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Abstract

We establish the existence of Walrasian equilibrium for economies with many discrete

goods and possibly one divisible good. Our goal is not only to study Walrasian equilibria

in new settings but also to facilitate the use of market mechanisms in resource alloca-

tion problems such as school choice or course selection. We consider all economies with

quasilinear gross substitutes preferences. We allow agents to have limited quantities of

the divisible good (limited transfers economies). We also consider economies without a

divisible good (nontransferable utility economies). We show the existence and efficiency

of Walrasian equilibrium in limited transfers economies and the existence and efficiency

of strong (Walrasian) equilibrium in nontransferable utility economies. Finally, we show

that various constraints on minimum and maximum levels of consumption and aggregate

constraints of the kind that are relevant for school choice/course selection problems can

be accommodated by either incorporating these constraints into individual preferences or

by incorporating a suitable production technology into nontransferable utility economies.

† This research was supported by grants from the National Science Foundation.



1. Introduction

In this paper, we establish the existence of Walrasian equilibrium in economies with

many discrete goods and either with a limited quantity of one divisible good or without

any divisible goods. Our goal is not only to study Walrasian equilibria in new settings

but also to facilitate the use of market mechanisms in resource allocation problems such

as school choice or course selection. To this end, we develop techniques for analyzing al-

location problems in economies with or without transfers and for incorporating additional

constraints into allocation rules. In particular, we show that distributional requirements

(for example, a rule stating that every BA student must take at least 2 science courses, 2

humanities courses and 1 social science course for credit) can be incorporated into prefer-

ences in a manner consistent with the resulting economy having a Walrasian equilibrium.

Such requirements are common in US universities. We also show that aggregate constraints

that restrict the total number of seats in a set of classes can be rendered consistent with

the existence of Walrasian equilibrium by incorporating a suitable production technology

into the ecoomy.

In Kelso and Crawford (1982)’s formulation of the competitive economy, there is a

finite number of goods, and a finite number of consumers with quasilinear utility functions

that satisfy the substitutes property.1 Kelso and Crawford also assume that each consumer

is endowed with enough of the divisible good to ensure that she can purchase any bundle of

discrete goods at the equilibrium prices. This last condition would be satisfied, for example,

if each consumer had more of the divisible good than the value she assigns to the aggregate

endowment of indivisible goods. We call the Kelso-Crawford setting the transferable utility

economy. Kelso and Crawford’s ingenious formulation of the substitutes property facilitates

their existence theorem as well as a tatonnement process/dynamic auction for computing

Walrasian equilibrium. Subsequent research has identified various important properties of

Walrasian equilibrium in transferable utility economies.

Our first goal is to do away with the assumption that each consumer has enough

of the divisible good to purchase whatever she may wish at the equilibrium prices. In

1 The substitutes property requires that if x is an optimal consumption bundle at prices p and prices
increase (weakly) to some p̂ then the agent must have an optimal bundle at p̂ which has her consuming at
least as much of every good that did not incur a price increase.
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particular, we allow for arbitrary positive endowments of the divisible good. We call this

the limited transfers economy. We also consider the nontransferable utility economy; that

is, we consider economies in which there is no divisible good. This setting is particularly

well-suited for the analyzing many allocation problems such as school choice or course

selection.

Substitutes preferences have been used to analyze a variety of market design problems.

Then, results suggesting that the Walras equilibrium correspondence is nearly incentive

compatible when there are sufficiently many agents (see, for example, Roberts and Postle-

waite, (1976)) have been invoked to argue that Walrasian methods can play a role in

market design. In most of these applications it is unreasonable to assume that each agent

has enough of the divisible good to acquire whatever she wishes. In many applications,

transfers (i.e., the divisible good or equivalently, money) are ruled out altogether and the

problem is one of assigning efficiently and fairly a fixed number of objects to individuals.

Hence, both the limited transfers economy and the nontransferable utility economy are of

interest.

Theorem 1 establishes the existence of a Walrasian equilibrium (henceforth, equilib-

rium) in random allocations for limited transfers economies. In the transferable utility case,

randomization is not necessary since in such economies, a random equilibrium allocation

at prices p is simply a probability distribution over deterministic competitive equilibria at

prices p. However, in both limited transfers and nontransferable utility economies, ran-

domization is necessary for the existence of equilibrium. The following simple example

establishes this fact.

Example 1: There are two agents and a single good. Both agents’ utility for the indivisible

good is 2 but both have only one unit of the divisible good. Without randomization, if the

price is less than or equal to 1, both agents will demand the good; if the price is greater

than 1 neither will demand the good. Since there is exactly one unit of the good, there

can be no deterministic equilibrium for this economy. If randomization is allowed, the

equilibrium price of the indivisible good is 2 and each agent will get the indivisible good

with probability 1/2.
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Example 1, above, features utilities that satisfy the substitutes property and, as a re-

sult, a competitive equilibrium exists. Example 2, below, illustrates the failure of existence

whe utilities do not satisfy the substitutes property.

Example 2: The economy has three agents and three indivisible goods. Initially, agents

1 and 2 each have 1 unit of the divisible good and no divisible goods. Agent 3’s initial

endowment consists of the three goods and zero units of the divisible good. For agents 1

and 2,

ui(A) =

{
0 if |A| < 2
2 |A| ≥ 2

while u3(A) = 0 for all A. Since the three goods are perfect substitutes, in equilibrium, all

three must have the same price. Let r be this common price. Clearly, r = 0 is impossible in

any equilibrium since both agents 1 and 2 would demand at least 2 goods with probability

1 and market clearing would fail. Then, in any equilibrium, r > 0 and agents 1 and 2 must

consume the three goods with probability 1. This implies r · 3 ≤ 2 and hence r ≤ 2/3. At

r ≤ 2/3 both agent 1 and 2 will want to consume any 2 of the 3 goods with probability

1/(2r) and 0 goods with probability 1− 1/(2r). Market clearing requires, at a minimum,

that the expected total consumption of the these two agents is 3. Hence, 2 · 2 · 1/(2r) = 3

and therefore r = 2/3. This means that the unique optimal random consumption bundle

for agent i = 1, 2 at these prices is the distribution that assigns her 2 goods with probability

3/4 and zero goods with probability 1/4. This pair of random consumptions is feasible in

expectation but is not implementable. That is, there is no random allocation that yields

this random consumption to both consumers at prices p1 = p2 = p3 = 2/3. To see why,

note that in any state of the world in which player 1 is allocated 2 goods, player 2 must be

allocated either 1 good, which is never optimal for him, or 0 goods. However, consuming

0 goods with probability 3/4 is not optimal for player 2.

The utility function of agents 1 and 2 in Example 2 does not satisfy the substitutes

property.2 Our main results show that examples such as the one above cannot be con-

structed with utility functions that do.

2 Consider price vector p such that p1 = p2 = 0.5, p3 = 3. At this price, the unique optimal bundle is
{1, 2}. Next, increase the price of good 2 to q2 = 3 and keep the other prices unchanged. At the new price
q = (0.5, .3.3), the unique optimal bundle of divisible goods is ∅. Hence, the demand for good 1 decreased
despite the fact that its price remained the same while another good’s price increased.
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The assignment of courses to students typically requires a mechanism without trans-

fers, i.e., without a divisible good. To address this and related applications, Theorem

2 demonstrates the existence of a competitive equilibrium for the nontransferable utility

economy. Hylland and Zeckhauser (1979) first proposed Walrasian equilibria as an al-

location mechanism for the unit demand nontransferable utility economy. They showed

that some equilibria may be Pareto inefficient because local non-satiation need not hold

in this setting. Nonetheless, Hylland and Zeckhauser (1979) showed that efficient equi-

libria always exist. Mas-Colell (1992) coins the term strong equilibrium for a competitive

equilibrium in which every consumer chooses the cheapest utility maximizing consumption

and shows that strong equilibria are efficient. Our Theorem 2 establishes the existence of

a strong and, therefore, of a Pareto efficient equilibrium.

Allocation problems often feature constraints on individual or group consumption.

In course assignment problems, university rules may constrain students’ course selection

either by imposing distributional requirements of the kind described above or by limiting

the number of courses that a student can take for credit from a specified list of courses

(as in Princeton’s rule of 12 discussed below). In a school choice problem, administrators

may restrict parents’ choices based on the location of their residence; and, finally, in

office allocation problems, choices may be constrained by employee seniority. We analyze

such constrained allocation problems in Theorem 3. There, we consider a broad range of

constraints on individual consumption and show that our model can incorporate them. In

some applications, groups of individuals may face constraints on their joint consumption

or there may be aggregate constraints. For example, a university may reserve a certain

number of seats in a class for those students who must take this class as a requirement

of their majors. In addition, there may be aggregate constraints on lab space that limit

the total number of seats available in a collection of related courses. We analyze such

constraints in section 3.

1.1 Ordinal versus Walrasian Mechanisms: an Example

Many of the commonly used allocation mechanisms do not entail explicit randomiza-

tion; randomization, if it takes place at all, does so only only as a tie-breaking rule or to

order the agents. Relatedly, outcomes of these mechanisms depend only on the ordinal
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preferences of the agents and not on their attitude towards random bundles. In one-to-

one matching, commonly used ordinal mechanisms such has the Gale-Shapley algorithm

or the top-cycles procedure have certain efficiency properties. In the more general, mul-

tiple good setting, there is little consensus on the choice of mechanism and virtually no

results regarding efficiency. Hylland and Zeckhauser (1979) note that even in unit de-

mand economies, the existing efficiency results rely on an ordinal notion that precludes

the possibility of randomization and does not take into account the agents’ preferences over

lotteries. The simple example below highlights the inefficiency of all ordinal mechanism;

that is, mechanisms that depend only on ordinal preferences.

There are two indivisible goods (a and b), three consumers (1, 2 and 3) and no di-

visible good in the economy. The following table summarizes the utility functions of the

consumers:

Consumer {a, b} {a} {b}

1 11 10 8

2 11 10 2

3 11 10 2

Note that all three agents have the same ordinal ranking over consumption bundles:

they all strictly prefer {a, b} to {a} and {a} to {b}. Under the Walrasian mechanism,

the planner endows each student with a budget of 1 (unit of fiat money) and the goods

initially belong to a fictitious agent (the designer/seller).3 This agent values the fiat money

but does not value the divisible goods. Our mechanism allocates courses according to the

resulting Walrasian equilibrium lotteries. In this example, the unique equilibrium price is

p1 = 1, p2 = p3 = 2. At these prices, agent 1 purchases a deterministic lottery consisting

of good b. Agents 2 and 3 purchase the lottery that yields the good {b} with probability

1/2. The resulting equilibrium utility of student 1 is 8 and the resulting equilibrium utility

of students 2 and 3 is 5.

3 Alternatively, we could endow agents 1-3 with equal random allocations of the indivisible goods; that
is, each agent would own each good with probability 1/3.
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All three students are better off under the Walrasian mechanism than under any

ordinal mechanism since any mechanism that allocates the two goods based solely on the

agents’ ordinal preferences would have to give the same allocation to all three agents.

The best symmetric allocation would give each agent each good with probability 1/3 and

nothing with probability 1/3. This allocation yields utility 6 for agent 1 and 4 for agents

2 and 3; strictly lower utilities than the Walrasian mechanism for all three agents.

1.2 Related Literature

Kelso and Crawford (1982) establish the existence of a Walrasian equilibrium using

an ascending tatonnement process. They show that this process converges to a Walrasian

equilibrium price vector. Gul and Stacchetti (1999) argue that, in a sense, Kelso and

Crawford’s substitutes property is necessary for the existence of equilibrium: given any

utility function that does not satisfies the substitutes property, it is possible to construct

an N -person economy consisting of an agent with this utility function and N − 1 agents

with substitutes utility functions that has no Walrasian equilibrium.4 Hence, their result

shows that it is impossible to extend Kelso and Crawford’s existence result to a larger class

of utility functions than those that satisfy the substitutes property.

Sun and Yang (2006) provide a generalization of the Kelso-Crawford existence result

that allows for some complementarities in a transferable utility economy. They circumvent

Gul and Stacchetti’s impossibility result by imposing joint restrictions on agent’s prefer-

ences. In particular, they assume that the set of indivisible goods can be partitioned into

two sets such that all agents consider goods within each element of the partition substitutes

and goods in different partition elements complements.

As noted above, a special class of substitutes preferences are the unit-demand prefer-

ences. These preferences are suitable for situations in which agents can consume at most

one unit of the divisible good. Leonard (1983) studies transferable utility unit-demand

economies and identifies an allocation rule that generalizes the second-price auction and

has strong incentive and efficiency properties. His allocation rule is the Walrasian rule

together with the lowest equilibrium prices. Hylland and Zeckhauser (1979) are the first

4 Yang (2017) finds an error in Gul and Stacchetti’s proof and supplies an alternative proof.
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to study what we have called a nontransferable utility unit demand economy. They es-

tablish the existence of an efficient Walrasian equilibrium in such economies. Hylland and

Zeckhauser’s work has led to a literature on competitive equilibrium solutions to mar-

ket design problems: Ashlagi and Shi (2016) study competitive equilibrium with equal

incomes in a market with continuum of agents. Le (2017), He, Miralles, Pycia and Yan

(2015) and Echenique, Miralles and Zhang (2018) maintain the assumption of unit-demand

preferences, but allow for general endowments, non-EU preferences5 or priority-based al-

locations. Mas-Colell (1992) and McLennan (2018) study more general convex economies

with production.

There are two major differences between these papers and ours. First, most of these

papers introduce some notion of “slackness” into the definition of Walrasian equilibrium

to guarantee its existence, while the equilibrium notion in our paper is standard. Second,

they focus on convex (or convexified) economies and thus there is no implementability

problem. In our set-up implementability is the key is issue. We provide a discussion of the

second point after the statement of Theorem 1.

Budish, Che, Kojima and Milgrom (2013) study a variety of probabilistic assignment

mechanisms. Our work relates to section 4 of their paper, where they define and show the

existence of what they call pseudo-Walrasian equilibrium.6 In that section, they consider

fully separable preferences and establish the existence of efficient pseudo-Walrasian equi-

librium. They also describe how individual constraints can be incorporated into pseudo-

Walrasian equilibrium.

In Appendix B of their paper, they consider a richer class of preferences adopted from

Milgrom (2009). These preferences amount to the closure of unit-demand preferences under

satiation and convolution.7 Ostrovsky and Paes Leme (2015) prove that the closure of unit-

demand preferences under endowment and convolution yields a strict subset of substitutes

preferences. They identify a rich class of preferences that belong to the latter but not the

former. It is easy to check that this class of preferences is also excluded from the class

5 That is, in the convexified economy, they allow utility functions that are nonlinear in probabilities.
6 Presumably, the qualifier pseudo is to indicate the interjection of fiat money and also to acknowledge

various additional constraints that are typically not a part on the definition of a competitive economy.
By incorporating these constraints into preferences and technology and by assuming that the mechanism
designer/seller values the fiat money, we are able to interpret our equilibria as proper Walrasian equilibria.

7 See section 2.1 for a discussion of closures under substitutes preserving operations.
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described in Appendix B of Budish, Che, Kojima and Milgrom (2013). Thus, compared

to Budish, Che, Kojima and Milgrom (2013), we consider a richer class of preferences and

a richer class of constraints. In particular, their analysis of pseudo-Walrasian equilibrium

does not include group constraints or aggregate constraints, other than bounds on the

aggregate supply of each good.

Kojima, Sun and Yu (2018) study constraints in a transferable utility economy. They

show that imposing upper and lower bounds on quantities consumed (i.e., interval con-

straints) on gross substitutes preferences preserves the gross substitutes property. They

also show that a slight generalization of interval constraints are the only ones that preserve

the gross substitutes property for every gross substitute utility function. Lemma 1 below

and the discussion prior to it is related to their first result regarding interval constraints.

Our main results focus on limited transfers and nontransferable utility economies and allow

for joint restrictions on the utility function and the constraints (and hence permit a larger

set of constraints than Kojima, Sun and Yu (2018)).

2. The Substitutes Property and the Limited Transfers Economy

Let H = {1, . . . , L} be the set of goods. Subsets of H are consumption bundles.8 We

identify each A ⊂ H with x ∈ X := {0, 1}L such that xj = 1 if and only if j ∈ A. Hence,

o = (0, . . . , 0) ∈ X is identified with the empty set.

For any x ∈ X, let supp (x) = {k ∈ H|xk = 1} and σ(x) =
∑
j x

j . A utility on X is a

function u : X → IR∪{−∞}. The effective domain of u, denoted domu, is the set domu =

{x ∈ X : −∞ < u(x)}. Without loss of generality, we normalize u so that u(x) ≥ 0 for all

x ∈ domu. Throughout, we adopt the following convention: −∞ + (−∞) = −∞ ≥ −∞.

We assume that every agent’s overall utility function is quasilinear in the divisible good.

Given any price vector p ∈ IRL+, we let Ui(x, p) = u(x)− p · x denote the agent’s objective

function.9

For x, y ∈ IRL, we write x ≤ y to mean that each coordinate of x is no greater than

the corresponding coordinate of y and let x ∧ y denote z ∈ X such that zj = min{xj , yj}

8 We are assuming that there is a single unit of each good. This assumption makes the analysis of the
implementability problem easier and is without loss of generality, since we can label each of the multiple
units of a good as a distinct good. Equilibrium will ensure that each of these units has the same price.

9 If the agent has an endowment of indivisible goods, the objective function is unchanged since the
value of the endowment enters the utility function as a constant.
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for all j. Similarly, let x ∨ y denote z ∈ X such that zj = max{xj , yj} for all j. Without

risk of confusion, we sometimes refer to u as the utility function (instead of saying the

utility index associated with the utility function U). We let χj ∈ X denote the good j;

that is, χj(k) = 1 if k = j; otherwise, χj(k) = 0. Similarly, for any set of indivisible goods

A ⊂ H, define χA ∈ X as follows:

χA(k) =
{

1 if k ∈ A
0 otherwise

Throughout, we will assume that domu 6= ∅ and u is monotone; that is, x ≤ y implies

u(x) ≤ u(y).

2.1 The Substitutes Property and the Transferable Utility Economy

Define the transferable utility demand correspondence for u as follows:

Du(p) := {x ∈ X |u(x)− p · z ≥ u(y)− p · y for all y ∈ X}

Since domu 6= ∅ and p ∈ IRL+, Du(p) will always lie in the effective domain. The substitutes

property states the following: let x be an optimal consumption bundle at prices p and

assume that prices increase (weakly) to some p̂. Then, the agent must have an optimal

bundle at p̂ which has her consuming at least as much of every good that did not incur a

price increase. The formal definition is as follows:

Definition10: The function u has the substitutes property if x ∈ Du(p), p ≤ p̂, p̂j = pj

for all j ∈ A implies there exists y ∈ Du(p̂) such that yj ≥ xj for all j ∈ A.

Kelso and Crawford (1982) introduced the substitutes property. Since then, numerous

alternative characterizations have been identified. For example, the substitutes property

is equivalent to M ]-concavity: the function u is M ]-concave if for all x, y ∈ domu, xj > yj

implies [u(x− χj) + u(y + χj) ≥ u(x) + u(y) or there is k such that yk > xk, u(x− χj +

χk) + u(y + χj − χk) ≥ u(x) + u(y)].11 Gul and Stacchetti (1999) show that that if u

satisfies the substitutes property, then it must be submodular:12

u(x) + u(y) ≥ u(x ∨ y) + u(x ∧ y)

10 Generally, the substitutes property should be defined for arbitrary price vector p ∈ IRL. However, as
we assume monotone utility functions, it suffices to define it for nonnegative price vectors.

11 See, for example, Shioura and Tamura (2015), Theorem 4.1.
12 Gul and Stacchetti (1999) show this result for u such that domu = H. Their result extends imme-

diately to utilities functions u such that domu 6= X.
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If the inequality above always holds with equality, then u is additive.

Perhaps the best-known subclass of substitutes utility functions are unit demand

utilities. These utility functions are appropriate for situations in which each agent can

consume at most one unit of the indivisible goods: u is a unit demand utility if

u(x) = max{u(χj) |χj ≤ x}

Below, we describe operations on gross substitutes utility functions that enable us

to derive new gross substitute utility functions. In section 3, we use these operations

to incorporate additional (curricular) restrictions in course selection and school choice

problems. Let k > 0 be an integer, z ∈ X and u, v be two substitutes utility functions.

Define,

uz(x) = u(x ∧ z)

uz(x) = u(x ∨ z)− u(z)

(u� v)(x) = max
y≤x
{u(y) + v(x− y)}

[u]k(x) = max
y≤x

σ(y)≤k

u(y)

[u]k(x) =

{
max y≤x

σ(y)≥k
u(y) if σ(x) ≥ k

−∞ otherwise.

Call uz the z-constrained u, uz the z-endowed u, u�v the convolution (or aggregation)

of u, v, [u]k the k-satiation of u and [u]k the k-lower bound u. It is easy to verify that a

z-endowed u satisfies the substitutes property whenever u does and that the convolution

of u and v satisfies the substitutes property whenever u and v both satisfy the substitutes

property. Similarly, verifying that a z-constrained utility satisfies the gross substitutes

property whenever domu ∩ {x |x ≤ z} 6= ∅ is straightforward.13

Bing, Lehmann and Milgrom (2004) prove that the k-satiation of the substitutes

utility u is a substitutes utility (provided there is at least one k-element set in domu).

The following lemma establishes the substitutes property for k-lower bound u. All proofs

are in the Appendix.

13 In some cases, it is easier to verify that the new utility function satisfies M]-concavity which, as we
noted above, is equivalent to the substitutes property.
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Lemma 1: If u satisfies substitutes property and domu ∩ {x ∈ X|σ(x) ≥ k} 6= ∅, then

[u]k satisfies the substitutes property.

For any given class of utility functions, U , and set of substitutes preserving operations,

τ , let τ(U) denote the set of all utility functions that can be derived from the elements of

U by repeatedly applying various operations in τ . We will call τ(U) the τ -closure of U . In

other words, τ(U) is the smallest family of utility functions that includes U and is closed

under operations in τ . Clearly, if each element of U satisfies the substitutes property, then

so does the τ -closure of U .

Ostrovsky and Paes Leme (2015) show that the endowment and convolution closure of

the set of unit demand preferences is a strict subset of the set of all substitutes preferences.14

They also provide a rich class of examples that satisfy the substitutes property but are

not in the endowment and convolution closure of the set of unit demand preferences. Let

τ be the five substitutes preserving operations discussed above and let U be the set of all

unit demand preferences. Then, using Ostrovsky and Paes Leme’s arguments, it is easy

to verify that τ(U) is a strict subset of substitutes preferences and excludes the same rich

class of preferences that these authors have identified.

Next, we define a new class of utility functions that are useful for describing student

preferences over class schedules. We call these utility functions academic preferences since

they incorporate curricular requirements into the agent’s utility function. The following

example provides an illustration of academic preferences.

Example 3: Students are required to take at least three courses for credit and satisfy

a distributional requirement by taking courses from at least four out of five categories

a, b, c, d, e. Each class that a student takes for credit can potentially meet two of these

four requirements. There are ten classes, H = {ab, ac, ad, ae, bc, bd, be, cd, ce, de}, each

identified by the requirements that it might satisfy. Students can use at most one class to

14 They conjecture that the endowment and convolution closure of the set of all weighted matroids
is the set of substitutes preferences. Ostrovsky and Paes Leme (2015) note that results from Murota
(1996), Murota and Shioura (1999), and Fujishige and Yang (2003) ensure that every weighted matroid
and hence every rank function satisfies the substitutes property. For the definitions of weighted matroid,
rank function and other relevant terms and results from matroid theory, see Appendix A where we provide
a short proof that weighted matroids satisfy the substitutes property based on Fujishige and Yang (2003)’s
result that the substitutes property is equivalent to M]-concavity.
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meet two different requirements simultaneously. The remaining two requirements must be

met with distinct classes.15 A student may get credit for an additional course if the four

courses together meet all five requirements. Hence, a student can meet the distributional

requirement by taking either three or four courses for credit, but students who take four

courses for credit must cover all of the five categories.

For example, the schedules {ab, ac, ad} and {ab, bc, cd, de} are both feasible; the former

yields 3 course credits, the latter yields 4. The schedule {ab, bc, ac} is not feasible since it

only meets 2 distributional requirements; the schedule C = {ab, bc, cd, da} is feasible but

only yields 3 course credits since it only meets four distributional requirements. Let Y be

the set of all feasible schedules. That is, each z ∈ Y either has 3 courses and meets four

distributional requirements or has four courses and meets five distributional requirements.

Let v be an additive utility function on X. A student’s objective is to choose a feasible

course schedule that maximizes the total utility of the courses she takes for credit.16 That

is, her objective is to maximize the utility function u such that

u(x) =

{
max y∈Y

y≤x
v(y) if there is y ∈ Y such that y ≤ x

−∞ otherwise

In Appendix A, we offer a general definition of academic preferences, show that they include

the example above and that they are gross substitutes preferences.

We conclude this section by discussing the existence of equilibrium in a transferable

utility economy. Let N be the number of agents in the economy, ξ ∈ XN be an allocation

and let ξi denote agent i’s consumption in the allocation ξ. Then (ξ, p) is a (deterministic)

Walrasian equilibrium in the transferable utility economy if
∑N
i=1 ξj ≤ χH , ui(ξi)− pξi ≥

ui(x) − px for all x ∈ X, i and
∑N
i=1 ξ

a
i = 1 if pa > 0 for all a ∈ H. Kelso and Crawford

(1982) showed that if preferences satisfy monotonicity and the substitutes property, and

the effective domain is X, then there exists an equilibrium with (deterministic) allocation

in the transferable utility economy. To see how the result can be extended to general

15 Undergraduates need to satisfy distributional requirements in most universities. For example, North-
western’s version allows multiple requirements to be met with a single course in some but not all situations.

16 The example is meant to show that a rich set of curricular restrictions can be accommodated with
academic preferences. Simpler versions can easily be constructed. For example, replacing the condition
“a student may get credit for an additional course if the four courses together meet all five distributional
requirements” with “a student who fulfills the requirements for 3 course credits can get an additional credit
by taking a fourth course” would also yield an academic preference.
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effective domains, note that since domui 6= ∅, the demand satisfies Dui(p) ⊆ domui for all

i and p. Hence, for any candidate equilibrium allocation ξ, we have ξi ∈ domui for each i.

The existence of such an allocation is a necessary condition for existence of an equilibrium

and we will incorporate it into the definition of a transferable utility economy.

Definition: E = {(ui)Ni=1} is a transferable utility economy if, ui satisfies the substitutes

property for all i and there exists an allocation ξ such that
∑
ξi ≤ χH and ξi ∈ domui for

all i.

The following lemma states that the additional condition above is also sufficient for

the existence of an equilibrium when preferences satisfy the substitutes property.

Lemma 2: The transferable utility economy has a (deterministic) equilibrium.

Notice that efficient allocations of indivisible goods, optimal demands and Walrasian

equilibria are independent of the initial endowments in the transferable utility economy.

Therefore, the definition of the transferable utility economy omits them. However, endow-

ments will matter in the limited transfers economy, defined in the next section.

2.2 The Limited Transfers Economy

Example 1 shows that when agents have limited budgets, a deterministic equilibrium

may not exist even in the simplest limited transfers economies. Thus, we need to extend

our definition of an allocation to allow randomness: a random consumption (of indivisible

goods) θ : X → [0, 1] is a probability distribution on X; that is,
∑
x θ(x) = 1. Let Θ

denote the set of all random consumptions. For θ ∈ Θ, let θ̄ ∈ IRL+ denote the coordinate-

by-coordinate mean of θ; that is θ̄j =
∑
x θ(x) · xj . We assume that u is also the agent’s

von Neumann-Morgenstern utility function. Hence,

u(θ) =
∑
z

u(z)θ(z)

The effective domain of u on Θ consists of all the random consumptions such that θ(x) > 0

implies x ∈ domu.17

17 The function u : Θ→ [0, 1] is continuous on the effective domain but not on the whole domain. For
example, suppose that domu = X\{o}, x ∈ domu and take a sequence of random consumptions θn such
that θn(o) = 1/n and θn(x) = 1− 1/n. Clearly, u(θn) = −∞ for all n, but lim θn = θ such that θ(x) = 1
and therefore, u(θ) 6= −∞.
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Quasilinearity allows us to ignore randomness in the consumption of the divisible good

and identify each random consumption of the divisible good with its expectation. Hence,

we define the von Neumann utility function U as follows:

U(θ, p) = u(θ)− p · θ̄

Let wi ∈ X denote agent i’s endowment of indivisible goods and let bi denote her en-

dowment of the divisible good. For some applications, it is useful to have an additional

agent, the seller or market designer, who holds some or all of the aggregate endowment of

the indivisible goods. We will sometimes refer to this agent as agent 0 and assume that

she derives no utility from the indivisible goods; she only values the divisible good. The

aggregate endowment of indivisible goods in the economy is χH := (1, . . . , 1) ∈ X and,

therefore, the seller’s endowment of the indivisible goods is w0 = χH −
∑N
i=1 wi. We will

assume that wi ∈ domui for each i to guarantee that agent i can afford at least one bundle

in the effective domain.

Definition: Eo = {(ui, wi, bi)Ni=1} is a limited transfers economy if, for all i, ui satisfies

the substitutes property, bi > 0 and wi ∈ domui.

A random allocation (of indivisible goods) for this economy is a probability distribu-

tion α : XN → [0, 1]. For any such α, let αi denote the i’th marginal of α; that is, αi ∈ Θ

is the random consumption of agent i, where

αi(x) =
∑

{ξ:ξi=x}

α(ξ)

A random allocation α is feasible for the economy Eo if, for all ξ such that α(ξ) > 0,

ξi ∈ domui for all i and
∑N
i=1 ξi ≤ χH .

The budget (set) of an agent with endowment w, b at prices p is

B(p, w, b) =
{
θ ∈ θ

∣∣∣ p · θ̄ ≤ p · w + b
}

Then, θ ∈ B(p, w, b) is optimal for agent i given budget B(p, w, b) if

Ui(θ, p) ≥ Ui(θo, p)
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for all θo ∈ B(p, w, b).

Definition: A price p ∈ IRL+ and a random allocation α is an equilibrium for the limited

transfers economy Eo if

(1) α is feasible for the economy Eo;

(2) for all i, αi is optimal for agent i given budget B(p, wi, bi);

(3) pj > 0 and α(ξ) > 0 imply
∑N
i=1 ξ

j
i = 1.

Theorem 1: Every limited transfers economy has an equilibrium.

Our proof relies on the existence of equilibrium in the transferable utility economy.

We seek a λi ∈ (0, 1] for each agent i and a Walrasian equilibrium (p, α) for the modified

transferable utility economy (with random consumption) in which each ui is replaced by

ũi = λiui

such that each agent i spends, in expectation, (1) no more that bi on indivisible goods

and (2) exactly bi on indivisible goods if λi < 1. It is possible to decrease an agent’s

equilibrium spending as much as needed by decreasing that agent’s λi. Hence, we can

satisfy condition (1). A fixed-point argument ensures that we can also satisfy condition

(2). The Walrasian equilibria for this modified economy are then shown to be equilibria of

the original economy. The reason we choose this proof strategy is because it allows us to

solve the implementability problem by using properties of the unconstrained economy: in

the unconstrained economy every (randomized) Walrasian equilibrium must simply be a

randomization over deterministic equilibria and, therefore, the allocation must be imple-

mentable.
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3. Nontransferable Utility Economies and Constraints

In this section, we will consider allocation problems in settings without a divisible

good. We call this type of an economy a nontransferable utility economy. In many appli-

cations, nontransferable utility economies impose constraints on individual consumption,

or on the consumption of groups. To address some of these applications, we show how

our model can incorporate a variety of individual, group, and aggregate constraints. An

individual constraint restricts the number of goods that a single agent can consume from

a specified set of goods. A group constraint restricts the total number of goods that can

be consumed from a specified set of perfect substitutes by a particular group of agents.

Finally, aggregate constraints restrict the various combinations of goods available for the

entire population.

An example of an individual constraint is Princeton University’s rule of 12. According

to this rule, no more than 12 courses in a student’s major may be counted towards the

31 courses needed to obtain the A.B. degree. Distribution requirements are a second

type of individual constraint. For example, Art and Archaeology students at Princeton

University must take at least one course in each of the following three areas: group 1

(ancient), group 2 (medieval/early modern), and group 3 (modern/contemporary). An

example of a group constraint is the requirement that at least 50 percent of the slots in

each school should go to students who live in the school’s district. Similarly, the so-called

“controlled choice” constraints in school assignment that require schools to balance the

gender, ethnicity, income, and test score distributions among their students, are group

constraints.18 Aggregate constraints define the feasible allocations for the entire economy.

For example, suppose two versions of introductory physics are being offered: Phy 101, the

version that does not require calculus and Phy 103, the version that does require calculus.

Suppose each of these classes can accommodate 120 students, but because both courses

have lab requirements and lab facilities are limited, the total enrollment in the two courses

can be no greater than 200 students.

In the next subsection, we describe the nontransferable utility economy, define a strong

(Walrasian) equilibrium and establish its existence and efficiency. Section 3.2 deals with

individual, group and aggregate constraints.

18 See Abdulkadirŏglu, Pathak and Roth (2005) for examples of such constraints in practice.
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3.1 Nontransferable Utility Economies

In a nontransferable utility economy, each agent i has a substitutes utility function

ui and a quantity bi of fiat (or artificial) money. Initially, the entire aggregate endowment

belongs to the market designer. Each agent’s utility depends only on her consumption of

indivisible goods. That is, agents solve the following utility maximization problem:

Ui(p, bi) = maxui(θ) subject to p · θ̄ ≤ bi

Hence, Ui is the indirect utility function of agent i.

Definition: E∗ = {(ui, bi)Ni=1} is a nontransferable utility economy if, for all i, ui

satisfies the substitutes property, o ∈ domui and bi > 0.

In the nontransferable utility setting, Walrasian mechanisms provide a rich menu

of allocation rules with desirable properties. The designer may accommodate fairness

concerns by choosing the agents’ endowments of fiat money (the bi’s) appropriately. In

particular, choosing the same bi for every agent ensures that the resulting allocations are

envy-free. This is the setting for many allocations problems such as school choice, course

selection or office selection (for example, when a business or a department moves into a new

building). In such markets, the Walras correspondence can serve both as real allocation

mechanism and as a benchmark for evaluating other mechanisms.

Hylland and Zeckhauser (1979) note that in a nontransferable utility economy with

unit-demand preferences, some Walrasian equilibria are inefficient. Specifically, nontrans-

ferable utility economies may have equilibria in which some agents do not purchase the

least expensive optimal option in their budget sets and equilibria with this property may

be inefficient. To address this problem, Mas-Colell (1992) introduces the concept of a

strong equilibrium; that is, a Walrasian equilibrium in which every consumer chooses the

least expensive optimal bundle and proves that strong equilibria are Pareto efficient.

Definition: A price p ∈ IRL+ and a random allocation α is a strong equilibrium for the

nontransferable utility economy E∗ if

(1) α is feasible for the economy E∗;

(2) for all i, αi is optimal given budget B(p, bi) and costs no more than any other optimal

random consumption;
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(3) pj > 0 and α(ξ) > 0 imply
∑
i≥1 ξ

j
i = 1.

The theorem below establishes the existence of a strong and, therefore, Pareto efficient

equilibrium for the nontransferable utility economy.

Theorem 2: The nontransferable utility economy has a strong equilibrium.

Our proof of Theorem 2 relies on Theorem 1: we consider the sequence of limited

transfers economies Eon = {(nui, wi, bi)ki=1} for n = 1, 2 . . . where wji = 0 for all j and i.

Hence, Eon is a limited transfers economy in which agent i’s endowment of goods is equal

to her endowment of goods in E∗ (i.e., zero), her endowment of the divisible good is the

same as her endowment of fiat money in E∗ and her utility function is n-times her utility

function in E∗. Then, we appeal to Theorem 1 to conclude that each Eon has an equilibrium

(pn, αn). Since this sequence lies in a compact set, it has a limit point which we show to

be an equilibrium of E∗. This equilibrium must be a strong since it is a limit point of

equilibria in which money has intrinsic value.

3.2 Group Constraints

In many applications, one group is given priority over another. For example, suppose

that the maximal enrollment in a particular physics class is n and there are m < n physics

majors who are required to take that class. Thus, at most n −m non-majors can enroll

in the class. More generally, a group constraint (A,n) for the group I ⊂ {1, . . . , N} states

that the agents in I can collectively consume at most n units from the set A, where A is

a collection of perfect substitutes (for all agents).

To accommodate this constraint, pick any |A| − n element subset B of A. Then,

replace each ui for i ∈ I with u′i such that

u′i(x) = ui

(
x ∧ χB

c
)

Thus, the new utility for members of group I is the their original utility restricted to

the complement of B. As we noted above, restrictions of utilities to a subset of choices

satisfy the substitutes property if the original utility satisfies the substitutes property.

Moreover, since elements of A are perfect substitutes, restricting members of group I to

Bc is equivalent to restricting their aggregate consumption of the good represented by
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the elements of A. Thus, a group constraint can be accommodated by modifying utility

functions of the group’s members.

3.3 Individual Constraints

The simplest individual constraints are bounds on the number of goods an agent may

consume from a given set of goods. For example, a student may be required to take 4 classes

each semester, but may be barred from enrolling in more than 6. We can incorporate this

constraint by modifying the student’s unconstrained utility function u as follows:

um(x) = max
y≤x
σ(y)≤6

û(y)

where

û(x) =

{
u(x) if σ(x) ≥ 4
−∞ if σ(x) < 4

The modified utility um incorporates the lower bound constraint by restricting the effective

domain of u to those bundles that satisfy the constraint. It incorporates the upper bound by

imposing satiation above the constraint. Next, we generalize these constraints and impose

bounds on overlapping subsets of goods. To preserve the gross substitutes property, we

require the utility function to be separable across subsets of goods that must satisfy a

constraint. A collection of goods, A ⊂ H, is a module for the utility u if

u(x) = u(x ∧ χA) + u(x ∧ χA
c

)

Note that this condition is symmetric: if A is a module, then so is Ac. For example,

suppose that A is the set of all humanities courses and Ac is the set of all other courses.

If a student’s utility for various combination of humanities courses is independent of her

utility over various combinations of the other courses, then A is a module. A collection of

sets, H, is a hierarchy if A,B ∈ H and A ∩B 6= ∅ implies A ⊂ B or B ⊂ A. Given any u,

we say that the hierarchy H is modular if each element of H is a module of u.

A modular constraint places bounds on the agent’s consumption for subsets of items

that form a modular hierarchy. The collection c = {(A(k), (l(k), h(k))Kk=1} is a constraint

if l(k), h(k) are integers, A(k) ⊂ H, and Xc ∩Xc 6= ∅, where

Xc := {x ∈ X| ∀k, σ(x ∧ χA(k)) ≥ l(k)}
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are consumptions that satisfy the lower bound and

Xc = {x ∈ X| ∀k, σ(x ∧ χA(k)) ≤ h(k)}

are consumptions that satisfy the upper bound. The constraint c = {(A(k), (l(k), h(k))Kk=1}

is a modular constraint for u if H = {A(1), . . . , A(K)} is a modular hierarchy for u and

(Xc ∩Xc) ∩ domu 6= ∅.

As an example of a modular constraint, suppose that students must take at least 3

humanities classes and at least 4 social science classes; moreover, each student is required

to take at least 8 but no more than 12 classes overall. In this case, the constraint is modular

if the student’s utility over combinations of science courses is independent of her utility

over combinations of humanities courses.

Given a utility u, let ûc be the utility function with effective domain Xc; that is,

ûc(y) =

{
u(y) if y ∈ Xc

−∞ otherwise.

Finally, define u(c, ·) as follows:

u(c, x) = max
{
ûc(y)

∣∣∣ y ∈ Xc, y ≤ x
}

Then, the effective domain of u(c, ·) is domu(c, ·) = Xc ∩ domu 6= ∅.

Lemma 3: If u satisfies the substitutes property and c is a modular constraint for u,

then u(c, ·) satisfies the substitutes property.

To see how the substitutes property may fail if the constraints are not modular,

consider the utility function described in equation (1) below. Let H = {0, 1, 2, 3}. Then,

u(x) =

{
2 if xj · xj⊕1 > 0 for some j ∈ H
0 if x = o
1 otherwise

(1)

where ⊕ denotes addition modulo 4. Note that u satisfies the substitutes property.19 Let

A = {0, 1} and suppose that the agent is restricted to consuming at most one unit from

19 It is a convolution of the two unit demand preferences v and v̂ where v takes the value 1 at any x
such that x0 > 0 or x2 > 0 and is equal to zero otherwise and v̂ takes the value 1 at any x such that
x1 > 0 or x3 > 0 and is equal to zero otherwise.
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A. To see that the resulting utility function does not satisfy the substitutes property, set

p0 = p1 = p2 = p3 = 1/2. Then, {0, 3} is an optimal consumption set at prices p. The

substitutes property fails since at prices q such that q3 = 2 and qj = pj for j 6= 3, there is

no optimal bundle that contains item 0.

To see how the substitutes property may fail if the modular constraints do not form

a hierarchy, consider the following utility: u(x) = σ(x). Let H = {0, 1, 2, 3}, then any

subset of H is a module of u. Suppose the constraints are ({1, 2}, 0, 1), ({0, 1}, 0, 1) and

({0, 1, 2, 3}, 0, 2). Then, at pj = 1/2 for all j ∈ H, {1, 3} is an optimal consumption set at

p. Again, the substitutes property fails since at prices q such that q3 = 2 and qj = pj for

j 6= 3, there is no optimal consumption set that contains 1.

To establish existence of an equilibrium that meets all of the constraints, we must not

only assume the existence of an allocation that yields a consumption in the effective domain

of every each agent’s modified utility but we must also guarantee that the “interior” of

each agent’s budget set contains some consumption in the effective domain of her modified

utility. To address this issue, we add two assumptions to our earlier model. First, we

assume that aggregate resources can be divided into N+1 consumption bundles that meet

every consumer’s lower bound constraint. Second, we assume that all agents have equal

endowments of fiat money, which we normalize to 1.

Definition: E∗c = {(ui, 1)Ni=1, {ci}Ni=1} is a nontransferable utility economy with modular

constraints if,

(i) for all i, ui satisfies the substitutes property;

(ii) for all i, ci is a modular constraint for ui;

(iii) there is x1, · · · , xN+1 such that
∑N+1
k=1 xk ≤ χH and xk ∈ domui(ci, ·) for all k, i.

Clearly, an equilibrium of E∗c will satisfy all of the lower bound constraints.20 If

α(ξ) > 0 and ξi violates some upper bound constraint, then there must be some x ≤ ξi

that satisfies all of the constraints such that ui(ci, x) = ui(ci, ξi). Then, pj = 0 for all

j such that ξji > xj since otherwise ξ could not be a strong equilibrium. Therefore, we

20 Since all agents have the same budget, if one agent cannot afford any xi, then the aggregate endow-
ment must cost more than N + 1. Hence, some goods with positive prices are left in the hands of agent 0,
contradicting the definition of equilibrium.
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can replace α with a random allocation β that satisfies all of the upper bound (and lower

bound) constraints such that (p, β) is also a strong equilibrium of E∗c . Hence, the existence

of a strong equilibrium ensures the existence of a strong equilibrium that satisfies all of

the constraints in c.

Theorem 3: A nontransferable utility economy with modular constraints has a strong

equilibrium.

The role of (iii) and equal money endowments is to ensure that every agent can afford

a consumption in the effective domain of her utility function. Alternatively, we could

assume that there is a subset of goods in abundant supply (goods that have zero price

in equilibrium) and agents can choose a consumption in the effective domain from that

subset. In our course selection application, it may be the case that a subset of classes is

never oversubscribed and students can choose courses that meet the requirements from

that subset. In that case, item (iii) in the definition above and the assumption of equal

budgets could be dispensed with.

3.4 Aggregate Constraints

Suppose an economics department schedules classes in labor economics, intermediate

microeconomics and in corporate finance. There are two types of TAs, those that can

cover labor economics and microeconomics, and those that can cover microeconomics and

corporate finance. There are 60 TAs of each type. TA time is fungible across different

classes so that at most 60 students can enroll in labor economics, at most 60 students can

enroll in corporate finance and at most 120 students can enroll in any of the three types

of classes. Alternatively,

In these examples, we can describe the aggregate constraint as a hierarchy H that

limits the supply of available items. That is, the aggregate constraint has the form c =

{(A(k), n(k))Kk=1} such that the A(k) ⊆ H for all k, {A(k)}Kk=1 is a hierarchy and each

n(k) is a natural number describing the maximal quantity of indivisible goods that can be

supplied from set A(k).

Hierarchies are a special case of a class of constraints that can be described as matroids.

A collection of consumption bundles I ⊂ X is a matroid if (i) o ∈ I, (ii) y ∈ I, x ≤ y
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implies x ∈ I and (iii) x, y ∈ I, σ(x) < σ(y) implies there is j such that xj < yj and

x + χj ∈ I.21 We will re-interpret aggregate constraints as a production technology;

that is, define a production possibility set for the economy that includes only the output

combinations consistent with the desired constraints.22

Definition: Ẽ = {(ui, 1)Ni=1, I} is a production economy with nontransferable utility if

I is a matroid and for all i, ui satisfies the substitutes property and o ∈ domui.

To see how we can embed a collection of aggregate restrictions into a matroid pro-

duction set, let (A,n) denote a single aggregate restriction. Hence, the set of feasible

production plans given any X and the restriction (A,n) is:

X(A,n) = {x ∈ X |σ(x ∧ χA) ≤ n}

We can nest aggregate constraints the same way that we nested individual and group

constraints; that is, we can construct a hierarchy of aggregate constraints. Given any

hierarchy of aggregate restrictions d = {(A(k), n(k))Kk=1}, let Id denote the set of all

production plans consistent with d; that is,

Id =
⋂
a∈d

X(a)

Lemma 4: If d is a hierarchical collection of aggregate constraints, then Id is a matroid.

In the economy with production, a random allocation α is a probability distribution

over XN × I. For any such α, the marginal αi is the random consumption for agent

i = 1, . . . , N and the marginal αN+1 is the production plan for the producer or seller. A

random allocation α is feasible for the economy Ẽ = {(ui, 1)Ni=1, I} if, for all (ξ, z) such

that α(ξ, z) > 0,
∑N
i=1 ξi ≤ z, z ∈ I and ξi ∈ domui for all i. The definitions of budget

sets and consumer optimality remain unchanged. The random allocation α is producer

optimal if α(ξ, z) > 0 implies pz ≥ pz′ for all z′ ∈ I. Let B be the production possibility

frontier of the technology I; that is, B = {x ∈ I | y ≥ x, y ∈ I implies y = x}.

21 A matriod can be defined in a variety of equivalent ways. In Appendix A, we offer two alternative
definitions and a few other relevant notions, results from matroid theory.

22 Note that (i) corresponds to the stand requirement that inaction is possible, while (ii) is the usual
comprehensiveness property of production possibility sets. The final condition, (iii) is a type of discrete
convexity.
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Definition: A price p ∈ IRL+ and a random allocation α is a strong equilibrium for the

production economy with nontransferable utility Ẽ if

(1) α is feasible for Ẽ ;

(2) for all i, αi is optimal given budget B(p, 1) and costs no more than any other optimal

random consumption;

(3) α is producer optimal;

(4) pj > 0 and α(ξ, z) > 0 imply
∑N
i=1 ξ

j
i = zj .

Hence, with production, a Walrasian equilibrium specifies prices, a random allocation

and a random production plan. The implied random consumption and production plans

must be feasible and optimal for both the consumers and the producer. The definition of

a strong equilibrium is as in the previous section: the Walrasian equilibrium (p, α) is a

strong equilibrium if for each agent i, αi is the cheapest optimal random consumption for

i given the budget constraint.

Theorem 4: The production economy with nontransferable utility has a strong equilib-

rium.

Our definition of a production economy includes the assumption of equal budgets for

all consumers. This assumption is for convenience only and we could allow arbitrary pos-

itive budgets bi. Finally, we can add the modular constraints to the production economy:

Definition: Ẽc = {(ui, 1)Ni=1, {ci}Ni=1, I} is a production economy with nontransferable

utility and modular constraints if

(1) ui satisfies the substitutes property for all i;

(2) ci is a modular constraint for ui for all i;

(3) for some z ∈ I, there is x1, · · · , xN+1 such that
∑N+1
k=1 xk ≤ z and xk ∈ domui(ci, ·)

for all k, i.

Part (3) of the definition above requires that some production plan can be divided into

N + 1 consumptions that satisfy every consumers lower bound constraint. This mirrors a

similar assumption in Theorem 3.

Theorem 5: A strong equilibrium for the production economy with nontransferable util-

ity and modular constraints Ẽc = {(ui, 1)Ni=1, {ci}Ni=1, I} exists if I is a matroid technology.

Strong equilibrium allocations are Pareto efficient.
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In Theorems 3 and 5, the assumption of equal money endowments ensures that every

consumer can afford some element in the effective domain of her utility function. If money

endowments were arbitrary, then we would need to add an assumption that preserves this

feature. By contrast, the assumption of equal money holdings plays no role in Theorem

4 because in that case all non-negative consumption plans are in the effective domain

of the consumer’s utility function. In fact, Theorem 4 still holds if we allow the money

endowments to be arbitrary bi > 0 for i = 1, ..., N .

4. Conclusion

Our results suggest that Walrasian methods can be employed in a variety of market

design problems whenever preferences satisfy the substitutes property. Gul and Stacchetti

(1999) show that given any utility function that does not satisfy the substitutes property,

it is possible to construct a transferable utility economy with N agents, one with the

preference in question and N − 1 with a substitutes preference such that no equilibrium

exists. Hence, it seems unlikely that a general existence result for the nontransferable

utility economy that permits a larger set of preferences than the substitutes class can be

proved.

However, Sun and Yang (2006) provide a generalization of the Kelso-Crawford exis-

tence result that allows for some complementarities in consumption. In particular, they

show that if the goods can be partitioned into two classes such that all agents consider

goods within each element of the partition substitutes and consider goods in different ele-

ments complements, then a Walrasian equilibrium exists in the corresponding transferable

utility economy. A generalization of this result is offered in Shioura and Yang (2015).

One possible extension of the current work would be the see if equilibrium also exists with

Sun-Yang preferences in the limited transfers and nontransferable utility economies.
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5. Appendix A

Unless indicated otherwise, the definitions and results below can be found in Oxley

(2011):

Recall that a matroid I ⊂ X is a collection of sets such that (I1) ∅ ∈ I, (I2) y ∈ I,

x ≤ y implies x ∈ I and (I3) x, y ∈ I, σ(x) < σ(y) implies there is j such that xj < yj

and x+ χj ∈ I.

There are various alternative ways to describe a matroid. One way is by characterizing

it maximal elements. For any matroid I, let B(I) = {x ∈ I | y ≥ x and y ∈ I implies y =

x} be the set of all maximal elements of I. Then, B(I) is a basis system; that is, (B1)

B(I) is nonempty and (B2) x, y ∈ B(I) and xj > yj implies there is k such that yk > xk

and x− χj + χk ∈ B(I).

If B ⊂ X satisfies (B1) and (B2), then I = {x ∈ X |x ≤ y for some y ∈ B} is a matroid

and B = B(I). Every basis system B satisfies the following stronger version of (B2): (B2∗)

x, y ∈ B(I) and xj > yj implies there is k such that yk > xk and x−χj +χk, y−χk+χj ∈

B(I). Also, all elements of a basis system have the same cardinality; that is, if x, y ∈ B

and B is a basis system, then σ(x) = σ(y). Hence, for any matroid I, B(I) is the set of

elements of I with the maximal cardinality; B(I) = {x ∈ I | y ∈ I implies σ(x) ≥ σ(y)}.

Gul and Stacchetti (2000) show that if u satisfies the substitutes property, then the

set of elements of Du(p) with the smallest cardinality is a basis system for every p.

For any B, let B⊥ = {χH − x |x ∈ B}. If B is a basis system, then B⊥ is also a basis

system and is called the dual of B.

A function r : X → IN is a rank function if (R1) 0 ≤ r(x) ≤ σ(x), (R2) x ≤ y implies

r(x) ≤ r(y) and (R3) r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y). For any rank function, r, the

set of all minimal (in the natural order on IRL) maximizers of r is a basis system. Also,

given any matroid I, the function r defined by r(x) = max{σ(y) | y ≤ x, y ∈ I} is a rank

function.

A weighted matroid is a function ρ, defined as follows: given an additive and monotone

utility function v and matroid I, let ρ(x) = max y≤x
y∈I

v(y). A rank function is a special case

of a weighted matroid, one in which v(x) = σ(x).
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To define academic preferences, we adopt the following concept from Yokote (2017):

Y ⊂ X is an M ]-convex set if x, y ∈ Y and xj > yj implies either x − χj , y + χj ∈ Y or

there is k such that yk > xk and x− χj + χk, y − χk + χj ∈ Y . It is easy to see that a set

Y is M ]-convex if and only if the function I∗Y define below is M ]-concave:

I∗Y (x) =
{
t if x ∈ Y
−∞ otherwise

for some t ∈ IR+.

The utility function u is an academic preference if there exists an additive and mono-

tone utility function v and an M ]-convex set Y such that

u(x) =

{
max y∈Y

y≤x
v(y) if there is y ≤ x, y ∈ Y

−∞ otherwise

Fact: Every academic preference satisfies the substitutes property.

Proof: Murota (2009) shows that a weighted matroid is M ]-concave. The same argument

establishes that an academic preference is M ] concave. Since M ]-concavity is equivalent

to the substitute property, the fact follows.

We will conclude Appendix A by showing that the utility function in example 3 is

an academic preference. Identify H with the edges of an undirected graph with vertices

{a, b, c, d, e}. Then, the set of feasible schedules, Y , is the collection of all sets of edges

with 3 or 4 elements that contain no cycles. To prove that the utility function in example

3 is an academic preference, we we need to show that Y is M ]-convex. Let Z be the set of

all subsets of H that contain no cycles. It is well-known that Z is a matroid. Then, let r be

the rank function of the matroid Z. Murota (2009) shows that a weighted matroid (and in

particular, a rank function) is M ]-concave. Hence, by Lemma 1 (its proof is in Appendix

B), [r]3, the 3-lower bound of r satisfies the substitutes property. Then, by Bing, Lehman

and Milgrom (2004), I∗Y = [[r]3]3, the 3-satiation of [r]3, satisfies the substitutes property;

that is M ]-concavity. Then, by the observation above, Y is M ]-convex.
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6. Appendix B

6.1 Proof of Lemma 1

First, we will extend the definition of the single improvement property (SI) (Gul and

Stacchetti, 1999) to include u such that o /∈ domu as follows:

Definition: The function u has the single improvement property (SI) if for all p such

that Du(p) ⊂ domu and all x ∈ domu − Du(p), there is y such that U(x, p) < U(y, p),

|supp (x)− supp (y)| ≤ 1 and |supp (y)− supp (x)| ≤ 1.

Theorem 4.1 and Theorem 5.1 in Shioura and Tamura (2015) establish that the sub-

stitutes property, (SI) and M ]-concavity are equivalent. Also, a utility function u is sub-

modular if it satisfies the substitutes property. Gul and Stacchetti (1999) show that (SI)

is equivalent to the substitutes property for the effective domain X. Their proof reveals

that the above modified definition of (SI) is equivalent to the substitutes property for a

general effective domain.

The following proof is similar to the proof that k-satiation preserves substitutes prop-

erty in Bing, Lehmann and Milgrom (2004). We first prove two auxiliary lemmas. Lemma

B1 provides an alternative characterization of M ]-concavity.

Lemma B1: Let u be a utility that satisfies the substitutes property. If x, y ∈ domu

with x 6≥ y and y 6≥ x, then there is j, k such that xj > yj , yk > xk and u(x− χj + χk) +

u(y + χj − χk) ≥ u(x) + u(y).

Proof: Since u satisfies the substitutes property, u is M ]-concave. Since y 6≥ x, there

exists j with xj > yj . Since x, y ∈ domu, M ]-concavity implies that either there is k such

that yk > xk and u(x − χj + χk) + u(y + χj − χk) ≥ u(x) + u(y), hence we are done, or

that u(x− χj) + u(y + χj) ≥ u(x) + u(y). That is,

u(y + χj)− u(y) ≥ u(x)− u(x− χj)

Similarly, since x 6≥ y, there exists l with yl > xl. It follows from M ]-concavity that either

there is k with xk > yk such that u(x − χk + χl) + u(y + χk − χl) ≥ u(x) + u(y) and we

are done, or

u(x+ χl)− u(x) ≥ u(y)− u(y − χl)
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The above two inequalities together with the submodularity of u imply

u(x− χj + χl)− u(x− χj) ≥ u(x+ χl)− u(x) ≥ u(y)− u(y − χl)

u(y − χl + χj)− u(y − χl) ≥ u(y + χj)− u(y) ≥ u(x)− u(x− χj)

Hence,

u(x− χj + χl) + u(y − χl + χj) ≥ u(x) + u(y)

as desired.

The following lemma states that if a bundle with n elements does not maximize utility

among all bundles with at least n elements, then we can increase its utility either by adding

an element to it or replacing one of its elements with a different one.

Lemma B2: Let u be a utility that satisfies the substitutes property. Let A,B be

such that |B| ≥ n = |A|, χA ∈ domu and U(χB , p) > U(χA, p). Then, either there

exists l 6∈ A such that U(χA + χl, p) > U(χA, p) or there exists k ∈ A, l 6∈ A such that

U(χA + χl − χk, p) > U(χA, p).

Proof: Let D denote the utility maximizing bundles, at price p, among all bundles with at

least n elements. Let B∗ minimize the Hausdorff distance (d(Â, B̂) = |Â−B̂|+|B̂−Â|) from

A among the elements of D. By assumption, U(χB
∗
, p) > U(χA, p). Clearly B∗ − A 6= ∅,

otherwise, since |A| = n, |B∗| ≥ n and B∗ ⊆ A, we have A = B∗, a contradiction. Since

χA ∈ domu, we have χB
∗ ∈ domu.

First, assume A−B∗ 6= ∅. By Lemma B1, there exists k, l with k ∈ A−B∗, l ∈ B∗−A

such that

u(χA) + u(χB
∗
) ≤ u(χA − χk + χl) + u(χB

∗
− χl + χk)

Since the total cost of bundles on either side of the above inequality is the same, we have,

U(χA, p) + U(χB
∗
, p) ≤ U(χA − χk + χl, p) + U(χB

∗
− χl + χk, p)

By assumption, U(χB
∗
, p) ≥ U(χB

∗−χl+χk, p). If U(χB
∗
, p) = U(χB

∗−χl+χk, p), then

χB
∗ − χl + χk is also optimal at price p among all bundles with at least n elements and
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d(A,B∗∪{k}−{l}) < d(A,B∗), which contradicts the definition of B∗. Thus, U(χB
∗
, p) >

U(χB
∗ − χl + χk, p) and by the inequality above, U(χA, p) < U(χA − χk + χl, p).

Second, assume A − B∗ = ∅. Then, since A 6= B∗, A is a strict subset of B∗ and

|B∗| ≥ n+ 1. For any j ∈ B∗ − A, d(B∗ − {j}, A) < d(B∗, A) and |B∗ − {j}| ≥ n. Then,

U(χB
∗
, p) > U(χB

∗ − χj , p) and therefore,

pj < u(χB
∗
)− u(χB

∗
− χj)

Since u is submodular u has decreasing marginal returns. Recall that χA + χj ∈ domu,

χA ≤ χB∗ and j /∈ A. Hence,

pj < u(χB
∗
)− u(χB

∗
− χj) ≤ u(χA + χj)− u(χA)

That is, U(χA, p) < U(χA + χj , p).

Proof of Lemma 1: Since M ]-concavity is equivalent to (SI), it suffices to show that [u]k

satisfies the latter. Since the effective domain of [u]k is nonempty, there is x∗ such that

σ(x∗) ≥ k, u(x∗) = [u]k(x∗) and x∗ is optimal at price p for the utility function [u]k.

Take any x ∈ dom [u]k −D[u]k(p). Hence, σ(x) ≥ k. We need to show there exists y

such that [U ]k(x, p) < [U ]k(y, p), |supp (x)− supp (y)| ≤ 1, |supp (y)− supp (x)| ≤ 1.

If σ(x) = k, then since σ(x∗) ≥ k and U(x∗, p) > U(x, p), Lemma B2 yields the

desired conclusion.

If σ(x) > k, then σ(z) ≥ k for any z such that |supp (x)−supp (z))| ≤ 1 and |supp (z)−

supp (x)| ≤ 1. Recall that u satisfies (SI) and x 6∈ Du(p), x ∈ dom [u]k ⊆ domu. Then,

there exists y such that U(x, p) < U(y, p), |supp (x)−supp (y)| ≤ 1, |supp(y)−supp (x)| ≤ 1.

Since σ(y), σ(x) ≥ k, [U ]k(x, p) = U(x, p), [U ]k(y, p) = U(y, p) and therefore, [U ]k(x, p) <

[U ]k(y, p).

6.2 Proof of Lemma 2

This is a corollary of Theorem 8.2 in Shioura and Tamura (2015). They assume

{o, χH} ∈ domui, we instead assume that there exists a feasible allocation ξ such that
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∑
ξi ≤ χH and ξi ∈ domui for all i. By monotonicity, our assumption implies that there

exists ξ∗ such that ξ∗i ∈ domui,
∑N
i=1 ξ

∗
i = χH and

N∑
i=1

ui(ξ
∗
i ) = max

{
N∑
i=1

ui(xi)
∣∣∣xi ∈ domui,∀i,

N∑
i=1

xi = χH

}

Then, the remainder of the proof follows Theorem 8.2 in Shioura and Tamura (2015).

6.3 Proof of Theorem 1

Our existence proof relies on Lemma 2, a modification of Kelso and Crawford’s proof

of existence of an equilibrium for the transferable utility economy with substitutes. In

a transferable utility economy, the set of equilibrium prices and the set of equilibrium

allocations of divisible goods are independent of the initial endowments and we can state

the consumers’ problem as maximizing (over x)

Ui(x, p) = ui(x)− p · x

By assumption, wi ∈ domui for each i. Then, Lemma 2 establishes the existence

of an equilibrium in deterministic allocations for the transferable utility gross substitutes

economy. It is easy to see that given an equilibrium allocation α, the set of prices that

support α; that is, p such that (p, α) is a an equilibrium, is defined by a finite set of

linear weak inequalities and therefore is a compact and convex set. Since we are in a

transferable utility setting, any Pareto efficient allocation must maximize total surplus.

It is also easy to verify that if (p, ξ) is a deterministic equilibrium, and ξ̂ is a social

surplus maximizing allocation, then (p, ξ̂) is also a Walrasian equilibrium. The following

exchangeability property is a consequence of the last two observations: if (p, α) and (p̂, α̂)

are both equilibria, then (p, α̂) is also an equilibrium. Then, it also follows that the set

of random equilibrium allocations is simply the convex hull of the set of deterministic

equilibrium allocations and hence, the set of equilibrium prices for random allocations

is the same as the set of equilibrium prices for deterministic allocations. It follows that

for any transferable utility economy, there is a set of prices P ∗ and a set of random an

allocations A∗ such that the set of equilibria is P ∗ ×A∗.
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Since every price in P ∗ supports the same allocation, P ∗ is a nonempty, convex and

compact set as it is defined by a finite set of linear weak inequalities. Since A∗ is the set

of surplus maximizing allocations, it is also a a nonempty, convex and compact set. We

summarize these observation in Lemma B3 below.

Lemma B3: For any transferable utility gross substitutes economy E , the set of equi-

libria is P ∗ × A∗ for some nonempty compact convex set of prices P ∗ and the nonempty

compact convex set of total surplus-maximizing random allocations A∗.

For the transferable utility economy E , let Ao be the set of all feasible random allo-

cations such that α(ξ) > 0 implies ξi ∈ domui for all i. Restricting attention to Ao is

without loss of generality; for any α 6∈ Ao, there must be some agent with utility −∞ which

cannot be efficient in a transferable utility economy. Since the set of deterministic feasible

allocations is finite and wi ∈ domui for each i, Ao is a nonempty, compact, convex subset

of a Euclidian space. For any λ = (λ1, . . . , λN ) ∈ [0, 1]N , we define the maximization

problem:

M(λ) = max
α∈Ao

∑
i

λiui(αi)

We set −∞ × 0 = −∞; that is, when λi = 0, λiui(·) has the same effective domain

as ui and is 0 on the effective domain. Note that M(λ) is a linear programming problem.

Let ∆(λ) denote the set of solutions to this problem.

For λ ∈ [0, 1]N , define the transferable utility economy E(λ) = {λ1u1, . . . , λNuN}.

Note that the transferable utility demand of uj at price p is the same as the transferable

utility demand of λiui at price λipi and hence E(λ) is a transferable utility gross substitutes

economy.

By Lemma B3, ∆(λ) is the set of equilibrium allocations for the economy E(λ). Let

a =
∑
i ui(χ

H) and P = [0, a]N . Hence, any equilibrium price p of the transferable utility

economy E(λ) must be in P. Let P ∗(λ) be the set of all equilibrium prices for E(λ). Let

E(λ) denote the transferable utility economy in which each agent i has utility λiui. Since

the set of Walrasian equilibria in a transferable utility economy does not depend on initial

endowments, we suppress them.
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Lemma B4: For any limited transfers economy Eo, there exists λ ∈ [0, 1]N and an

equilibrium (p, α) of the corresponding transferable utility economy E(λ) such that if λi <

1, then pᾱi = bi and if λi = 1, then pᾱi ≤ bi.

Proof: Let Uλi be consumer i’s utility function in the transferable utility economy E(λ);

that is, Uλi (θ, p) = λiui(θ)− pθ̄.

By Lemma B3, the correspondences ∆ and P ∗ are nonempty, compact and convex

valued. Since ∆(λ) is also the solution of the maximization problem defined above, Berge’s

Theorem ensures that ∆ is uhc. Next, we will show that P ∗ is uhc as well. Since P ∗

compact-valued, it is enough to show that λ(t) ∈ [0, 1]N , p(t) ∈ P ∗(λ(t)) for all t = 1, 2, . . .,

limλ(t) = λ and lim p(t) = p implies p ∈ P ∗(λ).

Choose α(t) ∈ ∆(λ(t)) for all t. Since A is compact, we can assume, by passing

to a subsequence if necessary, that α(t) converges. Let α = limα(t). Since ∆ is uhc,

α ∈ ∆(λ). Let θ be any random consumption. Then, since α(t) and is an equilibrium

random allocation for the transferable utility economy E(λ(t)),

U
λ(t)
i (αi(t), p(t)) = λi(t)ui(αi(t))− p(t) · ᾱi(t) ≥ λi(t)ui(θ)− p(t) · θ̄ = U

λi(t)
i (θ, p(t))

Then, the continuity of Ui ensures that U
λ(t)
i (αi, p) ≥ U

λ(t)
i (θ, p) for all θ and for all i.

This implies that p is an equilibrium price for the transferable utility economy E(λ(t)) and

establishes the upper hemi-continuity of P ∗.

Next, define correspondence Γi as follows:

Γi(p, z) =

 [0, 1] if p(z − wi) = bi
0 if p(z − wi) > bi
1 if p(z − wi) < bi

Clearly, Γi is nonempty, convex and compact valued, and uhc.

Let S = P ×Ao × [0, 1]N and let

f(p, α, λ) = P ∗(λ)×∆(λ)× Γ1(p, ᾱ1)× · · · × ΓN (p, ᾱN )

Since P ∗, ∆ and the Γi’s are nonempty, convex and compact valued, and uhc and the

mapping α → ᾱi is continuous, f is also nonempty, convex and compact valued, and
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uhc. Then, by Kakutani’s Fixed-Point Theorem, there is an s∗ = (p∗, α∗, λ∗) such that

f(s∗) = s∗. Thus, (p∗, α∗) is a Walrasian equilibrium of the transferable utility economy

E(λ∗).

We claim that λ∗i > 0 for all i. Suppose λ∗i = 0 for some i. Then, agent i’s utility is

identically 0 on the effective domain of ui and since s∗ is a fixed point of f , p(ᾱ∗i − wi) ≥

bi > 0. But, since wi ∈ domui and every consumption in the effective domain gives the

agent utility 0, spending more than pwi is inconsistent with utility maximization. Hence,

αi cannot be optimal, a contradiction.

To complete the proof of the lemma, we will show that p∗(ᾱ∗i − wi) ≤ bi for all i and

that the inequality is an equality whenever λ∗i < 1. Since s∗ is a fixed point of f and

λ∗i > 0, we must have p∗(ᾱ∗i − wi) ≤ bi. Similarly, since s∗ is a fixed point of f , if λ∗i < 1,

we must have p∗(ᾱ∗i − wi) = bi.

To conclude the proof of Theorem 1, we will show that (p∗, α∗) is an equilibrium of

the limited transfers economy Eo. Consider any θ that i can afford (in the limited transfers

economy). The optimality of α∗i for i in the transferable utility economy implies

λ∗i (ui(θ)− ui(α∗i )) ≤ p∗ · θ̄ − p∗ · ᾱ∗i (2)

If λ∗i = 1, then equation (2) implies that αi is solves the utility maximization problem

of agent i in the limited transfers economy Eo. If λ∗i < 1, since s∗ is a fixed-point of

f , the right-hand side of equation (2) must be less than or equal to zero. Then, we have

λ∗i (ui(θ)−ui(α∗i )) ≤ 0 and hence ui(θ)−ui(α∗i ) ≤ λ∗i (ui(θ)−ui(α∗i )) ≤ p∗θ̄−p∗ᾱ∗i proving,

again, that αi is solves the utility maximization problem of agent i in Eo.

6.4 Proof of Theorem 2

Fix the nontransferable utility economy E∗ = {(ui, bi)Ni=1}. Let Eon = {(nui, wi, bi)Ni=1}

for n = 1, 2 . . . be a sequence of limited transfer economies such that wji = 0 for all j, i.

Since o ∈ domui for all i, by Theorem 1, each Eon has an equilibrium (pn, αn).23 By

monotonicity, o ∈ domui implies that domui = X. Let P = [0,
∑
i bi]

L. Note that pn

23 When there is no risk of confusion, we use superscripts to specify the particular indivisible good (with
generic element j) and the particular element in a sequence of prices or allocations (with generic element
n,m). Otherwise, we use double superscripts.
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must be an element of P . Hence, the sequence (pn, αn) lies in a compact set and therefore

has a limit point, (p, α). By passing to a subsequence if necessary, we may assume that

(p, α) is its limit.

To complete the proof of Theorem 2, we will show that (p, α) is a strong equilibrium of

E∗. Clearly, α is feasible for E∗. Since pnᾱni ≤ bni for all n, pᾱi ≤ bi, αi is affordable for i in

E∗. Take any other affordable random allocation θ for i in E∗; that is, pθ̄ ≤ bi. We need to

show that ui(θ) ≤ ui(αi). First, assume pθ̄ < bi. Then, there exists ε > 0 such that p′θ̄ < bi

for any p′ ∈ Bε(p) ∩ IRL+. Since lim pn = p, we can find M > 0 such that for all n ≥ M ,

pnθ̄ < bi. Hence, θ is affordable for i in Eon for n ≥M . Since αni is an optimal consumption,

nui(θ) − pnθ̄ ≤ nui(α
n
i ) − pᾱni ; that is, ui(θ) − ui(αni ) ≤ (pnθ̄ − pnᾱni )/n ≤ bi/n for all

n ≥M . Then, the continuity of ui ensures ui(θ) ≤ ui(αi) as desired.

Next, assume pθ̄ = bi. Choose ε ∈ (0, 1). Then, θε := (1− ε)θ + εδo satisfies pθ̄ε < bi

and, therefore, by the argument in the previous paragraph ui(θε) ≤ ui(αi). Since ui(θε) is

continuous in ε and ε was arbitrary, it follows that ui(θ) ≤ ui(αi). Thus, αi is optimal for

i at prices p in E∗.

To prove that all goods with strictly positive prices are allocated to the agents, it is

enough to show that pj(1 −
∑N
i=1 ᾱ

j
i ) = 0 whenever pj > 0. This follows since pnj(1 −∑N

i=1 ᾱ
nj
i ) = 0 for all j, n and hence, the same equality holds in the limit as n goes to

infinity. Thus, (p, α) is an equilibrium of E∗.

To conclude, we will show that (p, α) is a strong equilibrium; that is, for all i, ui(θ) =

ui(αi) implies pθ̄ ≥ pᾱi. If not, assume that pθ̄ < pᾱi for some θ such that ui(θ) = ui(αi)

and consider two cases: (1) agent i is satiated at θ; that is, ui(θ) = ui(αi) = ui(χ
H) or

(2) she is not satiated at θ. If (1) holds, then for sufficiently large n, purchasing θ instead

of αi is affordable for i at all pn and bi − pθ̄ > bi − pᾱni ≥ 0, contradicting the optimality

of αni for i in Eon. If (2) holds, then choose 0 < r < 1 such that p(rχH + (1 − r)θ̄) < pᾱi.

Again, for n sufficiently large, the random consumption rδχH + (1− r)θ, where δχH is the

degenerate lottery that yields χH for sure, is affordable at pn and yields a higher utility

than αni , contradicting its optimality in Eon.

6.5 Proof of Lemma 3 and Lemma 4

Proof of Lemma 3: By assumption, the effective domain of u(c, ·) is nonempty. Re-

call that the operations that take u to uz (the z-constrained u), [u]k (the k-satiation of
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u) and [u]k (the k-lower bound u) all preserve the substitutes property. Similarly, the

binary operation u � v (the convolution of u, v) also preserves the substitutes property.

Then, to complete the proof of the lemma, we note that given any modular constraint

c = {(A(k), (l(k), h(k))Kk=1} for u, we can express u(c, ·) as a finite composition of these op-

erations applied to u. This is straightforward; for example, let c = {{(A(k), (l(k), h(k))4
k=1}

where A1, A2, A3 ⊂ H are disjoint sets and A4 = A1 ∪A2. Then, define

û =
(
[[v � w]h4 ]l4 � [[uz3 ]h3 ]l3

)
� uz5 where

v = [[uz1 ]h1 ]l1

w = [[uz2 ]h2 ]l2

zi = χAi for all i = 1, 2, 3, 4 and z5 = χH−A for A =
⋃4
i=1Ai. Since each utility function

on the right-hand side of the equation above satisfies the substitutes property and all of

the operations applied to them preserve the substitutes property, û satisfies the substitutes

property as well, and since c is a modular constraint for u, û = u(c, ·).

Proof of Lemma 4: Clearly, o ∈ Id and x, y ∈ Id and x ≤ y implies x ∈ Id. Hence, we

need only prove that x, y ∈ Id and σ(x) < σ(y) implies there is j such that xj < yj and

xj + χj ∈ Id.

We order d, the hierarchy of constraints, in the obvious way: (A, k) � (B,n) if B ⊂ A.

Call j a free element in d if j is not an element of any A such that (A,n) ∈ d for some n.

Otherwise, call j a constraint element. Let F ⊂ H be the set of free elements in d and let

F c = H\F be the set of constraint elements. Suppose there is j ∈ F such that yj > xj .

Then, clearly x + χj ∈ Id and we are done. Otherwise, xj ≥ yj for all j ∈ F and hence

there must be some �-maximal constraint, (A, k), such that σ(y ∧ χA) > σ(x ∧ χA). Let

A1 = A and n1 = k.

Then, there is either j ∈ A1 such that yj > xj , j /∈ B for any B such that (A1, n1) �

(B,n′) in which case we have x+χj ∈ Id and we are done, or there is no such j. In the latter

case, there must be an immediate predecessor of (A1, n1) such that σ(y∧χB) > σ(x∧χB).

Let (A2, n2) be this immediate predecessor and continue in this fashion until we end up

with (Al, nl) and j ∈ Al such that σ(y∧χAk) > σ(x∧χAk) for all k = 1, . . . , l and yj > xj .

Hence, x+ χj ∈ Id.
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6.6 Proof of Theorems 3-5

We prove Theorem 5 and then show that Theorems 3 and 4 follows as special cases.

Fix the nontransferable utility economy with production and modular constraints

Ẽc = {(ũi, 1)Ni=1, {ci}Ni=1, I}

Let B be the production possibility frontier of I. Hence, B is a basis system (Appendix

A). Define

H = {1, . . . , L} = {i |xi > 0 for some x ∈ B}

Let B⊥ = {χH−x |x ∈ B}. Then B⊥ is a basis system since B is a basis system (Appendix

A). Let r be the rank function associated with B⊥; that is,

r(x) = max{σ(x ∧ y) | y ∈ B⊥}

Since every weighted matroid satisfies the substitutes property, so does r (Appendix A).

Define the utilities (u1, . . . , uN+1) such that

ui = ũi(ci, ·) for i = 1, . . . N

uN+1 = 2Nr

By Lemma 3 and the argument above, ui satisfies the substitutes property for all i =

1, . . . , N+1. Define the following nontransferable utility economy with general preferences

and endowments:

Ê∗ = {(ui, wi, 1)Ii=1, (uN+1, wN+1, 0)}

where wi = 0 for i = 1, . . . , I, wN+1 = χH . The difference between Ê∗ and a nontrans-

ferable utility economy E∗ defined in section 3.1 is that in Ê∗, o /∈ domui is possible and

agents are allowed to have endowments of divisible goods. Thus, the budget constraint of

agent i is Bi(p) = {θ ∈ domui | pθ ≤ pwi + bi}. The definition of a strong equilibrium is

the same as in section 3.1.

Lemma B5: If (p, α) is a strong equilibrium of Ê∗, then (p, α̂) such that α̂(ξ, z) =

α(ξ, χH − z) is a strong equilibrium of Ẽc.
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Proof: Let (p, α) be a strong equilibrium of Ê∗. Note that agent N + 1 is satiated at her

initial endowment χH ; that is, 2Nr is maximal. Moreover, z′ maximizes r(·) if and only if

z′ = χH − z ≥ y′ = χH − y for some y′ ∈ B⊥; that is, if and only if z ∈ I. Thus, consumer

optimality of agent N + 1 implies z ∈ I whenever α̂(ξ, z) > 0. Since the equilibrium is

strong, it follows that p(χH − z) ≤ p(χH − z′) for all z′ ∈ I and, therefore, pz ≥ pz′ for all

z′ ∈ I. Parts (1), (2) and (4) of the definition of a strong equilibrium of Ẽc, then follow

from the definition of a strong equilibrium of Ê∗.

By assumption, there exists z =
∑N+1
k=1 xk ∈ I such that xk ∈ domui for all i =

1, ..., N , k = 1, ..., N + 1. Define the random consumptions θ0, θ1 as follows:

θ0(xk) = 1/N , for all k = 1, . . . , N − 1 and θ0(xN + xN+1) = 1/N

θ1(xk) = 1/N+1 for all k = 1, . . . , N + 1

Let H ′ = {j ∈ H|zj = 1} and let H̄ = H −H ′. Note that θ̄0j = 1/N and θ̄1j = 1/(N + 1)

for all j ∈ H ′. By monotonicity, every realization of θ0 and θ1 lies in the effective domain

of every ui, i = 1, . . . N . Finally, define the random endowment θN+1 as follows:

θN+1 =
1

N + 1

N+1∑
k=1

δχH̄+xk

It is straightforward to verify that there exists an allocation α with marginals θ1 for

i = 1, . . . , N and marginal θN+1 for i = N + 1. Consider the N + 1 person limited transfer

economy with random endowments

Eo = {(ui, θ1, 1/(N + 1))Ni=1, (uN+1, θN+1, N −N/(N + 1)))

Extending the definition of limited transfer economies to include random endowments is

immediate and does not alter the definition of equilibrium.

Lemma B6: The economy Eo has an equilibrium (p, α) such that pj ∈ [0, 2N ] for all

j ∈ H,
∑
j∈H′ pj ≤ N and α(ξ) > 0 implies χH − ξN+1 ∈ I.

Proof: Theorem 1 implies that the economy Eo has an equilibrium (α, p). Note that

every element in the support of θN+1 yields the maximal possible value of r. There-

fore, the equilibrium utility of agent N + 1 must be at least uN+1(θN+1) = 2Nr(χH̄) =
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2N maxx∈{0,1}H r(x). If α(ξ, z) > 0 for some ξ = (ξ1, . . . , ξN+1) such that ξN+1 is not

r−maximal, then 2Nr(θN+1) − 2Nr(ξN+1) ≥ 2N . Since the total money endowment of

the economy is N , the preceding inequality implies that agent N + 1, with positive prob-

ability, receives total utility less than the utility of her endowment which is inconsistent

with her utility maximization. It follows that α(ξ, z) > 0 for some ξ = (ξ1, . . . , ξN+1)

implies r(ξN+1) is maximal and therefore χH − z ∈ I.

Next, observe that the equilibrium utility of agent N + 1 is bounded above by

2N max
x∈H

r(x) +N

Hence,

uN+1(χH̄) + p · θ1 +N − N

N + 1
≤ 2N max

x∈H
r(x) +N

Since χH̄ = χH − χH′ maximizes r, the display equation above implies

0 ≥ pθ1 − N

N + 1
=

1

N + 1

∑
j∈H′

pj −
N

N + 1

and therefore,
∑
j∈H′ pj ≤ N .

Next, note that pj ≤ 2N for all j ∈ H̄. To see why this is true, note that if pj were

greater than 2N , agent N + 1 would consume j with probability zero since its marginal

utility is never greater than 2N . However, since the total endowments of agents 1-N are

worth less than 2N , agent N + 1 must consume j with strictly positive probability in any

equilibrium.

Lemma B7: The economy Ê∗ has a strong equilibrium

Proof: Let (p, α) be the equilibrium of Eo shown to exist in Lemma B6. Set b = pθ1 and

consider the limited transfers economy

Êo = {(ui, o, b)Ni=1, (uN+1, χH , N(1− b))}

Hence, agent i ≤ N only has some of the divisible good initially. Note that at prices p the

endowment of each agent i in Êo is worth the same as her endowment in Eo and therefore
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(p, α) is also an equilibrium of Êo. By Lemma B6, pθ̄1 ≤ N/(N + 1) and, therefore, the

divisible good endowment b = 1/(N + 1) + pθ̄1 is in the interval [1/(N + 1), 1].

Next, consider the sequence of limited transfer economies

Eon = {(nui, bn)Ni=1, (uN+1, χ
H , N(1− bn))}

Arguing as above, we conclude that for a suitable choice of {bn} such that bn ∈ [1/(N +

1), 1], every economy in this sequence of has an equilibrium with the properties stated in

Lemma B6. Since p ∈ [0, 2N ]I and bn ∈ [1/(N + 1), 1], the sequence (αn, pn, bn) has a

convergent subsequence with limit (α, p, b∗) for some b∗n ∈ [1/(N + 1), 1] and p ∈ [0, 2N ]I .

To complete the proof of Lemma B7, we will show that (α, p/b∗) is a strong equilibrium

of Ê∗. Clearly, α is feasible for Ê∗. Since pnᾱni ≤ bn for all n, pᾱi ≤ b∗ and therefore, αi is

affordable for i = 1, . . . , N in Ê∗. Take any other affordable random allocation θ for i in Ê∗;

that is, pθ̄ ≤ b∗. We need to show that ui(θ) ≤ ui(αi). First, assume pθ̄ < b∗. Then, there

exists ε > 0 such that for any p′ ∈ Bε(p)∩IRL+, where Bε(p) is the ε-ball centered at p. Since

lim pn = p, we can find M > 0 such that for all n ≥M , pnθ̄ < b∗. Hence, θ is affordable for

i in Eon for n ≥ M . Since αni is an optimal consumption in the limited transfers economy

Eon, nui(θ) − pnθ̄ ≤ nui(α
n
i ) − pᾱni ; that is, ui(θ) − ui(αni ) ≤ (pnθ̄ − pnᾱni )/n ≤ bn/n for

all n ≥M . Then, the continuity of ui ensures ui(θ) ≤ ui(αi) as desired.

Next, assume pθ̄ = b∗. Recall that pθ̄1 < pθ̄1 + 1/(N + 1) = b∗. Choose ε ∈ (0, 1).

Then, for θε := (1 − ε)θ + εθ1
i , we haves pθ̄ε < b∗ and, therefore, by the argument in the

previous paragraph ui(θε) ≤ ui(αi). Since ui(θε) is continuous in ε and ε was arbitrary, it

follows that ui(θ) ≤ ui(αi). Thus, αi is optimal for i at prices p in Ê∗ for all i = 1, . . . , N .

For agent N + 1, consumer optimality follows from the fact that r(αnN+1) is maximal

for all n (by Lemma B6) and, therefore, r(αN+1) is maximal as well.

To prove that all goods with strictly positive prices are allocated to the agents, it is

enough to show that pj(1 −
∑N+1
i=1 ᾱji ) = 0 whenever pj > 0. This follows since pnj(1 −∑N+1

i=1 ᾱnji ) = 0 for all j, n and hence, the same equality holds in the limit as n goes to

infinity. Thus, (p, α) is an equilibrium of Ê∗.

To conclude, we will show that (p, α) is a strong equilibrium; that is, for all i, ui(θ) =

ui(αi) implies pθ̄ ≥ pᾱi. If not, assume that pθ̄ < pᾱi for some θ such that ui(θ) = ui(αi)
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and consider two cases: (1) agent i is satiated at θ; that is, ui(θ) = ui(αi) = ui(χ
H) or (2)

she is not satiated at θ.

If (1) holds, then for sufficiently large n, purchasing θ instead of αi is affordable for i

at all pn and bi − pθ̄ > bi − pᾱni ≥ 0, contradicting the optimality of αni for i in Eon. If (2)

holds, then choose 0 < r < 1 such that p(rχH + (1− r)θ̄) < pᾱi. Again, for n sufficiently

large, the random consumption rδχH + (1− r)θ, where δχH is the degenerate lottery that

yields χH for sure, is affordable at pn and yields a higher utility than αni , contradicting its

optimality in Eon.

Proofs of Theorems 3-5: Theorem 5 follows from Lemmas B5 and B7. To prove

Theorem 4, first note that the theorem is trivial if I = {o}. If there exists x ∈ I such that

x 6= o, then we will show that Ẽ is a special case of Ẽc. First, assume that each agent is

unconstrained; that is, ci = c = {H, 0, L}. Next, choose x1 = x, x2 = . . . = xN+1 = o and

note that condition (iii) in the definition of Ẽc is satisfied. Thus, Theorem 5 applies.

To prove Theorem 3, let E∗c = {(ui, 1)Ni=1, {ci}Ni=1} be a nontransferable utility econ-

omy with modular constraints and let I = {z ≤ χH}. Clearly, any strong equilibrium

of Ẽc = {(ũi, 1)Ni=1, c, I}, a nontransferable utility production economy with modular con-

straints, is a strong equilibrium of E∗c . Hence, the desired result follows from Theorem 5.
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