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Abstract

Motivated by the rise of social media, we build a model studying the
effect of an economy’s potential for social learning on the adoption of in-
novations of uncertain quality. Provided consumers are forward-looking
(i.e. recognize the value of waiting for information), equilibrium dy-
namics depend non-trivially on qualitative and quantitative features of
the informational environment. We identify informational environments
that are subject to a saturation effect, whereby increased opportunities
for social learning can slow down adoption and learning and do not in-
crease consumer welfare. We also suggest a novel, purely informational
explanation for different commonly observed adoption curves (S-shaped
vs. concave).
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1 Introduction

Suppose a new product of uncertain quality, such as a novel medical proce-
dure or a new movie, is released into the market. In recent years, the rise of
internet-based review sites, retail platforms, search engines, video-sharing web-
sites, and social networking sites (such as Yelp, Amazon, Google, YouTube,
and Facebook) has greatly increased the potential for social learning in the
economy: If a patient suffers a serious complication or a movie-goer has a
positive viewing experience, this is more likely than ever to find its way into
the public domain; and there are more people than ever who have access to
this common pool of consumer-generated information.

This paper builds a model studying the effect of an economy’s potential
for social learning on the adoption of innovations of uncertain quality. Our
key contribution is a careful analysis of consumers’ informational incentives
and their dependence on quantitative and qualitative features of the news en-
vironment through which social learning occurs. Our analysis has two main
implications. First, quantitatively, we suggest caution in evaluating the im-
pact of increases in the potential for social learning: We identify news environ-
ments that are subject to a novel saturation effect, whereby beyond a certain
level, increased opportunities for social learning can slow down adoption and
learning and do not increase consumer welfare (possibly even being harmful).
Second, at a qualitative level, we show that different news environments give
rise to observable differences in aggregate adoption dynamics: This implies a
new, purely informational explanation for two of the most commonly observed
adoption patterns (S-shaped vs. concave curves), which we support with some
suggestive evidence.

A central ingredient of our model is that consumers are forward-looking
social learners. In choosing whether to adopt an innovation, forward-looking
consumers recognize the option value of waiting for more information. With
social learning, this information is created endogenously, based on the con-
sumption experiences of other adopters. Equilibrium adoption dynamics must
then resolve the following tension: If too many consumers adopt at any given
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time, then the expected amount of future information might be so great that
all consumers would in fact strictly prefer to wait; conversely, if too few con-
sumers adopt, it might not be worthwhile for anyone to wait. This tension
depends non-trivially on the ease and nature of information transmission and
is the fundamental source of the results of the preceding paragraph.

Forward-looking social learning is well documented empirically, notably in
the development economics literature studying the adoption of agricultural in-
novations.1 However, its informational ramifications have largely remained un-
explored theoretically: Existing learning-based models of innovation adoption
typically assume either that learning is social but consumers are myopic (e.g.
Ellison and Fudenberg, 1993; Young, 2009), or that consumers are forward-
looking but information arrives purely exogenously (e.g. Jensen, 1982). In
either case, the dependence on the informational environment is trivial, both
quantitatively (a greater ease of information transmission is always beneficial)
and qualitatively (absent other forces such as consumer heterogeneity, differ-
ent news environments alone do not give rise to interestingly different adoption
dynamics2).

Summary of Model and Results: In our model (Section 2), an inno-
vation of fixed, but uncertain quality (better or worse than the status quo) is
introduced to a large population of forward-looking consumers. In the base-
line setting, consumers are (ex ante) identical, sharing the same prior about
the quality of the innovation, the same discount rate, and the same tastes for
good and bad quality. At each instant in continuous time, consumers receive
stochastic opportunities to adopt the innovation. A consumer who receives an

1Studies of social learning in this domain include Besley and Case (1993, 1994); Foster
and Rosenzweig (1995); Conley and Udry (2010). There is also evidence for forward-looking
social learning: Bandiera and Rasul (2006) analyze the decision of farmers in Mozambique
to adopt a new crop, sunflower. They find that if a farmer’s network of friends and family
contains many adopters of the new crop, knowing one more adopter may make him less likely
to initially adopt it himself. Munshi (2004) compares farmers’ willingness to experiment with
new high-yield varieties (HYV) across rice and wheat growing areas in India. Farmers in rice
growing regions, which compared with wheat growing regions display greater heterogeneity
in growing conditions that make learning from others’ experiences less feasible, are found
to be more likely to experiment with HYV than farmers in wheat growing areas.

2See the discussion in Footnote 13 under Related Literature.
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opportunity must choose whether to irreversibly adopt the innovation or to
delay his decision until the next opportunity. In equilibrium, consumers opti-
mally trade off the opportunity cost of delays against the benefit to learning
more about the quality of the innovation.

Learning about the innovation is summarized by a public signal process,
representing news that is obtained endogenously—based on the experiences
of previous adopters; and possibly also from exogenous sources, such as pro-
fessional critics or government watchdog agencies. To study the importance
of quantitative and qualitative features of the news environment, we employ
a variation of the Poisson models of strategic experimentation pioneered by
Keller et al. (2005); Keller and Rady (2010, 2015).3 Individual adopters’ expe-
riences generate public signals at a fixed Poisson rate which we use to quantify
the potential for social learning. Qualitatively, there is a natural distinction
(see also MacLeod, 2007; Board and Meyer-ter Vehn, 2013; Che and Hörner,
2015) between bad news markets, where signal arrivals (breakdowns) indicate
bad quality and the absence of signals makes consumers more optimistic about
the innovation; and good news markets, where signals (breakthroughs) suggest
good quality and the absence of signals makes consumers more pessimistic.

For examples of innovations featuring learning via bad news (or the ab-
sence thereof), recall the extensive social media coverage of of a battery fire
in a Tesla Model S electric car in October 2013, or the gradual increase of
consumers’ confidence in microwave ovens in the 1970s (following widespread
initial concerns over possible “radiation leaks”) or in risky new medical pro-
cedures such as gastric bypass surgery.4 By contrast, learning via good news
events (or their absence) is common in award-focused industries (e.g. movies
or books); or for (essentially side-effect free) herbal remedies, beauty or fit-
ness products. The news environment may also be determined by limitations
or usage practices of the available social learning systems, e.g. the fact that
Facebook allows users to “Like” a product’s site, but has no “Dislike” but-

3Other papers using this “exponential bandits” framework include Bergemann and Hege
(1998, 2005); Strulovici (2010); Bonatti and Hörner (2011); Klein and Rady (2011); Hörner
and Samuelson (2013); Halac et al. (2016b,a); Halac and Prat (2016).

4The latter two examples are discussed in more detail in Section 4.1.
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ton; or that the overwhelming majority of book reviews on Amazon.com and
BarnesandNoble.com appear to be positive.5

Section 3 analyzes and contrasts equilibrium adoption behavior in bad and
good news markets. For tractability, we focus on perfect bad (respectively
good) news environments, in which a single signal arrival conclusively indi-
cates bad (respectively good) quality, so that equilibrium dynamics are non-
trivial only in the absence of signals. A key insight facilitating our analysis is
that consumers’ equilibrium incentives across time must satisfy a quasi-single
crossing property (Section 3.1): Absent signals, there can be at most one tran-
sition from strict preference for adoption to strict preference for waiting, or
vice versa, with a possible period of indifference in between. This enables us to
establish the existence of unique6 equilibria. Equilibrium adoption dynamics
admit simple closed-form descriptions, which are Markovian in current beliefs
and in the mass of consumers who have not yet adopted.

Under perfect bad news (Section 3.2), the unique equilibrium is charac-
terized by two times 0 ≤ t∗1 ≤ t∗2, which depend on the fundamentals: Until
time t∗1, no adoption takes place and consumers acquire information only from
exogenous sources; from time t∗2 on, all consumers adopt immediately when
given a chance, unless a breakdown occurs, in which case adoption comes to
a permanent standstill. If t∗1 < t∗2, then throughout (t∗1, t

∗
2) there is inefficiency

in the form of partial adoption: Only some consumers adopt when given a
chance, with others free-riding on the information generated by the adopters.
The flow of new adopters on (t∗1, t

∗
2) is uniquely determined by an ODE that

guarantees consumers’ indifference between adopting and delaying throughout
this interval. Given that consumers are forward-looking, t∗1 < t∗2 occurs in
economies with a sufficiently large potential for social learning and not too
optimistic consumers (on the other hand, if consumers are myopic or if there
are no possibilities for social learning, then necessarily t∗1 = t∗2).

By contrast, the perfect good news equilibrium (Section 3.3) features adop-
tion up to some time t∗ (which depends on the fundamentals) and no adoption

5Cf. Chevalier and Mayzlin (2006), which we discuss in greater detail in Section 4.1.
6Uniqueness is in terms of aggregate adoption behavior.
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from t∗ on (unless there is a breakthrough, after which all consumers adopt
upon their first opportunity). The key difference with perfect bad news is that
equilibrium adoption behavior is all-or-nothing : Regardless of the potential
for social learning, there are no periods during which only some consumers
adopt when given a chance. This highlights a fundamental way in which the
nature of the news environment affects consumers’ adoption incentives. Dur-
ing a period of time when, absent signals, a consumer is prepared to adopt the
innovation, he will be willing to delay his decision only if he expects to acquire
decision-relevant information in the meantime: Since originally he is prepared
to adopt the innovation, such information must make him strictly prefer not
to adopt. When learning is via bad news, breakdowns have this effect, since
they reveal the innovation to be bad. By contrast, under perfect good news
breakthroughs conclusively reveal the innovation to be good and hence cannot
be decision-relevant to a consumer who is already willing to adopt.

Turning to implications of the equilibrium analysis, Section 4.1 shows that
bad news and good news environments give rise to observably different adop-
tion patterns. Under perfect bad news, adoption curves (which plot the per-
centage of adopters in the population against time) are S-shaped: Up to time
t∗1 adoption is flat, on (t∗1, t

∗
2) adoption levels increase convexly (absent break-

downs), and from time t∗2 there is a concave increase. Convex growth through-
out (t∗1, t

∗
2) is tied to consumer indifference during this region: As consumers

grow increasingly optimistic absent breakdowns, their opportunity cost to de-
laying goes up. To maintain indifference, this increase is offset by an increase in
the flow of new adopters, which raises the odds that waiting will produce infor-
mation allowing consumers to avoid a bad innovation. By contrast, adoption
under perfect good news occurs in concave “bursts”: Up to time t∗ adoption
levels increase concavely, then adoption flattens out, possibly followed by an-
other region of concave growth if a breakthrough occurs. S-shaped and concave
curves are arguably the two most widely documented empirical adoption pat-
terns, with the typical marketing textbook devoting a chapter to this “stylized
fact”.7 But as we discuss below under Related Literature, our model appears

7 Cf. Hoyer et al. (2012), Ch. 15, p. 425ff. and Keillor (2007) p. 46–61. The former type
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to be the first to point to different market learning environments as a possible
source. Focusing on the aforementioned examples of good and bad news mar-
kets, we present some suggestive evidence for our predictions, pointing to an
opportunity for more systematic empirical work.

Section 4.2 establishes the possibility of a saturation effect: If learning is
via perfect bad news and the potential for social learning is great enough that
t∗1 < t∗2, then holding fixed other fundamentals, any additional increase in op-
portunities for social learning has no impact at all on (ex ante) equilibrium
welfare levels. This is because any benefits from increasing the potential for
social learning are balanced out by an expansion of the period (t∗1, t

∗
2) of in-

formational free-riding. As a result, greater opportunities for social learning
strictly slow down the adoption of good products and do not translate into
uniformly faster learning about the quality of the innovation. In Section 4.3,
we further build on this non-monotonicity in the speed of learning to construct
an example with heterogeneous consumers, where increased opportunities for
social learning are not only not beneficial, but in fact give rise to Pareto-
decreases in ex ante welfare. By contrast, under perfect good news, increasing
the potential for social learning is (essentially) always strictly beneficial and
speeds up learning at all times.

1.1 Related Literature

To the best of our knowledge, our paper is the first to link the large and in-
terdisciplinary (spanning economics, marketing, and sociology) literature on
innovation adoption,8 which seeks to explain why the diffusion of innovations
is typically a drawn-out process and why different innovations follow differ-
ent characteristic adoption patterns (notably the widely-documented S-shaped
and concave adoption curves),9 with the theoretical literature on strategic ex-

of curve is sometimes referred to as “logistic” and the latter as “exponential” or “fast-break”.
In economics, S-curves are studied by Griliches (1957), Mansfield (1961, 1968), Gort and
Klepper (1982), among many others; for (essentially) concave curves see some of the “group
A innovations” in Davies (1979).

8See Geroski (2000) and Baptista (1999) for surveys.
9See footnote 7.
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perimentation,10 which provides a powerful framework for studying the infor-
mational externalities that arise under forward-looking social learning.

Our contribution to the former literature is twofold. First, we identify a
novel, purely informational source of the aforementioned regularities: Forward-
looking social learners may delay adoption to gather information about others’
experiences, but delay incentives, and hence adoption patterns, are sensitive
to the market learning environment.11 Existing models appear to have over-
looked this channel, appealing instead to (a combination of): (i) an assumed
heterogeneity of potential adopters, with a distribution of characteristics that
is imposed exogenously to fit the desired adoption pattern—as in “probit”
models12 or existing learning-based models;13 (ii) non-informational “spillover”
effects which, independently of the quality of the innovation, increase cur-
rent adoption as a function of past adoption—e.g. by a process of contagion
as in “epidemic” models,14 or due to pure payoff externalities resulting from
learning-by-doing (Jovanovic and Lach, 1989) or network effects (Farrell and
Saloner, 1985, 1986); (iii) supply-side factors such as pricing (e.g. Bergemann
and Välimäki, 1997; Cabral, 2012). To highlight the explanatory power of
informational incentives alone we abstract away from (i)–(iii), but we do not
wish to deny that a combination of these factors is likely often at play as well.
Second, however, we investigate the effect of increased opportunities for social
learning and obtain predictions (notably the saturation effect) that are outside
the scope of existing models.

10See Hörner and Skrzypacz (2016) for a recent survey.
11This message is similar in spirit to Board and Meyer-ter Vehn (2013), who highlight the

role of the market learning process in a different setting, viz. a capital-theoretic model of
firms’ incentives to invest in quality and reputation.

12E.g. David (1969); Davies (1979); Karshenas and Stoneman (1993).
13 E.g. Jensen (1982), where players are forward-looking but information arrives purely

exogenously, obtains S-shaped adoption curves by assuming that players’ initial beliefs about
quality are uniformly distributed over some interval. In his model, and also if learning is
social but consumers are myopic (as in Young, 2009), a population of identical consumers
would follow a cutoff rule, with everyone adopting the innovation at beliefs above a certain
threshold and not adopting otherwise, which rules out convex growth in adoption levels
regardless of the news environment.

14E.g. Mansfield (1961, 1968); Bass (1969, 1980); Mahajan and Peterson (1985); Mahajan
et al. (1990).
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To study these questions, we introduce two key departures into the frame-
work of strategic experimentation with Poisson bandits (Keller et al., 2005;
Keller and Rady, 2010, 2015):15 First, since our focus is on large market ap-
plications, we assume a continuum of agents, any one of which has a negligible
influence on public aggregate information. Second, we assume that adoption
(i.e., exit to the risky arm) is irreversible rather than allowing for continuous
back-and-forth switching; this is natural for innovations such as medical pro-
cedures or movies, for which “consumption” is usually a one-time event, or for
technologies with large switching costs. An important theoretical implication
is the absence from our model of the encouragement effect, which is central
to the strategic experimentation literature.16 This makes our analysis more
tractable—e.g., in contrast with the aforementioned papers, our equilibria are
unique (at the aggregate level)17—and allows us to isolate the effect of infor-
mational free-riding. More substantively, our model entails a new fundamental
difference between bad and good news environments, namely the presence ver-
sus absence of belief regions during which only some consumers adopt when
given a chance. This difference is key in generating the contrasting adoption
patterns and new comparative statics that we obtain; but it does not arise
under strategic experimentation, where equilibrium behavior features mixing
throughout an intermediate region of beliefs under both bad and good news.18

Informational externalities and strategic delay incentives under social learn-
ing are also studied by the observational learning literature with endogenous

15These papers feature learning via perfect good news, imperfect good news, and perfect
and imperfect bad news, respectively. Bolton and Harris (1999), the founding paper on
strategic experimentation, has learning based on Brownian motion.

16According to this effect, individuals have an incentive to increase current experimen-
tation to drive up beliefs and induce more future experimentation by others; it requires
crucially that (i) individuals have a direct influence on opponents’ information and (ii) they
can adjust experimentation as a function of beliefs. There is no encouragement effect in
Keller et al. (2005), but again (i) and (ii) are crucial in generating asymmetric switching
equilibria, in which players take turns experimenting at different beliefs.

17Moreover, we do not need to restrict to Markovian strategies.
18Cf. the unique symmetric MPE in Keller et al. (2005) and Keller and Rady (2015). Note

also that in both Bolton and Harris (1999) and Keller and Rady (2015), an increase in the
number of players or signal informativeness makes players willing to experiment at more
pessimistic beliefs, whereas we obtain the opposite result under bad news.
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timing (e.g., Chamley and Gale, 1994; Murto and Välimäki, 2011).19 The key
difference is that in this literature players hold private information about a
payoff-relevant state variable and make inferences by observing others’ actions,
whereas all relevant news in our model is public and derived from previous
adopters’ experiences. Information aggregates in random bursts in these mod-
els rather than smoothly as in our setting, and none of the cited papers derive
adoption curves or study the way in which they are shaped by qualitative
features of the news environment.

Finally, in independent and contemporaneous work, Che and Hörner (2015)
employ a related variation of Keller et al. (2005) to model learning about a
new product by a large population of consumers. However, they perform a
normative analysis: Signals about past adopters’ experiences are only visi-
ble to a benevolent mediator, who based on his information makes adoption
recommendations that maximize social welfare subject to a credibility con-
straint. To counterbalance informational free-riding, the optimal mechanism
under both good and bad news generally features regions of selective over-
recommendation.20

2 Model

2.1 The Game

Time t ∈ [0,+∞) is continuous. At time t = 0, an innovation of unknown
quality θ ∈ {G = 1, B = −1} and of unlimited supply is released to a contin-
uum population of potential consumers of mass N̄0 ∈ R>0. Consumers are ex
ante identical: They have a common prior p0 ∈ (0, 1) that θ = G; they are

19In earlier papers on observational learning, the timing of players’ moves is exogenous
(e.g. Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000).

20This is true when consumers are myopic, which is Che and Hörner’s main focus. In
section 5 of their paper, they also consider a version of forward-looking consumers, but this
is quite different from our model, because consumers are restricted to choosing a single time
at which to “check-in” with the mediator and are not able to observe any information prior
to this time. Under perfect good news (they do not consider perfect bad news), they show
that the optimal policy in this case is sometimes fully transparent.
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forward-looking with common discount rate r > 0; and they have the same
actions and payoffs, as specified below.

At each time t, consumers receive stochastic opportunities to adopt the
innovation. Adoption opportunities are generated independently across con-
sumers and across histories according to a Poisson process with exogenous
arrival rate ρ > 0.21 Upon an adoption opportunity, a consumer must choose
whether to adopt the innovation (at = 1) or to wait (at = 0). If a consumer
adopts, he receives an expected lump sum payoff of Et[θ], conditioned on in-
formation available up to time t, and drops out of the game. If the consumer
chooses to wait or does not receive an adoption opportunity at t, he receives a
flow payoff of 0 until his next adoption opportunity, where he faces the same
decision again.

2.2 Learning

Over time, consumers observe public signals that convey information about
the quality of the innovation. To highlight the importance of qualitative and
quantitative features of the informational environment, we employ a variation
of the Poisson learning models of Keller et al. (2005) and Keller and Rady
(2010, 2015): Let Nt denote the flow of of consumers newly adopting the
innovation at time t, which we define more precisely in Section 2.3. Then,
conditional on quality θ, public signals arrive according to an inhomogeneous
Poisson process with arrival rate (εθ + λθNt)dt, where λθ > 0 and εθ ≥ 0 are
exogenous parameters that depend on the quality θ of the innovation. The
signal process summarizes news events that are generated from two sources:

First, the social learning term λNt represents news generated endogenously,
based on the experiences of other consumers: It captures the idea of a flow Nt

of new adopters each generating signals at rate λ dt.22 Thus, the greater the
21Stochasticity of adoption opportunities can be seen as capturing the natural assumption

that consumers face cognitive and time constraints, making it impossible for them to ponder
the decision whether or not to adopt the innovation at every instant in continuous time.

22By letting the social learning component of the signal arrival rate at time t, λNt, depend
only on the flow of adopters Nt at time t itself, we are effectively assuming that each adopter
can generate a signal only once, namely at the time of adoption. This is appropriate for
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flow of consumers adopting the innovation at t, the more likely it is for a signal
to arrive at t, and hence the absence of a signal at t is more informative the
larger Nt. Second, we also allow for (but do not require) signals to arrive at
a fixed exogenous rate ε dt, representing information generated independently
of consumers’ behavior, e.g. by professional critics or government watchdog
agencies.

For tractability, we focus on learning via perfect Poisson processes, where
a single signal provides conclusive evidence of the quality of the innovation.
Qualitatively, we can then distinguish between learning via perfect bad
news, where εG = λG = 0 and εB = ε ≥ 0, λB = λ > 0, so that the
arrival of a signal (called a breakdown) is conclusive evidence that the inno-
vation is bad; and learning via perfect good news, where εB = λB = 0 and
εG = ε ≥ 0, λG = λ > 0, so that a signal arrival (called a breakthrough) is
conclusive evidence that the innovation is good. As motivated in the Intro-
duction and Section 4.1, the distinction between bad news and good news can
be seen to reflect the nature of news production in different markets.

Quantitatively, we use Λ0 := λN̄0 as a simple measure of the potential
for social learning in the economy, summarizing both the likelihood λ with
which individual adopters’ experiences find their way into the public domain
and the size N̄0 of the population which can contribute to and access the
common pool of information.

Evolution of Beliefs: Under perfect bad news, consumers’ posterior on
θ = G permanently jumps to 0 at the first breakdown, while under perfect
good news, consumers’ posterior on θ = G permanently jumps to 1 at the first
breakthrough. Let pt denote consumers’ no-news posterior, i.e. the belief at t
that θ = G conditional on no signals having arrived on [0, t). Given a flow of

innovations such as new movies or medical procedures, for which “consumption” is a one-time
event and quality is revealed upon consumption. For durable goods (e.g. cars or consumer
electronics), it might be more natural to allow adopters to generate signals repeatedly over
time, which can be captured by replacing λNt with λ

´ t
0
Ns ds. This would yield results that

are qualitatively similar to those presented in the following sections.
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adopters Ns≥0, standard Bayesian updating implies that

pt =
p0e
−
´ t
0 (εG+λGNs)ds

p0e
−
´ t
0 (εG+λGNs)ds + (1− p0)e−

´ t
0 (εB+λBNs)ds

.23 (1)

In particular, if Nτ is continuous in an open interval (s, s+ ν) for ν > 0, then
pτ for τ ∈ (s, s+ ν) evolves according to the ODE

ṗτ = ((εB + λBNτ )− (εG + λGNτ )) pτ (1− pτ ).

Note that the no-news posterior is continuous. Moreover, it is increasing under
perfect bad news and decreasing under perfect good news.

2.3 Equilibrium

Since our main interest is in the aggregate adoption dynamics of the popula-
tion, we take as the primitive of our equilibrium concept the aggregate flow
Nt≥0 of consumers newly adopting the innovation over time and do not explic-
itly model individual consumers’ behavior. Given our focus on perfect news
processes, consumers’ incentives are non-trivial only in the absence of signals:
Under perfect bad news, no new consumers adopt after a breakdown, while
under perfect good news all remaining consumers adopt at their first oppor-
tunity after there has been a breakthrough. Therefore, we henceforth let Nt

denote the flow of new adopters at t conditional on no signals up to time t and
define equilibrium in terms of this quantity. Reflecting the assumption that
aggregate adoption behavior is predictable with respect to the news process
of the economy, we require that Nt be a deterministic function of time. We
consider all such functions which are feasible in the following sense:

Definition 2.1. A feasible flow of adopters is a right-continuous function
N : [0,+∞) → R such that Nt := N(t) ∈ [0, ρN̄t] for all t ∈ [0,+∞), where
N̄t := N̄0 −

´ t
0
Nsds.

23Definition 2.1 imposes measurability on N , so this expression is well-defined.
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Here N̄t denotes the mass of consumers remaining in the game at time
t. We require that Nt ≤ ρN̄t so that Nt is consistent with the remaining N̄t

consumers independently receiving adoption opportunities at Poisson rate ρ.
Any feasible adoption flow Nt≥0 defines an associated no-news posterior pNt as
given by Equation (1).

In equilibrium, we require that at each time t, Nt is consistent with optimal
behavior by the remaining N̄t forward-looking consumers: A consumer who
receives an adoption opportunity at t optimally trades off his expected payoff
to adopting against his value to waiting, given that he assigns probability pNt
to θ = G and that he expects the population’s adoption behavior to evolve
according to the process Ns≥0. For this we first define the value to waiting.

Let Σt denote the set of all right-continuous functions σ : [t,+∞)→ {0, 1},
each of which defines a potential set of future times at which, absent signals,
a given consumer might adopt if given an opportunity. Under the Poisson
process generating adoption opportunities, any σ ∈ Σt defines a random time
τσ at which, absent signals, the consumer will adopt the innovation and drop
out of the game.24

Let WN
t (σ) denote the expected payoff to waiting at t and following σ in

the future, given the aggregate adoption flow Ns≥0. Specifically, if learning is
via perfect bad news, σ prescribes adoption at the random time τσ if and only
if there have been no breakdowns prior to τσ, yielding

WN
t (σ) := E

[
e−r(τ

σ−t)
(
pNt − (1− pNt )e−

´ τσ
t (ε+λNs) ds

)]
,

where the expectation is with respect to the Poisson process generating adop-
tion opportunities.

If learning is via perfect good news, then following σ means that at any
adoption opportunity prior to τσ, adoption occurs only if there has been a

24Formally, let (Xs)s≥t denote the stochastic process representing the number of arrivals
generated on [t, s] by a Poisson process with arrival rate ρ, and let (Xs−)s>t denote the
number of arrivals on [t, s). Then τσ := inf{s ≥ t : σs × (Xs −Xs−) > 0}, with the usual
convention that inf ∅ := +∞. It is well-known that the hitting time of a right-continuous
process of an open set is an optional time. Therefore, the expectations in the definition of
the value to waiting are well-defined.
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breakthrough, and at τσ adoption occurs whether or not there has been a
breakthrough. For any time s ≥ t, denote by τs the random time at which the
first adoption opportunity after s arrives. Then WN

t (σ) is given by

E
[(

pte
−
´ τσ
t (ε+λNs) ds + (1− pt)

)
e−r(τ

σ−t) (2pτσ − 1) +

+ pt

τσˆ

t

(ε+ λNs) e
−
´ s
t (ε+λNk) dke−r(τs−t)ds

]
,

where the expectation is again with respect to the Poisson process generating
adoption opportunities.

The value to waiting at t is the payoff to waiting and behaving optimally
in the future:

Definition 2.2. The value to waiting given a feasible adoption flow Nt≥0 is
the function WN : R+ → R+ defined by WN

t := supσ∈ΣtW
N
t (σ) for all t.

We are now ready to formally define equilibrium:

Definition 2.3. An equilibrium is a feasible adoption flow Nt≥0 such that

(i). WN
t ≥ 2pNt − 1 for all t such that Nt < ρN̄t; and

(ii). WN
t ≤ 2pNt − 1 for all t such that 0 < Nt.

Condition (i) says that if some consumers who receive an adoption oppor-
tunity at t decide not to adopt, then the value to waiting, WN

t , must weakly
exceed the expected payoff to immediate adoption, 2pNt − 1. Similarly, con-
dition (ii) requires that if some consumers adopt at time t, then the value to
waiting must be weakly less than the payoff to immediate adoption. Thus, at
all times, Nt is consistent with consumers optimally trading off the expected
payoff to immediate adoption against the value to waiting.25

25Note that Definition 2.3 is essentially Nash equilibrium, i.e. we do not impose subgame
perfection. The motivation is that in a continuum population any individual consumer’s
behavior has a negligible impact on aggregate adoption levels, so that any off-path history
in which the flow of adopters differs from the equilibrium flow is more than a unilateral devi-
ation from the equilibrium path. Thus, off-path histories do not affect individual consumers’
incentives on the equilibrium path and are unimportant for equilibrium analysis.
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3 Equilibrium Analysis

3.1 Quasi-Single Crossing Property for Equilibrium In-

centives

We now proceed to equilibrium analysis. As a preliminary step, we first estab-
lish a useful property of equilibrium incentives under both perfect bad news
and perfect good news. Suppose that Nt≥0 is an arbitrary feasible flow of
adopters, with associated no-news posterior pNt≥0 and value to waiting WN

t≥0 as
defined in Definition 2.2. In general, the dynamics of the trade-off between
immediate adoption at time t (yielding expected payoff 2pNt − 1) and delaying
and behaving optimally in the future (yielding expected payoff WN

t ) can be
quite difficult to characterize, with (2pNt −1)−WN

t changing sign many times.
However, when Nt≥0 is an equilibrium flow, then for any t,

2pNt − 1 < WN
t =⇒ Nt = 0; and

2pNt − 1 > WN
t =⇒ Nt = ρN̄t;

and this imposes considerable discipline on the dynamics of the trade-off. In-
deed, the following theorem establishes that 2pNt − 1 and WN

t must satisfy a
quasi-single crossing property:

Theorem 3.1. Suppose that learning is either via perfect bad news (λB > 0 =

λG) or via perfect good news (λG > 0 = λB). Let Nt≥0 be an equilibrium, with
corresponding no-news posteriors pNt≥0 and value to waiting WN

t≥0. Then WN
t≥0

and 2pNt≥0 − 1 satisfy single-crossing, in the following sense:

• If (λB−λG)(WN
t − (2pNt −1)) < 0, then (λB−λG)(WN

τ − (2pNτ −1)) < 0

for all τ > t.

• If (λB−λG)(WN
t − (2pNt −1)) ≤ 0, then (λB−λG)(WN

τ − (2pNτ −1)) ≤ 0

for all τ > t.

The proof is in Appendix A. We briefly illustrate the intuition for the first
bullet point when learning is via perfect bad news. Suppose that immediate
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adoption is strictly better than waiting today (and hence also in the near future
provided there are no breakdowns).26 Then in the near future all consumers
adopt upon their first opportunity, so the no-news posterior strictly increases
while the number of remaining consumers strictly decreases. Because informa-
tion is generated endogenously, this means that the flow of information must
be decreasing over time. As a result, immediate adoption becomes even more
attractive relative to waiting, and consequently immediate adoption continues
to be strictly preferable at all times in the future.

0 t∗1 t∗2

Wait Indifference Adopt

Figure 1: Perfect Bad News

0

Adopt

t∗1 = t∗2

Wait

Figure 2: Perfect Good News

With any equilibrium Nt≥0, we associate two cutoff times 0 ≤ t∗1 ≤ t∗2 ≤
+∞:27 If learning is via perfect bad news, set

t∗1 := inf{t ≥ 0 : Nt > 0} and t∗2 := sup{t ≥ 0 : Nt < ρN̄t}; 28 (2)

if learning is via perfect good news, set

t∗1 := inf{t ≥ 0 : Nt < ρN̄t} and t∗2 := sup{t ≥ 0 : Nt > 0}. (3)

Thus, if Nt≥0 is a perfect bad news equilibrium it features no adoption (Nt = 0)
26This follows from the continuity of the equilibrium value to waiting, which is established

in Lemma A.1 in the Online Appendix.
27With the convention that inf ∅ = +∞ and sup∅ = 0.
28Recall that N̄t := N̄0 −

´ t
0
Ns ds > 0 denotes the remaining population at time t.

17



for all t < t∗1 and immediate adoption (Nt = ρN̄t) for all t > t∗2 absent break-
downs; while under perfect good news Nt≥0 features immediate adoption prior
to t∗1 and no adoption after t∗2 absent breakthroughs. Moreover, under both
perfect bad and good news, Theorem 3.1 implies that at all times t ∈ (t∗1, t

∗
2),

consumers are indifferent (2pNt − 1 = WN
t ) between adopting and delaying.29

This is illustrated in Figures 1 and 2. In Sections 3.2 and 3.3 we will build
on this observation to establish the existence of unique equilibria under both
perfect bad and good news. The cutoff times, as well as the flow of adopters
between t∗1 and t∗2, are fully pinned down by the parameters. Looking ahead
to Section 3.3, we will see that the perfect good news equilibrium satisfies
t∗1 = t∗2 = t∗; thus, adoption behavior is all-or-nothing, with all consumers
adopting upon first opportunity up to time t∗ and adoption ceasing from then
on absent breakthroughs. By contrast, for suitable parameters the perfect bad
news equilibrium in Section 3.2 features a non-empty region (t∗1, t

∗
2). Maintain-

ing indifference throughout (t∗1, t
∗
2) requires a form of informational free-riding,

which we term partial adoption, whereby only some consumers adopt when
given the chance (i.e. Nt ∈ (0, ρN̄t) at each t ∈ (t∗1, t

∗
2)). We will see that par-

tial adoption has important implications for the shape of the adoption curve
and for the impact of increased opportunities for social learning on welfare,
learning, and adoption dynamics.

3.2 Equilibrium under Perfect Bad News

Assume that learning is via perfect bad news. The following theorem builds
on the analysis of the previous section to establish the existence of an equilib-
rium Nt≥0, which is uniquely pinned down by the parameters. At all t, Nt is
Markovian in the associated no-news posterior pt and the time-t potential for
social learning Λt := λN̄t:30

29Suppose learning is via perfect good news. Consider t ∈ (t∗1, t
∗
2). By the definition of

t∗1 and t∗2, there exist k ∈ (t∗1, t) and l ∈ (t, t∗2) such that Nk < ρN̄k and Nl > 0. Since N
is an equilibrium, this implies 2pk − 1 ≤ Wk and 2pl − 1 ≥ Wl, whence by Theorem 3.1
2pt − 1 = Wt. The argument for perfect bad news is analogous.

30Recall that N̄t := N̄0 −
´ t

0
Ns ds denotes the remaining population at time t.
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Theorem 3.2 (Equilibrium under PBN). Fix r, ρ, λ, N̄0 > 0, ε ≥ 0, and
p0 ∈ (0, 1). There exists a unique equilibrium. Furthermore, in the unique
equilibrium, Nt is Markovian in (pt,Λt) for all t: There exists a non-decreasing
function Λ∗ : [0, 1]→ R ∪ {∞} and some p∗ ∈ [1

2
, 1) such that

Nt =


0 if pt < p∗ and Λt > Λ∗(pt)

r(2pt−1)
λ(1−pt) −

ε
λ
∈ (0, ρN̄t) if pt ≥ p∗ and Λt > Λ∗(pt)

ρN̄t if Λt ≤ Λ∗(pt).

(4)

The proof of Theorem 3.2 is in Online Appendix B.2. Here we sketch the
basic argument. Fix parameters r, ρ, N̄0 > 0, ε, λ ≥ 0, and p0 ∈ (0, 1), and
suppose that Nt≥0 is an equilibrium. By the previous section, Equation (2)
defines cutoff times 0 ≤ t∗1 ≤ t∗2 ≤ +∞ such that Nt = 0 if t < t∗1, Nt = ρN̄t

if t > t∗2, and at all t ∈ [t∗1, t
∗
2), consumers are indifferent between adopting

immediately and waiting for more information.
Partial adoption during (t∗1, t

∗
2): Lemma B.1 in Online Appendix B.2

shows that the flow of adopters at all times t ∈ (t∗1, t
∗
2) must satisfy Nt =

r(2pt−1)
λ(1−pt) −

ε
λ
∈ (0, ρN̄t)—thus, adoption throughout (t∗1, t

∗
2) is partial, with only

some consumers adopting when given a chance and others free-riding on the
information generated by the adopters. Heuristically, maintaining consumer
indifference requires that the cost and benefit of delaying be equal:

Benefit of Delay︷ ︸︸ ︷
(ε+ λNt) (1− pt)dt︸ ︷︷ ︸

Probability of
breakdown

(0− (−1))︸ ︷︷ ︸
Benefit:

Avoid Bad Product

=

Cost of Delay︷ ︸︸ ︷
(1− (ε+ λNt) (1− pt)dt)︸ ︷︷ ︸

Probability of
no breakdown

(2pt+dt − 1)rdt︸ ︷︷ ︸
Cost:

Discounting

.

(5)
Delaying one’s decision by an instant is beneficial if a breakdown occurs at that
instant, allowing a consumer to permanently avoid the bad product. The gain
in this case is (0− (−1)) = 1, and this possibility arises with an instantaneous
probability of (ε+ λNt) (1−pt)dt. On the other hand, if no breakdown occurs,
which happens with instantaneous probability 1 − (ε+ λNt) (1 − pt)dt, then
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consumers incur an opportunity cost of (2pt+dt − 1)rdt, reflecting the time
cost of delayed adoption.31 Ignoring terms of order dt2 and rearranging yields
Nt = r(2pt−1)

λ(1−pt) −
ε
λ
.32

Determining the cutoff times: Next, we derive an alternative descrip-
tion of t∗1 and t∗2 in terms of the evolution of the no-news posterior pt and
the potential for social learning Λt. To state this description, we define the
following notation. For any p ∈ (0, 1) and Λ ≥ 0, let

G(p,Λ) :=

∞̂

0

ρe−(r+ρ)τ
(
p− (1− p)e−(ετ+Λ(1−e−ρτ))

)
dτ.

G(p,Λ) represents the payoff to adopting at the next opportunity absent break-
downs, given that the current belief is p, that the remaining potential for social
learning is Λ, and that absent breakdowns the remaining Λ/λ consumers adopt
at their first opportunity in the future.

Define cutoff posteriors p, p, and p] as follows. Let p be the lowest posterior
at which a consumer to whom adoption opportunities arrive at rate ρ is willing
to adopt immediately if all information in the future arrives exclusively through
the exogenous new source; that is,

2p− 1 = G(p, 0)⇔ p :=
(ε+ r)(r + ρ)

2(ε+ r)(r + ρ)− ερ
.

Define p := limρ→∞ p = ε+r
ε+2r

to be the lowest belief at which a hypothetical
consumer to whom adoption opportunities arrive continuously would be willing
to adopt immediately if all information in the future arrives exclusively through
the exogenous new source. Define p] := limε→∞ p = ρ+r

ρ+2r
to be the lowest belief

at which a consumer to whom adoption opportunities arrive at rate ρ would
31Note that ρ does not enter into this expression, because in the indifference region con-

sumers obtain the same continuation payoff regardless of whether or not they obtain an
adoption opportunity in the time interval (t, t + dt) and hence are indifferent between re-
ceiving an opportunity to adopt or not.

32A bit more precisely, ignoring terms of order dt2, the right hand side of Equation 5 is
given by (1−(ε+ λNt) (1−pt)dt)(2(pt+ ṗtdt)−1)rdt = r(2pt−1)dt. Further rearrangement
yields the desired expression.
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be willing to adopt immediately even if all uncertainty were to be completely
resolved by the next adoption opportunity.33

Finally, define the function Λ∗ : [0, 1] → R+ ∪ {+∞} as follows. Let
Λ∗(p) = 0 for all p ≤ p, Λ∗(p) = +∞ for all p ≥ p], and for all p ∈ (p, p]), let
Λ∗(p) ∈ R+ be the unique value such that 2p− 1 = G(p,Λ∗(p)).34 Thus, if the
current posterior is p ∈ [p, p]) and the current potential for social learning in
the economy is Λ∗(p), then consumers are indifferent between adopting now
or at their next opportunity absent breakdowns, provided that all remaining
Λ∗(p)/λ consumers also adopt at their first opportunity in the future.

Then, letting p∗ := min{p, p]}, Lemma B.3 in Online Appendix B.2 shows
that t∗2 = inf{t ≥ 0 : Λt < Λ∗(pt)} and t∗1 = min{t∗2, sup{t ≥ 0 : pt < p∗}}.35

Equilibrium dynamics given initial parameters: From the previous
two steps, it is clear that any equilibrium must take the Markovian form
in Equation (4), with Λ∗ and p∗ as defined above. It remains to show how
Equation (4) uniquely pins down the evolution of Nt as a function of the initial
parameters; and to verify that Nt≥0 thus obtained does indeed constitute an
equilibrium (in particular, is feasible). Here we sketch the former argument,
relegating the latter to Online Appendix B.2.3. Note first the following two
special cases: If ε = 0 and p0 ≤ 1

2
, then Equation (4) implies that Nt = 0 for all

t. Second, if ε ≥ ρ (so that p∗ := min{p, p]} = p]), then because Λ∗(p) = +∞
for all p ≥ p], Nt = 0 as long as Λt > Λ∗(pt) and Nt = ρN̄t as soon as Λt ≤
Λ∗(pt). Throughout the rest of the paper, we will be particularly interested in
equilibria that feature a non-empty partial adoption region (t∗1, t

∗
2). Since the

two cases above preclude this regardless of other parameters, we henceforth
rule them out (Online Appendix B.2.4 discusses the second case in more detail):

Condition 3.3. The rate at which exogenous information arrives is smaller
than the rate at which consumers obtain adoption opportunities: ε < ρ.

33Thus, for all p > p], limΛ→∞G(p,Λ) < 2p − 1 and for all p < p], limΛ→∞G(p,Λ) >
2p− 1.

34Note that such a value must exist given that p ∈ (p, p]) and is unique because G(p,Λ)−
(2p− 1) is strictly decreasing in p and strictly increasing in Λ on this domain.

35We impose the convention that if {t ≥ 0 : pt < p∗ = 1
2} = ∅, then sup{t ≥ 0 : pt <

p∗ = 1
2} := 0.
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Figure 3: Partition of (pt,Λt) when ε < ρ

Condition 3.4. Either ε > 0 or p0 ∈ (1
2
, 1).

Given these conditions, Figure 3 illustrates how the unique equilibrium is
obtained as a function of the parameters. Regions (2) and (3) represent values
of (pt,Λt) corresponding to the first line of Equation (4), so that no adoption
takes place in these regions. Region (4) corresponds to partial adoption as
given by the second line of Equation (4). Finally, region (1) corresponds to
the third line of Equation (4) and thus to immediate adoption.

If (p0,Λ0) is in region (2), then initially no adoption occurs and the no-
news posterior drifts upward according to the law of motion ṗt = pt(1− pt)ε,
while Λt remains unchanged at Λ0. This yields a unique time 0 < t∗1 = t∗2 at
which (pt,Λt) hits the boundary separating regions (2) and (1); subsequently
consumers adopt immediately upon an opportunity so that Nt = ρe−ρ(t−t∗2)N̄t∗2

uniquely pins down the evolution of (pt,Λt). If (p0,Λ0) is in region (3), then
again no initial adoption occurs and the no-news posterior drifts upward ac-
cording to the law of motion ṗt = pt(1−pt)ε, while Λt remains unchanged at Λ0.
However, now this yields a unique time 0 < t∗1 at which (pt,Λt) hits the bound-
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ary separating regions (3) and (4), and at this time Λt∗1
= Λ0 > Λ(pt∗1) = Λ(p),

so that we must have t∗1 < t∗2. From t∗1 on the evolution of (pt,Λt) is uniquely
pinned down by the second line of Equation (4).36 Thus, t∗2 is uniquely given
by the first time t at which Λt = Λ∗(pt), at which point (pt,Λt) enters region
(1). Similar arguments show that when (p0,Λ0) starts in region (4), we have
t∗1 = 0 and t∗2 > t∗1 is the first time at which (pt,Λt), evolving according to the
second line of Equation (4), enters region (1). Finally, if (p0,Λ0) is in region
(1), then 0 = t∗1 = t∗2 and absent breakdowns all consumers adopt upon their
first opportunity from the beginning.

Conditions for partial adoption: As seen above, whether or not the
equilibrium features a period of partial adoption depends on the fundamentals.
More specifically, Figure 3 shows that if consumers are forward-looking and not
too optimistic (p0 < p]), then t∗1 < t∗2 holds whenever the potential for social
learning Λ0 is sufficiently large. The following lemma states this precisely:

Lemma 3.5. Fix ρ, ε and p0 satisfying Conditions 3.3 and 3.4. Assume
p0 < p]. Then for all r > 0, there exists Λ̄0(r) > 0 such that t∗1(Λ0) < t∗2(Λ0)37

if and only if Λ0 > Λ̄0(r).

Proof. Set Λ̄0(r) := max{Λ∗(p0),Λ∗(p)} and see Online Appendix B.4 . �

On the other hand, if as in existing learning-based models of innovation
adoption, learning is purely exogenous (λ = 0 and ε > 0) or consumers are
myopic (“r = +∞”), then there is never any partial adoption, regardless of
other parameters. In the former case, 0 = Λt < Λ∗(p) for all p > p, so

36Specifically, combining the second line of Equation (4) with Equation (1) yields the
ODE ṗt = rpt(2pt − 1), which pins down pt uniquely given the initial value pt∗1 = p:

pt =
pt∗1

2pt∗1 − e
r(t−t∗1)(2pt∗1 − 1)

.

Plugging this back into Nt = r(2pt−1)
λ(1−pt) −

ε
λ uniquely pins down Λt = λN̄t. Note that

since pt∗1 > 1
2 , pt given above is strictly increasing and reaches p] in finite time. Thus

t∗2 = inf{t : Λt < Λ∗(pt)} < +∞.
37Note that by the Markovian description of equilibrium dynamics, Λ0 is a sufficient

statistic for equilibrium; i.e., holding all other fundamentals fixed, Λ0 fully pins down the
corresponding no-news equilibrium adoption flow, beliefs and cutoff times t∗1(Λ0) and t∗2(Λ0).
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by Theorem 3.2 no consumers adopt until the no-news posterior hits p (at
t∗1 = t∗2) and from then on all consumers adopt immediately when given a
chance. The latter case corresponds to p = p = 1

2
and Λ∗(p) = +∞ for all

p > 1
2
, so t∗1 = t∗2 = inf{t : pt >

1
2
}. Thus, the possibility of partial adoption in

equilibrium hinges crucially both on consumers being forward-looking and on
there being opportunities for social learning.

3.3 Equilibrium under Perfect Good News

We now turn to study equilibrium behavior when learning is via perfect good
news. As under perfect bad news, there is a unique equilibrium Nt≥0, and
Nt is Markovian in the state variables (pt,Λt). Surprisingly, however, the
equilibrium is all-or-nothing, regardless of the potential for social learning in
the economy. There is a cutoff belief p∗ above which all consumers adopt if
given an opportunity and below which no consumers adopt:

Theorem 3.6 (Equilibrium under PGN). Let r, ρ, λ, N̄0 > 0, p0 ∈ (0, 1),
and ε ≥ 0. There exists a unique equilibrium. Moreover, in the unique equi-
librium, Nt is Markovian in (pt,Λt) (or equivalently (pt, N̄t)) for all t and
satisfies:

Nt =

ρN̄t if pt > p∗

0 if pt ≤ p∗,
(6)

where
p∗ =

(ε+ r)(ρ+ r)

2(ε+ ρ)(ε+ r)− ερ
.

To prove Theorem 3.6 we again invoke the quasi-single crossing property for
equilibrium incentives established in Theorem 3.1. As we saw in Section 3.1,
this implies that in any equilibrium, there are times 0 ≤ t∗1 ≤ t∗2 ≤ +∞ defined
by Equation (3) such that absent breakthroughs, Nt = ρN̄t if t < t∗1, Nt = 0

if t > t∗2, and throughout (t∗1, t
∗
2) consumers are indifferent between adopting

immediately and waiting for more information.
The key observation (Lemma B.6 in Online Appendix B.3) is that we must

in fact have t∗1 = t∗2 =: t∗. To see the intuition, suppose t∗1 < t∗2. Then
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consumers would be indifferent between adopting and delaying at each time
t ∈ (t∗1, t

∗
2). Moreover, there is t ∈ (t∗1, t

∗
2) and ∆ ∈ (0, t∗2 − t) such that

Nτ > 0 throughout [t, t + ∆).38 As with perfect bad news, we can compare a
consumer’s payoff to adopting at t with the payoff to delaying his decision by
an instant:

r(2pt − 1)dt+ pt(λNt + ε)dt

(
1− ρ

r + ρ

)
.

The first term represents the gain to immediate adoption if no breakthrough
occurs between t and t + dt, which happens with instantaneous probability
(1 − pt(λNt + ε)dt). Just as with perfect bad news, the gain to adopting
immediately in this case is r(2pt+dt − 1)dt, representing time discounting at
rate r and the fact that at t + dt the consumer remains indifferent between
adopting given an opportunity and delaying. Ignoring terms of order dt2 yields
r(2pt − 1)dt. The second term represents the gain to immediate adoption if
there is a breakthrough between t and t+dt, which happens with instantaneous
probability pt(λNt + ε)dt > 0. Now the situation is very different from the
perfect bad news setting: A breakthrough conclusively signals good quality, so
a consumer who delays his decision by an instant will adopt immediately at
his next opportunity. This results in a discounted payoff of ρ

r+ρ
, reflecting the

stochasticity of adoption opportunities. On the other hand, by adopting at t,
the consumer receives a payoff of 1 > ρ

r+ρ
immediately. Thus, regardless of

whether or not there is a breakthrough between t and t+dt, there is a strictly
positive gain to adopting immediately at t, contradicting indifference at t.

The above argument illustrates a fundamental difference between the bad
news and good news setting. In order to maintain indifference over a period of
time between immediate adoption and waiting, it must be possible to acquire
decision-relevant information by waiting: Consumers who are prepared to
adopt at t will be willing to delay their decision by an instant only if there is
a possibility that at the next instant they will no longer be willing to adopt.
In the bad news setting, this is indeed possible, because a breakdown might
occur. On the other hand, if learning is via good news, this cannot happen:

38By definition of t∗2, there exists t ∈ (t∗1, t
∗
2) such that Nt > 0. By right-continuity of N ,

we must then have Nτ > 0 for all τ > t sufficiently close.
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A breakthrough between t and t + dt reveals the innovation to be good, so
consumers strictly prefer to adopt from t+ dt on; if there is no breakthrough,
then consumers remain indifferent at t + dt, so in either case the information
obtained is not decision-relevant.39

Given that t∗1 = t∗2 = t∗, Theorem 3.6 follows from the observation that
pt ≤ p∗ if and only if t ≥ t∗ (Lemma B.7 in Online Appendix B.3). It is
worth noting that if ε = 0, then p∗ = 1

2
, so regardless of the discount rate

r, consumers behave entirely myopically. If ε > 0, then consumers’ forward-
looking nature is reflected by the fact that the cutoff posterior p∗ below which
consumers are unwilling to adopt is (r+ρ)(r+ε)

2(r+ρ)(r+ε)−ρε >
1
2
. In both cases, the cutoff

posterior does not depend on λ or N̄0: Social learning only affects the time t∗

at which adoption ceases conditional on no breakthroughs.

4 Implications

4.1 Adoption Curves: S-Shaped vs. Concave

The differing informational incentives of bad and good news environments have
observable implications. Consider the adoption curve of the innovation, which
plots the percentage of adopters in the population against time. Conditional
on no news up to time t, this is given by At :=

´ t
0
Ns/N̄0 ds.

Theorems 3.2 and 3.6 translate directly into different predictions for the
shape of the adoption curve, as summarized by the following corollary: Un-
der perfect bad news, At exhibits an S-shaped (i.e. convex-concave) growth
pattern, where the region of convex growth coincides precisely with the par-
tial adoption region (t∗1, t

∗
2). By contrast, under perfect good news, adoption

proceeds in concave "bursts" :

Corollary 4.1. Perfect Bad News: In the unique equilibrium of Theo-
rem 3.2, At has the following shape: For 0 ≤ t < t∗1, At = 0; for t∗1 ≤ t < t∗2,

39Note that breakthroughs do of course convey decision-relevant information at beliefs
where consumers strictly prefer to delay. But during a region of indifference, this cannot be
the case.
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At is strictly increasing and convex in t; for t ≥ t∗2, At is strictly increasing
and concave in t. If the first breakdown occurs at time t, then adoption comes
to a standstill from then on.

Perfect Good News: In the unique equilibrium of Theorem 3.6, At =

1 − e−ρt for all t < t∗, which is strictly increasing and concave. If there is a
breakthrough prior to t∗, then the proportion of adopters is given by 1 − e−ρt

for all t; if the first breakthrough occurs at s > t∗,40 then adoption comes to
a temporary standstill between t∗ and s, and for all t ≥ s, the proportion of
adopters is strictly increasing and concave and given by 1− e−ρ(t∗+t−s).
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Figure 4: Adoption curve under PBN conditional on no breakdowns (ε = 0)

Figures 4 and 541 illustrate the differing adoption patterns. As we discussed
in the Introduction, both patterns have been widely documented empirically,
but our model differs from existing explanations in identifying a purely infor-
mational source of this regularity: We predict S-shaped adoption curves in bad
news markets with a sufficiently large potential for social learning and suffi-
ciently forward-looking and not too optimistic consumers (so that t∗1 < t∗2 by
Lemma 3.5), and concave adoption patterns in good news markets (or in bad

40This occurs only if ε > 0.
41Associated parameter values: ε = 1/2, r = 1, ρ = 1, λ = 0.5, and p0 = 0.7.
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Figure 5: Adoption curves under PGN (blue = breakthrough before t∗; yellow
= breakthrough after t∗; pink = bad quality)

news markets with little potential for social learning and with very optimistic
and impatient consumers).

The convex42 growth region ofAt under perfect bad news coincides precisely
with the partial adoption region (t∗1, t

∗
2) and is tied to consumer indifference

in this region: Conditional on no breakdowns during this period, consumers
grow increasingly optimistic about the quality of the innovation, which in-
creases their opportunity cost of delaying adoption. To maintain indifference,
the benefit to delaying adoption must then also increase over time: This is
achieved by increasing the arrival rate of future breakdowns, which improves
the odds that waiting will allow consumers to avoid the bad product. But since
the arrival rate of information is increasing in the flow Nt of new adopters,
this means that Nt must be strictly increasing throughout (t∗1, t

∗
2). Since Nt

represents the rate of change of At, this is equivalent to At being convex.43

As we discussed following Lemma 3.5, partial adoption depends on the joint
assumption of forward-looking consumers and social learning. This is why we
are able to generate S-shaped adoption curves even when consumers are ex

42The regions of concave growth under both perfect bad and good news result simply
from the gradual depletion of the population of remaining consumers.

43This argument for convex growth does not rely on linearity of λNt; it remains valid as
long as the rate at which the bad product generates breakdowns at t is increasing in Nt.
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ante identical, whereas existing learning-based models with myopic consumers
(Young, 2009) or purely exogenous learning (Jensen, 1982) must appeal to
specific distributions of consumer heterogeneity.44

Our predictions suggest the need for empirical work that would systemat-
ically investigate the qualitative and quantitative features of consumer learn-
ing about different innovations and compare the associated adoption patterns.
Here we provide some suggestive evidence:

Figure 6: Adoption of microwaves by US households (Guenthner et al. (1991))

Learning via bad news events (or their absence) seems especially plausible
in the case of new technologies or medical procedures whose introduction was
accompanied by initial safety concerns: For example, following Raytheon’s in-
troduction to the US market of the first countertop household microwave oven
in 1967, the 1970s were characterized by widespread concerns about possible
“radiation leaks”, stirred up for instance by a Consumers’ Union (1973) report
which concluded that “we are not convinced that they are completely safe to

44See footnote 13. One exception is Kapur (1995), where a finite number of identical firms
engage in a sequence of waiting contests to adopt a new technology and more information
is revealed when more firms adopt during a given waiting contest. This can be viewed
as a form of forward-looking social learning. He shows that the mean duration of waiting
contests shrinks over time, suggesting a crude approximation of convex diffusion.
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use”45 and by Paul Brodeur’s 1977 bestseller The Zapping of America.46 Thus,
it seems plausible that some consumers would have delayed their purchase in
the hope of learning whether previous adopters experienced any adverse ef-
fects, as suggested for instance by Wiersema and Buzzell (1979).47 Consistent
with our predictions for bad news markets, the microwave is a textbook exam-
ple of an innovation with an S-shaped adoption pattern: Figure 6 shows the
convex growth in US adoption levels through the late 1980s, with later growth
slowing to reach ownership levels of around 97% in 2011.48 A second example
is bariatric surgery, a collection of surgical weight loss procedures (including
gastric bypass and gastric band surgery) which began gaining momentum in
the mid-1990s. As with any major surgery, complications are possible, with
typical health advice websites containing statements such as “a small degree of
risk, including death, is inherent to all types of surgery” and “Because bariatric
surgery is a relatively new surgical specialty, there are not yet enough medical
data to predict with certainty which patients will have better outcomes.”49

Again, consistent with some patients deciding to delay the procedure to learn
whether previous adopters suffered serious complications, the available data
suggests an S-shaped growth pattern.50

Concave adoption patterns have been studied in the marketing literature
45Consumers’ Union (1973), p. 221
46The FDA’s Bureau of Radiological Health disagreed with the concerns. For details see

Wiersema and Buzzell (1979).
47Ibid., p. 2. We note that adoption levels remained relatively low throughout the 1970s

despite the fact that the entry of Japanese firms onto the US market in the mid-1970s
brought with it substantial price decreases (from $550 in 1970 to as low as $150 in 1978,
ibid. p. 2 and p. 5), possibly lending further plausibility to safety concerns as the primary
source of delays.

48Williams (2014), p. 2.
49http://health.usnews.com/health-conditions/heart-health/

information-on-bariatric-surgery/overview#4.
50According to Buchwald and Oien (2009) p. 1609 and Buchwald and Oien (2013) p. 428,

the annual number of procedures performed worldwide (i.e. the number of new adoptions)
increased from 40,000 in 1998 to 146,301 in 2003 and to 344,221 in 2008, and then plateaued
at 340,768 in 2011. We note that an explanation in terms of reduced costs does not seem
possible: For example, in the US the number of annual procedures increased from 13,386
to 121,055 between 1998 and 2004, while the average cost per procedure saw only a limited
decrease, from $10,970 to $10,395; cf. Zhao and Encinosa (2007) Table 1, p. 6.
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Figure 7: 2013 cumulative box office sales for various blockbuster (left) and
independent (right) movies (Source: http://www.the-numbers.com)

under the name “fast-break product life cycles”, with movies (Figure 7), books,
music and similar leisure-enhancing products as canonical examples.51 Con-
sistent with our predictions, these domains appear to better fit the good news
than the bad news model. For example, in a 2003–2004 study of consumer
reviews of a representative sample of 6405 books on Amazon.com and Bar-
nesandNoble.com, Chevalier and Mayzlin (2006) find that reviews “are over-
whelmingly positive overall at both sites,”52 suggesting that social learning
in this domain proceeds via good news signals (or their absence) rather than
via bad news signals: On a scale from one (worst) to five (best) stars, the
modal review in the study is 5 stars, the mean star rating exceeds 4, and the
fraction of 1-star ratings is in the range of 0.03–0.08.53 As far as exogenously
generated news is concerned, it would again appear that positive events, such

51Cf. Keillor (2007), pp. 51–61.
52Chevalier and Mayzlin (2006), p. 347.
53Ibid., Table 1, p. 347.
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as Academy Award, Grammy Award, or Booker Prize wins, receive far greater
coverage than the occasional damning review by a critic (for this reason, Board
and Meyer-ter Vehn (2013)54 also cite the movie industry as an example of a
good news market). Based on our model, we would also conjecture concave
adoption patterns for (essentially side-effect free) herbal remedies and other
alternative medical treatments, and for many beauty and fitness products, for
which anecdotal evidence suggests that consumer learning is primarily about
“whether they actually work” (i.e. good news events or their absence).

4.2 The Effect of Increased Opportunities for Social

Learning

How does an increase in the potential for social learning Λ0 := λN̄0 affect
welfare, learning, and adoption dynamics? Again, the differing informational
incentives of bad and good news environments have important implications.

Under perfect bad news, an economy’s ability to harness its potential for
social learning is subject to a surprising saturation effect : Up to a certain cut-
off level, increasing Λ0 strictly increases ex-ante welfare, speeds up learning,
and decreases expected adoption levels of bad products while leaving adop-
tion levels of good products unaffected; but beyond this cutoff level, further
increases in Λ0 are ex-ante welfare-neutral, cause learning to slow down over
certain periods, and strictly slow down the adoption of good products. By
contrast, there is no such saturation effect under perfect good news.

Throughout this section we fix r, ρ, ε, and p0 and study the effect of
increasing Λ0 on ex-ante equilibrium welfare W0(Λ0); equilibrium cutoff times
t∗1(Λ0), t∗2(Λ0); no-news posteriors pΛ0

t ; and expected adoption levels At(Λ0, G)

and At(Λ0, B) conditional on good and bad quality, respectively.55

Perfect Bad News: The following proposition, which we prove in Online
Appendix B.4, summarizes the saturation effect.

54Board and Meyer-ter Vehn (2013) footnote 2, p. 2382.
55Note that because of the Markovian description of the equilibrium in Theorem 3.2 and

Theorem 3.6, Λ0 is a sufficient statistic for these quantities when all other parameters are
fixed.
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Proposition 4.2. Consider learning via perfect bad news. Fix r, ρ > 0, ε ≥ 0,
and p0 satisfying Conditions 3.3 and 3.4 and such that p0 ∈ (p, p]).56 Consider
Λ̂0 > Λ0 ≥ Λ∗(p0). Then:

(i). Welfare Neutrality: W0(Λ̂0) = W0(Λ0).

(ii). Non-Monotonicity of Learning: There exists some t ∈ (t∗2(Λ0),+∞)

such that

• pΛ0
t = pΛ̂0

t for all t ≤ t∗2(Λ0),

• pΛ0
t > pΛ̂0

t for all t ∈ (t∗2(Λ0), t),

• pΛ0
t < pΛ̂0

t for all t > t.

(iii). Slowdown in Adoption: For all t and θ = B,G, At(Λ0, θ) > At(Λ̂0, θ).

On the other hand, if Λ0 < Λ̂0 ≤ Λ∗(p0), then W0(Λ0) < W0(Λ̂0); pΛ0
t < pΛ̂0

t ;
At(Λ0, G) = At(Λ̂0, G) and At(Λ0, B) > At(Λ̂0, B) for all t.

The saturation effect obtains once Λ0 exceeds Λ∗(p0). This is precisely
the level above which the equilibrium features an initial partial adoption re-
gion (0 = t∗1 < t∗2(Λ0)), so that consumers at time 0 are indifferent between
delaying and adopting. This immediately implies welfare-neutrality, because
W0(Λ0) = 2p0 − 1 irrespective of the value of Λ0 ≥ Λ∗(p0).57 This result is in
stark contrast to the cooperative benchmark in which consumers coordinate on
socially optimal adoption levels: Here increased opportunities for social learn-
ing are always strictly beneficial and for any p0 >

1
2
the first-best (complete

information) payoff of ρ
r+ρ

p0 can be approximated in the limit as Λ0 →∞.58

56We assume p0 ∈ (p, p]), so that t∗1 = 0, to focus on the inefficiency due to partial adoption
without having to take into account the effect of Λ0 on t∗1. As we show in Online Appendix
B.4.1, the welfare-neutrality result remains valid if p0 ∈ (0, p], but now the cutoff-level above
which it holds is Λ∗(p) rather than Λ∗(p0).

57As discussed in the previous footnote, as long as Λ̂0 > Λ0 > max{Λ∗(p),Λ∗(p0)}, the
welfare-neutrality result remains valid even if p0 < p in which case t∗1(Λ0) = t∗1(Λ̂0) > 0.

58The cooperative benchmark is derived in Section 3.2 of an earlier version of this paper,
Frick and Ishii (2014): It takes an all-or-nothing form, with no adoption below a cutoff
belief ps and immediate adoption above ps. Relative to this, equilibrium displays two types
of inefficiency: First, because ps < p, adoption generally begins too late. Second, whenever
t∗1 < t∗2, then once consumers begin to adopt, the initial rate of adoption is too low. Cf.
Frick and Ishii (2014), section 5.3.
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(ii) and (iii) further illuminate the forces behind welfare-neutrality: Be-
cause an increase in Λ0 affects learning dynamics in a non-monotonic manner,
the impact on a consumer’s expected payoff varies with the time t at which
he obtains his first adoption opportunity: If t ≤ t∗2(Λ0), his expected payoff is
the same under Λ0 and Λ̂0; if t ∈ (t∗2(Λ0), t), he is strictly worse off under Λ̂0,
because in case the innovation is bad he is less likely to have found out by then
than under Λ0; finally, if t > t, he is strictly better off under Λ̂0. Depending on
Λ̂0, t adjusts endogenously to balance out the benefits, which arrive at times
after t, with the costs incurred at times (t∗2(Λ0), t).

Similarly, by (iii), an increase in Λ0 strictly decreases At(Λ0, G) (which
is harmful), but also decreases At(Λ0, B) (which is beneficial), and welfare-
neutrality is achieved because these forces balance out in equilibrium. Figure 8
illustrates that the strict slow-down in the adoption of good products is due
to two effects: On the extensive margin, the increase in Λ0 pushes out t∗2 (i.e.
prolongs free-riding in the form of partial adoption); on the intensive margin,
the increase strictly drives down the growth rate of At at all t < t∗2(Λ0).
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Figure 8: Changes in adoption levels of a good product as a result of increased
opportunities for social learning under perfect bad news (Λ̂0 > Λ0)
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Since it only arises in the presence of partial adoption, the saturation
effect once again relies crucially on the interaction between forward-looking
consumers and social learning, setting us apart from models of myopic social
learning or forward-looking exogenous learning in which ex-ante welfare nec-
essarily increases in response to more informative signals (even if consumers
are heterogeneous).59

Perfect Good News: Under perfect good news, there is no partial adop-
tion. Correspondingly, there is no saturation effect:60

Proposition 4.3. Consider learning via perfect good news. Fix r, ρ > 0,
ε ≥ 0, and p0 ∈ (p∗, 1).61 Suppose Λ̂0 > Λ0 ≥ 0.62 Then:

(i). Strict Welfare Gains: Provided ε > 0,63 we have W0(Λ̂0) > W0(Λ0).

(ii). Learning Speeds Up:

• 0 < t∗(Λ̂0) < t∗(Λ0)

• pΛ̂0
t < pΛ0

t for all t > 0

• pΛ̂0

t∗(Λ̂0)+k
= pΛ0

t∗(Λ0)+k for all k ≥ 0.

(iii). No Initial Slow-Down in Adoption:

• For all t ≤ t∗(Λ̂0), At(Λ̂0; θ) = At(Λ0; θ) = 1− e−ρt for θ = B,G.
59To define ex-ante welfare with myopic consumers, we assume that consumers’ payoffs

are discounted at some arbitrary rate r > 0, but that consumers behave myopically, i.e.
ignore the option value to waiting.

60Nevertheless, equilibrium behavior is not in general socially optimal, because p∗ exceeds
the socially optimal cutoff posterior. See Frick and Ishii (2014), sections 3.1 and 6.3.3.

61Recall that p∗ := (ε+r)(ρ+r)
2(ε+ρ)(ε+r)−ερ is the equilibrium cutoff posterior under perfect good

news. If p0 ≤ p∗, then all consumers rely entirely on the exogenous news source from the
beginning, so the potential for social learning is irrelevant.

62If ε = 0 we assume that p0

(
1 + e−Λ0

)
< 1 so that t∗(Λ0) <∞.

63 Increasing Λ0 can increase welfare only if there are histories at which consumers’ pref-
erence for adoption or delay is affected by information obtained via social learning. If ε = 0,
then consumers are (weakly) willing to adopt at all histories, since the equilibrium posterior
always remains weakly above 1

2 . Thus, in this case W (Λ0) = W (Λ̂0).
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4.3 More Social Learning Can Hurt: An Example

Assuming ex-ante identical consumers, Proposition 4.2 established a saturation
effect under perfect bad news: Beyond a certain level of Λ0, further increases
in the potential for social learning are welfare-neutral. Perhaps even more
surprisingly, we show in this section that when consumers are heterogeneous,
increased opportunities for social learning can bring about Pareto-decreases
in ex-ante welfare. To illustrate this, we introduce some heterogeneity in
consumers’ patience levels.

Consider a population consisting of two types of consumers: There is a
mass N̄p

0 of patient types with discount rate rp > 0 and a mass N̄ i
0 of impatient

types with discount rate ri > rp. Because our aim is simply to construct an
example exhibiting welfare loss, we restrict attention to the perfect bad news
setting. To simplify the analysis we assume that ε = 0 and p0 > 1/2, but our
arguments extend easily to the case where ε > 0.

Recall from Section 3.2 that for any discount rate r > 0, we can define the
function Λ∗r implicitly for every p ∈ (1

2
, ρ+r
ρ+2r

):

2p− 1 = Gr(p,Λ
∗
r(p)) :=

∞̂

0

ρe−(r+ρ)τ
(
p− (1− p)e−Λ∗r(p)(1−e−ρt)

)
dτ.

Suppose p0 < ρ+rp
ρ+2rp

and λ̂N̄p
0 > λN̄p

0 > Λ∗rp(p0) and consider first the
game consisting only of mass N̄p

0 consumers of type rp (and no consumers of
type ri). Then Theorem 3.2 implies that the two equilibria corresponding to
information structures λ and λ̂ both feature initial regions of partial adoption,
so that W p

0 (λ̂) = W p
0 (λ) = 2p0 − 1.

The following theorem states that provided the mass of impatient types
is small, then in the game consisting of both types of consumers, the patient
types’ ex-ante payoffs continue to be 2p0−1 under both λ and λ̂; however, the
impatient types’ ex-ante payoffs are strictly lower under λ̂ than under λ:

Theorem 4.4. Suppose 0 < rp < ri < +∞ and p0 ∈ (1
2
, ρ+rp
ρ+2rp

). Fix N̄p
0 > 0

and λ̂ > λ > 0 such that λ̂N̄p
0 > λN̄p

0 > Λ∗rp(p0). Then there exists η > 0 such
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that whenever N̄ i
0 < η, then W i

0(λ̂) < W i
0(λ) and W p

0 (λ̂) = W p
0 (λ) = 2p0 − 1.

Thus, whenever N̄ i
0 < η, the ex-ante payoff profile (W i

0(λ),W p
0 (λ)) in the λ-

equilibrium Pareto-dominates the ex-ante payoff profile (W i
0(λ̂),W p

0 (λ̂)) in the
λ̂-equilibrium.

The proof is in Online Appendix B.6. The basic idea is as follows. Consider
first the equilibrium adoption flows that are generated under each of λ and
λ̂ in the game consisting solely of mass N̄p

0 of patient consumers of type rp.
What are the payoffs that a hypothetical impatient type ri (which does not
exist in this game) would obtain if he were to behave optimally when faced
with these adoption flows (and the expected future information they imply)?
Since the patient types are initially indifferent between adopting or delaying
in both equilibria, a monotonicity argument in types shows that in both cases
the optimal strategy of the hypothetical impatient type ri is to adopt upon
first opportunity. Given this, the ex-ante payoff of the hypothetical type ri
under signal arrival rate γ ∈ {λ, λ̂} satisfies:

W i
0(γ) =

∞̂

0

ρe−(ri+ρ)τ p0

pγτ
(2pγτ − 1) dτ.

By the non-monotonicity result for learning established in Proposition 4.2,
there exists t > t∗ := t∗2(λ) such that pλ̂τ = pλτ for all τ ≤ t∗, pλ̂τ < pλτ for all τ ∈
(t∗, t) and pλ̂τ > pλτ for all τ > t. We now exploit the expressions for the value to
waiting of the two types together with the deceleration of learning at times just
after t∗ to obtain the result. Intuitively, since W p

0 (λ̂) = W p
0 (λ) = 2p0 − 1, the

cost of the deceleration in learning on (t∗, t) and the benefit of the acceleration
in learning at times after t must balance out in such a way that the patient
type rp obtains the same ex-ante payoff under λ and λ̂. But as a result, these
adjustments must strictly hurt the less patient hypothetical type ri, because
relative to type rp, type ri weights the early losses due to the slow-down in
learning more heavily than the later benefits due to the acceleration.

To complete the proof, we show that as long as N̄ i
0 > 0 is sufficiently small,

we must still have W i
0(λ̂) < W i

0(λ) and W p
0 (λ̂) = W p

0 (λ). The first inequality
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follows from a simple continuity argument. The second equality reflects the
fact that provided N̄ i

0 is sufficiently small, the patient type must continue to
partially adopt initially in both equilibria.

Note that a crucial assumption underlying the above argument is that
adoption opportunities are stochastic and limited. When ρ is finite, the impa-
tient types may not receive any adoption opportunities for a long time. But
as we saw above, if an impatient type obtains his first adoption opportunity
between t∗ and t, then the information gained is strictly lower under the equi-
librium with information process λ̂ than under λ, which is precisely the cause
of the impatient type’s welfare loss. If on the other hand consumers were
able to adopt freely at any time, then the impatient types would incur no
losses as all of them would adopt immediately at time 0 in both the λ and
λ̂-equilibrium. Thus, the above example illustrates an interesting interaction
between heterogeneity and delays due to limited opportunities for adoption.

5 Conclusion

This paper develops a model of innovation adoption when consumers are
forward-looking and learning is social. Our analysis isolates the effect of purely
informational incentives on aggregate adoption dynamics, learning, and wel-
fare. We highlight the role of the news environment in shaping these incentives;
most importantly, in determining whether or not there is informational free-
riding in the form of partial adoption. The presence or absence of partial
adoption has observable implications, suggesting a novel explanation for why
adoption curves are S-shaped for some innovations and concave for others.
Moreover, partial adoption has important welfare implications, entailing that
increased opportunities for social learning need not benefit consumers and can
be strictly harmful.

To illustrate these points in the simplest possible framework, we have re-
stricted attention to perfect bad and good news Poisson learning. This made
our equilibrium analysis very tractable, yielding closed-form expressions for
all key quantities and allowing us to compute numerous comparative stat-
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ics. Nevertheless, many of our conclusions extend to more general information
structures: Especially worth noting is the fact that partial adoption relies cru-
cially on the possibility of news events that trigger discrete downward jumps
in beliefs (although such events need not conclusively signal bad quality as
was the case under perfect bad news). Without such events (e.g. when learn-
ing is based on imperfect good news Poisson signals or Brownian motion), a
similar logic as in Section 3.3 shows that there cannot be continuous regions of
partial adoption, because a consumer who is willing to adopt cannot acquire
decision-relevant information by delaying his decision by an instant.64

To highlight the implications of purely informational considerations, we
have abstracted away from forces emphasized by existing models of innova-
tion adoption, notably consumer heterogeneity and supply-side factors such as
pricing. Nevertheless, exploring the way in which these forces interact with
informational incentives represents an interesting avenue for future theoreti-
cal work. To give a taste, Section 4.3 shows that heterogeneity can further
exacerbate the welfare implications of informational free-riding.

Finally, our predictions lend themselves to empirical investigation. Sec-
tion 4.1 provides some suggestive evidence for the prediction that S-shaped
(respectively concave) adoption curves are typical of bad (respectively good)
news markets, but a more systematic analysis is called for. The saturation
effect implies that the proportion of adopters of an innovation may grow more
slowly in communities with more potential consumers or with a greater ease
of information transmission. The former could be tested by contrasting the
adoption paths of new agricultural technologies across villages with different
population sizes,65 while for the latter one might exploit the staggered intro-
duction of certain social media platforms across different US cities or differ-
ences across states in legislation mandating the disclosure of adverse medical
events.

64For this, we assume that there is no exogenous news. Details are available upon request.
65This is related to Bandiera and Rasul’s (2006) finding which we discussed in footnote

1: They find that an individual farmer’s likelihood of adoption is (from a certain point
on) decreasing in the number of adopters in his network. But then, in equilibrium, larger
networks of farmers should feature lower percentages of adoption.
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A Proof of Theorem 3.1

This appendix establishes the quasi-single crossing property for equilibrium
incentives (Theorem 3.1). All remaining proofs are in Online Appendix B.
We will make use of the following five lemmas which are proved in Online
Appendix B.1. For an equilibrium adoption flow Nt≥0, denote the associated
value to waiting by WN

t≥0 and the no-news posterior by pNt≥0.

Lemma A.1. If Nt≥0 is an an equilibrium, then WN
t is continuous in t.

Lemma A.2. Suppose that Nt≥0 is an equilibrium and that WN
t < 2pNt − 1

for some t > 0. Then there exists some ν > 0 such that WN
t is continuously

differentiable in t on the interval (t− ν, t+ ν) and

ẆN
t =(r + ρ+ (εG + λGρN̄t)p

N
t + (εB + λBρN̄t)(1− pNt ))WN

t

− ρ(2pNt − 1)− pNτ (εG + λGρN̄t)
ρ

ρ+ r
.

Lemma A.3. Suppose that Nt≥0 is an equilibrium and that WN
t > 2pNt − 1

for some t > 0. Then there exists some ν > 0 such that WN
t is continuously

differentiable in t on the interval (t− ν, t+ ν) and

ẆN
t = (r + pNt εG + (1− pNt )εB)WN

t − pNt εG
ρ

ρ+ r
.

The final two lemmas focus on learning via perfect bad news (PBN):

Lemma A.4. Let Nt≥0 be an equilibrium under PBN. Suppose that ε > 0 or
p0 >

1
2
. Then limt→∞ p

N
t = µ(ε,Λ0, p0) and limt→∞W

N
t = ρ

ρ+r
(2µ(ε,Λ0, p0)−
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1), where

µ(ε,Λ0, p0) :=

1 if ε > 0,

p0

p0+(1−p0)e−Λ0
if ε = 0.

Lemma A.5. Suppose that learning is via PBN. Suppose that ε = 0 and
p0 ≤ 1

2
. Then the unique equilibrium satisfies Nt = 0 for all t.

Henceforth we drop the superscript N from W and p.

Proof of Theorem 3.1 under Perfect Good News:
Let ε = εG ≥ 0 = εB and λ = λG > 0 = λB.

Step 1: Wt = 2pt − 1 =⇒ Wτ ≥ 2pτ − 1 for all τ ≥ t:
Suppose Wt = 2pt− 1 at some time t and suppose for a contradiction that

at some time s′ > t, we have Ws′ < 2ps′ − 1. Let

s∗ = sup{s < s′ : Ws = 2ps − 1}.

By continuity, s∗ < s′, Ws∗ = 2ps∗ − 1, and Ws < 2ps − 1 for all s ∈ (s∗, s′).
Then by Lemma A.2, the right hand derivative of Ws − (2ps − 1) at s∗ exists
and satisfies:

lim
s↓s∗

Ẇs − 2ṗs = r(2ps∗ − 1) + ps∗
(
ε+ λρN̄s∗

) r

ρ+ r
> 0.

This implies that for some s ∈ (s∗, s′) sufficiently close to s∗ we have Ws >

2ps − 1, which is a contradiction.

Step 2: Wt > 2pt − 1 =⇒ Wτ > 2pτ − 1 for all τ > t:
Suppose by way of contradiction that there exists s′ > t such that Ws′ =

2ps′ − 1. Let
s∗ = inf{s > t : Ws = 2ps − 1}.

By continuity, s∗ > t, Ws∗ = 2ps∗−1, andWs > 2ps−1 for all s ∈ (t, s∗). Note
that ps∗ ≥ 1

2
, because Ws∗ is bounded below by 0. Moreover, by Lemma A.3
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the left-hand derivative of Ws − (2ps − 1) at s∗ exists and is given by:

lim
s↑s∗

Ẇs − 2ṗs = r(2ps∗ − 1) + ps∗
r

ρ+ r
ε.

If ε > 0, this is strictly positive, implying that for some s ∈ (t, s∗) sufficiently
close to s∗, we have Ws < 2ps − 1, which is a contradiction. If ε = 0, then for
all s ∈ (t, s∗), we have ps∗ = ps and Ws = e−r(s

∗−s)Ws∗ = e−r(s
∗−s)(2ps∗ − 1) ≤

2ps∗ − 1. Thus, Ws ≤ 2ps − 1, again contradicting Ws > 2ps − 1. �

Proof of Theorem 3.1 under Perfect Bad News:
Let ε = εB ≥ 0 = εG and λ = λB > 0 = λG. If ε = 0 and p0 ≤ 1

2
, then by

Lemma A.5 Nt = 0 for all t, so the proof of Theorem 3.1 is obvious. We now
prove the theorem under the assumption that either ε > 0 or p0 >

1
2
.

Step 1: Wt = 2pt − 1 =⇒ Wτ ≤ 2pτ − 1 for all τ ≥ t:

Suppose that Wt = 2pt − 1 and suppose for a contradiction that Ws′ >

2ps′ − 1 for some s′ > t. Let s := inf{s > s′ : Wt ≤ 2ps − 1} < ∞, since by
Lemma A.4 limt→∞ 2pt−1 > limt→∞Wt. Let s := sup{s < s′ : Ws ≤ 2ps−1}.
Then s < s, Ws = 2ps − 1, Ws = 2ps − 1, and Ws > 2ps − 1 for all s ∈ (s, s).
Lemma A.3 together with the fact that Ns = 0 for all s ∈ (s, s) implies the
following two limits:

Ls := lim
s↓s

(
Ẇs −

d

ds
(2ps − 1)

)
= (r + (1− ps)ε)(2ps − 1)− 2ps(1− ps)ε

Ls := lim
s↑s

(
Ẇs −

d

ds
(2ps − 1)

)
= (r + (1− ps)ε)(2ps − 1)− 2ps(1− ps)ε.

Because Ws > 2ps − 1 for all s ∈ (s, s), we need Ls ≥ 0 and Ls ≤ 0. Rear-
ranging this implies:

r(2ps − 1) ≥ (1− ps)ε

and

r(2ps − 1) ≤ (1− ps)ε.
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But if ε > 0, then ps > ps, so this is impossible. On the other hand, if ε = 0 and
p0 >

1
2
, then for all s ∈ (s, s), we have that ps = ps >

1
2
and Ws = e−r(s−s)Ws.

SinceWs = 2ps−1, this impliesWs = e−r(s−s)(2ps−1) < 2ps−1, contradicting
Ws > 2ps − 1. This completes the proof of Step 1.

Step 2: Wt < 2pt − 1 =⇒ Wτ < 2pτ − 1 for all τ > t:

Suppose that Wt < 2pt − 1, let s := inf{s′ > t : Ws′ ≥ 2ps′ − 1}, and
suppose for a contradiction that s < ∞. By continuity, Wτ < 2pτ − 1 for all
τ ∈ [t, s) and Ws = 2ps − 1. Furthermore, by Lemma A.4, there exists some
s ≥ s such that 2ps − 1 = Ws and 2ps − 1 > Ws for all s > s. Lemma A.2
implies the following two limits:

Hs := lim
s↑s

(
Ẇs −

d

ds
(2ps − 1)

)
= r(2ps − 1)−

(
ε+ λρN̄s

)
(1− ps)

Hs := lim
s↓s

(
Ẇs −

d

ds
(2ps − 1)

)
= r(2ps − 1)−

(
ε+ λρN̄s

)
(1− ps).

As usual, because Ws < 2ps − 1 for all s ∈ (t, s) and for all s > s, we must
have Hs ≥ 0 and Hs ≤ 0. But since ps ≥ ps, this is only possible if s = s =: s∗

and Hs∗ = Hs = Hs = 0.
Thus,

r(2ps∗ − 1) =
(
ε+ λρN̄s∗

)
(1− ps∗).

Now consider any s ∈ [t, s∗). Because ps ≤ ps∗ and N̄s ≥ N̄s∗ , we must have

r(2ps − 1) ≤
(
ε+ λρN̄s

)
(1− ps).

Combining this with the fact that Ws < 2ps − 1 yields

rWs <
(
ε+ λρN̄s

)
(1−ps) < (2ps−Ws)

(
ε+ λρN̄s

)
(1−ps) +ρ(2ps−1−Ws).

Rearranging we obtain:

0 < −rWs + ρ(2ps − 1−Ws) + (2ps −Ws)
(
ε+ λρN̄s

)
(1− ps).
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By Lemma A.2, the right-hand side is precisely the derivative d
ds

(2ps−1)−Ẇs.
But then for all s ∈ [t, s∗), 2ps−1 > Ws and 2ps−1−Ws is strictly increasing,
contradicting continuity and the fact that 2ps∗ − 1 = Ws∗ . �
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B Online Appendix: Not For Publication

B.1 Proofs of Lemmas A.1–A.5

Proof of Lemma A.1: Note the following recursive formulations forWN
t . If

learning is via perfect bad news, then

WN
t =

ˆ ∞
t

ρe−(r+ρ)(s−t)p
N
t

pNs
max

{(
2pNs − 1

)
,WN

s

}
ds.

If learning is via perfect good news, WN
t satisfies:

WN
t =

ˆ ∞
t

ρe−(r+ρ)(s−t)
(
pNt

(
1− e−

´ s
t (ε+λNk) dk

)
+
pNt e

−
´ s
t (ε+λNk) dk

pNs
max

{(
2pNs − 1

)
,WN

s

})
ds.

From this it is immediate that WN
t is continuous in t. �

Proof of Lemma A.2: Suppose that WN
t < 2pNt − 1 for some t > 0. By

Lemma A.1WN
t is continuous in t, and so is 2pNt −1. Hence there exists ν > 0

such that WN
τ < 2pNτ −1 for all τ ∈ (t−ν, t+ν). Because N is an equilibrium

this implies that Nτ = ρN̄τ for all τ ∈ (t − ν, t + ν). Thus, Nτ is continuous
at all τ ∈ (t − ν, t + ν). From this it is immediate that WN

τ is continuously
differentiable in τ for all for all τ ∈ (t− ν, t+ ν), because we have that

WN
τ =

t+νˆ

τ

ρe−(ρ+r)(s−τ)
(
pNτ e

−
´ s
τ (εG+λGNx)dx − (1− pNτ )e−

´ s
τ (εB+λBNx)dx

)
ds

+ e−(r+ρ)(t+ν−τ)
(
pNτ e

−
´ t+ν
τ (εG+λGNx)dx + (1− pNτ )e−

´ t+ν
τ (εB+λBNx)dx

)
WN
t+ν

+

t+νˆ

τ

ρe−(ρ+r)(s−τ)pNτ

(
1− e−

´ s
τ (εG+λGNx)dx

)
ds

+ e−(r+ρ)(t+ν−τ)pNτ

(
1− e−

´ t+ν
τ (εG+λGNx)dx

) ρ

ρ+ r
.

49



The derivative of WN
τ can be computed using Ito’s Lemma for processes with

jumps. Given the perfect Poisson learning structure, the derivation is simple
and we provide it here for completeness. As above, for any ∆ < t + ν − τ we
can rewrite WN

τ as

WN
τ =

τ+∆ˆ

τ

ρe−(ρ+r)(s−τ)
(
pNτ e

−
´ s
τ (εG+λGNx)dx − (1− pNτ )e−

´ s
τ (εB+λBNx)dx

)
ds

+ e−(r+ρ)∆
(
pNτ e

−
´ τ+∆
τ (εG+λGNx)dx + (1− pNτ )e−

´ τ+∆
τ (εB+λBNx)dx

)
WN
τ+∆

+

τ+∆ˆ

τ

ρe−(r+ρ)(s−τ)pNτ

(
1− e−

´ s
τ (εG+λGNx)dx

)
ds

+ e−(r+ρ)∆pNτ

(
1− e−

´ τ+∆
τ (εG+λGNx)dx

) ρ

ρ+ r
.

Since this is true for all ∆ ∈ (0, t+ ν − τ), the right hand side of this identity,
which we denote R∆, is continuously differentiable with respect to ∆ and sat-
isfies d

d∆
R∆ ≡ 0. Taking the limit as ∆→ 0 and since ẆN

τ = lim∆→0
d
dτ
WN
τ+∆

by continuous differentiability, we then obtain:

ẆN
τ = (r + ρ+ (εG + λGNτ )pτ + (εB + λBNτ )(1− pτ ))WN

τ

− ρ(2pτ − 1)− pτ (εG + λGNτ )
ρ

ρ+ r
.

Plugging in Nτ = ρN̄τ yields the desired expression. �

Proof of Lemma A.3: The proof of continuous differentiability of WN
t fol-

lows along the same lines as in the proof of Lemma A.2. Lemma A.1 again
implies that ifWN

t > 2pNt −1, then there exists ν > 0 such thatWN
τ > 2pNτ −1

for all τ ∈ (t − ν, t + ν). By the definition of equilibrium, Nτ = 0 for all
τ ∈ (t− ν, t+ ν).
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Hence, WN
τ satisfies

WN
τ = e−r(t+ν−τ)

(
pNτ e

−εG(t+ν−τ) + (1− pNτ )e−εB(t+ν−τ)
)
WN
t+ν

+ pNτ

t+νˆ

τ

εGe
−(εG+r)s ρ

ρ+ r
ds.

From this it is again immediate that WN
τ is continuously differentiable in τ .

To compute the derivative, we proceed as above, rewriting WN
τ as

WN
τ = e−r∆

(
pNτ e

−εG∆ + (1− pNτ )e−εB∆
)
WN
t+∆ + pτ

τ+∆ˆ

τ

εGe
−(εG+r)s ρ

ρ+ r
ds

for any ∆ < t+ ν − τ .
Differentiating both sides of the above equality with respect to ∆ and

taking the limit as ∆→ 0, we obtain:

ẆN
τ = (r + pNτ εG + (1− pNτ )εB)WN

τ − pNτ εG
ρ

ρ+ r
,

as claimed. �

Proof of Lemma A.4: Consider first the case in which ε > 0. Then trivially
pNt → 1 as t → ∞. But for any t, ρ

ρ+r

(
2pNt − 1

)
≤ WN

t ≤
ρ
ρ+r

. This implies
that limt→∞W

N
t = ρ

ρ+r
as claimed.

Now suppose that ε = 0 and p0 > 1/2. Then note that WN
t ≤ 2pNt − 1

for all t: Indeed, suppose that WN
t > 2pNt − 1 for some t. We can’t have

that WN
s > 2pNs − 1 for all s ≥ t, since otherwise WN

t = 0, contradicting
WN
t > 2pNt − 1 > 0. But then we can find s > t such that WN

s = 2pNs − 1 and
WN
s′ > 2pNs′ − 1 for all s′ ∈ (t, s). This implies Ns′ = 0 for all s′, and hence

WN
t = e−r(s−t)WN

s = e−r(s−t)(2pNs −1) = e−r(s−t)(2pNt −1), again contradicting
WN
t > 2pNt − 1 > 0.
Let N∗ := limt→∞

´ t
0
Nsds = supt

´ t
0
Nsds ≤ N̄0. Let p∗ := limt→∞ p

N
t =

supt p
N
t . For any ν > 0 we can find t∗ such that whenever t > t∗, then
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e−λ
´ t
t∗ Ns ds > 1− ν. Because 2pNt − 1 ≥ WN

t for all t, we can then rewrite the
value to waiting at time t as:

WN
t =

∞̂

t

ρe−(r+ρ)τ
(
pNt − (1− pNt )e−λ

´ τ
t Nsds

)
dτ

≤ ρ

r + ρ

(
pNt − (1− pNt )(1− ν)

)
for all t > t∗. Moreover, by optimality WN

t ≥
ρ
ρ+r

(2pNt − 1) for all t, so
combining we have

ρ

ρ+ r
(2p∗ − 1) ≤ lim

t→∞
inf WN

t ≤ lim
t→∞

supWN
t ≤

ρ

r + ρ
(p∗ − (1− p∗)(1− ν)) .

Since this is true for all ν > 0, it follows that

lim
t→∞

WN
t =

ρ

r + ρ
(2p∗ − 1).

But the above is strictly less than 2p∗−1, so for all t sufficiently large we must
have 2pNt −1 > WN

t . Then for all t sufficiently large, we have Nt = ρN̄t. Thus,
N∗ = N̄0 and therefore p∗ = µ(ε,Λ0, p0). �

Proof of Lemma A.5: Suppose that Nt≥0 is an equilibrium and suppose for
a contradiction that t∗1 := inf{t : Nt > 0} <∞. Pick t ≥ t∗1 such that Nt > 0.
By right-continuity of N , we have Nτ > 0 for all τ > t sufficiently close to t.
This implies that
ˆ ∞
t∗1

ρe−(r+ρ)(s−t)
(
pNt∗1 − (1− pNt∗1 )e

−
´ s
t∗1
λNk dk

)
ds >

ρ

r + ρ

(
2pNt∗1 − 1

)
≥ 2pNt∗1−1,

(7)
where the second inequality holds because pNt∗1 = p0 ≤ 1

2
. But the integral on

the left-hand side is the expected payoff at time t∗1 to adopting at the first
opportunity in the future, conditional on no breakdown having occurred prior
to this opportunity. By optimality of the value to waiting, this is weakly less
than WN

t∗1
. Hence, (7) implies that WN

t∗1
> 2pt∗1 − 1. By continuity of WN and
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pN , it follows that for all s ≥ t∗1 sufficiently close to t∗1, WN
s > 2pNs − 1 and

hence Ns = 0, contradicting the definition of t∗1.
This leaves N ≡ 0 as the only candidate equilibrium. In this case WN

t =

0 ≥ 2p0 − 1 = 2pNt − 1 for all t, so this is indeed an equilibrium.
�

B.2 Equilibrium under Perfect Bad News (Theorem 3.2)

In this section we prove Theorem 3.2. For this we do not impose Conditions 3.3
or 3.4. Recall the following definitions which we motivated in Section 3.2:
Define

p :=
(ε+ r)(r + ρ)

2(ε+ r)(r + ρ)− ερ
,

p :=
ε+ r

ε+ 2r
,

p] :=
ρ+ r

ρ+ 2r
,

and define p∗ := min{p, p]}. Define G : [0, 1]× R+ → R by

G(p,Λ) :=

∞̂

0

ρe−(r+ρ)τ
(
p− (1− p)e−(ετ+Λ(1−e−ρτ))

)
dτ.

We extend the function to the domain [0, 1]× (R+ ∪ {+∞}) by defining:

G(p,+∞) :=
ρ

ρ+ r
p.

Finally, define the non-decreasing function Λ∗ : [0, 1]→ R+ ∪ {+∞} by
Λ∗(p) = 0 if p ≤ p,

2p− 1 = G(p,Λ∗(p)) if p ∈ (p, p])

Λ∗(p) = +∞ p ≥ p].

The proof of Theorem 3.2 proceeds in three steps. Suppose that Nt≥0 is an
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equilibrium with associated cutoff times t∗1 and t∗2 as defined by Equation (2).
We first show in Lemma B.1 that if t∗1 < t∗2, then at all t ∈ (t∗1, t

∗
2), Nt is pinned

down by a simple ODE. Second, Lemma B.3 provides a characterization of t∗1
and t∗2 in terms of the evolution of (pt,Λt). Given these two steps, it is easy
to see that if an equilibrium exists, it is unique and must take the Markovian
form in Equation (4) of Theorem 3.2. Finally, to verify equilibrium existence,
Lemma B.4 shows that the adoption flow implied by Equation (4) is feasible.

B.2.1 Characterization of Adoption between t∗1 and t∗2

Lemma B.1. Suppose Nt≥0 is an equilibrium with associated no-news poste-
rior pt≥0 and cutoff times t∗1 and t∗2 as defined by Equation (2). Suppose that
t∗1 < t∗2. Then at all times t ∈ (t∗1, t

∗
2),

Nt =
r(2pt − 1)

λ(1− pt)
− ε

λ
.

Proof. By definition of t∗1 and t∗2 and Theorem 3.1, we have 2pt − 1 = WN
t at

all t ∈ (t∗1, t
∗
2). Because pt is weakly increasing, this implies that pt and WN

t

are differentiable at almost all t ∈ (t∗1, t
∗
2) (with respect to Lebesgue measure).

Using again the fact that 2pt − 1 = WN
t at all t ∈ (t∗1, t

∗
2) we obtain for all

t ∈ (t∗1, t
∗
2):

WN
t = e−r(t

∗
2−t)

(
pt + (1− pt)e−

´ t∗2
t (ε+λNs)ds

)
(2pt∗2 − 1)

= e−r(t
∗
2−t)

(
pt − (1− pt)e−

´ t∗2
t (ε+λNs)ds

)
,

(8)

where the second equality follows from Equation (1). Consider any t ∈ (t∗1, t
∗
2)

at which WN
t and pt are differentiable. Combining the fact that ṗt = pt(1 −

pt)(ε+ λNt) with (8), we obtain:

ẆN
t = (r + (ε+ λNt)(1− pt))WN

t . (9)
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Furthermore, because WN
t = 2pt − 1 for all t ∈ (t∗1, t

∗
2), we must have:

ẆN
t = 2ṗt = 2pt(1− pt)(ε+ λNt). (10)

Combining (9), (10) and the fact that WN
t = 2pt − 1 then yields

Nt =
r(2pt − 1)

λ(1− pt)
− ε

λ

for almost all t ∈ (t∗1, t
∗
2). By continuity of pt and right-continuity of Nt, the

identity must then hold for all t ∈ (t∗1, t
∗
2). �

As an immediate corollary of Lemma B.1 we obtain:

Corollary B.2. The posterior at all t ∈ (t∗1, t
∗
2) evolves according to the fol-

lowing ordinary differential equation:

ṗt = rpt(2pt − 1).

Given some initial condition p = pt∗1 , this ordinary differential equation admits
a unique solution, given by:

pt =
pt∗1

2pt∗1 − er(t−t
∗
1)(2pt∗1 − 1)

.

B.2.2 Characterization of Cutoff Times

Lemma B.3. Let Nt≥0 be an equilibrium with corresponding no-news posterior
pt≥0 and cutoff times t∗1 and t∗2 as defined by Equation (2), and let Λt≥0 :=

λN̄t≥0 describe the evolution of the economy’s potential for social learning.
Then

(i). t∗2 = inf{t ≥ 0 : Λt < Λ∗(pt)}; and

(ii). t∗1 = min{t∗2, sup{t ≥ 0 : pt < p∗}}.66

66We impose the convention that if {t ≥ 0 : pt < p∗ = 1
2} = ∅, then sup{t ≥ 0 : pt <

p∗ = 1
2} := 0.
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Proof. We first prove both bullet points under the assumption that either ε > 0

or p0 >
1
2
. Note that in this case Lemma A.4 implies that limt→∞ 2pt − 1 >

limt→∞Wt, whence t∗2 < +∞. Moreover, pt is strictly increasing for all t > 0.
For the first bullet point, note that by definition of t∗2 := sup{t ≥ 0 : Nt <

ρN̄t}, we have that 2pt − 1 ≥ Wt = G(pt,Λt) for all t ≥ t∗2. This implies that
Λt∗2
≤ Λ∗(pt∗2). Moreover, for all t > t∗2, Λt < Λt∗2

and pt > pt∗2 , so since Λ∗ is
non-decreasing we have Λt < Λ∗(pt). Suppose that 0 < t∗2. Then by continuity
we must have 2pt∗2 − 1 = Wt∗2

= G(pt∗2 ,Λt∗2
) and so Λt∗2

= Λ∗(pt∗2). But since
for all s < t∗2 we have Λs ≥ Λt∗2

and ps < pt∗2 , this implies Λs ≥ Λ∗(ps). This
establishes (i).

For (ii), it suffices to prove the following three claims:

(a) If t∗2 > 0, then pt∗2 < p].

(b) If t∗1 > 0, then pt∗1 ≤ p.

(c) If t∗1 < t∗2, then pt∗1 ≥ p.

Indeed, given (a) and (b), we have that if 0 < t∗1 = t∗2, then pt∗1 ≤ p∗. Given
(a)-(c), we have that if 0 < t∗1 < t∗2, then pt∗1 = p = p∗. If 0 = t∗1 < t∗2, then
(c) implies that p0 ≥ p = p∗. In all three cases (ii) readily follows. Finally, if
0 = t∗1 = t∗2, then there is nothing to prove.

For claim (a), recall from the above that if t∗2 > 0, then Λt∗2
= Λ∗(pt∗2),

whence pt∗2 < p] because Λ∗(p]) = +∞.
For claim (b), note that if t∗1 > 0, then for all t < t∗1, we have Nt = 0.

Then for all t < t∗1, Wt ≥ 2pt − 1 and by the proof of Lemma A.3, Ẇt =

(r + (1− pt)ε)Wt. Since Wt∗1
= 2pt∗1 − 1, we must then have

0 ≥ lim
τ↑t∗1

Ẇτ − 2ṗτ = (r + (1− pt∗1)ε)(2pt∗1 − 1)− 2pt∗1(1− pt∗1)ε

= r(2pt∗1 − 1)− ε(1− pt∗1),

which implies that
pt∗1 ≤

ε+ r

ε+ 2r
=: p.
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Finally, for claim (c), note that if t∗1 < t∗2, then Lemma B.1 implies that for
all τ ∈ (t∗1, t

∗
2),

0 ≤ Nτ =
r(2pτ − 1)

λ(1− pτ )
− ε

λ
.

This implies that for all τ ∈ (t∗1, t
∗
2),

pτ ≥
ε+ r

ε+ 2r
=: p,

and hence by continuity pt∗1 ≥ p as claimed. This proves the lemma when either
ε > 0 or p0 >

1
2
. Finally, if ε = 0 and p0 ≤ 1

2
, then by Lemma A.5 Nt = 0 for all

t. Thus, by definition, t∗1 = t∗2 = +∞. Moreover, pt = p0 ≤ 1
2
and Λt = Λ0 > 0

for all t, so inf{t : Λt < Λ∗(pt) = 0} = sup{t : pt < p∗ = 1
2
} = +∞, as

required. �

Given Lemmas B.1 and B.3, it is immediate that if an equilibrium exists,
then it must take the form of the adoption flow given by Equation (4) in Theo-
rem 3.2. Moreover, it is easy to see that given initial parameters, Equation (4)
uniquely pins down the times t∗1 and t∗2 as well as the joint evolution of pt and
Nt at all times (we elaborated on this in the main text), and that whenever
t∗1 < t∗2 < +∞, then 2pt − 1 = Wt for all t ∈ [t∗1, t

∗
2]. Provided feasibility

is satisfied, it is then easy to check that this adoption flow constitutes an
equilibrium.

B.2.3 Feasibility

It remains to check feasibility, which is non-trivial only at times t ∈ (t∗1, t
∗
2).

Lemma B.4. Suppose Nt≥0 is an adoption flow satisfying Equation (4) in
Theorem 3.2 such that t∗1 < t∗2. Then for all t ∈ (t∗1, t

∗
2), Nt ≤ ρN̄t.

Proof. It suffices to show that

lim
t↑t∗2

Nt ≤ ρN̄t∗2
.

57



The lemma then follows immediately since ρN̄t−Nt is strictly decreasing in t
at all times in (t∗1, t

∗
2).

To see this, suppose by way of contradiction that ρN̄t∗2
< limt↑t∗2 Nt. By

continuity this means that there exists some ν > 0 such that ρN̄t < Nt for
all t ∈ (t∗2 − ν, t∗2). Note that from the indifference condition at t∗2, we have
that 2pt∗2 − 1 = G(pt∗2 , λN̄t∗2

). Furthermore because Λ∗(pt) is increasing in t,
2pt − 1 < G(pt,Λt) for all t < t∗2.

Since at all t ∈ (t∗2 − ν, t∗2), Nt > ρN̄t, this implies that Wt > G(pt,Λt) >

2pt−1. But this is a contradiction since we already checked that the described
adoption flow satisfies the condition that Wt = 2pt − 1 for all t ∈ (t∗1, t

∗
2). �

B.2.4 Equilibrium under Perfect Bad News without Condition 3.3

pt

Λt

1

Λ∗(p)

(2) (1)

p p]

Figure 9: Partition of (pt,Λt) when ε ≥ ρ

In this section, we discuss the case where ρ ≤ ε, so that Condition 3.3 is
violated. The previous sections established the equilibrium characterization
of Theorem 3.2 without assuming Condition 3.3 . If ρ ≥ ε, then p∗ = p], so
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because Λ∗(p) = +∞ for all p > p], we have:

Nt =

0 if Λt > Λ∗(pt),

ρN̄t if Λt ≤ Λ∗(pt).

Thus, there is no region of partial adoption. As a result, it is easy to see that
the saturation effect discussed in Section 4.2 is no longer present and welfare
always strictly increases in response to an increase in the potential for social
learning:

Proposition B.5. Fix r > 0 and p0 ∈ (0, 1) and suppose that ε ≥ ρ > 0.
Then W0 is strictly increasing in Λ0.

B.3 Equilibrium under Perfect Good News (Theo-

rem 3.6)

Theorem 3.6 follows immediately from Lemma B.6 and Lemma B.7:

Lemma B.6. Let Nt≥0 be an equilibrium with associated cutoff times t∗1 and
t∗2 given by Equation (3). Then t∗1 = t∗2 =: t∗.

Proof. Suppose for a contradiction that t∗1 < t∗2. From the definition of these
cutoffs and Theorem 3.1 , we have that 2pt − 1 = Wt for all t ∈ (t∗1, t

∗
2). Then

for all t ∈ (t∗1, t
∗
2) and ∆ ∈ (0, t∗2 − t) we have:

Wt =pt

t+∆ˆ

t

(ε+ λNτ ) e
−
´ τ
t (ε+λNs)dse−r(τ−t)

ρ

ρ+ r
dτ+

(
(1− pt) + pte

−
´ t+∆
t (ε+λNs)ds

)
e−r∆ (2pt+∆ − 1) ,

where the first term represents a breakthrough arriving at some τ ∈ (t, t+∆) in
which case consumers adopt from then on, yielding a payoff of e−r(τ−t) ρ

ρ+r
; and

the second term represents no breakthrough arriving prior to t + ∆ in which
case, due to indifference, consumers’ payoff can be written as e−r∆ (2pt+∆ − 1).
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Note that we must have pt ≥ 1
2
on (t∗1, t

∗
2), since Wt is bounded below by 0.

Moreover, by the definition of t∗2, there exists t ∈ (t∗1, t
∗
2) such that Nt > 0. By

right-continuity of N , we can pick ∆ ∈ (0, t∗2 − t) sufficiently small such that
Nτ > 0 for all τ ∈ (t, t+ ∆). Then,

pt

t+∆ˆ

t

(ε+ λNτ ) e
−
´ τ
t (ε+λNs)dse−r(τ−t)

ρ

ρ+ r
dτ

< pt

t+∆ˆ

t

(ε+ λNτ ) e
−
´ τ
t (ε+λNs)ds

ρ

ρ+ r
dτ = pt

(
1− e−

´ t+∆
t (ε+λNs)ds

)
ρ

ρ+ r
.

This implies that

Wt < pt

(
1− e−

´ t+∆
t (ε+λNs)ds

)
ρ

ρ+ r

+
(

(1− pt) + pte
−
´ t+∆
t (ε+λNs)ds

)
(2pt+∆ − 1)

≤ pt

(
1− e−

´ t+∆
t (ε+λNs)ds

)
+
(

(1− pt) + pte
−
´ t+∆
t (ε+λNs)ds

)
(2pt+∆ − 1)

= 2pt − 1,

where the final equality comes from Bayesian updating of beliefs. This con-
tradicts Wt = 2pt − 1. Thus, t∗1 = t∗2. �

Lemma B.7. Let Nt≥0 be an equilibrium with corresponding cutoff time t∗ :=

t∗1 = t∗2 and no-news posterior pt≥0. Then

pt ≤ p∗ ⇔ t ≥ t∗,

where
p∗ =

(ε+ r)(ρ+ r)

2(ε+ ρ)(ε+ r)− ερ
.

Proof. Define

Ht := pt

ˆ ∞
0

(ε+ λNt+τ ) e
−(ετ+

´ t+τ
t λNsds)

ρ

r + ρ
e−(r+ρ)τ dτ.

60



Thus, Ht represents a consumer’s expected value to waiting at time t given
that from t on he adopts only if there has been a breakthrough and given that
the population’s flow of adoption follows Ns≥0. By optimality of Wt, we must
have Ht ≤ Wt for all t. For any posterior p ∈ (0, 1), let

H(p, 0) := p

ˆ ∞
0

εe−ετ
ρ

r + ρ
e−(r+ρ)τ dτ = p

ρε

(r + ρ)(ε+ r + ρ)
.

H(p, 0) represents a consumer’s expected value to waiting at posterior p, given
that he adopts only once there has been a breakthrough and given that break-
throughs are only generated exogenously.

Now note that by definition of t∗, Nt > 0 if and only if t < t∗. This
implies that H(pt, 0) < Ht if t < t∗ and H(pt, 0) = Ht = Wt if t ≥ t∗;
moreover, 2pt − 1 ≥ Wt if t < t∗ and 2pt − 1 ≤ Wt if t ≥ t∗. Finally, note
that p∗ := (ε+r)(ρ+r)

2(ε+ρ)(ε+r)−ερ has the property that 2p − 1 ≤ H(p, 0) if and only if
p ≤ p∗.

Combining these observations, we have that if t < t∗, then 2pt− 1 ≥ Wt ≥
Ht > H(pt, 0), so pt > p∗. And if t ≥ t∗, then 2pt − 1 ≤ Wt = H(pt, 0), so
pt ≤ p∗, as claimed. �

B.4 Comparative Statics under PBN (Proposition 4.2)

As in the text, we impose Conditions 3.3 and 3.4 throughout this section.
Define Λ0 := max{Λ∗(p0),Λ∗(p)}. We first prove Lemma 3.5 from Section 3.2:

Proof of Lemma 3.5: We show that t∗1(Λ0) < t∗2(Λ0) if and only if Λ0 > Λ0.
Suppose first that Λ0 > Λ0. Then by the proof of the first part of

Lemma B.3, we must have t∗2 > 0 and Λt∗2
= Λ∗(pt∗2). If t∗1 = t∗2 =: t∗,

then by claims (a) and (b) in the proof of Lemma B.3, we must have pt∗ ≤ p.
But combining these statements, we get

Λt∗ = Λ0 > Λ∗(p) ≥ Λ∗(pt∗) = Λt∗ ,

which is a contradiction.
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Suppose conversely that t∗1 < t∗2. Then by the proof of Lemma B.3, we
have that Λ∗(pt∗1) < Λt∗1

= Λ0. That proof also implies that if 0 < t∗1 < t∗2, then
pt∗1 = p ≥ p0; and if 0 = t∗1 < t∗2, then pt∗1 = p0 ≥ p. Thus, either way Λ0 > Λ0,
as claimed. �

The following three subsections prove Proposition 4.2, by considering the
effect of an increase in Λ0 on welfare, learning, and adoption behavior, respec-
tively.

B.4.1 Comparative Statics of Welfare

We prove a slightly more general result than in Proposition 4.2: We allow for
any p0 ∈ (0, 1) and show that

• if Λ̂0 > Λ0 > Λ0, then W0(Λ̂0) = W0(Λ0);

• if Λ0 ≥ Λ̂0 > Λ0, then W0(Λ̂0) > W0(Λ0).

If p0 ∈ (p̄, p]) as in Proposition 4.2, then Λ0 = Λ∗(p0), so we get the result in
Proposition 4.2.

To prove the first bullet point, consider Λ̂0 := Λ2
0 > Λ0 := Λ1

0 > Λ0

with corresponding cutoff times ti1 and ti2, value to waiting W i
t , and no-news

posteriors pit for i = 1, 2. By Lemma 3.5, we have ti1 < ti2 for i = 1, 2. Moreover,
by the proof of Lemma B.3, we have max{p0, p} = p1

t11
= p2

t21
. Because N i

t = 0

for all t < ti1 for both i = 1, 2, this implies that t11 = t21 = t1. Then

W 2
t1

= 2p2
t1
− 1 = 2p1

t1
− 1 = W 1

t1
.

But since there is no adoption until t1, we have W i
0 = e−rt1

pt1
p0
W i
t1
for i = 1, 2,

whence W 1
0 = W 2

0 .
For the second bullet point, suppose Λ1

0 < Λ2
0 ≤ Λ0. By Lemma 3.5, we

must have ti1 = ti2 =: ti. Let t̂ := min{t1, t2}. Then note that for all t ≤ t̂,
p1
t̂

= p2
t̂
and Λi

t̂
= Λi

0. By Lemma B.3 this implies that either 0 = t1 = t2 or
t1 < t2. If 0 = t1 = t2, then for all t > 0, we have 2pit − 1 > W i

t and

pit =
p0

p0 + (1− p0)e−(εt+(1−e−ρt)Λi0)
.
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Thus, p1
t < p2

t for all t > 0 which implies that W 1
0 < W 2

0 .
If t1 < t2, then by definition of the cutoff times

W 2
t1 > 2p2

t1 − 1 = 2p1
t1 − 1 ≥ W 1

t1 .

Since there is no adoption until t1, we have

W i
0 = e−rt

1 pt1

p0

W i
t1 ,

which again implies that W 1
0 < W 2

0 , as required.

B.4.2 Comparative Statics of Learning

In this section and Section B.4.3, we assume as in Proposition 4.2 that p0 ∈
(p̄, p]). This implies that t∗1 = 0 and Λ0 = Λ∗(p0) < +∞.

Note first that pΛ0
t is strictly increasing in Λ0 for all Λ0 ∈ (0,Λ∗(p0)) since

in this case t∗2(Λ0) = 0 so that

pΛ0
t =

p0

p0 + (1− p0)e−(εt+(1−e−ρt)Λ0)
.

Suppose next that Λ̂0 > Λ0 ≥ Λ∗(p0). To prove the non-monotonicity
result in item (ii) of Proposition 4.2, we first prove the following lemma:

Lemma B.8. Suppose that Λ̂0 = λ̂ ˆ̄N0 > Λ0 = λN̄0 > Λ∗(p0), with correspond-
ing equilibrium flows of adoption N̂t≥0 and Nt≥0. Then

(i). 0 < t∗2(Λ0) < t∗2(Λ̂0).

(ii). For all t < t∗2(Λ0), λNt = λ̂N̂t.

Proof. Suppose that Λ̂0 > Λ0 > Λ0 = Λ∗(p0). Then by Lemma 3.5, we have
t∗2(Λ̂0), t∗2(Λ0) > 0. Let t∗2 = min{t∗2(Λ̂0), t∗2(Λ0)}. Then because p0 = pΛ0

0 =

pΛ̂0
0 , the ODE in Corollary B.2 implies that at all times t < t∗2, we have
pΛ0
t = pΛ̂0

t = pt. By Lemma B.1, this implies that for all t < t∗2,

λNt = λ̂N̂t. (11)
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Note that Equation 11 implies that

Λt∗2
= Λ0 −

ˆ t∗2

0

λNt dt < Λ̂0 −
ˆ t∗2

0

λ̂N̂t dt = Λ̂t∗2
.

Because pΛ0
t∗2

= pΛ̂0
t∗2
, Lemma B.3 implies that t∗2 = t∗2(Λ0) < t∗2(Λ̂0).

From this and Equation 11, it is then immediate that λNt = λ̂N̂t for all
t < t∗2 = t∗2(Λ0). �

Proof of item (ii) of Proposition 4.2: Suppose that Λ̂0 > Λ0 ≥ Λ∗(p0).
By Lemma B.8, t∗ := t∗2(Λ0) < t∗2(Λ̂0), λNt = λ̂N̂t, and pΛ0

t = pΛ̂0
t for all t ≤ t∗,

which proves the first bullet point.
To prove the second bullet point, we claim that there exists some ν > 0

such that at all times t ∈ (t∗, t∗+ ν), we have pΛ0
t > pΛ̂0

t . To see this, we prove
the following inequality for the equilibrium corresponding to Λ0:

lim
t↑t∗

λNt < lim
t↓t∗

λNt. (12)

In other words, there is necessarily a discontinuity in the equilibrium flow
of adoption at exactly t∗. Indeed, because Nt = ρN̄t for all t ≥ t∗ and by
continuity of N̄t, feasibility implies that limt↑t∗ λNt ≤ limt↓t∗ λNt. Suppose
for a contradiction that limt↑t∗ λNt = limt↓t∗ λNt := λNt∗ . Then λNt∗ =

λ̂N̂t∗ . Moreover, for all t > t∗, we have λNt = ρΛt∗e
−ρ(t−t∗), which is strictly

decreasing in t. On the other hand, λ̂N̂t satisfies

λ̂N̂t =


r(2pt−1)
(1−pt) − ε if t < t∗2(Λ̂0)

ρΛt∗2(Λ̂0)e
−ρ(t−t∗2(Λ̂0)) if t ≥ t∗2(Λ̂0).

Thus, for t ∈ [t∗, t∗2(Λ̂0)), λ̂N̂t is strictly increasing in t. This implies that
λ̂N̂t > λNt for all t ∈ [t∗, t∗2(Λ̂0)). But then by Equation 1,

pΛ̂0

t∗2(Λ̂0)
> pΛ0

t∗2(Λ̂0)
,
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which by Lemma B.3 implies

Λ̂t∗2(Λ̂0) = Λ∗(pΛ̂0

t∗2(Λ̂0)
) > Λ∗(pΛ0

t∗2(Λ̂0)
) > Λt∗2(Λ̂0).

This yields that for all t ≥ t∗2(Λ̂0))

λ̂N̂t = ρe−ρ(t−t∗2(Λ̂0)Λ̂t∗2(Λ̂0) > ρe−ρ(t−t∗2(Λ̂0)Λt∗2(Λ̂0) = λNt.

Thus, λ̂N̂t > λNt for all t > t∗ and hence pΛ̂0
t > pΛ0

t for all t > t∗. This implies
W Λ̂0
t∗ > WΛ0

t∗ . But this is a contradiction, because we have

W Λ̂0
t∗ = 2pΛ̂0

t∗ − 1 = 2pΛ0 − 1 = WΛ0
t∗ .

This proves that limt↑t∗ λNt < limt↓t∗ λNt. But then,

lim
t↓t∗

λ̂N̂t = lim
t↑t∗

λ̂N̂t = lim
t↑t∗

λNt < lim
t↓t∗

λNt.

Therefore there must exist some ν > 0 such that λ̂N̂t < λNt for all t ∈
[t∗, t∗ + ν). Together with the fact that pΛ0

t∗ = pΛ̂0
t∗ , this implies that pΛ0

t > pΛ̂0
t

for all t ∈ (t∗, t∗ + ν), proving the second bullet point.
Finally, for the third bullet point, observe first that there must exist some

t > t∗ such that pΛ0
t = pΛ̂0

t . If not, then by continuity of beliefs pΛ0
t > pΛ̂0

t

for all t > t∗, and we once again get that W Λ̂0
t∗ > WΛ0

t∗ , which is false. Then
t := sup{s ∈ (t∗, t) : pΛ0

s > pΛ̂0
s } exists, with t > t∗ by the second bullet point.

Further, by continuity, pΛ0

t
= pΛ̂0

t
, which implies

´ t
0
λNsds =

´ t
0
λ̂N̂sds. This

yields Λt < Λ̂t. But this implies that λ̂N̂t > λNt for all t > t: Indeed, if
t ≥ t∗2(Λ̂0), this is obvious. On the other hand, if t ∈ (t∗, t∗2(Λ̂0)), then we
must have λNs < λ̂N̂s for some s < t, which implies that λNs′ < λ̂N̂s′ for all
s′ ∈ (s, t∗2(Λ̂0)), because N is strictly decreasing and N̂ is strictly increasing
on this domain. To see that we also have λNs′ < λ̂N̂s′ for all s′ ≥ t∗2(Λ̂0, note
that from the above

pΛ̂0

t∗2(Λ̂0)
> pΛ0

t∗2(Λ̂0)
,
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which as above implies that

Λ̂t∗2(Λ̂0) = Λ∗(pΛ̂0

t∗2(Λ̂0)
) > Λ∗(pΛ0

t∗2(Λ̂0)
) > Λt∗2(Λ̂0).

Hence, λ̂N̂t > λNt for all t > t. Thus, in either case we get that pΛ̂0
t > pΛ0

t for
all t > t, as claimed by the third bullet point. �

B.4.3 Comparative Statics of Adoption Behavior

Adoption of Good Products: For all t, At(Λ0, G) is constant in Λ0 for all
Λ0 ≤ Λ∗(p0) and strictly decreasing in Λ0 for all Λ0 > Λ∗(p0).

Proof. First note that because p0 ≥ p, t∗1(Λ0) = t∗1(Λ̂0) = 0.
Then at all Λ0 < Λ∗(p0), the adoption flow absent breakdowns satisfies

Nt = ρN̄t for all t. Thus, conditional on a good product we get At(Λ0, G) =

At(Λ̂0, G) = 1− e−ρt for all t and all pairs Λ0, Λ̂0 ≤ Λ∗(p0).
Now suppose that Λ̂0 > Λ0 > Λ∗(p0). Note that Nt, N̂t > 0 for all t > 0

(recall Condition 3.4). Let t∗ = t∗2(Λ0). By Lemma B.8, λNt = λ̂N̂t for all
t < t∗. Then for all t < t∗

Nt

N̄0

=
λNt

Λ0

=
λ̂N̂t

Λ0

>
λ̂N̂t

Λ̂0

=
N̂t

ˆ̄N0

. Therefore for all t < t∗, we have At(Λ0, G) > At(Λ̂0, G).
Finally note that for all t ≥ t∗, Nt = ρN̄t and so:

At(Λ0, G) = At∗(Λ0, G) +
(
1− e−ρ(t−t∗)) (1− At∗(Λ0, G))

At(Λ̂0, G) ≤ At∗(Λ̂0, G) +
(
1− e−ρ(t−t∗)) (1− At∗(Λ̂0, G)

)
where the second inequality follows from feasibility. But because At∗(Λ0, G) >

At∗(Λ̂0, G), At(Λ0, G) > At(Λ̂0, G) for all t > 0. �

Adoption of Bad Products: For all t > 0, At(Λ0, B) is strictly decreasing
in Λ0.
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Proof. Recall that At(λ, N̄0, B) denotes the expected proportion of adopters
at time t conditional on θ = B, that is, letting Nt≥0 denote the associated
equilibrium

At(λ, N̄0, B) :=

tˆ

0

(ε+ λNτ ) e
−
´ τ
0 (ε+λNs)ds

 τˆ

0

Ns

N̄0

ds

 dτ + e−
´ t
0 (ε+λNs)ds

tˆ

0

Ns

N̄0

ds

=

tˆ

0

Nτ

N̄0

e−
´ τ
0 (ε+λNs)dsdτ,

where the final equality follows from integration by parts. Moreover, from the
Markovian description of equilibrium in Equation (4), it is easy to see that this
expression depends on λ and N̄0 only through Λ0 = λN̄0, so we can denote it
by At(Λ0, B). Then it suffices to prove the claim when λ is increased to λ̂ > λ

holding fixed N̄0, because for any Λ̂0 > Λ0 there exists N̄0 and λ̂ > λ such
that Λ̂0 = λ̂N̄0 and Λ0 = λN̄0.

Let Nt≥0 and N̂t≥0 be the equilibrium under λ and λ̂, respectively. Note
that when p ≤ p0, Nt > 0 for all t > 0. Given an arbitrary strictly positive
adoption flow Ms≥0 and t > 0, note that the map

λ 7→
tˆ

0

Mτe
−
´ τ
0 (ε+λMs)dsdτ

is strictly decreasing in λ. This implies that for all t > 0,

tˆ

0

Nτe
−
´ τ
0 (ε+λNs)dsdτ >

tˆ

0

Nτe
−
´ τ
0 (ε+λ̂Ns)dsdτ. (13)

We now show that

tˆ

0

Nτe
−
´ τ
0 (ε+λ̂Ns)dsdτ ≥

tˆ

0

N̂τe
−
´ τ
0 (ε+λ̂N̂s)dsdτ
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which together with (13) implies the desired conclusion that At(λ̂N̄0, B) <

At(λN̄0, B) for all t > 0.
To prove this, suppose that there exists some t > 0 such that

tˆ

0

Nτe
−
´ τ
0 (ε+λ̂Ns)dsdτ <

tˆ

0

N̂τe
−
´ τ
0 (ε+λ̂N̂s)dsdτ. (14)

Note that by the above result for good products, N̄0Aτ (λ,G) =
´ τ

0
Nsds ≥´ τ

0
N̂sds = N̄0Aτ (λ̂, G) for all τ ≥ 0 and so

tˆ

0

εe−
´ τ
0 (ε+λ̂Ns)dsdτ ≤

tˆ

0

εe−
´ τ
0 (ε+λ̂N̂s)dsdτ (15)

for all t ≥ 0. Inequalities (14) and (15) together imply:

tˆ

0

(
ε+ λ̂Nτ

)
e−
´ τ
0 (ε+λ̂Ns)dsdτ <

tˆ

0

(
ε+ λ̂N̂τ

)
e−
´ τ
0 (ε+λ̂N̂s)dsdτ.

But this is equivalent to(
1− e−

´ t
0(ε+λ̂Ns)ds

)
<
(

1− e−
´ t
0(ε+λ̂N̂s)ds

)
,

which contradicts
´ t

0
Nsds ≥

´ t
0
N̂sds. This shows that for all λ̂ > λ and t > 0,

At(λ̂N̄0, B) < At(λN̄0, B), as required. �

B.5 Comparative Statics under PGN (Proposition 4.3)

We prove Proposition 4.3.

B.5.1 Strict Welfare Gains

Proof. If p0 > p∗ and ε > 0, then under both Λ0 and Λ̂0 consumers adopt
immediately upon first opportunity until p∗ is reached and from then on delay
adoption until there has been a breakthrough. Moreover, the probability π∗
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of a breakthrough occurring prior to p∗ being reached is the same under both
Λ0 and Λ̂0: π∗ = p0−p∗

1−p∗ . Because learning occurs at the same exogenous rate ε
once p∗ is reached, the continuation value W ∗ conditional on p∗ being reached
is also the same: W ∗ = p∗

´∞
0
εe−(ε+r)t ρ

r+ρ
dt = 2p∗ − 1. So the only difference

is that conditional on no breakthroughs, the time t∗ at which p∗ is reached
occurs earlier under Λ̂0. To see that this is strictly beneficial, note that W0 is
composed of the following two terms:

W0(Λ0) =
(
1− e−(r+ρ)t∗(Λ0)

) ρ

r + ρ
(2p0 − 1)

+ e−(r+ρ)t∗(Λ0)

(
π∗

ρ

r + ρ
+ (1− π∗)W ∗

)
,

and similarly for Λ̂0. The first term represents the case when a consumer
receives an adoption opportunity prior to time t∗, and the second represents the
case when a consumer’s first adoption opportunity occurs after t∗. Conditional
on either of these cases occurring, the expected payoff is the same under both
Λ0 and Λ̂0, but the time-discounted probability e−(r+ρ)t∗ with which the second
case occurs is strictly greater under Λ̂0. This is strictly beneficial, because the
expected payoff in the second case is strictly greater:(

π∗
ρ

r + ρ
+ (1− π∗) (2p∗ − 1)

)
− ρ

r + ρ
(2p0 − 1)

=
r

r + ρ
(1− π∗) (2p∗ − 1) > 0.

�

B.5.2 Learning Speeds Up

Proof. If p0 > p∗, then conditional on no breakthroughs, all consumers adopt
immediately upon an opportunity until the time t∗ at which the cutoff posterior
p∗ is reached. By Theorem 3.6, we have that for all t < min{t∗(Λ̂0), t∗(Λ0)},
λNt = ρe−ρtΛ0 < ρe−ρtΛ̂0 = λ̂N̂t. Since p∗ = (ε+r)(ρ+r)

2(ε+ρ)(ε+r)−ερ is independent
of the potential for social learning, this implies that t∗(Λ̂0) < t∗(Λ0) and
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that pΛ̂0
t < pΛ0

t for all t > 0. Moreover, once the cutoff posterior is reached,
information is generated at the constant exogenous rate ε, which means that
conditional on t > t∗, beliefs depend only on t− t∗, as summarized in the third
bullet point. �

B.5.3 No Initial Slow-Down in Adoption

Proof. From Section B.5.2, t∗(Λ̂0) < t∗(Λ0). Thus, at all times t ≤ t∗(Λ̂0), all
consumers adopt upon first opportunity in both equilibria. �

B.6 Proof of Theorem 4.4

We first establish the following basic mathematical fact:

Lemma B.9. Suppose t > t∗ ≥ 0 and consider f, g : [0,∞) → R such that
f(τ) = g(τ) for all τ ≤ t∗, f(τ) < g(τ) for τ ∈ (t∗, t), and f(τ) > g(τ) for all
τ > t. Suppose that

´∞
0
e−rτf(τ)dτ =

´∞
0
e−rτg(τ)dτ for some r > 0. Then

for all r̂ > r,
∞̂

0

e−r̂τf(τ)dτ <

∞̂

0

e−r̂τg(τ)dτ.

Proof. We have

0 =

∞̂

0

e−rτ (g(τ)− f(τ))dτ

=

tˆ

0

e−r̂τe(r̂−r)τ (g(τ)− f(τ)) dτ +

∞̂

t

e−r̂τe(r̂−r)τ (g(τ)− f(τ)) dτ

< e(r̂−r)t

 tˆ

0

e−r̂τ (g(τ)− f(τ))dτ +

∞̂

t

e−r̂τ (g(τ)− f(τ)) dτ


< e(r̂−r)t

∞̂

0

e−r̂τ (g(τ)− f(τ)) dτ.
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This implies that
´∞

0
e−r̂τf(τ)dτ <

´∞
0
e−r̂τg(τ)dτ , as claimed. �

To prove Theorem 4.4, fix 0 < rp < ri, ρ > 0, N̄p
0 > 0 and p0 ∈ (1

2
, ρ+rp
ρ+2rp

).
Consider λ̂ > λ > 0 such that λ̂N̄p

0 > λN̄p
0 > Λ∗rp(p0). As in the text, we

assume that there is no exogenous news source. The following lemma derives
the equilibrium of the game with a sufficiently small mass of impatient types:

Lemma B.10. There exists η > 0 such that whenever N̄ i
0 < η, the unique

equilibrium for γ ∈ {λ, λ̂} takes the following form: There exists some t∗(γ)

such that the equilibrium flows N i and Np of impatient and patient adopters
satisfy:

N i
t = ρN̄ i

t for all t,

Np
t =


rp(2pt−1)

γ(1−pt) − ρN̄
i
t if t < t∗(γ)

ρN̄p
t if t ≥ t∗(γ).

Proof. Fix γ ∈ {λ, λ̂}. Pick η > 0 such that p0 >
η+r
η+2r

. Consider first the
game consisting only of mass N̄p

0 consumers of type rp (and no consumers of
type ri). If there were an exogenous news source in this game which generated
signals at rate ε ≤ η, then by Theorem 3.2 type rp would always weakly prefer
to adopt absent breakdowns. Then it is easy to see that in the game with no
exogenous news source but with mass N̄ i

0 < η of types ri, type rp will also
always weakly prefer to adopt. This implies that type ri must always strictly
prefer to adopt.

Thus, N i
t = ρN̄ i

t for all t. Given this, the game reduces to one in which
patient types view the information generated by the impatient types as a
non-stationary exogenous news source which generates signals at rate εt =

γρN̄ i
t . Modifying the arguments in the proof of Theorem 3.1, there must

exist some t∗(γ) > 0 such that rp is indifferent between adoption and delay
for t ≤ t∗(γ), and rp strictly prefers to adopt at all times t > t∗(γ). Then
the unique equilibrium can be derived in the same manner as in the proof of
Theorem 3.2. �
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Given Lemma B.10, we can follow the arguments in the proof of Proposi-
tion 4.2 to show that t∗(λ) < t∗(λ̂) and that there exists some t > t∗(λ) such
that

pλt


= pλ̂t if t ≤ t∗(λ)

> pλ̂t if t ∈ (t∗(λ), t)

< pλ̂t if t > t.

Note that the ex ante expected payoff of type rk (k ∈ {p, i}) under arrival rate
γ ∈ {λ, λ̂} is given by

W k
0 (γ) =

∞̂

0

ρe−(rk+ρ)τ p0

pγτ
(2pγτ − 1) dτ.

Since rp is initially indifferent between adoption and delay under both λ and
λ̂, we have W p

0 (λ) = W p
0 (λ̂) = 2p0 − 1. But then applying Lemma B.9 yields

W i
0(λ) > W i

0(λ̂). This completes the proof of Theorem 4.4.
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