuming the expert is capital-constrained and

cannot buy the project, the firm must compensate him for reporting bad news which leads

to early project termination. As a result, the firm prefers to commit to limit the lifespan of

the project in order to economize on incentive payments.

I fully characterize the firm’s optimal contract when it can imperfectly monitor the state

of the project by observing its incremental output flow, under very general assumptions on

the output and state transition processes. The optimal contract can be elegantly character-

ized - the expert is asked to report when the project should end, at which point the project is

immediately terminated and a lump-sum termination payment is made to the expert. This

payment is set to exactly compensate the expert for the private benefits he gives up by not

hiding his knowledge and allowing the project to operate as long as possible. The firm also

sets a stochastic public deadline, at which point the project is terminated even if the expert

has not advised that it be. This deadline is optimally a time-dependent threshold rule in

the firm’s “naive beliefs”, the beliefs the firm would have formed about the current state of

the project had it learned only from output without the advice of the expert.

This characterization allows for a very clear analysis of the value of expert advice. With

an expert, the firm completely eliminates “false negatives”, i.e. operating the project past

its expiration date, while partially mitigating “false positives”, i.e. premature termination of

the project. These gains lead to more efficient ex post project operation in every state of the

world - no matter the actual state switch time and realization of output, the expert’s advice

yields higher net project output. My solution is also elegant and flexible enough to permit

easy analysis of important extensions, including an expert with initial capital, replacement

of experts, and the imposition of busywork to make the expert’s position less cushy.

One important unexplored avenue is a richer model of state transitions, for instance more

than two states or a project that fluctuates between Good and Bad. Solving such a model

would require a much more delicate characterization of incentive-compatibility constraints,

as any misreport by the expert at one stage of the project would have complex implications

for the optimal timing of reporting in future stages. (By contrast, in the literature on
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dynamic mechanism design without limited liability the expert can be charged up front for

all future information rents, in return for efficient usage of all orthogonalized information

received after time zero.)

Another interesting avenue for future work would be coarsening the information struc-

ture for the expert. One possibility would be to give the expert only an imperfect signal

of the state. This would force the expert to form his own private beliefs about the state,

and would embed an additional option value problem into the environment, since the expert

would possess optionality to learn more about the state before making a report. The calcu-

lation of optimal incentive payments would then become more challenging, and the optimal

deadline would be less crisply characterizable. Another interesting information structure

would involve an expert who observes a state switch only with a delay. This modification

would preserve the structure of optimal incentive payments but lead to an optimal stopping

problem for the firm involving a higher-dimensional belief space, as the firm would need

to form beliefs not only about whether the state has switched, but also about whether the

expert has observed the switch.

References

Baron, D.P. and D. Besanko (1984). “Regulation, Asymmetric Information, and Auditing”.

In: The RAND Journal of Economics 15.4, pp. 447–470.

Battaglini, M. (2005). “Long-Term Contracting with Markovian Consumers”. In: American

Economic Review 95.3, pp. 637–658.

Besanko, D. (1985). “Multi-period contracts between principal and agent with adverse se-

lection”. In: Economics Letters 17.1, pp. 33–37.

Buonaguidi, B. and P. Muliere (2016). “Bayesian sequential testing for Lévy processes with
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Appendices

A Formal contract construction

The probability space (Ω,F ,P) on which the model is built encodes only the realizations of

the exogenous processes Y and Λ. It doesn’t accommodate the endogenous reported state

process θ′ generated by the expert’s reporting policy. As a result, a contract (Φ, τ) cannot

be formally considered a pair of random elements on the probability space. Rather, it is

a mapping from reporting policies into pairs of random elements. The following definition

recasts Definition 2 in this more rigorous formalism.

Definition 10. A revelation contract C = (Φ, τ) is a family of payment processes Φ[T ] ≥ 0

and termination times τ [T ] for each T ∈ R+ ∪ {∞}, such that:

• For every t ∈ R+, the maps (T, ω) 7→ Φ[T ]t(ω) and (T, ω) 7→ 1{τ [T ](ω) ≤ t} are

B(R+ ∪ {∞})⊗FYt -measurable,

• Each Φ[T ] is right-continuous, increasing, and satisfies Φ[T ]t = Φ[T ]τ [T ] for every

t > τ [T ],

• For every T, T ′ ∈ R+ ∪ {∞} and t < min{T, T ′}, Φ[T ]t = Φ[T ′]t and 1{τ [T ] ≤ t} =

1{τ [T ′] ≤ t}.

This definition characterizes how a contract maps deterministic reporting times into

payment and termination policies. The mapping for a general reporting policy Λ′ is then

defined by

Φ[Λ′](ω) ≡ Φ[Λ′(ω)](ω), τ [Λ′](ω) ≡ τ [Λ′(ω)](ω).

The joint measurability requirement in Definition 10 ensures that this construction yields

measurable, F-adapted processes for any choice of Λ′. The final requirement in Definition 10

ensures that (Φ, τ) is “F′-adapted” in the sense of not conditioning payments or termination

on a reported switch which hasn’t yet arrived.

The notation EΛ′ used in the body of the paper is shorthand for expectations wrt uncer-

tainty induced by the processes Φ[Λ′] and τ [Λ′] wherever Φ and τ appear in the interior of

the expectation. For instance,

EΛ′
[∫ τ

0

e−ρt(b dt+ dΦt)

]
= E

[∫ τ [Λ′]

0

e−ρt(b dt+ dΦ[Λ′]t)

]
.
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B The optimal public deadline under Brownian output

As discussed in Section 4.5, when output is Brownian and the state transition hazard rate

α is continuous and BV, the firm’s value function solves the free boundary problem

ρV (π, t) = πrG − (1− π)b− α(t)πVπ(π, t) +
1

2

(
rG − rB

σ

)2

π2(1− π)2Vππ(π, t) + Vt(π, t)

subject to boundedness of V and the boundary conditions V (π(t), t) = 0 and Vπ(π(t), t) = 0

for some π(t) ≤ b/(b+ rG). The following verification theorem establishes that an appropri-

ately smooth solution to this problem yields an optimal public deadline.

Lemma 9. Suppose there exists a continuous BV function π : R+ → [0, b/(b + rG)] and a

bounded, non-negative C2 function V on O = {(π, t) ∈ [0, 1) × R+ : π ≥ π(t)} such that

V satisfies the HJB equation on O and V (π(t), t) = 0 and Vπ(π(t), t) = 0 for all t. Then

τ ∗ = inf{t : πt ≤ π(t)} is an optimal public deadline.

Proof. Extend V to [0, 1)×R+ by setting V (π, t) = 0 for π < π(t). On this extended domain

V is C2 everywhere except on the set ∂O = {(π, t) : π = π(t)}, where Vπ exists and is

continuous by smooth pasting. Notice also that on the extended domain, V satisfies

ρV (π, t) ≥ πrG − (1− π)b− α(t)πVπ(π, t) +
1

2

(
rG − rB

σ

)2

π2(1− π)2Vππ(π, t) + Vt(π, t)

(except on ∂O), with equality on O.
Now fix an arbitrary FY -stopping time, and suppose H(0) > 0, so that π0 < 1. Let

τn = τY ∧ inf{t : πt ≥ τn}. Because {(ω, t) : Xt(ω) ∈ ∂O} has measure zero and Vπ

is continuous on ∂O, the extension of Ito’s lemma given in Theorem 2.1 of Peskir (2005)

implies that for each t,

e−ρ(t∧τn)V (πt∧τn , t ∧ τn)

= V (π0, 0) +

∫ t∧τn

0

e−ρs (ρV (πs, s)− α(s)πsVπ(πs, s)

+
1

2

(
rG − rB

σ

)2

π2
s(1− πs)2Vππ(πs, s) + Vt(πs, s)

)
ds

+

∫ t∧τn

0

e−ρs
rG − rB

σ
πs(1− πs)Vπ(πs, s) dZs.

As Vπ(πs, s) is bounded on [0, τn], the final term is a martingale. Then taking expectations
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and invoking the HJB equation yields

V (π0, 0) ≥ E
[∫ t∧τn

0

e−ρs(πsrG − (1− πs)b) ds+ e−ρ(t∧τn)V (πt∧τn , t ∧ τn)

]
,

with equality if τn ≤ τ ∗. Now take t, n→∞. As the interior of the expectation on the rhs is

uniformly bounded for all t and n, the bounded convergence theorem allows us to swap the

expectation and limits. And as PG and PB induce equivalent measures over output paths,

πt < 1 for all t almost surely, hence τn → τY pointwise a.s. So

V (π0, 0) ≥ E

[∫ τY

0

e−ρs(πsrG − (1− πs)b) ds+ e−ρτ
Y

V (πτY , τ
Y )

]
,

with equality if τY ≤ τ ∗, where the final term is taken to be zero if τY =∞. In the case that

τY = τ ∗, the final term is zero a.s. given V (π, t) = 0 for π ≤ π(t). Thus

V (π0, 0) = E
[∫ τ∗

0

e−ρs(πsrG − (1− πs)b) ds
]
.

And as V ≥ 0 by assumption,

V (π0, 0) ≥ E

[∫ τY

0

e−ρs(πsrG − (1− πs)b) ds

]

for arbitrary τY . Thus Π[τ ∗] ≥ Π[τY ], i.e. τ ∗ is an optimal stopping rule.

Finally, suppose H(0) = 0. Let t = inf{t : H(t) > 0}. Then πt = 1 for all t ≤ t while

πt < 1 for all t > t a.s., and the previous argument may be slightly modified by beginning

the Ito expansion after t to show that

E
[∫ τ∗∨t

t

e−ρs(πsrG − (1− πs)b) ds
]
≥ E

[∫ τY ∨t

t

e−ρs(πsrG − (1− πs)b) ds

]

for every t > t and τY . Now take t ↓ t and exchange limits and expectations by the bounded

convergence theorem to obtain

E
[∫ τ∗∨t

t

e−ρs(πsrG − (1− πs)b) ds
]
≥ E

[∫ τY ∨t

t

e−ρs(πsrG − (1− πs)b) ds

]
.
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Finally, add E
[∫ t

0
e−ρsrG ds

]
to both sides to obtain

E
[∫ τ∗∨t

0

e−ρs(πsrG − (1− πs)b) ds
]
≥ E

[∫ τY ∨t

0

e−ρs(πsrG − (1− πs)b) ds

]
.

Given τ ∗ > t by construction, the lhs is exactly Π[τ ∗]. Meanwhile
∫ τY ∨t
τY

e−ρtrG dt ≥ 0, so the

rhs is an upper bound on Π[τY ]. So Π[τ ∗] ≥ Π[τY ] for every τY , as desired.

The remaining step is to establish that this free boundary problem in fact has a solution.

This can be accomplished using a variant of the approach used to characterize American put

option prices. See, e.g., Jacka (1991), in particular Proposition 2.6, for a detailed treatment.

In the time-homogeneous case where α(t) is constant and V and π are time-independent,

the following lemma provides a constructive existence proof, exhibiting a solution involving

Tricomi’s confluent hypergeometric function U(a, b, z).

Lemma 10. Let k ≡ rG−rB
σ

and β ≡ k2+2α+
√

(k2+2α)2+8k2ρ

2k2
. Then β > 1 and there exist

constants C > 0 and π ∈ (0, b/(b+ rG)] such that

v(π) =
rG + b

ρ+ α
π − b

ρ
+ Cπβ(1− π)1−βU

(
β − 1, 2β − 2α

k2
,
2α

k2

π

1− π

)
is a bounded, non-negative C2 function on [π, 1) satisfying

ρv(π) = πrG − (1− π)b− απv′(π) +
1

2

(
rG − rB

σ

)2

π2(1− π)2v′′(π)

on [π, 1) and v(π) = v′(π) = 0.

Proof. I begin by deriving a general solution to the ODE

ρv(x) = xrG − (1− x)b− αxv′(x) +
k2

2
x2(1− x)2v′′(x).

This is an inhomogeneous second-order linear ODE, whose solution can be found by con-

jecturing a particular solution and then solving the associated homogeneous equation. A

natural conjecture is linear in x; inserting v0(x) = c1x+ c0 and matching coefficients reveals

that

v0(x) =
rG + b

ρ+ α
x− b

ρ

is a particular solution to the ODE. The problem of solving the ODE then reduces to solving
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the associated homogeneous equation

ρvH(x) = −αxv′H(x) +
k2

2
x2(1− x)2v′′H(x).

Now I make the transformation z ≡ x
1−x , obtaining the transformed ODE

ρv̂H(z) =

(
−αz + k2 − α− k2

z + 1

)
zv̂′H(z) +

k2

2
z2v̂′′H(z),

where v̂H(z) ≡ vH(z/(z + 1)). Next I guess that wH(z) ≡ zβ

1+z
v̂H(z) satisfies a simpler ODE

than v̂H itself for some positive power of β. Inserting into the ODE yields(
α(β − 1)z + ρ+ α + (α− k2)(β − 1)− 1

2
k2(β − 1)(β − 2)

)
wH(z)

= (k2β − α− αz)zwH(z) +
k2

2
z2w′′H(z).

The right choice of β is therefore a solution to

ρ+ α + (α− k2)(β − 1)− 1

2
k2(β − 1)(β − 2) = 0,

which is the quadratic

β2 −
(

1 +
2α

k2

)
β − 2

ρ

k2
= 0.

It is straightforward to verify that a unique positive solution to this equation exists. Taking

this choice of β, the ODE for wH reduces to

α(β − 1)wH(z) = (k2β − α− αz)w′H(z) +
k2

2
zw′H(z).

Finally, make the substitution t ≡ 2α
k2
z. I arrive at the ODE

(β − 1)ŵH(t) =

(
2β − 2α

k2
− t
)
ŵ′H(t) + ŵ′′H(t),

where ŵH(t) ≡ wH

(
k2

2α
t
)
. This is Kummer’s differential equation, which has general solution

ŵH(t) = C1U(m,n, t) + C2M(m,n, t),

where U and M are Tricomi’s and Kummer’s confluent hypergeometric functions and m ≡
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β − 1 and n ≡ 2β − 2α
k2

, with m > 0 and n > m+ 2 given β > 1 + 2α
k2
. Transforming back to

the original variables, a general solution to the homogeneous equation is

vH(x) = xm+1(1− x)−m
(
CU

(
m,n,

2α

k2

x

1− x

)
+DM

(
m,n,

2α

k2

x

1− x

))
.

Now, Kummer’s function M(m,n, t) diverges as t → ∞. As the leading term of vH also

diverges in this limit, all bounded solutions satisfy D = 0. This leaves solutions to the ODE

of the form

v(x) =
rG + b

ρ+ α
x− b

ρ
+ Cxm+1(1− x)−mU

(
m,n,

2α

k2

x

1− x

)
as candidates for solving the desired boundary value problem.

Let w(x) ≡ xm+1(1−x)−mU
(
m,n, 2α

k2
x

1−x

)
. Since U(m,n, ·) is a strictly positive function

on (0,∞) when m > 0, w is strictly positive and the function Γ(x) ≡ logw(x) is well-defined

on (0, 1). As U(m,n, ·) is an analytic function on (0,∞), w and Γ are C2 functions on (0, 1).

Lemma 11. limx→1w(x) =
(
k2

2α

)β−1

, limx→1 Γ′(x) = − ρ
α

and lim infx→0 Γ′(x) = −∞.

Proof. Let γ ≡ k2

2α
and z ≡ γ−1 x

1−x . Then w(x) may be written

w(x) = xγmzmU(m,n, z).

Now, U has the third-order asymptotic expansion

U(m,n, z) = z−m
(
a0 − a1z

−1 +
1

2
a2z
−2 + Φ(z)

)
,

where a0 = 1, a1 = m(m−n+1), a2 = m(m+1)(m−n+1)(m−n+2), and Φ(z) ∼ O(z−3).

In other words, limz→∞ z
NΦ(z) = 0 when N < 3. As U is analytic, so is Φ, and L’hopital’s

rule implies Φ′(z) ∼ O(z−4) and Φ′′(z) ∼ O(z−5).

Now insert this expansion into w to obtain

w(x) = xγm
(
a0 − a1z

−1 +
1

2
a2z
−2 + Φ(z)

)
.

Taking x → 1 implies limx→1w(x) = a0γ
m. Next, differentiate the asymptoptic expansion

wrt x, noting that dz
dx

= γ−1

(1−x)2
= γ−1(1 + γz)2. The result is

w′(x) = γm
(
a0 − a1z

−1 +
1

2
a2z
−2 + Φ(z)

)
+ xγm−1(1 + γz)2

(
a1z
−2 − a2z

−3 + Φ′(z)
)
.
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Thus

lim
x→1

w′(x) = γma0 + γm+1a1 =

(
k2

2α

)m
+

(
k2

2α

)m+1

m(m− n+ 1).

Written explicitly in terms of model parameters, this is

lim
x→1

w′(x) =

(
k2

2α

)β−1(
1 +

k2

2α
(β − 1)

(
−β +

2α

k2

))
=

(
k2

2α

)β−1(
k2

2α

(
1 +

2α

k2

)
β − k2

2α
β2

)
.

Using the quadratic formula characterizing β, this simplifies to

lim
x→1

w′(x) = −
(
k2

2α

)β−1
ρ

α
,

The limiting expression for Γ′(x) = w′(x)/w(x) as x→ 1 may then be obtained by combining

this expression with the limiting expression for w(x).

As for the second limit, rewrite w(x) as

w(x) = (1− x)γmzm+1U(m,n, z).

When m > 0 and n > m + 2, limz→0 z
m+1U(m,n, z) = ∞, so limx→0w(x) = ∞ and

limx→0 Γ(x) =∞. Now suppose by way of contradiction that lim infx→0 Γ′(x) > −∞. In this

case there exists an x > 0 and an M < ∞ such that Γ′(x) ≥ −M for all y ∈ (0, x]. The

fundamental theorem of calculus then implies

Γ(y) = Γ(x)−
∫ x

y

Γ′(t) dt ≤ Γ(x) +M(x− y) ≤ Γ(x) +Mx.

Thus Γ(y) is bounded above on (0, x], contradicting limx→0 Γ(x) =∞.

The fact that w is finite in the limit as x → 1 establishes that for any choice of π

and C, v is bounded on [π, 1). The remaining limits of Γ′ from the previous lemma provide

the necessary tools to demonstrate the existence of constants π ∈ (0, 1) and C > 0 such

that v satisfies v(π) = v′(π) = 0. These boundary conditions may be equivalently written

Cw(π) = − rG+b
ρ+α

π + b
ρ

and Cw′(π) = − rG+b
ρ+α

. Dividing the second equation through by the

first, existence of an appropriate π is equivalent to existence of a solution to

Γ′(x) = φ(x),

where φ(x) ≡ − 1
π∗−x and π∗ ≡ b

b+rG
(1 + α/ρ). If a solution π to this equation exists, the
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corresponding constant of integration is C = − 1
w′(π)

rG+b
ρ+α

. And if Γ′(π) < 0, then given strict

positivity of w it must be that w′(π) < 0 and so C > 0.

Suppose first that π∗ ≤ 1. In this case limx↑π∗ φ(x) = −∞ while φ(0) = −1/π∗. Given the

continuity of φ, it must be bounded on [0, x0] for any x0 < π∗. Then given lim infx↓0 Γ′(x) =

−∞, there exists an x1 ∈ (0, π∗) such that Γ′(x1) < φ(x1). And given that limx→1 Γ′(x) is

finite and Γ′ is continuous on (0, 1), Γ′ must be bounded on the closed interval [x1, π
∗]. So

there exists an x2 ∈ (x1, π
∗) such that Γ′(x2) > φ(x2). Then as Γ′(x)− φ(x) is a continuous

function on [x1, x2], by the intermediate value theorem there exists an π ∈ (x1, x2) such that

Γ′(π) = φ(π). Further, Γ′(π) < 0 given the negativity of φ on [0, π∗).

Now suppose that π∗ > 1. In this case φ is continuous and decreasing on [0, 1], with

φ(1) = −1/(π∗−1). The argument of the previous paragraph continues to establish existence

of an x1 ∈ (0, 1) such that Γ′(x1) < φ(x1). Meanwhile limx→1 Γ′(x) = −ρ/α, while

φ(1) = − 1
b

b+rG
(1 + α/ρ)− 1

< − ρ
α
.

Thus limx→1 Γ′(x) > φ(1), and so there exists an x2 ∈ (x1, 1) such that Γ′(x2) > φ(x2). The

intermediate value theorem then ensures existence of a solution π ∈ (x1, x2) to Γ′(x) = φ(x).

Given the negativity of φ, it must be that Γ′(π) < 0.

Finally, I establish that v is non-negative and π ≤ b/(b+ rG). For x ∈ [0, 1], let Px be the

probability measure on (Ω,F) satisfying:

• Λ ∼ Hx, where Hx(t) = x+ (1− x)(1− exp(−αt)),

• Y is identical in law to Y G
t∧Λ + (Y B

t − Y B
t∧Λ),

• The public randomization device has the same distribution as under P and is indepen-

dent of Y and Λ.

Under Px the initial probability that the state is Good is x while the conditional state

transition rate is α. Denote expectations wrt this measure by Ex.
Let πxt ≡ Ex[1{Λ > t} | FYt ], and define τ ∗ ≡ inf{t : πxt ≤ π}. The proof of Lemma 9

establishes that

v(x) = Ex
[∫ τ∗

0

e−ρt(πxt rG − (1− πxt )b) dt

]
.

Suppose by way of contradiction that π > b/(b + rG). Then v(x) > 0 for all x > b/(b + rG)

given that the integrand in the previous expression for v(x) is always strictly positive prior

to τ ∗ and τ ∗ > 0 a.s. In particular, v(1) > 0. Then inserting the boundary conditions into
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the HJB equation implies v′′(π) < 0, meaning that v and v′ are both strictly negative for x

close enough to π. Let π = inf{x > π : v′(x) ≥ 0} > π. Because v(1) > 0, it must be that

π < 1. By continuity, v′(π) = 0. And as v′(x) < 0 on (π, π), it must be that v(π) < 0 as well.

But then from the HJB equation v′′(π) < 0, contradicting the negativity of v′ for x < π. So

π ≤ b/(b+ rG).

Now, suppose by way of contradiction that v is not non-negative on [π, b/(b+rG)]. Define

x∗ ≡ inf{x ≥ π : v(x) < 0} < b/(b + rG). By continuity v(x∗) = 0, and since v(x) < 0

for x sufficiently close to x∗, it must be that v′(x∗) ≤ 0. As x∗ < b/(b + rG), the HJB

equation implies that v′′(x∗) > 0, implying v′(x) > 0 for x close to x∗. But then v(x) > 0

for x close to x∗, a contradiction. So it must be that v(x) ≤ 0 for x ≤ b/(b + rG). So let

τ † = inf{t : πt ≤ b/(b+ rG)}. Given τ † ≤ τ ∗, the proof of Lemma 9 establishes that

v(x) = Ex
[∫ τ†

0

e−ρt(πtrG − (1− πt)b) dt+ e−ρτ
†
v(πτ†)

]
.

Since both terms in the expectation are non-negative, v(x) ≥ 0 everywhere.
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C Proofs of results from the text

C.1 Proof of Lemma 1

IC-G and IC-B are clearly implied by incentive-compatibility. For the converse result, sup-

pose a contract C = (Φ, τ) satisfies IC-G and IC-B, and fix an arbitrary F-stopping time Λ′.

Let Λ′ ≡ Λ′ ∧ Λ and Λ′ ≡ Λ′ ∨ Λ. Then by IC-G,

EΛ

[∫ τ

0

e−ρt (b dt+ dΦt)

]
≥ EΛ′

[∫ τ

0

e−ρt (b dt+ dΦt)

]
= EΛ′

[
1{Λ′ ≤ Λ}

∫ τ

0

e−ρt (b dt+ dΦt)

]
+ EΛ′

[
1{Λ′ > Λ}

∫ τ

0

e−ρt (b dt+ dΦt)

]
.

Now, the interior of the first expectation on the last line is identical under the policies Λ′

and Λ′, as on the set of states {Λ′ ≤ Λ} the two policies coincide and so induce the same τ

and Φ. Similarly, the interior of the second expectation is identical under the policies Λ and

Λ′, as on the set of states {Λ′ > Λ} the two policies coincide. Hence this inequality may be

written

EΛ

[∫ τ

0

e−ρt (b dt+ dΦt)

]
≥ EΛ′

[
1{Λ′ ≤ Λ}

∫ τ

0

e−ρt (b dt+ dΦt)

]
+ EΛ

[
1{Λ′ > Λ}

∫ τ

0

e−ρt (b dt+ dΦt)

]
.

Subtracting the final term from both sides yields

EΛ

[
1{Λ′ ≤ Λ}

∫ τ

0

e−ρt (b dt+ dΦt)

]
≥ EΛ′

[
1{Λ′ ≤ Λ}

∫ τ

0

e−ρt (b dt+ dΦt)

]
.

A very similar argument using Λ′ and the IC-B constraint yields

EΛ

[
1{Λ′ > Λ}

∫ τ

0

e−ρt (b dt+ dΦt)

]
≥ EΛ′

[
1{Λ′ > Λ}

∫ τ

0

e−ρt (b dt+ dΦt)

]
.

Summing these two inequalities results in

EΛ

[∫ τ

0

e−ρt (b dt+ dΦt)

]
≥ EΛ′

[∫ τ

0

e−ρt (b dt+ dΦt)

]
.
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Hence C is incentive-compatible.

C.2 Proof of Lemma 2

Fix an IC-B contract C = (Φ, τ). Define an FY -adapted process φ by

φt = EBt

[∫ τ [t]

t∧τ [t]

e−ρ(s−t)(b ds+ dΦ[t]s)

]
,

where EBt is as defined in Definition 7 and Φ[t], τ [t] are as defined in Appendix A. Construct

a new contract C ′ = (Φ′, τ ′) by setting τ ′ = τ ∧ Λ′ and

Φ′t =

Φt, t < τ ′,

Φτ ′ + φΛ′1{τ > Λ′}, t ≥ τ ′.

Fix a reporting strategy Λ′ ≥ Λ, and let U [Λ′] be the expert’s payoffs under (Φ, τ) and

Λ′, and similarly U ′[Λ′] be his payoff under (Φ′, τ ′) and Λ′. Then

U ′[Λ′] = EΛ′

[∫ τ ′

0

e−ρt(b dt+ dΦ′t)

]

= EΛ′

[∫ Λ′∧τ

0

e−ρt(b dt+ dΦt) + e−ρΛ′φΛ′1{τ > Λ′}

]

= E

[∫ Λ′∧τ [Λ′]

0

e−ρt(b dt+ dΦ[Λ′]t) + e−ρΛ′φΛ′1{τ [Λ′] > Λ′}

]
,

where the last line makes explicit the dependence of τ and Φ on the reporting policy. Now,

Λ′ ≥ Λ means that by the definition of EBt

φΛ′ = E

[∫ τ [Λ′]

Λ′∧τ [Λ′]

e−ρ(t−Λ′)(b dt+ dΦ[Λ′]t)

∣∣∣∣∣ FΛ′

]
.

Then applying the law of iterated expectations to the previous representation of U ′[Λ′],

U ′[Λ′] = E

[∫ Λ′∧τ [Λ′]

0

e−ρt(b dt+ dΦ[Λ′]t) + e−ρΛ′1{τ [Λ′] > Λ′}
∫ τ [Λ′]

Λ′∧τ [Λ′]

e−r(t−Λ′)(b dt+ dΦ[Λ′]t)

]

= E

[∫ Λ′∧τ [Λ′]

0

e−ρt(b dt+ dΦ[Λ′]t)

]
= U [Λ′].
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So every Λ′ ≥ Λ yields the same expected utility to the expert under C ′ as under C, meaning

C ′ is an IC-B contract.

Meanwhile, the firm’s profits under C ′ and truthful reporting are

Π[C ′] = E

[∫ Λ∧τ [Λ]

0

e−ρt(rG dt− dΦ′[Λ]t)− e−ρΛφΛ1{τ [Λ] > Λ}

]

= E

[∫ Λ∧τ [Λ]

0

e−ρt(rG dt− dΦ[Λ]t)−
∫ τ [Λ]

Λ∧τ [Λ]

e−ρt(b dt+ dΦ[Λ]t)

]
,

where I have used the representation of φΛ′ derived above and the law of iterated expectations

to move from the first expression to the second. By comparison, the firm’s profits under C
are

Π[C] = E

[∫ Λ∧τ [Λ]

0

e−ρtrG dt+

∫ τ [Λ]

Λ∧τ [Λ]

e−ρtrB dt−
∫ τ [Λ]

0

e−ρt dΦ[Λ]t

]
.

Thus

Π[C ′]− Π[C] = −E

[∫ τ [Λ]

Λ∧τ [Λ]

e−ρt(rB + b) dt

]
.

Then rB + b < 0 implies Π[C ′] ≥ Π[C], and this inequality is strict if P{τ [Λ] > Λ} = PΛ{τ >
Λ} > 0.

C.3 Proof of Lemma 3

Fix an IC-B contract C = (Φ, τ) satisfying τ ≤ Λ′ and PΛ{τ < ∞} = 1. First note that τ

may be decomposed as τ [T ] = τ [∞]∧ T for each T ∈ R+ ∪ {∞}, where τ [T ] is as defined in

Appendix A. For either the contracts terminates at the time of the report, i.e. τ [T ](ω) = T,

or it terminates prior to this time, in which case the eventual time of the report does not

impact the termination time and τ [T ](ω) = τ [∞](ω). The τY in the lemma statement may

then be taken to be τY = τ [∞].

Define a new payment process Φ̃ by

Φ̃[T ]t =

Φ[T ]t, min{t, T} < τ [∞]

min{Φ[∞]τ [∞],Φ[τ [∞]]τ [∞]}, t, T ≥ τ [∞].

This payment process modifies Φ so that whenever τ [∞] is reached without a prior reported

state switch, the terminal payment ∆Φτ [∞] does not depend on whether the expert reports a

state switch at τ [∞]. The modification of this terminal payoff is chosen so that Φ̃[Λ′]τ [Λ′] ≤
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Φ[Λ′]τ [Λ′] for any reporting policy Λ′ ≥ Λ.

I first claim that C̃ = (Φ̃, τ) is an IC-B contract. For any reporting policy Λ′ let U [Λ′] and

Ũ [Λ′] be the payoffs for the expert under C and C̃, respectively. Suppose that Ũ [Λ′] > Ũ [Λ]

for some reporting policy Λ′ ≥ Λ. On {Λ ≥ τ [∞]}, Φ̃[Λ′] = Φ̃[Λ] by construction and

τ [Λ′] = τ [∞] = τ [Λ], and therefore∫ τ [Λ′]

0

e−ρt(b dt+ dΦ̃[Λ′]t) =

∫ τ [Λ]

0

e−ρt(b dt+ dΦ̃[Λ]t).

In other words, the ex post payoff to the expert is the same under Λ and Λ′ whenever

Λ ≥ τ [∞]. Then by hypothesis there must exist a positive-measure set S ⊂ {Λ < τ [∞]} on

which ∫ τ [Λ′]

0

e−ρt(b dt+ dΦ̃[Λ′]t) >

∫ τ [Λ]

0

e−ρt(b dt+ dΦ̃[Λ]t).

But Φ̃[Λ] = Φ[Λ] on {Λ < τ [∞]}, and Φ̃[Λ′]t = Φ[Λ′]t for t < τ [Λ′] while Φ[Λ′]τ [Λ′] ≥ Φ̃[Λ′]τ [Λ′].

Therefore ∫ τ [Λ′]

0

e−ρt(b dt+ dΦ[Λ′]t) >

∫ τ [Λ]

0

e−ρt(b dt+ dΦ[Λ]t)

on S. Finally, construct a new reporting policy Λ′′ by Λ′′ = Λ on Ω \ S and Λ′′ = Λ′ on S.

Then U [Λ′′] > U [Λ], contradicting IC-B. So C̃ must be IC-B.

I next claim that Π[C̃] ≥ Π[C]. This follows immediately from the fact that Φ̃[Λ]t = Φ[Λ′]t

for t < τ [Λ′] while Φ̃[Λ]τ [Λ] ≤ Φ[Λ′]τ [Λ], so that total discounted payments to the expert are

weakly lower under C̃ than C.
Now define a termination fee process F by

Ft = eρt
∫ t

0

e−ρs dΦ̃[t]s.

As (Φ̃[t]s)s≤t is FYt -adapted for each t, F is FY -adapted. Define a new payment process Φ′ by

Φ′t = Fτ1{t ≥ τ} and let C ′ = (Φ′, τ). Then the expert’s payoff U ′[Λ′] under C ′ and reporting

policy Λ′ is

U ′[Λ′] = EΛ′
[∫ τ

0

e−ρtb dt+ 1{τ <∞}e−ρτFτ
]

= E

[∫ τ [Λ′]

0

e−ρtb dt+ 1{τ [Λ′] <∞}
∫ τ [Λ′]

0

e−ρtdΦ̃[τ [Λ′]]t

]
,

where in the second line I have made the dependence of τ and Φ on the reporting policy
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explicit. Now, by construction Φ̃[τ [Λ′]] = Φ̃[Λ′]. This is trivially true on {Λ′ ≤ τ [∞]}, and

otherwise Φ̃ is constructed to be independent of the exact timing of the report; in particular

Φ̃[τ [∞]] = Φ̃[∞] = Φ̃[Λ′] on {Λ′ > τ [∞]}. Hence

U ′[Λ′] = E

[∫ τ [Λ′]

0

e−ρtb dt+ 1{τ [Λ′] <∞}
∫ τ [Λ′]

0

e−ρtdΦ̃[Λ′]t

]

≤ E

[∫ τ [Λ′]

0

e−ρtb dt+

∫ τ [Λ′]

0

e−ρtdΦ̃[Λ′]t

]
= Ũ [Λ′],

with equality whenever P{τ [Λ′] < ∞} = 1. In particular, by assumption P{τ [Λ] < ∞} = 1

and so U ′[Λ] = Ũ [Λ′]. Then the fact that C̃ is IC-B implies C ′ is as well.

Finally, the firm’s expected profits under C ′ are

Π[C ′] = E

[∫ τ [Λ]

0

e−ρtrG dt− 1{τ [Λ] <∞}e−ρτ [Λ]Fτ

]

= E

[∫ τ [Λ]

0

e−ρtrG dt− 1{τ [Λ] <∞}e−ρτ [Λ]

∫ τ [Λ′]

0

e−ρtdΦ̃[τ [Λ]]t

]

= E

[∫ τ [Λ]

0

e−ρtrG dt− 1{τ [Λ] <∞}e−ρτ [Λ]

∫ τ [Λ′]

0

e−ρtdΦ̃[Λ]t

]

≥ E

[∫ τ [Λ]

0

e−ρtrG dt− e−ρτ [Λ]

∫ τ [Λ′]

0

e−ρtdΦ̃[Λ]t

]
= Π[C̃].

Then as Π[C̃] ≥ Π[C], Π[C ′] ≥ Π[C] as well.

C.4 Proof of Lemma 4

Fix a contract (F, τY ). Let S ⊂ Ω be the set of states of the world on which

E

[∫ τY

Λ∧τY
e−ρ(s−Λ∧τY )b ds+ e−ρ(τY −Λ∧τY )FτY

∣∣∣∣∣ FΛ∧τY

]
> FΛ∧τY .

I first claim that (F, τY ) satisfies IC-∞ iff PS = 0. Suppose first that PS > 0, and define Λ′

by Λ′(ω) = Λ(ω) on ω ∈ Ω \ S and Λ′(ω) =∞ on ω ∈ S. Then the expert’s expected profits
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under reporting policy Λ′ are

U(Λ′) = E

[
1S

(∫ τY

0

e−ρtb dt+ e−ρτ
Y

FτY

)
+ 1Ω\S

(∫ Λ∧τY

0

e−ρtb dt+ e−ρ(Λ∧τY )FΛ∧τY

)]
.

Note that S ∈ FΛ∧τY , so by the law of iterated expectations and the assumption that PS > 0,

U(Λ′) > E

[
1S

(∫ Λ∧τY

0

e−ρtb dt+ e−ρ(Λ∧τY )FΛ∧τY

)
+ 1Ω\S

(∫ τY ∧Λ

0

e−ρtb dt+ e−ρ(τY ∧Λ)FτY ∧Λ

)]

= E

[∫ τY ∧Λ

0

e−ρtb dt+ e−ρ(τY ∧Λ)FτY ∧Λ

]
= U(Λ).

Hence such a contract would violate IC-∞.
In the other direction, suppose PS = 0, and consider any reporting policy Λ′ such that

Λ′(ω) ∈ {Λ(ω),∞} for each ω. Let S ′ = {Λ′ > Λ}. Then the expert’s profits under Λ′ are

U(λ′) = E

[
1S′

(∫ τY

0

e−ρtb dt+ e−ρτ
Y

FτY

)
+ 1Ω\S′

(∫ Λ∧τY

0

e−ρtb dt+ e−ρ(Λ∧τY )FΛ∧τY

)]

= E

[
1S′1Ω\S

(∫ τY

0

e−ρtb dt+ e−ρτ
Y

FτY

)
+ 1Ω\S′

(∫ Λ∧τY

0

e−ρtb dt+ e−ρ(Λ∧τY )FΛ∧τY

)]

≤ E

[
1S′1Ω\S

(∫ Λ∧τY

0

e−ρtb dt+ e−ρ(Λ∧τY )FΛ∧τY

)
+ 1Ω\S′

(∫ τY ∧Λ

0

e−ρtb dt+ e−ρ(τY ∧Λ)FτY ∧Λ

)]

= E

[∫ τY ∧Λ

0

e−ρtb dt+ e−ρ(τY ∧Λ)FτY ∧Λ

]
= U(Λ).

So (F, τY ) satisfies IC-∞ if PS = 0.

Note that PS = 0 along with F ≥ 0 implies

FΛ∧τY ≥ E

[∫ τY

Λ∧τY
e−ρ(s−Λ∧τY )b ds+ e−ρ(τY −Λ∧τY )FΛ∧τY

∣∣∣∣∣ FΛ∧τY

]

≥ E

[∫ τY

Λ∧τY
e−ρ(s−Λ∧τY )b ds

∣∣∣∣∣ FΛ∧τY

]
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a.s. I next claim that

F ∗Λ∧τY = E

[∫ τY

Λ∧τY
e−ρ(s−Λ∧τY )b ds

∣∣∣∣∣ FΛ∧τY

]

a.s. On {τY ≤ Λ} this is trivially true as both sides are zero, so consider the set of states

{Λ < τY }. In this case the definition of EBt implies that the left- and right-hand sides

coincide.

It follows that FΛ∧τY ≥ F ∗Λ∧τY a.s. for every IC-∞ contract (F, τY ). It remains only to

show that (F ∗, τY ) is itself IC-∞. But F ∗τY = 0 by construction, so PS = 0 boils down to

F ∗Λ∧τY ≥ E

[∫ τY

Λ∧τY
e−ρ(s−Λ∧τY )b ds

∣∣∣∣∣ FΛ∧τY

]

a.s., and I just showed that the rhs is equal to the lhs a.s. So indeed (F ∗, τY ) is IC-∞.
Finally, to see that F ∗ is FY -adapted simply note that

∫ τY
t∧τY e

−ρ(s−t)b ds is FY∞-measurable

given that τY is an FY -stopping time, and invoke the remark made following Definition 7.

C.5 Proof of Lemma 5

Fix any reporting policy Λ′ ≥ Λ. The expected payoff to the expert of Λ′ under (F ∗, τY ) is

U [Λ′] = E

[∫ τY ∧Λ′

0

e−ρtb dt+ e−ρ(τY ∧Λ′)F ∗τY ∧Λ′

]
.

I claim that

F ∗τY ∧Λ′ = E

[∫ τY

τY ∧Λ′
e−ρ(t−τY ∧Λ′)b dt | FτY ∧Λ′

]
.

On {Λ′ ≤ τY } this identity follows from the definition of EBt and the fact that Λ′ ≥ Λ. And

on {Λ′ > τY } the lhs and rhs are both zero, hence the identity holds everywhere. Then

substitute this identity into the previous expression for U [Λ′] and use the law of iterated

expectations to obtain

U [Λ′] = E

[∫ τY

0

e−ρtb dt

]
.

In other words, the expert’s payoff is independent of his reporting policy, and in particular

U [Λ′] = U [Λ]. Thus IC-B is satisfied.
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C.6 Proof of Proposition 1

Fix an FY -stopping time τY , and let F ∗ be the fee process defined in Lemma 4. Then Lemma

5 implies

Π[τY ] = E

[∫ Λ∧τY

0

e−ρtrG dt− e−ρ(Λ∧τY )F ∗Λ∧τY

]
.

Recall from the proof of Lemma 5 that

F ∗τY ∧Λ′ = E

[∫ τY

τY ∧Λ′
e−ρ(t−τY ∧Λ′)b dt | FτY ∧Λ′

]
.

Inserting this identity into the previous representation of Π[τY ] and applying the law of

iterated expectations yields

Π(τY ) = E

[∫ Λ∧τY

0

e−ρtrG dt−
∫ τY

Λ∧τY
e−ρtb dt

]
= E

[∫ Λ∧τY

0

e−ρt(rG + b) dt−
∫ τY

0

e−ρtb dt

]
.

Another application of the law of iterated expectations reduces the first term on the rhs to

E

[∫ Λ∧τY

0

e−ρt(rG + b) dt

]
= E

[∫ ∞
0

1{t ≤ Λ}1{t ≤ τY }e−ρt(rG + b) dt

]
= E

[∫ ∞
0

EYt [1{t ≤ Λ}]1{t ≤ τY }e−ρt(rG + b) dt

]
= E

[∫ τY

0

πte
−ρt(rG + b) dt

]
.

Thus

Π(τY ) = E

[∫ τY

0

e−ρt(πtrG − (1− πt)b) dt

]
.

C.7 Proof of Proposition 2

I will assume that H(t) < 1 for every t ∈ R+. The remaining case may be treated by a slight

modification to the proof considering times only up to inf H−1(1).

I begin by defining a family of optimal stopping problems indexed by the initial belief

about θ and the starting time for the state transition distribution. For each (x, t) ∈ [0, 1]×R+,

define a probability measure P(x,t) on (Ω,F) satisfying:

• Λ ∼ H(x,t), where H(x,t)(s) = x+ H(s+t)−H(t)
1−H(t)

(1− x),
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• Y is identical in law to Y G
s∧Λ + (Y B

s − Y B
s∧Λ),

• The public randomization device has the same distribution as under P and is indepen-

dent of Y and Λ.

In the optimal stopping problem indexed by (x, t), the initial probability that the state is

Bad is x while the conditional state transition rate dH(x,t)(s)

1−H(x,t)(s−)
equals dH(s+t)

1−H((s+t)−)
for all s. The

objective function Π[·] corresponds to (x, t) = (H(0), 0), and in fact P(H(0),0) = P. Also by

construction, P(x,t) = xP(1,t) +(1−x)P(0,t) for every x, t. I will write E(x,t) for the expectation

wrt P(x,t). Note that for any FY∞-measurable random variable X, E(0,t)[X] = EB[X] for

any t. Also in the context of this proof, in the problem indexed by (x, t) the filtration FY

will be taken to be the P(x,t)-augmentation of the filtration generated by Y and the public

randomization device.

Let T be the set of FY -stopping times. Define the value function v : [0, 1]×R+ → [0, rG/ρ]

for the family of stopping problems by

v(x, t) = sup
τY ∈T

E(x,t)

[∫ τY

0

e−ρs(π(x,t)
s rG − (1− π(x,t)

s )b) ds

]
,

where π
(x,t)
s ≡ E(x,t)[1{Λ > s} | FYs ]. Using the reasoning in the proof of Proposition 1, the

value function may be equivalently written

v(x, t) = sup
τY ∈T

E(x,t)

[∫ τY

0

e−ρs(1{Λ > s}rG − 1{Λ ≤ s}b) ds

]
.

Fix any τY ∈ T . Using the fact that P(x,t) = xP(1,t) + (1− x)P(0,t), the payoff vτ
Y

(x, t) of

this strategy is

vτ
Y

(x, t) = xE(1,t)

[∫ τY

0

e−ρs(1{Λ > s}rG − 1{Λ ≤ s}b) ds

]

+ (1− x)E(0,t)

[∫ τY

0

e−ρs(1{Λ > s}rG − 1{Λ ≤ s}b) ds

]
,

or equivalently,

vτ
Y

(x, t) = xE(1,t)

[∫ τY

0

e−ρs(π(1,t)
s rG − (1− π(1,t)

s )b) ds

]
− (1− x)EB

[∫ τY

0

e−ρsb ds

]
.
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Hence the value function may be written

v(x, t) = sup
τY ∈T

{
xE(1,t)

[∫ τY

0

e−ρs(π(1,t)
s rG − (1− π(1,t)

s )b) ds

]
− (1− x)EB

[∫ τY

0

e−ρsb ds

]}
.

Now fix t and consider the family of problems ranging over x. Note that this problem is

well-defined for any x ∈ R. As v(·, t) is a supremum over affine functions of x, it is convex in

x and continuous on R; in particular, on [0, 1]. Further, v(x, t) ≥ 0 for all x and v(0, t) = 0,

so v(·, t) is an increasing function on [0, 1].

Define π(t) ≡ sup{x ∈ [0, 1] : v(x, t) = 0}. By continuity and monotonicity, v(x, t) = 0

for x ≤ π(t), and v(x, t) > 0 for x > π(t). Define τ (x,t) ≡ inf{s : π
(x,t)
s ≤ π(t+ s)}.

I first show that τ (x,t) ∈ T . Note that if τ (x,t) < s for some s, then π
(x,t)
s′ ≤ π(t+s′) for some

s′ < s. Hence {τ (x,t) < s} ∈ FYs for every s. But then {τ (x,t) ≤ s} =
⋂
s′>s{τ (x,t) < s′} ∈ FYs+,

so if FY is right-continuous, then {τ (x,t) ≤ s} ∈ FYs for all s. In other words, τ (x,t) ∈ T .
It is not immediately obvious that FY is right-continuous, as Y is not a strong Markov

process. However, the 2-dimensional process X defined by Xs = (π
(x,t)
s , s) is a strong Markov

process, and so is (Y,X). And as X is FY -adapted, the augmentation of the filtration gener-

ated by (Y,X) and the public randomization device must be the same as the augmentation

of the filtration generated by Y and the public randomization device itself. So FY is right-

continuous by Proposition 2.7.7 of Karatzas and Shreve (1991).

The next portion of the proof is dedicated to establishing that τ (x,t) is the smallest

optimal stopping time in the problem indexed by (x, t). This will imply in particular that

τ (H(0),0) = inf{t : πt ≤ π(t)} is the smallest maximizer of Π[·].
To establish this result, fix the problem indexed by (x, t). I first prove that any τY ∈

T such that P(x,t){τY < τ (x,t)} > 0 can be strictly improved upon by another stopping

time bounded below by τ (x,t). Define F ≡ {τY < τ (x,t)}, and suppose P(x,t)F > 0. Then

v
(
π

(x,t)

τY
, τY

)
> 0 on F by definition of τ (x,t). Define

w(s) ≡ 1{Λ > s}rG − 1{Λ ≤ s}b.

Given the strong Markov structure of the optimal stopping problem, there exists a τ ′ ∈ T
such that τ ′ = τY on Ω \ F, while τ ′ > τY and

E(x,t)

[∫ τ ′

τY
e−ρ(s−τY )w(s) ds

∣∣∣∣∣ FYτY
]
>

1

2
v
(
π

(x,t)

τY
, τY

)
> 0
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on F. Then the payoff of τ ′ is

vτ
′
(x, t) = E(x,t)

[∫ τ ′

0

e−ρsw(s) ds

]

= E(x,t)

[
1Ω\F

∫ τY

0

e−ρsw(s) ds+ 1F

(∫ τY

0

e−ρsw(s) ds+ e−ρτ
Y

∫ τ ′

τY
e−ρ(s−τY )w(s) ds

)]

> E(x,t)

[
1Ω\F

∫ τY

0

e−ρsw(s) ds+ 1F

∫ τY

0

e−ρsw(s) ds

]
= vτ

Y

(x, t).

So τ ′ yields a strictly higher payoff than τY .

Next I show that any τY ∈ T can be modified to be bounded above by τ (x,t) + ε for any

ε > 0 while weakly improving payoffs. Fix τY ∈ T . By definition of τ (x,t), for any ε > 0

there exists a τ̃ ∈ T such that τ (x,t) ≤ τ̃ ≤ τ (x,t) + ε and v
(
π

(x,t)
τ̃ , τ̃

)
= 0 on {τ̃ < ∞}. Let

E ≡ {τY > τ̃}. Then the payoff of τY is

vτ
Y

(x, t)

= E(x,t)

[∫ τY

0

e−ρsw(s) ds

]

= E(x,t)

[
1Ω\E

∫ τY

0

e−ρsw(s) ds+ 1E

(∫ τ̃

0

e−ρsw(s) ds+ e−ρτ̃
∫ τY

τ̃

e−ρ(s−τ̃)w(s) ds

)]
.

Given that the optimal stopping problem is strongly Markovian in (x, t),

E(x,t)

[∫ τY

τ̃

e−ρ(s−τ̃)w(s) ds

∣∣∣∣∣ FYτ̃
]
≤ v

(
π

(x,t)
τ̃ , τ̃

)
.

Also, by assumption v
(
π

(x,t)
τ̃ , τ̃

)
= 0 given that E ⊂ {τ̃ <∞}. Hence

vτ
Y

(x, t) ≤ E(x,t)

[
1Ω\E

∫ τY

0

e−ρsw(s) ds+ 1E

∫ τ̃

0

e−ρsw(s) ds

]
.

So define τ ′ ∈ T by τ ′ = τ̃ on E and τ ′ = τY on Ω\E. Then by construction τ ′ yields weakly

higher payoffs than τY , τ ′ ≤ τY , and τ ′ ≤ τ (x,t) + ε. In particular, note that if τY ≥ τ (x,t),

then also τ ′ ≥ τ (x,t).

I’m now ready to show that τ (x,t) is an optimal stopping time. Choose a sequence τ 1, τ 2, ...

in T such that vτ
n
(x, t) > v(x, t)− 1/n for each n. Modify this sequence to a new sequence
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τ̃ 1, τ̃ 2, .. in T such that τ (x,t) ≤ τ̃n ≤ τ (x,t) + 1/n and vτ̃
n
(x, t) > v(x, t) − 1/n and n.

The results just proven show that such a modification is possible. By the squeeze theorem

τ̃n → τ (x,t) pointwise. Then by the bounded convergence theorem, vτ̃
n
(x, t) → vτ

(x,t)
(x, t).

Hence v(x, t) ≤ vτ
(x,t)

. But as v(x, t) is the supremum of payoffs of all elements of T , it must

be that vτ
(x,t)

= v(x, t), so τ (x,t) is an optimal stopping time. Further, τ (x,t) is the pointwise

essential infimum of all optimal stopping times. For suppose τ ∗ ∈ T is another optimal

stopping time. Then in light of previous results, τ ∗ ≥ τ (x,t) almost surely.

Finally, note that v
(
π

(x,t)

τ (x,t)
, τ (x,t)

)
= 0 a.s. For as demonstrated earlier, any stopping

time which halts when the continuation value is positive with positive probability can be

extended to yield strictly higher profits, which would contradict the fact that τ (x,t) is an

optimal stopping time. So suppose that π(t) > b/(b + rG) for some t. Then v(x, t) = 0 for

some x > b/(b + rG). Define τ̃ (x,t) ≡ inf{t : π(x,t) ≤ b/(b + rG)}. By right-continuity of

π(x,t), τ̃ (x,t) > 0. Hence vτ̃
(x,t)

(x, t) > 0, a contradiction. So π(t) ≤ b/(b+ rG) for all time.

C.8 Proof of Lemma 6

Written in integral form, the filtering equation for beliefs is

πt′ = πt −
∫ t′

t

πs−
1−H(s−)

dH(s) +

∫ t′

t

(λB − λG)πs−(1− πs−)

λGπs− + λB(1− πs−)
dZs.

As H is a monotone function, it has an a.e. derivative h satisfying
∫ b
a
h(s) ds ≤

∫ b
a
dH(s)

for every a < b. Therefore

πt′ ≤ πt −
∫ t′

t

πs−h(s)

1−H(s−)
ds+

∫ t′

t

(λB − λG)πs−(1− πs−)

λGπs− + λB(1− πs−)
dZs.

Now, the increments of the innovation process may be written

dZs = (λGπs− + λB(1− πs−)) ds− dNs,

where N is an inhomogeneous Poisson counting process with rate λG1{Λ > t}+λB1{Λ ≤ t}.
Thus

πt′ ≤ πt +

∫ t′

t

πs−

(
− h(s)

1−H(s−)
+ (λB − λG)(1− πs−)

)
ds.

Now, the value of the remaining integral is unchanged by modifying the integrand on a

measure-zero set of points. As H has at most countably many discontinuities, I may replace

61



H(s−) by H(s), and use the essential infimum α of h/(1−H) to obtain the bound

πt′ ≤ πt +

∫ t′

t

πs−
(
−α + (λB − λG)(1− πs−)

)
ds.

Now, suppose the inequality in the lemma statement holds. Define zt ≡ πt/(1 − πt), and

consider any time t such that zt ≤ b/rG. I claim that zt′ ≤ b/rG for all t′ > t. For suppose

zt′ > b/rG for some t′ > t. Let t′′ ≡ sup{s < t′ : zs ≤ b/rG} ≥ t. Because z has left limits

everywhere and possesses only downward jump discontinuities, zt′′ ≤ zt′′− ≤ b/rG and so

t′′ < t′. Now, zs > b/rG on (t′′, t′] by construction, hence by the inequality in the lemma

statement −α+(λB−λG)(1−πs−) ≤ 0 on (t′′, t′). But then using the upper bound on future

beliefs derived above, it must be that zt′ ≤ zt′′ , contradicting zt′ > rG/b ≥ zt′′ .

Hence once τ † = inf{t : zt ≤ b/rG} is reached, virtual profits are non-positive forever

after. Thus τ † must be an optimal stopping rule.

C.9 Proof of Lemma 7

By Lemma 1, to prove incentive-compatibility it suffices to establish IC-G. Fix any Λ′ ≤ Λ.

As U is a G-submartingale, so is the stopped process UΛ. Therefore for each t,

UΛ′∧t ≤ EGΛ′∧t [UΛ∧t] .

As UΛ∧t is FΛ-measurable, and the stopped output process Y Λ is identical in law to (Y G)Λ, it

must be that EGΛ′∧t [UΛ∧t] = EΛ′∧t [UΛ∧t] . Then taking unconditional expectations and using

the law of iterated expectations,

E [UΛ′∧t] ≤ E [UΛ∧t] .

Now note that U is a bounded process taking values in [0, b/ρ]. So take t→∞ and use the

bounded convergence theorem to exchange limits and expectations, yielding

E [UΛ′ ] ≤ E [UΛ] ,

where U∞ = b/ρ in case Λ′ =∞ or Λ =∞. But the lhs is the expert’s ex ante payoff under

Λ′, while the rhs is his ex ante payoff under Λ. Hence the contract satisfies IC-G.
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C.10 Proof of Proposition 3

Let D = {d1, ..., dn}. By assumption, each Y θ is a Lévy process. Then under the hypothesis

in the proposition statement, each Y θ may be written

Y θ
t = rθt+ σθZ

θ
t +

n∑
i=1

di(N
θ
i (t)− λθi t),

where Zθ is a standard Brownian motion and N θ
i are Poisson processes with rates λθi , where

Zθ, N θ
1 , ..., N

θ
n are mutually independent. If σG 6= σB, then πt = 0 for all t > 0 PB-a.s.,

as differences in quadratic variation of Brownian motions are immediately detectable. In

this case τY is deterministic under PB, and so U is trivially a PG-martingale. So assume

σG = σB = σ. I will also maintain σ > 0, with the σ = 0 case being an easy modification of

what follows.

Let Y c
t ≡ Yt−

∑
s≤t ∆Ys be the continuous part of Y, and define r̃θ ≡ rθ−

∑n
i=1 diλ

θ
i . Let

Zt ≡ σ−1

(
Y c
t −

∫ t

0

(πs−r̃G + (1− πs−)r̃B) ds

)
and

N i(t) ≡
∑
s≤t

1{∆Ys = di} −
∫ t

0

(πs−λ
G
i + (1− πs−)λBi ) ds

be the usual innovation processes. By a standard calculation, π evolves according to the

SDE

dπt = − πt−
1−H(t−)

dH(t) +
r̃G − r̃B

σ
πt−(1− πt−) dZt +

n∑
i=1

(λGi − λBi )πt−(1− πt−)

πt−λGi + (1− πt−)λBi
dN i(t).

Also, for each θ ∈ {G,B} let Z̃θ
t ≡ σ−1 (Y c

t − r̃θt) and Ñ θ
t ≡

∑
s≤t 1{∆Ys = di} − λθi t.

Under Pθ, Z̃θ is a standard Brownian motion, Ñ θ is a compensated Poisson process with

rate parameter λi, and Z̃θ, Ñ θ
1 , ..., Ñ

θ
n are mutually independent.

Note that the updating rule for π may be rewritten

dπt = − πt−
1−H(t−)

dH(t) +
r̃G − r̃B

σ
πt−(1− πt−) dZ̃B

t +
n∑
i=1

(λGi − λBi )πt−(1− πt−)

πt−λGi + (1− πt−)λBi
dÑB

i (t)

−

((
r̃G − r̃B

σ

)2

πt−(1− πt−) +
n∑
i=1

(λGi − λBi )2πt−(1− πt−)

πs−λGi + (1− πs−)λBi

)
πt− dt,
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so the process X defined by Xt ≡ (πt, t) is a strong Markov process under PB. Then as τY

is a function only of the path of X and Xt is FYt -measurable for all t, there must exist a

function u : [0, 1]× R+ → [0, b/ρ] such that for each t, Ut = u(Xt) PB-a.s. on {t ≤ τY }.
Further, u(p, t) must be increasing in p for fixed t. This is because by Bayes’ rule, the

posterior belief πt = E[1{Λ > s} | FYs ] must be monotone increasing in the prior E[1{Λ >

s} | FYt ] = 1−H(s)
1−H(t)

πt for every s > t, conditional on (Ys)s≥t. Thus τY is increasing in πt

conditional on (Ys)s≥t. And under PB, (Ys)s≥t is independent of πt, since (Ys)s≥t is identical

in law to (Y B
s )s≥t no matter the value of Λ under PB. Hence the distribution of τY under

PB is increasing in the FOSD sense as πt increases. This implies that u(p, t) is increasing in

p.

Now I invoke the generalized martingale representation theorem for Lévy processes de-

veloped in Nualart and Schoutens (2000), as specialized to the finite jump support case by

Davis (2005) (see pg. 66). As U is a B-martingale and is adapted to the filtration generated

by Y given the lack of randomization in τY , there exist FY -predictable processes φ0, φ1, ..., φn,

satisfying EB
[∫∞

0
φ2
i (t) dt

]
<∞ for every i, such that

Ut = U0 +

∫ t

0

φ0(s) dZ̃B
s +

n∑
i=1

∫ t

0

φi(s) dÑ
B
i (s).

for all t.

It must be that (r̃G − r̃B)φ0 ≥ 0 and (λGi − λBi )φi ≥ 0 for all i ≥ 1 PB-a.e. On {(t, ω) :

t > τY (ω)} this is trivial, as U is a constant process for t ≥ τY and so every φi must be zero

a.e. on this set. So consider the claim on {(t, ω) : t ≤ τY (ω)}. Recall that in the updating

rule for πt stated earlier, the loadings on the (r̃G− r̃B)dZ̃B and (λGi − λBi ) dÑB
i (t) terms are

all positive. If any of these loadings had the opposite sign in the martingale expansion for

dUt on a positive measure of times and states, then there would exist a time t and positive-

measure subsets A,B ⊂ {t ≤ τY } ⊂ Ω such that πt(ω) ≥ πt(ω
′) and Ut(ω) < Ut(ω

′) for

every ω ∈ A, ω′ ∈ B. Informally, states in A (respectively, B) correspond to realizations of

output with feature at least one of the following:

1. High (low) continuous output runs whenever φ0(s) < 0 and r̃G − r̃B > 0,

2. Low (high) continuous output runs whenever φ0(s) > 0 and r̃G − r̃B < 0,

3. Many (few) jumps of size di whenever φi(s) < 0 and λG > λB,

4. Few (many) jumps of size di whenever φi(s) > 0 and λB > λG.
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But this contradicts the fact that Ut = u(πt, t) PB-a.s. on {t ≤ τY }, for a function u which

is increasing in its first argument. So (r̃G − r̃B)φ0 ≥ 0 and (λGi − λBi )φi ≥ 0 for all i ≥ 1

PB-a.e. Without loss, modify the φi if necessary so these inequalities hold everywhere.

Now rewrite the martingale representation of U as

Ut = U0+

∫ t

0

φ0(s) dZ̃G
s +

n∑
i=1

∫ t

0

φi(s) dÑ
G
i (s)+

∫ t

0

rG − rB
σ

φ0(s) ds+
n∑
i=1

∫ t

0

(λGi −λBi )φi(s) ds.

As the jumps of Y G and Y B have bounded support, the Radon-Nikodym derivative for the

change of measure over output paths from PG to PB is PB-square-integrable. The Cauchy-

Schwartz inequality then guarantees that EG
[∫ t

0
φ2
i (s) ds

]
<∞ for every i and t. Hence

EGt′ [Ut] = Ut′ + EGt′

[∫ t

t′

r̃G − r̃B
σ

φ0(s) ds+
n∑
i=1

∫ t

t′
(λGi − λBi )φi(s) ds

]

for every t and t′ < t. Since the interior of the expectation on the rhs is non-negative, U is

a G-submartingale.

C.11 Proof of Lemma 8

For x ≤ K, f(x) = f for some constant f > 0. Meanwhile for x ≥ K, the arguments in the

proof of Theorem 2 show that there exists an optimal stopping rule τ ∗(x). Then the conditions

of the generalized envelope theorem stated in Theorem 3 of Milgrom and Segal (2002) hold,

and f is differentiable for every x > K with f ′(x) = E[e−ρτ
∗(x)πτ∗(x)] ≤ 1, with the same

result holding as a right-derivative at x = K. As the left-derivative of f also exists at x = K,

f is therefore continuous everywhere. Note further that if f(x) > x − K then necessarily

τ ∗(x) > 0 with positive probability, hence f ′(x) < 1. Also, whenever x ≥ K + rG/ρ, an

optimal stopping rule is trivially τ ∗(x) = 0 and so f(x) = x−K.
Suppose first that f ≥ K. Recall that f ′(x) ≤ 1 for all x ≥ K, with the equality strict

whenever f(x) > x−K. Thus if f(x) = x for some x ≥ K, then by the fundamental theorem

of calculus f(x′) < x′ for all x′ > x. So at most one fixed point can exist for x ≥ K. Further,

f(K) = f > K by assumption while f(x) = x − K < x for x ≥ K + r/ρ. So by the

intermediate value theorem must exist a unique fixed point f(x) = x on [K,K + rG/ρ], and

since f(x) = f > K for x < K, this must be the unique fixed point for all x.

Suppose instead that f < K. Then automatically f(x) < K for all x ≥ K by the

fundamental theorem of calculus, so trivially f has the single fixed point f .
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