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Abstract

To what extent can trade policy help reduce carbon emissions? To answer this question, we in-

troduce transboundary carbon externality into a multi-country, multi-industry quantitative trade

model. Our framework accommodates a rich set of policy considerations, including firm delo-

cation in response to policy, multilateral carbon leakage, and returns to scale in production and

abatement. We derive simple analytic formulas for optimal carbon, production, and trade taxes

within this framework. With the aid of these formulas, we quantify the extent to which trade pol-

icy can reduce CO2 emissions under two widely-discussed scenarios. First, we show that carbon

border adjustments adopted non-cooperatively by all governments can reduce global CO2 emis-

sions by only 3% of the reduction attainable under globally optimum carbon taxes. Second, we

find that Nordhaus’s (2015) climate club proposal can prompt global climate cooperation in which

global CO2 emissions reduce by 82%. This successful outcome, however, hinges on both the US

and EU committing to the climate club as core members, using their collective trade penalties to

enforce global climate cooperation.

1 Introduction

Climate change is accelerating at a worrying pace. Yet governments have failed in their many at-

tempts to forge an agreement that can effectively combat climate change. Major climate agreements,

like the 1997 Kyoto Protocol and the 2015 Paris climate accord, have failed to deliver a meaningful

reduction in carbon emissions. This failure is often attributed to the free-riding problem: Countries

have an incentive to free ride on the rest of the world’s reduction in carbon emissions without under-

taking proportionate abatement themselves.

The failure of exiting climate agreements has urged experts to devise alternative remedies that

are immune to the free-riding problem. Two proposal, in particular, have gained public traction:
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Proposal #1: Climate-conscious governments use carbon border adjustments in their trade taxes (as

a second-best policy) to reduce carbon emissions in the rest of the world.

Proposal #2: Climate-conscious governments form a “climate club,” and incentivize climate cooper-

ation by non-members via trade penalties (Nordhaus 2015).

These proposals are not new but measuring their efficacy at carbon reduction has proven challenging

to this date. To uncover the full potential of Proposals 1 and 2, we must determine optimal car-

bon border adjustments or optimal trade penalties under the climate club model. This task has

proven elusive: Existing analyses of Proposals 1 and 2 typically resort to arbitrarily chosen—i.e., sub-

optimal—border carbon tariffs or trade penalties. As such, they only uncover the partial efficacy of

border adjustments or the climate club. At the same time, existing analyses do not account for scale

economies in production/abatement or firm delocation in response to policy. Recent evidence from

micro-level data, however, suggest that these previously overlooked margins are key to measuring

emission reduction in response to policy (Shapiro and Walker 2018).

In this paper, we overcome these challenges to uncover the full potential of the aforementioned

policy proposals. To this end, we introduce carbon externalities, abatement, and scale economies

into a multi-country, multi-industry general equilibrium trade model. We then derive simple an-

alytic formulas for unilaterally optimal taxes that incorporate carbon-reducing and terms-of-trade

motives. We take these formulas to data on trade, production, and carbon emissions and evaluate

the effectiveness of carbon border adjustments, and the climate club scheme.

Section 2 presents our theoretical model, which is a general equilibrium semi-parametric Krug-

man model with many countries and industries. We introduce international carbon externalities and

abatement into the model à la Copeland and Taylor (2004). This framework is particularly attractive

as it combines carbon externality, terms-of-trade, and misallocation-correcting rationales for policy

intervention in tractable and transparent fashion. Our theoretical model exhibits several features that

distinguish it from prior theories of climate policy in open economies. First, our framework accom-

modates firm delocation and multilateral carbon leakage in response to policy. These effects are often

absent in prior theories that employ partial equilibrium two-by-two models. Second, firm-entry, in

our framework, creates economies of scale in both production and abatement. As it turns out, these

previously overlooked scale effects have important implications for the ability of trade policy to com-

bat carbon emissions.

Sections 3 and 4 derive simple analytic formulas for optimal trade, production, and carbon taxes

in our multi-country, multi-industry general equilibrium framework. Our formulas for optimal car-
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bon border adjustments and domestic carbon taxes, in particular, present a notable advance over

traditional theories. Most importantly, our formulas are amenable to quantitative analysis, whereas

traditional theories of optimal carbon taxes in open economies are based on stylized models that are

difficult to map to data.

Our derivation of optimal policy is grounded on a new envelope result that transforms our gen-

eral equilibrium optimal policy problem into a simpler quasi-partial equilibrium problem. Our en-

velope result consists of two proposals: First, we show that general equilibrium wage effects are

welfare-neutral when the government has access to a complete set of tax instruments. Second, we

show that general equilibrium income effects are welfare-neutral at the optimum. As a result, opti-

mal taxes can be derived as if Marshallian demand functions were income inelastic and the vector of

national wages were invariant to policy.

Our analytic formulas indicate that the unilaterally optimal carbon tax equals the CPI-adjusted

domestic disutility from carbon. This choice is sub-optimal from a global standpoint as it fails to in-

ternalize home’s carbon externality on the rest of the world. Optimal domestic production subsidies

are carbon-blind and solely restore marginal-cost-pricing. Optimal import tariffs and export sub-

sidies are composed of a border adjustment that penalizes carbon-intensive imports and promotes

clean exports in each industry. In both cases, the carbon border adjustment is smaller the higher the

degree of scale economies in the targeted industry.

To put the above results in perspective, we also characterize optimal policy under global climate

cooperation. In this case, trade taxes should be set to zero, as they are inefficient from a global

standpoint. Globally optimal carbon taxes are, however, higher than the non-cooperative rate and

equal to the CPI-adjusted global disutility from home’s carbon emissions. In other words, the globally

optimal carbon tax in each country internalizes not only that country’s carbon externality on domestic

consumers but also consumers all over the world.

Sections 5 and 6 employ our analytic tax formulas together with required sufficient statistics to

uncover the efficacy of carbon border adjustments and the climate club proposal at reducing carbon

emissions. As noted earlier, this task can be computationally infeasible without the aid of our opti-

mal tax formulas. Indeed, traditional analyses have often relied on arbitrarily-chosen—rather than

optimal—trade and carbon taxes. This approach, while fruitful, cannot uncover the full potential of

either border carbon tariffs or the climate club.

With the aid of our theory, the effectiveness of Proposals 1 and 2 can be computed as a function of

the following sufficient statistics: First, observable shares that can be constructed from national and
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environmental accounts data. Second, the governments’ perceived disutility from climate changed,

which can be inferred from applied energy/carbon taxes. Third, structural elasticities including the

industry-level trade, scale, and emission elasticities—all of which can be estimated via existing tech-

niques in the literature. We construct these sufficient statistics by merging trade, production, emis-

sion, and tax data from multiple sources. Our compiled database includes 19 broadly-defined traded

and non-traded industries as well as 13 major countries, the European Union, and an aggregate of

the rest of the world.

Our quantitative analysis indicates that carbon border adjustments have limited efficacy —even

when they are set optimally. If all countries adopt their optimal carbon border adjustments, global

CO2 emissions will decline by a mere 2.3%. This is a modest reduction, which amounts to only 3%

of the CO2 reduction attainable under the globally-first-best carbon taxes. This inefficacy of border

adjustments is driven by two factors. First, border adjustments discriminate by country of origin.

As such, their ability to regulate firm-level abatement in foreign locations is limited. Second, half of

CO2 emissions are generated by the non-traded industries. Hence, border carbon tariffs are unable

to target a large portion of transboundary CO2 emissions.

We find that the climate club model—with optimal trade penalties–can be remarkably effective at

reducing CO2 emissions.1 The climate club’s success, however, depends crucially on the makeup of

its core members. If the EU alone initiates a climate club, by committing to globally optimum carbon

taxes and penalizing non-members with trade penalties, no other country will find it optimal to join

the climate club.2 However, if the climate club is initiated by the US and EU as core members, all other

countries will join the club in succession. As a result, countries achieve global climate cooperation in

which global CO2 emission will decline by 82%. The intuition is that the EU, alone, does not posses

sufficient market power to maintain a climate club with bilateral trade penalties. The US and EU,

1Characterizing the Nash equilibria of the climate club game is computationally challenging for two reasons. First,
without appropriate analytical formulas, the computation of optimal trade penalties is not a workable approach with stan-
dard optimization techniques. As mentioned above, we overcome this barrier using our analytic formulas that characterize
the efficient terms-of-trade penalty on non-cooperative countries. Second, with N countries and m core members, there are
2N−m combinations of players’ strategies. In the absence of a systematic approach, every of these combinations must be
examined to pin down the set of Nash equilibria. We address this computational hurdle by solving the game based on the
iterative elimination of dominated strategies. This approach exploits a key property of the climate club game, in that the
net gain of joining the club rises in the size of the club.

2We specify the climate club game by letting the EU and possibly the US be the core members of the club, while other
countries play strategically. Core members commit to the rules of membership: they impose unilaterally optimal trade
taxes against non-members, while setting zero trade taxes against each other and adopting cooperative emission taxes
that correct for their global emission externality. A non-member country can retaliate by adopting its non-cooperative
trade taxes against members while keeping its other taxes at the status quo —i.e., applied emission taxes domestically and
applied tariffs against other non-members. By joining the club a country evaluates the trade-off between a production loss
that it incurs by adopting a larger emission tax against benefits of escaping trade penalties imposed by club members.
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however, posses enough collective market power to establish and maintain a global climate club.3

Related Literature

Our work is related to several strands of literature. We integrate efforts to characterize optimal poli-

cies in modern trade theories with the literature on trade and environment, in a manner that can be

connected to data for quantitative analyses.

First, we contribute to the theoretical literature on optimal trade and emission taxes in open econ-

omy. A central insight from this literature is that optimal unilateral tariffs include a tax on trans-

boundary emission (e.g., Markusen (1975); Copeland (1996)). For all its merits, this body of literature

has generally relied on partial equilibrium or two-country models that abstract from product differ-

entiation, endogenous abatement, or firm-delocation. As a result, the results from this literature have

been rarely used to guide the general equilibrium quantitative analysis of trade and environmental

policy. We complement this literature by characterizing optimal policy in a multi-country general

equilibrium trade model that accommodates several previously-overlooked features of the global

economy and is straightforward to calibrate to data.

More closely to our paper is the work of Kortum and Weisbach (2020) who characterize the op-

timal trade, production, and carbon taxes in a setting that combines elements from Markusen (1975)

and Dornbusch et al. (1977). Our paper complements Kortum and Weisbach (2020) in three ways.

First, in terms of modeling emissions, they explicitly specify markets for energy whereas our model

is built on Copeland and Taylor (2004) in which energy markets are implicitly defined. Second, in

terms of methodology, rather than the primal approach, we adopt the dual approach, which we re-

fine and customize for a class of GE trade models. Third, our theory is designed to be taken to data

on multiple countries and industries for quantitative exercises.

Second, our analysis is related to an emerging body of quantitative work that analyzes the ef-

ficacy of trade policy at tackling environmental emission (e.g., Babiker (2005), Elliott et al. (2010),

Nordhaus (2015), Böhringer et al. (2016)). Despite their rich structure, existing analyses have mostly

quantified the efficacy of easy-to-implement but sub-optimal trade policy initiatives. This approach

3To be more specific, we find that the club-of-all-nations is a Nash equilibrium, no matter who core members are. This
means that every country gains from staying in the club-of-all-nations relative to withdrawing unilaterally. These gains
are larger for smaller countries, such as Canada, while smaller for larger countries whose perceived disutility from carbon
emissions is not particularly high, such as China. In addition, and importantly, we find that for the club-of-all-nations to be
the unique Nash equilibrium, it is not sufficient to include only the EU as the core member. However, if the core members
consist of the EU and US, then the club-of-all-nations becomes the unique outcome. These results tell us that trade taxes
can be remarkably effective at enforcing a climate cooperation, provided that the US joins the EU to form an initial climate
club.
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allows researchers to circumvent the computational difficulties associated with optimal policy analy-

sis. However, it does not uncover the full potential of trade taxes at tackling environmental pollution.

In comparison, we derive analytic formulas for optimal policy, which help us bypass computational

difficulties, making us able to uncover the full potential of trade taxes at tackling environmental

emission.

Third, our intermediate envelope result speaks to an emerging literature that studies optimal

policy in modern quantitative trade models (Costinot et al. (2015, 2016), Lashkaripour and Lugov-

skyy (2016), Bartelme et al. (2019), Beshkar and Lashkaripour (2020)). These studies have bridged

a longstanding divide between classic partial equilibrium trade policy models and modern general

equilibrium trade theories. This divide is partly driven by classic trade policy models assuming away

general equilibrium wage and income effects. Our envelope result is a step forward in filling this di-

vide. Specifically, it shows that the simplifying assumptions in dealing with wage and income effects

can be relaxed without sacrificing richness of analysis.

Finally, we contribute to the ongoing revival and enhancement of quantitative trade theories.

Over the past two decades, quantitative trade models have been enriched to account for firm-selection,

scale economies, input-output linkages, multinational production, and more (Costinot and Rodríguez-

Clare (2014)). But less attention has been paid to embedding environmental externalities into the

state-of-the-art quantitative trade models (Cherniwchan et al. (2017)). Our conceptual framework

and optimal policy formulas can help bridge this gap. They can enable future analyses of trade liber-

alization to formally account for environmental costs and benefits.

This paper is organized as follows: In Section 2 we present our theoretical framework. In Section

3 we present our intermediate envelope result which we use to derive simple formulas for optimal

unilateral policy. In Section 4 we discuss international cooperative and non-cooperative Nash out-

comes. In Section 5 we map our theory with our optimal policy formulas to data, which we use in

Section 6 to quantify the efficacy of trade policy at reducing global carbon emissions.

Related Literature

Our work is related to several strands of literature. We integrate efforts that characterize optimal

trade and production policies in open economy with the literature on trade and environment, in a

manner that can be connected to data for quantitative analyses.

First, we contribute to the theoretical literature on optimal trade and emission taxes in open econ-

omy. A central insight from this literature is that optimal unilateral tariffs include a tax on trans-
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boundary emission (e.g., Markusen (1975); Copeland (1996); Hoel (1996)). For all its merits, this body

of literature has generally relied on partial equilibrium or two-country models that abstract from

product differentiation, endogenous abatement, or firm-delocation. As a consequence, the results

from this literature have been rarely used to guide the general equilibrium quantitative analysis of

trade and environmental policy. We complement this literature by characterizing optimal policy in

a multi-country general equilibrium trade model that accommodates several previously-overlooked

features in the global economy and is straightforward to calibrate to data.

More closely to our paper is the work of Kortum and Weisbach (2020) who characterize the op-

timal trade, production, and carbon taxes in a setting that combines elements from Markusen (1975)

and Dornbusch et al. (1977). Our paper complements Kortum and Weisbach (2020) in three ways.

First, in terms of modeling emissions, they explicitly specify markets for energy whereas our model

is built on Copeland and Taylor (2004) in which energy markets are implicitly defined. Second, in

terms of methodology, rather than the primal approach, we adopt the dual approach, which we re-

fine and customize for a class of GE trade models. Third, our theory is designed to be taken to data

on multiple countries and industries for quantitative exercises.

Second, our analysis is related to an emerging body of quantitative work that analyzes the ef-

ficacy of trade policy at tackling environmental emission (e.g., Babiker (2005), Elliott et al. (2010),

Nordhaus (2015), Böhringer et al. (2016)). Despite their rich structure, existing analyses have mostly

quantified the efficacy of easy-to-implement but sub-optimal trade policy initiatives. This approach

allows researchers to circumvent the computational difficulties associated with optimal policy analy-

sis. However, it does not uncover the full potential of trade taxes at tackling environmental pollution.

In comparison, we derive analytic formulas for optimal policy, which help us bypass computational

difficulties, making us able to uncover the full potential of trade taxes at tackling environmental

emission.

Third, our intermediate envelope result speaks to an emerging literature that studies optimal

policy in modern quantitative trade models (Costinot et al. (2015, 2016), Lashkaripour and Lugov-

skyy (2016), Bartelme et al. (2019), Beshkar and Lashkaripour (2020)). These studies have bridged

a longstanding divide between classic partial equilibrium trade policy models and modern general

equilibrium trade theories. This divide is partly driven by classic trade policy models assuming away

general equilibrium wage and income effects. Our envelope result is a step forward in filling this di-

vide. Specifically, it shows that the simplifying assumptions in dealing with wage and income effects

can be relaxed without sacrificing richness of analysis.
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Finally, we contribute to the ongoing revival and enhancement of quantitative trade theories.

Over the past two decades, quantitative trade models have been enriched to account for firm-selection,

scale economies, input-output linkages, multinational production, and more (Costinot and Rodríguez-

Clare (2014)). But less attention has been paid to embedding environmental externalities into the

state-of-the-art quantitative trade models (Cherniwchan et al. (2017), Shapiro and Walker (2018)).

Our conceptual framework and optimal policy formulas can help bridge this gap. They can enable

future analyses of trade liberalization to formally account for environmental costs and benefits.

This paper is organized as follows: In Section 2 we present our theoretical framework. In Section

3 we present our intermediate envelope result which we use to derive simple formulas for optimal

unilateral policy. In Section 4 we discuss international cooperative and non-cooperative Nash out-

comes. In Section 5 we map our theory with our optimal policy formulas to data, which we use in

Section 6 to quantify the efficacy of trade policy at reducing global carbon emissions.

2 Theoretical Setup

The global economy consists of multiple countries indexed by i, j, n ∈ C and multiple industries

indexed by k, g ∈ K. Each country i is endowed by L̄i units of workers who are perfectly mobile

across industries but immobile across countries.

2.1 Demand

We denote by subscript ji, k the composite variety that corresponds to origin country j, destination

country i, and industry k. The representative consumer in country i maximizes a non-parametric

utility function Ui(Qi) by choosing the vector of quantities, Qi =
{

Qji,k
}

j∈C, k∈K
subject to the budget

constraint,

Yi = ∑
j

∑
k

P̃ji,kQji,k, (1)

where Yi denotes national income, and P̃ji,k denotes the consumer price index of composite variety

ji, k. The tilde notation on price distinguishes between after-tax consumer prices (P̃ji,k) and before-

tax producer prices (Pji,k). Let P̃i = {P̃ji,k} denote the entire vector of after-tax consumer prices in

country i. The consumer’s problem implies an indirect utility function, Vi(Yi, P̃i), and a Marshallian

demand function, Qji,k = Dji,k(Yi, P̃i), for each variety ji, k. The demand function is characterized

by a set of demand elasticities. First, the elasticity of demand for (ji, k) with respect to the price of
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variety (ni, g) is,

ε
(ni,g)
ji,k ≡

∂ lnDji,k(Yi, P̃i)

∂ ln P̃ni,g
,

Second, the elasticity of demand for ji, k with respect to income is:

ηji,k ≡
∂ lnDji,k(Yi, P̃i)

∂ ln Yi
.

While we impose no parametric restriction on the demand function, we require it to satisfy standard

conditions of Marshallian demand. We denote the own price elasticity of demand by ε ji,k ≡ ε
(ji,k)
ji,k ≤

1. Lastly, since an individual consumer is one in many, he does not internalize the impact of his

consumption on emissions.

2.2 Supply

Firms and Market Structure. Production in each origin j–industry k takes place by monopolistically

competitive firms indexed by ω ∈ Ωj,k. A large pool of ex-ante identical firms can pay an entry cost

wj f̄ j,k to supply their differentiated variety to various destinations. wj denotes the labor wage rate in

origin j and f̄ j,k is the labor requirement for entry.

Upon entry, a firm’s production technology aggregates a Cobb-Douglas combination of labor

and a bundle of emission-intensive input. Specifically, production quantity of variety ji, k by firm ω

is given by d̄ji,kqji,k(ω) =
(

mji,k(ω)
)αj,k

(
ϕ̄j,klji,k(ω)

)1−αj,k
where d̄ji,kqji,k(ω), mji,k(ω), and ljik(ω) are

firm-level output, emission-intensive input, and labor input. Production is subject to iceberg trade

costs, d̄ji,k ≥ 1 with d̄jj,k = 1, and ϕ̄j,k is labor productivity in origin country j, industry k.

The firm’s problem, following Copeland and Taylor (2004), can be equivalently expressed as a

choice of production and abatement: Every firm ω devotes a fraction aj,k(ω) ∈ [0, 1] of its labor input

to abatement activities, and the rest to production. The choice of aj,k(ω) is regulated by an origin–

industry specific emission tax, τj,k. Firms (from the same origin) can be treated as symmetric: They all

choose a common abatement level aj,k ≡ aj,k(ω), deliver quantity qjik ≡ qji,k(ω) to destination i (for

which they require to produce dji,kqjik), and use mji,k ≡ mji,k(ω) emission-intensive input. The use of

emission-intensive input per unit of output, mji,k/(d̄ji,kqji,k), equals (1− aj,k)
1/αj,k−1, where αj,k > 0 is

the “emission elasticity” which can vary across producer countries j ∈ C and industries k ∈ K.

The use of emission-intensive input, mji,k, generates two types of emissions: CO2 emissions, zji,k,

that create a global externality; and, a bundle of local pollutants, z0
ji,k, that create a local externality. We
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let one unit of emission-intensive input generate one unit of CO2 emissions, and ζ̄ j,k units of local

emissions. Hence, zji,k = mji,k, and z0
ji,k = ζ̄ j,kzji,k.4

Given the choice of abatement aj,k, the marginal cost of production equals cji,k = d̄ji,k(1− αj,k)
−1(1−

aj,k)
−1(wj/ϕ̄j,k). A higher level of abatement implies that firms produce less emissions and pay less

in emission taxes, but face a higher marginal cost of production.

Industry-Level Aggregates. The composite output of ji, k, Qji,k, aggregates over firm-level quantities

qji,k(ω),

Qji,k =

(∫
ω∈Ωj,k

qji,k(ω)
γk−1

γk dω

) γk
γk−1

with γk > 1 denoting the elasticity of substitution across firm-level varieties from the same origin.

Facing with substitution elasticity γk, firms charge a constant markup over their marginal cost, which

implies the following producer price index for composite variety ji, k:

Pji,k = M
1

1−γk
j,k

γk

γk − 1
d̄ji,kwj

ϕ̄j,k(1− αj,k)(1− aj,k)
. (Price)

In the above expression, Mj,k ≡
∣∣Ωj,k

∣∣ denotes the mass of firms. It is pinned down by the free

entry condition, that requires entry costs, Mj,kwj f̄ j,k, be equal to gross profits across all destinations,

∑i
1

γk
Pji,kQji,k. Putting these together with Pji,k = d̄ji,kPjj,k and Qj,k = ∑i d̄ji,kQji,k, yields the following

expression for the mass of firms:

Mj,k =
Pjj,kQj,k

γk f̄ j,kwj
(Entry)

Using the Equations (Price) and (Entry), we can express industry-level variables as functions of abate-

ment and output in each origin-industry:

Pji,k(wj, aj,k; Qj,k) = d̄ji,k p̄jj,kwj(1− aj,k)
1

γk
−1Q

− 1
γk

j,k (2)

Zj,k(ajk; Qj,k) = z̄j,k(1− aj,k)
1

αj,k
+ 1

γk
−1

Q
1− 1

γk
j,k (3)

4We let ζ̄ik vary across industry-country pairs. This means that, for example, one tonne of CO2 emissions in agriculture
vs chemical manufacturing in China is associated with different emissions of local pollutants such as carbon monoxide,
and this relationship also differs from one country to the other.
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Mj,k(ajk; Qj,k) = m̄j,k(1− aj,k)
−1+ 1

γk Q
1− 1

γk
j,k (4)

In the above expressions, p̄jj,k, z̄j,k, m̄j,k are exogenous shifters of price, CO2 emission, and mass

of firms.5 The industry-level local emissions is given by Z0
j,k = ζ̄ j,kZj,k. Notice, internal economies

of scale operate through the endogenous mass of firms, which is given by Equation (4). The re-

sulting scale effects impact both industry-level price Pji,k and emission Zj,k, as reflected by the term(
Qj,k/(1− aj,k)

)−1/γk in Equations (2) and (3). This formulation indicates that scale economies are

operative through both production and abatement to a common extent, and are governed by γk.

2.3 Policy Instruments, Price Wedges & Emissions

The government in country i has access to a full set of tax instruments necessary to replicate the

(unilaterally) first-best outcome. These tax instruments include:6

1. An import tax, tji,k, applied to each imported variety ji, k (tii,k = 0 by design)

2. An export subsidy, xij,k, applied to each exported variety ij, k (xii,k = 0 by design)

3. A production subsidy, si,k, applied to all outputs in origin i-industry k irrespective of the location

of final sales.

4. An emission tax, τi,k, applied to all outputs in origin i-industry k irrespective of the location of

final sales.

The first three tax instruments create a wedge between the after-tax, consumer price and before-tax,

producer price of a given variety. Specifically, after-tax consumer prices are related to before-tax

producer prices according to:7

P̃ji,k =
(1 + tji,k)

(1 + si,k)(1 + xij,k)
Pji,k

5Specifically, p̄jj,k ≡
(

γk f̄ j,k

)1/γk
(

γk
γk−1

1
ϕ̄j,k(1−αj,k)

)(γk−1)/γk
, z̄j,k ≡

(
γk f̄ j,k/ p̄jj,k

)1/(γk−1)
, m̄j,k ≡ p̄jj,k/(γk f̄ j,k).

6Adding consumption and abatement taxes does not bring any new potential in policy since the entire effect from these
two taxes can be replicated by an appropriate choice of the current instruments.

7An alternative way of representing this relationship is P̃ji,k = (1 + tji,k)(1 + sa
i,k)(1 + xa

ij,k)Pji,k. Since the policy tools
related to production and exports are typically understood as subsidies, we have replaced (1 + sa

i,k) = 1/(1 + si,k) and
(1 + xa

ij,k) = 1/(1 + xij,k).
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In the case that only home country i sets taxes, the following one-to-one mapping holds between the

set of instruments {tji,k, xij,k, si,k}j,k and the set of after-tax prices {P̃ji,k, P̃ij,k, P̃ii,k}j 6=i,k ,

(1 + tji,k) =
P̃ji,k

Pji,k
, (1 + xij,k) =

Pij,k

P̃ij,k

Pii,k

P̃ii,k
, (1 + si,k) =

Pii,k

P̃ii,k
(5)

Hence, the government can replicate any choice of trade and production tax-cum-subsidies with the

right choice of consumer/producer price wedges.

The emission tax, τj,k, is a tax imposed on the emission-intensive input used in country j–industry

k. The government in country j can incentivize higher levels of abatement in country-industry jk by

imposing a higher emission tax, τj,k. Using the relation between abatement and emission, the choice

of abatement by cost-minimizing firms in origin j is given by:8

(1− aj,k) =
( αj,k

1− αj,k

)αj,k
(wj/ϕ̄j,k

τj,k

)αj,k
. (6)

The above equation indicates that firms’ choice of abatement is a function of the wage to emission

tax ratio, with the extent of the relationship controlled by the emission elasticity αj,k.

2.4 General Equilibrium

Revenues. Total income in country i, which pins down total expenditure per Equation (1), is the sum

of wage payments, wi L̄i, lump-sum tax revenues, Ti,:

Yi = wi L̄i + Ti (7)

8Specifically, the unit cost of ji, k is given by cji,k = d̄ji,kα
−αj,k

j,k (1− αj,k)
−(1−αj,k)τ

αj,k

j,k (wj/ϕ̄j,k)
1−αj,k , emission by zji,k =

αj,kcji,k d̄ji,kqji,k/τj,k, and labor by lji,k = (1− αj,k)cji,k d̄ji,kqji,k/wj. Replacing these in the relation between abatement and

emission, (1− aj,k) =
(

zji,k

/
ϕ̄j,klji,k

)αj,k
, delivers equation (6). In addition, note that our framework nests a model with

exogenous emission intensities (no abatement) if αj,k → 0. In this case, d̄ji,kqji,k(ω) = ϕj,klji,k(ω), and aj,k = 0. Also, for
completeness, (for 0 < αj,k < 1) we specify that aj,k = 0 if τj,k ≤ τmin

j,k ≡
αj,k

1−αj,k
(wj/ϕ̄j,k).
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The tax revenue Ti is the sum of revenues collected from emission and import taxes and the revenues

exhausted by production and export subsidies:

Ti =

emission taxes︷ ︸︸ ︷
∑

k∈K

∑
j∈C

(
αj,k

γk − 1
γk

Pij,kQij,k

)
+

production subsidies︷ ︸︸ ︷
∑

k∈K

[(
P̃ii,k − Pii,k

)
Qii,k

]
(8)

+ ∑
k∈K

∑
j∈C,j 6=i

[(
P̃ji,k − Pji,k

)
Qji,k

]
︸ ︷︷ ︸

imports taxes

+ ∑
k∈K

∑
j∈C,j 6=i

[(
P̃ij,k − Pij,k

)
Qij,k

]
︸ ︷︷ ︸

exports subsidies

Definition. For a given vector of taxes {tji,k, xij,k, si,k, τi,k}j,k, equilibrium is a vector of wages {wj}
such that before-tax prices {Pji,k} are given by (2), emission {Zj,k} by (3), mass of firms {Mj,k} by (4),

abatement {aj,k} by (6), demand quantities by Qji,k = Dji,k(Yi, P̃i) in which after-tax prices P̃i ≡ {P̃ji,k}
are given by (5) and national expenditure Yi in equation (1) equals national income according to (7)

with tax revenues given by (8), and labor markets clear:9

wi L̄i − ∑
k∈K

∑
j∈C

(1− αi,k
γk − 1

γk
)Pij,kQij,k = 0. (9)

Expenditure/Revenue Shares and emission Intensity. To streamline the presentation of our theory,

we define the following variables. The within-industry expenditure share of country i on variety ji, k

is denoted by λji,k (trade share of country i on supplying country j within industry k), and the overall

expenditure share of country i on industry k is denotes by ei,k,

λji,k ≡
P̃ji,kQji,k

∑ ĵ∈C P̃ĵi,kQ ĵi,k
; ei,k =

∑ ĵ∈C P̃ĵi,kQ ĵi,k

∑ ĵ∈C ∑k̂∈K
P̃ĵi,k̂Q ĵi,k̂

=
∑ ̂∈C P̃̂i,kQ ̂i,k

Yi
(10)

Country i’s overall share of expenditure on variety ji, k is denoted by eji,k,

eji,k ≡
P̃ji,kQji,k

∑ ̂∈C ∑k̂∈K
P̃̂i,k̂Q ̂i,k̂

=
P̃ji,kQji,k

Yi
= λji,kei,k (11)

9The labor market clearing condition (LMC) is equivalent to the balance trade condition (BTC),

∑k∈K ∑j 6=i∈C

(
Pji,kQji,k − P̃ij,kQij,k

)
= 0, where exports and imports of every country i are measured in values out-

side the border of i (that are, exports are after-tax, but imports are before-tax). In our policy analysis, we sometimes use
(BTC) instead of (LMC).
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The within-industry share of origin j’s revenues from sales of variety ji, k is denoted by rji,k, and the

share of industry k in origin j’s total revenues is denoted by ρj,k :

rji,k ≡
Pji,kQji,k

∑î∈C Pjî,k̂Qjî,k̂
; ρi,k =

∑k̂∈K
Pjı̂,k̂Qjı̂,k̂

∑ ̂∈C ∑k̂∈K
Pjı̂,k̂Qjı̂,k̂

. (12)

Lastly, we use vj,k to denote the CO2 emission intensity per unit value of output in origin j–industry k:

vj,k ≡
Zj,k

Pjj,kQj,k
=

γk − 1
γk

αj,k

τj,k
. (13)

2.5 Governments’ Objective Function

In this section, we present the objective function that governments aim to maximize. To this end,

we first specify the environmental cost of economic activities perceived by governments. We express

country i’s disutility from local and global emissions as φ0
i ∑k Z0

i,k + φi ∑n ∑k Zn,k, where φ0
i and φi

reflect the disutility per unit of local, non-CO2 and global, CO2 emissions. Using Z0
j,k = ζ̄ j,kZj,k and

defining φik ≡ φ0
i ζ̄i,k, we can then express country i’s disutility from emissions, ∆i(Z), as:

∆i(Z) = ∑
n

∑
k
(δni,kZn,k) , where δni,k =

φi n 6= i

φi,k + φi n = i
(14)

This specification allows φi,k to vary across industries insofar as a unit of CO2 emission across indus-

tries within country i comes with different units of local emissions. While our specification makes

room for this connection, it allows us to track merely CO2 emissions, where Z = [Zn,k]n∈C,k∈K is

the long vector of CO2 emissions from worldwide country-industry pairs. We interpret country i’s

disutility from emissions, ∆i(Z), as the present value cost of CO2 emissions perceived by the govern-

ment of country i. We note that governments’ perceptions of the cost of emissions might differ from

academic estimates of the expected damage.

Let Ii stack the instruments of policy for the government in country i, Ii ≡ {tji,k, xij,k, si,k, τi,k}j,k.

The objective function of the government in country i is given by:

Wi = Vi(Yi(Ii, w), P̃i)− ∆i(Z) (15)

The first term in this objective function reproduces indirect utility from consumption, taking into

account that income Yi depends on the vector of wages w = {wi} as well as policy instruments Ii. In
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addition, we will use φ̃i ≡ P̃iφi, φ̃i,k ≡ P̃iφi,k, and δ̃ni,k ≡ P̃iδni,k = φ̃i,k1(n = i) + φ̃i as the CPI-adjusted

welfare cost per unit use of emission-intensive input, where P̃i ≡ (∂Vi(.)/∂Yi)
−1 is the consumer

price index in country i. With the government’s objective function at hand, we can now define the

optimal unilateral policy.

Definition. The Optimal Unilateral Policy for country i is achieved by choosing policy instruments, Ii,

that maximize country i’s welfare, Wi (Equation 15), subject to equilibrium conditions (1)-(9).

The elucidate the above definition, Appendix A.1 presents a minimal set of equations that de-

scribe the unilateral policy problem.

3 Optimal Unilateral Policy

In this section, we characterize a country’s optimal unilateral tax schedule. The unilaterally optimal

policy corrects three types of distortion from the standpoint of a non-cooperative government who

acts in their self interest:

1. [Emission Externalities] The externality imposed on domestic consumers from local and trans-

boundary emissions.

2. [Markup Distortions] The misallocation caused by cross-industry markup heterogeneity.

3. [Terms-of-Trade] The unexploited unilateral gains from exercising national-level export and im-

port market power.

We currently have a limited understanding of how these distinct policy channels interact. To shed

light on their interaction, we analytically characterize the optimal unilateral policy schedule for each

country. This is a challenging task, which explains why previous characterizations of optimal trade

and emission taxes have typically restricted attention to two-country or partial equilibrium setups,

with all or some of these simplifying assumptions: perfect competition, fixed location of firms, fixed

set of products, exogenous emission intensities, and constant-returns-to-scale production technolo-

gies.

Before presenting our optimal policy formulas, we discuss our methodological approach. Our

goal here is to demonstrate that we have a systematic way of characterizing optimal policy with

applications beyond this particular work. We present this point via an intermediate envelope result,
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which forms the basis of our subsequent optimal policy formulas. Throughout the paper, if not

reported in the main text, our derivations and proofs are presented in the appendix.

We proceed in following order: We first present our intermediate envelop result in Section 3.1.

Then, we derive optimal unilateral policy formulas in Section 3.2. In Subsections 3.3 and 3.4 we

discusses special cases of formulas and highlight the key trade-offs that underlie them. In Subsection

3.5, we examine second-best scenarios in which a governments is afforded fewer tax instruments

than is necessary to attain the (unilateral) first-best outcome.

3.1 Intermediate Envelope Result

In this section, we present an intermediate envelope result that greatly facilitates our optimal policy

analysis. In summary, this result allows us to convert our general equilibrium optimization problem

into a simpler problem characterized by a set of partial equilibrium derivatives. We establish this

result in three steps.

Step 1: Reformulate the optimal policy problem in terms of consumer prices and abatement

The government in i can choose consumer prices {P̃ji,k, P̃ij,k, P̃ii,k}j 6=i,k to replicate any set of trade and

production tax-cum-subsidies {tji,k, xij,k, si,k}j,k according to Equation (5), and can chose abatement

levels {ai,k}k to replicate any set of emission taxes {τi,k} according to Equation (6). Shifting the focus

from the vector of taxes Ii ≡ {tji,k, xij,k, si,k, τi,k}j,k to their target variables Pi ≡ {P̃ji,k, P̃ij,k, P̃ii,k, ai,k}j 6=i,k

is useful, as it emphasizes the economic variable each tax instrument directly targets. As a point of

reference, we provide a formal definition of Pi.

Definition 1. Pi ≡
{

P̃ij, P̃ji, P̃ii, ai
}

denotes the vector of policy instruments for country i in the

reformulated optimal policy problem, where P̃ji =
{

P̃ji,k
}

j 6=i,k, P̃ij =
{

P̃ij,k
}

j 6=i,k, P̃ii =
{

P̃ii,k
}

k, and

ai = {ai,k}k.

We can simplify our optimal policy problem by re-casting it as a problem of choosing consumers

prices and abatement levels instead of tax instruments. The following lemma establishes that after

solving such a problem, the optimal taxes can be recovered using Equations (5) and (13).

Lemma 1. Given optimal prices and abatement levels, P?
i = {P̃?

ji,k, P̃?
ij,k, P̃?

ii,k, a?i,k}j 6=i,k, optimal taxes/subsidies
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I?i = {t?ji,k, x?ij,k, s?i,k, τ?
i,k}j,k can be recovered according to the following one-to-one mapping:

1 + t?ji,k =
P̃?

ji,k

Pji,k
, 1 + x?ij,k =

Pij,k

P̃?
ij,k

Pii,k

P̃?
ii,k

, 1 + s?i,k =
Pii,k

P̃?
ii,k

, τ?
i,k =

γk − 1
γk

αi,k

vi,k(a?i,k)

By appealing to the above lemma, we hereafter formulate the optimal policy problem as a choice

of Pi which maximizes the objective function Wi subject to equilibrium constraints. The next two

steps establish neutrality results that greatly simplify this reformulated problem.

Step 2: Conditional welfare-neutrality of wage effects

The choice of Pi affects the vector of wages whose subsequent effect on welfare complicates the

analysis. We show that conditional on holding policy Pi fixed, general equilibrium wage effects are

welfare-neutral. To make this point, we formulate all variable outcomes as a function of Pi and the

wage vector w. As detailed in Appendix A.2, this formulation results from a system that solves all

equilibrium relationships with the exception of the labor market clearing condition. It characterizes

welfare in country i as Wi(Pi; w), prices as Pij,k(Pi; w), quantities as Qij,k(Pi; w), etc. Note, though,

that all (Pi; w) pairs are not feasible. Given Pi, a feasible vector of wages must satisfy the labor

market clearing condition in each country.

Definition 2. A policy-wage pair, (Pi; w) is feasible iff the vector of wages w ≡ {wn}n∈C satisfy the labor-

market clearing conditions, given the policy vector Pi. Namely,

(Pi; w) ∈ Fw
i ⇐⇒ ∑

j,k

[(
1− αn,k

γk − 1
γk

)
Pnj,k(Pi; w)Qnj,k(Pi; w)

]
= wn L̄n, for all n ∈ C. (16)

Using this definition, we express the government’s problem (P1) as:

max
Pi

Wi(Pi; w), subject to (Pi; w) ∈ Fw
i (P1)

where Wi(Pi; w) = Vi(Yi(Pi; w), P̃i)−δi ·Z(Pi; w). The inner product δi ·Z(Pi; w) = ∑j,k δjiZj,k(Pi; w)

summarizes the disutility from global emission to country i. The necessary condition for the optimal-

ity of each policy instrument P ∈ Pi is then given by:

dWi(Pi; w)

d lnP =
∂Vi(.)
∂ lnP +

∂Vi(.)
∂Yi

(
∂Yi(Pi; w)

∂ lnP

)
w
−
(

∂δi · Z(Pi; w)

∂ lnP

)
w
+

∂Wi(Pi; w)

∂w
dw

d lnP︸ ︷︷ ︸
wage effects

= 0,
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Recall that Vi(.) ≡ Vi(Yi, P̃i) denotes the indirect utility function from consumption, and ∂Vi(.)
∂ lnP is

nonzero only if P is one of prices faced by home consumers, i.e., P ∈ P̃i ≡ {P̃ji, P̃ii}. In the above

FOC, the first three terms correspond to the effects of policy P ∈ Pi on welfare holding w = {wn}n∈C

fixed.10 The last term accounts for the general equilibrium wage effects. By choice of numeraire, we

normalize wage in one of the foreign countries, say n, to unity. That implies dwn
d lnP = 0. We show in

Appendix A.4 that

rji × λ`i,k ≈ 0 if (j 6= i) ∧ (` 6= i) =⇒
dw−{i,n}

d lnP ≈ 0.

Throughout this section we maintain the assumption that rji × λ`i,k ≈ 0 if j and ` 6= i. Later, when

mapping out theory to data, we show that this assumption is strikingly consistent with actual data.

Regardless, the most important wage effect is the one corresponding to own’s wage, wi. Accounting

for the change in wi (relative to w−i) has proven a major obstacle when solving problems like (P1).

The next lemma allows us to overcome this obstacle. It states that for any (Pi; w) ∈ Fw
i , if the gov-

ernment has access to all policy instruments, country i’s own wage effects are also welfare-neutral.

Lemma 2. Within the feasible policy-wage set (Pi; w) ∈ Fw
i , conditional on a choice of policy vector Pi,

welfare in country i is invariant to wage wi:(
∂Wi(Pi; w)

∂wi

)
w−i

= 0, ∀(Pi; w) ∈ Fw
i .

To take stock, the above result indicates that home’s wage has no effect on home’s welfare, pro-

vided that the labor market clearing condition holds and the government has access to all policy

instruments. This result would hold even if the government did not choose the policy vector opti-

mally. To provide intuition, note that as long as policy Pi is fixed, wi affects welfare, Wi, only though

its effect on income Yi. Lemma 2 can, thus, be established by showing that ∂Yi/∂wi = 0. To show that

∂Yi/∂wi = 0, note that an increase in wi has two opposing but equal-sized effects on income Yi, as

long as the policy vector, Pi, is held fixed. On one hand, an increase in wage wi raises income Yi di-

rectly through wage incomes wi L̄i. On the other hand, it decreases income indirectly through raising

origin i’s producer prices, which amounts to lower tax revenues. This latter effect arises because the

10On our notation: (1) For any vector y, y−n ≡ y/{yn}. (2) In cases where there might be ambiguity, we include
endogenous variables that we hold fixed in the subscript of a derivative. For function G(x; y) with x as the policy vector,

and y as the vector of endogenous variables,
(

∂G(x,y)
∂xm

)
y

denotes the derivative of G wrt xm, holding fixed y and x−m, and(
∂G(x,y)

∂yn

)
y−n

denotes the derivative of G wrt yn, holding fixed y−n and x.
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after-tax price of home-made varieties, {P̃ij, P̃ii}, are held fixed as part of Pi. Importantly, these two

opposing effects sum up to zero, because the tax revenue effect is proportional to country i’s total

sales, and total (net) sales equal wage incomes in equilibrium.

Lemma 2 greatly facilitates our analysis, since it allows us to identify the optimal policy by treat-

ing the wage vector w as fixed. Once we fix w, income in the rest of the world, Y−i = w−i � L̄−i, is

also fixed by construction. The next step shows that income in country i, Yi, can also be treated as

fixed, since domestic income effects are welfare neutral at the optimum.

Step 3: Conditional welfare-neutrality of income effects at the optimum

Following Step 2, we treat wages as invariant to policy. This means that, for a given vector of policy

Pi, we can hold wages fixed at their values that satisfy market clearing conditions, w = w̄. This

intermediate result also implies that we can hold income in foreign countries fixed, Yn = Ȳn for n 6= i.

With these considerations, we re-formulate all equilibrium variables as a function of the policy vector

Pi and income Yi. As detailed in Appendix A.3, this formulation derives from solving a system that

imposes all equilibrium relationships except the budget constraint, Yi = w̄i L̄i + Ti(Pi; Yi). Notice, tax

revenues Ti depend on income Yi because home’s demand schedule, which dictates these revenues,

depends on income. This brings us to define feasible pairs of policy-income as follows.

Definition 3. A policy-income pair, (Pi; Yi) is feasible iff income Yi equals total wages plus tax revenues,

given policy Pi. Namely,

(Pi; Yi) ∈ FY
i ⇐⇒ Yi = w̄i L̄i + Ti(Pi; Yi). (17)

We continue with an observation that further facilitates our analysis. Restricting the system to

the feasible policy-income pairs, we observe that income Yi affects welfare exclusively through de-

mand quantities. Behind this observation is that income affects producer prices, emissions, and

taxes only though income effects in demand, meaning that we can express these variables as Pni,g =

Pni,g(Pi, Qi(Pi, Yi)), Zn,g = Zn,g(Pi, Qi(Pi, Yi)), Ti = Ti(Pi, Qi(Pi, Yi)), where Qi ≡ {Qni,g, Qin,g}n∈C,g∈K

is the vector of country i’s output and consumption quantities. The equilibrium value for con-

sumption quantities are given by Qni,g = Dnig(Yi, P̃i). Export quantities are Qin,g = Ding(Ȳj =

w̄j L̄j, P̃in, P̃−in(w̄−i)).
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The optimal policy problem of country i can now be expressed as:

max
Pi

Wi(Pi; Qi(Pi, Yi)) subject to (Pi;Yi)∈ FY
i (P2)

where:

Wi(Pi, Qi(Pi, Yi)) = Vi(w̄i L̄i + Ti(Pi, Qi(Pi, Yi))︸ ︷︷ ︸
Yi

, P̃i)− δi · Z(Pi, Qi(Pi, Yi))

Capitalizing on the reformulation (P2), we can now explain the welfare neutrality of income ef-

fects. The first order condition w.r.t. to policy instrumentP ∈ Pi is given by
[

∂Vi
∂Yi

∂Ti(.)
∂P + ∂Vi

∂P −
∂δi ·Z(.)

∂P

]
=

0. We expand the components of this equation using the following derivatives,
∂Ti(.)

∂P =
(

∂Ti
∂P

)
Qi

+ ∂Ti
∂Qi
·
[(

∂Qi
∂P

)
Yi
+ ∂Qi

∂Yi

dYi
dP

]
∂δi ·Z(.)

∂P =
(

∂δi ·Z
∂P

)
Qi

+ ∂δi ·Z
∂Qi
·
[(

∂Qi
∂P

)
Yi
+ ∂Qi

∂Yi

dYi
dP

] ,

where dYi
dP can be calculated by applying the Implicit Function Theorem to Equation 17 to ensure

feasibility. To elaborate on the above expressions, tax revenues Ti(.) and emission disutility δi · Z(.)
react to policy P directly holding quantities, and indirectly through changes in demand quantities.

Note that, once we hold quantities fixed, we are also holding income fixed. Putting these points

together, and recalling that P̃i ≡
(

∂Vi(.)
∂Yi

)−1
, the FOC collapses to:

P̃i
∂Vi(.)

∂P +

(
∂Ti

∂P

)
Qi

− P̃i

(
∂δi · Z

∂P

)
Qi

+

[
∂Ti

∂Qi
− P̃i

∂δi · Z
∂Qi

]
·
(

∂Qi
∂P

)
Yi︸ ︷︷ ︸(

∂Wi
∂P

)
Yi

+

[
∂Ti

∂Qi
− P̃i

∂δi · Z
∂Qi

]
· ∂Qi

∂Yi︸ ︷︷ ︸
∂Wi
∂Yi

dYi

dP = 0 (18)

In equation (18), the first four terms represent the direct welfare effect of policy instrument P holding

income fixed,
(

∂Wi
∂P

)
Yi

, and the last term represents the indirect general equilibrium effect of policy

P on welfare through changes in income (hence, the term “income effects”). We will rely on this

system of FOCs to solve for the optimal policy schedule, but we pause that analysis for the moment

to illustrate the conditions for the neutrality of income effects.

Suppose P is one of the consumer prices in home P̃ji,k ∈ P̃i, be it either a domestic (j = i) or an
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imported (j 6= i) variety. In this case,(
∂Ti

∂P̃ji,k

)
Qi

= Qji,k, P̃i

(
∂Vi

∂P̃ji,k

)
= −Qji,k,

(
∂δi · Z
∂P̃ji,k

)
Qi

= 0 =⇒ P̃i
∂Vi(.)
∂P̃ji,k

+

(
∂Ti

∂P̃ji,k

)
Qi

− P̃i

(
∂δi · Z
∂P̃ji,k

)
Qi

= 0,

where the first equality reflects the direct effect of consumer price P̃ji,k on tax revenues holding the

demand schedule fixed; the second equality follows from Roy’s identity; and the third equality holds

because emission is fully determined by abatement levels and quantities. From setting P̃i
∂Vi(.)

∂P +(
∂Ti
∂P

)
Qi

− P̃i

(
∂δi ·Z

∂P

)
Qi

= 0 in equation (18), it follows that

[
∂Ti

∂Qi
− P̃i

∂δi · Z
∂Qi

]
·
(

∂Qi
∂P

)
Yi

+

[
∂Ti

∂Qi
− P̃i

∂δi · Z
∂Qi

]
· ∂Qi

∂Yi

dYi

dP = 0

Noting that ∂Qin
∂P̃ji,k

= ∂Qin
∂P̃ii,k

= ∂Qin
∂Yi

= 0 if n 6= i, we can conclude that a trivial solution in case of

P = P̃ji,k or P̃ii,k ∈ P̃i ⊂ Pi is achieved where

N

∑
n=1

K

∑
k=1

[
∂Ti

∂Qni,k
− P̃i

∂δi · Z
∂Qni,k

]
= 0,

which means that the income effect is neutral at the optimum. We show in the next section that this

trivial solution is also the unique solution to the system of FOCs. Our above discussion shows that

the optimal choice with respect to P̃ii,k ∈ P̃i and P̃ji,k ∈ P̃i entails that income effects are welfare

neutral: ∂Wi
∂Yi

= 0. We summarize this conclusion in the following lemma.

Lemma 3. Within the feasible policy-income set, (Pi; Yi) ∈ FY
i , if P̃i ⊂ Pi is chosen optimally, then income

effects are welfare-neutral, ∂Wi
∂Yi

= 0.

Putting the Three Steps Together

We outline the results from Lemmas 1,2,3 in the following proposition.

Proposition 1. [Intermediate Envelope Result] Country i’s optimal policy, P?
i , is the solution to a system

of equations that asserts optimality w.r.t. all Pi ∈ Pi, holding fixed wages and income,

P̃i
∂Vi(.)
∂ lnP +

(
∂Ti

∂ lnP

)
w,Qi

− P̃i

(
∂δi · Z
∂ lnP

)
w,Qi

+

[(
∂Ti

∂Qi

)
w
− P̃i

(
∂δi · Z

∂Qi

)
w

]
·
(

∂Qi
∂P

)
Yi

= 0 (?).

We refer to Proposition 1 as an intermediate envelop result, because it reduces our general equi-

librium optimal policy problem into one in which wage and income effects can be ignored. In other
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words, we can derive the optimal policy schedule while treating w as constant and ignoring Yi’s im-

pact on country i’s demand schedule. Below, we discuss several aspects of this intermediate envelope

result.

As noted in the build up to Lemma 3, the first three terms in Equation (?) collapse to zero when

P = P̃ji,k or P̃ii,k ∈ Pi. Relatedly, ∂Vi(.)
∂ ln(1−ai,k)

= ∂Vi(.)
∂ ln P̃ij,k

= 0 since neither ai,k or P̃ij,k explicitly enter

the indirect utility function. Furthermore,
(

∂δi ·Z
∂ ln P̃ij,k

)
w,Qi

= 0 since P̃ij,k affects emission only through

its effect on output quantities, Qi; and
(

∂Qi
∂ ln(1−ai,k)

)
Yi

= 0 since holding prices (which are in Pi) and

income fixed, abatement has not effect on the demand schedule. Accounting for these equal-to-zero

terms, P?
i solves the following system according to Proposition 1:

(
∂Ti

∂ ln(1−ai,k)

)
w,Qi

−
(

∂δi ·Z
∂ ln(1−ai,k)

)
w,Qi

= 0 [ai,k]

P̃ij,kQij,k + ∑n∈C ∑k∈K

[(
∂Ti

∂Qnj,k
− P̃i

∂δi ·Z
∂Qnj,k

)
∂Dnj,k(.)
∂ ln P̃nj,k

]
= 0 [P̃ij,k]

∑n∈C ∑k∈K

[
∂Ti

∂Qni,k
− P̃i

∂δi ·Z
∂Qni,k

]
= 0 [P̃ji,k, P̃ii,k]

(19)

Discussion. Before solving the above system, a few details about Proposition 1 are in order. Above

all, Proposition 1 holds when country i’s government has access to all price-related policy instruments.

As for wage effects, if the government is prohibited from setting any of the instruments that corre-

spond to the after-tax prices of varieties originating from home (namely, {P̃ii, P̃ij}), then Lemma 2

fails. The intuition is the following: The government in country i can improve its terms-of-trade by

inflating its wage, wi, relative to w−i. The gains from inflating wi can be perfectly mimicked with

an appropriate adjustment in production and export subsides, {si,k, xij,k}j 6=i,k. This adjustment in our

reformulated problem corresponds to an appropriate choice vis-à-vis price vectors, P̃ii and P̃ij. The

argument is that a proper adjustment in production and export subsidies can achieve any level of

national sales; and, provided that labor markets clear, national sales pin down home’s wage, wi. This

argument holds even if the choice with respect to {P̃ii, P̃ij} is not optimal, but it fails if the govern-

ment is prohibited from manipulating any element of these price vectors. In that case, wage effects

become non-neutral and should be properly tracked when solving the optimal policy problem

A similar argument applies to Lemma 3 which states that if the government can set all price

variables associated with the local consumption market optimally, then income effects are redundant.

Because any gains from raising Yi are already internalized by the vector of consumer prices in home.

But if the government is prohibited from manipulating any element in P̃i ≡ {P̃ii, P̃ji}, the argument

no longer holds. Also notice, the welfare-neutrality of income effects explain why income elasticities
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of demand play no role in the optimal policy schedule that follows.

Finally, note that the ability to set prices in foreign markets, P̃ij, is only relevant to Lemma 2 but

irrelevant to 3. So even if the government cannot set P̃ij, we can still invoke Lemma 3 to simplify the

optimal policy problem. In addition, if abatement ai is set sub-optimally, Lemmas 2 and 3 continue to

hold. Hence, Proposition 1 applies to second-best scenarios where governments cannot tax emission

but can manipulate the entire vector of after-tax prices, {P̃ii, P̃ji, P̃ij}, associated with their economy.

3.2 Characterizing the Optimal Tax Schedule

Proposition 1 describes the system of F.O.C.s that characterize the optimal policy schedule. Since we

assume a non-parametric demand function, we present this system using the own- and cross-price

demand elasticities defined in Section 2.1. The following lemma summarizes this step, with detailed

derivations provided in Appendixes B.2 and B.4.

Lemma 4. Country i’s optimal policy, P?
i =

{
P̃?

ij, P̃?
ji, P̃?

ii, a?
i

}
, solves the following system of F.O.C.s:

[ai,k] δ̃ii,kvi,k(a?i,k)− αi,k
γk − 1

γk
= 0;

[P̃ni,k = P̃ji,k, P̃ii,k] ∑
n 6=i

∑
g

[(
P̃?

ji,g

Pji,g
−
(

1 + ωji,g + δ̃ji,gvj,g
γg − 1

γg

))
eji,gε

(ni,k)
ji,g

]

+ ∑
g

[(
P̃?

ii,g

Pii,g
−
(

1− αg
γg − 1

γg
+ δ̃ii,gvi,g

)
γg − 1

γg

)]
eii,gε

(ji,k)
ii,g = 0

[P̃ij,k] 1−∑
` 6=i

∑
g

[(
ω`i,g + δ̃`i,gv`,g

γg − 1
γg

)
e`j,g

eij,k
ε
(ij,k)
`j,g

]

+ ∑
g

[(
1−

(
1− αg

γg − 1
γg

+ δ̃ii,gvi,g

)
γg − 1

γg

P?
ij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]
= 0

where ωji,k denotes the inverse of good ji, k’s “general equilibrium” export supply elasticity.11

The optimality condition w.r.t. ai,k equalizes the marginal utility loss that stems from raising the

marginal cost of production and the marginal utility gains associated with lower emissions. Com-

11As elaborated in Appendix XX, ωji,k summarizes how a contraction in good ji, k’s export supply affects the entire vector
of producer prices associated with country i’s economy. The same appendix provides an exact characterization of ωji,k as
well as a first-order approximation that appears as follows:

ωji,k ≈
− µk

1+µk
rji,k

1− µk
1+µk

∑ι 6=i rjι,kε jι,k

[
1− µk

1 + µk

wi Li
wjLj

∑
n 6=i

ρi,krin,k
ρj,krjn,k

ε
(jn,k)
in,k

]
.
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bining the F.O.C w.r.t ai,k with Equation (13) that relates emission intensity to emission tax, yields the

following formula for the optimal emission tax:

τ?
i,k = δ̃ii,k = φ̃i + φ̃i,k, (20)

where recall that φ̃i ≡ P̃iφi, φ̃i,k ≡ P̃iφi,k, and δ̃ii,k ≡ P̃iδii,k. The F.O.C.s w.r.t. P̃ji,k and P̃ii,k are inter-

dependent, and contain price ratios in the form of
P̃?

ji,g
Pji,g

that do not show up in the F.O.C.s w.r.t. P̃ij,k.

Setting τ?
i,k = δ̃ii,k, these F.O.C.s amount to NK equations and NK unknowns, which are summarized

by the following matrix equation:


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . . . . .

...

e1i,1ε
(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K





P̃?
1i,k

P1i,1
−
(

1 + ω1i,k + δ̃1i,kv1,k
γk−1

γk

)
...

P̃?
ii,k

Pii,k
− γk−1

γk
...

P̃?
Ni,k

PNi,k
−
(

1 + ωNi,k + δ̃Ni,kvN,k
γk−1

γk

)


= 0.

(21)

The first matrix is NK× NK and the second is NK× 1. Importantly, the above equation identifies the

optimal tariff, 1 + t?ji,k = P̃?
ji,k/Pji,k, and production subsidy, 1 + s?i,k = Pii,k/P̃?

ii,k independently from

the choice of export subsidies, 1+ x?ij,k = Pij,k/P̃?
ij,k. To solve the above matrix equation, we invoke on

another intermediate result that ensures the invertibility of the system.

Lemma 5. The square matrix, Ξ =
[
eji,kε

(ni,g)
ji,k

]
ng,jk

, is non-singular, with | det(Ξ) |> ∏n,k eni,k > 0.

Given Lemma 5, the unique solution to Equation 21 is the trivial solution, which indicates that:

1 + t?ji,k =
P̃?

ji,k

Pji,k
= 1 + ωji,k + δ̃ji,kvj,k

γk − 1
γk

; 1 + s?i,k =
P?

ii,k

P̃ii,k
=

γk

γk − 1
.

where it is understood that the CPI-adjusted disutility from transboundary emission,δ̃ji,k, is blind

to which country-industry generates it, and so, δ̃ji,k = φ̃i. Lastly, we can plug the already-derived

values of {τ?
i,k, t?ji,k, s?i,k}j 6=i, k (or equivalently, {a?i,k,

P̃?
ji,k

Pji,k
,

P̃?
ii,k

Pii,k
}j 6=i, k) into the first-order conditions w.r.t.

{P̃ij,k}j 6=i, k. This final step, which solves for x?ij,k, is outlined in Appendix B.4. The following theorem

summarizes the optimal policy schedule in its final form.
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Theorem 1. The optimal unilateral tax schedule for country i is given by

[import tax] 1 + t?ji,k = 1 + ωji,k + φ̃ivj,k
γk − 1

γk
∀j, k

[export subsidy] 1 + x?ij,k =
(

1 +
1

ε ij,k

)
χij,k ∀j, k

[domestic subsidy] 1 + s?i,k =
γk

γk − 1
∀k

[emission tax] τ?
i,k = φ̃i + φ̃i,k ∀k (22)

where χij,k is an export subsidy intended at lowering the emission of product varieties competing with ij, k, and

is given by χij =

[
ẽij,gε

(ij,k)
ij,g

ẽij,kεij,k

]−1

k,g

[
∑n 6=i t?ni,g ẽnj,gε

(ij,k)
nj,g

∑n̂ 6=i,ĝ ẽn̂j,ĝε
(ij,k)
n̂j,ĝ

]
k,g

1K.

To put in words, the optimal unilateral policy for country i includes (i) a uniform Pigouvian tax

on CO2 emission, φ̃i, adjusted for its implied local externality, φ̃i,k, (ii) an industry-specific Pigou-

vian production subsidy, s?i,k, that eliminates the cross-industry markup heterogeneity, (iii) import

taxes, t?ji,k that penalize high-emission imports and also take advantage of unexploited import mar-

ket power, and (iv) export subsidies, x?ij,k, that promote low-emission exports and also take advantage

of unexploited export market power. The fact that production subsides are emission-blind is a man-

ifestation of the Targeting Principle. By this principle, emission taxes are the optimal instrument to

tackle the externality of local emission on domestic consumers, because they correct the externality

at its source.

Optimal trade taxes are designed to both improve the terms-of-trade (ToT) and correct trans-

boundary emissions. So, a decomposition of these taxes is in order. First, consider the import tax on

variety ji, k. The optimal rate, as implied by Proposition 1, can be decomposed as follows:

1 + t?ji,k = 1 + ωji,k︸ ︷︷ ︸
ToT driven

+ φ̃ivj,k
γk − 1

γk︸ ︷︷ ︸
CO2 reducing

. (23)

The ToT-driven component is motivated by country i’s collective import market power vis-á-vis part-

ner j. It corresponds to an optimal mark-down on the producer price of goods imported from country

j. This mark-down equals the inverse of the export supply elasticity, ωji,k < 0. The CO2-reducing term

is intended to tackle the transboundary CO2 emission externality of goods imported from origin j.

Notice that, in a non-cooperative setting, country j does not internalize the transboundary CO2 exter-

nality that it generates for country i 6= j. Hence, country i’s optimal tariff on j incorporates a markup
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that is proportional to the carbon-intensity of imported goods from j, vj,k —hence, the term border

carbon adjustment.

Likewise, export subsides are designed to both improve the terms-of-trade (ToT) and correct

transboundary CO2 emissions. The export subsidy on good ij, k, therefore, exhibit two distinct com-

ponents:

1 + x∗ij,k =
(

1 +
1

ε ij,k

)
︸ ︷︷ ︸

ToT driven

× χij,k︸ ︷︷ ︸
CO2 reducing

. (24)

The ToT-driven term equals an optimal markup, if country i were pricing its composite export good

as a single representative monopolist. The CO2-reducing term subsidizes exports of varieties that

compete with carbon-intensive (high-v) foreign varieties in market j. Note that this term internalizes

the import tax charged by country i on various trading partners. The intuition can be put as follows.

If export subsides prompt more exports from home country i to destination j, then a third country

n would reallocate its exports away from j and possibly back to home country i. This gives home

country i some leverage to curb CO2 emissions in every third-country n. We provide a more detailed

discussion when we consider CES-Cobb-Douglas preferences.

3.3 Optimal Policy Formulas in Special Cases

Special Case: Ricardian Model. In the limit where γk → ∞ and f e
k → 0, firms can be viewed as

perfectly competitive and our framework reduces to a Ricardian trade model. The Ricardian special

case of our framework is isomorphic to the multi-industry Eaton and Kortum (2002) model. The

optimal tax formulas in the Ricardian case can be attained by plugging the following values into

Theorem 1:
γk

γk − 1
→ 1; ωji,k → 0 (Ricardian Model)

Note that, in principle, Theorem 1 applies equally to a model with a continuum of industries. As a

result, in the limit where ε ij,k → ∞, our optimal tax formulas characterize the optimal policy in the

Dornbusch et al. (1977) model studied by Costinot et al. (2015).
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Special Case: Cobb-Douglas-CES preferences. To gain further intuition about the optimal policy

schedule, consider the special case where preferences have a Cobb-Douglas-CES formulation,

Ui(Qi) = ∏
k

(
∑

j
b1/σk

ji,k Q
σk−1

σk
ji,k

)ei,k
σk

σk−1

, (25)

where ei,k is the expenditure share of country i on industry k, and σk is the (Armington) elasticity of

substitution between origin countries. The Marshallian demand elasticities in this special case are

given by the following formulas:

ε ji,k ≡ ε
(ji,k)
ji,k = −1− (σk − 1)(1− λji,k), ε

(ji,k)
ni,k = (σk − 1)λji,k (n 6= j); ε

(ji,k)
ni,g = 0 (g 6= k).

Plugging the above values into Theorem 1, yields the following formula for optimal trade taxes,

1 + t?ji,k = 1 + φ̃iv?j,k
γk − 1

γk
−

r?ji,k

γk −∑n 6=i r?jn,k

[
1 + εk(1− λ?

jn,k)
]

1 + x?ij,k =

[
1 +

γk − 1
γk

∑
n 6=i

φ̃iv?n,k

λ?
nj,k

1− λ?
ij,k

](
1 +

1
(σk − 1) (1− λ?

ij,k)

)−1

. (26)

where the term inside the brackets in the second line corresponds to χij,k in Theorem 1. Absent

emission externalities (i.e., set vn,k = 0 for all n, k), the above formulas collapse to the familiar optimal

trade tax formulas in multi-industry quantitative trade models (see Lashkaripour and Lugovskyy

(2016)).

3.4 The Trade-Off Between Emission Correction, Scale Economies, and the ToT

The formulas under Equation (26) uncover some primitive trade-offs facing border adjustment car-

bon taxes. The first trade off is reflected in the emission-correcting term in the optimal import tax for-

mula. This term is the product of (1) φ̃ivj,k, which taxes carbon-intensive imports, and (2) γk−1
γk

, which

operates as a tax deflator for industries with high returns-to-scale in emission (low-γk). As such, the

effectiveness of import taxes at reducing transboundary CO2 emissions is dictated by Covk(vj,k, γk).

In the case where Covk(vj,k, γk) < 0, import taxes are an ineffective emission-reducing instrument

because the high-emission industries that have to be penalized are also the high-returns-to-scale in-

dustries whose production should not be contracted. Alternatively, if Covk(vj,k, γk) > 0 import taxes

become quite effective as they hit two birds with one stone.
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A similar trade-off faces export subsidies: the optimal export subsidy includes an emission-

correcting term (in brackets) that promotes country i’s clean exports against its high-emission com-

petition in market j.12 This term, though, is smaller the higher the degree of scale economies in an

industry, i.e., the lower (γk − 1)/γk in the second line of Equation (26). The intuition is the same:

promoting one’s exports against carbon-intensive competition leads to an additional increase in the

competition’s carbon-intensity through scale effects. So, the optimal level of promotion is accordingly

weaker.13

The second trade-off occurs between the ToT-driven and emission-correcting terms. With regards to

import taxes, if Covk(vj,k, γk) < 0 the ToT-driven component asks for a lower import tariff on carbon-

intensive industries. With regards to export subsidies, if Covk(vj,k, σk) > 0 the ToT-driven component

asks for a higher export subsidy (or a lower export tax) on carbon-intensive industries. Hence, in both

case, the optimal policy net of climate objectives may exhibit a climate or environmental bias. The

direction or magnitude of these trade-offs is ultimately an empirical issue, which we will come back

to in Section 5 when our model is mapped to data.14

3.5 Discussion: Optimal Policy in Second-Best Scenarios

Theorem 1 concerns a unilaterally first-best scenario in which the government has access to a com-

plete set of policy instruments. In many scenarios, governments may face limitations in using the

policy instruments necessary to achieve the first best. In addition to prevalent political economy

issues, second-best scenarios may arise from agreements on environment or trade that tie the policy-

maker’s hands with regards to certain policy tools. In the section, we derive three sets of results that

shed light on these second-best scenarios.

12Specifically, suppose that good ij, k competes with high-emission (high-δ̃nivn,k) varieties in market j. In that case,
country i’s government will apply a relatively high export subsidy (or a lower export tax) to good ij, k to increase its sales
in market j against high-emission rivals there. Recall from Theorem 1, that emission-correcting term is governed by the
emission externality of rival varieties ({δ̃nivn,k}n 6=i) and the degree of cross-substitutability between ij, k and these rival

varieties (ε(ij,k)nj,g ). The latter effect in this special case is factored out in the term that depends on σk.
13To dig deeper, the magnitude of the emission-correcting term depends on the interaction between three terms. First, the

lower γk, the larger the scope for scale economies in abatement. Hence, penalizing foreign varieties with export subsidies
is less effective. Second, the smaller the perceived disutility from foreign emissions (lower δnivni for n 6= i), the larger the
incentive to use export policy to correct these emissions. Third, the greater the market share of high-emission international
varieties in market j (higher λnj,k), the greater the incentive to promote exports of clean, locally-produced varieties to that
market.

14We can connect this result to a recent literature that documents an environmental bias in applied tariffs. Shapiro (2020)
attributes this bias to upstream, carbon-intensive industries being more organized than downstream industries. As such,
they can demand a greater degree of tariff protection from governments. Our theory instead indicates that such biases can
arise purely from terms-of-trade considerations.
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First, we examine optimal taxes in a second-best scenario where a country takes emission taxes

as given. This case is relevant for a country under a commitment to international agreements on

climate, which prevents it from setting emission taxes according to unilateral objectives. In that case,

the government alters its production subsidies to:

1 + s??i,k =
γk

γk − 1
[
1 + δ̃ii,k(vi,k − v?i,k)

]−1 , (27)

where v?k is the emission intensity attainable under the first-best unilateral policy. Consider the case

where emission intensity, vi,k, is smaller than v?i,k because country i is abiding with an international cli-

mate agreement. In that case, (1+ s??i,k) includes an extra subsidy that promotes domestic production.

This extra subsidy acts against the climate goals in international agreements. Hence, it is impor-

tant for international agreements on climate to couple emission taxes with restrictions on production

subsidies.15

Second, we consider the second-best case in which countries do not have access to export poli-

cies, resembling the ban on export subsidies under the WTO. As detailed in Appendix C, optimal

production subsidies and emission taxes remain ToT-blind in this case. More specifically, the formula

for production subsidies and emission taxes as well as the emission-correcting term in import taxes

remain unchanged. The only alteration is a uniform multiplier applied to the ToT-improving com-

ponent in the optimal import tax formula under Equation (23). Intuitively, by the Lerner symmetry,

import taxes are strictly more effective than emission taxes or production subsidies at mimicking ex-

port subsidies. As such, when import taxes are applicable, there is no rationale for altering emission

or production taxes to compensate for the absence of export subsidies.

Lastly, there is widespread skepticism that environmental policies are occasionally used as pro-

tection in disguise. The argument is that when governments are banned from exercising trade or

industrial policies, they may turn to carbon taxes as a second best trade-restricting instrument. To

make the case, we suppose that all tax instruments aside from carbon taxes are banned. We show in

Appendix C, for a simplified version of our model, that in this case, optimal carbon taxes will be no

longer uniform. Instead, it is optimal for a country to apply carbon taxes above the first-best rate in

industries where the trade elasticity, (σk − 1), is low. Doing so, enables a country to contract exports

15On a related note, our model collapses to one with exogenous emission intensity à la Markusen (1975) as the emission
elasticity approaches zero, i.e., αi,k → 0 (See footnote (8). Here, emission taxes can be dropped from the model as firms do
not undertake abatement. In this case, the optimal production subsidy includes the markup-correcting term γk

γk−1 plus an

extra term that taxes high-emission (high-v) industries. Namely, 1 + s??i,k = γk
γk−1

(
1 + δ̃ii,kvi,k

)−1. This formula can be also
derived by setting v?i,k = 0 in equation (27).

29



in high-market-power industries as an indirect means to extract markups from the rest of the world.

4 Non-cooperative Nash Equilibrium vs. Global Climate Cooperation

In this section, we discuss policy outcomes when many countries simultaneously set their policies.

We first discuss the case of global climate cooperation in Subsection 4.1. Such a case yields the glob-

ally optimum outcome via deep international cooperation. Then, in Subsection 4.2, we characterize

the non-cooperative Nash equilibrium where non-cooperative countries who act in their self interest

simultaneously apply their optimal unilateral policy. Equipped with these theoretical results, Section

6 quantifies the consequences of global cooperation versus non-cooperation on climate issues.

4.1 Global Climate Cooperation

The globally optimum outcome is attainable when all countries coordinate their emission taxes, while

internalizing their emission externality on the rest of the world. Such a scenario is akin to a deep

multilateral agreement on trade and climate. Below, we formally define this scenario, which we label

global climate cooperation.

Definition. Global Climate Cooperation corresponds to an equilibrium wherein all governments set

their policy instruments cooperatively in order to maximize global welfare, ∑i Wi, subject to equilib-

rium conditions (1)-(9).

Under global climate cooperation all countries apply zero trade taxes, as these taxes create in-

efficient distortions from a global perspective. Globally optimal production subsidies solely correct

markup distortions, by restoring marginal cost pricing in each industry. Globally optimal emission

taxes are of Pigouvian nature, correcting each origin’s local and transboundary emission externality.

In formal terms, the aforementioned policy schedule can be expressed as follows for each country i:

x?i = t?i = 0; 1 + s?i,k =
γk

γk − 1
; τ?

i,k = φ̃i,k + ∑
j∈C

φ̃j︸ ︷︷ ︸
φ̃W

(28)

Globally optimal emission taxes in country-industry (i, k) consists of two components: (i) one that

corrects for externalities from local pollution, φ̃i,k, and (ii) one that corrects for the global externality

of CO2 emissions, φ̃W = ∑j∈C φ̃j. To put this formula in perspective, consider the required raise in
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emission taxes of country i when it goes from the unilaterally optimal to the globally optimal emission

taxes. Assuming away from the equilibrium changes to the consumer price index P̃i between these

two policy schedules, the required raise in the emission tax equals:

τGlobal
i,k − τUnilateral

i,k ≈ φ̃W − φ̃i (29)

The free-riding problem that impedes global cooperation is manifested by Equation (29). In a non-

cooperative setting, a country does not have the incentive to correct for the CO2 externality it gener-

ates for residents of other countries. As a consequence, any compensation scheme (such as transfers

between countries to incentivize cooperation) or penalty device (such as using trade taxes to punish

non-cooperation) may enforce a global climate cooperation only when it implies benefits that exceeds

the costs, (φ̃W − φ̃i), for every country i.

4.2 Non-Cooperative Nash Equilibrium

As in the previous case, we start with a formal definition of the non-cooperative Nash equilibrium.

Definition. The Non-Cooperative Nash Equilibrium corresponds to a case where non-cooperative coun-

tries simultaneously choose their optimal unilateral policy taking policy choices in the rest of the

world as given.16

In the Nash equilibrium, the unilaterally optimal emission tax and production subsidy formulas

are still characterized by Theorem 1. However, the trade share, λnj,k, and carbon intensities, vj,k, in

these formulas now depend on policy choices in the rest of the world. Specifically, Consider country

i’s optimal export subsidies and import taxes. They depend on transboundary carbon intensities,

{vj,k}j 6=i, which are regulated by optimal emission taxes adopted by other countries (j 6= i). Using

equation (13) and given that τ?
j,k = δ̃jj,k for all j ∈ C,

v?j,k = αj,k
γk − 1

γk
δ̃−1

jj,k

Supposing preferences are Cobb-Douglas-CES and each country is sufficiently small relative to the

rest of the world, we can plug the above expression into Equation (26) to arrive at the following

optimal trade tax schedule.

16This situation is akin to a one-shot non-cooperative Nash game.
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Proposition 2. The non-cooperative Nash equilibrium is characterized by each country applying the following

tax schedule:

[import tax] 1 + t?ji,k = 1 +
(

γk − 1
γk

)2 αj,k δ̃ji,k

δ̃jj,k

[export subsidy] 1 + x?ij,k =

[
1 + ∑

n 6=i

((
γk − 1

γk

)2 αn,k δ̃ni,k

δ̃nn,k
λnj,k

)](
σk

σk − 1

)−1

[domestic subsidy] 1 + s?i,k =
γk

γk − 1

[carbon tax] τ?
i,k = δ̃ii,k = φ̃i,k + φ̃i

The optimal emission taxes and production subsidies remain the same (as in Equation 22), even

though all countries simultaneously apply taxes and subsidies. That is because, when governments

have access to a complete set of trade tax instruments, their unilaterally optimal choice with respect

to emission taxes and production subsidies is independent of economic variables in the rest of the

world—see Theorem 1.

As in the unilateral case, optimal trade taxes in country i correct transboundary CO2 externalities.

But the extent of these externalities, here, depends on cross-national differences in the perceived cost

of CO2 emissions. Consider two polar cases. First, suppose that the perceived disutility from CO2

emissions by country i is negligible compared to that by country j — e.g. because country i is very

small relative to j, or it discounts the future effectively at a much higher rate—, then δ̃ji,k/δ̃jj,k ≈
0, and border carbon adjustment of i over j becomes negligible. Second, suppose, φ̃i,k = 0, and

δ̃ji,k = φ̃i, meaning that the perceived disutility from emissions is exclusively from CO2 emissions.

In this case, δ̃ji,k/δ̃jj,k = φ̃i/φ̃j. If country i’s government cares more about CO2 emissions than its

counterpart in country j, it will impose a higher border carbon adjustment. If however countries i

and j have the same perceived cost of carbon emission, i.e., φ̃j = φ̃i, the optimal import tax of country

i imposed on country j equals 1 + t?ji,k = 1 + αj,k ((γk − 1)/γk)
2. In any of these events, from country

i’s perspective, country j’s domestic emission tax on good ji, k is sub-optimal as it does not internalize

the transboundary cost of CO2 emissions. So, it is optimal for country i to tax imports originating

from high-αk×high-γk industries in country j to partially correct the transboundary CO2 externality

associated with these imports.17

17A similar logic explains why the square of the inverse markup,
(

γk−1
γk

)2
, appears in formulas specified un-

der Proposition 2. According to equation (3), carbon intensity per unit of production, Zn,k/Qn,k is proportional to(
Qn,k/(1− an,k)

)−1/γk . That is, carbon intensity is affected by scale economies in both production and abatement, gov-
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5 Mapping Theory to Data

In this section, we describe how our equilibrium relationships, including our optimal policy formu-

las, map to data. Our objective is to use this mapping to quantify the full effectiveness of trade policy

at reducing global CO2 emissions. For quantification purposes, we consider the Cobb-Douglas-CES

case of our model. To simplify the presentation of our quantitative approach, we define ρn,k ≡ Ln,k/L̄n

as the share of national labor employed in industry k. In addition, we suppose that domestic emission

taxes, {τi,k}, that we observe in the baseline data are unilaterally optimal. In this regard, our exercises

are not designed to examine the impact of a higher perceived disutility from emission. Rather, our

exercises are meant to shed light on the effects of (i) incorporating border carbon adjustments in trade

taxes, and (ii) exercising cooperative emission taxes as opposed to acting non-cooperatively.

5.1 Non-cooperative Nash Equilibrium

Using our optimal tax formulas, we fully characterize the change in equilibrium values when moving

from the factual (baseline) equilibrium to the counterfactual non-cooperative outcome. Our informa-

tion set consists of baseline values for key economic variablesBv ≡ {λni,k, rni,k, ρi,k, δ̃ni,k, en,k, wn L̄n, Yn}ni,k,

applied tax/subsidy rates Bt ≡ (sn,k, xin,k, tni,k}ni,k and structural elasticities Be = {σk, γk, αn,k}n,k. Us-

ing the exact hat-algebra notation, for any generic variable z, we denote its counterfactual value in the

non-cooperative equilibrium as z?, and its change as ẑ ≡ z?/z. Invoking this notation and given full

information on B ≡ {Bv,Bt,Be}, we can determine the entire vector of optimal tax/subsidy rates,

Rt ≡ {s?n,k, τ?
n,k, x?in,k, t?ni,k}ni,k, using our optimal tax formulas and the change in key economic vari-

ables, Rv ≡ {ŵn, Ŷn, ˆ̃Pn, ρ̂n,k}ni,k, using the equilibrium conditions. Then, given B ≡ {Bv,Bt,Be} and

R ≡ {Rv,Rt}, we can characterize the counterfactual level of welfare, carbon emission, and other

key economic outcomes for each country.

For a clearer exposition, we write baseline variables and structural elasticities B ≡ {Bv,Bt,Be}
in blue, the independent unknown variables R ≡ {Rv,Rt} in red, and the intermediate unknown

variables in black. Following Section 3.2, the optimal tax/subsidy formulas in the Cobb-Douglas-CES

erned by a common parameter γk. In the formula for optimal import taxes t?ji,k, the first (γk − 1)/γk reflects the importing
country i’s desire to dampen the CO2-reducing tariff given scale economies in “production”. The second (γk − 1)/γk is
due to the origin country j’s emission taxes interacting with scale economies in “abatement”.
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case are given by:
1 + t?ni,k = 1 + δ̃ni,kvn,kv̂n,k

ˆ̃Pi
γk−1

γk
− rni,k r̂ni,k

γk−∑` 6=i rn`,k r̂n`,k(1+(σk−1)(1−λn`,kλ̂n`,k))
a) optimal imp tax (ni, k)

1 + x?in,k =
[
1 + γk−1

γk
∑` 6=i δ̃`i,k

ˆ̃Piv`,kv̂`,k
λ`n,kλ̂`n,k

1−λin,kλ̂in,k

] (
1 + 1

(σk−1)(1−λin,kλ̂in,k)

)−1
b) optimal exp tax (in, k)

̂1 + tni,k =
1+t?ni,k
1+tni,k

; ̂1 + xin,k =
1+x?in,k
1+xin,k

; 1̂ + sn,k =
γk/(γk−1)

1+sn,k
; τ̂n,k =

ˆ̃Pn c) in changes
(30)

The change in the variety-level producer prices and the corresponding change in the CES and Cobb-

Douglas consumer price indexes can be described as:



P̂ni,k = ŵn(ρ̂n,k)
1

1−γk (1̂− an,k)
−1 a) producer price (ni, k)

ˆ̃Pni,k =
(1̂+tni,k)

(1̂+xni,k)(1̂+sn,k)
P̂ni,k b) consumer price (ni, k)

ˆ̃Pi,k =
[
∑N

n=1 λni,k(
ˆ̃Pni,k)

1−σk

] 1
1−σk c) consumer price (i, k)

ˆ̃Pi = ∏k(
ˆ̃Pi,k)

ei,k d) consumer price (i)

(31)

Note that P̂ni,k, in the above equation, encompasses changes in wage, ŵn, scale, ρ̂n,k, and abatement,

(1̂− an,k), which are each governed by equilibrium conditions. Given the change in consumer prices,

the change in within-industry expenditure and revenue shares can be expresses as


λ̂ni,k =

(
ˆ̃Pni,k
/ ˆ̃Pi,k

)1−σk
a) within-ind exp share (ni, k)

r̂ni,k =
(1̂+tni,k)

−1(1̂+xni,k)λ̂ni,kŶi

∑` rj`,k(1̂+tn`,k)−1(1̂+xn`,k)λ̂n`,kŶ`

b) within-ind rev share (ni, k)
(32)

The change in industry-level output, carbon emission, carbon intensity, and abatement are given by:

Q̂n,k = (ρ̂n,k)
1+ 1

γk−1 (1̂− an,k) a) output quantity of country-industry (n, k)

Ẑn,k = (1̂− an,k)
1

αn,k
+ 1

γk
−1

Q̂
1− 1

γk
n,k b) emission from country-industry (n, k)

1̂− an,k = (ŵn/τ̂n,k)
αn,k c) abatement in country-industry (n, k)

v̂n,k = 1/τ̂n,k d) emission intensity of country-industry (n, k)

(33)

The expression for Q̂n,k in the above equation derives from the equilibrium price equation, the free

entry condition, and the definition of ρn,k ≡ Ln,k/L̄n.18 The expressions for Ẑn,k, 1̂− an,k, and v̂n,k

18Labor market clearing for country-industry (n, k) requires that: wnρn,k L̄n = (1− αn,k
γk−1

γk
)Pnn,kQn,k. Replacing for Pnn,k

from Equation 2, we have: wnρn,k L̄n =
(

1− αn,k
γk−1

γk

)
p̄nn,kwn

(
Qn,k

1−an,k

)1−1/γk
. Applying hat algebra delivers Equation (33-
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respectively derive from applying the hat-algebra notation to Equations 3, 6, and 13. The change in

wages and industry-level labor shares are governed by the labor market clearing condition expressed

in changes:


ŵnρ̂n,kρn,kwn L̄n = ∑j

[
(1−αn,k

γk−1
γk

)(1+s?n,k)(1+x?nj,k)

(1+t?nj,k)
λ̂nj,kλnj,kej,kŶjYj

]
a) LMC (n, k)

∑k ρ̂n,kρn,k = 1 b) sum of shares=1 (n)

(34)

The first line in the above equation ensures that the industry-level wage bill equals total sales net of

taxes/subsidies. The second line ensures that the industry-level labor shares add up to one in the

counterfactual equilibrium (i.e., ∑k ρ?n,k = 1). Finally, the change in national income Ŷn is governed

by the representative consumer’s budget constraint (BC) in country i, expressed in changes:

ŶnYn = ŵnwn L̄n + ∑
k

∑
j

[
(1− αn,k

γk−1
γk

)(1 + s?n,k)(1 + x?nj,k)

(1 + t?nj,k)
λ̂nj,kλnj,kej,kŶjYj

]

+ ∑
k

∑
j


[
1− (1 + s?n,k)(1 + x?nj,k)

]
(1 + t?nj,k)

λ̂nj,kλnj,kej,kŶjYj +
t?jn,k

1 + t?jn,k
λ̂jn,kλjn,ken,kŶnYn

 . BC (n) (35)

The above equation ensures that total income equals the wage bill plus tax revenues. The first and sec-

ond sums respectively denote the carbon and non-carbon tax revenues expressed in changes. Recall

that Bv ≡ {λni,k, rni,k, ρi,k, δ̃ni,k, en,k, wn L̄n, Yn}ni,k, Bt ≡ {sn,k, xin,k, tni,k}ni,k, and Be = {σk, γk, αn,k}n,k,

consist or either observable values or estimable parameters. Also, note that λ̂ni,k, r̂ni,k, Ẑn,k, P̂ni,k,
ˆ̃Pi,k, 1̂− an,k, and v̂i,k are automatically determined given information on B ≡ {Bv,Bt,Be}, Rv ≡
{ŵn, Ŷn, ˆ̃Pn, ρ̂n,k}n,k and Rt ≡ {x?in,k, t?ni,k}ni,k.19 As such, Equations 30-35 constitute a system of

2N(N − 1)K + NK + 3N independent equations and unknowns. The independent unknowns are the

elements of R ≡ {Rv,Rt}, which consist of N(N − 1)K optimal import tax rates t?ji,k, N(N − 1)K

optimal export subsidy rates x?ji,k, NK changes in industry-level labor shares ρ̂i,k, and 3N changes in

national wage rates, ŵi, income levels, Ŷi and consumer price indexes, ˆ̃Pi. Solving the system char-

acterized by Equations 30-35 fully characterizes the change in all equilibrium values, when moving

from the observed baseline to the counterfactual non-cooperative equilibrium. The following propo-

sition summarizes this point.

a).
19Since s?i,k = (γk − 1)/γk and τ?

i = δ̃ni
ˆ̃Pi we can exclude these tax rates from Bt. That is because they are implicitly-

determined with information on the remaining elements of B andR.
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Proposition 3. Solving the system of Equations 30-35, determines Rv ≡ {ŵn, Ŷn, ˆ̃Pn, ρ̂n,k}ni,k and Rt ≡
{x?in,k, t?ni,k}ni,k as a function of observables and structural elasticities, Bv ≡ {λni,k, rni,k, ρi,k, δ̃ni,k, en,k, wn L̄n, Yn}ni,k,

Bt ≡ (sn,k, xin,k, tni,k}ni,k, and Be = {σk, γk, αn,k}n,k. Given information on B ≡ {Bv,Bt,Be} and R ≡
{Rv,Rt}, the effect of non-cooperative taxes/subsidies on welfare and carbon emissions can be calculated as

Ŵi =
Yi

Yi −∑n,k δ̃ni,kZn,k

(
Ŷi
ˆ̃Pi

)
︸ ︷︷ ︸

change to real consumption

− ∑
n,k

δ̃ni,kZn,k

Yi −∑n,k δ̃ni,kZn,k
Ẑn,k︸ ︷︷ ︸

change to disutility from emissions

. (36)

To put Proposition 3 in perspective, the welfare effect specified by Ŵi can be used to determine

the effectiveness of trade policy as an enforcement tool in climate negotiations. Ŵi determines what

nations lose or gain from not joining a global climate agreement and opting for non-cooperative policy

choices. To make sense of this number, we have to contrast it with how much countries gain or lose

from joining a global climate agreement.

5.2 Global Climate Cooperation

Applying a similar logic, we can quantify the gains from global climate cooperation using the co-

operative tax schedule presented under Equation 28. Cooperative carbon taxes are given by τ?
i,k =

∑j∈C δ̃ij,k = φ̃i,k + ∑j∈C φ̃j. Maintaining our conservative assumption that applied domestic carbon

taxes are consistent with the unilaterally optimal rate, the change in carbon taxes when transitioning

from the factual to the counterfactual cooperative equilibrium is, thus, given by

τ̂i,k ≡
τ?

i,k

τi,k
= ∑

j∈C

(
δ̃ij,k

ˆ̃Pj

δ̃ii,k

)
= ˆ̃Pi + ∑

j 6=i

(
φ̃j

φ̃i,k + φ̃i

ˆ̃Pj

)
.

Given that 1 + s?j,k = γk/(γk − 1) and tji,k = xji,k = 0, the change in non-carbon tax instruments can

be expressed as:

1̂ + sj,k =
γk/(γk − 1)

1 + si,k
; ̂1 + xji,k =

1
1 + xji,k

; 1̂ + tji,k =
1

1 + tji,k
.

Solving the above equations along-side Equations 31-35 determines τ̂i,k, v̂i,k, 1̂− ai,k, λ̂ji,k, ρ̂i,k, r̂ji,k, ŵi, Ŷi

and ˆ̃Pi as a function of observablesBv ≡ {λni,k, rni,k, ρi,k, δ̃ni,k, en,k, wn L̄n, Yn}ni,k, Bt ≡ (sn,k, xin,k, tni,k}ni,k,

and estimable parameters, Be = {σk, γk, αn,k}k. With knowledge of these variables, we can immedi-
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ately calculate the change in real income V̂i = Ŷi/P̃i and carbon emissions Ẑn,k = v̂n,kρ̂n,kŵn. Plugging

these values into Equation 36 determines the change in (carbon adjusted) welfare when transitioning

from the status quo to the cooperative climate & trade policy equilibrium.

5.3 Data Sources

Trade, Production, and Emissions. Data on international emission and expenditure levels are taken

from the 2009 WIOD database on Input-Output Tables and Environmental Accounts (Timmer et al.

(2012)).20 The WIOD reports the full matrix of international expenditures across 41 major countries

and 35 ISIC-level industries. Since the European Union (EU) acts as one tax-imposing authority,

we aggregate all EU members into one tax-imposing region. To merge the WIOD data with our

other datasets, we aggregate our sample into 19 industries, the details of which are listed in Table 1.

After applying these aggregations, we are left with 15 economic regions (N = 15) and 19 industries

(K = 19) —covering tradeables and nontradeables—, resulting in a 15× 15× 19 matrix of expenditure

levels, P̃ji,kQji,k, per origin j–destination i–industry k. Table 1 and 4 report respectively the list of

industries and countries together with some of their relevant characteristics.

The WIOD Environmental Accounts report emissions of several air pollutants by origin country

and industry. First, we use these data to calculate CO2 equivalent (CO2e) emissions based on global

warming potential (GWP-100) from IPCC (2014) report. (Throughout the paper, we use CO2 as a

shorthand way of CO2e.) The WGP-100 measures how much emissions of one tonne of a gas will

be absorbed in the atmosphere in a period of 100 years relative to the emissions of one tonne of

CO2. Using emission data of CO2 (carbon dioxide), CH4 (methane), and N2O (nitrous oxide), we

calculate CO2e as Z = ZCO2 + 28× ZCH4 + 265× ZN2O for every pair of origin country and industry.

According to the Environmental Protection Agency, emissions of CO2, CH4, and N2O account for

97% of greenhouse gas emissions worldwide. Accordingly, we construct carbon intensity of origin

i–industry k as:

vi,k =
Zi,k

Pii,kQi,k
=

Emissioni,k

(Gross Output)i,k
,

where the numerator is measured in tonnes of CO2e, and the gross output is measured in US dollars.

As for air emissions that contribute to local pollution, the WIOD Environmental Accounts reports

under the category of acidification the air emissions of nitrogen oxides (NOx), sulfur oxides (SOx),

20Our baseline year is 2009 as the most recent year with available information on trade & production, emission, and
environmentally related taxes. Specifically, 2009 is the last year reported in WIOD Environmental Account and the first
year with a large coverage in environmentally-related tax data.
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and carbon monoxide (CO), for every pair of origin country and industry. We consider the aggregate

of these local emissions as Z0
i,k, and define ζ̄i,k ≡ Z0

i,k/Zi,k, as the rate at which use of emission-

intensive inputs in country i-industry k generates local emissions per tonne of CO2e emission.

Applied Taxes on Trade and Emissions. We compile data on applied tariffs in year 2009 from the

United Nations Statistical Division, Trade Analysis and Information System (UNCTAD-TRAINS). The

2009 version of UNCTAD-TRAINS covers 31 two-digit (in ISIC rev. 3) sectors, which are aggregated

up into our 19 aggregate ISIC industries for which we have compiled international expenditure and

emissions data. For each industry, the UNCTAD-TRAINS reports multiple industry-level measures

for applied tariffs. As is standard in the quantitative trade literature, we use the “simple tariff line

average” of the “effectively applied tariff” (AHS). The UNCTAD-TRAINS reports origin–destination–

industry-specific tariffs rates for all 41 countries in the WIOD sample, except for instances where

the destination country is a member of the European Union (EU). In such cases we assign applied

tariff measures based on the fact that EU tariffs are reported in the UNCTAD-TRAINS, intra-EU trade

is subject to zero tariffs, and all EU members impose a common external tariff on non-members.

Finally, we assume that applied export and domestic subsidies are negligible in each country, i.e.,

si,k ≈ xij,k ≈ 0.

We make use of the data from Environmental Taxes by Economic Activity from EUROSTAT as well

as Environmentally-related Taxes by OECD-PINE. The data from EUROSTAT report environmentally-

related taxes at the level of country-industry, covering all European countries, based on NACE rev. 2

industries, which we map to our 19 ISIC industries. The data from OECD-PINE report environmentally-

related tax data in every country as a percentage of that country’s GDP. These data are reported for

four mutually exclusive categories of energy, pollution, resources, and transport (excluding fuels for

transport). Among these, we take energy taxes for what we refer to in this paper as emission taxes,

maintaining our interpretation that emission taxes are imposed on the use of emission-intensive in-

puts, which can be thought of as energy in the data. For more details on our data construction, see

Appendix D.

5.4 Estimation/Calibration of Model Parameters

To evaluate policy outcomes, we need the following elasticity parameters per industry, trade elastic-

ity, εk ≡ (σk − 1); emission elasticity, αn,k; and degree of firm-level market power, γk, which is tied

to the markup, µk ≡ γk/(γk − 1). In addition, we require emission disutility parameters for every
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country, δ̃ji,k = φ̃i,k1(j = i) + φ̃i. We estimate trade elasticities following Caliendo and Parro (2015),

estimate markups based on the production function approach, calibrate emission elasticities using

environmentally-related tax data, and calibrate carbon disutility parameters using data on energy

taxes.

Markups. We use firm-level COMPUSTAT data and closely follow De Loecker et al. (2020) and

Baqaee and Farhi (2020). To map COMPUSTAT data to industries as defined in WIOD, we map disag-

gregated NAICS-level industries from COMPUSTAT to the 19 aggregate 2-digit ISIC-level industries

(k = 1, ..., K = 19) as well as disaggregated 3-digit ISIC industries. For every industry-year, we

first estimate the output elasticity with respect to variable input, based on Olley-Pakes procedure

in which, in logs of real value, our dependent variable is sales, the variable input is COGS (Cost of

Goods Sold), proxy variable is capital expenditure, state variable is gross capital stock, and following

the usual practice in the literature, we control for a firm’s share of sales within disaggregated indus-

tries (which are 3-digit ISIC in our data). The variable input is what a firm gets to choose in its cost

minimization problem. The resulting estimated coefficient of log variable input gives us output elas-

ticities θk,t for every industry-year k, t. In addition, for every firm ω in industry k at year t, variable

input share is the ratio of variable input (COGS) to sales, bω,k,t. Using the first order condition of the

firm’s cost minimization, markups are:

µω,k,t =
θkt

bω,k,t
. (37)

To obtain markups at the level of industries, we aggregate firm-level markups to the level of 19

industries, with the weight assigned to a firm being equal to within-industry firm’s sales share in the

three-year period of 2008, 2009, and 2010. We consider a three-year period to make our estimates

not particularly sensitive to potential industry-level fluctuations in our baseline year of 2009. Our

estimates of the output elasticity θk,t are on average 0.82, with 0.80 at 25th and 0.86 at 75th percentile.

The variable input shares, bω,k,t, which we observed in the data, are on average 0.65, with 0.45 at 25th

and 0.79 at 75th percentile. The resulting firm-level markup estimates, µω,k,t, are on average 1.58,

with 1.07 at 25th and 1.84 at 75th percentile. We report our markup estimates by industries in Table

1.

Emission Elasticity. We recover the emission elasticity from our data on emission taxes, emission

intensities, and markups based on Equation 13. Specifically, the emission elasticity is given by the
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Table 1: Variables and Elasticities across Industries

Industry Emission Emission Trade Markup
Intensity (v) Elasticity (α) Elasticity (σ) ( γ

γ−1 )

1 Agriculture 100.00 0.040 3.16 1.46
2 Mining 40.72 0.022 2.89 1.53
3 Food 4.23 0.009 2.43 1.70
4 Textiles and Leather 4.23 0.009 1.90 2.11
5 Wood 5.33 0.010 4.60 1.28
6 Pulp and Paper 6.79 0.007 4.38 1.30
7 Coke and Petroleum 23.08 0.015 4.31 1.18
8 Chemicals 19.65 0.032 1.94 2.06
9 Rubber and Plastics 15.18 0.007 2.55 1.27

10 Non-Metallic Mineral 31.86 0.008 3.05 1.49
11 Metals 2.11 0.001 5.18 1.24
12 Machinery and Electronics 1.79 0.006 2.99 1.50
13 Transport Equipment 1.59 0.004 1.59 1.21
14 Manufacturing, Nec 10.05 0.009 1.59 1.91
15 Electricity, Gas and Water 206.45 0.019 8.14 1.12
16 Construction 2.09 0.009 8.14 1.10
17 Retail and Wholesale 2.61 0.013 8.14 1.14
18 Transportation 30.15 0.053 8.14 1.01
19 Other Services 4.11 0.006 2.68 1.60

Note: This table shows for every of the 19 industries the global average of emission intensity (tonnes of CO2 per dollar
of output) normalized by that of agriculture, calibrated emission elasticity in the case of the EU, estimated trade elasticity,
and estimated markups. All CO2 measures are CO2 equivalent.

markup × emission tax per unit of emission × emission intensity,

αn,k =
γk

γk − 1
τnkZn,k

Pnn,kQn,k
= µn,kτn,kvn,k. (38)

We recover the industry-specific emission elasticity {αn,k}k by evaluating the right-hand side of Equa-

tion 38. The numerator (τnkZn,k) is total emission taxes in country n−industry k, and the denominator

is gross output (Pnn,kQn,k). Together, with our markup estimates, we obtain αn,k for every country n-

industry k in our sample. The second column in Table 1 reports these calibrated values for the case

of the EU. The emission elasticities for agriculture, mining, and electricity are quite high pointing to
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the importance of non-manufacturing in the analysis.

Trade Elasticity. We estimate trade elasticities, (σk − 1) by applying Caliendo and Parro’s (2015)

estimation technique to our 2009 data on trade values and applied tariffs.

Perceived Disutility from Emission. We recover countries’ perceived CPI-adjusted disutility from

emissions along two lines: (a) currently-applied energy taxes in a country rationalize its unilaterally

optimal domestic emission tax; (b) the globally optimal CO2 tax equals world’s disutility from CO2

emissions, TE
i = ∑k(φ̃i,k + φ̃i)Zi,k (a)

SCC = ∑i φ̃i (b)
(39)

Here, TE
i is total energy tax collected in country i, and SCC refers to the Social Cost of Carbon. Es-

timating SCC is beyond the scope of our paper. For our benchmark exercises, we use the estimates

from Cai and Lontzek (2019) which sets SCC for our base year of 2009 at $68 per tonne of CO2.

To recover relative values of φ̃i across countries, we consider two key aspects of countries’ attitude

toward climate policy. First, if every individual, no matter in which country, cared equally about

global warming, then the disutility from CO2 emissions would be proportional to countries’ sizes. To

reflect the size effect, denoting the damage from climate change as a percentage of countries’ real GDP

requires φi
φj

∝ Yi/P̃i
Yj/P̃j

, which implies that φ̃i
φ̃j

∝ Yi
Yj

. Second, in the current state of the world, countries’ per

capita care about CO2 emissions are vastly different. It is outside the scope of our paper to explain

why governments of different countries perceive the cost of climate change differently. We, however,

make the observation that countries’ care about CO2 emissions can be at least partly reflected in their

current overall care toward the environmental cost of burning fossil fuels. Under this presumption,

we let country i relative to j’s care about CO2 emissions be proportional to their current emission

taxes per unit of CO2 emission, meaning that φ̃i
φ̃j

∝ (TE
i /Zi)(

TE
j /Zj

) . Putting together these two points, and

defining yi ≡ Yi/YW as country i′s share of world GDP, we specify country i’s perceived disutility

from CO2 emissions as φ̃i = h̄yi(TE
i /Zi). This specification leaves us with a single parameter, h̄,

which we calibrate using a given value of SCC and equation 39-(b). Given recovered values of {φ̃i},
we calibrate {φ̃i,k} based on equation 39-(a). Details of this calibration is presented in Appendix D.

Table 4 reports our calibrated φ̃i for regions in our sample.21

21Notice, we recover CPI-adjusted disutility parameters, φ̃i,k = P̃iφi,k and φ̃i = P̃iφi rather than φi,k and φi. This is
sufficient for our counterfactual equilibrium analyses, as shown in our quantitative strategy in Section 5.
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6 Quantitative Exercises

In this section, we use our theory and estimates to evaluate policy proposals that combine emission

taxes with trade policy to achieve climate objectives. Specifically, we consider two types of policy

recommendations:

1. Using Trade Policy Unilaterally to Influence Transboundary Emissions. We examine the full potential

of unilateral trade policy at reducing transboundary CO2 emissions. First, we briefly examine

the impact of carbon border adjustments when adopted optimally by the EU. Then, we study

the effects on country’s CO2 emissions and welfare of non-cooperative taxes exercised by all

governments, and compare the results to those attainable under global cooperation.

2. Using Trade Policy as a Penalty Device to Incentivize a Global Climate Cooperation. We explore the

full effectiveness of trade taxes when they are used as an incentive structure to form and expand

a “climate club” (Nordhaus 2015).

In what follows, we use the Cobb-Douglas-CES version of our model, at our estimated/calibrated

parameters, along with our optimal policy formulas.

6.1 Proposal 1: Using Unilateral Policy for Climate Objectives

Impact of Carbon Border Adjustments We consider a counterfactual scenario wherein the EU

adopts a unilaterally optimal policy while other countries remain passive. We benchmark the re-

sults from this exercise against a policy scenario in which the EU does not incorporate the border

carbon adjustments in its policy schedule (i.e., by setting δni,k = 0 for i = EU, n 6= EU). We take

the difference in the equilibrium outcomes between these two policy scenarios as the effect of the

carbon-reducing component of the EU’s unilaterally optimal trade policy.

We find that the optimal carbon border adjustments set by the EU are 0-3 percentage points across

industries with an average of 1.1 p.p., and the optimal export subsidies are 0-4 percentage points

with an average of 1.4 p.p. These carbon-reducing margins of trade taxes reflect the carbon bias of

the optimal trade policy in the EU. Figure 1 shows the carbon bias of the EU’s optimal tariffs across

tradeable industries, for three different values of social cost of carbon.

This carbon bias of policy generates a further reallocation of the production from foreign coun-

tries into the EU region where the EU can directly tax CO2 emissions, beyond the ToT-driven motives.

As a result, the global CO2 emission would fall by 0.21%. This is a very modest effect, particularly
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taking into account that the EU is the largest region in terms of GDP and its care toward CO2 emis-

sions is the highest in our sample. General equilibrium forces play an important role in neutralizing

the EU’s border carbon adjustments. Faced by these border adjustments, targeted countries reallo-

cate their exports from the EU to other destinations, and also, their production partly shifts toward

nontradeables. In addition, we notice that CO2 emissions rise slightly in the EU while they decrease

elsewhere, leading to an overall reduction in global emissions. Our analysis also indicates that the

EU’s welfare net of the disutility from transboundary emissions increases by 0.25%.

Figure 1: Carbon Border Adjustments in the EU’s Unilaterally Optimal Tariffs

Notes: This figure shows optimal carbon border adjustments in tariffs set by the EU. Each dot is an average across trade
partners for an industry reported in percentage points. Social cost of carbon (SCC) for low and high values are chosen
according to 10-th and 90-th percentile of the distribution of the climate damage in the DICE model for 2020 evaluated at
the interest rate of 2.5%.

In this exercise, to single out the role of carbon-reducing components of trade taxes when ex-

ercised unilaterally, we let other countries be passive. We continue to examine the case where all

countries set their taxes according to non-cooperative incentives.

6.1.1 Non-cooperative Nash Equilibrium

We examine the extent to which non-cooperative policies, when adopted simultaneously by all gov-

ernments, can reduce global CO2 emissions. To put the outcome of this non-cooperative setting in

perspective, we compare it to that of global cooperation. For this purpose, we compare the change in

welfare and CO2 emissions when moving from the baseline equilibrium to (1) non-cooperative Nash
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equilibrium in which all countries set their unilaterally optimal taxes (as detailed in Section 5.1), and

(2) cooperative equilibrium in which countries set globally optimal taxes (as detailed in Section 5.2).

We then contrast outcomes under these two counterfactual scenarios.

Table 2: Non-cooperative and Cooperative Outcomes

Increasing Returns to Scale
Non-Cooperative Global Cooperation

Country ∆CO2e ∆V ∆W ∆CO2e ∆V ∆W

AUS -7.5% -1.7% -1.6% -82.2% -1.0% 1.7%
EU 0.5% -1.2% -1.1% -34.3% -0.1% 6.7%
BRA -6.8% -1.3% -1.2% -91.0% -1.0% -0.1%
CAN -15.6% -4.1% -4.0% -80.1% -1.0% 1.3%
CHN 2.1% -1.0% -0.9% -94.5% -1.0% -0.5%
IDN -4.1% -1.7% -1.7% -93.1% -1.2% -0.5%
IND -1.3% -4.3% -4.3% -95.1% -1.7% -1.1%
JPN 3.3% -0.9% -0.7% -64.2% -0.5% 4.5%
KOR -6.7% -3.6% -3.6% -81.7% -2.9% -0.2%
MEX 0.9% -0.7% -0.7% -89.2% 1.2% 2.4%
RUS -9.1% -5.2% -5.2% -91.2% -0.8% -0.3%
TUR -7.0% -3.5% -3.4% -72.2% -1.2% 3.8%
TWN 44.9% -2.1% -2.1% -91.8% -1.2% -0.3%
USA 0.3% -1.7% -1.7% -83.5% -0.5% 1.0%
RoW -8.9% -1.9% -1.8% -88.7% -1.7% -1.1%
Global -2.3% -1.6% -1.6% -82.4% -0.7% 2.3%

Table 2 reports the percentage change in CO2 emissions and the corresponding welfare effects.

We find that trade taxes, as a standalone device, are not notably effective at combating global CO2

emissions. Under the non-cooperative equilibrium, trade policies can lower global CO2 emissions by

2.3%. This number corresponds to only 2.8% of the total reductions in CO2 emissions possible under

globally cooperative taxes (i.e., 2.3/82.4%).

Furthermore, the welfare consequences of non-cooperation are also relatively bleak. The average

country loses 1.6% of its real GDP under the non-cooperative Nash equilibrium while gaining neg-

ligibly from emissions reductions. Under global cooperation, by comparison, the average country

gains 2.3% in terms of emission-adjusted real GDP. At the global scale, this figure comprises a loss of

0.7% of real GDP at the benefit of gaining 3.0% of GDP-equivalent utility from emissions reductions.

Turning to individual countries, percentage change to real consumption is smaller for every country

under the non-cooperative outcome compared to global cooperation. It is also interesting that, in the
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non-cooperative outcome, despite reductions in CO2 emissions at the global level, CO2 emissions

increase in a few countries. For example, by reallocation of production to a large country like China,

its CO2 emissions rise by 2.1%.

Increasing vs Constant Returns to Scale. To see more clearly the equilibrium implications of in-

creasing returns, we repeat our exercise for the case of constant returns to scale (CRS). See Table 5 in

the Appendix E. Before turning to compare CRS and IRS results, we note that the calibration of the

emission elasticity requires that αCRS
n,k = αIRS

n,k /(markupk). This is a reflection of our sufficient statistic

approach in which the micro-structure may remain inconsequential for sufficient elasticities.

In the non-cooperative Nash equilibrium, the reduction in global emissions is 2.7% under CRS

that is somewhat larger than 2.3% under IRS. The comparable global emission reduction between

CRS and IRS comes from notably different distribution of emission changes across countries. For

example, under CRS emissions from the US fall by 1.1% while that rises by 0.3% under IRS. This is

because increasing returns to scale imply a different allocation of resources between countries, and

across industries within countries, leading to a different vector of production and emission across

space and industries. The nature of these differences depend on the empirical correlation between

markups and industry-level terms-of-trade changes under non-cooperative taxes.

6.2 The Effectiveness of Trade Taxes at Enforcing a Climate Club

Our previous findings indicated that non-cooperative taxes are remarkably less effective at reducing

CO2 emissions than cooperative taxes. The implementation of cooperative climate policy is, how-

ever, complicated by the free-riding problem. Even countries with a high disutility from CO2 emis-

sions have an incentive to free ride on the rest of the world’s reductions in CO2 emissions without

undertaking proportionate abatement measures themselves. Moreover, international misalignment

in climate concerns may exacerbate the problem, as some governments may find the burden of co-

operative CO2 taxes disproportionately too large in order for them to join an international climate

agreement.

Seeking a solution to this problem, Nordhaus (2015) proposes that climate-conscience govern-

ments can form a climate club, and enforce climate cooperation by using trade taxes as a penalty

device against non-member countries. Quantifying the full effectiveness of the climate club model,

though, is a challenging task. It requires knowledge of optimal trade penalties, the computation of

which is impractical with standard optimization techniques. Our optimal tax formulas, by design,
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Table 3: Climate Club Game - Main Specification
Trade taxes set by

Members Non-members
Against Members zero unilaterally optimal
Against Non-members unilaterally optimal status quo (i.e., applied tariffs)

Emission taxes set by
Members Non-members

globally optimal status quo (i.e., unilaterally optimal)

characterize the extent to which trade taxes can optimally correct for transboundary CO2 externalities

while preserving ToT-driven objectives. In this sense, our optimal tax formulas determine the trade

policy schedule that inflicts the greatest terms-of-trade penalty on non-cooperative trading partners.

Our quantitative approach that builds on these formulas can, thus, uncover the full effectiveness of

the climate club proposal.

We first specify the structure of the game. We let the EU (and if needed, one or few other coun-

tries) be the core members of the club and all other countries play strategically. Table 3 shows the

structure of the game. Players (countries) choose their strategies (whether or not to join the club) si-

multaneously, and the outcome is a Nash equilibrium in which no country has incentives to deviate:

• Rules of Membership. A member country must set zero trade taxes against other members while

imposing unilaterally optimal trade taxes against non-members. A member must adopt a glob-

ally optimal emission tax that corrects for the global externality of its CO2 emissions.

• Non-members’ Response. A non-member country can retaliate against member countries by its

best response, that is to adopt its unilaterally optimal trade taxes against them. Other than

this, non-member countries remain in their status quo: They keep their existing applied tariffs

against other non-members and maintain their existing domestic emission taxes.

Notice, we are here adopting a conservative approach in which the motivation of non-members to

join the club is merely driven by members’ penalty taxes. To see this clearly, suppose we were to

allow non-member countries to set their unilaterally optimal trade taxes against other non-members.

In that case, non-members would have an extra motive beyond climate-related concerns to join the

club, as there would be a trade war between non-member countries and joining the club would be a

way to escape from it. In contrast, our specification is meant to be an evaluation of trade taxes as a

penalty device to incentivize cooperation.
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The trade-off that a country faces in evaluating whether to join the club is that by joining the club

the country incurs a production loss due to adopting larger emission taxes, but it can escape trade

penalties imposed by club members. Intuitively, trade penalties must exceed the loss from larger

emission taxes in order for the club to be formed and sustained. This also means that a larger club

can exercise a higher collective market power to enforce cooperation.

Figure 2: Welfare Gains of Staying vs Leaving the Club-of-all-nations

Our first finding is that the club-of-all nations is a Nash equilibrium, no matter who the core

members are. Figure 2 depicts for every country the welfare gains of staying in the club-of-all-nations

relative to withdrawing unilaterally. Smaller countries such as Canada and Turkey has the largest net

gains of staying in the club, while larger countries whose climate concerns are not particularly high,

such as China or Brazil, have the lowest net gains.

We continue our analysis by examining whether the club-of-all-nations is the unique Nash equi-

librium. This is a challenging task because with m core members, there will be 2N−m combinations of

countries’ actions. We overcome this computational barrier by way of iterative elimination of domi-

nated strategies. In the first round, we check for which countries it can be a dominant strategy to join

the club. Given countries that join the club in the first round, we check for which countries joining

the club will be a dominant strategy, and so on. A key property of the climate-club model makes this

approach to work: that the net gains of joining the club rises in the size of the club.

We confirm that, in the case where the EU is the only core member, the club-of-only-EU is also a

Nash equilibrium. This means that the net gains of joining the club-of-only-EU is negative for every

country when all other countries stay out. To rule out this non-cooperative outcome, the set of core
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members must be then larger than only the EU. We thus consider the case where both the EU and

US are core members. This coalition creates sufficient incentives for main trade partners of the core

members to join the club, incentivizing other countries at the margin to join in the next round, and

so on. We find that with the EU and US as core members, the club-of-all-nations is the unique Nash

equilibrium.

7 Conclusion

The realization that delays in taking action against global warming means only larger climate change

damages, has raised public policy attention toward climate policy. In seeking to find a policy scheme

that can help reduce global CO2 emissions, many experts have advocated for the use of trade-related

policy tools in addition to carbon pricing. We distinguish these policy proposals in their suggested

use of trade taxes: One set of these proposals is based on using carbon border adjustments in uni-

lateral trade taxes; and, the other is based on using trade taxes as a penalty device to enforce the

formation of a climate club.

In this paper, we evaluated these policy proposals by characterizing optimal trade and carbon

policies in a multi-country, multi-industry, general equilibrium trade model that features firm de-

location, scale economies, and transboundary carbon externality. We derive fairly simple analytical

formulas that characterize unilaterally (and, globally) optimal carbon and trade taxes. An important

feature of our analysis is that it is designed to be taken to data for quantitative assessments of existing

trade and carbon policy proposals —a task that has eluded the existing theoretical studies on optimal

carbon and trade policy.

Our findings indicate that the unilateral use of trade and carbon policy —by way of optimal

carbon border adjustments— can reduce global CO2 emissions, only to a modest degree: around 3%

of the emission reduction achievable under global cooperation. In contrast, using trade policy as a

penalty device can lead to a more promising incentive structure to enforce an international climate

club. We find that the climate club proposal is effective in forming a global cooperation, provided

that both the EU and US commit to be core members of the club.
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Appendix

A Theoretical Preliminaries

A.1 Detailed Statement of the Optimal Unilateral Policy Problem

We derive optimal unilateral policy for the government in country i, which here we refer to as the

home country. We denote by Pi ≡ {P̃ii,k, P̃ji,k, P̃ij,k, ai,k}j 6=i,j∈C, k∈K the policy instruments in country i,

by P̃i ≡ {P̃ji,k}j∈C, k∈K the vector of consumer prices in country i, and by w ≡{wj}j∈C the vector of

wages. The problem of the government in country i is:

max
Ii

Vi(Yi, P̃i)− ∑
n∈C

∑
g∈K

δniZn,g(an,g; Qn,g)

subject to the following equilibrium relationships, for all i, j ∈ C,and k ∈ K,

(Optimal Demand) Qji,k = Dji,k(Yi, P̃i)

(Producer Price) Pji,k(wj, aj,k; Qj,k) = d̄ji,k p̄jj,kwj(1− aj,k)
1

γk
−1Q

− 1
γk

j,k

(Pollution) Zj,k(aj,k; Qj,k) ≡ z̄j,k(1− aj,k)
1

αj,k
+ 1

γk
−1

Q
1− 1

γk
j,k

(Income = Revneue) Yi = wi L̄i + ∑
k, j 6=i

[(
P̃ji,k − Pji,k

)
Qji,k

]
+ ∑

k, j

[(
P̃ij,k − (1− αi,k

γk − 1
γk

)Pij,k

)
Qij,k

]
(Trade Deficit) Bi ≡∑

j 6=i
∑

k
Pji,kQji,k −∑

j 6=i
∑

k
P̃ij,kQij,k = 0

Here, we have written every variable as a function of (1) wages, (2) all or a subset of policy instru-

ments, and (3) quantities. Equations for producer price and emission reproduce (2) and (3), in which

Qj,k = ∑i d̄ji,kQji,k. The equation for income reproduces (7) only in a more compact way by replacing

for taxes from (8), and the trade deficit condition is equivalent to factor market clearing condition

(See footnote 9). The demand function Dji,k is characterized by the set demand elasticities defined in
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Section 2.1. Throughput our proof, we assign the factor in one foreign country as the numeraire.

A.2 Expressing Equilibrium Outcomes as a Function of (Pi; w)

Consider system (Sw) that incorporates all equilibrium conditions excluding the labor-market clear-

ing condition. For all n, j ∈ C,and k ∈ K,

(Optimal Demand) Qnj,k(Pi; w) =

Dni,k(P̃i, Yi(Pi; w)) if j = i

Dnj,k(P̃ij, {P̃nj(Pi; w)}n 6=i, Yj(Pi; w)) if j 6= i

(Indusry Output) Qn,k(Pi; w) = ∑j∈C d̄nj,kQnj,k(Pi; w)

(Producer Price) Pnj,k(Pi; w) = d̄nj,k p̄nn,kwn(1− an,k)
1

γk
−1

(Qn,k(Pi; w))
− 1

γk

(Pollution) Zn,k(Pi; w) = z̄n,k(1− an,k)
1

αn,k
+ 1

γk
−1

(Qn,k(Pi; w))
− 1

γk

(Tax Revenues) Tn(Pi; w) =


∑k, j 6=i

[(
P̃ji,k − Pji,k(Pi; w)

)
Qji,k(Pi; w)

]
if n = i

+∑k, j

[(
P̃ij,k − (1− αn,k

γk−1
γk

)Pij,k(Pi; w)
)

Qij,k(Pi; w)
]

0 if n 6= i

(Income) Yn(Pi; w) = wn L̄n + Tn(Pi; w)

(Sw)

Here, P̃i ⊂ Pi is the vector of consumer prices in home country i, P̃ij ⊂ Pi is the vector of consumer

prices in foreign country j of varieties produced in home, and ai,k ∈ Pi is the abatement in home.

All these are instruments of policy to be chosen by the home government. In contrast, every foreign

country n 6= i has some fixed abatement level an,k = ān,k and no tax revenues Tn = 0. System (Sw)

characterizes quantities, producer prices, emissions, tax revenues, and income in all economies as a

function of (Pi, w) . Correspondingly, welfare in country i can be formulated as,

Wi(Pi; w) = Vi(Yi(Pi; w), P̃i)−∑
n,k

δniZi,k(Pi; w).

By design, system (Sw) excludes the labor-market clearing condition, and it is understood that many

wage vectors may satisfy (Sw). For a given choice of policy, Pi, a wage vector, w, is in the feasible set

Fw
i if and only if it satisfies the labor-market clearing conditions:

∑
j,k

[(
1− αn,k

γk − 1
γk

)
Pnj,k(Pi; w)Qnj,k(Pi; w)

]
= wn L̄n, ∀n.
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A.3 Expressing Equilibrium Outcomes as a Function of (Pi; Yi)

Following Lemma 2, we treat wages as fixed. Consider system (SY) that incorporates all equilibrium

conditions excluding the budget constraint. For all n, j ∈ C,and k ∈ K,

(Optimal Demand) Qnj,k(Pi; Yi) =

Dni,k(P̃i, Yi) if j = i

Dnj,k(P̃ij, {P̃nj(Pi; Yi)}n 6=i, Ȳj) if j 6= i

(Indusry Output) Qn,k(Pi; Yi) = ∑j∈C d̄nj,kQnj,k(Pi; Yi)

(Producer Price) Pnj,k(Pi; Yi) = d̄nj,k p̄nn,kw̄n(1− an,k)
1

γk
−1

(Qn,k(Pi; Yi))
− 1

γk

(Pollution) Zn,k(Pi; Yi) = z̄n,k(1− an,k)
1

αn,k
+ 1

γk
−1

(Qn,k(Pi; Yi))
1− 1

γk

(Taxes) Tn(Pi; Yi) =


∑k, j 6=i

[(
P̃ji,k − Pji,k(Pi; Yi)

)
Qji,k(Pi; Yi)

]
if n = i

+∑k, j

[(
P̃ij,k − (1− αn,k

γk−1
γk

)Pij,k(Pi; Yi)
)

Qij,k(Pi; Yi)
]

0 if n 6= i

(SY)

System (SY) characterizes quantities, producer prices, emissions, and tax revenues in all economies

as a function of (Pi, Yi). Correspondingly, welfare in country i can be formulated as,

Wi(Pi; Yi) = Vi(w̄i L̄i + Ti(Pi; Yi), P̃i)−∑
n,k

δniZi,k(Pi; Yi).

A policy-income pair is feasible, denoted by (Pi, Yi) ∈ FY
i , if and only if Yi = w̄i L̄i + Ti(Pi; Yi).

A.4 Characterizing Equilibrium Wage Effects

Suppose we formulate all equilibrium variables as a function of Pi and w (described in Appendix

A.2). The feasible vector of wages, w, solves the following system of labor market clearing conditions:


f1(Pi; w) ≡ w1L1 −∑j∈C ∑k∈K(1− α1,k

γk−1
γk

)P1j,k(Pi; w)Q1j,k(Pi; w) = 0
...

fN(Pi; w) ≡ wN LN −∑j∈C ∑k∈K(1− αN,k
γk−1

γk
)PNj,k(Pi; w)QNj,k(Pi; w) = 0

(40)
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Also, note that by Walras’ law one equation is redundant so we can assign one element of w as the

numeraire:

∑
n

fn(Pi; w) = 0. [Walras’ Law]

To characterize the term dw
dPi

in the F.O.C., we can apply the Implicit Function Theorem to the above

system as follows:
d ln w
d lnPi

= −
(

∂ f
∂ ln w

)−1

Pi

∂ f
∂ lnPi

.

To characterize the matrix ∂ f
∂w , let us briefly abstract from scale economies and abatement, which

amounts to setting αk
γk−1

γk
= 0 in System 40. This simplification helps us convey our main point

succinctly; but it does not imply it. As we argue shortly, our main claim goes through without this

simplification. Taking partial derivatives from System 40 w.r.t. w holding Pi fixed, yields

(
∂ f

∂ ln w

)
Pi

=



∂ f1
∂ ln w1

∂ f1
∂ ln w2

· · · ∂ f1
∂ ln wN

∂ f2
∂ ln w1

∂ f2
∂ ln w2

· · · ∂ f2
∂ ln wN

...
. . . . . .

...
∂ fN

∂ ln w1

∂ fN
∂ ln w2

· · · ∂ fN
∂ ln wN

 =


1−∑k,g r11,k

(
η11,k + ε

(11,g)
11,k

)
· · · −∑k,g r1N,k

(
η1N,k + ε

(NN,g)
1N,k

)
1−∑k,g r21,k

(
η21,k + ε

(11,g)
21,k

)
· · · −∑k,g r2N,k

(
η2N,k + ε

(NN,g)
2N,k

)
...

. . .
...

1−∑k,g rN1,k

(
ηN1,k + ε

(11,g)
N1,k

)
· · · −∑k,g rNN,k

(
ηNN,k + ε

(NN,g)
NN,k

)

 .

Under Cobb-Douglas-CES preferences, the above matrix assumes the following parameterization:

(
∂ f

∂ ln w

)
Pi

= I−


−∑k [r11,kεk(1− λ11,k)] ∑k [r12,k (1 + εkλ22,k)] · · · ∑k [r1N,k (1 + εkλNN,k)]

∑k [r21,k (1 + εkλ11,k)] −∑k [r22,kεk(1− λ22,k)] · · · ∑k [r2N,k (1 + εkλNN,k)]
...

. . . . . .
...

∑k [rN1,k (1 + εkλ11,k)] ∑k [rN2,k (1 + εkλ22,k)] · · · −∑k [rNN,kεk(1− λNN,k)]


︸ ︷︷ ︸

A
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Noting that rij,kεk(1− λjj,k)� 1 if j 6= i, we can produce the following approximation:22

(
∂ f

∂ ln w

)−1

Pi

= (I−A)−1 = I + A + A2 + · · · ≈

I +
∞

∑
m=1

diag

([
− ∑

k∈K

rii,kεk(1− λii,k)

]m)
= diag

[∑
k∈K

1 + rii,kεk(1− λii,k)

]−1
 .

The above equation indicates that
(

∂ f
∂ ln w

)
Pi

is nearly diagonal with smaller-than-unity diagonal ele-

ments. Now, consider the case where Pi = P̃ji,k and assign wj as the numeraire. The derivative of f−j

(i.e., f excluding row j) w.r.t. P̃ji,k holding w and Pi − P̃ji,k fixed is given by:

∂ f−j

∂ ln P̃ji,k
=



∂ f1
∂ ln P̃ji,k

∂ f2
∂ ln P̃ji,k

...
∂ fN

∂ ln P̃ji,k


=


∑g r1i,gε

(ji,k)
1i,g

∑g r2i,gε
(ji,k)
2i,g

...

∑g rNi,gε
(ji,k)
Ni,g

 Cobb-Douglas-CES
−−−−−−−−−−−−−→

=



r1i
...

rj−1i

rj+1i
...

rNi


λji,kεk

Given that (i) λji,krni ≈ 0 if n and j 6= i, and (ii)
(

∂ f
∂ ln w

)
Pi

is nearly diagonal with smaller-than-unity

diagonal elements, it immediately follows that

d ln w−{i,j}
d ln P̃ji,k

=

(
∂ f−j

∂ ln w−{i,j}

)−1

Pi

∂ f−j

∂ ln P̃ij
≈ 0,

where w−{i,j} denotes the wage vector w excluding elements i and j. The same steps can be taken

with regards to nay other price instrument in Pi. Furthermore, the above argument goes through if

we allow for a finite γk and a non-zero αk.

22The last line follows from the fact that for a ∈ R+,

∞

∑
n=1

(−a)n = − a
1 + a

.
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A.5 Some Useful Relationships

Before turning to our derivations of optimal policy, we show two sets of useful relationships. The

first one is the effects of policy instruments on emission levels. The second one is the effects of policy

instruments on producer prices through industry-level scale economies.

Scale Effects in Emission. Recall that total emission, as a function of abatement and output, is given

by

Zj,k(aj,k; Qj,k) ≡ z̄j,k(1− aj,k)
1

αj,k
+ 1

γk
−1

Q
1− 1

γk
j,k .

To track the policy response of emission we use two following partial derivatives. The first one,

accounts for scale effects in emission:

∂ ln Zj,k(aj,k, Qj,k)

∂ ln Qj,k
= 1− 1

γk
, (41)

and, the second one accounts for abatement effects in emission:

∂ ln Zj,k(aj,k, Qj,k)

∂ ln(1− aj,k)
=

1
αj,k

+
1
γk
− 1. (42)

Note that ai,k is directly chosen by the policy-maker in our reformulated optimal policy problem.

Qj,k(Pi; w, Yi) is implicitly determined by the policy-maker with respect to abatement and the re-

maining price instruments.

Scale Economies in Production and the Export Supply Elasticity. Scale Economies in Production

and the Export Supply Elasticity.

Below, we define and characterize the export supply elasticity. To that end, we first introduce

some intermediate partial derivatives that enter the export supply elasticity formula. These partial

derivatives are also independently useful to our subsequent optimal analysis.

Following Lashkaripour and Lugovskyy (2016), the definition for the general equilibrium export

supply elasticity can be expressed as follows

ωji,k ≡
1

rji,kρj,k
∑
g

[
wiLi

wjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,Pi

+ ∑
n 6=i

wnLn

wjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,Pi

]
, (43)

where rni,g = Pni,gQni,g/ ∑ι∈C

(
Pnι,gQnι,g

)
and ρn,g = ∑ι∈C

(
Pnι,gQnι,g

)
/wnLn respectively denote the
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good ni, g-specific and industry-wide sales shares associated with origin n ∈ C. The above expression

accounts for the fact that a change in the export supply of good ji, k will affect the producer price of

goods supplied by origin j–industry k as well as other suppliers via cross-demand effects.

Before unpacking and simplifying Equation 43, let us provide a brief description. Contracting the

supply of good ji, k (i.e., Qji,k) increases the price of goods supplied by origin j–industry k through

firm-entry (or scale) effects. Holding Pi and w constant, this change in price can affect the demand

facing other suppliers via cross-demand effects in markets outside of i. Consumer prices in destina-

tion i are fixed by the government’s choice vis-à-vis Pi. So, once we fix Pi, a change in Pin,g has no

bearing on the demand for other suppliers in market i. Outside of market i, however, a change in pro-

ducer prices is completely passed on to consumer prices. Considering this, a change in Pjn,k (which

recall is triggered by a contraction in Qji,k) influences the demand for all suppliers serving market n.

This change in demand, in turn, impacts the producer price of goods supplied by each international

industry through scale effects. Equation 43 measures how these changes impact country i’s ToT.

We can follow the procedure in Lashkaripour and Lugovskyy (2016) to derive a simple first-order

approximation for ωji,k in the absence of cross-industry demand effects. To this end, note that the

producer price of good ni, g is given by Pni,g = d̄ni,gPnn,g, where d̄ni,g denotes a constant iceberg trade

cost and Pnn,g denotes the price of goods supplied by origin n–industry g in the domestic market.

As detailed in Section 2.2, Pnn,g is an explicit function of origin n–industry g’s abatement, wage, and

output schedule:

Pnn,g(an,g, wn, Qn1,g, ..., QnN,g) = p̄nn,gwn(1− an,g)
1

γg−1Qn,g(Qn1,g, ...QnN,g)
− 1

γg .

where Qn,g(.) is total effective output in origin j–industry k, as given by

Qj,k(Qj1,k, ...QjN,k) = d̄j1,kQj1,k + ... + d̄jN,kQjN,k.

Considering the above formulation, chacterizing ωji,k requires that we first characterize
(

∂ ln Pni,g
∂ ln Qji,k

)
w,Pi

=(
∂ ln Pii,g
∂ ln Qji,k

)
w,Pi

for each origin n–industry g. For this purpose, define the the following function for each

origin j–industry k that treats Pi and w as given:

Fj,g(Qi,g, Pg) ≡ Pjj,g − p̄jj,gwj(1− aj,g)
1

γg−1
[

d̄ji,gQji,g + ∑
n 6=i

d̄jn,gQjn,g(d−in,g � P−i,g)

]− 1
γg

= 0
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In the above formulation, Qi,g ≡
{

Q1i,g, ..., QNi,g
}

denotes the vector of demand for industry g goods

in destination i; vector Pg ≡
{

P``,g
}

is the global vector of producer prices in industry g and P−i,g =

Pg −
{

Pii,g
}

encompasses the producer price for each origin aside from i. Correspondingly, P̃−in,g ≡
d−in,g � P−i,g denotes the vector of consumer prices associated with non-i origins in destination n 6=
i. Finally, the function Qn`,g(P̃−in,g) = Dnι,g(P̃−in,g, P̃in,g, Yn) derives from the Marshallian demand

function, treating P̃in,g ∈ P̄i and wn ∈ w as given (with Yn = wnLn, accordingly). For any given Pi

and w, the global vector of produce prices, Pg, can be chctaerized as a function, Qi,g, based on the

following system: 
F1,g(Q1i,g, ..., QNi,g, P11,g, ..., PNN,g) = 0
...

FN,g(Q1i,g, ..., QNi,g, P11,g, ..., PNN,g) = 0

.

Applying the Implicit Function Theorem to the above system of equations, yields the following ma-

trix of inverse export supply elasticities:
(

∂ ln P11,k
∂ ln Q1i,k

)
w,Pi

· · ·
(

∂P11,k
∂ ln QNi,k

)
w,Pi

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
w,Pi

· · ·
(

∂PNN,k
∂ ln QNi,k

)
w,Pi

 = −


∂F1,k(.)

∂ ln P11,k
· · · ∂F1,k(.)

∂ ln PNN,k
...

. . .
...

∂FN,k(.)
∂ ln P11,k

· · · ∂FN,k(.)
∂ ln PNN,k


−1

︸ ︷︷ ︸
Ai


∂F1,k(.)

∂ ln Q1i,k
· · · ∂F1,k(.)

∂ ln QNi,k
...

. . .
...

∂FN,k(.)
∂ ln Q1i,k

· · · ∂FN,k(.)
∂ ln QNi,k

 ,

(44)

Since function Fi,k(.) treats Pi and w as given, each element of the matrixes on the right-hand side

can be specified as follows:

∂Fn,k(.)
∂ ln Pjj,k

= 1j=n + 1j 6=i
1

γg
∑
` 6=i

rn`,kε
(j`,k)
n`,k ;

∂Fn,k(.)
∂ ln Qji,k

= 1j=n
1

γg
rji,k.

Considering the above expression for ∂Fn,k(.)/∂ ln Pjj,k, it is straightforward to show that Ai is diagonally-

dominant. Hence, following Lashkaripour and Lugovskyy (2016), we can produce a simple first-

order approximation for A−1
i around rji,k ≈ 0 (for j 6= i), which yields the following:

(
∂ ln Pnn,g

∂ ln Qji,g

)
w,Pi

≈


− 1

γg rni,g

1+ 1
γg ∑ι 6=i rnι,gε

(nι,g)
nι,g

n = j
1

γg rji,g

1+ 1
γg ∑ι 6=i rnι,gε

(nι,g)
nι,g

(
1

γg
∑ι 6=i rnι,gε

(jι,g)
nι,g

)
n 6= j

,
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We can then plug the above expression back into into Equation 43 to produce the following approxi-

mation for the export supply elasticity—noting that rni,g × rji,g ≈ 0 if j 6= i and n 6= i:

ωji,k ≈
− 1

γk
rji,k

1 + 1
γk

∑ι 6=i rjι,kε jι,k

[
1− 1

γk

wiLi

wjLj
∑
n 6=i

ρi,krin,k

ρj,krji,k
ε
(jn,k)
in,k

]
.

A.6 Multiplicity of Policy Schedules

First, we state the result concerning the multiplicity of optimal taxes. Then, we provide a formal

proof. The present the proof we use T ≡ (Ii, I−i, wi, w−i) to denote a global policy-wage combination,

with Ii = (si, ti, xi, τi). As before we use Fw to denote the set of feasible policy-wage combinations—

i.e., the combinations for which w satisfies the labor market clearing condition given applied taxes,

I. Considering our choice of notation, we want to prove the following result, which is a basic exten-

sion of Lemma 1 in Lashkaripour and Lugovskyy (2016) to an economy with carbon externality and

abatement.

Lemma 6. For any a and ã ∈ R+, the following two results hold: (1) if T = (1 + ti, t−i,1 + xi, x−i, 1 +

si, s−i, τi, τ−i; wi, w−i) ∈ Fw, then T′ = (a(1 + ti), t−i, a(1 + xi), x−i, 1
ã (1 + si), s−i, a

ã τi, τ−i; a
ã wi, w−i) ∈

Fw; and (2) Welfare is preserved under policy-wage combination T and T′: Wn(T′) = Wn(T) for all n ∈ C.

Proof. The proof closely follows the proof of Lemma 1 in Lashkaripour and Lugovskyy (2016). The

only difference is that the labor market clearing condition must be adjusted to account for abate-

ment activity. To restate the objective of the proof, consider two policy-wage combinations, T =

(s, t, x, τ; w), and T′ = (s′, t′, x′, τ′; w′), that differ in uniform shifters a and ã ∈ R+ with regards to

country i’s taxes:

1+ x′i = a (1 + xi) ; 1+ t′i = a (1 + ti) ; ; 1+ s′i = (1 + si) /ã; ; w′i = (a/ã)wi; τ′i = (a/ã) τi;

but consist of the same tax levels in the rest world (namely, −i):

1 + x′−i = 1 + x−i 1 + t′−i = 1 + t−i 1 + s′−i = 1 + s−i w′−i = w−i; τ′−i = τ−i.

Our goal is to prove that (i) if T ∈ F then T′ ∈ F, and (ii) Wn(T′) = Wn(T) for all n ∈ C. To

this end, we establish to two intermediate claims. The first claim posits that—supposing equilibrium

quantities are identical under T and T′ (i.e., Q(T′) = Q(T))—the implied nominal income and price
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levels under T and T′ are the same up to a scale. Stated mathematically,

[Claim 1] Q(T′) = Q(T) =⇒

P̃i (T
′) = aP̃i (T) ; P̃−i (T

′) = P̃−i (T)

Yi (T
′) = aYi (T) ; Y−i (T

′) = Y−i (T)
.

In the above formulation P̃i = {P̃1i, ..., P̃Ni} denotes the entire vector of consumer price indexes in

destination i, and Q ≡ {Qn`,g}n,`,g is the entire vector of equilibrium quantities. To prove the above

claim, we compute nominal income and consumer price indexes under T and T′ starting from the

assumption that Q(T′) = Q(T). First, consider nominal price indexes. To simplify the notation for

prices, define

δjn,k(T) ≡ ρjn,k
(
1− aj,k(T)

) 1
γk
−1Qj,k(T)

− 1
γk .

By assumption, aj,k(T
′) = aj,k(T) and Qj,k(T

′) = Qj,k(T), indicating thatδjn,k(T) = δjn,k(T
′) = δjn,k.

Now, consider the price index of a generic good ji, k imported by i from origin j 6= i. Invoking Equa-

tions 2 and 5, the consumer price index of good ji, k under T′ and T exhibit the following relationship:

P̃ji,k(T
′) = δji,k

1 + t′ji,k
(1 + x′ji,k)(1 + s′j,k)

w′j = δji,k
a(1 + tji,k)

(1 + xji,k)(1 + sj,k)
wj = aP̃ji,k(T),

where the third equality follows from the fact that 1 + t′ji,k = a(1 + tji,k), while w′j = wj, x′ji,k = xji,k,

and s′j,k = sj,k (since wj ∈ w−i, xji,k ∈ x−i, and sj,k ∈ s−i). Second, consider a typical good ii, k that is

produced and consumed locally in country i. The consumer price of ii, k under combination T′ can

be related to its price under T as follows

P̃ii,k(T
′) = δii,k

1
1 + s′i,k

w′i = δii,k
1

1
ã (1 + si,k)

× a
ã

wi = aP̃ii,k(T),

where the third equality follows from the fact that 1 + s′i,k = (1 + si,k)/ã and w′i = awi/ã. Third,

consider the price of a typical good ij, k export by i to destination market j 6= i. The consumer price

of ij, k under combination T′ can be related to its price under T as follows:

P̃ij,k(T
′) = δij,k

1 + t′ij,k
(1 + x′ij,k)(1 + s′i,k)

w′i = δij,k
1 + tij,k

a(1 + x′ij,k)×
1
ã (1 + s′i,k)

× a
ã

wi = P̃ij,k(T),

where the third equality follows from the fact that 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, and

w′i = awi/ã; while t′ij,k = tji,k since tji,k ∈ t−i. Lastly, is follows trivially that P̃jn,k(T
′) = P̃jn,k(T) if j
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and n 6= i. Considering that P̃i =
{

P̃ji, P̃ii
}

, the above equations establish that

P̃i
(
T′
)
= aP̃i (T) , P̃−i

(
T′
)
= P̃−i (T) . (45)

Next, we turn to our claim about nominal income levels. To simplify the presentation, we hereafter

use X ≡ X(T) and X′ ≡ X(T′) to denote the value of a generic variable X under policy-wage

combinations T and T′. Keeping in mind this choice of notation, country i’s nominal income under

T′, i.e., Y′i ≡ Yi(T
′) is given by:

Y′i = w′i Li + ∑
k

∑
j

(
αk

γk − 1
γk

P′ij,kQ′ij,k

)
+ ∑

k

[(
1

1 + s′i,k
− 1

)
P′ii,kQ′ii,k

]

+ ∑
k

∑
j 6=i

(
t′ji,k

(1 + x′ji,k)(1 + s′j,k)
P′ji,kQ′ji,k +

[
1

(1 + x′ij,k)(1 + s′i,k)
− 1

]
P′ij,kQ′ij,k

)

= w′i Li + ∑
k

∑
j

(
αk

γk − 1
γk

(1 + x′ij,k)(1 + s′i,k)

1 + t′ij,k
P̃ij,kQij,k

)
+ ∑

k

[(
1− [1 + s′i,k]

)
P̃′ii,kQ′ii,k

]
+ ∑

k
∑
j 6=i

((
1− 1

1 + t′ji,k

)
P̃′ji,kQ′ji,k +

[
1

1 + t′ij,k
−

(1 + x′ij,k)(1 + s′i,k)

1 + t′ij,k

]
P̃′ij,kQ′ij,k

)
.

Note that—by assumption—policy-wage combinations T and T′ exhibit the same output schedule,

i.e., Q′ii,k = Qii,k, Q′ji,k = Qji,k, and Q′ij,k = Qij,k. Also, recall that (T and T′ are constructed such

that) 1 + t′ji,k = a(1 + tji,k), 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, and w′i = awi/ã, t′ij,k = tji,k.

Considering these relationships and plugging our earlier result that (i) P̃ii,k = aPii,k, (ii) P′ji,k = aP̃ji,k,

and (iii) P̃′ij,k = P̃ij,k into the above equation, yields the following expression for Y′i :

Y′i =
a
ã

wiLi + ∑
k

∑
j

(
αk

γk − 1
γk

1
a (1 + x′ij,k)

1
ã (1 + si,k)

1 + tij,k
P̃ij,kQij,k

)
+ ∑

k

[(
1− 1

ã
(1 + si,k)

)
aP̃ii,kQii,k

]

+ ∑
j,k

[(
1− 1

a(1 + tji,k)

)
aP̃ji,kQji,k +

[
1

1 + tij,k
−

a(1 + xij,k)× 1
ã (1 + si,k)

1 + tij,k

]
P̃ij,kQij,k

]
.

Invoking the balanced trade condition, ∑k ∑j 6=i

(
1

1+tji,k
P̃ji,kQji,k − 1

1+tij,k
P̃ij,kQij,k

)
= 0, and observing

that (1 + si,k)P̃ii,k = Pii,k and (1+xij,k)(1+si,k)

1+tij,k
P̃ij,k = Pij,k, the above equation reduces to

Y′i =
a
ã

wiLi + a ∑
k

[
P̃ii,kQii,k + ∑

j 6=i
P̃ji,kQji,k

]
− a

ã ∑
k

[
Pii,kQii,k + ∑

j 6=i

(
1− αk

γk − 1
γk

)
Pij,kQij,k

]
.
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Appealing to the labor market clearing condition, wiLi − ∑k ∑j

[(
1− αk

γk−1
γk

)
Pij,kQij,k

]
= 0, the

above equation further simplifies as follows

Y′i = a ∑
k

[
P̃ii,kQii,k + ∑

j 6=i
P̃ji,kQji,k

]
= a [wiLi + Ti] = aYi, (46)

where Ti ≡ Ti(T) denotes country i’s tax revenues under T. To be clear, the third line, in the above

equation, follows from country i’s balanced budget condition (i.e., total expenditure = total income).

Turning to the rest of the world: The fact that Yn(T′) = Yn(T) for all n 6= i follows trivially from a

similar line of arguments–hence, establishing our claim about nominal income levels:

Yi
(
T′
)
= aYi (T) ; Y−i

(
T′
)
= Y−i (T)

Together Equations 45 and 46 establish Claim (1). Stepping back, Claim (1) starts from the assumption

that Q(T′) = Q(T′). Our next claim indicates that this assumption is validated by the nominal

income and price levels implied by T′ and T. Below, we state this lemma noting that it follows

trivially from the Marshallian demand function, Qji,k = Dji,k(Yi, P̃i), being homogeneous of degree

zero.

[Claim 2] ∀a ∈ R+ :

P̃i (T
′) = aP̃i (T)

Yi(T
′) = aYi(T)

=⇒ Q(T′) = Q(T)

Together, Claims (1) and (2) establish that equilibrium quantities should be indeed identical under

policy-wage combinations T and T′. That is, Q(T′) = Q(T). Hence, if T ∈ F it follows immediately

that (i) T′ ∈ F, and (ii) Wn(T′) = Wn(T) for all n ∈ C, which is the claim of Lemma 1.
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B Proofs and Derivations

B.1 Proof of Lemma 2

Step 1. We first show that ∂ ln Yi
∂ ln wi

= 0 if the policy vector Pi is fixed and policy-wage is feasible

(Pi; wi) ∈ Fw
i . Using the income equation, and holding fixed {P̃ji,k, P̃ij,k, P̃ii,k}j 6=i,k ∈ Pi,

∂Yi

∂ ln wi
= wi L̄i− ∑

k, j 6=i

[
∂ ln Pji,k

∂ ln wi
+

∂ ln Qji,k

∂ ln wi

]
Pji,kQji,k−∑

k, j
(1− αi,k

γk − 1
γk

)

∂ ln Pij,k

∂ ln wi
+

∂ ln Qij,k

∂ ln wi︸ ︷︷ ︸
=0 if j 6=i

 Pij,kQij,k

Notice that home’s wage, wi, affects price of a variety directly if that variety is produced at home,

and also indirectly through scale economies,

∂ ln Yi
∂ ln wi

= wi L̄i
Yi
−∑k, j 6=i

[
∂ ln Pji,k
∂ ln Qj,k

∂ ln Qj,k
∂ ln Qji,k

∂ ln Qji,k
∂ ln wi

+
∂ ln Qji,k
∂ ln wi

]
Pji,kQji,k

Yi

−∑k, j(1− αi,k
γk−1

γk
)(1 + ∂ ln Pij,k

∂ ln Qi,k

∂ ln Qi,k
∂ ln Qii,k

∂ ln Qii,k
∂ ln wi

)
Pij,kQij,k

Yi
−∑k(1− αk

γk−1
γk

)
∂ ln Qii,k
∂ ln wi

Pii,kQii,k
Yi

= wi L̄i
Yi
−∑k, j 6=i(1− 1

γk
rji,k)ηji,k

∂ ln Yi
∂ ln wi

Pji,kQji,k
Yi

−∑k, j(1− αi,k
γk−1

γk
)(1− 1

γk
rii,kηii,k

∂ ln Yi
∂ ln wi

)
Pij,kQij,k

Yi
−∑k(1− αk

γk−1
γk

)ηii,k
∂ ln Yi
∂ ln wi

Pii,kQii,k
Yi

where ∂ ln Qj,k
∂ ln Qji,k

= rji,k. Reorganizing terms,

ΛY
i

(
∂ ln Yi
∂ ln wi

)
− 1

Yi

(
wi L̄i −∑

k, j
(1− αi,k

γk − 1
γk

)Pij,kQij,k

)
︸ ︷︷ ︸

=0

= 0

where the second term equals zero since the policy-wage pair is feasible, (Pi; wi) ∈ Fw
i , meaning that

the labor market clearing condition (9) has to hold; and, ΛY
i summarizes the coefficient of the wage

effect on income,

ΛY
i ≡ 1 + ∑

k, j 6=i
(1−

rji,k

γk
)ηji,k

Pji,kQji,k

Yi
−∑

k

rii,k

γk
ηii,k

wi L̄i

Yi
+ ∑

k
(1− αi,k

γk − 1
γk

)ηii,k
∂ ln Yi

∂ ln wi

Pii,kQii,k

Yi

From the fact that ΛY
i is generically non-zero, it follows that:

∂ ln Yi

∂ ln wi
= 0.
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Step 2. Within the feasible set of policy-wage, (Pi; wi) ∈ Fw
i , and holding fixed the policy vector Pi,

we can express the derivative of Wi(Pi; w) w.r.t. wi as follows:

∂Wi(.)
∂wi

=
∂Vi(.)

∂Yi

(
∂Yi

∂wi

)
− 1

Yi
∑

j
∑

k

(
δjiZj,k

∂ ln Zj,k(.)
∂ ln Qj,k

∂ ln Qj,k(.)
∂ ln Qji,k

∂ ln Dji,k(.)
∂ ln Yi

)(
∂Yi

∂wi

)
= 0

where we use ∂ ln Yi
∂ ln wi

= 0 from Step 1.

B.2 Proof of Lemma 3

Notice that we have already sketched a proof for Lemma 3 in the buildup to the formal statement of

the lemma. However, here we prove this lemma using a somewhat different approach that allows us

to provide more details.

Recall that Applying the chain rule to Wi(Pi; Yi) = Vi(w̄i L̄i + Ti(Pi; Yi), P̃i)− δi · Z(Pi; Yi), yields

the following expression:

dWi(Pi; Yi)

d lnP =
∂Vi(.)
∂ lnP +

∂Vi(.)
∂Yi

(
∂Ti(Pi; Yi)

∂ lnP

)
Yi

−
(

∂δi · Z(Pi; Yi)

∂ lnP

)
Yi

+

(
∂Wi(Pi; Yi)

∂ ln Yi

)
Pi

d ln Yi

d lnP .

Before moving forward, let us emphasize two important details:

1. Following Lemma 2, we are treating the vector of wages, w = w̄, as constant throughout our

proof. So, the partial derivatives subject to Yi can be more-broadly interpreted as partial deriva-

tives subject to holding both Yi and w fixed, i.e.,
(

∂Ti(Pi ;Yi)
∂ lnP

)
Yi
∼
(

∂Ti(Pi ;Yi)
∂ lnP

)
Yi ,w

.

2. Every time we differentiated w.r.t. a P ∈ Pi, we are also fixing the remaining elements of Pi.

That is because the government is directly choosing every single element of Pi. So, to be even

more precise, we may interpret the partial derivative subject to Yi as derivative subject to fixing

Yi, w, and Pi − {P}, i.e.,
(

∂Ti(Pi ;Yi)
∂ lnP

)
Yi
∼
(

∂Ti(Pi ;Yi)
∂ lnP

)
Yi ,w,Pi−{P}

.

Noting the above explanation, we now proceed with the proof in two steps.

Step #1: Characterizing
(

∂Wi
∂Yi

)
Pi

.

To characterize
(

∂Wi
∂Yi

)
Pi

, we can apply the chain rule, which implies

(
∂Wi(Pi; Yi)

∂ ln Yi

)
Pi

=
∂Vi(.)

∂Yi

(
∂Ti(.)
∂ ln Yi

)
Pi

−
(

∂δi · Z(Pi; Yi)

∂ ln Yi

)
Pi

. (47)
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As outlined in Appendix A.3 , Ti(.) and Zj,k(.) are formulated as


Ti(Pi; Yi) = ∑k

(
αi,k

γk−1
γk

Pii,k(Pi; Yi)Qi,k(Pi; Yi)
)

+∑k,j
[
(P̃ij,k − Pij,k(Pi; Yi))Qij,k(Pi)

]
+ ∑k,j 6=i

[
(P̃ji,k − Pji,k(Pi; Yi))Qji,k(Pi; Yi)

]
;

Zj,k(Pi; Yi) = z̄j,k(1− aj,k)
1

αj,k
+ 1

γk
−1

Qj,k(Pi; Yi)
1− 1

γk ;

with the equilibrium quantity and producer prices given by

Qjn,k(Pi; Yi) =

Djn,k(P̃in, P−in, Ȳn) if n 6= i

Dji,k(P̃i, Yi) if n = i
;

Qi,k(Pi; Yi) = ∑
j

dij,kQij,k(Pi; Yi);

Pjn,k(Pi; Yi) = ρjn,k(1− aj,k)
1

γk
−1Qj,k(Pi; Yi)

− 1
γk .

where ρjn,k ≡ d̄jn,k p̄jj,kw̄j. Using our definition for the income elasticity of demand, we can produce

the following partial derivatives for quantities and producer prices:

(
∂ ln Qji,k(.)

∂ ln Yi

)
Pi

=
∂ lnDji,k(.)

∂ ln Yi
= ηji,k;

(
∂ ln Qjn,k(.)

∂ ln Yi

)
Pi

= 0, (j 6= i)(
∂ ln Qj,k(.)

∂ ln Yi

)
Pi

=

(
∂ ln Qj,k

∂ ln Qji,k

)
Pi

(
∂ ln Qji,k(.)

∂ ln Yi

)
Pi

= rji,kηji,k(
∂ ln Pij,k(.)

∂ ln Yi

)
Pi

=

(
∂ ln Pii,k(.)

∂ ln Qi,k

)
Pi

(
∂ ln Qi,k

∂ ln Qii,k

)
Pi

(
∂ ln Qji,k(.)

∂ ln Yi

)
Pi

= − 1
γk

rii,kηii,k(
∂ ln Pji,k(.)

∂ ln Yi

)
Pi

=

(
∂ ln Pjj,k(.)
∂ ln Qji,k

)
P̃ji,k

(
∂ ln Qji,k(.)

∂ ln Yi

)
Pi

= ωji,kηji,k (j 6= i)

where ωji,k denotes the export supply elasticity as defined in Appendix A.5. Using the above expres-

sions and noting that

Ti(Pi; Yi) = ∑
k,j 6=i

[
(P̃ji,k − Pji,k(Pi; Yi))Qji,k(Pi; Yi)

]
+ ∑

k,j

[
(P̃ij,k − (1− αi,k

γk − 1
γk

)Pij,k(Pi; Yi))Qij,k(Pi; Yi)

]
,
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produces the following formulation for
(

∂Ti(.)
∂ ln Yi

)
Pi

and
(

∂Zj,k(.)
∂ ln Yi

)
Pi

:



(
∂Ti(.)
∂ ln Yi

)
Pi

= −∑k

[(
1− αi,k

γk−1
γk

)
1

γk
ηii,kPii,kQii,k

]
+∑k

[(
P̃ii,k − (1− αi,k

γk−1
γk

)Pii,k

)
Qii,kηii,k

]
+ ∑k,j 6=i

[
(P̃ji,k − (1 + ωji,k)Pji,k)Qji,kηji,k

]
;(

∂Zj,k(.)
∂ ln Yi

)
Pi

=
(

1− 1
γk

)
Zj,krji,kηji,k =

γk−1
γk

vj,kPji,kQji,kηji,k.

To provide more detail: The first line in the expression for
(

∂Ti(.)
∂ ln Yi

)
Pi

derives from the following

intermediate result:

N

∑
j=1

[(
∂ ln Pij,g

∂ ln Qii,g

)
Pi

Pij,gQij,g

]
=

N

∑
j=1

[(
∂ ln Pii,g

∂ ln Qi,g

)
Pi

∂ ln Qi,g(Qi1,g...QiN,g)

∂ ln Qii,g
Pij,gQij,g

]

= −
N

∑
j=1

(
1

γg
rii,gPij,gQij,g

)
= − 1

γg
rii,g

N

∑
j=1

(
Pij,gQij,g

)
= − 1

γg
Pii,gQii,g

(48)

Plugging the expressions for
(

∂Ti(.)
∂ ln Yi

)
Pi

and
(

∂Zj,k(.)
∂ ln Yi

)
Pi

back into Equation 47, and noting that ∑j
(

Pij,kQij,krii,k
)
=

Pii,kQi,krii,k = Pii,kQii,k, yields

(
∂Wi

∂ ln Yi

)
Pi

=∑
k

(P̃ii,k −
γk − 1

γk

(
1− αi,k

γk − 1
γk

+ δ̃ii,kvi,k

)
Pii,k

)
Qii,kηii,k + ∑

j 6=i

([
P̃ji,k − (1 + ωji,k −

γk − 1
γk

δjivj,k)Pji,k

]
Qji,kηji,k

)
=∑

k

(1− γk − 1
γk

(
1− αi,k

γk − 1
γk

+ δ̃ii,kvi,k

)
Pii,k

P̃ii,k

)
eii,kηii,k + ∑

j 6=i

([
1− (1 + ωji,k −

γk − 1
γk

δjivj,k)
Pji,k

P̃ji,k

]
eji,kηji,k

)Yi.

(49)

Step #2: Proving that
(

∂Wi
∂Yi

)
Pi

= 0 at the optimum.

This step establishes that if for all P ∈
{

ai, P̃ii, P̃ji
}

if

∂Vi(.)
∂ lnP +

∂Vi(.)
∂Yi

(
∂Ti(Pi; Yi, w)

∂ lnP

)
w,Yi

−
(

∂δi · Z(Pi; Yi, w)

∂ lnP

)
w,Yi

= 0,

then
(

∂Wi
∂Yi

)
Pi

= 0. For the sake of clarity, our notation indicates explicitly that the partial derivative

w.r.t. P are taken while holding both w and Yi (in the demand function) constant.
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[Abatement Level: ai] First, consider the case where P = 1− ai,k. Keep in mind that the instrument

set Pi includes all consumers prices in the local economy. So, holding all instruments except ai,k (i.e.,

Pi − {ai,k}) fixed, then ai,k has no direct effect on Vi(Yi = w̄i L̄i + Ti, P̃i). However, ai,k does affect tax

revenues and local emission levels as indicated below:

∂Vi(.)
∂ ln(1+ai,k)

= 0(
∂Ti(Pi ;Yi ,w)
∂ ln(1+ai,k)

)
w,Yi

= −∑N
j=1

(
(1− αi,k

γk−1
γk

)Pij,kQij,k

(
∂ ln Pii,k

∂ ln(1−ai,k)

)
w,Yi

)
= (1− αi,k

γk−1
γk

)γk−1
γk

∑N
j=1
(

Pij,kQij,k
)

(
∂δi ·Z(Pi ;Yi ,w)

∂ ln(1+ai,k)

)
w,Yi

= δii

(
∂Zi,k(...,1−ai,k)

∂ ln(1−ai,k)

)
w,Yi

=
(

1
αi,k
− γk−1

γk

)
δiiZi,k .

Combining the above equation yields (note that Pii,kQi,k = ∑N
j=1 Pij,kQij,k)

∂Vi(.)
∂ ln(1 + ai,k)

+
∂Vi(.)

∂Yi

(
∂Ti(Pi; Yi)

∂ ln(1 + ai,k)

)
w,Yi

−
(

∂δi · Z(Pi; Yi)

∂ ln(1 + ai,k)

)
w,Yi

=
∂Vi(.)

∂Yi

[
1− αi,k

γk − 1
γk

]
γk − 1

γk
Pii,kQi,k −

1
αk

δiiZi,k

[
1− αi,k

γk − 1
γk

]
= 0. (50)

[Domestic and Import Prices: P̃ii, and P̃ji,] Next, consider the case where P = P̃ii,k or P̃ji,k (where

j 6= i). We are combining both instruments, as the partial derivative w.r.t. to both P̃ii,k and P̃ji,k

produce similar-looking equation. So, we henceforth use n to denote the origin country with the

understanding that either n = i or n = j. For this case, we first detail the partial derivative of tax

revenues, Ti(.), which is more involved:

(
∂Ti(Pi; Yi, w)

∂ ln P̃ni,k

)
w,Yi

= P̃ii,kQii,k + ∑
g

[(
P̃ii,g − [1− αi,g

γg − 1
γg

]Pii,g

)
Qii,g

(
∂ ln Qii,g

∂ ln P̃ni,k

)
w,Yi

]

−∑
g

∑


[
[1− αi,g

γg − 1
γg

]Pi,gQi,g

(
∂ ln Pi,g

∂ ln Qii,g

)
w,Yi

(
∂ ln Qii,g

∂ ln P̃ni,k

)
w,Yi

]

+ ∑
j 6=i

∑
g

[(
P̃ji,g − [1 +

(
∂ ln Pji,g

∂ ln Qji,g

)
w,Yi

]Pji,g

)
Qji,g

(
∂ ln Qji,g

∂ ln P̃ni,k

)
w,Yi

]
.

As before,
(

∂ ln Qni,g

∂ ln P̃ni,k

)
w,Yi

=
∂ lnDni,g(Yi ,P̃i)

∂ ln P̃ni,k
= ε

(ii,k)
ni,g . The second line can also be simplified the steps

outlined under Equation 48. Accordingly, we can express the different elements in Equation
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

∂Vi(.)
∂ ln P̃ii,k

= −Pii,kQii,k
∂Vi(.)

∂Yi
[Roy’s identity](

∂Ti(Pi ;Yi ,w)
∂ ln P̃ii,k

)
w,Yi

= ∑n 6=i ∑g

[(
1− (1 + ωni,g)

Pni,g

P̃ni,g

)
P̃ni,gQni,gε

(ii,k)
ni,g

]
+ ∑g

[(
1−

(
1− αi,g

γg−1
γg

)
γg−1

γg

Pii,g

P̃ii,g

)
P̃ii,gQii,gε

(ii,k)
ii,g

]
(

∂δi ·Z(Pi ;Yi ,w)
∂ ln P̃ii,k

)
w,Yi

= ∑g ∑j δji

(
∂Zj,g(...;Qj,g)

∂ ln Qj,g

∂ ln Qj,g(Qj1,k ,...,QjN,k)

∂ ln Qji,g

∂ ln Qji,g

∂ ln P̃ii,k

)
w,Yi

= ∑g ∑j

[
δji

γk−1
γk

vj,kε
(ni,k)
ji,g Pji,gQji,g

]

where the last line follows from the fact that (1) ∂Zj,g(...;Qj,g)
∂ ln Qj,g

= γk−1
γk

Zj,g, (2) ∂ ln Qj,g(Qj1,k ,...,QjN,k)

∂ ln Qji,g
= rji,g,

and (3) vj,k ≡ Zj,k/Pjj,kQj,k. Combining the above equations yields

∂Vi(.)
∂ ln P̃ni,k

+
∂Vi(.)

∂Yi

(
∂Ti(Pi; Yi)

∂ ln P̃ni,k

)
w,Yi

−
(

∂δi · Z(Pi; Yi)

∂ ln P̃ni,k

)
w,Yi

=

∑
g

[
∑
j 6=i

(
1−

(
1 + ωji,g + δ̃jivj,g

γg − 1
γg

) Pji,g

P̃ji,g

)
eji,gε

(ni,k)
ji,g

]
Yi + ∑

g

[(
1−

(
1− αi,g

γg − 1
γg

+ δ̃iivi,g

)
γg − 1

γg

Pii,g

P̃ii,g

)
eii,gε

(ni,k)
ii,g

]
Yi = 0

(51)

For Equation 50 to hold it should be that αi,k
γk−1

γk
Pii,kQi,k − δ̃iiZi,k = 0. Plugging this expression into

Equation 51 yields

∑
g

[
∑
j 6=i

(
1−

(
1 + ωji,g + δ̃jivj,g

γg − 1
γg

)
Pji,g

P̃ji,g

)
eji,gε

(ni,k)
ji,g

]
+ ∑

g

[(
1−

γg − 1
γg

Pii,g

P̃ii,g

)
eii,gε

(ni,k)
ii,g

]
= 0.

The above equation specifies the optimality condition for N × K different price instruments, P̃ni,k. Si-

multaneously solving the above equation for all P̃ni,k amounts to solving the following matrix equa-

tion.


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . .

...

e1i,1ε
(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K





P̃?
1i,k

P1i,1
−
(

1 + ω1i,k + δ̃1i,kv1,k
γk−1

γk

)
...

P̃?
ii,k

Pii,k
− γk−1

γk
...

P̃?
Ni,k

PNi,k
−
(

1 + ωNi,k + δ̃Ni,kvN,k
γk−1

γk

)


k

= 0.

As discussed in Section 3.1 and proven in the following appendix, is non-singular. So, the unique

solution to the above equation is

P̃?
ji,k

Pji,1
= 1 + ωji,k + δ̃jivj,k

γk − 1
γk

;
P̃?

ii,k

Pii,k
=

γk − 1
γk

, (52)
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which when plugged into Equation 49, trivially implies
(

∂Wi
∂ ln Yi

)
Pi

= 0.

B.3 Proof of Lemma 5

Following Proposition 2.E.2 in Mas-Colell et al. (1995) the Walrasian demand function satisfies eji,k =|
eji,kε

(ji,k)
ji,k | −∑n,g 6=j,k | eni,gε

(ji,k)
ni,g |. Hence, since there exists a ji, k such that eji,k > 0, the matrix Ξ is

strictly diagonally dominant. The Lèvy-Desplanques Theorem (Horn and Johnson (2012)), therefore,

ensures that Ξ is non-singular. The lower bound on det(Ξ) follows trivially from Gerschgorin’s circle

theorem. Specifically, following Ostrowski (1952),

| det (Ξ) |≥∏
j

∏
k

(
| eji,kε

(ji,k)
ji,k | − ∑

n,g 6=j,k
| eni,gε

(ji,k)
ni,g |

)
= ∏

j
∏

k
eji,k > 0.

B.4 Proof of Theorem 1

As discussed in Section 3.2, the expression for emission taxes follows from combining cost mini-

mization with the optimal tax condition (refer to Equation 20). Domestic and import taxes were also

implicitly derived in Appendix B.2 under Equation 52. Combining these expressions, we have:

τ?
i,k = δ̃ii, 1 + s?i,k =

P?
ii,k

P̃ii,k
=

γk

γk − 1
; 1 + t?ji,k =

P̃?
ji,k

Pji,k
= 1 + ωji,k + δ̃jivj,k

γk − 1
γk

.

To determine the export tax we can appeal to Proposition 1, whereby the necessary condition for

optimality w.r.t. P̃ij,k (j 6= i) is

∂Vi(.)
∂ ln P̃ij,k

+
∂Vi(.)

∂Yi

(
∂Ti(Pi; Yi, w)

∂ ln P̃ij,k

)
w,Yi

−
(

∂δi · Z(Pi; Yi)

∂ ln P̃ij,k

)
w,Yi

= 0. (53)
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First not that P̃ij,k does not directly enter the indirect utility function, so ∂Vi(.)
∂ ln P̃ij,k

= 0. Recalling the

expression for Ti(Pi; Yi, w) we can express the term corresponding to tax revenue effects as

(
∂Ti(Pi; Yi, w)

∂ ln P̃ij,k

)
w,Yi

= P̃ij,kQij,k + ∑
g

(P̃ij,g − [1− αg
γg − 1

γg
]Pij,g

)
Qij,g

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,Yi


−∑

g
∑



[1− αg
γg − 1

γg
]Pi,gQi,g

(
∂ ln Pi,g

∂ ln Qij,g

)
w,Yi

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,Yi


−∑

n 6=i
∑
g

Pni,gQji,g

(
∂ ln Pni,g

∂ ln Qnj,g

)
w,Yi

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
w,Yi

 = 0.

To simplify the above equation, we can appeal to Equation 48 (Appendix B.2) and the following

relationship: (
∂ ln Pni,g

∂ ln Qnj,g

)
w,Yi

Pni,gQni,g =

(
∂ ln Pnn,g

∂ ln Qnj,g

)
w,Yi

Pni,gQni,g,

=

(
∂ ln Pnn,g

∂ ln Qni,g

)
w,Yi

Pnj,gQnj,g ≡ ωni,gPnj,gQnj,g.

Doing so yields the following equation:(
∂Ti(Pi; Yi, w)

∂ ln P̃ij,k

)
w,Yi

= P̃ij,kQij,k + ∑
g

[(
P̃ij,g − [1− αg

γg − 1
γg

]
γk − 1

γk
Pij,g

)
Qij,gε

(ij,k)
ij,g

]
−∑

g
∑



[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
.

Likewise the last term in Equation 53 (that accounts for emission effects) can be specified as

(
∂δi · Z(Pi; Yi)

∂ ln P̃ij,k

)
w,Yi

= ∑
n,g

δni

(
∂Zn,g(..., Qn,g)

∂ ln Qnj,g

∂ ln Qn,g(Qn1,g, ..., QnN,g)

∂ ln Qnj,g

∂ ln Qnj,g

∂ ln P̃ij,k

)
w,Yi

 =
∂Vi(.)

∂Yi
∑
n,g

[
δ̃nivn,g

γg − 1
γg

Pnj,gQnj,g

]
.

Plugging the above expressions back into Equation 53 (and dividing everything by ∂Vi(.)
∂Yi

P̃ij,kQij,k)

yields the following optimality condition: ∂Vi(.)
∂ ln P̃ij,k

+
∂Vi(.)

∂Yi

(
∂Ti(Pi; Yi, w)

∂ ln P̃ij,k

)
w,Yi

−
(

∂δi · Z(Pi; Yi)

∂ ln P̃ij,k

)
w,Yi


[

∂Vi(.)
∂Yi

Pij,kQij,k

]−1

=

1 + ∑
g

[(
1−

(
1− αg

γg − 1
γg

+ δ̃iivi,g

)
γg − 1

γg

Pij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]
− ∑

n 6=i
∑
g

[(
ωni,g + δ̃nizn,k

γk − 1
γk

) enj,g

eij,k
ε
(ij,k)
nj,g

]
= 0
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To detect the optimal export taxes, we guess the following formulation:

(1 + xij,k) ≡
Pij,k/P̃ij,g

Pii,g/P̃ii,g
=

γk

γk − 1
P̃ij,k

P̃ij,k
=

1 + ε ij,k

ε ij,k
χij,k

Plugging the above guess back into the F.O.C. yields the following:

1 + ∑
g

(1− χij,k
1 + ε ij,k

ε ij,k

) eij,gε
(ij,k)
ij,g

eij,k

−∑
n 6=i

∑
g

t∗ni,g

enj,gε
(ij,k)
nj,g

eij,k

 = 0; [P̃ij,k]

Noting that 1 + ∑g

[
eij,g
eij,k

ε
(ij,k)
ij,g

]
= −∑n 6=i ∑g

[
enj,g
eij,k

ε
(ij,k)
nj,g

]
and dividing the above equation by 1 + ε ij,k,

−∑
g

χij,k
eij,g

eij,k

ε
(ij,k)
ij,g

ε ij,k

−∑
n 6=i

∑
g

 (1 + t∗ni,g)enj,gε
(ij,k)
nj,g

eij,k
(
1 + ε ij,k

)
 = 0

Noting that
(
1 + ε ij,k

)
eij,k = −∑n 6=i ∑g enj,gε

(ij,k)
nj,g , we can write the above equation in matrix as


eij,1
eij,1

ε
(ij,1)
ij,1
εij,1

... eij,K
eij,K

ε
(ij,1)
ij,K
εij,1

... ... ...
eij,1
eij,K

ε
(ij,K)
ij,1
εij,K

... eij,K
eij,K

ε
(ij,K)
ij,K
εij,K


︸ ︷︷ ︸

Eij


χij,1

...

χij,K

 =


1 +

∑n 6=i ∑g t∗ni,genj,gε
(ij,1)
nj,g

∑n 6=i ∑g enj,gε
(ij,1)
nj,g

...

1 +
∑n 6=i ∑g t∗ni,genj,gε

(ij,K)
nj,g

∑n 6=i ∑g enj,gε
(ij,K)
nj,g

 .

Since | eij,kε
(ij,k)
ij,k | −∑k 6=j eij,gε

(ij,k)
ij,g = eij,k + ∑n 6=i ∑g eij,gε

(ij,k)
nj,g > 0, then Eji ≡

[
eij,gε

(ij,k)
ij,g

eij,kεij,g

]
k,g

is strict

diagonally dominant. Hence, following the Lèvy-Desplanques Theorem, Eji is invertible (Horn and

Johnson (2012)) and we can compute the vector χij as

χij =

 eij,gε
(ij,k)
ij,g

eij,kε ij,g

−1

k,g

1K +

∑n 6=i t∗ni,genj,gε
(ij,k)
nj,g

∑n 6=i ∑g enj,gε
(ij,k)
nj,g


k

 . (54)

Combining the above result with the previously-derived formulas for emission, domestic, and import

taxes yields
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
1 + s?i,k =

γk
γk−1 ; τ?

i,k = δ̃ii

1 + t?ji,k = (1 + ωni,k) + δ̃ni

(
γk−1

γk

)
vn,k

1 + x?ij,k =
(

1 + 1
εij,k

)
χij,k

, (55)

where χij,k is given by Equation 54.

C Optimal Emission Policy when Other Taxes are Banned

The following definition puts the case for second-best scenarios formally.

Definition. The Second-best Unilateral Policy for country i is achieved by choosing a subset of policy

instruments to maximizeWi (equation 15) subject to equilibrium conditions (1)-(9).

We consider three cases: (1) Emission taxes are unavailable, (2) Export subsidies are unavailable,

(3) All taxes but emission taxes are unavailable.

Case #1: Emission taxes are unavailable As the emission elasticity approaches zero, i.e., αk → 0,

our model collapses to a model with exogenous emission intensity à la Markusen (1975) (See footnote

(8) As such, emission taxes can be dropped from the model as firms do not undertake abatement. In

this case, the optimal production tax will include the markup-correcting term γk−1
γk

plus an extra term

that taxes high-emission (high-v) industries. Namely,

1 + s??i,k =
γk

γk − 1
(
1 + δ̃ii,kvi,k

)−1

As before, the emission-correcting term depends on γk−1
γk

because there are scale economies in emis-

sion. For instance, it may be optimal to subsidize a high-returns-to-scale industry that exhibits a high

emission intensity. That is because subsidizing such an industry may lower emission through scale

effects that dominate the higher firm-level emission intensity.

Alternatively, maintaining the assumption that αk ∈ (0, 1), we could examine second-best pro-

duction taxes in cases where the government is not afforded choices of emission taxes. Suppose vi,k

is the emission intensity under some emission tax that is different from the unilaterally optimal. This

might be either because emission is unabated, or quite the opposite, because home country has set

its emission tax in line with international agreements at a higher level compared to the unilaterally
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first best. In either case, production taxes must correct emission externalities that are too little or too

much from the unilateral point of view:

1 + s??i,k =
γk

γk − 1
[
1 + δ̃ii,k(vi,k − v?i,k)

]−1

where v?k is the emission intensity attainable under the first-best unilateral policy schedule. Consider

a country with sub-optimal emission. In that case, production subsidies/taxes reflect a trade off

between promoting scale economies and reducing emissions. More interestingly, consider a country

whose vi,k is smaller than v?i,k because the country is abiding with an international climate agreement.

In that case, (1+s??i,k) includes an extra subsidy that promotes domestic production.

Case #2: Export Taxes are unavailable In this case, the optimal emission tax remains uniform and

follows the same rule as the first-best. Derivations for this case are similar to the ones in the build up

to equation (22) in Theorem 1. Specifically, in lemma 4, we consider only the first two sets of FOCs

related to abatement and prices faced by home consumers (both domestic purchases and imports).

Th resulting optimal tax schedule is given by:


1 + t?ji,k = (1 + t̄i)(1 + ωji,k) + δ̃ji,kvj,k

γk−1
γk

∀j, k

1 + s?i,k =
γk

γk−1 ∀k

τ?
i,k = τ?

i = δ̃ii,k ∀k

(56)

Here, t̄i ≡
(

∂ ln Yi
∂ ln wi

)/(
∂Bi

∂ ln wi

)
where Bi is the trade balance condition. t̄i is zero only when export

taxes are available.

Case #2: Emission Taxes are used as protection in disguise Suppose that all tax instruments but

emission taxes are banned. In that case, optimal emission taxes will be no longer uniform. In-

stead, it is optimal for country i to apply a higher emission tax on industries where it possesses

more export market power. To make this point succinctly, consider a perfectly competitive economy

( f e
i,k = 0, γk → ∞) in which αk = α is uniform across industries and preferences have a Cobb-

Douglas-CES paramet1erization given by equation (25). Then, as shown below, the optimal emission

tax is given by

τ∗i,k =

(
α(1− σk) (1− λii,krii,k) + 1

α̃i(1− σk) (1− λii,krii,k) + rii,k

)
δ̃ii (only τ available) (57)
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where α̃i > α is a country-wide term that depends on the industry-composition of country i’s pro-

duction. The above formula suggests that it is optimal to tax emission above the first-best level in

low-σ industries. We continue to show the derivation of equation (57).

The F.O.C. w.r.t. 1− ai,k can be expressed as (Zi ≡ ∑n,k δniZn,k):

∂Vi(.)
∂Yi

∂Yi(w, a)
∂ ln(1− ai,k)

+
∂Vi(.)
∂ ln P̃i

∂ ln P̃i(w, a)
∂ ln(1− ai,k)

+

∂Zi

∂Yi

∂Yi(w, a)
∂ ln(1− ai,k)

+
∂Zi

∂P̃i

∂P̃i(w, a)
∂(1− ai,k)

+
∂Vi(.)
∂ ln w

d ln w
d ln(1− ai,k)

= 0

To simplify the above problem, we impose the following additional assumptions:

1. Preferences are given by the Cobb-Douglas-CES specification;

2. Country i is a small open economy with δ−ii,k = 0 ; and

3. All industries are perfectly competitive, i.e., γk → ∞.

Noting that ∂ ln Pin,k/∂ ln(1− ai,k) = −1 and noting that Zi,k = vi,kPii,kQi,k, it follows that:

∂Zi

∂ ln(1− ai,k)
=

∂δii,kZi,k

∂ ln(1− ai,k)
= −δii,kvi,k ∑

j

[
Pij,kQij,kε ij,k

]
+

(
1

αi,k
− 1
)

δii,kvi,kPii,kQi,k + δii,kvi,kPii,kQii,k
∂Yi

∂ ln(1− ai,k)

Wage effects can be characterized by applying the Di(ai, wi) = ∑j 6=i ∑g
(

Pji,gQji,g − Pij,gQij,g
)

d ln wi

d ln(1− ai,k)
= −

(
∑
j 6=i

[
Pji,kQji,kεii

ji,k − Pij,kQij,k
(
1 + ε ij,k

)]
+ ∑

j 6=i
∑
g

(
Pji,gQji,g

) ∂Yi

∂ ln(1− ai,k)

)(
∂Di

∂ ln wi

)−1

Using the above expression, invoking Roy’s identity, and noting that Yi = wiLi +∑k αi,kPii,kQi,k, yields

the following formulation of the F.O.C.
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Pii,kQii,k − αi,k ∑
j

[
Pij,kQij,k

(
1 + ε ij,k

)]
+ δ̃iivi,k ∑

j

[
Pij,kQij,kε ij,k

]
−
(

1
αk
− 1
)

δ̃ii,kvi,kPii,kQi,k −∑
g

([
αg − δ̃ii,gvi,g

]
Pii,gQii,g

) ∂ ln Yi

∂ ln(1− ai,k)

−∆̄i

[
∑
j 6=i

[
Pji,kQji,kεii

ji,k − Pij,kQij,k
(
1 + ε ij,k

)]
+ ∑

j 6=i
∑
g

(
Pji,gQji,g

) ∂ ln Yi

∂ ln(1− ai,k)

]
= 0. (58)

where ∆̄i ≡ ∂Vi/∂ ln wi
∂Di/∂ ln wi

is a uniform term without industry subscript. Dividing Equation 58 by Ri,k =

∑n Pin,kQin,k and defining Ei,k = ∑j
[
rij,k

(
1 + ε ij,k

)]
= −εk (1− rii,kλii,k) , we can simplify the F.O.C.

rii,k − αi,kEi,k + αk
δ̃ii

τi,k
(Ei,k − 1)− (1− αi,k)

δ̃ii,k

τi,k

+∑
g

(
αi,g

[
1− δ̃ii

τi,g

]
rii,gri,g

)
∂ ln Yi

∂ ln(1− ai,k)
r−1

i,k − ∆̄i

[
Ei,k + (1− λii)

∂ ln Yi

∂ ln(1− ai,k)
r−1

i,k

]
= 0. (59)

∂Yi/∂ ln(1− ai,k), in the above expression, can be obtained by applying the Implicit Function Theorem

to Yi = wiLi + ∑k αi,kPii,kQi,k, while noting that ηin,k = 1 given our parametric assumption with

regards to preferences. Namely,

∂Yi

∂ ln(1− ai,k)
=
−αi,k ∑j

[
Pij,kQij,k

(
1 + ε ij,k

)]
Yi −∑g αgηii,gPii,gQii,g

=
−αi,kEi,k

1− ᾱiλii
ri,k

Plugging the above equation back into the F.O.C. implies

δ̃ii,k

τi,k
− 1 =

(α̃i,k − αi,k)Ei,k + 1− rii,k

αi,kEi,k − 1
=⇒ τi,k =

(
αikEi,k − 1

α̃i,kEi,k − rii,k

)
δ̃ii,k

where

α̃i,k − αi,k ≡ ∆̄i

[
1− αi,k

1− ᾱiλii

]
− αi,k

1− ᾱiλii
∑
g

(
αi,g

[
1− δ̃ii,k

τi,g

]
rii,gri,g

)
.

To finalize the proof, we need to characterize ∆̄i, which will in turn pin down α̃i,k. To this end, we can
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appeal to the definition ∆̄i ≡ ∂Vi/∂ ln wi
∂Di/∂ ln wi

, which implies that

∆̄i =
(1− ᾱi)− λii + ∑k

([
αi,kEi,k − αk

δ̃ii
τi,k

(Ei,k − 1)
]

ri,k

)
+ ∑k ([αi,k − δii,kvi,k] rii,kri,k)

∂Yi
∂ ln wi

(1− λii)
∂Yi

∂ ln wi
− Ei

We can replace for αkEi,k − αi,k
δ̃ii
τi,k

(Ei,k − 1) from the F.O.C. (Equation 59), which implies

∆̄i =
(1− ᾱi)− λii + ∑g

([
rii,g −

(
1− αg

) δ̃ii
τi,g

]
ri,g

)
+ ∑g

(
αg

[
1− δ̃ii

τi,g

]
rii,gri,g

) [
∂Yi

∂ ln wi
+ ∑g

∂ ln Yi
∂ ln(1−ai,g)

]
(1− λii)

[
∂Yi

∂ ln wi
+ ∑k

∂Yi
∂ ln(1−ai,k)

]
=

∑g

[
(1− αg)

(
1− δ̃ii

τi,g

)
ri,g

]
+ ∑g

(
αg

[
1− δ̃ii

τi,g

]
rii,gri,g

) [
∂Yi

∂ ln wi
+ ∑g

∂ ln Yi
∂ ln(1−ai,g)

]
(1− λii)

[
∂Yi

∂ ln wi
+ ∑k

∂Yi
∂ ln(1−ai,k)

] (60)

Reapplying the Implicit Function Theorem to Yi = wiLi + ∑k αi,kPii,kQi,k implies that

∂ ln Yi

∂ ln wi
+ ∑

k

∂ ln Yi

∂ ln(1− ai,k)
=

1−∑k (αi,kri,k) + ∑k (αi,kEiri,k)

1− ᾱiλii
−∑

k

αi,kEiri,k

1− ᾱiiλii
=

1− ᾱi

1− ᾱiiλii
.

Combining the above expression with Equation 60 and assuming that αi,k = α for all k, yields the

following:

(1− λii)
1− α

1− αλii
∆̄i = (1− α)∑

g

[(
1− δ̃ii

τi,g

)
ri,g

]
+

1− α

1− αλii
∑
g

(
α

[
1− δ̃ii

τi,g

]
rii,gri,g

)
,

Finally, noting the definition for α̃i,k − α, delivers the following expression

α̃i,k − α =

[
(1− α)∑

g

[(
1− δ̃ii

τi,g

)
ri,g

]
+ α ∑

g

([
1− δ̃ii

τi,g

]
rii,gri,g

)]
(1− λii)

−1

= ∑
[(

1− δ̃ii

τi,k

)
1− α(1− rii,g)

1− λii
ri,g

]
= −∑

g

[(
(α̃i,g − α)Ei,g + 1− rii,g

αEi,g − 1

)
1− α(1− rii,g)

(1− λii)
ri,g

]
.

The above system implies that α̃i,k = α̃i is uniform. So, given that Ei,g = −εg
(
1− rii,gλii,g

)
, we can

solve for α̃i as

α̃i − α =
∑g

[
1−rii,g

εk(1−rii,gλii,g)+1
1−α(1−rii,g)

(1−λii)
ri,g

]
∑g

[(
1 +

εg(1−rii,gλii,g)
εg(1−rii,gλii,g)+1

1−α(1−rii,g)

(1−λii)

)
ri,g

] > 0
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D Data and Calibration

Expenditures, Revenues, and Emissions. Given data on expenditure, emission, and applied tariff

levels
{

P̃ji,kQji,k, Zi,k, tji,k
}

ji,k, and estimated parameters, {γk, σk, αn,k}, we can construct the vector of

observables, Bv ≡ {λni,k, rni,k, ρi,k, δ̃ni, en,k, wn L̄n, Yn}ni,k, needed to implement Proposition 3. Values

for emission intensities, vi,k can be calculated as follows

vi,k =
Zi,k

∑ 1
1+tin,k

P̃in,kQin,k

Total national expenditure Yi and expenditure share variables, λji,k, and ei,k can be recovered from

variety-level expenditure and tariff data as follows:

Yi =
15

∑
j=1

19

∑
k=1

P̃ji,kQji,k, λji,k =
P̃ji,kQji,k

∑15
n=1 P̃ni,kQni,k

, ei,k =
∑15

n=1 P̃ni,kQni,k

Yi
.

Finally, the national wage bill, wi L̄i, industry-level labor shares, ρi,k, and revenue shares, rji,k, can be

constructed as follows, given variety-level expenditure and tariff data and the estimated structural

parameters:

wi L̄i =
15

∑
j=1

19

∑
k=1

[(
1− αi,k

γk − 1
γk

)
1

1 + tij,k
P̃ij,kQij,k

]
;

ρi,k =
∑15

j=1

(
1− αi,k

γk−1
γk

)
P̃ij,kQij,k
1+tij,k

wi L̄i
; rji,k =

1
1+tin,k

P̃in,kQin,k

∑ 1
1+tin,k

P̃in,kQin,k
.

Emission Taxes. We have collected emission tax data from EUROSTAT and OECD-PINE. Both of

these data report environmentally-related taxes for four categories of energy, transport (expect fuels),

pollution, and resources. Below, we explain more about the coverage of these tax data, and data

availability issues that remain to be addressed.

According to EUROSTAT data, out of total environmentally-related taxes paid by all industries in

the EU in 2009, 81.6% are for energy, 3.1% pollution, 0.7% resources, and 14.5% transport taxes. These

numbers, when paid by households are 69.3% for energy, 2.5% pollution, 0.4% resources, and 27.8%

transport. These data cover only European countries and are reported for every industry, and for the

category of households as final consumption.

According to OECD-PINE data that cover non-European countries, out of total environmentally-

related taxes paid in the economy (both industries and households), on average 64.1% is paid for
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energy, 3.1% for pollution, 3.8% for resources, and 30.5% for transport. These data cover many coun-

tries (and, not only European ones) but they are reported at the level countries, meaning that in these

data we observe neither disaggregated industry-level records nor the distinction between firms and

households.

We take energy taxes in these data as emission taxes in our model. This is consistent with our

interpretation that emission-intensive input in our model can be thought of as energy (i.e., fossil

fuels) in the data. The transport category does not include taxes on fuels, and reflects taxes such as

those on motor vehicle sales, motor vehicle registrations, and flight tickets. Environmentally-related

taxes on pollution and resources are not meant to target energy use, either. Specifically, pollution

taxes target (1) a number of emissions that matter for the local environment (2) water pollution, and

(3) waste management. Tax on resources include (1) water abstraction, (2) harvesting of biological

resources such as fisheries, (3) extraction of raw material such as oil and gas, (4) landscape changes

and cutting of trees.

We face two issues in mapping our model to emission tax data. First, we do not observe emission

(energy) taxes by industry disaggregation in non-European countries. Second, our model allows

emission taxes only on production while in the data, a portion of them are paid by households. We

continue to explain how we re-calibrate the data to make our model quantification consistent with

the accounting of taxes and emissions.

For a generic variable x, let xi,k be that variable in country-industry ik, and xi be the country-

level aggregate. In addition, let xP be that variable from production side, and xHfrom household

consumption side, with x = xP + xH. Specifically, we have: TE
i,k = τi,kZi,k, where TE

i,k refers to emission

tax paid by country-industry ik, Zi,k measures tonnes of CO2 emission in country-industry ik, and τi,k

is the associated tax rate. First, we explain how we scale the data from production side to make them

consistent with the national accounting of taxes and emissions. For European countries, we observe

variables by industry disaggregation, but for household consumption, we only observe variables at

the aggregate country level. Starting with CO2 emissions, let cZ
i be an adjustment scalar that brings

emission data into country-level aggregates: Zi,k = cZ
i ZP

i,k where cZ
i ≡

Zi
ZP

i
. Similarly, let cτ

i be an

adjustment to bring emission tax data into country-level aggregate, τi,k = cτ
i τP

i,k where cτ
i ≡

TE
i

∑k τP
i,kZi,k

.

Using these two adjustments, we re-scale the emission and tax data of the production side of an

economy to incorporate those of households.

Next, we explain how we proceed in the face of the issue that we do not observe emission taxes

by industry disaggregation in non-European countries. For country i, we observe from OECD-PINE
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the emission taxes collected as percentage of GDP. From here, we calculate total emission taxes Ti

in country i. We observe these taxes by industry disaggregation, TE
i,k, only for the EU. Let us then

make the assumption that τi,k/τi,k0 = τEU,k/τEU,k0 —that is, the relative emission tax rate of industry

k to that of a reference industry is the same between the EU and other countries. Then, for a non-EU

country i, the accounting of taxes and emissions require that: TE
i = ∑k τi,kZi,k, which then implies

TE
i,k =

τEU,kZi,k
∑k τEU,kZi,k

TE
i . Using this proportionality assumption, we construct industry-level emission

taxes for non-European countries in a way that is consistent with their total emission taxes which we

observe in OECD-PINE data.

Emission Disutility Parameters. Our calibration of countries’ perceived CPI-adjusted disutility

from emissions is based on two assumptions: (a) unilaterally optimal domestic emission tax equals

the currently-applied energy tax in a country; (b) the globally optimal CO2 tax equals world’s disu-

tility from CO2 emissions, TE
i = ∑k(φ̃i,k + φ̃i)Zi,k (a)

SCC = ∑i φ̃i (b)
(61)

We let φ̃i be proportional to country i’s share of world GDP adjusted for differences in energy tax

rates across countries. Specifically, we recover relative values of φ̃i across countries, by making two

assumptions: (i) If every individual person cares equally about global warming, the aggregate care

of a larger country will be proportionally larger. To reflect the importance of size, it is more plausible

to denote the damage from climate change as a percentage of countries’ real GDP. This means that,
φi
φj

∝ Yi/P̃i
Yj/P̃j

, which is equivalent to φ̃i
φ̃j

∝ Yi
Yj

. (ii) Countries do not care equally about carbon taxes.

We take a stand that countries’ care about climate change is reflected in their current policy toward

the environmental damage of burning fossil fuels. As such, we make the assumption that country i

relative to j’s care about climate change is proportional to their observed emission taxes per tonne of

CO2, which means: φ̃i
φ̃j

∝ (TE
i /Zi)(

TE
j /Zj

) . Putting these two assumptions together, we can specify φ̃i as:

φ̃i = h̄yi(TE
i /Zi), yi ≡ Yi/YW

Equation (39)-b requires that if countries could act cooperatively, they would target the social cost of

carbon with their domestic CO2 taxes, ∑i φ̃i = SCC. This pins down scalar h̄ in the above equation,
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h̄ = SCC
∑i yi(TE

i /Zi)
, and delivers φ̃i as:

φ̃i =
yiTE

i /Zi

∑i yi(TE
i /Zi)

SCC

Using equation (39)-a, we can next calibrate the local component of emission taxes, φ̃i,k, by attribut-

ing the difference between observed emission taxes and the calibrated φ̃i to the local component of

emission taxes,φ̃i,k, TE
i = ∑k(φ̃i + φ̃i,k)Zi,k ⇒ ∑k φ̃i,kZi,k = TE

i − φ̃iZi. Notice that, φ̃i,k ≡ φ̃0
i ζ̄i,k where

we observe ζ̄i,k in the data as the amount of local pollutants generated in country-industry i, k when

burning fuels there generates one tonne of CO2. Putting together, this delivers φ̃i,k as:

φ̃i,k =
ζi,k(1− hi)TE

i

∑k ζi,kZi,k
, hi =

yiSCC
∑i yi(Ti/Zi)

E Additional Figures and Tables

Table 4: Countries and their Select Characteristics

Country Share of Share of CO2 Energy Disutility
World GDP World CO2 Intensity (v̄i) Tax Rate (τ̄i) from CO2 (φ̃i)

AUS 1.7% 1.4% 100.00 20.19 0.95
EU 27.1% 12.1% 53.54 58.90 43.33
BRA 2.4% 2.4% 121.15 7.27 0.48
CAN 2.0% 1.7% 99.85 16.43 0.91
CHN 13.6% 23.8% 209.42 3.67 1.36
IDN 1.0% 1.8% 221.48 3.87 0.10
IND 2.2% 6.4% 347.71 2.99 0.18
JPN 8.4% 2.9% 41.17 41.88 9.54
KOR 1.9% 1.6% 100.49 20.37 1.05
MEX 1.2% 1.4% 132.20 7.77 0.26
RUS 2.0% 6.0% 354.46 2.29 0.13
TUR 1.0% 0.9% 113.48 37.37 0.99
TWN 0.7% 0.9% 143.02 5.29 0.10
USA 21.2% 14.8% 83.56 12.13 6.98
RoW 13.6% 22.0% 194.09 4.46 1.64

Note: This table shows for every of the 15 regions (13 countries + the EU + the RoW), their share of world GDP, share
of world CO2 emissions, CO2 emission intensity (CO2 emissions per dollar of output) normalized by that of Australia,
Emission tax rate (dollar per tonne of CO2), and calibrated CPI-adjusted disutility parameter from one tonne of CO2
emission (φ̃i). All CO2 measures are CO2 equivalent.
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Table 5: Non-cooperative and Cooperative Outcomes - CRS

Constant Returns to Scale
Non-Cooperative Global Cooperation

Country ∆CO2e ∆V ∆W ∆CO2e ∆V ∆W

AUS -6.4% -1.8% -1.7% -82.9% -0.8% 1.2%
EU -0.1% -1.0% -0.9% -33.8% -0.2% 4.7%
BRA -6.3% -1.1% -1.1% -90.4% -0.7% 0.0%
CAN -11.2% -4.0% -4.0% -79.5% -0.8% 0.9%
CHN 1.1% -0.8% -0.8% -94.5% -0.7% -0.3%
IDN -3.5% -1.4% -1.4% -93.2% -0.7% -0.2%
IND -2.5% -3.6% -3.6% -95.2% -1.1% -0.7%
JPN -0.0% -1.0% -0.9% -63.4% -0.3% 3.3%
KOR -0.4% -2.7% -2.7% -81.0% -0.9% 1.1%
MEX -3.6% -3.4% -3.4% -89.5% -0.8% 0.0%
RUS -8.7% -4.1% -4.1% -91.9% -0.9% -0.6%
TUR -6.3% -3.4% -3.4% -71.8% -1.8% 1.8%
TWN 5.5% -4.6% -4.6% -90.8% -0.3% 0.4%
USA -1.1% -1.4% -1.4% -83.0% -0.4% 0.6%
RoW -6.9% -2.6% -2.6% -89.7% -0.8% -0.3%
Global -2.7% -1.6% -1.5% -82.3% -0.5% 1.7%
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