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Abstract

Partial identification approaches have seen a sharp increase in interest in econometrics due

to improved flexibility and robustness compared to point-identification approaches. However,

formidable computational requirements of existing approaches often negate these undeniable

advantages—particularly in general instrumental variable models with continuous variables.

Therefore, this article introduces a computationally tractable method for estimating bounds

on functionals of counterfactual distributions in continuous instrumental variable models. Its

potential applications include randomized trials with imperfect compliance, the evaluation of

social programs and, more generally, simultaneous equations models. This new method does

not require functional form restrictions a priori, but can incorporate parametric or nonpara-

metric assumptions into the estimation process. It proceeds by solving an infinite dimensional

program on the paths of a system of counterfactual stochastic processes in order to obtain

the counterfactual bounds. A novel “sampling of paths”- approach provides the practical

solution concept and probabilistic approximation guarantees. As a demonstration of its ca-

pabilities, the method provides informative nonparametric bounds on household expenditures

under the sole assumption that expenditure is continuous, showing that partial identification

approaches can yield informative bounds under minimal assumptions. Moreover, it shows that

additional monotonicity assumptions lead to considerably tighter bounds, which constitutes a

novel assessment of the identificatory strength of such nonparametric assumptions in a unified

framework.
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1 Introduction

In recent years, a trend in the literature in econometrics has been to obtain bounds on causal

effects in general instrumental variable models (e.g. Chesher & Rosen 2017, Demuynck 2015,

Kitagawa 2009, Manski 1990, Torgovitsky 2016). The arguments put forward in favor this partial

identification approach are higher flexibility and robustness compared to point-identification ap-

proaches (Chesher & Rosen 2017). However, general and widely applicable partial identification

approaches are often too complex for practical applications which limits a broader use in general

models, as noted by Beresteanu, Molchanov & Molinari (2012). Existing methods have therefore

almost exclusively focused on the case of a binary treatment (e.g. Fan, Guerre & Zhu 2017, Lafférs

2015, Mogstad, Santos & Torgovitsky 2018) or have been intractable in many practical settings

of interest, in particular when the endogenous variable has many points in its support or even

is continuous. A practical method that provides a flexible approach for partial identification in

general instrumental variable models with potentially continuous endogenous variables has so far

been unavailable.

This paper introduces such a method for obtaining sharp upper and lower bounds on func-

tionals of counterfactual distributions in instrumental variable models with arbitrary unobserved

heterogeneity and potentially continuous variables. The method does not require structural as-

sumptions per se, but allows to incorporate them rather intuitively in the form of response profiles

of agents. This also permits the researcher to include assumptions about particular individual

behavior into the model, improving transparency of the required assumptions. The key for this

is a novel representation of the general instrumental variable model as a system of stochastic

processes. The method then proceeds by solving an infinite dimensional program on the paths of

these processes, which provides the bounds on the desired causal effects. Its potential applications

include randomized trials with imperfect compliance, the evaluation of social programs and, more

generally, simultaneous equations models. Further, it allows the researcher to only focus on a

minimal model since it accounts for arbitrary forms of unobserved heterogeneity by default.

A novel “sampling of paths”-approach efficiently provides a convergent sequence of approxi-

mate solutions to these infinite dimensional programs. The idea for this approach is to sample

a set of (shape-preserving) basis functions and to solve the (then semi-infinite dimensional) op-

timization problems on this sample. This introduced randomness is crucial, because it permits

the derivation of probabilistic approximation guarantees by using large deviation theory (Vapnik

1998) for the purpose of function approximation (Girosi 1995). In particular, a researcher can

use these results to gauge how good the approximation of the semi-infinite dimensional- to the

infinite dimensional program is for a given sample of basis functions. This approximation result

could potentially be also of use in other settings where general unobserved heterogeneity is to

be approximated (Bonhomme, Lamadon & Manresa 2017). Furthermore, the sampling approach

allows researchers to gauge the identification content of (nonparametric) structural assumptions
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in their model, as one can sample from the basis under additional shape restrictions.

As a demonstration of its capabilities, the method estimates bounds on expenditure differences

using the 1995/1996 UK family expenditure survey. This problem is well suited for demonstrating

the method’s capabilities in practice as it (i) is nonlinear with continuous variables, (ii) allows to

gauge if the program actually obtains reasonable results1, and (iii) provides a setting not directly

related to causal inference, showing the potential scope of applications. In particular, the method

provides the first informative nonparametric bounds on household expenditures under the sole

assumptions that expenditure on goods is continuous with respect to the budget set, corroborating

the nonparametric and semi-nonparametric approaches in Imbens & Newey (2009), Blundell, Chen

& Kristensen (2007), de Nadai & Lewbel (2016), and Song (2018), which assume monotonicity or

additive separability in the unobservables in the first- or second stage. This demonstrates that it

is possible to obtain informative bounds on the causal effects of interest, even in general nonlinear

problems and without introducing many functional form restrictions. Moreover, when including

monotonicity assumptions in the model, the counterfactual bounds shrink drastically and become

much more informative. This constitutes the first instance where the identificatory strength of

monotonicity assumptions can be assessed in a unified manner. The practical estimation method

is hence a first step to gauge the identificatory strength of frequently made (non-) parametric

assumptions on the model.

The focus in this article lies on (practical) estimation. Still, large sample results are derived,

for each bound separately. They prove directional Hadamard differentiability (Bonnans & Shapiro

2013, Shapiro 1991) of the value functions which correspond to the counterfactual bounds, and

provide the respective large sample-distributions in closed-form. This also makes recently devel-

oped bootstrap methodologies (Dümbgen 1993, Fang & Santos 2018, Hong & Li 2018) applicable

in this setting.2 Based on these large sample results, one can obtain coverage results of the

identified set by relying on established results from the literature on partial identification such

as Imbens & Manski (2004) and Stoye (2009).3 In combination with these inference results, the

proposed method therefore provides a practical approach for estimation and inference in general

instrumental variable models.

1This application also serves as a sanity check in place of an impossible Monte-Carlo simulations exercise in
a “counterfactual space”. In particular, the method should produce results which show that food is a necessity-
and leisure is a luxury good, as these are well-established economic facts. Anything else would indicate that the
method is faulty. This application is actually more challenging than a hypothetical Monte-Carlo approach, as the
method needs to replicate known facts on real data under minimal assumptions (Advani, Kitagawa & S loczyński
2019). A priori, it is not even clear that something like this should be possible with any approach. The fact that
this method does provide informative bounds is a testament to its potential usefulness.

2One challenge is the computational burden of resampling methods in this setting, which can be substantial
for general problems. It is therefore imperative to derive the proper large sample results for the bounds in these
settings and use the analytical results.

3The results for inference and estimation of Chernozhukov, Lee & Rosen (2013) do not seem to be applicable
in this setting as they deal with optimization problems with a Euclidean parameter space (their V ⊂ Rd for some
dimension d). In contrast, the proposed optimization method is defined over an infinite dimensional path space. It
would be interesting to examine the connection between these settings further.
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2 Existing literature

The setting for the method introduced in this article is that of a nonseparable triangular model,

the most general form of an instrumental variable model. This article is hence closely related to

the literature on (partial) identification in these models, in particular to Imbens & Newey (2009).

There, the authors introduce a flexible partial- and point identification approach in these models

under a strict monotonicity assumption of the first stage in the instrumental variable model. In

contrast, the current approach does not require monotonicity assumptions or other structural

assumptions besides continuity and does not rely on a control function approach.4 Through the

setting of nonseparable triangular models, this method is also connected to the literature on

causal inference with instruments (Angrist, Imbens & Rubin 1996, Balke & Pearl 1994, Imbens &

Angrist 1994), simultaneous equation models (e.g. Blundell & Matzkin 2014, Matzkin 2003), and

partial identification in welfare analysis (Dette, Hoderlein & Neumeyer 2016, Hausman & Newey

2016).5

From a theoretical perspective, the most closely related article is Chesher & Rosen (2017)

which introduces a general framework for partial identification using the Aumann integral and

Artstein’s inequality. This approach is situated within a general model which can incorporate any

structural assumptions, and is theoretically more general than the method presented here, which

works within the setting of nonseparable triangular models. What distinguishes the proposed

method from their approach is the applicability in practice. In fact, results relying on Artstein’s

inequality run into severe curses of dimensionality for endogenous variables with more than a few

points in their support, as the number of inequalities describing the identified region grows very

rapidly (Beresteanu, Molchanov & Molinari 2012). This is a main reason for the often unsur-

mountable challenges current approaches based on specifying the identified set via inequalities

face in many models of interest. In contrast, this article proposes to solve an infinite dimensional

program, which handles the complexity of the model automatically. Another intuitive reason for

the tractability of the proposed method even in models with continuous variables is its exclusive

focus on estimating functionals of counterfactual distributions (a one-dimensional quantity); in

contrast, Chesher & Rosen (2017) also estimate the the model parameters such as the production

functions (an infinite dimensional quantity).6

This article is not the first to propose an optimization approach for obtaining bounds in

partial identification models (Chiburis 2010, Demuynck 2015, Honoré & Tamer 2006, Honoré

& Lleras-Muney 2006, Manski 2007, Molinari 2008, Norets & Tang 2013, Lafférs 2015, Kamat

2017, Torgovitsky 2016, Kitamura & Stoye 2018, Mogstad, Santos & Torgovitsky 2018), but it

4Even the continuity requirement can be relaxed by working in Skorokhod space instead of Hölder spaces, see
the discussion in the main section.

5By introducing Slutsky-type assumptions on the stochastic processes introduced in this article, one can poten-
tially apply the proposed method to estimate bounds in welfare analysis in the most general setting, complementing
the results in Hausman & Newey (2016). See the discussion in the conclusion.

6This fact was pointed out by Francesca Molinari.
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is the first to present an infinite dimensional optimization problem for doing so. The infinite

dimensionality is key in order to solve the most complex models—the ones with a continuous

endogenous variable—theoretically as well as practically. Furthermore, in combination with the

novel “sampling of paths”- approach it allows researchers to solve complex but finite models by

considering random variables with many points in their support as continuous. Garen (1984) for

instance treats years of schooling as a continuous variable for similar reasons.

The most closely related articles in terms of underlying ideas are Balke & Pearl (1994) and

Balke & Pearl (1997) which provide tight upper and lower bounds when all variables are binary.

In particular, the proposed method in this article reduces to their approach in the binary case.

These results strengthen the original results in Robins (1989) and Manski (1990) who found upper

and lower bounds on causal effect also in the setting where the treatment is binary. They also

enabled Kitagawa (2009) to derive closed-form solutions for sharp bounds on causal effects for

a continuous outcome and binary treatment and instrument. Recently, Russell (2017) derived

sharp bounds on causal effects for discrete outcome and treatment using Artstein’s inequality and

optimal transport theory similar to Galichon & Henry (2011).

The proposed infinite dimensional optimization program is similar in form to—but more gen-

eral in its state-space dimensionality and objective function than—the general capacity problem

(Anderson & Nash 1987, Anderson, Lewis & Wu 1989, Lai & Wu 1992), which itself is a general-

ization of Choquet’s capacity theorem (Choquet 1954). Interestingly, two other existing articles

dealing with partial identification in general models (Beresteanu, Molchanov & Molinari 2012,

Galichon & Henry 2011) both directly deal with Choquet’s capacity theory. Their focus is some-

what different as the first article assumes discrete treatment, while the second deals with partially

identifying unknown parameters in a structural setting, but the connection via capacity theory

seems worth mentioning.

The proposed “sampling of paths”-approach is also convenient as it allows the researcher to

introduce assumptions on the model by choosing an appropriate sampling distribution on the

paths of the stochastic processes. In practice, the optimization over probability measures on

the paths of stochastic processes then exclusively considers probability measures which possess

a Radon-Nikodym derivative with respect to this proposed sampling measure. This solution

approach is reflective of the ELVIS estimator (Schennach 2014), which exponentially tilts a user-

chosen probability distribution to satisfy given population moment conditions. In the proposed

method, the applied researcher can introduce structural assumptions into the model (e.g. allowing

for only increasing paths, equivalent to a monotonicity assumption on the instrumental variable

model) by setting the probability of certain paths (e.g. all non-increasing paths) to zero a priori.

The method then automatically only optimizes over the sampled paths. Similarly, the ELVIS

estimator also requires a reference measure whose support must contain the support of the tilted

probability measures. Notwithstanding this connection, both approaches are complementary: the

proposed method works with problems without the necessity to introduce moment conditions,
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whereas the ELVIS estimator efficiently addresses models that can be written in terms of moment

restrictions which contain unobservables.

Other identification results in nonseparable triangular models often focus on the production

function h and require monotonicity assumptions (e.g. Chesher 2003, Chernozhukov & Hansen

2005, Shaikh & Vytlacil 2011, Torgovitsky 2015, d’Haultfœuille & Février 2015) or presuppose

some other general structural relationship (Florens, Heckman, Meghir & Vytlacil 2008). Recently,

Heckman & Pinto (2018) introduced the concept of unordered monotonicity in this setting, in the

case where endogenous variable is discrete. Manski (1997) derives sharp bounds on causal effects

in general models under monotonicity assumptions.

3 The theoretical method and its properties

This section introduces the theoretical method and provides intuitive explanations for the intro-

duced concepts. Randomized controlled trials with imperfect compliance will serve as a running

example, as the introduced concepts turn out to have a natural interpretation in this setting.

3.1 Intuitive explanation of the estimation problem and explanation of the

stochastic process representation

The proposed method deals with nonseparable triangular models of the following form:

Y = h(X,W )

X = g(Z,W ).
(1)

Here, Y is the outcome variable, X is the endogenous treatment in the sense that it depends on

the unobservable variable W , and Z is an instrument satisfying the relevance condition Z 6⊥⊥ X

as well as the validity restriction Z ⊥⊥W :7

Assumption 1 (Instrument validity and relevance). In model (1) the instrument Z is valid and

relevant, i.e. it holds that (i) Z ⊥⊥W (validity) and that Z 6⊥⊥ X (relevance).

W can be of arbitrary and even of infinite dimension, just like Y , X, and Z. The production

functions h and g are unknown.8

7Z ⊥⊥ W means that Z is independent of W , i.e. PZ,W = PZPW . Note that this model is often written with
two separate unobservable variables V and U in the second- and first stage (e.g. Imbens & Newey 2009). This is
an equivalent model to (1) as one can define the two dependent variables U and V on the same probability space
and combine them to one variable W . Also, this article neither addresses the important issue of weak identification
(e.g. Kleibergen 2002, Stock, Wright & Yogo 2002) nor the testability of instrument validity (e.g. Pearl 1995,
Kitagawa 2015). The instrument must be valid and relevant for the proposed method to work. For a recent work
which obtains bounds under a relaxed independence assumption in the binary treatment setting, consider Masten
& Poirier (2018).

8Unless stated otherwise, the assumption is that all variables have support in a Polish space, i.e. a separable,
complete, and metrizable space. In particular, Euclidean spaces are Polish. The support S of a measure µ is
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3.1.1 The endogeneity problem

The main quantity of interest in this model is the counterfactual law PY (X).
9 Note that this law

in general does not coincide with the observable law PY |X , because of the endogeneity problem.

To see this, write

PY (X) =

∫
W
PY |X,W=wPW (dw) (2)

using model (1), where W is the support of the law PW and where PY |X,W=w is the conditional

law of Y given X while setting W = w. Now, since W is unobservable, the only distribution in the

data which provides correct information on the data-generating process is PY,X|Z (respectively:

PY,X,Z). To see this, write PY,X|Z as

PY,X|Z =

∫
W
PY |X,Z,W=wPX|Z,W=wPW (dw)

=

∫
W
PY |X,W=wPX|Z,W=wPW (dw)

because Z ⊥⊥ Y |(X,W ) by model (1) (Balke & Pearl 1994, p. 50).10

Now, if X were actually exogenous, i.e. X ⊥⊥ W , it would hold that PX|Z,W = PX|Z , so that

PY (X) would coincide with the observable PY |X , because

PY |X =
PY,X|Z

PX|Z
=

∫
W PY |X,W=wPX|Z,W=wPW (dw)

PX|Z

=
PX|Z

∫
W PY |X,W=wPW (dw)

PX|Z
= PY (X).

As soon as X is endogenous, i.e. X 6⊥⊥W , the above line of reasoning does not work anymore, so

that PY (X) 6= PY |X in general. Therefore, without any structural assumptions on the model one

will in general be only able to identify bounds on functionals of PY (X).

defined by two properties: first, µ(Sc) = 0, where Sc denotes the complement of S. Second, for any open set G
with G ∩ S 6= ∅ it holds µ(G ∩ S) > 0, see Aliprantis & Border (2006, p. 441). Throughout, the support of a
random variable will be denoted by scripture notation, i.e. X is the support of X and Xz denotes the support of
the conditional probability measure PX|Z=z for z ∈ Z.

9This notation is analogous to the counterfactual notation in causal inference introduced in (Rubin 1974). Note
that X can be arbitrary and need not be binary. Moreover, the notation PY (X=x) will mean that the treatment
has exogenously fixed to take the value x ∈ X . Analogously for all other counterfactual distributions.

10To see this, note that (1) incorporates the exclusion restriction that Z has no direct influence on Y , which
follows from the fact that h is not a function of Z. This, in combination with the independence restriction Z ⊥⊥W
implies that Z is independent of Y once one has conditioned on the direct effects of X and W on Y .
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3.1.2 The key idea: Representing the instrumental variable model as a system of

stochastic processes

This endogeneity problem has sparked a large literature in partial identification in the setting

where X is binary, as pointed out in the previous section. Unfortunately, the binary- and even

discrete cases are much simpler to handle in terms of their complexity than the general continuous

case. In fact, in the binary case, i.e. where Y,X,Z take values in {0, 1}, the problem of bounding

the counterfactual probability PY (X) can be solved by finding the solution to a simple linear

program using the response variables W , as in Balke & Pearl (1994) and Balke & Pearl (1997).

One realization in the binary case is that W indexes the respective production functions g(Z, ·)
and h(X, ·) from model (1). In the binary case, W possess only eight realizations as there are four

possible functions mapping Z to X and X to Y in each case. For instance, w1
1 corresponds to

the function g mapping the realization Z = 0 to X = 0 and the realization Z = 1 to X = 0 (the

never takers), w1
2 corresponds to the function g mapping Z = 0 to X = 0 and Z = 1 to X = 1

(the compliers), w1
3 corresponds to the function g mapping Z = 0 to X = 1 and Z = 1 to X = 0

(the defiers), and w1
4 corresponds to the function g mapping Z = 0 to X = 1 and Z = 1 to X = 1

(the always takers). An analogous set-up holds for w2
1, . . . , w

2
4 in terms of realizations of Y and

X.11

Generalizing this idea, it is not hard to see that the cardinality of the support W of W will

necessarily be of the rate nm + qn, where m is the number of points in Z, n is the number of

points in X , and q is the number of points in Y. Therefore, already a simple generalization to

the case where all variables can take on 3 values each will, without further assumptions, lead

to 2 · 33 = 54 values for W , composed of 27 values indexing the functions in the first- and

second stage, respectively. Cheng & Small (2006) provide an identification result in this setting

by circumventing this issue: they make monotonicity assumptions on the production functions g

and h in order to bring down the cardinality from 27 to 4 in each stage of the model again. The

setting of continuous Y , X, and Z exacerbates the problem even more.

The key realization in the continuous setting therefore is that g(Z,U) and h(X,V ) induce

stochastic processes YX(v) and XZ(u) with random domains X and Z described by the counter-

factual measures P(X,Z) and P(Y,X), respectively. This is captured in the following

Proposition 1 (Stochastic process representation). Model (1) under the independence restriction

is equivalent to a system of counterfactual stochastic processes YX and XZ on random domains

11The superscript w1
1 serves to distinguish the values w ∈ W which correspond to the first stage (in which case

the superscript is 1) of the nonseparable triangular model from those corresponding to the second (in which case
the superscript is 2). In the alternative notation of model (1) where the unobservable in the first stage is usually
called U and the unobservable in the second stage is V , the values w1

i would correspond to values ui while w2
i would

correspond to some vi.
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X ,Z on measure spaces (X ,BX), (Z,BZ) and with corresponding laws

P(Y,X) =

∫
PY (X=x)P

∗
X(dx) and P(X,Z) =

∫
PX(Z=z)P

∗
Z(dz),

respectively. P ∗X and P ∗Z are the counterfactual measure for exogenous X and Z and in general

need not coincide with the observable PX and PZ . However, the independence restriction Z ⊥⊥
W implies PZ = P ∗Z . Furthermore, the exclusion restriction implies that these laws induce the

counterfactual law

P(Y,X,Z)(Ay, Ax, Az) =

∫
Ax

PY (X=x)(Ay)P(X,Z)(dx,Az)

=

∫
Az

∫
Ax

PY (X=x)(Ay)PX(Z=z)(dx)P ∗Z(dz),

for Borel sets Ay, Ax, Az, which corresponds to a joint counterfactual process [Y,X]∗Z with random

domain Z. The fact that PZ = P ∗Z allows to compare the counterfactual process [Y,X]∗Z to the

stochastic process [Y,X]Z induced by the observable joint law PY,X,Z .12

Intuitively, Proposition 1 states that the second stage of model (1) corresponds to a stochastic

process YX where the randomness stems from some general probability space (Ω,BΩ, P ), where

BΩ denotes the Borel σ-algebra on the space Ω. In model (1), this randomness stems from the

unobservable confounder W . Since W is unobserved, one can identify the abstract probability

space (Ω,BΩ, P ) with the probability space (W,BW , PW ).13 Then elements w ∈ W index paths

YX(w) of the respective stochastic process. Similarly, the first stage of model (1) corresponds

to a stochastic process XZ where the randomness also stems from the unobservable confounder

W . Elements w ∈ W index paths XZ(w) of the respective stochastic process. Not surprisingly,

these counterfactual stochastic processes turn out to have a natural interpretation in terms of

randomized controlled trials with imperfect compliance, generalizing the defier-, complier-, always

taker-, never taker distinction from Angrist, Imbens & Rubin (1996), as explained in the following

Running example (1). Suppose data from a (fictive) randomized controlled trial estimating

the efficacy of a (continuous) treatment X on some (continuous) outcome Y is available. The

researchers conducting this trial are worried about imperfect compliance among the participants as

they could not perfectly enforce that the participants actually took the randomly assigned amount.

12Notice the use of the joint laws P(Y,X), P(X,Z), P(Y,X,Z), and PY,X,Z in this construction. Throughout, the
focus will be on these and not the corresponding conditional laws PY (X), PX(Z), P(Y,X)(Z), PY,X|Z , etc. which
simplifies the mathematical notation in the proofs. The approach in this article works with either, the conditional-
and the unconditional laws. The randomness of X and Z is highlighted through the notation of the stochastic
processes YZ , XZ , [Y,X]Z , etc. where a capital Z is chosen to denote the randomness in Z. In this respect, the
notation YX=x means that the stochastic process is conditioned on the value of the point x.

13This follows from standard isomorphism results, see for instance Bogachev (2007, Theorem 9.2.2). It is in fact
possible to construct these explicit isomorphisms between general Borel measures on Polish spaces and Lebesgue
measure on the unit interval based on the approach laid out in Kuratowski (1934). One standard application of
these isomorphisms is the construction of Wiener measure, see for instance Hess (1982).
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As a robustness check to their standard results they want to use instrumental variable estimation

methods, in which they use the initially assigned amount as the (continuous) instrument Z. Due to

the fact that too high amounts of the treatment might actually be detrimental for different reasons,

the researchers do not want to uphold a monotonicity assumption, neither in the relation between

Y and X, nor in the relation between X and Z, but they are comfortable with assuming continuity

in the relation between Y and X as well as X and Z, i.e. that participants do not deviate to far

from the assigned amount and that the treatment has a continuous effect on the outcome.

The counterfactual processes YX and XZ in this setting have a natural interpretation as the

response profiles of a hypothetical participant. This is the generalization of the never taker-,

always taker-, complier-, defier- distinction from the binary case. In a continuous setting there is

an uncountable number of such response profiles, not just four. Each of these profiles is specified

by one path of the stochastic processes XZ and YX of the first and second stage of the instrumental

variable model. One path, i.e. response profile, XZ(w) in the first stage prescribes the hypothetical

participant which amount of the treatment X she takes for every possible initially assigned amount

Z = z. For instance, the path XZ(w) corresponding to the classical never taker is the one which

is always zero for each value of Z. The path XZ(w) corresponding to the classical complier

would coincide with the 45◦ line, since this response profile consists of taking exactly the amount

initially assigned. Analogously, one path, i.e. response profile, YX(w) describes the reaction Y the

hypothetical participant would have for every possible amount X = x of the treatment.

The continuity assumption is actually not necessary for the approach to work. In fact, in many

randomized trials subjects are dropping out completely. In this case, the researchers conducting

these experiments would want to allow paths with jumps, in particular paths which jump to zero

and stay there (in case of a drop-out). The proposed method can incorporate these assumptions

by allowing for more general stochastic processes, modeling this behavior. 4

3.2 The theoretical result: Constructing the infinite dimensional linear pro-

grams

Based on the representation of the instrumental variable model (1), the proposed method in-

tuitively proceeds by finding an optimal composition (i.e. measure on the paths of YX and XZ

jointly) which replicates the observable distribution FY,X,Z in the data while maximizing or mini-

mizing the respective functional of interest over the paths of the counterfactual process YX .

3.2.1 Statement of the theorem and required assumptions

In addition to Assumption 1, the method requires the following assumptions.

Assumption 2 (Normalization). Y , X, and Z take values in [0, 1].
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Assumption 3 (Continuity). For some fixed real numbers α, β, γ, δ > 0 and fixed constants

Kx,Ky < +∞ the counterfactual processes YX and XZ satisfy

E(|YX=x1 − YX=x2 |α) ≤ Ky|x1 − x2|1+β and E(|XZ=z1 −XZ=z2 |γ) ≤ Kx|z1 − z2|1+δ (3)

for all x1, x2 ∈ X and z1, z2 ∈ Z.

Assumption 3 implies that almost all paths YX=x(w) are Hölder continuous14 of the order
β
α and almost all paths XZ=z(w) are Hölder continuous of the order δ

γ by an application of the

Kolmogorv-Chentsov theorem (Karatzas & Shreve 1998, Theorem 2.2.8) to stochastic processes

in random time.

Based on these assumption, the formal method can find sharp upper- and lower bounds on

functionals of the counterfactual law P(Y,X). For this, it is convenient to introduce operators

K : (W,BW) → (Y × X ,BY ⊗BX ). In this article, the focus lies on operators which take the

form of kernel operators as

KPW (Ay, Ax) := EPW [K(YX , Ay, Ax)]

=

∫
K(YX(w), Ay, Ax)PW (dw), Ay ∈ BY , Ax ∈ BX .

(4)

Assumption 4 (Objective function). For every fixed Ay ∈ BY and Ax ∈ BX , the kernel

K(YX(w), Ay, Ax) is either (i) bounded and continuous or (ii) takes the form of an indicator

function15 in its first argument.16

Important special cases for the kernel are (i) K(YX(w), Ay, Ax) := 1Ay {YX∈Ax(w)}, and (ii)

K(YX(w), Ay, Ax) := K(YX(w), Ax) := YX∈Ax(w). Optimization in case (i) for given Ay and

Ax results in bounds on the counterfactual probabilities specified by the events Ay and Ax,

while optimization in case (ii) will produce bounds on the counterfactual average of Y and the

probability that x ∈ Ax. Note in particular that the operator defined in Assumption (4) is linear,

as its domain is the space of all (probability) measures on the unit interval (W,BW).17 In fact, by

the classical Riesz representation result (Aliprantis & Border 2006, chapter 14), the space of all

Borel measures on (W,BW) is the dual space of all bounded and continuous functions W. Based

on these assumptions, the following is the main theoretical result of this article.

14Hölder continuity is a refinement of continuity. A function f : X → Y is Hölder continuous of order α > 0 if
there exists a constant 0 < c < +∞ such that ‖f(x1)− f(x2)‖Y ≤ c‖x1 − x2‖

α
X for some norms ‖ · ‖X , ‖ · ‖Y on X

and Y. In particular, a Hölder continuous function of order 1 is Lipschitz continuous.
15The indicator function is defined as 1G(x) = 1 if x ∈ G and 1G(x) = 0 if x /∈ G.
16For fixed Ay and Ax, the kernel K maps K : [0, 1]→ R.
17The approach in this article can handle nonlinear functionals K(PW , Ay, Ax) equally well. In this case, the

practical solution approaches derived further down would require nonlinear techniques like stochastic gradient
descent. The focus is on linear objective functions as they cover a wide range of problems of interest and allow for
straightforward and efficient solution concepts in practice.
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Theorem 1 (Infinite dimensional linear program for bounds on functionals of P(Y,X)). Let As-

sumptions 1 – 4 hold. Then (lower/upper) bounds on functionals of the counterfactual distribution

P(Y,X) for fixed Ay and Ax can be obtained as solutions to the following infinite dimensional linear

programs:

minimize/maximizePW∈P∗(W) KPW (Ay, Ax)

s.t. FY,X,Z(y, x, z) = PW (YX ∈ [0, y], XZ ∈ [0, x], Z ∈ [0, z])
(5)

for all (y, x, z) ∈ [0, 1]3. FY,X,Z is the distribution function corresponding to the observable law

PY,X,Z . P∗(W) denotes the set of all measures on (W,BW) which induce stochastic processes

satisfying Assumption 3.

3.2.2 Intuition of the theorem and explanation of assumptions

Theorem 1 is the main theoretical result of this article. The intuitive idea for its construction is

as follows.

The goal is to obtain functionals on the counterfactual law P(Y,X), which does not coincide

with the observable PY,X because of the endogeneity problem described earlier. The endogeneity

problem does not affect the joint distribution of PY,X,Z , however, so that the latter gives correct

information on the problem. Moreover, in light of Proposition 1, one can view the counterfactual

laws P(Y,X) and P(X,Z) as the laws corresponding to the counterfactual stochastic processes YX

and XZ , which together induce a joint counterfactual process [Y,X]∗Z under the exclusion- and the

independence restriction of model (1). Now in order to obtain bounds on the respective functional

on P(Y,X) one wants to find the optimal combination of counterfactual processes YX and XZ whose

induced joint process [Y,X]∗Z has joint law P(Y,X,Z) which coincides with the observable joint law.

“Optimal combination of counterfactual processes” means finding an optimal measure PW on

the set (W,BW), which induces a joint process [Y,X]∗Z that maximizes (for an upper bound) or

minimizes (for a lower bound) the functional of P(Y,X) of interest.

The setting of a randomized controlled trial with imperfect compliance provides a natural

explanation of the idea.

Running example (2). Recall that a path XZ(w) of the counterfactual process XZ describes

one response profile of a hypothetical participant for all possible states z ∈ Z this participant could

potentially face. Similarly for a path YX(w). The idea for Theorem (1) is then to find an optimal

mixture of response profiles for this hypothetical participant that maximizes (for an upper bound)

or minimizes (for a lower bound) the objective function of interest subject to the constraint that

this mixture of response profiles perfectly replicates the empirically observed mixture of response

profiles of all actual participants, which is captured by FY,X,Z . 4

Assumption 2 is a normalization of the observable random variables. It implies that all vari-

ables are univariate. This assumption is in fact not necessary for Theorem 1 to hold, but it

12



simplifies the exposition and mathematical derivations. One can extend Theorem 1 straightfor-

wardly by allowing for multivariate Y , X, and Z, in which case the counterfactual processes YX

and XZ would actually be random fields. In practice, the variables are currently required to be

univariate, however, as the current practical solution approach suffers from the curse of dimen-

sionality as no sparsity or factor-model assumptions are placed on the stochastic processes.18

The smoothness requirements of Assumption 3 are the only structural assumption placed

on the counterfactual processes. Again, this assumption is in fact not necessary for Theorem 1

to hold. Theoretically, one could define the paths YX(w) and XZ(w) on the space R[0,1] of all

functions from the unit interval mapping to the reals. However, this space is too big in the sense

that many sets of paths of interest, like the space C([0, 1]) of continuous functions on [0, 1], are not

measurable in it (Bauer 1996, Corollary 38.5). A “small enough” space which is still more general

than the space of continuous functions is the Skorokhod space D([0, 1]) under the Skorokhod

metric (Karatzas & Shreve 1998, p. 409), which allows for the paths to have finitely many jumps.

For all practical intents and purposes, the Skorohod space is large enough as finitely many jumps

of varying intensity are able to capture any reasonable practical response profile in general.

The smoothness requirements on the paths enter Theorem 1 via the set P∗(W). This set

restricts the possible measures PW on (W,BW) to measures which only put positive probability

on continuous paths YX(w) and XZ(w). In fact, P∗(W) is the key to introducing any other

form of assumption into the optimization problem, by restricting it to only “allowed” probability

measures. For instance, one could require the paths XZ(w) to be strictly increasing in addition to

being continuous. Then P∗(W) would only comprise those measure PW which do not put positive

probabilities on decreasing paths. This way, one can introduce any parametric or nonparametric

assumption on the model in principle, by restricting P∗(W) to only contain probability measures

PW which do not put positive probabilities on unwanted paths. In the practical implementation of

Theorem 1 below, these assumptions will be enforced by sampling paths YX(w) and XZ(w) using

one representative measure PW ∈ P∗(W). The practical analogue to Theorem 1 then naturally

only optimizes over probability measures which do not put positive probability on other paths

than those, because no other paths than the existing ones are sampled.

Also notice that there is a need for optimization in Theorem 1 in general, even though there

is an uncountable number of equality constraints in the model. To see this, recall the production

functions h(X,W ) and g(Z,W ) are not injective in W . This translates to the stochastic processes

YX(w) and XZ(w) each possessing paths which intersect in general. Now, intuitively, if the paths

YX(w1) and YX(w2) intersect at a point, it is not clear which path corresponds to what part of

the conditional distribution PY (X=x), which is just another way of stating that knowing the joint

distribution PY,X,Z does not pin down the laws P(Y,X) and P(X,Z) uniquely in general, as the

processes are dependent: YX depends on the position of Xz.
19

18One can circumvent this curse of dimensionality by placing more assumptions on the geometries of the coun-
terfactual random fields YX and XZ , like sparsity, factor structures, more smoothness, etc.

19In this respect, it is interesting to consider point-identification results from the literature on nonseparable
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In this respect, notice that the optimizations (5) need not produce a solution as the constraint

correspondence

C(FY,X,Z) := {PW ∈P∗(W) : PW (YX ∈ [0, y], XZ ∈ [0, x], Z ∈ [0, Z]) = FY,X,Z(y, x, z)}

can be empty for some FY,X,Z . This happens for instance when the observable distribution is

equivalent to a joint process [Y,X]Z with jumps, which cannot be replicated by a counterfactual

joint process [Y,X]∗Z as a combination of processes YX and XZ under the continuity Assumption

3. This is not an issue for the approach, but an actual feature, as a situation like this implies

testability of model (1). For more details, see Gunsilius (2019b).

3.2.3 Implications and corollaries of the theorem

It is imperative to notice that Ay and AX in the statement of Theorem 1 need to be fixed by the

researcher, which is why the objective function becomes a functional under the specification (4).

The solution to the optimization problems (5) then each produces a number, not a function. For

instance, solving the optimizations (5) for given Ay and Ax under specification (i) of the kernel

gives bounds on the joint probability that the outcome lies in Ay and the treatment is in Ax.

From this joint counterfactual distribution one can obtain bounds on the conditional probability

PY (X∈Ax)(Ay) that the outcome lies in Ay given that the (now exogenous) treatment lies in Ax.

In general, handling operators mapping into σ-algebras is more burdensome than operators

mapping into the real numbers. Under Assumption 2, one can change the codimension of these

operators by introducing the standard filtrations on the sets X and Z defined by

Fx := σ(YX=t, 0 ≤ t ≤ x), and Fz := σ(YX=t, 0 ≤ t ≤ x),

where σ(X) is the σ-algebra induced by the random variable X (Karatzas & Shreve 1998). Then

one can define the kernel operators K : (W,BW)→ Y ×X of the form

KPW (y, x) := EPW [K(YX , y, x)]

=

∫
K(YX(w), y, x)PW (dw), y ∈ Y, x ∈ X ,

(6)

triangular models, such as Imbens & Newey (2009). In fact, they require the production function g(z, ·) to be
strictly increasing and continuous in W . This assumption makes g injective in W . Injectivity of g(Z,W ) in W
means that the paths XZ(w) do not intersect almost surely, so that for each (y, x) there is an almost surely
unique w inducing this combination. Under some additional structural assumptions on the second stage, this would
induce identification of the latent distributions P(Y,X) and P(X,Z). Point-identification therefore is often achieved by
ruling out crossings of the paths of the counterfactual stochastic processes. Also, note that an additive separability
assumption in the unobservable error term W in the instrumental variable model (Allen & Rehbeck 2019) transforms
into other structural assumptions on the paths of stochastic processes. Consider the first stage as an example. If
the distribution of W is independent of Z and the function g in model (1) is additively separable in W , then this
introduces a stochastic process whose paths can be modeled by an additive relation. It could be interesting to link
the stochastic process representation to these types of random utility models.
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as the process YX is progressively measurable (Karatzas & Shreve 1998, Proposition 1.13). With

this set-up, the optimization of the programs (5) under the specification (i) of the kernel then

gives bound on the counterfactual probability F(Y,X)(y, x) that the outcome lies in the interval

[0, y] and the treatment lies in the interval [0, x].20

Different choices of kernel functions in Theorem 1 lead to different causal effects. The following

are two examples.

Corollary 1 (Bounds on the ATE). Theorem 1 provides upper and lower bounds on E[Y 1Ax{X}]−
E[Y 1A′x{X}] for two events Ax and A′x by changing the kernel operator in specification (ii) to

K(YX(w), Ay, Ax)−K(YX(w), Ay, A
′
x) := YX∈Ax(w)− YX∈A′x(w).

Based on this, upper and lower bounds on the ATE

E[Y |X ∈ Ax]− E[Y |X ∈ A′x]

can be derived by conditioning.

Corollary 2 (Bounds on distributional effects). Theorem 1 provides upper and lower bounds on

P (Y ∈ [0, y], X ∈ [0, x])−P (Y ∈ [0, y], X ∈ [0, x′]) by changing the kernel operator in specification

(i) to

K(YX(w), y, x)−K(YX(w), y, x′) := 1[0,y]{YX∈[0,x](w)} − 1[0,y]{YX∈[0,x′](w)}.

Based on this, upper and lower bounds on the distributional effect

P (Y ≤ y|X ≤ x)− P (Y ≤ y|X ≤ x′)

can be derived via conditioning.

Quantile effects cannot be established directly through the form of the objective functions,

as they require knowledge of the complete counterfactual distribution. It is, however, possible to

approximate bounds on the counterfactual quantile functions by solving the optimization problems

(5) under the specification of the kernel proposed in Corollary 2 for many different values y and a

fixed value x0. This will give an approximation of the upper- (for maximization) and lower- (for

minimization) “envelopes” of the counterfactual distribution F(Y,X)(y, x0). Respective bounds on

the quantile distributions can then be obtained by inverting these envelopes.

20Recall that under Assumption 2 the codomains for Y , X, and Z are [0, 1]. Also, here and throughout the
article, F(Y,X) denotes the counterfactual distribution corresponding to the counterfactual measure P(Y,X).
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4 Implementing the method in practice

The programs (5) in Theorem 1 are infinite dimensional—as one is optimizing over probability

measures on paths of stochastic processes—with a continuum of equality constraints. Finding

optimal measures over a path space is a general mathematical and computational problem which

shows up in many guises. Examples are general stochastic control- and reinforcement learning

problems with a continuous action space as well as optimization routines via Feynman’s path

integral formulation (Kappen 2007). Existing practical solution approaches usually exploit a

Markovian- or martingale structure in the problem and apply dynamic programming ideas. In

contrast, the programs (5) do not rely on a dynamic structure as these stochastic processes are

defined in a “counterfactual space”. This precludes the use of existing approaches for solving

them.

This section therefore introduces a novel probabilistic approach to solve the problems (5) ap-

proximately in practice with probabilistic finite sample guarantees for the validity of the approxi-

mation.21 The method proceeds by sampling shape preserving bases of the path space and solving

semi-infinite dimensional analogues of (5) over this sample of basis functions. The introduction

of randomness via the sampling of basis functions is what provides finite sample guarantees for

the method to approximate the solution to the infinite dimensional problem. The reason for this

is twofold. First, by using shape preserving bases to approximate the respective functions, one

can obtain bounds on how accurate the approximation is for a given sample of basis functions

(Anastassiou & Yu 1992b). Second, the randomness introduced by sampling permits the use of

standard large deviation theory (Vapnik 1998, Chapter 5) which provides probabilistic guarantees

for the approximation of (5) via a random sample.22

Note in this respect that standard estimation approaches—for example via the classical method

of sieves (Chen 2007)—most likely cannot be employed for solving (5). The reason is that (5) are

not classical estimation problems. In fact, the estimation problem which estimation procedures

are designed to solve is only captured by the constraint in problems (5). On top of this, there

is another optimization to solve in a “counterfactual space” for which no data exist to perform

estimation procedures. To expand on this, note that one could try and use standard regression

approaches to approximate just the constraint by using a form of nonparametric regression. That

is, one could relax the equality by letting both sides deviate a little in some functional norm

like the L2-norm, and then obtain a measure PW which solves the approximate constraint. This

approach would result in a unique PW , ignoring the actual counterfactual optimization problem.

Even though standard estimation approaches do not work, the intuition for using basis functions

21One can in fact only approximate the solutions to (5) (Kappen 2007, p. 152) since one cannot solve the problem
over all possible paths on a space.

22The sampled basis need not be shape-preserving. Any standard basis used in the method of Sieves, like
(trigonometric) polynomials, splines, wavelets, or artificial neural networks work (Chen 2007). The focus is on shape-
preserving wavelets, because they allow the introduction of further assumptions besides continuity like monotonicity
or convexity.
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as in Anastassiou & Yu (1992b) and Chen (2007) to solve the problem proves useful.

4.1 Construction of the semi-infinite dimensional approximations

The idea is to approximate the infinite dimensional problems (5) by the semi-infinite dimensional

analogues

min/max
P̂W∈P̂∗(W)

1

l

l∑
i=1

K̃(ỸX̃(i), Ay, Ax)
dP̂W

dP̂0

(i)

s.t.

∥∥∥∥∥FY,X,Z − 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), ·, ·, ·, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

≤ ε

(7)

for some small ε > 0 which should be chosen based on finite sample properties.23

The idea underlying the approximations (7) is to sample a number l of basis functions which

approximate the path space of the processes YX and XZ . Of particular convenience are basis func-

tions used in Sieves estimation such as polynomials, trigonometric polynomials, splines, wavelets,

and neural networks (Chen 2007). Results for how well these basis functions can approximate

a given function have been derived (Chen 2007, p. 5573), which are important for establishing

the probabilistic approximation guarantees in Theorem 2 later on. This articles works with a

shape-preserving wavelet basis, which is defined as

ϕκj(x) := 2
κ
2ϕ(2κx− j) κ, j ∈ Z

with mother wavelet ϕ : R→ [0, 1] of the form

ϕ(x) :=


x+ 1 if −1 ≤ x ≤ 0

1− x if 0 < x ≤ 1

0 otherwise

.

Based on this the notation for the paths sampled via this wavelet basis for fixed dilation κ is

Ỹ κ
X̃=x

(i) :=

∞∑
j=−∞

αj(i)ϕκj(x) and X̃κ
Z̃=z

(i) :=
∞∑

j=−∞
βj(i)ϕκj(z),

where the sums in the definition are both finite since the unit interval is bounded.

This wavelet basis preserves shapes in the sense that an approximation of a monotone (con-

vex) function via this basis will itself be monotone (convex), see Anastassiou & Yu (1992b) and

23Rewriting the programs (7) in their Lagrangian form later on will reveal that ε fulfills the same purpose as a
penalty term/Lagrange multiplier for the constraint. In this sense, ε is a penalty parameter of the program which
needs to be chosen appropriately. See the next section for a discussion.
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Anastassiou & Yu (1992a).24 This property is convenient as it permits to introduce additional

structural assumptions on the model in a straightforward way by sampling only wavelets which

lead to a certain shape of the paths. Furthermore, one can derive, for any given dilation κ, the de-

gree of approximation of the wavelet basis to some function with a given modulus of continuity25

(Anastassiou & Yu 1992b, Theorem 1). In principle, summing over all κ ∈ Z will replicate any

possible function in L2, but the approximation guarantees for fixed κ already imply that choosing

a large enough dilation can give good approximations to “regular” functions, where regularity is

defined via their modulus of continuity. In the following, a fixed κ is chosen and the dependence

of ỸX̃=x(i) and X̃Z̃=z(i) on κ is made implicit.26

The dependence of ỸX̃=x(i) and X̃Z̃=z(i) on the index i, which indexes the elements in the

sample of basis function shows that the problems (7) are indeed semi-infinite dimensional. In

particular, the index i now runs over finitely many elements l and replaces the variable w ∈ W
on the state space of PW . In this respect, the term dP̂W

dP̂0
(i) is fundamental. In particular, the

empirical sampling law P̂0 ∈ P̂∗(W) is one representative law on the paths of stochastic processes,

which is used for sampling the basis functions. The optimization the proceeds over all P̂W which

are absolutely continuous with respect to P̂0, so that dP̂W
dP̂0

(i) is the Radon-Nikodym derivative.

This construction arises naturally, as the empirical sampling law P̂0 determines the universe of

all l paths, over which an optimal law P̂W will be chosen to solve the programs. P̂W must by

construction be absolutely continuous with respect to P̂0 as it can only place probabilities on the

i sampled paths, which have been determined via P̂0. In other words, P̂∗(W) is the set of all

probability measures which do not put positive measure on paths other than the l paths sampled

via P̂0. This implies an additional assumption on the theoretical sampling law P0, for which P̂0 is

its “finite sample” approximation:

Assumption 5 (Representative P0). The sampling law P0 is a representative law of P∗(W) in

the sense that (i) P0 ∈ P∗(W) and (ii) every PW ∈ P∗(W) is absolutely continuous with respect

to P0 with Radon-Nikodym derivative satisfying 0 < cRN ≤ dPW
dP0
≤ CRN < +∞ for fixed constants

cRN and CRN .

Assumption 5 is the theoretical analogue to the fact that all P̂W are absolutely continuous with

respect to P̂0 by construction.27 For the theoretical data-generating process, this is not necessarily

24By choosing appropriate coefficients αj(i) and βj(i), one can potentially introduce different shape assumptions
beyond monotonicity and convexity.

25If a function f satisfies |f(x)− f(x′)| ≤ ωf (|x−x′|) for all x, x′ in its support and some function ωf : [0,+∞)→
[0,+∞), then this ωf is the modulus of continuity of f .

26In practice, one can sum over several levels κ, which would only improve the approximation. The subsequent
proofs work with just one fixed κ, so that they give a “worst case” approximation for a given κ. Furthermore,
note that one can use any sieve basis to generate paths. The programs will then automatically adjust to these
sampled paths. The proofs in this article work for any other of these Sieve bases, as long as results about their
approximation properties exists as in Chen (2007, p. 5573).

27In fact, it requires something slightly stronger, namely that all Radon-Nikodym derivatives in this set are
uniformly bounded. This assumption, in contrast to the mere absolute continuity assumption, will yield “hard”
finite sample approximation results, compared to only only soft convergence results.
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the case, even under Assumptions 3. However, since by the finite dimensional construction all

measures P̂W are automatically absolutely continuous with respect to P̂0, theoretical measures PW

which are not absolutely continuous to P0 can never be detected. This implies that Assumption 5

is non-testable. It is an assumption on P∗(W) which necessarily follows from the approximation

argument.

The function Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η) can either be the product of indicator functions

in the constraint of (5), i.e.

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η) = 1[0,y](ỸX̃(i)))1[0,x](X̃Z̃(i))1[0,z](Z̃(i))

in

PW (YX ∈ [0, y], XZ ∈ [0, x], Z ∈ [0, z]) =

∫
1[0,y](YX(w))1[0,x](XZ(w))1[0,z](Z(w))PW (dw)

or an approximation of this product of indicator functions by some sigmoid functions, like the

logistic function S(x) = exp(x)
exp(x)+1 . For example, one can approximate 1[0,y]{YX(w)} arbitrarily

well by

S(YX(w), y, η) :=
1(

1 + exp
(
−η
(
YX(w) + η−1/2

))) (
1 + exp

(
−η
(
y − YX(w) + η−1/2

)))
as η → +∞. One can use this approximation for all three indicator functions and take the

product of these three logistic functions. For notational purposes, Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η)

denotes this product, where the same η > 0 is chosen for all three approximations.28 The kernel

K̃(ỸX̃(i), Ay, Ax) coincides with the kernel K(ỸX̃(i), Ay, Ax) when the latter is bounded and

continuous (for instance when K(ỸX̃(i), Ay, Ax) = ỸX̃∈Ax(i)) and is a smooth approximation to

K(ỸX̃(i), Ay, Ax) when the latter takes an indicator function form. In that case, the variable

η > 0 which controls the degree of approximation, will be made implicit to save on notation.

Approximating the constraint in (5) by a relaxed version via the L2-norm is convenient for three

main reasons. First, the probabilistic approximation results derived momentarily allow control

of the approximation of the theoretical constraint in (5) in L2-norm, which makes it convenient

to connect the value ε > 0 to the sample l and the modulus of continuity of the observable

distribution FY,X,Z . Second, for estimation of (7) one replaces the theoretical data-generating

process FY,X,Z by an estimator F̂Y,X,Z , which could lead to the constraints not being satisfied

with respect to F̂Y,X,Z , even though they might be with respect to FY,X,Z . A slight relaxation of

28In the practical implementation of the method in the next section, where the objective is also linear, the
constraint uses the indicator functions and not their approximations, as the problem is easier to handle from a
computational perspective in this case: the use of indicator functions introduces sparse matrices in the program
which can be handled efficiently. However, more complicated and possibly nonlinear objective functions might
necessitate more general tools like stochastic gradient descent approaches to solve these programs, which most
often require smooth constraint- and objective functions. In such a case it would be imperative to approximate the
indicator functions by sigmoid functions.
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these constraints guards against this possibility. Thirdly, providing inference results on the finite

dimensional version of problem (7) is fundamentally easier with the relaxed constraint.

One more assumption is needed before stating the probabilistic approximation theorem. In

particular, one needs to strengthen Assumption 4.

Assumption 6 (Strengthening of Assumption 4). For every fixed Ay ∈ BY and Ax ∈ BX , the

kernel K(YX(w), Ay, Ax) is either

(i) bounded and continuously differentiable in YX(w) with finite V C dimension29 or

(ii) takes the form of an indicator function, i.e. 1G(YX(w)) for some event G.

Assumption 6 is a strengthening of Assumption 4 in that it requires general kernels to have

finite VC dimension and to be continuously differentiable instead of merely continuous. Requir-

ing a finite VC dimension is overly restrictive, in fact, as one could allow for weaker restrictions

and still obtain the same probabilistic approximation guarantees30; the concept of VC dimension

is well-understood in econometrics, however, which makes it a convenient assumption. In this

respect, note that indicator functions of the form 1[0,y](YX(w)) have VC dimension equal to 2.

Logistic approximations to indicator functions of the form S(YX(w), y, η) have finite VC dimen-

sion as proved in Lemma 1 in the appendix, so that indicator functions as well as their logistic

approximation of the form presented here will lead to probabilistic approximation guarantees.

Furthermore, the set of kernels K(YX(w), x) := YX∈[0,x](w) has finite VC dimension (Vapnik

1998, p. 192), which shows that the now following probabilistic approximation result holds for the

average treatment effect in particular.

Theorem 2 (Probabilistic approximation via the “sampling of paths”-approach). Under As-

sumptions 1 – 3, 5, and 6, there exists for every ε > 0 a sample size

N 3 l∗ := l (ε, η, κ, α, β, γ, cRN , CRN , δ, dV C(Θ), dV C(K), ρ)

such that with probability 1− ρ,

max{|V ∗ − Ṽ ∗|, |V∗ − Ṽ∗|} < ε,

where V ∗, V∗ are the maximal and minimal values of (5) and Ṽ ∗ and Ṽ∗ are the maximal and

minimal values of (7). Here, η > 0 is the degree of approximation of the logistic function

29The VC dimension dV C(S) of a set S of indicator functions is equal to the largest number h of vectors that
can be separated into two different classes in all the 2h possible ways using this set S of functions (Vapnik 1998,
p. 147). The concept of VC dimension also makes sense for more general functions than indicator functions.

30As an example, one could only require that the annealed entropy of the set of indicators (Vapnik 1998, p. 191)
of K has sublinear growth in l, which is a sufficient and necessary restriction for the probabilistic approximation
to hold (Vapnik 1998, Theorem 15.1), but this assumption would require introducing a new concept compared to
the well-known concept of VC dimension.
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to the indicator function, κ is the dilation parameter of the shape-preserving wavelet, α, β, γ,

and δ are the smoothness coefficients from Assumption 3, cRN and CRN are the bounds on the

Radon-Nikodym derivatives in Assumption 5, and dV C(Θ) and dV C(K) are the VC dimensions

of Θ(YX(w), XZ(w), Z(w), y, x, z, η) and K(YX(w), Ay, Ax).

The actual requirement l∗ must satisfy for this approximation is max {D(l∗),D′(l∗)} < ε, where

D(l) := c(η) +C(η)22
2(−κ+1)βγ+δα

α+γ +
(CRN − cRN )2

l

[
dV C(Θ)

(
ln

(
2l

dV C(Θ)

)
+ 1

)
− ln(ρ/4) + 1

]
and

D′(l) := c′(η)+C ′(η)22
2(−κ+1)βγ+δα

α+γ +
(CRN − cRN )2

l

[
dV C(K)

(
ln

(
2l

dV C(K)

)
+ 1

)
− ln(ρ/4) + 1

]
are the approximation bounds for the constraint and the objective function, respectively.

Theorem 2 provides a lower bound on the number of sampled paths l for the semi-infinite

program to provide a good approximation to the infinite dimensional program with “high proba-

bility”. This number l in general depends on all parameters introduced to approximate the infinite

programs (η, κ, dV C(Θ), dV C(K)), the assumed smoothness of the paths (α, β, γ, δ), as well as

the probability ρ and the accuracy ε of the approximation. This is the most general form of this

approximation result, as it works with the logistic approximations to the indicator functions and

hence relies on the VC dimension of these functions. In the case where constraint and objective

function kernel are indicator functions, dV C(Θ) = dV C(K) = 2. This also shows that one can use

any approximation to the indicator function with finite VC dimension. Lastly, κ is introduced

by using the above mentioned shape preserving wavelets. When using a different sieve basis for

which approximation results are known (e.g. Chen 2007, p. 5573), l∗ will depend on a different

approximation parameter than κ.

The basic idea underlying Theorem 2 seems new in the mathematical literature on approxi-

mating infinite dimensional program by semi-infinite dimensional programs. While articles which

employ probabilistic arguments exist in the general mathematical literature on function approx-

imation (e.g. Girosi 1995, Pucci de Farias & Van Roy 2004), Theorem 2 seems to be the first

in using these arguments for solving optimization problems on infinite dimensional path space,

especially without the introduction of dynamic assumptions (Kappen 2007). For these types of

problems, the randomness introduced is actually desired, because one can never optimize over the

complete path space directly and is hence forced to sample. In this respect, note that standard

solution concepts for infinite dimensional programs work on a Euclidean state space (Anderson

& Nash 1987), so that sampling is not actually necessary for solving these programs. In contrast,

a sampling approach appears to be the only fruitful approach towards solving problems on path

spaces of similar generality to (5) at all in practice.
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4.2 Inference results

The actual statistical randomness follows from approximating the population distribution FY,X,Z

by a finite-sample estimator F̂Y,X,Z;n, potentially smoothed via some bandwidth hn, where n

denotes the size of this sample.31 This subsection introduces large sample results which enable

the researcher to perform standard inference on the solution of the programs (7). These results

are only derived for each bound separately. In order to derive inference bounds on the whole

identified set, one can use well-established results from the literature, such as Imbens & Manski

(2004) and Stoye (2009) as the outcomes of interest are univariate and hence form an interval.

Another point worth mentioning: even though the programs (7) have relaxed constraints, it

could potentially still be the case that for very small ε > 0 there exist data-generating processes

FY,X,Z for which no P̂W ∈ P̂∗(W) exists which satisfies the constraint. Still, as mentioned

before, a FY,X,Z which cannot be replicated by some P̂W directly introduces testable assumptions

on the model (Gunsilius 2019b). In this sense the programs (7) could potentially be used for

deriving general tests for instrument validity in practice. Since the focus of this article is on

estimation of bounds, it is convenient to introduce an assumption on the data-generating process

which guarantees that the constraint is non-empty. In the following, FY,X,Z denotes the set of all

cumulative distribution functions on [0, 1]3 equipped with the L∞([0, 1]3)-norm.

Assumption 7 (Non-emptiness of the constraint set). For given FY,X,Z ∈ FY,X,Z there exists a

neighborhood U ∈ FY,X,Z such that the constraint set C̃ :=P̂W ∈ P̂∗(W) :

∥∥∥∥∥FY,X,Z(y, x, z)− 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

≤ ε


is non-empty for some small ε > 0 and all F ′Y,X,Z ∈ U .

Theorem in Gunsilius (2019b) contains a smoothness assumption on FY,X,Z which guarantees

that the theoretical constraint in (5)—and therefore the constraint in (7) for every ε > 0 and

large enough sample l—is satisfied. Since this is just one possible sufficient condition for the

constraint correspondence to be non-empty among many, and since emptiness of the constraint

correspondence for some FY,X,Z would generate new knowledge on the model which would be

beneficial in practical purposes, it seems to be warranted to write Assumption 7 as a high-level

assumption.

In the following, F̂Y,X,Z;n denotes the standard empirical distribution function and ˆ̃V∗(F̂Y,X,Z)

and ˆ̃V ∗(FY,X,Z) denote the minimal and maximal value functions of (7). The first result concerns

31The theoretical results in this section are derived for the standard empirical cumulative distribution function
function F̂Y,X,Z;n. They extend straightforwardly to smoothed estimators F̂Y,X,Z;hn . For this, all one has to do in
the proofs is to replace the classical Glivenko-Cantelli and Donsker theorems by analogous versions for smoothed
empirical processes. These results (and the corresponding weak assumptions) are contained in Giné & Nickl (2008)
for instance.
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the consistency of these value functions. The idea is to use the standard Glivenko-Cantelli the-

orem (van der Vaart 2000, Theorem 19.1) which provides the convergence F̂Y,X,Z;n to FY,X,Z in

L∞([0, 1]3)-norm. Then the Berge Maximum theorem (Aliprantis & Border 2006, Theorem 17.31)

provides the consistency results for the value function.

Proposition 2 (Consistency). Under Assumptions 1 – 3 and 5 – 7 it holds that

| ˆ̃V∗(F̂Y,X,Z;n)− ˆ̃V∗(FY,X,Z)| → 0 and | ˆ̃V ∗(F̂Y,X,Z;n)− Ṽ ∗(FY,X,Z)| → 0

almost surely as n→∞.

The derivation of the large sample distribution of ˆ̃V ∗ and ˆ̃V∗ follows form the classical Donsker

theorem (van der Vaart 2000, Theorem 19.3) in combination with standard sensitivity arguments

in optimization problems, in particular Theorem 4.26 and Proposition 4.47 in Bonnans & Shapiro

(2013), and the functional delta method (Shapiro 1991, Theorem 2.1). The formal result is

captured in the following

Proposition 3 (Large sample distribution). Under Assumptions 1 – 3 and 5 – 7 it holds that

√
n( ˆ̃V∗(F̂Y,X,Z;n)− ˆ̃V∗(FY,X,Z)) d ˆ̃V∗,FY,X,Z (GFY,X,Z ) and
√
n( ˆ̃V ∗(F̂Y,X,Z;n)− ˆ̃V ∗(FY,X,Z)) d ˆ̃V ∗FY,X,Z (GFY,X,Z ),

as n→∞.

Here, d ˆ̃V∗,FY,X,Z (F ′Y,X,Z) is the directional Hadamard derivative of ˆ̃V∗ at FY,X,Z in direction

F ′Y,X,Z , GFY,X,Z is a Brownian bridge with covariance function

CovGFY,X,Z = FY,X,Z(min{y, y′},min{x, x′},min{z, z′})− FY,X,Z(y, x, z)FY,X,Z(y′, x′, z′)

for all (y, x, z), (y′, x′, z′) ∈ [0, 1]3, and “ ” denotes weak convergence.

The directional Hadamard derivative takes the form

d ˆ̃V∗,FY,X,Z (F ′Y,X,Z) = δFY,X,ZL(P̂1, λ(P̂W ), FY,X,Z)(F ′Y,X,Z),

where L(·, ·, ·) denotes the Lagrangian of the program (7), λ(P̂1) denotes the respective Lagrange

multiplier (which is unique for given P̂1 by Proposition 4.47 in Bonnans & Shapiro 2013), and

δFY,X,ZL is the directional derivative of L in its third argument in direction F ′Y,X,Z at FY,X,Z .

Due to the generality of Assumption 6, one cannot say more in general about the form of the

Lagrangian. In the special—but frequent—case where the kernel K induces a convex functional,

the directional Hadamard derivative takes the form of an inner product (Bonnans & Shapiro 2013,

Theorem 4.24).32

32Proposition 3 works equally well with a smoothed estimator F̂Y,X,Z;hn of FY,X,Z and bandwidth hn. The only
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Proposition 3 implies that the rate of convergence is parametric, which should not be surprising

as the quantity of interest is univariate and uniformly bounded. Moreover, even though the large

sample distribution of the value functions is not a standard Brownian bridge process, it still

has a rather standard distribution from a purely statistical perspective, as it takes the form

of the first-order directional Hadamard derivative of the value function taken at FY,X,Z in the

direction of GFY,X,Z . When the optimization program is linear, these Hadamard derivatives can

be calculated analytically in the respective setting as they take the form of an optimization over an

inner product in this setting (Bonnans & Shapiro 2013, section 4.3). In addition, there are many

results in the literature (Dümbgen 1993, Fang & Santos 2018, Hong & Li 2018) which establish

bootstrap methods for estimating this type of large sample distribution in practice. In particular,

they deal with general directional Hadamard differentiability (Shapiro 1991), which conforms with

Proposition 3, so that these subsampling/bootstrap results are directly applicable to the problems

(7). These bootstrap-type arguments are convenient in models with a light computational burden

mostly. In more complex models one should use the analytically derived large sample theory.

Together, Theorem 2 and Proposition 3 give a complete picture of the approximative behavior of

the programs (7). In conjunction with these subsampling results and the existing inference results

for partial identification (Imbens & Manski 2004, Stoye 2009), the proposed method covers partial

identification, practical estimation, and inference of bounds on functionals in general instrumental

variable models.

5 Proof of concept: Bounds on expenditures

As a demonstration of its capabilities, the method is applied to estimate bounds on expenditure

differences using the 1995/1996 UK family expenditure survey. This problem is well suited for

demonstrating the method’s practical capabilities as it (i) is nonlinear with continuous variables

(Blundell, Chen & Kristensen 2007, Imbens & Newey 2009), (ii) allows to gauge if the program

actually obtains reasonable results, and (iii) provides a setting not directly related to causal

inference, showing the scope of the proposed method.

Analogous to Blundell, Chen & Kristensen (2007) and Imbens & Newey (2009), the outcome

of interest Y will be the share of expenditure on a commodity and X will be the log of total

expenditure, scaled to lie in the unit interval. The instrument used in this setting is gross earnings

of the head of the household, which assumes that the way the head of the household earns the

money is (sufficiently) independent of the household’s expenditure allocation; this instrument

is used in both Blundell, Chen & Kristensen (2007) and Imbens & Newey (2009). All three

variables are inherently continuous which makes this problem a nice setting for demonstrating

the practical implementation of the method. The sample is restricted to the subset of married and

important requirement is that the respective empirical process converges to a Brownian bridge. In the smoothed
case, these results—which allow for bandwidths obtained via cross-validation—have been derived in Giné & Nickl
(2008) for instance.
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cohabiting couples where the head of the household is aged between 20 and 55, and couples with

3 or more children are excluded. Also excluded are households where the head of the household

is unemployed in order to have the instrument available for each observation. The final sample

comprises 1650 observations.

The only structural assumption upheld on the instrumental variable model is continuity, i.e. h

and g are continuous functions in X and Z, respectively. This is a natural assumptions since Engel

curves are usually believed to be continuous. Beyond this, no other structural assumptions are

introduced. The most general current approaches either require continuity and strict monotonicity

of g (Imbens & Newey 2009) or of h (Blundell, Chen & Kristensen 2007) in the unobservable

W . In contrast, the current method does not require any monotonicity assumptions and hence

intuitively gives an indication of how much information is available in the data to solve this

problem. Surprisingly, there seems to be a substantial amount of information, as the obtained

bounds indicate that food is a necessity- and leisure is a luxury good without any assumptions on

the model besides continuity. Furthermore, when introducing monotonicity assumptions in the

observable variables, the bounds become very tight, showing the identificatory strength of these

assumptions in this setting. All of these results are contained in the following two subsections.

5.1 Computational approach

The programs (7) are semi-infinite programs (Anderson & Nash 1987), which naturally reduce

to finite dimensional problems in practice by approximating the space [0, 1]3 where Y , X, and Z

live. One can do this in two general ways. The first is to simply evaluate F̂Y,X,Z;n on the values

taken by the sample (Yi, Xi, Zi)i=1,...,n. The second is to evaluate F̂Y,X,Z;n on a finite grid that

spans [0, 1]3. This article focuses on the latter part as a grid approach gives more flexibility with

respect to the computational requirements: one can make the grid coarser or finer, depending on

the available memory. Throughout this section, the index ι captures the degree of approximation

of the grid. For instance, ι = 11 means that this approximation decomposes the unit interval into

11 points 0, 0.1, 0.2, . . . , 0.9, 1, which will be taken to be equidistant without loss of generality.

Also, all three intervals for Y , X and Z are decomposed in the same way, so that ι is the only

necessary parameter controlling the approximation.

The practical implementation deviates in two ways from the theoretical approach. First, it

uses a smoothed variant F̂Y,X,Z;hn of the empirical cumulative distribution function, where the

bandwidth is determined via cross-validation. Heuristically, it seems as the introduced smoothness

gives slightly more robust results compared to the standard empirical cumulative distribution

function. Second, the practical implementation reduces the statistical randomness in the programs

(5) by conditioning on Z. That is, instead of replicating the distribution F̂Y,X,Z;hn in the constraint

of (5), the programs replicate the conditional cumulative distribution function F̂Y,X|Z=z;hn by the

measure PW (YX ∈ [0, y], XZ=z ∈ [0, x]) for a grid of Z-values determined by the approximation ι

of the unit interval. This reduces the computational burden of the program slightly (because one
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does not need to introduce another set of indicator functions for Z) while giving the same results

as the general version.33

Under a given finite approximation, the programs take the form

minimize/maximize
µ≥0, ~1′µ≤1

K̃ ′µ

s.t. ‖Θ̃µ− F̂Y,X|Z;hn‖
2
2 ≤ ε

(8)

where µ is a l × 1 vector which corresponds to the Radon-Nikodym derivative dP̂W
dP̂0

(i) with row-

dimension equal to the number of sampled paths l34, ~1 denotes the vector of the same dimension

as µ containing all ones, K̃ ′ is a 1 × l vector, and ‖ · ‖2 denotes the Euclidean norm.35 Θ̃ is a

ι3× l2-matrix which maps the realization of the stochastic processes to the distribution F̂Y,X|Z;hn .

The L2([0, 1]3)-norm from (7) reduces to the Euclidean norm due to the approximation of [0, 1]3

by a finite grid.

In practice, it is convenient to write the programs (8) in their penalized form as

minimize/maximize
µ≥0,~1′µ≤1

K̃ ′µ+
λ

2
‖Θ̃µ− F̂Y,X|Z;hn‖

2
2 (9)

for some penalty λ corresponding to the original constraint qualification ε > 0. Intuitively, a

larger λ corresponds to a tighter ε. The choice of the Euclidean norm ‖ · ‖2 for the constraint is

convenient, as (9) can be rewritten as

min
µ≥0,~1′µ≤1

λmin
2

µ′Θ̃′Θ̃µ−
(
λminΘ̃′F̂Y,X|Z;hn − K̃

)′
µ+

λmin
2

(
F̂Y,X|Z;hn

)′
F̂Y,X|Z;hn

min
µ≥0,~1′µ≤1

λmax
2

µ′Θ̃′Θ̃µ−
(
λmaxΘ̃′F̂Y,X|Z;hn + K̃

)′
µ+

λmax
2

(
F̂Y,X|Z;hn

)′
F̂Y,X|Z;hn ,

(10)

where λmin and λmax are allowed to be different in principle. The programs (10) are quadratic due

to the Euclidean norm used and can easily be solved. This article uses the alternating direction

method of multipliers (ADMM) (Boyd, Parikh, Chu, Peleato & Eckstein 2011 and Parikh &

Boyd 2014) for optimization. This algorithm is known to converge rather quickly to reasonable

approximations of the optimum, which makes it a perfect tool for this purpose. The algorithm

requires two more parameters, the augmented Lagrangian parameter ρ and an over-relaxation

33For the practical estimation of F̂Y,X|Z=z;hn the method uses the “np”-package in R (Hayfield & Racine 2008)
with a standard cross-validated bandwidth.

34Note that all elements in µ must lie in [0, 1], as dP̂W

dP̂0
(i) is defined on the finite and discrete space of l paths

which were sampled by some P̂0. This means that dP̂W

dP̂0
(i) can only put non-negative probabilities of at most one

on the occurrence of each path. Intuitively, this follows from the fact that dP̂W

dP̂0
(i) is a probability mass function.

These bounds on µ are included as additional constraints using ~1.
35A′ denotes the transpose of the matrix A.
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parameter α, which control the convergence of the ADMM algorithm to the optimum. In practice,

an over-relaxation parameter of α = 1.7 and an augmented Lagrangian parameter of ρ between

100 and 500 leads to fast and robust convergence.

The computational bottleneck in a practical implementation is the construction of the matrix

Θ̃, whose dimension grows polynomially with the granulation of the grid ι and the number of paths

sampled l. In the case where (5) and a fortiori (7) and (8) are have linear objective functions, it

is convenient to let Θ̃ take the form of a binary sparse matrix: for each point (yι, xι, zι) ∈ [0, 1]3

in the grid a given combination of paths YX(i) and XZ(i) either gets assigned a 0 if they jointly

“do not go through” the intervals [0, yι] × [0, xι] for given values zi or a 1 if they jointly do.36

This sparseness is a blessing as sparse matrices can be stored efficiently. In addition, the process

of setting up Θ̃ can be parallelized, which abates the computational costs even further if the

researcher has access to several cores.

In many cases, however, a researcher might only have access to computational resources with

very limited working memory. In such situations, it is still possible to apply the proposed method

by a “sampling trick” which trades off memory requirements for time. In particular, the idea is

to iteratively (i) sample with replacement a relatively small initial number l0 of paths (depending

on the available memory), (ii) optimize the programs (10) on this sample, (iii) obtain the value

functions as well as the optimizers µ, (iv) drop all paths which were assigned a probability of

(close to) 0 by the optimizer µ, and (v) sample another relatively small number ls, add these paths

to the already existing paths and go back to (ii). The idea of this “sampling trick” is that paths

which were assigned a probability of (close to) 0 by the optimal µ do not matter for the optimal

value. By dropping these paths before sampling new ones, the memory requirements do not grow

or only grow modestly in practice—at the additional cost of having to run this optimization for

many iterations.37

When applying this sampling trick, the solution will be expressed as a solution path over the

sampling iterations. This solution path in general will be erratic due to the nature of the sampling

approach, but has the added benefit over the “static” direct method where all relevant paths are

sampled immediately that one can gauge if the solutions “converge” to some stable limit after a

“burn-in” period. This convergence relies on the choice of the penalty parameter λ. The intuition

for this is that for a small sample ls in practice the constraints in (10) will be overdetermined and

will not admit a solution in general. So the larger λ is chosen, the more it forces the optimizer

µ to replicate the observable F̂Y,X|Z;hn . In fact, in the limit λ → +∞, the program ignores the

objective function. On the other hand, if λ is too low, the program ignores the constraint, which

will always result in trivial bounds. This implies, however, that there exists a range of λ-values

36In the case where the indicator function in the constraint (5) is approximated by a logistic function, the matrix
Θ̃ is no longer binary sparse.

37Discarding elements ex-post in optimization routines is not new. For instance Wu, Fang & Lin (2001) use
discards in solving a related optimization to the proposed one, the general capacity problem on Euclidean state
space.
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Figure 1: Convergence of upper and lower bounds on the counterfactual probability
FY (X)=0.75(0.75) in the household expenditure example for a coarse approximation of the unit
interval. Here, Y is the relative expenditure of a household on leisure and X is the overall ex-
penditure of the household. The penalties are λ = 100 (top) and λ = 600 (bottom) for a coarse
approximation ι of length 5 of the unit interval, i.e. a decomposition 0, 0.25, 0.5, 0.75, 1. 16 new
paths are sampled at each iteration. The top panels show convergence of the algorithm, whereas
the algorithm does not converge for the bottom panels. The value in the top left panel is nontrivial
at 0.065.

for which constraint and objective function are balanced off, which provides the correct solutions.

Figure 1 depicts the behavior of the solution paths of this “sampling trick” in a stylized setting

of the household expenditure application where the coarseness of the approximation of the unit

interval makes it possible to sample all possible paths.38

38The bounds are enormous, which is due to the coarse approximation of the unit interval, but surprisingly
non-trivial, as the lower bound is roughly 0.065. This shows that the method can produce nontrivial bounds even
in extremely coarse approximations of the unit interval. In the actual application below, a finer approximation is
chosen which results in considerably tighter bounds.
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In this form, these solution paths are reminiscent of the solution paths of regularized linear

programs such as LASSO. The difference, however, is that the paths induced by this program are

for a fixed λ, while the actual LASSO solution paths are traced out while varying λ. In order to

have an analogue of the LASSO solution paths in the current method, one would have to solve the

program for many different values of λ, which would generate a system of solution paths. Then

one could choose the largest lambda for which the corresponding solution path converges to a

stable value. In the following application a λ with value 1 seems to provide this.39

5.2 Estimating qualitative bounds on household expenditures

This application not only serves as a demonstration of the capabilities of the method, but also

a sanity check. In particular, the method should produce results which show that food is a

necessity- and leisure is a luxury good, as these are well-established economic facts. Note that

a sanity check is required as the method works in counterfactual space, so that it is not clear

how to set-up Monte-Carlo simulations which allow to check the estimation of the counterfactual

bounds. In fact, this application is actually more challenging than a hypothetical Monte-Carlo

approach, as the method needs to replicate known facts on real data under minimal assumptions

(Advani, Kitagawa & S loczyński 2019). A priori, it is not even clear that something like this

should be possible with any method. The fact that this method does provide informative bounds

is a testament to its potential usefulness.

Therefore, in the following the focus will be on the outcomes food and leisure. Figure 2

depicts the solution paths for obtaining bounds on the counterfactual difference FY (X=0.75)(0.25)−
FY (X=0.25)(0.25) for a reasonably fine approximation of the unit interval into 17 equidistant points

(which corresponds to a dyadic approximation of order 4).

Here the penalization parameters λmin and λmax are both equal to 1, because the grid is now

much finer than before. Remarkably, the bounds in this setting are qualitatively informative for

the problem. The left panel depicts the households’ expenditures on leisure and the right depicts

their expenditures on food. The solid lines are the upper- and the lower bound for a model

without further assumptions, while the dashed lines are the upper- and lower bounds for a model

with the additional assumption that Y is increasing for leisure and decreasing for food in overall

expenditure X and that X is increasing in income of the head of the household Z.

Consider the left panel first, which depicts the expenditures on food. Here, the general bounds

seem to converge and the average values of the bounds over the last 500 iterations are 0.88 and

0.0080 for the general upper- and lower bound, and 0.67 and 0.31 for the corresponding upper-

39It is an intriguing open question how to determine an appropriate λ by data-driven methods. Note that
standard cross-validation approaches are most-likely not of help as they would not take into account the optimization
problem as simply focus on replicating the constraint. Such a data-driven method might open up the way for
solving other infinite dimensional programs on path spaces in statistics and mathematics via a “sampling of paths”-
approach.
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Figure 2: Convergence of upper (black) and lower (gray) bounds on FY (X=0.75)(0.25) −
FY (X=0.25)(0.25) for Y being the relative spending on food (left panel) and leisure (right panel).
The solid lines indicate the bounds under no additional assumptions on the model, the dashed
lines indicate the bounds under the additional assumption that Y is decreasing (food) or increas-
ing (leisure) in overall expenditure X and that X is increasing in income of the head of the
household Z. The penalty terms are λmin = λmax = 1 for an approximation of the unit interval
by 17 points. At each iteration the method samples 25 new paths, of which 6 satisfy the respective
monotonicity requirement.

and lower bounds for the monotone model. All four bounds are positive40, which indicates that

families that spend a lot in general (X = 0.75) and spend up to a quarter on food (Y ∈ [0, 0.25])

would spend much more on food relatively to overall expenditure if they spent much less overall

(X = 0.25). Put differently, families are much more likely to lie in higher quartiles for expenditure

on food if they lie in the lower quartile in overall spending than families that lie in the upper

quartile in overall spending. This is expected from a necessity good at this given level y∗ = 0.25.

Still, it is rather striking that even the model without monotonicity assumptions produces bounds

which reflect this fact via a positive lower bound. In this regard, note that the monotonicity

assumptions do not only tighten the bounds, but also vastly shift up the lower bound, indicating

that monotonicity has a strong identificatory content in this setting. In particular, they imply that

vastly more families (between 30% and 67%) in the upper quartile of overall spending (X = 0.75)

spend only up to a quarter on food compared to families in the lower quartile of overall spending

(X = 0.25). As mentioned, without monotonicity assumptions, these differences can be as high

as 88% and as low as 0.8%, but still positive.

The results for expenditure on leisure for this given scenario are similarly compelling. For a

40Overall, it is striking that the lower general bound fluctuates around zero in a way that longer average are
mostly positive.
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clear indication of a luxury good at the given levels, one would expect both bounds to be negative.

In fact, these would imply that families in the upper quartile on overall spending (i.e. X = 0.75)

who spend up to a quarter of their overall expenditure on leisure (Y ∈ [0, 0.25]) are very likely to

spend even less on leisure, relatively, if they had a negative shock to overall spending (X = 0.25).

Put differently, families should be more likely to lie in the lower quartile for expenditure on

leisure (Y ∈ [0, 0.25]) if they lie in the lower quartile in overall spending (X = 0.25) than families

that lie in the upper quartile in overall spending (X = 0.75). The obtained results do reflect

this circumstance at these levels (i.e. for y∗ = 0.25). In particular, the averages of the last 500

iterations of the general bounds are 0.030 and −0.28, implying that typically more families (up

to 28%) in the lower quartile of overall spending (X = 0.25) spend only up to a quarter of their

overall on food compared to families in the upper quartile of overall spending. It is true that

the upper bound is slightly positive, but it is sufficiently close to zero to warrant this qualitative

interpretation. What is more, the bounds for the monotonic model almost coincide and fluctuate,

indicating that monotonicity has a very strong identificatory content in this setting and that the

general bounds are actually more robust in this setting.

The value of y∗ = 0.25 was chosen to compare families who do not spend more than a quarter

of overall expenditures on the respective good overall. One can repeat this exercise for other

values y∗, for instance 0.5. Figure 3 depicts this setting.

The results for leisure are similar to the ones for y∗ = 0.25. In particular, the averages of the

last 500 iterations of the general bounds are 0.09 and −0.34, respectively, indicating the same

general result as previously. The bounds for the monotonic model are −0.19 and −0.22, showing

that once again monotonicity has a strong identificatory content by making the implications much

more pronounced. Here again, however, are the monotonic bounds rather erratic compared to

the general bounds. As a side-note: the bounds for the monotonic model first lie outside of the

general bounds, but converge to values in the interior of the latter. This follows from the fact

that the computational approach only samples a quarter of paths to be monotone, so that it takes

longer for the monotone bounds to converge.

The results for food are different to the ones for y∗ = 0.25. In fact, the averages of the last 500

iterations of the general bounds are 0.34 and −0.33, indicating that there is no clear difference

between families that spend much overall (X = 0.75) and families that do not (X = 0.25). This

is a realistic result, however, as the values y∗ = 0.5 compares families that spend up to half of

their whole income on food. Surprisingly, however, the monotonicity assumption still give the

same (albeit slightly weaker) clear results that food is a necessity good at this level. In fact, the

monotonic bounds are 0.072 and 0.0063, indicating that typically more families (between 0.63%

and 7.2%) in the upper quartile of overall spending spend up to a half on food compared to

families in lower quartiles. Again, monotonicity assumptions have a rather strong identificatory

content in this setting.

Finally, Figure ?? depicts these differences in counterfactual distributions for y∗ = 0.15, where

31



0 500 1000 1500

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Iterations

P
ro

ba
bi

lit
y 

di
ffe

re
nc

e
Bounds for food

0 500 1000 1500 2000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Iterations

P
ro

ba
bi

lit
y 

di
ffe

re
nc

e

Bounds for leisure

Figure 3: Convergence of upper (black) and lower (gray) bounds on FY (X=0.75)(0.5) −
FY (X=0.25)(0.5) for Y being the relative spending on food (left panel) and leisure (right panel).
The solid lines indicate the bounds under no additional assumptions on the model, the dashed
lines indicate the bounds under the additional assumption that Y is decreasing (food) or increas-
ing (leisure) in overall expenditure X and that overall expenditure X is increasing in income of
the head of the household Z. The penalty terms are λmin = λmax = 1 for an approximation of
the unit interval by 17 points. At each iteration the method samples 25 new paths, of which 6
satisfy the respective monotonicity requirement.

the results are even more pronounced. This is not surprising, as one compares a much smaller set

of individuals with larger differences in mass distributions as for the previous cases. It turns out,

however, that the method sampled too few decreasing paths YX that went through the interval

[0, y∗] = [0, 0.15] at vales X = 0.75 and X = 0.25, yielding upper-and lower bounds that were

constantly zero. In this case, this is not an issue, as the general bounds without monotonicity are

already informative in this setting. One can circumvent this problem by forcing the program to

sample paths that must go through the respective events of interest/

The following table provides an overview of the results at the levels y∗ = 0.15, 0.25, 0.5, 0.75.

Recall that the objective function in each case is to maximize or minimize the probability that

YX ∈ [0, y∗], so that the level y∗ = 0.75 is not likely to be informative, which is exactly what the

method finds.

Overall, these qualitative results are remarkably informative. Recall that the instrumental

variable model allows for general unobserved heterogeneity, in particular measurement error in

the treatment variable X, which indicates that the ratio of information to noise in the data

for answering these questions is rather high. These qualitative results not only corroborate the

theoretical predictions for expenditure, but also the previous results obtained in Blundell, Chen
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Figure 4: Convergence of upper (black) and lower (gray) bounds on FY (X=0.75)(0.15) −
FY (X=0.25)(0.15) for Y being the relative spending on food (left panel) and leisure (right panel).
The solid lines indicate the bounds under no additional assumptions on the model, the dashed
lines indicate the bounds under the additional assumption that Y is decreasing (food) or increas-
ing (leisure) in overall expenditure X and that overall expenditure X is increasing in income of
the head of the household Z. The penalty terms are λmin = λmax = 1 for an approximation of
the unit interval by 17 points. At each iteration the method samples 25 new paths, of which 6
satisfy the respective monotonicity requirement.

Food Leisure

y∗ Lower Lower Upper Upper Lower Lower Upper Upper
monotone monotone monotone monotone

0.15 0.26 0.50 0.78 0.84 −0.31 0 0 −0.032
0.25 0.008 0.31 0.67 0.88 −0.28 −0.18 −0.17 0.028
0.5 −0.33 0.0063 0.072 0.34 −0.34 −0.22 −0.19 0.09
0.75 −0.021 0 0 0.0075 −0.072 −0.046 0 0.0029

Table 1: Upper- and lower bounds for FY (X=0.75)(y
∗)− FY (X=0.25)(y

∗) for different values y∗.

& Kristensen (2007), Imbens & Newey (2009), and Song (2018). During their estimation process

Imbens & Newey (2009) and Song (2018) assume a univariate and strictly monotonic production

function g(z,W ) between X and W for all z and use a control variable approach to estimate

the production function h; Blundell, Chen & Kristensen (2007) estimate Engel curves semi-

nonparametrically, imposing monotonicity in the second stage, and obtaining similar results. de

Nadai & Lewbel (2016) work with an additively separable first stage, but allow for the outcome

Y to be measured with error. This is more general than what the proposed method can handle,

which can only encompass measurement error in the dependent variable, but not the outcome.
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Nonetheless, their results are similar to the ones obtained here. In this sense these qualitative

results are a “robustness check” for other non- or semiparametric approaches.

Moreover, this method makes it possible to gauge the identificatory content of monotonicity

assumptions in the current model. In all cases is this content rather high. Imposing monotonicity

makes the results much more clear-cut and in turn leads to rather strong implications in the cases

considered. In this setting, monotonicity is a plausible assumption based on economic theory, but

it is important to be aware of the strength of this assumption, which can now be gauged for the

first time.

6 Conclusion

This article introduces a novel method for estimating bounds on functionals of the counterfactual

distribution in instrumental variable models with general heterogeneity. Its main distinguishing

feature is its applicability in practice, even for the most general models with continuous treatments.

The statistical problem it is designed to solve is not a standard estimation problem. In fact, the

underlying idea is to write the respective instrumental variable model as a system of counterfactual

stochastic processes and to solve for an optimal probability measure on the paths of these processes

subject to the constraint that the law of the joint processes induced by this probability measure

replicates the observable distribution. The resulting optimization problem takes the form of an

infinite dimensional (often linear) program on path spaces.

Despite many advances in the mathematical literature for solving infinite dimensional (linear)

programs (Anderson & Nash 1987), there have been no results available for solving infinite di-

mensional programs on path spaces without making dynamic assumptions (Kappen 2007). As a

second main contribution, this article therefore introduces a novel “sampling-of-paths” approach

to solve these types of programs. The underlying idea is to reduce the infinite dimensional pro-

gram to a semi-infinite program (Anderson & Nash 1987) by only sampling a subset of the paths

over which the program optimizes. Then an approximation of the (finite dimensional) state-space

of the random variables leads to a finite dimensional program which can be solved efficiently.

The main idea for reducing the infinite dimensional program to a semi-infinite dimensional one

is to explicitly introduce randomness by sampling paths. This, in conjunction with large deviation

results (Vapnik 1998) allows to obtain probabilistic approximation guarantees of the semi-infinite

program to the infinite dimensional program. In particular, these guarantees imply a lower bound

on the number of paths required for achieving a good approximation with high probability. It is

this introduced randomness for solving general programs on paths spaces which seems novel in

the mathematical literature. In the literature on function approximation theory, there have been

approaches using large deviation results (Girosi 1995), but they eventually arrive at deterministic

approximation guarantees. One other article (Pucci de Farias & Van Roy 2004) also explicitly

introduces randomness by sampling constraints in Markovian optimization problems. The differ-
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ence between the proposed method and that article is that the proposed method works directly

on path spaces and for more general problems than Markovian optimization problems41; in fact,

it seems like a sampling approach is the only fruitful approach for solving these general problems

as one cannot optimize over all possible paths without making dynamic assumptions. Also, the

proposed method samples the whole state space, not just constraints as the method in Pucci de

Farias & Van Roy (2004).

The focus of this article is on estimation, but large sample results are derived. In fact, the

value functions corresponding to the counterfactual bounds are shown to be directional Hadamard

differentiable (Bonnans & Shapiro 2013, Shapiro 1991) and analytical expressions for the large

sample distributions are derived. The directional Hadamard differentiability allows one to use

the recently established subsampling results in the statistical literature (Dümbgen 1993, Fang &

Santos 2018, Hong & Li 2018) to perform inference on each bound separable in practice. Since the

bounds are univariate, one can then use established methods for obtaining confidence sets which

cover the whole partially identified interval (Imbens & Manski 2004, Stoye 2009).42 In this regard,

the proposed estimation method fits perfectly into the already established theory on inference in

partially identified models. Together, they enable researchers to perform causal inference in the

most general instrumental variable models.

A remaining challenge is to obtain an efficient data-driven method for choosing an appropriate

penalty term λ for the practical optimization routine. This is a similar challenge to finding

good penalty terms in high-dimensional regularized regression estimators (Hastie, Tibshirani &

Friedman 2009, chapter 18), but more general, as the setting here is infinite dimensional in a

counterfactual path space. Some heuristic guidelines can be given: one should choose the largest

λ such that the “solution paths” of the sampling method converge to a fixed value after a “burn-

in” period. If the solution path is “too erratic”, then one should lower the value of λ. Formally

establishing what “convergence”, “burn-in period”, and “too erratic” mean would not only solve

this issue, but would open up potentially novel approaches for data-driven validation approaches in

counterfactual settings. In particular, an analogue to the data-driven method for `1-regularization

in high-dimensional regression models as put forward in Belloni & Chernozhukov (2011) could be

valuable.

The current practical implementation of the program works for univariate variables. More-

over, the only currently implemented additional nonparametric restriction which can be placed

on the model is monotonicity. The program can straightforwardly be extended to higher di-

mensional settings, but runs into the curse of dimensionality as the stochastic processes become

high-dimensional random fields. One standard way to circumvent the curse of dimensionality is

to introduce sparsity- and factor assumptions on the stochastic processes in a higher-dimensional

41The solution method proposed here can handle any type of dynamic assumption on the processes, like Marko-
vianity or martingale assumptions, by sampling the respective paths of the process.

42Resampling methods might be too computationally expensive for general complex problems, in which case one
should rely on the analytical expressions derived.
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setting. Furthermore, it is also imperative to allow for a wide variety of additional (non-) para-

metric assumptions in the model, like convexity, bounds, reflection processes, jumps in processes,

Slutsky-type conditions, first-passage times, martingale properties, etc. An extension of the cur-

rent program which already accommodates some of these additions is in the works.

Finally, the generality of this method allows researchers to compare the identificatory content

of rather different, but nonetheless frequently upheld, (non-) parametric assumptions in instru-

mental variable models. For instance, one can run the method on a data set while only assuming

continuity of the respective production functions. In general, this will lead to rather large coun-

terfactual bounds. Then, one can run the same method again, but requiring the production of the

first- or second stage to be monotone or convex, or bounded, etc. The bounds will then be rather

different and give an indication of how much identificatory content the respective assumption

has for the given model. In this sense, the method provides a general setting for evaluating the

strength of different (non-) parametric assumptions on a model. A researcher can compare differ-

ent structural assumptions and even dynamic assumptions within the same setting. This feature

might potentially be also relevant for sensitivity arguments in structural models (e.g. Andrews,

Gentzkow & Shapiro 2017, Bonhomme & Weidner 2018, Christensen & Connault 2019).
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Kluvánek, I. (1981), ‘Remarks on bimeasures’, Proceedings of the American Mathematical Society

pp. 233–239.
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A Proofs omitted from the main text

A.1 Proof of Proposition 1

Proof. The construction of the counterfactual processes YX(w) and XZ(w) follows from the gen-

eralization of Kolmogorov’s extension theorem to random domains established in Theorem 1’ of
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Hu (1988). Focus on XZ(w) as the construction for YX(w) is analogous. Let PX(Z) be the coun-

terfactual conditional measure of X given exogenously fixed Z with counterfactual measure P ∗Z .

Together they induce a counterfactual bimeasure (Kluvánek 1981, p. 234)

P(X,Z)(Ax, Az) =

∫
Az

PX(Z=z)(Ax)P ∗Z(dz). (11)

Now consider the Borel σ-algebra on Z ⊂ Rd, which is induced by the semi-ring S := {(a, b] ⊂
Rd : −∞ ≤ a ≤ b ≤ +∞} of all rectangles which are open on the left and closed on the right.

This σ-algebra satisfies condition (C1) in Hu (1988). To see this, let F, F ′ ⊂ Rd be finite subsets.

Moreover, define by DF ,DF ′ the σ-algebras generated by all sets DF , DF ′ ∈ S such that F ⊂ DF

and F ′ ⊂ DF ′ . Then it follows that DF ∩DF ′ ∈ DF ∩DF ′ for all those sets, because the respective

σ-algebras are generated by the semi-ring S .

Now focus on the other conditions of Theorem 1’ in Hu (1988). Fix a finite subset F ⊂ Rd

again. We define the bimeasure P(X,Z),F as

P(X,Z),F (Ax, D) := P(X,Z)(Ax, DF )
∣∣
DF

for Ax ⊂ BX and DF ∈ DF ,

where b(Ax, ·)|DF defines the restriction of the bimeasure b(Ax, ·) to the σ-algebra DF . Then

the set of bimeasures {P(X,Z),F : F ⊂ Rd finite} straightforwardly satisfies the consistency

condition required in Theorem 1’, because each σ-algebra DF is a sub-σ-algebra of BZ and

P(X,Z) is a probability bimeasure defined on BX ⊗ BZ . The conclusion of Theorem 1’ in Hu

(1988) now shows the existence of the stochastic process XZ with random time domain Z so that

P (XZ ∈ A) =
∫
PX(Z=z)(Az)P

∗
Z(dz) for events A :=

∏
z∈Z Az.

Now consider the process YX(v) for which a similar reasoning holds. In this case the bimeasure

needed for Theorem 1’ in Hu (1988) is

P(Y,X)(Ay, Ax) =

∫
Ax

PY (X=x)(Ay)P
∗
X(dx), (12)

where P ∗X is not the observable measure, but a counterfactual one. Here again, this bimeasure

satisfies the requirements if we define the same σ-algebra on X as we did before on Z. Together,

the two processes generate the joint counterfactual process

P(Y,X,Z)(Ay, Ax, Az) =

∫
Ax

PY (X=x)(Ay)P(X,Z)(dx,Az) =

∫
Az

∫
Ax

PY (X=x)(Ay)PX(Z=z)(dx)P ∗Z(dz),

(13)

which follows from the exclusion restriction: PY (X) does not depend on Z. The independence

restriction Z ⊥⊥ W implies that P ∗Z = PZ . Therefore, one can test the validity of the instru-

ment Z by comparing the properties of the stochastic process [Y,X]Z induced by the observable

distribution PY,X,Z to the stochastic process [Y,X]∗Z(w) corresponding to P(Y,X,Z).
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A.2 Proof of Theorem 1

Proof. It follows from the Kolmogorov-Chentsov theorem (Karatzas & Shreve 1998, Theorem

2.2.8) in conjunction with Theorem 2.4.10 in Karatzas & Shreve (1998) that P∗(W) is rela-

tively compact in the weak topology. In fact, P∗(W) is actually compact in the weak topology

since the constants Ky and Kx in Assumption 3 are fixed for all PW ∈ P∗(W).43 The kernel

K(YX(w), Ay, Ax) in the objective function is itself either bounded and continuous for fixed Ay,

Ax or takes the form of an indicator function by Assumption 4, in which case it can be arbitrarily

well approximated by smooth functions. Therefore, if there is a sequence {PnW }n∈N ∈ P∗(W)

converging weakly to some PW ∈P∗(W), then it holds that∫
K(YX(w), Ay, Ax)PnW (dw)→

∫
K(YX(w), Ay, Ax)PW (dw)

by the definition of weak convergence of measures and the continuity of either K or its smooth

approximation. This shows that the maximum and minimum of this optimization problem are

well defined for these K in question. The fact that these optimization problems provide bounds

on the counterfactual laws P(Y,X) and P(X,Z) follows from Proposition 1 and the argumentation

before Theorem 1.

A.3 Proof of Theorem 2

The proof is split into two lemmas and the main proof.

Lemma 1 (VC dimension of S(YX(w), y, η) and Θ(YX(w), XZ(w), Z(w), y, x, z, η)).

dV C(S(YX(w), y, η)) < +∞ and dV C(Θ(YX(w), XZ(w), Z(w), y, x, z, η) < +∞) < +∞.

Proof. The idea lies in applying Theorem 8 in Bartlett & Maass (2003), which is a more user-

friendly form of Theorem 2 in Karpinski & Macintyre (1997). First, since S(YX(w), y, η) for given

y and η is a real valued function, one can obtain its VC dimension by considering its complete set

of indicators 1[0,+∞){S(YX(w), y, η)−b}, where b ∈ [0, 1] is a free parameter (Vapnik 1998, Section

5.2.3). Call this set of indicator functions F :=
{
w 7→ f(θ, w) : θ ∈ R3

}
, where θ := (y, η, β) and

f(θ, w) := 1[0,+∞){S(YX(w), y, η) − b}. The functional form of S(YX(w), y, η) consists of only

the arithmetic operations +, −,·, /, the function exp(·), as well as a jump conditional on ≥,

defined over the set of real numbers if one considers the term η−
1
2 to be another parameter. In

particular, an algorithm for an input w—which in turn defines the path YX(w)—only needs 16

steps to calculate the binary output of the function 1[0,+∞){S(YX(w), y, η) − b}, in at most 4

parameters, if one considers η−
1
2 to be another parameter. Then Theorem 8 in Bartlett & Maass

43A sequence of measures (Pn)n∈N converges weakly to a measure P if and only if∫
f(x)Pn(dx)→

∫
f(x)P (dx)

for every bounded and continuous real function f on X (Karatzas & Shreve 1998, Definition 2.4.1).
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(2003) implies the finiteness of dV C(F). By the definition of the VC dimension of real-valued

functions (Vapnik 1998, p. 191), it follows that dV C(S(YX(w), y, η)) < +∞.

The same argument holds for the set of functions 1[0,+∞){Θ(YX(w), XZ(w), Z(w), y, x, z, η)−
b}, where Θ(YX(w), XZ(w), Z(w), y, x, z, η) is a product of S(YX(w), y, η), S(XZ(w), x, η), and

S(Z(w), z, η), which all need a finite number of computational steps as defined above. The

computation of Θ(YX(w), XZ(w), Z(w), y, x, z, η) then requires two more multiplications, so that

the algorithm for 1[0,+∞){Θ(YX(w), XZ(w), Z(w), y, x, z, η) − b} also concludes in finitely many

steps for finitely many parameters. Again, Theorem 8 in Bartlett & Maass (2003) now implies

dV C(Θ(YX(w), XZ(w), Z(w), y, x, z, η)) < +∞.

Lemma 2 (Approximation of the constraint). Under Assumptions 1 - 3, and 5∥∥∥∥∥FY,X,Z(y, x, z)− 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

≤c(η) + C(η)22
2(−κ+1)βγ+δα

α+γ +
(CRN − cRN )2

l

[
dV C(Θ)

(
ln

(
2l

dV C(Θ)

)
+ 1

)
− ln(ρ/4) + 1

]
< +∞

for all l ∈ N. Here, 0 < c(η), C(η) < +∞ are constants, α, β, γ, δ are defined in Assumption 3,

ln(·) defines the natural logarithm, κ is the respective order of the dyadic approximation of the unit

interval, cRN and CRN are the bounds on the Radon-Nikodym derivatives defined in Assumption

5 and dV C(Θ) is a shorthand for the VC dimension dV C(Θ(YX(w), XZ(w), Z(w), y, x, z, η) of Θ.

Proof. Using the notation from (7), one can write the constraint as∥∥∥∥∥FY,X,Z(·, ·, ·)− 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), ·, ·, ·, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

=

∥∥∥∥∥
∫
1[0,·](YX(w))1[0,·](XZ(w))1[0,·](Z(w))PW (dw)− 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), ·, ·, ·, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

,

where the second line follows from the population constraint in (5) and the L2([0, 1]3) is taken with

respect to Lebesgue measure over y, x, and z under Assumption 2. From the triangle inequality

it follows that∥∥∥∥∥
∫
1[0,·](YX(w))1[0,·](XZ(w))1[0,·](Z(w))PW (dw)− 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), ·, ·, ·, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

≤
∥∥∥∥∫ [1[0,·](YX(w))1[0,·](XZ(w))1[0,·](Z(w))−Θ(YX(w), XZ(w), Z(w), ·, ·, ·, η)

]
PW (dw)

∥∥∥∥2

L2([0,1]3)

+

∥∥∥∥∫ [Θ(YX(w), XZ(w), Z(w), ·, ·, ·, η)−Θ(ỸX̃(w), X̃Z̃(w), Z̃(w), ·, ·, ·, η)
]
PW (dw)

∥∥∥∥2

L2([0,1]3)
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+

∥∥∥∥∥
∫

Θ(ỸX̃(w), X̃Z̃(w), Z̃(w), ·, ·, ·, η)PW (dw)− 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), ·, ·, ·, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

.

The first term can be made smaller than any ε > 0 by choosing η(ε) large enough. This follows

from the approximation of the indicator function by the logistic function defined above. To

obtain a bound on the second term, note that by the Kolmogorov-Chentsov Theorem (Karatzas

& Shreve 1998, Theorem 2.2.8) in combination with Assumption 3, the modulus of continuity of

PW -almost each path YX=x(w), viewed as a function on [0, 1], is ωYX=x(w)(|x − x′|) = |x − x′|
β
α ,

and the modulus of continuity of PW -almost each path XZ=z(w) is ωXZ=z(w)(|z− z′|) = |z− z′|
δ
γ .

Furthermore, since Θ is a logistic approximation of the indicator function, it is real analytic in

YX(w), XZ(w), and Z(w) and in particular Lipschitz continuous for any η < +∞, so that it holds

for all y, x, z ∈ [0, 1]3 that

∣∣∣Θ(YX=x(w), XZ=z(w), Z(w), y, x, z, η)−Θ(ỸX̃=x(w), X̃Z̃=z(w), Z̃(w), y, x, z, η)
∣∣∣

≤C(η)
∣∣∣YX=x(w)− ỸX̃=x(w)

∣∣∣ ∣∣∣XZ=z(w)− Z̃Z̃=z(w)
∣∣∣

≤C(η)ωYX=x(w)(2
−κ+1)ωXZ=z(w)(2

−κ+1)

≤C(η)2
(−κ+1)βγ+δα

α+γ .

The first inequality follows from the multivariate analogue of the mean-value theorem in conjunc-

tion with the fact that the gradient of Θ in its first three argument is bounded above by some

constant 0 < C(η) < +∞ for every η < +∞, and the fact that Z takes values in the unit interval,

so that supz,z′∈[0,1] |z − z′| ≤ 1.44 The second inequality follows from Theorem 1 in Anastassiou

& Yu (1992b), which gives a bound on the wavelet approximation in terms of the modulus of

continuity of the function to be approximated.45 The final inequality follows from Assumption 3

and the dyadic approximation of order κ. Since this inequality holds for every y, x, z, it also holds

for the supremum, which implies that it also holds for the L2([0, 1]3) norm by Hölder’s inequality

combined with the fact that the unit interval is bounded. Therefore, the second term can be made

smaller than C(η)2
(−κ+1)βγ+δα

α+γ .

A bound on the third term can be found via the large deviation results in Vapnik (1998,

Chapter 5) and relies on a similar idea to Girosi (1995). To do so, note that under Assumption 5∫
Θ(ỸX̃(w), X̃Z̃(w), Z̃(w), y, x, z, η)PW (dw) =

∫
Θ(ỸX̃(w), X̃Z̃(w), Z̃(w), y, x, z, η)

dPW
dP0

(w)P0(dw),

because the Radon-Nikodym derivative dPW
dP0

exists and is bounded for all PW ∈ P∗(W) by

44Note that C(η)→∞ as η →∞.
45When using different bases, it is here where one changes the approximative property of this basis, which is the

only difference to the current proof. Everything else stays the same.
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Assumption 5, so that one can focus on approximating the term on the right side. The goal is to

interpret

R(y, x, z) :=

∫
Θ(ỸX̃(w), X̃Z̃(w), Z̃(w), y, x, z, η)

dPW
dP0

(w)P0(dw)

as a risk functional in the sense of Vapnik (1998). The empirical risk counterpart then is

Remp(y, x, z) :=
1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η)
dP̂W

dP̂0

(i).

Now since dPW
dP0

is bounded by Assumption 5, Theorem 5.1 in Vapnik (1998) implies that

P

{
sup

(y,x,z)∈[0,1]3
|R(y, x, z)−Remp(y, x, z)| > τ

}

≤4 exp

{
Hann (2l)− l

(
τ − l−1

CRN − cRN

)2
}
.

(14)

Here, Hann(l) is the annealed entropy of the function Θ(ỸX̃(w), X̃Z̃(w), Z̃(w), y, x, z, η), defined

in Vapnik (1998, section 3.8), 0 < cRN ≤ CRN < +∞ are the bounds for the Radon-Nikodym

derivatives, and τ > 0 is some small value.

This result reduces to a simpler form in the current setting. First, equation (5.12) in Vapnik

(1998) implies

Hann(λ, l) ≤ dV C(Θ)

(
ln

(
l

dV C(Θ)

)
+ 1

)
< +∞,

where dV C(Θ) is a short-hand notation for dV C(Θ(YX(w), XZ(w), Z(w), y, x, z, η). The finiteness

of the VC dimension follows from Lemma 1. Second, one can rewrite the result (14) in the

following way (Vapnik 1998, p. 193): with probability 1− ρ the inequality

‖R(y, x, z)−Remp(y, x, z)‖L∞([0,1]3) ≤ (CRN − cRN )
√
E(l)

holds true, where

E(l) := l−1

[
dV C(Θ)

(
ln

(
2l

dV C(Θ)

)
+ 1

)
− ln(ρ/4) + 1

]
,

where ln(x) denotes the natural logarithm of x. Note finally that the L∞([0, 1]3) bound implies a

L2([0, 1]3) bound by Hölder’s inequality.

Putting everything together, it therefore follows that with probability 1− ρ∥∥∥∥∥FY,X,Z(y, x, z)− 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)
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≤c(η) + C(η)22
2(−κ+1)βγ+δα

α+γ +
(CRN − cRN )2

l

[
dV C(Θ)

(
ln

(
2l

dV C(Θ)

)
+ 1

)
− ln(ρ/4) + 1

]
,

where the first 0 < c(η) < +∞ embodies the degree of approximation of Θ to the indicator

functions.

Proof of Theorem 2. Fix Ay and Ax throughout and for some arbitrary PW ∈P∗(W) consider∥∥∥∥∥
∫
K(YX(w), Ay, Ax)PW (dw)− 1

l

l∑
i=1

K̃(ỸX̃(i), Ay, Ax)
dP̂W

dP̂0

(i)

∥∥∥∥∥
L∞([0,1]3)

,

which can be bounded in exactly the same way as the constraint in the proof of Lemma 2 to give

with probability 1− ρ∥∥∥∥∥
∫
K(YX(w), Ay, Ax)PW (dw)− 1

l

l∑
i=1

K̃(ỸX̃(i), Ay, Ax)
dP̂W

dP̂0

(i)

∥∥∥∥∥
L∞([0,1]3)

≤c′(η) + C ′(η)22
2(−κ+1)βγ+δα

α+γ +
(CRN − cRN )2

l

[
dV C(K)

(
ln

(
2l

dV C(K)

)
+ 1

)
− ln(ρ/4) + 1

]
,

where 0 ≤ c′(η) < +∞, 0 < C ′(η) < +∞ are constants, dV C(K) is the shorthand for the VC

dimension dV C(K(YX(w), Ay, Ax)), and where η is introduced to account for the setting where K

is an indicator variable and is approximated by a logistic function of the form S(YX(w), y, η). In

the case where K is differentiable already, c′(η) = 0 and C ′(η) does not depend on η.

This approximation holds for every PW ∈P∗(W), and since the latter is compact in the weak

topology by Theorem 1, it also holds for the (not necessarily unique) P ∗W and PW∗ which induce

the maximum and minimum values of the programs (5). Therefore, for every ε > 0 there exists

an l∗ ∈ N such that max {D(l∗),D′(l∗)} < ε, where

D(l) := c(η) +C(η)22
2(−κ+1)βγ+δα

α+γ +
(CRN − cRN )2

l

[
dV C(Θ)

(
ln

(
2l

dV C(Θ)

)
+ 1

)
− ln(ρ/4) + 1

]
and

D′(l) := c′(η)+C ′(η)22
2(−κ+1)βγ+δα

α+γ +
(CRN − cRN )2

l

[
dV C(K)

(
ln

(
2l

dV C(K)

)
+ 1

)
− ln(ρ/4) + 1

]
are the approximation bounds for the constraint and the objective function, respectively. This

implies that the maximum- and minimum values V ∗ and V∗ of (5) and the maximum and minimum

values Ṽ ∗ and Ṽ∗ of (7) satisfy

max{|V ∗ − Ṽ ∗|, |V∗ − Ṽ∗|} < ε.
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A.4 Proof of Proposition 2

Proof. Define the constraint correspondence C̃ : FY,X,Z × (0, 1)→ P̂∗
W

C̃(FY,X,Z , ε) :=P̂W ∈ P̂∗(W) :

∥∥∥∥∥FY,X,Z(y, x, z)− 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

≤ ε


where FY,X,Z denotes the set of all cumulative distribution functions on [0, 1]3 which is equipped

with the uniform norm ‖·‖L∞([0,1]3). Note that under Assumption 5 P̂∗(W) is compact in the weak

topology since the Radon-Nikodym derivatives are uniformly bounded by 0 < cRN ≤ CRN < +∞.

To see this, note that the set of all probability measures P̂W on the finite index set {i}i=1,...,l is

tight. Hence, by Prokhorov’s Theorem (Karatzas & Shreve 1998, Theorem 2.4.7), it is relatively

compact in the weak topology. Under Assumption 5 the set P̂∗(W) is a closed subset of this

set in the weak topology, as all Radon-Nikodym derivatives are uniformly bounded by a weak

inequality.

Also note that C̃(FY,X,Z , ε) is continuous. Upper hemicontinuity can be shown by a sequencing

argument as P̂∗(W) is compact in the weak topology (Aliprantis & Border 2006, Theorem 17.20):

let {F̂Y,X,Z;n}n∈N ∈ FY,X,Z be a sequence such that ‖F̂Y,X,Z;n − FY,X,Z‖L∞([0,1]3) → 0 as n → ∞
and {P̂W ;n}n∈N ∈ P̂∗(W) be a sequence satisfying P̂W ;n ∈ C̃(FY,X,Z;n, ε). Since all functions

involved in the inequality are continuous, and the inequality in the constraint correspondence is

weak, it holds that {P̂W ;n}n∈N must converge to an element P̂ ∗W ∈ P̂∗(W) which satisfies the

constraint, so that this sequence has a limit point in C̃(FY,X,Z , ε).
As for lower hemicontinuity, fix some sequence {F̂Y,X,Z;n}n∈N. Pick some arbitrary P̂W ∈

C̃(FY,X,Z , ε). Now note that P̂∗(W) is convex under Assumption 5, because a convex combi-

nation of these two measures is always at most as large as CRN and at least as small as cRN .

Based on this, the constraint correspondence is easily seen to be convex valued by the triangle

inequality. Now under Assumption 7, there exists a neighborhood U around FY,X,Z such that

the constraint correspondence is not empty there. If there is only one element in the constraint

correspondence for FY,X,Z , then lower hemicontinuity is trivially fulfilled. So suppose there are

at least two solutions P̂W and P̂ ′W in C̃(FY,X,Z , ε). By continuity of the L2([0, 1]3)-norm and

the weak inequality of the constraint it holds that for large enough n ∈ N there exist also two

solutions P̂W,n, P̂
′
W,n ∈ C̃(F̂Y,X,Z;n, ε) which are close to P̂W and P̂ ′W , respectively. Moreover, since

the constraint correspondence is also convex-valued, any convex combination between them is a

solution as well, showing lower hemicontinuity.

The objective function defined by the kernel K is continuous under Assumption 6 on the

graph of C̃(FY,X,Z , ε) for fixed ε > 0. Therefore, the Berge Maximum Theorem (Aliprantis &

Border 2006, Theorem 17.31) implies that the value functions Ṽ ∗(FY,X,Z) and Ṽ∗(FY,X,Z) are
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continuous. Now under the Glivenko-Cantelli Theorem (van der Vaart 2000, Theorem 19.1), it

holds that ‖F̂Y,X,Z;n − FY,X,Z‖L∞([0,1]3) → 0 as n → ∞ almost surely. Now by the continuity of

the value functions, one can apply the Continuous Mapping Theorem (van der Vaart & Wellner

2013, Theorem 1.9.5), which implies that the value functions converge almost surely.

A.5 Proof of Proposition 3

Proof. The goal is to apply the functional delta method (Shapiro 1991, Theorem 2.1), for which

the key is to prove directional Hadamard differentiability of the value functions ˆ̃V∗(FY,X,Z) and
ˆ̃V ∗(FY,X,Z). Focus on the minimization problem in (7), as maximization is perfectly analogous.

It is convenient to write (7) in terms of the notation in Bonnans & Shapiro (2013):

min
P̂W∈P̂∗(W)

K(P̂W )

subject to G(P̂W , FY,X,Z) ∈ [0, ε],

(15)

where

G(P̂W , FY,X,Z) :=

∥∥∥∥∥FY,X,Z − 1

l

l∑
i=1

Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), ·, ·, ·, η)
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]3)

.

Theorem 4.26 in Bonnans & Shapiro (2013) then provides conditions for directional Hadamard

differentiability of ˆ̃V∗. The main condition is a restricted version of Robinson’s constraint qualifi-

cation:

0 ∈ int{G(P̂W , FY,X,Z) + δGP̂W (P̂∗(W), FY,X,Z)}, (16)

where FY,X,Z is the data-generating process in the population, P̂W is an argument which min-

imizes (15), δGP̂W (P̂∗(W), FY,X,Z) is the directional derivative of G(·, ·) in its first argument

at this optimal P̂W with respect to any direction in P̂∗(W), and “int” denotes the topological

interior of a set. Since G(·, ·) is a functional mapping to [0, ε], (16) reduces to showing that

δGP̂W (P̂∗(W), FY,X,Z) can take negative and positive values of size less than or equal to −ε for

some direction P̂ ′W ∈ P̂∗(W).

For this, calculate δGP̂W (P̂∗(W), FY,X,Z) as46

δGP̂W (P̂∗(W), FY,X,Z) = lim
t→0

t−1

∥∥∥∥∥FY,X,Z − 1

l

l∑
i=1

Θ
dP̂W + tP̂1

dP̂0

∥∥∥∥∥
2

L2

−

∥∥∥∥∥FY,X,Z − 1

l

l∑
i=1

Θ
dP̂W

dP̂0

∥∥∥∥∥
2

L2


46In the following derivation, the shorthand notations 1

l

∑l
i=1 Θ dP̂W

dP̂0
, ‖ · ‖L2 and

∫
FY,X,Zdydxdz are used to

denote 1
l

∑l
i=1 Θ(ỸX̃(i), X̃Z̃(i), Z̃(i), y, x, z, η) dP̂W

dP̂0
(i), ‖ · ‖L2([0,1]3), and

∫
[0,1]3

FY,X,Z(y, x, z)dydxdz, respectively.
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= lim
t→0

∫
t−1

(FY,X,Z − 1

l

l∑
i=1

Θ
dP̂W + tdP̂1

dP̂0

)2

−

(
FY,X,Z −

1

l

l∑
i=1

Θ
dP̂W

dP̂0

)2
 dydxdz

Multiplying out the square terms and simplifying (using the linearity of the Radon-Nikodym

derivative dP̂w+tdP̂1

dP̂0
= dP̂w

dP̂0
+ tdP̂1

dP̂0
) gives

lim
t→0

∫
t−1

(FY,X,Z − 1

l

l∑
i=1

Θ
dP̂W + tdP̂1

dP̂0

)2

−

(
FY,X,Z −

1

l

l∑
i=1

Θ
dP̂W

dP̂0

)2
 dydxdz

= lim
t→0

∫
t−1

−2FY,X,Z
t

l

l∑
i=1

Θ
dP̂1

dP̂0

+ 2t

(
1

l

l∑
i=1

Θ
dP̂W

dP̂0

1

l

∑
i

Θ
dP̂1

dP̂0

)
+
t2

l2

(
l∑

i=1

Θ
dP̂1

dP̂0

)2
 dydxdz.

Since FY,X,Z , t
l

∑l
i=1 ΘdP̂1

dP̂0
, and t

l

∑l
i=1 ΘdP̂W

dP̂0
take values in the unit interval, Lebesgue’s Domi-

nated Convergence Theorem permits interchanging the limit and the integral, which after simpli-

fication gives

lim
t→0

∫
t−1

−2FY,X,Z
t

l

l∑
i=1

Θ
dP̂1

dP̂0

+ 2t

(
1

l

l∑
i=1

Θ
dP̂W

dP̂0

1

l

∑
i

Θ
dP̂1

dP̂0

)
+
t2

l2

(
l∑

i=1

Θ
dP̂1

dP̂0

)2
 dydxdz

=

∫
2

1

l

l∑
i=1

Θ
dP̂1

dP̂0

[
FY,X,Z −

1

l

l∑
i=1

Θ
dP̂W

dP̂0

]
dydxdz.

To see that (16) can be satisfied, ignore the “weight term” 21
l

∑l
i=1 ΘdP̂1

dP̂0
in the last expression

for a second and note that the term in brackets is the constraint in (7), which can be rewritten

as FY,X,Z − P̂W (ỸX̃ ∈ [0, y], X̃Z̃ ∈ [0, x], Z̃ ∈ [0, z]). Therefore, without the “weight term”, which

is always non-negative, the expression for δGP̂W (P̂∗(W), FY,X,Z) takes the form of a comparison

between these two probabilities in terms of second-order stochastic dominance. Therefore, it

is clear to see that if either the cumulative distribution function induced by the probability

P̂W (ỸX̃ ∈ [0, y], X̃Z̃ ∈ [0, x], Z̃ ∈ [0, z]) second-order stochastically dominates FY,X,Z by some

large enough value ζ > 0—which makes the above integral negative—or vice versa, then the

requirement for Robinson’s condition is fulfilled. This can of course happen in programs (7),

which is why the constraint was implemented in the first place. Therefore, the restricted version

of Robinson’s constraint qualification is satisfied by the program (7).

Furthermore, note that under Assumption 7 the program (7) admits an optimal solution for

FY,X,Z + tF ′Y,X,Z where FY,X,Z , F
′
Y,X,Z ∈ FY,X,Z when t is small enough such that F ′Y,X,Z ∈ U ⊂

FY,X,Z , which is the second requirement needed in order to apply Theorem 4.26 in Bonnans

& Shapiro (2013). Therefore, Theorem 4.26 in combination with Proposition 4.47 in Bonnans &

Shapiro (2013) implies that the value function ˆ̃V∗(FY,X,Z) is directionally Hadamard differentiable

in every direction F ′Y,X,Z ∈ FY,X,Z and that the Hadamard derivative d ˆ̃V∗,FY,X,Z (F ′Y,X,Z) takes the
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form

d ˆ̃V∗,FY,X,Z (F ′Y,X,Z) = δFY,X,ZL(P̂1, λ(P̂W ), FY,X,Z)(F ′Y,X,Z),

where L(·, ·, ·) denotes the Lagrangian of the program (7), λ(P̂1) denotes the respective Lagrange

multiplier (which is unique for given P̂1 by Proposition 4.47 in Bonnans & Shapiro 2013), and

δFY,X,Z is the directional derivative of L in its third argument in direction F ′Y,X,Z at FY,X,Z .

Now by Donsker’s theorem (van der Vaart 2000, Theorem 19.3), it holds that
√
n(F̂Y,X,Z;n −

FY,X,Z) GFY,X,Z , where GFY,X,Z is a Brownian bridge with covariance function

CovGFY,X,Z = FY,X,Z(min{y, y′},min{x, x′},min{z, z′})− FY,X,Z(y, x, z)FY,X,Z(y′, x′, z′)

for all (y, x, z), (y′, x′, z′) ∈ [0, 1]3. Therefore, applying the functional delta method (Shapiro 1991,

Theorem 2.1) directly yields that

√
n( ˆ̃V∗(F̂Y,X,Z;n)− ˆ̃V∗(FY,X,Z)) d ˆ̃V∗,FY,X,Z (GFY,X,Z ).

The same argument holds for ˆ̃V ∗.
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