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Abstract

We build a simple diagnostic criterion for approximate factor structure in large cross-sectional equity datasets.

Given a model for asset returns with observable factors, the criterion checks whether the error terms are weakly

cross-sectionally correlated or share at least one unobservable common factor. It only requires computing the largest

eigenvalue of the empirical cross-sectional covariance matrix of the residuals of a large unbalanced panel. A gen-

eral version of this criterion allows us to determine the number of omitted common factors. The panel data model

accommodates both time-invariant and time-varying factor structures. The theory applies to generic random coef-

ficient panel models under large cross-section and time-series dimensions. The empirical analysis runs on monthly

returns for about ten thousand US stocks from January 1968 to December 2011 for several time-varying specifica-

tions. Among several multi-factor time-invariant models proposed in the literature, we cannot select a model with

zero factors in the errors. On the opposite, we conclude for no omitted factor structure in the errors for several

time-varying specifications.
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1 Introduction

Empirical work in asset pricing vastly relies on linear multi-factor models with either time-invariant coef-

ficients (unconditional models) or time-varying coefficients (conditional models). The factor structure is

often based on observable variables (empirical factors) and supposed to be rich enough to extract systematic

risks while idiosyncratic risk is left over to the error term. Linear factor models are rooted in the Arbitrage

Pricing Theory (APT, Ross (1976), Chamberlain and Rothschild (1983)) or come from a loglinearization of

nonlinear consumption-based models (Campbell (1993)). Conditional linear factor models aim at capturing

the time-varying influence of financial and macroeconomic variables in a simple setting (see e.g. Shanken

(1990), Cochrane (1996), Ferson and Schadt (1996), Ferson and Harvey (1991, 1999), Lettau and Ludvig-

son (2001), Petkova and Zhang (2005)). Time variation in risk biases time-invariant estimates of alphas

and betas, and therefore asset pricing test conclusions (Jagannathan and Wang (1996), Lewellen and Nagel

(2006), Boguth et al. (2011)). Ghysels (1998) discusses the pros and cons of modeling time-varying betas.

A central and practical issue is to determine whether there are one or more factors omitted in the chosen

specification. Approximate factor structures with nondiagonal error covariance matrices (Chamberlain and

Rothschild (1983)) answer the potential empirical mismatch of exact factor structures with diagonal error

covariance matrices underlying the original APT of Ross (1976). If the set of observable factors is correctly

specified, the errors are weakly cross-sectionally correlated. Given the large menu of factors available in

the literature (the factor zoo of Cochrane (2011), see also Harvey, Liu, and Zhu (2013)), we need a simple

diagnostic criterion to decide whether we can feel comfortable with the chosen set of observable factors.

For models with unobservable (latent) factors, Connor and Korajczyk (1993) are the first to develop a

test for the number of factors for large balanced panels of individual stock returns in time-invariant models

under covariance stationarity and homoskedasticity. Unobservable factors are estimated by the method of

asymptotic principal components developed by Connor and Korajczyk (1986) (see also Stock and Watson

(2002)). For heteroskedastic settings, the recent literature on large panels with static factors (see Hallin and

Liška (2007) and Jan and Otter (2008) for a selection procedure in the generalized dynamic factor model of

Forni et al. (2000)) has extended the toolkit available to researchers. Bai and Ng (2002) introduce a penal-

ized least-squares strategy to estimate the number of factors (see Amengual and Watson (2007) to include

dynamic factors), at least one, without restrictions on the relation between the cross-sectional dimension (n)
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and the time-series dimension (T ). Caner and Han (2014) propose an estimator with a group bridge penal-

ization to determine the number of unobservable factors. Onatski (2009, 2010) looks at the behavior of the

adjacent eigenvalues to determine the number of factors when n and T are comparable. Ahn and Horenstein

(2013) opt for the same strategy and cover the possibility of zero factors. Kapetanios (2010) uses subsam-

pling to estimate the limit distribution of the adjacent eigenvalues. Harding (2013) uses free probability

theory to derive analytic expressions for the limiting moments of the spectral distribution. The asymptotic

distribution of the eigenvalues is degenerate when the ratio T/n vanishes asymptotically (Jonsonn (1982)).

In our empirical application on monthly returns for about ten thousand US stocks from January 1968 to

December 2011, the cross-sectional dimension is much larger than the time series dimension. This ex-

plains why we favor the setting T/n = o(1). This impedes us to exploit the Marchenko-Pastur distribution

(Marchenko and Pastur (1967)) or other asymptotic characterizations obtained when T/n converges to a

strictly positive constant. In the spirit of Lehmann and Modest (1988) and Connor and Korajczyk (1988),

Bai and Ng (2006) analyze statistics to test whether the observable factors in time-invariant models span the

space of unobservable factors. They do not impose any restriction on n and T . They find that the three factor

model of Fama and French (1993, FF) is the most satisfactory proxy for the unobservable factors estimated

from balanced panels of portfolio and individual stock returns. Ahn, Horenstein, and Wang (2013) study a

rank estimation method to also check whether time-invariant factor models are compatible with a number

of unobservable factors. For portfolio returns, they find that the FF model exhibits a full rank beta (factor

loading) matrix. Goncalves, Perron, and Djogbenou (2013) consider bootstrap prediction intervals for factor

models. Factor analysis for large cross-sectional datasets also find applications in studying bond risk premia

(Ludvigson and Ng (2007, 2009)) and measuring time-varying macroeconomic uncertainty (Jurado et al.

(2015)).

In this paper, we build a simple diagnostic criterion for approximate factor structure in large cross-

sectional datasets. The criterion checks whether the error terms in a given model with observable factors

are weakly cross-sectionally correlated or share at least one common factor. It only requires computing the

largest eigenvalue of the empirical cross-sectional covariance matrix of the residuals of a large unbalanced

panel and subtracting a penalization term vanishing to zero for large n and T . The steps of the diagnostic

are easy: 1) compute the largest eigenvalue, 2) subtract a penalty, 3) conclude to validity of the proposed
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approximate factor structure if the difference is negative, or conclude to at least one omitted factor if the

difference is positive. Our theoretical contribution shows that step 3) yields asymptotically the correct

model selection. We also propose a general version of the diagnostic criterion that determines the number

of omitted common factors. We derive all properties for unbalanced panels in the setting of Connor and

Korajczyk (1987) to avoid the survivorship bias inherent to studies restricted to balanced subsets of available

stock return databases (Brown, Goetzmann, and Ross (1995)). The panel data model is sufficiently general

to accommodate both time-invariant and time-varying factor structures (Gagliardini, Ossola, and Scaillet

(2011, GOS)). We recast the factor models as generic random coefficient panel models and develop the

theory for large cross-section and time-series dimensions with T/n = o (1). Omitted latent factors are also

viewed as interactive fixed effects in the panel literature (Pesaran (2006), Bai (2009), Gobillon and Magnac

(2014), Moon and Weidner (forthcoming, 2015)). As shown below, the criterion is related to the penalized

least-squares approach of Bai and Ng (2002) for model selection with unobservable factors.

For our empirical contribution, we consider the Center for Research in Security Prices (CRSP) database

and take the Compustat database to match firm characteristics. The merged dataset comprises about ten

thousands stocks with monthly returns from January 1968 to December 2011. We look at fifteen empirical

factors and we build thirteen factor models popular in the empirical finance literature to explain monthly

equity returns. They differ by the choice of the observable factors. We analyze monthly returns using the

three factors of FF; the five factors of Chen, Roll, and Ross (1986, CRR); the three factors of Jagannathan

and Wang (1996, JW); the three liquidity related factors of Pastor and Stambaugh (2002, LIQ), plus the

momentum (MOM) factor and the two return reversal (REV) factors (short-term and long-term). We study

time-invariant and time-varying versions of the factor models (Shanken (1990), Cochrane (1996), Ferson

and Schadt (1996), Ferson and Harvey (1999)). For the latter, we use both macrovariables and firm charac-

teristics as instruments (Avramov and Chordia (2006)). Among the time-invariant multi-factor models, we

cannot select a model with zero factors in the errors. On the opposite, we conclude for no omitted factor

structure in the errors for several time-varying specifications.

The outline of the paper is as follows. In Section 2, we consider a general framework of conditional

linear factor model for asset returns. In Section 3, we present our diagnostic criterion for approximate factor

structure in random coefficient panel models. In Section 4, we provide the diagnostic criterion to determine
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the number of omitted factors. Section 5 contains the empirical results. In the Appendices 1 and 2, we gather

the theoretical assumptions and some proofs. We use high-level assumptions to get our results, and show in

Appendix 3 that we meet them under a block cross-sectional dependence structure on the error terms in a

serially i.i.d. framework. We place all omitted proofs in the online supplementary materials. There we link

our approach to the expectation-maximization (EM) algorithm proposed by Stock and Watson (2002) for

unbalanced panels. We also includes some Monte-Carlo simulation results under a design mimicking our

empirical application to show the practical relevance of our selection procedure in finite samples. We report

some additional empirical results and robustness checks.

2 Conditional factor model of asset returns

In this section, we consider a conditional linear factor model with time-varying coefficients. We work in

a multi-period economy (Hansen and Richard (1987)) under an approximate factor structure (Chamberlain

and Rothschild (1983)) with a continuum of assets as in GOS. Such a construction is close to the setting ad-

vocated by Al-Najjar (1995, 1998, 1999a) in a static framework with an exact factor structure. He discusses

several key advantages of using a continuum economy in arbitrage pricing and risk decomposition. A key

advantage is robustness of factor structures to asset repackaging (Al-Najjar (1999b); see GOS for a proof).

Let Ft, with t = 1, 2, ..., be the information available to investors. Without loss of generality, the

continuum of assets is represented by the interval [0, 1]. The excess returns Rt (γ) of asset γ ∈ [0, 1] at

dates t = 1, 2, ... satisfy the conditional linear factor model:

Rt(γ) = at(γ) + bt(γ)
′
ft + εt(γ), (1)

where vector ft gathers the values ofK observable factors at date t. The intercept at(γ) and factor sensitivi-

ties bt(γ) are Ft−1-measurable. The error terms εt (γ) have mean zero and are uncorrelated with the factors

conditionally on information Ft−1. Moreover, we exclude asymptotic arbitrage opportunities in the econ-

omy: there are no portfolios that approximate arbitrage opportunities when the number of assets increases.

In this setting, GOS show that the following asset pricing restriction holds:

at(γ) = bt(γ)′νt, for almost all γ ∈ [0, 1], (2)
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almost surely in probability, where random vector νt ∈ RK is unique and is Ft−1-measurable. The asset

pricing restriction (2) is equivalent to E [Rt(γ)|Ft−1] = bt(γ)′λt, where λt = νt+E [ft|Ft−1] is the vector

of the conditional risk premia.

To have a workable version of Equations (1) and (2), we define how the conditioning information is

generated and how the model coefficients depend on it via simple functional specifications. The conditioning

information Ft−1 contains Zt−1 and Zt−1(γ), for all γ ∈ [0, 1], where the vector of lagged instruments

Zt−1 ∈ Rp is common to all stocks, the vector of lagged instruments Zt−1(γ) ∈ Rq is specific to stock γ,

and Zt = {Zt, Zt−1, ...}. Vector Zt−1 may include the constant and past observations of the factors and

some additional variables such as macroeconomic variables. Vector Zt−1(γ) may include past observations

of firm characteristics and stock returns. To end up with a linear regression model, we assume that: (i) the

vector of factor loadings bt (γ) is a linear function of lagged instruments Zt−1 (Shanken (1990), Ferson and

Harvey (1991)) and Zt−1 (γ) (Avramov and Chordia (2006)); (ii) the vector of risk premia λt is a linear

function of lagged instruments Zt−1 (Cochrane (1996), Jagannathan and Wang (1996)); (iii) the conditional

expectation of ft given the information Ft−1 depends on Zt−1 only and is linear (as e.g. if Zt follows a

Vector Autoregressive (VAR) model of order 1).

To ensure that cross-sectional limits exist and are invariant to reordering of the assets, we introduce a

sampling scheme as in GOS. We formalize it so that observable assets are random draws from an underlying

population (Andrews (2005)). In particular, we rely on a sample of n assets by randomly drawing i.i.d.

indices γi from the population according to a probability distribution G on [0, 1]. For any n, T ∈ N, the

excess returns are Ri,t = Rt(γi). Similarly, let ai,t = at(γi) and bi,t = bt (γi) be the coefficients, and

εi,t = εt(γi) be the error terms. By random sampling, we get a random coefficient panel model (e.g. Hsiao

(2003), Chapter 6). In available datasets, we do not observe asset returns for all firms at all dates. Thus, we

account for the unbalanced nature of the panel through a collection of indicator variables Ii,t, for any asset

i at time t. We define Ii,t = 1 if the return of asset i is observable at date t, and 0 otherwise (Connor and

Korajczyk (1987)).

Through appropriate redefinitions of the regressors and coefficients, GOS show that we can rewrite the

model for Equations (1) and (2) as a generic random coefficient panel model:

Ri,t = x′i,tβi + εi,t, (3)
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where the regressor xi,t =
(
x′1,i,t, x

′
2,i,t

)′
has dimension d = d1 + d2 and includes vectors x1,i,t =(

vech [Xt]
′ , Z ′t−1 ⊗ Z ′i,t−1

)′
∈ Rd1 and x2,i,t =

(
f ′t ⊗ Z ′t−1, f

′
t ⊗ Z ′i,t−1

)′
∈ Rd2 with d1 = p(p +

1)/2 + pq and d2 = K(p+ q). The symmetric matrix Xt = [Xt,k,l] ∈ Rp×p is such that Xt,k,l = Z2
t−1,k, if

k = l, and Xt,k,l = 2Zt−1,kZt−1,l, otherwise, k, l = 1, . . . , p. The vector-half operator vech [·] stacks the

elements of the lower triangular part of a p× p matrix as a p (p+ 1) /2× 1 vector (see Chapter 2 in Magnus

and Neudecker (2007) for properties of this matrix tool). In matrix notation, for any asset i, we have

Ri = Xiβi + εi, (4)

where Ri and εi are T × 1 vectors. Regression (3) contains both explanatory variables that are common

across assets (scaled factors) and asset-specific regressors. It includes models with time-invariant coeffi-

cients as a particular case. In such a case, the regressor reduces to xt = (1, f ′t)
′ and is common across

assets.

In order to build the diagnostic criterion for the set of observable factors, we consider the following rival

models:

M1 : the linear regression model (3), where the errors (εi,t) are weakly cross-sectionally dependent,

and

M2 : the linear regression model (3), where the errors (εi,t) satisfy a factor structure.

Under model M1, the observable factors capture the systematic risk, and the error terms do not feature

pervasive forms of cross-sectional dependence (see Assumptions A.1 and A.3 in Appendix 1). Under model

M2, the following error factor structure holds

εi,t = θ′iht + ui,t, (5)

where the m × 1 vector ht includes unobservable (i.e., latent or hidden) factors, and the ui,t are weakly

cross-sectionally correlated. The m × 1 vector θi corresponds to the factor loadings, and the number m of

common factors is assumed unknown. In vector notation, we have:

εi = Hθi + ui, (6)

where H is the T ×m matrix of unobservable factor values, and ui is a T × 1 vector.
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Assumption 1 Under model M2: (i) Matrix
1

T

∑
t

hth
′
t converges in probability to a positive definite

matrix Σh, as T →∞. (ii) µ1

(
1

n

∑
i

θiθ
′
i

)
≥ C, w.p.a. 1 as n→∞, for a constant C > 0, where µ1 (.)

denotes the largest eigenvalue of a symmetric matrix.

Assumption 1 (i) is a standard identification condition on the latent factor (see Assumption A in Bai and Ng

(2002)) and matrix Σh can be normalized to the identity matrix Im. Assumption 1 (ii) requires that at least

one factor in the error terms is strong. It is satisfied if the second-order matrix of the loadings
1

n

∑
i

θiθ
′
i

converges in probability to a positive definite matrix (see Assumption B in Bai and Ng (2002)).

We work with the condition:

E[xi,th
′
t] = 0, ∀i, (7)

that is, orthogonality between latent factors and observable regressors for all stocks. This condition al-

lows us to follow a two-step approach: we first regress stock returns on observable regressors to compute

residuals, and then search for latent common factors in the panel of residuals (see next section). We can

interpret condition (7) in a partitioned regression: Y = X1β1 +X2β2 + ε as follows. The Frisch-Waugh-

Lovell Theorem (Frisch and Frederick (1933), Lovell (1963)) states that the ordinary least squares (OLS)

estimate of β2 is identical to the OLS estimate of β2 in the regression MX1Y = MX1X2β2 + η, where

MX1 = In−X1 (X ′1X1)−1X ′1. Condition (7) is similar to the orthogonality condition X ′1X2 = 0 ensuring

that we can estimate β2 from regressing the residuals MX1Y on X2 only, instead of the residuals MX1X2

coming from the regression of X2 on X1. When condition (7) is not satisfied, joint estimation of regression

coefficients, latent factor betas and factor values is required (see e.g. Bai (2009), Moon and Weidner (forth-

coming, 2015) in a model with homogeneous regression coefficients βi = β for all i). If the regressors are

common across stocks, i.e. xi,t = xt, we can obtain condition (7) by transformation of the latent factors. It

simply corresponds to an identification restriction on the latent factors. If the regressors are stock-specific,

ensuring orthogonality between the latent factors ht and the observable regressors xi,t for all i is more than

an identification restriction. It requires an additional assumption where we decompose common and stock-

specific components in the regressors vector by writing xi,t = (x′t, x̃
′
i,t)
′, where xt := (vec[Xt]

′, f ′t⊗Z ′t−1)′

and x̃i,t := (Z ′t−1 ⊗ Z ′i,t−1, f
′
t ⊗ Z ′i,t−1)′.
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Assumption 2 The best linear prediction of the unobservable factor EL(ht|{xi,t, i = 1, 2, ...}) is inde-

pendent of {x̃i,t, i = 1, 2, ...}.

Assumption 2 amounts to Granger non-causality from the stock-specific regressors to the latent factors,

conditionally on the common regressors. Assumption 2 is verified e.g. if the latent factors are independent

of the lagged stock-specific instruments, conditional on the observable factors and the lagged common

instruments (see the supplementary materials for a derivation). We keep Assumption 2 as a maintained

assumption on the factor structure underM2. Under Assumption 2, EL(ht|{xi,t, i = 1, 2, ...}) =: Ψxt is

a linear function of xt. Therefore, by transformation of the latent factor ht → ht − Ψxt , we can assume

that EL(ht|{xi,t, i = 1, 2, ...}) = 0, without loss of generality. This condition implies (7).

3 Diagnostic criterion

In this section, we provide the diagnostic criterion that checks whether the error terms are weakly cross-

sectionally correlated or share at least one common factor. To compute the criterion, we estimate the

generic panel model (3) by OLS asset by asset, and we get estimators β̂i = Q̂−1
x,i

1

Ti

∑
t

Ii,txi,tRi,t, for

i = 1, ..., n, where Q̂x,i =
1

Ti

∑
t

Ii,txi,tx
′
i,t. We get the residuals ε̂i,t = Ri,t − x′i,tβ̂i, where ε̂i,t is

observable only if Ii,t = 1. In available panels, the random sample size Ti for asset i can be small,

and the inversion of matrix Q̂x,i can be numerically unstable. To avoid unreliable estimates of βi, we

apply a trimming approach as in GOS. We define 1χi = 1
{
CN

(
Q̂x,i

)
≤ χ1,T , τi,T ≤ χ2,T

}
, where

CN
(
Q̂x,i

)
=

√
µ1

(
Q̂x,i

)
/µd

(
Q̂x,i

)
is the condition number of the d × d matrix Q̂x,i, µd

(
Q̂x,i

)
is

its smallest eigenvalue and τi,T = T/Ti. The two sequences χ1,T > 0 and χ2,T > 0 diverge asymptotically.

The first trimming condition {CN
(
Q̂x,i

)
≤ χ1,T } keeps in the cross-section only assets for which the time

series regression is not too badly conditioned. A too large value of CN
(
Q̂x,i

)
indicates multicollinearity

problems and ill-conditioning (Belsley, Kuh, and Welsch (2004), Greene (2008)). The second trimming

condition {τi,T ≤ χ2,T } keeps in the cross-section only assets for which the time series is not too short. We

also use both trimming conditions in the proofs of the asymptotic results.
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We consider the following diagnostic criterion:

ξ = µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− g(n, T ), (8)

where the vector ε̄i of dimension T gathers the values ε̄i,t = Ii,tε̂i,t, the penalty g(n, T ) is such that

g(n, T ) → 0 and C2
n,T g(n, T ) → ∞, when n, T → ∞, for C2

n,T = min{n, T}. Bai and Ng (2002)

consider several simple potential candidates for the penalty g(n, T ). We list and implement them in Section

5. In vector ε̄i, the unavailable residuals are replaced by zeros. The following model selection rule explains

our choice of the diagnostic criterion (8) for approximate factor structure in large unbalanced cross-sectional

datasets.

Proposition 1 Model selection rule: We select M1 if ξ < 0, and we select M2 if ξ > 0, since under

Assumptions 1, 2 and Assumptions A.1-A.11, (a) Pr (ξ < 0 | M1) → 1, and (b) Pr (ξ > 0 | M2) → 1,

when n, T →∞, such that T/n = o (1).

Proposition 1 characterizes an asymptotically valid model selection rule, which treats both models sym-

metrically. The model selection rule is valid since parts (a) and (b) of Proposition 1 imply Pr (M1|ξ < 0) =

Pr (ξ < 0|M1)Pr (M1) [Pr (ξ < 0|M1)Pr (M1) + Pr (ξ < 0|M2)Pr (M2)]−1 → 1, as n, T → ∞,

such that T/n = o (1), by Bayes Theorem. Similarly, we have Pr (M2|ξ > 0)→ 1. The diagnostic crite-

rion in Proposition 1 is not a testing procedure since we do not use a critical region based on an asymptotic

distribution and a chosen significance level. The proof of Proposition 1 shows that the largest eigenvalue in

(8) vanishes at a faster rate ( Lemma 4 in Appendix A.2.1) than the penalization term underM1 when n and

T go to infinity. UnderM1, we expect a vanishing largest eigenvalue because of a lack of a common signal

in the error terms. The negative penalizing term −g(n, T ) dominates in (8), and this explains why we select

the first model when ξ is negative. On the contrary, the largest eigenvalue remains bounded from below away

from zero (Lemma 4 in Appendix A.2.1) underM2 when n and T go to infinity. UnderM2, we have at least

one non vanishing eigenvalue because of a common signal due to omitted factors. The largest eigenvalue

dominates in (8), and this explains why we select the second model when ξ is positive. We can interpret the

criterion (8) as the adjusted gain in fit including a single additional (unobservable) factor in modelM1. In

the balanced case, where Ii,t = 1 for all i and t, we can rewrite (8) as ξ = SS0 − SS1 − g (n, T ), where
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SS0 =
1

nT

∑
i

∑
t

ε̂2
i,t is the sum of squared errors and SS1 = min

1

nT

∑
i

∑
t

(ε̂i,t − θiht)2 , where the

minimization is w.r.t. the vectors H ∈ RT of factor values and Θ ∈ Rn of factor loadings in a one-factor

model, subject to the normalization constraint
H ′H

T
= 1. Indeed, the largest eigenvalue µ1

(
1

nT

∑
i

ε̂iε̂
′
i

)
corresponds to the difference between SS0 and SS1. Furthermore, the criterion ξ is equal to the difference

of the penalized criteria for zero- and one-factor models defined in Bai and Ng (2002) applied on the resid-

uals. Indeed, ξ = PC (0)− PC (1) , where PC (0) = SS0, and PC (1) = SS1 + g (n, T ) . Given such an

interpretation in terms of sums of squared errors, we can suggest another diagnostic criterion based on a

logarithmic transform as in Corollary 2 of Bai and Ng (2002). The second diagnostic criterion is

ξ̌ = ln

(
1

nT

∑
i

∑
t

1χi ε̂
2
i,t

)
− ln

(
1

nT

∑
i

∑
t

1χi ε̂
2
i,t − µ1

(
1

nT

∑
i

1χi ε̂iε̂
′
i

))
− g(n, T ). (9)

In the balanced case, we get ξ̌ = ln(SS0/SS1)− g(n, T ) and it is equal to the difference of IC (0) and

IC (1) criteria in Bai and Ng (2002). Then, the model selection rule is the same as in Proposition 1 with ξ̌

substituted for ξ.

In Proposition 1, we have the additional constraint T/n = o (1) on the relative rate of the cross-sectional

dimension w.r.t. the time series dimension. We use T/n = o (1) to show the compatibility of Assumption

A.3 with a block dependence structure in the error terms. This exemplifies a key difference with the propor-

tional asymptotics used in Onatski (2009, 2010) or Ahn and Horenstein (2013) for balanced panel without

observable factors. They rely on the asymptotic distribution of the eigenvalues of large dimensional sample

covariances matrices when n/T → c > 0 as n → ∞. The condition T/n = o (1) agrees with the “large

n, small T ” case that we face in the empirical application (ten thousand individual stocks monitored over

forty-five years of monthly returns). Another key difference w.r.t. the available literature is the handling of

unbalanced panels. We need to address explicitly the presence of the observability indicators Ii,t and the

trimming devices 1χi in the proofs of the asymptotic results.

The recent literature on the properties of the two-pass regressions for fixed n and large T shows that

the presence of useless factors (Kan and Zhang (1999a,b), Gospodinov, Kan, and Robotti (2014)) or weak

factor loadings (Kleibergen (2009)) does not affect the asymptotic distributional properties of factor loading

estimates, but alters the ones of the risk premia estimates. Useless factors have zero loadings, and weak

loadings drift to zero at rate 1/
√
T . The vanishing rate of the largest eigenvalue of the empirical cross-
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sectional covariance matrix of the residuals does not change if we face useless factors or weak factor loadings

in the observable factors underM1. The same remark applies underM2. Hence the selection rule remains

the same since the probability of taking the right decision still approaches 1. If we have a number of useless

factors or weak factor loadings strictly lower than the number m of the omitted factors underM2, this does

not impact the asymptotic rate of the diagnostic criterion if Assumption 1 holds. If we only have useless

factors in the omitted factors underM2, we face an identification issue. Assumption 1 (ii) is not satisfied.

We cannot distinguish such a specification fromM1 since it corresponds to a particular approximate factor

structure. Again the selection rule remains the same since the probability of taking the right decision still

approaches 1. Finally, let us study the case of only weak factor loadings underM2. We consider a simplified

setting:

Ri,t = x′i,tβi + εi,t

where εi,t = θiht + ui,t has only one factor with a weak factor loading, namely m = 1 and θi = θ̄i/T
γ

with γ > 0. Let us assume that µ1

(
1

n

∑
i

θ̄2
i

)
is bounded from below away from zero (see Assumption

1 (ii)) and bounded from above. By the properties of the eigenvalues of a scalar multiple of a matrix, we

deduce that c1/T
2γ ≤ µ1

(
1

n

∑
i

θ2
i

)
≤ c2/T

2γ , for some constants c1, c2 such that c2 ≥ c1 > 0. Hence,

by similar arguments as in the proof of Proposition 1, we get:

c1T
−2γ − g(n, T ) +Op

(
C−2
nT + χ̄TT

−1
)
≤ ξ ≤ c2T

−2γ − g(n, T ) +Op
(
C−2
nT + χ̄TT

−1
)
,

where we define χ̄T = χ4
1,Tχ

2
2,T . To concludeM2, we need thatC−2

nT +χ̄TT
−1 and the penalty g(n, T ) van-

ish at a faster rate than T−2γ , namelyC−2
nT +χ̄TT

−1 = o
(
T−2γ

)
and g(n, T ) = o

(
T−2γ

)
. To concludeM1,

we need that g(n, T ) is the dominant term, namely T−2γ = o (g(n, T )) and C−2
nT + χ̄TT

−1 = o (g(n, T )).

As an example, let us take g(n, T ) = T−1 log T and n = T γ̄ with γ̄ > 1, and assume that the trimming

is such that χ̄T = o(log T ). Then, we conclude M2 if γ < 1/2 and M1 if γ > 1/2. This means that

detecting a weak factor loading structure is difficult if gamma is not sufficiently small. The factor loading

should drift to zero not too fast to concludeM2. Otherwise, we cannot distinguish it asymptotically from

weak cross-sectional correlation.
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4 Determining the number of factors

In the previous section, we have studied a diagnostic criterion to check whether the error terms are weakly

cross-sectionally correlated or share at least one unobservable common factor. This section aims at answer-

ing: do we have one, two, or more omitted factors? The design of the diagnostic criterion to check whether

the error terms share exactly k unobservable common factors or share at least k + 1 unobservable common

factors follows the same mechanics. We consider the following rival models:

M1 (k) : the linear regression model (3), where the errors (εi,t) satisfy a factor structure

with exactly k unobservable factors,

and

M2(k) : the linear regression model (3), where the errors (εi,t) satisfy a factor structure

with at least k + 1 unobservable factors.

The above definitions yieldM1 =M1 (0) andM2 =M2 (0).

Assumption 3 Under modelM2(k), we have µk+1

(
1

n

∑
i

θiθ
′
i

)
≥ C, w.p.a. 1 as n→∞, for a constant

C > 0, where µk+1 (.) denotes the (k + 1)-th largest eigenvalue of a symmetric matrix.

ModelsM1(k) andM2(k) are subsets of modelM2. Hence, Assumption 1 (i) guarantees the convergence

of matrix
1

T

∑
t

hth
′
t to a positive definite k × k matrix under M1(k), and to a positive definite m × m

matrix under M2(k), respectively, with m ≥ k + 1. Assumption 3 requires that there are at least k + 1

strong factors underM2(k).

The diagnostic criterion exploits the (k + 1)th largest eigenvalue of the empirical cross-sectional covari-

ance matrix of the residuals:

ξ(k) = µk+1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− g(n, T ). (10)

As discussed in Ahn and Horenstein (2013) (see also Onatski (2013)), we can rewrite (10) in the balanced

case as ξ(k) = SSk − SSk+1 − g(n, T ) where SSk equals the sample mean of the squared residuals from

13



the time series regressions of individual response variables (ε̂i,t) on the first k principal components of
1

nT

∑
i

ε̂iε̂
′
i. The criterion ξ(k) is equal to the difference of the penalized criteria for k and (k + 1)- factor

models defined in Bai and Ng (2002) applied on the residuals. Indeed, ξ(k) = PC(k)−PC(k+ 1), where

PC(k) = SSk + kg(n, T ) and PC(k + 1) = SSk+1 + (k + 1)g(n, T ). To determine the number of

unobservable factors, we choose the minimum k such that ξ(k) < 0. Graphically, we can build a penalized

scree plot where we display the penalized eigenvalues associated with each factor in descending order versus

the number of the factor, and use the x-axis for the cut-off point. The number m of unobservable factors

in (6) is of no use in such a procedure. This avoids the need to prespecify a maximum possible number of

factors (kmax) as in Bai and Ng (2002), Onatski (2009, 2010), Ahn and Horenstein (2013). We believe

that this is a strong advantage of our methodology since there are many possible choices for kmax and the

estimated number of factor is sometimes sensitive to the choice of kmax (see the simulation results in those

papers). In the online supplementary materials, we show that our procedure selects the right number of

factor with 99 percent chances in most cases when n is much larger than T . The following model selection

rule extends Proposition 1 to determine the number of factors.

Proposition 2 Model selection rule: We select M1(k) if ξ(k) < 0, and we select M2(k) if ξ(k) > 0,

since under Assumptions 1(i), 2 and 3, and Assumptions A.1-A.11, (a) Pr[ξ(k) < 0|M1(k)] → 1 and (b)

Pr[ξ(k) > 0|M2(k)]→ 1, when n, T →∞, such that T/n = o (1).

The proof of Proposition 2 is also more complicated than the proof of Proposition 1. The proof of the

latter exploits the asymptotic bound on the largest eigenvalue of a symmetric matrix (Lemma 1 in Appendix

A.2.1) based on similar arguments as in Geman (1980), Yin, Bai, and Krishnaiah (1988), and Bai and Yin

(1993). We need additional arguments to derive such a bound when we look at the (k + 1)th eigenvalue

(Lemma 5 in Appendix A.2.2). We rely on the Courant-Fischer min-max theorem and Courant-Fischer

formula (see beginning of Appendix 2) which represent eigenvalues as solutions of constrained quadratic

optimization problems. We know that the largest eigenvalue µ1(A) of a symmetric positive semi-definite

matrix A is equal to its operator norm. There is no such norm interpretation for the smaller µk(A), k ≥ 2.

We cannot directly exploit standard inequalities or bounds associated to a norm when we investigate the

asymptotic behavior of the spectrum beyond its largest element.
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5 Empirical results

5.1 Factor models and data description

We consider fifteen non-repetitive empirical factors as in Ahn, Horenstein, and Wang (2013). The three

factors of Fama and French (1993) are the monthly excess return on CRSP NYSE/AMEX/Nasdaq value-

weighted market portfolio over the risk free rate rm,t, and the monthly returns on zero-investment factor-

mimicking portfolios for size and book-to-market, denoted by rsmb,t and rhml,t respectively. The monthly

returns on portfolio for momentum is denoted by rmom,t. Two reversal factors are monthly returns on

portfolio for short rstr,t, and long term rltr,t. We have downloaded the time series of these factors from

the website of Kenneth French. We consider the five factors of Chen, Roll, and Ross (1986) available

from Laura Xiaolei Liu’s webpage. The monthly CRR factors are the growth rate of industrial production

mpt, the unexpected inflation uit, the term spread utst, proxied by the difference between yields on 10-

year Treasury and 3-month T-bill, and the default premia uprt, proxied by the yield difference between

Moody’s Baa-rated and Aaa-rated corporate bonds. Moreover, we consider the three liquidity-related factors

of Pastor and Stambaugh (2002) that consist of the monthly liquidity level alt, traded liquidity tlt and the

innovation in aggregate liquidity ilt. We have downloaded the LIQ factors from the website of Lubos Pastor.

Finally, we build the monthly growth rate of labor income labt from the Bureau of Economic Analysis’s

webpage. We proxy the risk free rate with the monthly 30-day T-bill beginning-of-month yield. To account

for time-varying coefficients, we use two conditional specifications based on two common variables and

a firm-level variable. We take the instruments Zt = (1, Z∗t
′)′, where bivariate vector Z∗t includes either

(i) the term spread and the default spread, or (ii) the monthly 30-day T-bill and the dividend yields. We

take a scalar Zi,t corresponding to the book-to-market equity of firm i. We refer to Avramov and Chordia

(2006) for convincing theoretical and empirical arguments in favor of the chosen conditional specification.

The parsimony explains why we have not included e.g. the size of firm i as an additional stock specific

instrument.

Table 1 reports the thirteen linear factor models that we estimate in order to computed the diagnostic

criteria. For each model, we specify the empirical factors involved and the number K of observable factors.

We look at factor models popular in the empirical finance. We also consider nested models built from the
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fifteen empirical factors.

We compute the firm characteristics from Compustat as in the appendix of Fama and French (2008). The

CRSP database provides the monthly stock returns data and we exclude financial firms (Standard Industrial

Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after matching

CRSP and Compustat contents comprises n = 10, 442 stocks, and covers the period from January 1968 to

December 2011 with T = 528 months.

5.2 Diagnostic results

In this section, we compute the diagnostic criteria in Equations (8) and (9) assuming time-invariant and

time-varying specifications of the linear factor models listed in Table 1. We need to define the specification

for the penalty g (n, T ). Bai and Ng (2002) propose three choices for the penalty function in Equation (8),

leading to the following criteria:

1. ξ1 = µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− σ̂2

(
n+ T

nT

)
ln

(
nT

n+ T

)
;

2. ξ2 = µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− σ̂2

(
n+ T

nT

)
lnC2

nT ;

3. ξ3 = µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− σ̂2

(
lnC2

nT

C2
nT

)
,

where σ̂2 =
1

nT

∑
i

∑
t

1χi ε̄
2
1,i,t, and ε̄1,i,t is the fitted residual of the time-varying linear factor model built

on the FF, MOM, REV observable factors and a latent factor. Similarly, we get the following logarithmic

criteria based on Equation (9). We get the following logarithmic criteria:

1. ξ̌1 = ln

(
1

nT

∑
i

∑
t

1χi ε̄
2
i,t

)
− ln

(
1

nT

∑
i

∑
t

1χi ε̄
2
i,t − µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

))
−
(
n+ T

nT

)
ln

(
nT

n+ T

)
;

2. ξ̌2 = ln

(
1

nT

∑
i

∑
t

1χi ε̄
2
i,t

)
− ln

(
1

nT

∑
i

∑
t

1χi ε̄
2
i,t − µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

))
−
(
n+ T

nT

)
lnC2

nT ;

3. ξ̌3 = ln

(
1

nT

∑
i

∑
t

1χi ε̄
2
i,t

)
− ln

(
1

nT

∑
i

∑
t

1χi ε̄
2
i,t − µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

))
−
(

lnC2
nT

C2
nT

)
,
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Each time-series is demeaned and standardized to have unit variance before computing the eigenvalues. This

ensures that all series have a common scale of measurement and improves the stability of the information

extracted from the multivariate time series (see Pena and Poncela (2006)). We fix χ1,T = 15 as advocated

by Greene (2008), and χ2,T = 546/12 for the time-invariant estimation and χ1,T = 20 and χ2,T = 546/60

for the time-varying estimation. In Table 2, we report the size of trimmed cross-sectional dimension nχ that

comes from the trimming procedure applied in the estimation approach. In some time-varying specifications,

we face severe multicollinearity problems due to the correlations within the vector of regressors xi,t, that

involves cross product of factors ft and instruments Zt−1 (e.g., in the JW and CRR models), and the large

dimension of vector xi,t (e.g., the number of parameter to estimate is larger than 40 in models 11-13).

For the time-invariant specifications of (1)-(13) models, we plot the values of the diagnostic criteria

ξ1, ξ2 and ξ3 in Figure 1, and ξ̌1, ξ̌2 and ξ̌3 in Figure 2. For the time-varying specifications, Figures 3 and

4 plot the values of the diagnostic criteria computed with the common instruments (i). Figures 5 and 6 plot

the results by using the second set of common instruments. Since the penalty function is proportional to
1

T
lnT , the numerical value of criteria ξs and ξ̌s, with s = 1, 2, 3, do not differ much from each other. For

the majority of the models, the selected model remains the same when we rely on (8) or (9). In particular,

we cannot select a time-invariant model with zero factors in the errors. We conclude for no omitted factor

in the error terms when we estimate the time-varying linear factor models based on FF and REV factors. In

general, focusing on nested models, when the number of factor increases the diagnostic criteria decreases.

Finally, in many cases, the diagnostic criteria is smaller for the time-varying specifications than for the

time-invariant models.

In Tables 3-6, we compare the descriptive statistics of four measures of missing factor impact: (i) the

estimated time-series coefficient of determination ρ̂2
i =

ESSi
TSSi

, where ESSi =
∑
t

Ii,t

(
R̂i,t − ¯̂

Ri

)2
, with

R̂i,t = β̂′ixi,t and ¯̂
Ri =

1

Ti

∑
t

Ii,tR̂i,t, and TSSi =
∑
t

Ii,t
(
Ri,t − R̄i

)2, with R̄i =
1

Ti

∑
t

Ii,tRi,t; (ii) the

estimated adjustedR2 defined by ρ̂2
ad,i = 1− (Ti − 1)

(Ti − d)

(
1− ρ̂2

i

)
; (iii) the idiosyncratic risk IdiV oli =

√
RSSi
Ti

,

with RSSi =
∑
t

Ii,tε̂
2
i,t; (iv) the systematic risk SysRiski =

√
ESSi
Ti

, for the time-invariant and time-

varying specifications. We consider those estimates as measures of missing factor impact (see Ang, Liu

and Schwarz (2008)). The time-series (adjusted) coefficient of determination tend to be a bit larger in the
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time-varying model than in the time-invariant specifications. The ρ̂2
i , ρ̂

2
ad,i and SysRiski admit large val-

ues for the models that introduced the FF, MOM and/or REV factors in their specification. For these linear

specifications, we observe that the diagnostic criteria ξ and ξ̌ admit small values.

5.3 The number of factors

In this section, we compute the diagnostic criteria ξ (k) in (10) that exploit the (k + 1)-th largest eigenvalue

of the empirical cross-sectional covariance matrix of the errors. We compute the diagnostic criteria for

the first five eigenvalues, and we use the penalty function g (n, T ) defined in the previous section. For

each linear factor specification, we build a penalized scree plot. Figures 7 and 8 show the results for the

time-invariant specifications. We observe that diagnostic criteria change signs when we consider the time-

invariant specifications based on the FF factors. In particular, the diagnostic criteria become negative when

k = 4 for the FF and Carhart (1997) models. The number of omitted unobservable common factors k is

3 for the time-invariant model that accounts for more than 8 observable factors (e.g., models (11)-(13)).

However, the three FF factors alone do not fully explain systematic risk in the excess returns for stocks.

Let us consider the results for the time-varying specifications in Figures 9 and 10. In both figures, the cut-

off point is smaller than for the time-invariant specifications. Thus, the time-varying specifications capture

more properties of excess returns than the corresponding time-invariant models. Indeed, the number of

omitted factors is smaller for the time-varying models than for the time-invariant cases. Moreover, the set

of common instruments involving the monthly 30-day T-bill and the dividend yields seems to capture in a

better way the characteristics of returns of individual stocks.
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Table 1: Linear factor models

Model Empirical factors K

(1) CAPM rm,t 1

(2) FF model rm,t, rsmb,t, rhml,t 3

(3) LIQ model alt, tlt, ilt 3

(4) JW model rm,t, labt,, uprt 3

(5) MOM and REV factors rmom,t, rstr,t, rltr,t 3

(6) Carhart (1997) model rm,t, rsmb,t, rhml,t, rmom,t 4

(7) CRR model mpt, uit, deit, utst, uprt 5

(8) FF and REV factors rm,t, rsmb,t, rhml,t, rstr,t, rltr,t 5

(9) FF and JW factors rm,t, rsmb,t, rhml,t, labt,, uprt 5

(10) FF, MOM and REV factors rm,t, rsmb,t, rhml,t, rmom,t, rstr,t, rltr,t 6

(11) FF and CRR factors
rm,t, rsmb,t, rhml,t,mpt, uit, deit

utst, uprt
8

(12) FF, CRR and JW factors
rm,t, rsmb,t, rhml,t,mpt, uit, deit,

utst, uprt, labt
9

(13) FF, MOM, REV, CRR and JW factors
rm,t, rsmb,t, rhml,t, rmom,t, rstr,t, rltr,t,

mpt, uit, deit, utst, uprt, labt
12

The table lists the linear factor models that we estimate in order to compute the diagnostic criteria. For

each model, we give the empirical factors which are involved. K is the number of observable factors. FF,

CRR, MOM, REV, LIQ and JW refer to the three Fama-French factors, the five Chen-Roll-Ross macroeco-

nomic factors, the momentum factor, the reversal factors, the three liquidity factors of Pastor and Stambaugh

(2002), and the three Jagannathan and Wang (1996) factors, respectively.
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Table 2: Trimmed cross-sectional dimensions nχ and number of parameter to estimate d

Model time-invariant spec. time-varying spec. (i) (ii)

nχ d nχ nχ

(1) CAPM 10,410 13 5,046 1,661

(2) FF model 10,410 21 4,476 1,476

(3) LIQ model 10,410 21 3,393 1,008

(4) JW model 7,578 21 - -

(5) MOM and REV factors 10,410 21 4,568 1,471

(6) Carhart (1997) model 10,410 25 4,020 1,354

(7) CRR model 7,171 29 - -

(8) FF and REV factors 10,396 29 3,828 1,076

(9) FF and JW factors 5,271 29 - -

(10) FF, MOM and REV factors 7,461 33 3,217 960

(11) FF and CRR factors 6,786 41 - -

(12) FF, CRR and JW factors 6,110 45 - -

(13) FF, MOM, REV, CRR and JW factors 5,572 57 - -

For each linear factor model, the table reports the trimmed cross-sectional dimension nχ that comes from

the estimation procedure. For the time-varying specifications, nχ is given for the two sets of instruments (i)

and (ii) described in Section 5.1. Moreover, the dimension of vector xi,t, denoted by d, is also specified. For

the time-invariant specifications, the number of regressors corresponds to the number of observable factors

K (see Table 1).
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Table 5: Summary statistics of ρ̂2
i , ρ̂2

ad,i, IdiV oli and SysRiski for the time-varying specifications (i)

Model 1 2 3 5 6 8 10

ρ̂2i

Min 0.0218 0.0465 0.0242 0.0325 0.0514 0.0547 0.0559

Quantile 25% 0.1569 0.2294 0.1037 0.1414 0.2517 0.2673 0.2790

Median 0.2305 0.3112 0.1434 0.2024 0.3331 0.3471 0.3598

Mean 0.2440 0.3225 0.1612 0.2316 0.3435 0.3566 0.3680

Quantile 75% 0.3191 0.4069 0.1984 0.2938 0.4261 0.4370 0.4468

Max 0.7052 0.8512 0.7069 0.8822 0.8628 0.9032 0.9051

Std 0.1147 0.1265 0.0832 0.1228 0.1272 0.1229 0.1221

ρ̂2ad,i

Min -0.1268 -0.2463 -0.1287 -0.2671 -0.3089 -0.2981 -0.3427

Quantile 25% 0.0884 0.1306 0.0214 0.0532 0.1435 0.1461 0.1519

Median 0.1666 0.2240 0.0563 0.1052 0.2358 0.2429 0.2497

Mean 0.1794 0.2296 0.0656 0.1270 0.2404 0.2433 0.2479

Quantile 75% 0.2575 0.3223 0.0983 0.1764 0.3335 0.3374 0.3423

Max 0.6764 0.7835 0.5897 0.8287 0.7804 0.8279 0.8101

Std 0.1201 0.1362 0.0708 0.1132 0.1380 0.1365 0.1369

IdiV oli

Min 0.0358 0.0315 0.0387 0.0334 0.0312 0.0322 0.0311

Quantile 25% 0.0948 0.0868 0.0980 0.0965 0.0847 0.0838 0.0809

Median 0.1283 0.1171 0.1338 0.1274 0.1134 0.1125 0.1083

Mean 0.1421 0.1310 0.1460 0.1393 0.1268 0.1255 0.1209

Quantile 75% 0.1730 0.1603 0.1774 0.1679 0.1545 0.1537 0.1472

Max 0.7487 0.6984 0.7015 0.6770 0.6842 0.6529 0.6236

Std 0.0683 0.0630 0.0682 0.0627 0.0611 0.0601 0.0574

SysRiski

Min 0.0091 0.0131 0.0102 0.0106 0.0155 0.0150 0.0185

Quantile 25% 0.0523 0.0597 0.0387 0.0463 0.0609 0.0623 0.0617

Median 0.0698 0.0805 0.0555 0.0667 0.0820 0.0834 0.0823

Mean 0.0766 0.0874 0.0638 0.0765 0.0894 0.0917 0.0909

Quantile 75% 0.0931 0.1068 0.0803 0.0954 0.1096 0.1115 0.1096

Max 0.4210 0.6166 0.5218 0.6278 0.6208 0.6352 0.6359

Std 0.0360 0.0407 0.0379 0.0442 0.0422 0.0438 0.0442

The table contains the descriptive statistics (cross-sectional minimum, 25% and 75% quantiles, median, mean, maximum and standard

deviation) of the estimated coefficient of determination (ρ̂2
i ), the estimated adjusted coefficients of determination (ρ̂2

ad,i), the idiosyncratic

risks (IdiV oli), and the systematic risks (SysRiski) for the time-varying linear factor models estimated by using the term spread and the

default spread as common instruments.



Table 6: Summary statistics of ρ̂2
i , ρ̂2

ad,i, IdiV oli and SysRiski for the time-varying specifications (ii)

Model 1 2 3 5 6 8 10

ρ̂2i

Min 0.0210 0.0490 0.0200 0.0306 0.0562 0.0688 0.0730

Quantile 25% 0.1368 0.2034 0.0827 0.1096 0.2240 0.2366 0.2508

Median 0.2012 0.2795 0.1128 0.1545 0.3044 0.3013 0.3162

Mean 0.2200 0.3010 0.1349 0.1908 0.3237 0.3100 0.3225

Quantile 75% 0.2893 0.3778 0.1638 0.2423 0.4034 0.3761 0.3876

Max 0.7134 0.7780 0.5545 0.7180 0.7885 0.8491 0.7868

Std 0.1094 0.1306 0.0783 0.1157 0.1336 0.1070 0.1049

ρ̂2ad,i

Min -0.0934 -0.1017 -0.1479 -0.2031 -0.1336 -0.1400 -0.1738

Quantile 25% 0.0765 0.1174 0.0170 0.0425 0.1292 0.1263 0.1313

Median 0.1487 0.2095 0.0472 0.0784 0.2190 0.2111 0.2188

Mean 0.1633 0.2176 0.0544 0.0994 0.2284 0.2142 0.2199

Quantile 75% 0.2396 0.3080 0.0811 0.1333 0.3263 0.3016 0.3042

Max 0.6497 0.7218 0.3925 0.5954 0.7208 0.7573 0.6318

Std 0.1135 0.1333 0.0592 0.0949 0.1358 0.1221 0.1239

IdiV oli

Min 0.0377 0.0347 0.0385 0.0313 0.0316 0.0311 0.0289

Quantile 25% 0.0878 0.0808 0.0885 0.0899 0.0787 0.0768 0.0749

Median 0.1200 0.1098 0.1219 0.1180 0.1073 0.1091 0.1048

Mean 0.1357 0.1260 0.1379 0.1333 0.1233 0.1247 0.1222

Quantile 75% 0.1651 0.1535 0.1680 0.1612 0.1506 0.1552 0.1537

Max 0.7620 0.7186 0.7430 0.6825 0.7141 0.6540 0.6430

Std 0.0718 0.0659 0.0713 0.0645 0.0652 0.0670 0.0660

SysRiski

Min 0.0111 0.0164 0.0088 0.0101 0.0167 0.0188 0.0190

Quantile 25% 0.0468 0.0541 0.0310 0.0365 0.0557 0.0544 0.0550

Median 0.0618 0.0727 0.0454 0.0565 0.0756 0.0728 0.0733

Mean 0.0666 0.0786 0.0548 0.0640 0.0817 0.0809 0.0817

Quantile 75% 0.0813 0.0964 0.0707 0.0805 0.1002 0.0989 0.0999

Max 0.3502 0.3626 0.3189 0.4540 0.3713 0.5322 0.5439

Std 0.0306 0.0361 0.0358 0.0386 0.0386 0.0419 0.0421

The table contains the descriptive statistics (cross-sectional minimum, 25% and 75% quantiles, median, mean, maximum and standard

deviation) of the estimated coefficient of determination (ρ̂2
i ), the estimated adjusted coefficients of determination (ρ̂2

ad,i), the idiosyncratic

risks (IdiV oli), and the systematic risks (SysRiski) for the time-varying linear factor models estimated by using the monthly 30-day

T-bill and the dividend yields as common instruments.
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Figure 1: Values of the diagnostic criteria ξ1, ξ2 and ξ3 for the time-invariant models
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The figure plots the values of the diagnostic criteria ξ1(circle), ξ2 (plus sign) and ξ3 (cross) for the time-

invariant specifications. We also report the zero axis (dashed horizontal line).

Figure 2: Estimated values of the diagnostic criteria ξ̌1, ξ̌2 and ξ̌3 for the time-invariant models
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The figure plots the values of the logarithmic diagnostic criteria ξ̌1(circle), ξ̌2 (plus sign) and ξ̌3 (cross) for

the time-invariant specifications. We also report the zero axis (dashed horizontal line).
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Figure 3: Values of the diagnostic criteria ξ1, ξ2 and ξ3 for the time-varying models (i)
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The figure plots the values of the diagnostic criteria ξ1(circle), ξ2 (plus sign) and ξ3 (cross) for

the time-varying specifications when Z∗t includes default and term spreads. The diagnostic criteria

cannot be computed for the JW, CRR, (9), (11)-(13) models due to the multicollinearity problems.

We also report the zero axis (dashed horizontal line).

Figure 4: Values of the diagnostic criteria ξ̌1, ξ̌2 and ξ̌3 for the time-varying models (i)
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The figure plots the values of the logarithmic diagnostic criteria ξ̌1(circle), ξ̌2 (plus sign) and ξ̌3

(cross) for the time-varying specifications when Z∗t includes default and term spreads. The loga-

rithmic diagnostic criteria cannot be computed for the JW, CRR, (9), (11)-(13) models due to the

multicollinearity problems. We also report the zero axis (dashed horizontal line).
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Figure 5: Values of the diagnostic criteria ξ1, ξ2 and ξ3 for the time-varying models (ii)
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The figure plots the values of the diagnostic criteria ξ1(circle), ξ2 (plus sign) and ξ3 (cross) for the

time-varying specifications when Z∗t includes one-month T-Bill and dividend yield. The diagnostic

criteria cannot be computed for the JW, CRR, (9), (11)-(13) models due to the multicollinearity

problems. We also report the zero axis (dashed horizontal line).

Figure 6: Values of the diagnostic criteria ξ̌1, ξ̌2 and ξ̌3 for the time-varying models (ii)
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The figure plots the values of the logarithmic diagnostic criteria ξ̌1(circle), ξ̌2 (plus sign) and ξ̌3

(cross) for the time-varying specifications when Z∗t includes one-month T-Bill and dividend yield.

The logarithmic diagnostic criteria cannot be computed for the JW, CRR, (9), (11)-(13) models due

to the multicollinearity problems. We also report the zero axis (dashed horizontal line).
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Figure 7: Values of criteria ξ (k) for the time-invariant models

(1) CAPM (2) FF model
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(3) LIQ model (4) JW model
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(5) MOM and REV factors (6) Carhart (1997) model
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The figure plots the values of the diagnostic criteria ξ1 (k) (circle), ξ2 (k) (plus sign) and ξ3 (k)

(cross) with k = 0, 1, ..., 5, for the time-invariant specifications (1)-(6). We also report the zero

axis (dashed horizontal line).



Figure 8: Values of criteria ξ (k) for the time-invariant models
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(9) FF and JW factors (10) FF, MOM and REV factors
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(11) FF and CRR factors (12) FF, CRR, and JW factors

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3

number k of omitted factors

D
ia
g
n
o
st
ic

cr
it
er
io
n

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

number k of omitted factors

D
ia
g
n
o
st
ic

cr
it
er
io
n

(13) FF, MOM, REV, CRR and JW factors
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The figure plots the values of the diagnostic criteria ξ1 (k) (circle), ξ2 (k) (plus sign) and ξ3 (k)

(cross) with k = 0, 1, ..., 5, for the time-invariant specifications (7)-(13). We also report the zero

axis (dashed horizontal line).
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Figure 9: Values of criteria ξ (k) for the time-varying models (i)

(1) CAPM (2) FF model
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(3) LIQ model (5) MOM and REV factors
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(6) Carhart (1997) model (8) FF and REV factors
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(10) FF, MOM and REV factors
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The figure plots the values of the diagnostic criteria ξ1 (k) (circle), ξ2 (k) (plus sign) and ξ3 (k)

(cross) with k = 0, 1, ..., 5, for the time-varying specifications when Z∗t includes default and term

spreads. We also report the zero axis (dashed horizontal line).

30



Figure 10: Values of criteria ξ (k) for the time-varying models (ii)

(1) CAPM (2) FF model
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(3) LIQ model (5) MOM and REV factors
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(6) Carhart (1997) model (8) FF and REV factors
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(10) FF, MOM and REV factors
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The figure plots the values of the diagnostic criteria ξ1 (k) (circle), ξ2 (k) (plus sign) and ξ3 (k)

(cross) with k = 0, 1, ..., 5, for the time-varying specifications when Z∗t includes one-month T-Bill

and dividend yield. We also report the zero axis (dashed horizontal line).
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Appendix 1 Regularity conditions

In this appendix, we list and comment additional assumptions used in the proofs in Appendix 2. The error

terms (εi,t) are εi,t = ui,t under model M1, and εi,t = θ′iht + ui,t under model M2 (see Equation (6)).

Since modelsM1 (k) andM2 (k) are subsets of modelM2, the assumptions stated forM2 also hold for

M1 (k) andM2 (k), for any k ≥ 1. We use M as a generic constant in the assumptions.

Assumption A.1 For a constant M > 0 and for all n, T ∈ N, we have:

1

n2T 2

∑
i,j

∑
t1,t2,t3,t4

∣∣E [ui,t1ui,t2uj,t3uj,t4 ∣∣xi,T , xj,T , γi, γj ]∣∣ ≤M.

Assumption A.2 We have E[|ui,t|q] ≤M , for all i, t, and some constants q ≥ 8 and M > 0.

Assumption A.3 Let δ = δn ↑ ∞ be a diverging sequence such that
√
T/δq−1 = o(1) and δ ≥ nβ , for

β > 2/q. Let ei,t = ui,t1{|ui,t| ≤ δ} − E[ui,t1{|ui,t| ≤ δ}]. Then:

1

nk

∑
i1,...,ik

∑
t1,...,tk

|E[ei1,tkei1,t1ei2,t1ei2,t2ei3,t2 · · · eik−1,tk−1
eik,tk−1

eik,tk ]| ≤Mk,

for a sequence of integers k = kn ↑ ∞ and a constant M > 0, where indices i1, ..., ik run from 1 to n, and

indices t1, ..., tk from 1 to T .

Assumption A.4 There exists a constant M > 0 such that ‖xi,t‖ ≤M , P -a.s., for any i and t.

Assumption A.5 Under modelM2, a) there exists a constant M > 0 such that ‖ht‖ ≤M , P -a.s., for all

t. Moreover, b) ‖θi‖ < M , for all i.

Assumption A.6 Under modelM2, for a constant M > 0 and for all n, T ∈ N, we have:

1

n2T 2

∑
i,j

∑
t1,t2,t3,t4

‖E[(xi,t1h
′
t1)(xi,t2h

′
t2)′(xj,t3h

′
t3)(xj,t4h

′
t4)′|γi, γj ]‖ ≤M.

Assumption A.7 Variables (Ii,t) and (εi,t) are independent.

Assumption A.8 We have µ1(W ) = Op(C
−2
n,T ), where W = [wt,s] is the T × T matrix with elements

wt,s =
1

nT

∑
i

(Ii,t − Īt)(Ii,s − Īs), and Īt =
1

n

∑
i

Ii,t.

38



Assumption A.9 The trimming constants χ1,T and χ2,T are such that χ2
1,Tχ2,T = o (Tg (n, T )).

Assumption A.10 There exist constants η, η̄ ∈ (0, 1] and C1, C2, C3, C4 > 0 such that, for all δ > 0 and

T ∈ N, we have:

a) sup
1≤i≤n

P

[
‖ 1

T

∑
t

Ii,t
(
hth
′
t − Σh

)
‖ ≥ δ|γi

]
≤ C1T exp{−C2δ

2T η}+ C3δ
−1 exp{−C4T

η̄}.

Furthermore the same upper bound holds for

b) sup
1≤i≤n

P

[
| 1
T

∑
t

Ii,t − E[Ii,t|γi]| ≥ δ|γi

]
.

Assumption A.11 inf
1≤i≤n

E[Ii,t|γi] > 0.

Assumption A.1 restricts both serial and cross-sectional dependence of the error terms. It involves

conditional expectations of products of error terms ui,t for different assets and dates. That assumption can

be satisfied under weak serial and cross-sectional dependence of the errors, such as temporal mixing and

block dependence across assets. Assumption A.2 is an upper bound on higher moments of ui,t, to control

tail thickness. Assumption A.3 is a restriction on both serial and cross-sectional dependence of the error

terms and on the growth rates of n and T . We use Assumptions A.2 and A.3 to characterize the asymptotic

behavior of the spectrum of the cross-sectional variance-covariance matrix of errors under the rival models.

They yield the so-called truncation and centralization lemmas in the proof of Lemma 1. In Appendix 3, we

show that Assumption A.3 is satisfied under cross-sectional block-dependence and time series indipendence

of the errors, provided n grows sufficiently faster than T . Under cross-sectional independendence of the

errors, the condition T/n = o (1) is enough as discussed at the end of Appendix 3. Assumptions A.4

and A.5 require upper bounds on regressor values, latent factors and factor loadings. Assumption A.6

restricts both serial and cross-sectional dependence of the products of error terms and regressors. Matrices

xi,th
′
t are zero-mean under Assumption 2. In Assumption A.7, we assume a missing-at-random design

(Rubin (1976)), that is, independence between unobservability and return generation. Another design would

require an explicit modeling of the link between the unobservability mechanism and the return process

of the continuum of assets (Heckman (1979)); this would yield a nonlinear factor structure. Assumption

A.8 controls the rate at which the largest eigenvalue of the matrix with entries made of cross-sectional

averages of observability indicators vanishes to zero. The matrix gathering those averages should not be

associated to an omitted factor structure. Assumption A.9 gives an upper bound on the divergence rate of
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the trimming constants. Assumption A.10 a) restricts the serial dependence of the latent factors and the

individual processes of observability indicators. Specifically, Assumption A.10 a) gives an upper bound for

large deviation probabilities of the sample average of random matrices Ii,thth′t uniformly w.r.t. asset i. It

implies that the sample moment of squared components of the latent factor vector converges in probability

to the corresponding population moment at a rate Op(T−η/2(log T )c), for some c > 0. Assumption A.10

b) gives a similar upper bound for large-deviation probabilities of sample averages of processes involving

observability indicators uniformly w.r.t. assets i, j. We use such assumptions to get the convergence of time

series averages uniformly across assets as in GOS. Assumption A.11 implies that asymptotically the fraction

of the time period in which an asset return is observed is bounded away from zero uniformly across assets,

so that τi = plim
T→∞

τi,T = E[Ii,t|γi]−1 is finite for all assets as in GOS.

Appendix 2 Proofs

We start by listing several results known from matrix theory. They are used several times in the proofs.

(i) Weyl inequality: The singular-value version states that if A and B are T × n matrices, then

µi+j−1[(A+B)(A+B)′]1/2 ≤ µi(AA′)1/2 + µj(BB
′)1/2, for any 1 ≤ i, j ≤ min{n, T} such that 1 ≤

i+j ≤ min{n, T}+1 (see Theorem 3.3.16 of Horn and Johnson (1985)). The Weyl inequality for i = k+1

and j = 1 yields:

µk+1[(A+B)(A+B)′]1/2 ≤ µk+1(AA′)1/2 + µ1(BB′)1/2, (11)

µk+1[(A+B)(A+B)′]1/2 ≥ µk+1(AA′)1/2 − µ1(BB′)1/2, (12)

for any T×nmatricesA andB and integer k such that 0 ≤ k ≤ min{n, T}−1. We also use Weyl inequality

for eigenvalues: for any T × T symmetric matrices A and B we have: µi+j−1(A+ B) ≤ µi(A) + µj(B),

for any 1 ≤ i, j ≤ T such that i+ j ≤ T + 1 (see Theorem 8.4.11 in Bernstein (2009)).

(ii) Equality between largest eigenvalue and operator norm: The largest eigenvalue µ1(A) of a symmetric

positive semi-definite matrix A is equal to its operator norm ‖A‖op = max
x:‖x‖=1

‖Ax‖. Besides, ‖A‖op ≤ ‖A‖

for any square matrix A, where ‖ · ‖ is the Frobenius norm (see e.g. Meyer (2000)).

(iii) Inequalities fot the eigenvalues of matrix products: if A and B are m×m positive semidefinite and
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positive definite matrices, respectively,

λk (A)λm (B) ≤ λk (AB) ≤ λk (A)λ1 (B) , (13)

for k = 1, 2, ...,m (see Fact 8.19.17 in Bernstein (2009)).

(iv) Courant-Fischer min-max Theorem: If A is a T × T symmetric matrix, we have, for k = 1, ..., T ,

µk(A) = min
G:dim(G)=T−k+1

max
x∈G:‖x‖=1

x′Ax, (14)

where the minimization is w.r.t. the (T − k + 1)-dimensional linear subspace G of RT (see e.g. Bernstein

(2009)). The max-min formulation states:

µk(A) = max
G:dim(G)=k

min
x∈G:‖x‖=1

x′Ax, (15)

where the minimization is w.r.t. the k-dimensional linear subspace G of RT .

(v) Courant-Fischer formula: If A is a T × T symmetric matrix, we have, for k = 1, ..., T ,

µk(A) = max
x∈F⊥k−1:‖x‖=1

x′Ax, (16)

where F⊥k is the orthogonal complement of Fk with Fk being the linear space spanned by the eigenvectors

associated to the k largest eigenvalues of matrix A.

A.2.1 Proof of Proposition 1

a) The OLS estimator of βi in matrix notation is β̂i =
(
X̃ ′iX̃i

)−1
X̃ ′iR̃i, with R̃i = Ii � Ri, where Ii is

the T × 1 vector of indicators Ii,t for asset i, and � is the Hadamard product. We get the vector of residuals

ε̂i = Ri −Xi

(
X̃ ′iX̃i

)−1
X̃ ′iR̃i. Then, we have ε̄i = Ii � ε̂i = MX̃i

R̃i = MX̃i
ε̃i, where ε̃i = Ii � εi

and MX̃i
= IT − PX̃i , with PX̃i = X̃i

(
X̃ ′iX̃i

)−1
X̃ ′i. Thus, under M1, we have the decomposition

1χi ε̄i = ε̃i − (1 − 1χi )ε̃i − 1χi PX̃i ε̃i. From Weyl inequality (11) with k = 0, and the inequality between

matrix norms, we get:

µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)1/2

≤ µ1

(
1

nT

∑
i

ε̃iε̃
′
i

)1/2

+ I
1/2
1 + I

1/2
2 , (17)
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where:

I1 := ‖ 1

nT

∑
i

(1− 1χi )ε̃iε̃
′
i‖, I2 := ‖ 1

nT

∑
i

1χi PX̃i ε̃iε̃
′
iPX̃i‖. (18)

We bound the largest eigenvalue of matrix
1

nT

∑
i

ε̃iε̃
′
i and the remainder terms I1 and I2 in the next two

lemmas.

Lemma 1 Under modelM1 and Assumptions A.2, A.3, A.7, as n, T →∞ such that T/n = o (1), we have

µ1

(
1

nT

∑
i

ε̃iε̃
′
i

)
= Op(C

−2
n,T ).

Lemma 2 Under modelM1 and Assumptions A.1, A.2 and A.4, as n, T → ∞ such that T/n = o (1), we

have: (i) I1 = Op(T
−b̄), for any b̄ > 0; (ii) I2 = Op(χ

4
1,Tχ

2
2,T /T ).

From Inequality (17) and Lemmas 1 and 2, we get ξ = Op(C
−2
n,T ) +Op(

χ4
1,Tχ

2
2,T

T
)− g(n, T ). Then,

from Assumption A.9 on the trimming constants and the properties of penalty function g(n, T ), Proposition

1(a) follows.

b) Let us now consider the caseM2. We have ε̄i = MX̃i
ε̃i and ε̃i = H̃iθi + ũi, where H̃i = Ii � H

and H is the T × m matrix of latent factor values, with m ≥ 1. Hence, we have the decomposition

1χi ε̄i = H̃iθi + ũi − (1 − 1χi )ε̃i − 1χi PX̃iH̃iθi − 1χi PX̃i ũi. By using Weyl inequalities (11) and (12) with

k = 0, and the inequality between matrix norms, we get:

µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)1/2

≥ µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)1/2

− µ1

(
1

nT

∑
i

ũiũ
′
i

)1/2

− I1/2, (19)

where I1/2 = I
1/2
1 + I

1/2
3 + I

1/2
4 , term I1 is defined as in (18), and

I
1/2
3 := ‖ 1

nT

∑
i

1χi PX̃iH̃iθiθ
′
iH̃
′
iPX̃i‖

1/2, I
1/2
4 := ‖ 1

nT

∑
i

1χi PX̃i ũiũ
′
iPX̃i‖

1/2. (20)

By Lemma 1 applied on ũi instead of ε̃i, we have µ1

(
1

nT

∑
i

ũiũ
′
i

)
= Op(C

−2
n,T ). Moreover, from the

next Lemma 3 and Assumption A.9 on the trimming constants, we get I = Op(C
−2
n,T ) underM2.

Lemma 3 Under modelM2 and Assumptions A.1, A.4, A.5 and A.6, as n, T →∞ such that T/n = o (1),

we have: (i) I1 = Op(T
−b̄), for any b̄ > 0; (ii) I3 = Op(χ

4
1,Tχ

2
2,T /T ); (iii) I4 = Op(χ

4
1,Tχ

2
2,T /T ).
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The next Lemma 4 provides a lower bound for the first term in the r.h.s. of Inequality (19).

Lemma 4 Under modelM2 and Assumptions 1, 2, A.10 and A.11, we have µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ C,

w.p.a. 1, for a constant C > 0.

Then, from Inequality (19) and Lemma 4, we get ξ ≥ C/2, w.p.a. 1, and Proposition 1(b) follows.

A.2.2 Proof of Proposition 2

We prove Proposition 2 along similar lines as Proposition 1 by exploiting the Weyl inequalities (11) and (12)

for a generic k.

a) Let us first consider the caseM1(k). We have ε̄i = MX̃i
ε̃i and ε̃i = H̃iθi+ũi, where H̃i = Ii�H and

H is the T ×k matrix of latent factor values. Then, 1χi ε̄i = H̃iθi+ ũi−(1−1χi )ε̃i−1χi PX̃iH̃iθi−1χi PX̃i ũi.

From Weyl inequalities (11) and (12), and the inequality between matrix norms, we get:

µk+1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)1/2

≤ µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)1/2

+ µ1

(
1

nT

∑
i

ũiũ
′
i

)1/2

+ I1/2, (21)

where I1/2 = I
1/2
1 + I

1/2
3 + I

1/2
4 and terms I1, I3 and I4 are defined as in the proof of Proposition 1.

Since modelM1(k) is included in modelM2 for any k ≥ 1, we get I = Op(C
−2
n,T ), from Lemma 3 and

Assumption A.9 on the trimming constants. Moreover, µ1

(
1

nT

∑
i

ũiũ
′
i

)
= Op(C

−2
n,T ) by Lemma 1 with

ũi replacing ε̃i. The first term in the r.h.s. of (21) is bounded by the next lemma.

Lemma 5 Under modelM1(k) and Assumptions A.5 a), A.8, we have µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
= Op(C

−2
n,T ).

From Inequality (21) and Lemma 5, we get ξ = Op(C
−2
n,T )−g(n, T ). Then, by the properties of g(n, T ),

Proposition 2(a) follows.

b) Let us now consider the caseM2(k). We have ε̄i = MX̃i
ε̃i and ε̃i = H̃iθi + ũi, where H̃i = Ii �H

and H is the T ×m matrix of latent factor values, with m ≥ k+1. By similar arguments as in part a), using

Weyl inequalities (11) and (12), and the inequality between matrix norms, we get:

µk+1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)1/2

≥ µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)1/2

− µ1

(
1

nT

∑
i

ũiũ
′
i

)1/2

− I1/2. (22)

43



As in part a) we have µ1

(
1

nT

∑
i

ũiũ
′
i

)
= Op(C

−2
n,T ) and I = Op(χ

4
1,Tχ

2
2,T /T ) = Op(C

−2
n,T ).

Lemma 6 Under modelM2(k) and Assumptions 1(i), 2, 3, A.10 and A.11, we have µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ C,

w.p.a. 1, for a constant C > 0.

Then, from Inequality (22) and Lemma 6, we get ξ ≥ C/2, w.p.a. 1, and Proposition 2(b) follows.

A.2.3 Proof of Lemma 1

We prove:

lim sup
n,T→∞

µ1

(
1

n
Ẽ Ẽ ′
)
≤ C, a.s., (23)

for a constant C < ∞, where Ẽ is the T × n matrix with elements ε̃i,t = Ii,tεi,t. Then, since T/n = o(1),

the statement of Lemma 1 follows. To show (23), we follow similar arguments as in Geman (1980), Yin,

Bai, and Krishnaiah (1988), and Bai and Yin (1993).

We first establish suitable versions of the so-called truncation and centralization lemmas. We denote by

Ξ and E the T × n matrices with elements (ξi,t) and (ei,t), respectively, where ξi,t = εi,t1{|εi,t| ≤ δ} and

ei,t = ξi,t − E[ξi,t], and δ = δn ↑ ∞ is a diverging sequence as in Assumption A.3. Let us define matrices

Ẽ = (Ii,tei,t) and Ξ̃ = (Ii,tξi,t) by analogy to Ẽ . Lemma 7 shows that we can substitute the truncated ξi,t

and Ii,tξi,t for εi,t and Ii,tεi,t, and Lemma 8 shows that we can substitute the centered Ii,tei,t for the Ii,tξi,t

to show boundedness of the largest eigenvalue in (23). We prove Lemmas 7 and 8 in the supplementary

material.

Lemma 7 Under Assumption A.2, if δ = δn is such that δ ≥ nβ for β > 2/q, then: (i) P (E 6= Ξ i.o.) = 0,

and (ii) P
(
Ẽ 6= Ξ̃ i.o.

)
= 0, where i.o. means infinitely often for n = 1, 2, ....

Lemma 8 Under Assumption A.2, if δ = δn ↑ ∞ such that
√
T/δq−1 = o(1), then:

µ1

(
1

n
Ξ̃Ξ̃′

)
= µ1

(
1

n
ẼẼ′

)
+ o(1), a.s.
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From Lemma 7(ii) and Lemma 8, condition (23) is implied by:

lim sup
n,T→∞

µ1

(
1

n
ẼẼ′

)
≤ C, a.s., (24)

for a constant C <∞. Now, we use that the upper bound (24) is implied by the condition:

∞∑
n=1

E

[(
µ1

(
1

n
ẼẼ′

)
/C

)k]
<∞, (25)

for an increasing sequence of integers k = kn ↑ ∞. To prove the validity of condition (25), we use that:

µ1

(
1

n
ẼẼ′

)k
≤ Tr

[(
1
nẼẼ

′
)k]

=
1

nk

∑
i1,...,ik

∑
t1,...,tk

ẽi1,t1 ẽi2,t1 ẽi2,t2 ẽi3,t2 · · · ẽik−1,tk−1
ẽik,tk−1

ẽik,tk ẽi1,tk ,

for any integer k, where in the summation the indices i1, ..., ik run from 1 to n, and indices t1, ..., tk run

from 1 to T . Therefore, from Assumption A.7:

E

[
µ1

(
1

n
ẼẼ′

)k]
≤ 1

nk

∑
i1,...,ik

∑
t1,...,tk

|E[ei1,tkei1,t1ei2,t1ei2,t2ei3,t2 · · · eik−1,tk−1
eik,tk−1

eik,tk ]|.

Then, we get E

[
µ1

(
1

n
ẼẼ′

)k]
≤ Ck1 , for the sequence k = kn defined in Assumption A.3. Condition

(25) holds for any C > C1, and the conclusion follows.

A.2.4 Proof of Lemma 2

i) We have I2
1 =‖ 1

nT

∑
i(1 − 1χi )ε̃iε̃

′
i‖2 = 1

n2T 2

∑
i,j(1 − 1χi )(1 − 1χj )(ε̃′iε̃j)

2 = 1
n2T 2

∑
i,j

∑
t1,t2

(1 −

1χi )(1− 1χj )Ii,t1Ij,t1Ii,t2Ij,t2εi,t1εj,t1εi,t2εj,t2 . By the Cauchy-Schwarz inequality:

E[I2
1 ] ≤ 1

n2T 2

∑
i,j

∑
t1,t2

E[1− 1χi ]1/4E[1− 1χj ]1/4E[ε8
i,t1 ]1/8E[ε8

j,t1 ]1/8E[ε8
i,t2 ]1/8E[ε8

j,t2 ]1/8.

Now, we have E[ε8
i,t] ≤ M from Assumption A.2 and E[1− 1χi ] = P [1χi = 0] = O(T−b̄) for any b̄ > 0,

uniformly in i and t (see GOS). Then, I1 = Op(T
−b̄) for any b̄ > 0.
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ii) We have:

I2
2 = ‖ 1

nT

∑
i

1χi PX̃i ε̃iε̃
′
iPX̃i‖

2

=
1

n2T 2

∑
i,j

1χi 1
χ
j Tr

[
PX̃i ε̃iε̃

′
iPX̃iPX̃j ε̃j ε̃

′
jPX̃j

]

=
1

n2T 2

∑
i,j

1χi 1
χ
j

τ2
i,T τ

2
j,T

τ2
T,ij

Tr

[
Q̂−1
x,i

(
X̃ ′i ε̃i√
T

)(
ε̃′iX̃i√
T

)
Q̂−1
x,i Q̂x,ijQ̂

−1
x,j

(
X̃ ′j ε̃j√
T

)
(
ε̃′jX̃j√
T

)
Q̂−1
x,jQ̂x,ji

]
,

where Q̂x,ij =
1

Ti,j

∑
t

Ii,tIj,txi,tx
′
j,t and τij,T = T/Tij . By using Tr(AB′) ≤ ‖A‖‖B‖, 1χi ‖Q̂

−1
x,i‖ ≤

Cχ2
1,T , 1χi τi,T ≤ χ2,T , ‖xi,t‖ ≤M (Assumption A.4), τij,T ≥ 1, for all i and t, we get:

I2
2 ≤

Cχ8
1,Tχ

4
2,T

n2T 2

∑
i,j

‖ ε̃
′
iX̃i√
T
‖2‖

ε̃′jX̃j√
T
‖2

=
Cχ8

1,Tχ
4
2,T

n2T 4

∑
i,j

∑
t1,t2,t3,t4

Ii,t1Ii,t2Ij,t3Ij,t4εi,t1εi,t2εj,t3εj,t4x
′
i,t1xi,t2x

′
j,t3xj,t4 .

Thus:

E[I2
2 |Ii,T , Ij,T , xi,T , xj,T , γi, γj ]

≤
Cχ8

1,Tχ
4
2,T

n2T 4

∑
i,j

∑
t1,t2,t3,t4

‖xi,t1‖‖xi,t2‖‖xj,t3‖‖xj,t4‖|E[εi,t1εi,t2εj,t3εj,t4 |xi,T , xj,T , γi, γj ]|

≤
CM5χ8

1,Tχ
4
2,T

T 2
,

from Assumptions A.1 and A.4. It follows E[I2
2 ] = O(

χ8
1,Tχ

4
2,T

T 2
), which implies I2 = Op(

χ4
1,Tχ

2
2,T

T
).

A.2.5 Proof of Lemma 3

i) The proof of Lemma 3(i) is the same as that of Lemma 2(i), since the bound E[|εi,t|8] ≤M applies under

M2 as well (Assumptions A.2 and A.5).

ii) The proof of Lemma 3(ii) is similar to that of Lemma 2(ii), by replacing ε̃i with H̃iθi and using
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Assumption A.6. We have:

I2
2 = ‖ 1

nT

∑
i

1χi PX̃iH̃iθiθ
′
iH̃
′
iPX̃i‖

2 =
1

n2T 2

∑
i,j

1χi 1
χ
j Tr

[
PX̃iH̃iθiθ

′
iH̃
′
iPX̃iPX̃jH̃jθjθ

′
jH̃
′
jPX̃j

]

=
1

n2T 2

∑
i,j

1χi 1
χ
j

τ2
i,T τ

2
j,T

τ2
T,ij

Tr

[
Q̂−1
x,i

(
X̃ ′iH̃i√
T

)
θiθ
′
i

(
H̃ ′iX̃i√
T

)
Q̂−1
x,i Q̂x,ijQ̂

−1
x,j

(
X̃ ′jH̃j√
T

)

θjθ
′
j

(
H̃ ′jX̃j√
T

)
Q̂−1
x,jQ̂x,ji

]
.

By using Tr(AB′) ≤ ‖A‖‖B‖, 1χi ‖Q̂
−1
x,i‖ ≤ Cχ2

1,T , 1χi τi,T ≤ χ2,T , ‖θi‖ ≤M , ‖xi,t‖ ≤M , τij,T ≥ 1, for

all i and t, we get:

I2
2 ≤

Cχ8
1,Tχ

4
2,T

n2T 2

∑
i,j

‖H̃
′
iX̃i√
T
‖2‖

H̃ ′jX̃j√
T
‖2

=
Cχ8

1,Tχ
4
2,T

n2T 4

∑
i,j

∑
t1,t2,t3,t4

Ii,t1Ii,t2Ij,t3Ij,t4h
′
t1ht2x

′
i,t1xi,t2h

′
t3ht4x

′
j,t3xj,t4 .

Thus:

E[I2
2 |IT ,i, IT ,j , γi, γj ] ≤

Cχ8
1,Tχ

4
2,T

n2T 4

∑
i,j

∑
t1,t2,t3,t4

|E[h′t1ht2x
′
i,t1xi,t2h

′
t3ht4x

′
j,t3xj,t4 |γi, γj ]|

≤
CMχ8

1,Tχ
4
2,T

T 2
,

from Assumption A.6. It follows E[I2
2 ] = O(

χ8
1,Tχ

4
2,T

T 2
), which implies I2 = Op(

χ4
1,Tχ

2
2,T

T
).

iii) The proof of Lemma 3(iii) is the same as that of Lemma 2(ii), by replacing ε̃i with ũi.

A.2.6 Proof of Lemma 4

We have µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
= max

x∈RT :‖x‖=1
x′

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
x. From Assumption 1 (i), matrix

1

T
H ′H =

1

T

∑
t

hth
′
t is positive definite w.p.a. 1. Thus, for any a ∈ Rm with ‖a‖ = 1, the vector
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x(a) ∈ RT defined by x(a) =
1√
T
Ha[a′(H ′H/T )a]−1/2 is such that ‖x(a)‖ = 1, w.p.a. 1. Therefore:

µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ max

a∈Rm:‖a‖=1
x(a)′

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
x(a)

= max
a∈Rm:‖a‖=1

a′

[
1

n

∑
i

(H ′H̃i/T )θiθ
′
i(H̃

′
iH/T )

]
a

a′(H ′H/T )a

= max
a∈Rm:‖a‖=1

a′

[
1

n

∑
i

τ−2
i,T

(
1

Ti

∑
t

Ii,thth
′
t

)
θiθ
′
i

(
1

Ti

∑
t

Ii,thth
′
t

)]
a

a′

(
1

T

∑
t

hth
′
t

)
a

.

We have a′
(

1

T

∑
t

hth
′
t

)
a ≤ µ1

(
1

T

∑
t

hth
′
t

)
, for any a ∈ Rm such that ‖a‖ = 1, and from Assumption

1 (i), we have µ1

(
1

T

∑
t

hth
′
t

)
≤ 2µ1(Σh) w.p.a. 1. Moreover, from GOS, under Assumptions A.10 and

A.11, we have sup
1≤i≤n

‖ 1

Ti

∑
t

Ii,thth
′
t − Σh‖ = op(1), sup

1≤i≤n
|τi,T − τi| = op(1), and 1 ≤ τi ≤ M , for all

i. It follows:

µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ C max

a∈Rm:‖a‖=1
a′Σh

(
1

n

∑
i

θiθ
′
i

)
Σha = Cµ1

(
Σh

(
1

n

∑
i

θiθ
′
i

)
Σh

)
,

for a constant C > 0. From the inequality (13) for the eigenvalues of a matrix product applied twice, we

have µ1

(
Σh

(
1

n

∑
i

θiθ
′
i

)
Σh

)
≥ µ1

(
1

n

∑
i

θiθ
′
i

)
µm(Σh)2. From Assumption 1 (ii), the conclusion

follows.

A.2.7 Proof of Lemma 5

We start with the case k = 1, and then extend the arguments to the case k ≥ 2.

a) When k = 1, let us consider matrix Ã =
1

nT

∑
i

θ2
i H̃iH̃

′
i = (ãt,s) with elements ãt,s =

1

nT

∑
i

Ii,tIi,sθ
2
i hths

=: at,shths. Further, define matrices A = (at,s) and D = diag(ht : t = 1, ..., T ). Then Ã = DAD, and

both Ã and A are positive semidefinite matrices. In the first step of the proof, we show that:

µ2(Ã) ≤M2µ2(A), (26)

48



where M is the constant in Assumption A.5 a).

Let G be a linear subspace of RT and consider the maximization problem max
x∈G:‖x‖=1

x′Ãx = max
x∈G:‖x‖=1

x′DADx.

For x ∈ G such that ‖x‖ = 1, define y = Dx. Then, y ∈ D(G) (the image of space G under the linear map-

ping defined by matrix D) and ‖y‖2 ≤ ‖h‖2∞,T ‖x‖2 = ‖h‖2∞,T ≤M2, where ‖h‖∞,T = max
t=1,...,T

|ht| ≤M

under Assumption A.5 a). Then:

max
x∈G:‖x‖=1

x′Ãx ≤ max
y∈D(G):‖y‖≤M

y′Ay = M2 max
y∈D(G):‖y‖=1

y′Ay. (27)

Suppose that ht 6= 0 for all t = 1, ..., T (an event of probability 1). Then D corresponds to a one-to-

one linear mapping. Let F1 be the eigenspace associated to the largest eigenvalue of matrix A, and define

G = D−1(F⊥1 ), which is a linear space of dimension T − 1. Then, from Inequality (27) we get:

max
x∈D−1(F⊥1 ):‖x‖=1

x′Ãx ≤M2 max
y∈F⊥1 :‖y‖=1

y′Ay. (28)

From the Courant-Fisher min-max theorem (14), we have: µ2(Ã) ≤ max
x∈D−1(F⊥1 ):‖x‖=1

x′Ãx, and, from the

Courant-Fisher formula (16), we have: µ2(A) = max
y∈F⊥1 :‖y‖=1

y′Ay. Then, Inequality (28) implies bound

(26).

Finally, let us bound µ2(A). By writing A =
1

nT
(B + C)(B + C)′, where B = (bt,i) and C = (ct,i)

are T×nmatrices with elements bt,i = θiĪt and ct,i = θi(Ii,t−Īt), respectively, the Weyl inequality (12) im-

plies µ2(A)1/2 ≤ µ2

(
1

nT
BB′

)1/2

+ µ1

(
1

nT
CC ′

)1/2

= µ1

(
1

nT
CC ′

)1/2

, since matrix BB′ has rank

1. Now
1

nT
CC ′ =

1

nT
C̃DC̃ ′, where the elements of the T×nmatrix C̃ are c̃t,i = Ii,t − Īt andD is a n×n

diagonal matrix with elements θ2
i . From Assumption A.6b), we have µ1

(
1

nT
CC ′

)
≤M2µ1 (W ) , where

the elements of matrix W =
1

nT
C̃C̃ ′ are wt,s =

1

nT

∑
i

(
Ii,t − Īt

) (
Ii,s − Īs

)
. Thus, from Assumption

A.8, we get µ2(A) = Op(C
−2
n,T ). From bound (26), the conclusion follows.

b) Let us now consider the case k ≥ 1. Consider the matrix Ã =
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i = (ãt,s) with ele-

ments ãt,s =
1

nT

∑
i

Ii,tIi,sθ
′
ihtθ

′
ihs =

∑
m,l

(
1

nT

∑
i

Ii,tIi,sθi,mθi,l

)
ht,mhs,l =:

∑
m,l

a
(m,l)
t,s ht,mhs,l,where

summation w.r.t. m, l is from 1 to k. Then, we have Ã =
∑

m,lD
(m)A(m,l)D(l) = DAD′, where A(m,l) =

[a
(m,l)
t,s ], D(m) = diag(ht,m : t = 1, ..., T ), the T × (Tk) matrix D is defined by D = [D(1) : ... : D(k)] and

A is (Tk)× (Tk) block matrix with blocks A(m,l).
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Lemma 9 Let

 A B

B′ D

 be a positive definite (or semi-definite) block matrix. Then,

 A B

B′ D

 ≤
2

 A 0

0 D

 , where the inequality is w.r.t. the ranking of symmetric matrices.

By repeated application of Lemma 9, we get: A ≤ 2k−1


A(1,1)

. . .

A(k,k)

 . This implies Ã ≤

2k−1
∑

mD
(m)A(m,m)D(m). Since two symmetric matrices are ranked if, and only if, their corresponding

eigenvalues are ranked, we get:

µk+1(Ã) ≤ 2k−1µk+1

(∑
m

D(m)A(m,m)D(m)

)
. (29)

Moreover, we use the next lemma.

Lemma 10 For k symmetric matrices A1, A2, ... Ak, µk+1(A1 + ...+Ak) ≤ µ2(A1) + ...+ µ2(Ak).

From Inequality (29) and Lemma 10, we get: µk+1(Ã) ≤ 2k−1
∑

m µ2

(
D(m)A(m,m)D(m)

)
. By using

the arguments deployed for the case k = 1 in part a), we have µ2(D(m)A(m,m)D(m)) ≤ M2µ2(A(m,m)).

Therefore, we get µk+1(Ã) ≤ 2k−1M2
∑

m µ2(A(m,m)). As in part a), the Weyl inequality and Assump-

tions A.6b) and A.8 imply µ2(A(m,m) ≤M2µ1(W ) = Op(C
−2
n,T ). Thus µk+1(Ã) = Op(C

−2
n,T ).

A.2.8 Proof of Lemma 6

From the Courant-Fisher max-min Theorem (15), we have:

µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
= max
G:dim(G)=k+1

min
x∈G:‖x‖=1

x′

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
x, (30)

where the maximization is w.r.t. the linear (k + 1)-dimensional subspace G of RT . From Assumption 1 (i),

under modelM2(k) matrix H/
√
T has full column-rank equal to m, w.p.a. 1, with m ≥ k + 1. Thus, for

any linear subspace A of Rm with dimension k + 1, the set GA :=

{
x ∈ RT : x =

1√
T
Ha, a ∈ A

}
is a
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linear subspace of RT of dimension k + 1. We deduce from (30):

µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ max

A:dim(A)=k+1
min

x∈GA:‖x‖=1
x′

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
x

= max
A:dim(A)=k+1

min
a∈A:‖a‖=1

a′

(
1

n

∑
i

H ′H̃i

T
θiθ
′
i

H̃ ′iH

T

)
a

a′
(

1

T
H ′H

)
a

.

By similar arguments as in the proof of Lemma 4, we get the inequality under Assumptions A.10 and A.11:

µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ C max

A:dim(A)=k+1
min

a∈A:‖a‖=1
a′Σh

(
1

n

∑
i

θiθ
′
i

)
Σha,

w.p.a. 1. By the max-min Theorem, the r.h.s. is such that:

max
A:dim(A)=k+1

min
a∈A:‖a‖=1

a′Σh

(
1

n

∑
i

θiθ
′
i

)
Σha = µk+1

(
Σh

(
1

n

∑
i

θiθ
′
i

)
Σh

)
.

Moreover, from inequality (13) for the eigenvalues of product matrices applied twice, we have

µk+1

(
Σh

(
1

n

∑
i

θiθ
′
i

)
Σh

)
≥ µk+1

((
1

n

∑
i

θiθ
′
i

))
µm(Σh)2. Then, from Assumptions 1 (i) and 3,

the conclusion follows.

Appendix 3 Check of Assumption A.3 under block dependence

In this appendix, we verify that Assumption A.3 is satisfied under a block-dependence structure in a serially

i.i.d. framework. Here, εi,t and εj,s are independent if either i and j belong to different blocks, or t 6= s.

There are b = bn blocks of approximate size d = dn, where bd = O(n).

1) Let ω > 0 be such that E[ε2
i,t] ≤ ω2, for all i and t, and define φi,t = ei,t/ω. The scaled φi,t are such

that E[φi,t] = 0, E[φ2
i,t] ≤ 1, and E[|φi,t|r−2] = O(δr−2), for all r ≥ 3, uniformly in i and t. Note that φi,t

is a (nonlinear) transformation of εi,t. Hence, the variables φi,t have the same block dependence structure

as the variables εi,t. Moreover:

1

nk

∑
i1,...,ik

∑
t1,...,tk

|E[ei1,tkei1,t1ei2,t1εi2,t2ei3,t2 · · · eik−1,tk−1
eik,tk−1

eik,tk ]|

≤ ω2k 1

nk

∑
i1,...,ik

∑
t1,...,tk

|E[φi1,tkφi1,t1φi2,t1φi2,t2φi3,t2 · · ·φik−1,tk−1
φik,tk−1

φik,tk ]

=: ω2kIk. (31)
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Let us now bound Ik.

2) For m = 1, ..., k, let Cm denote the set of k-tuples (i1, ..., ik) such that indices i1, ..., ik belong

to m different blocks. Let Nm denote the number of different 2k-tuples (i1, ..., ik), (t1, ..., tk) such that

(i1, ..., ik) ∈ Cm and the expectation E[φi1,tkφi1,t1φi2,t1φi2,t2φi3,t2 · · ·φik−1,tk−1
φik,tk−1

φik,tk ] does not

vanish. Moreover, let Qm be an upper bound for such a non vanishing expectation. Then:

Ik ≤ 1

nk

k∑
m=1

NmQm. (32)

3) We need upper bounds for Nm and Qm, for m = 1, 2, ..., k, and any integer k.

• m = 1: The number of k-tuples (i1, ..., ik) with all indices in the same block is O(bdk). Indeed, we

can select the block among b alternatives, and we have O(dk) possibilities to select the indices within

the block. Then, N1 = O(bdkT k). Moreover, by the Cauchy-Schwarz inequality,

E
[
φi1,tkφi1,t1φi2,t1φi2,t2φi3,t2 · · ·φik−1,tk−1

φik,tk−1
φik,tk

]
≤ sup

i,t
E[|φi,t|2k] = O(δ2k−2).

Thus, Q1 = O(δ2(k−1)).

• m = k: The number of k-tuples (i1, ..., ik) with indices in k different blocks is O(bkdk). For such a

k-tuple:

E
[
φi1,tkφi1,t1φi2,t1φi2,t2 · · ·φik,tk−1

φik,tk
]

= E [φi1,tkφi1,t1 ]E [φi2,t1φi2,t2 ] · · ·E
[
φik,tk−1

φik,tk
]
.

Hence, the indices t1, ... tk must be all equal for this expectation not to vanish. Then,Nk = O(bkdkT )

and Qk ≤ 1. 1

• m = 2: The number N2 is O(b2)×
{
k

2

}
×O(dk)×O(T k−1), where

{
k

2

}
= 2k−1 − 1 is the num-

ber of different ways in which we can divide k objects into two (non-empty) groups (a Stirling number

of the second kind). Indeed, O(b2) is a bound for the number of different ways to select the two dis-

tinct blocks. Then, for each j = 1, ..., k we select whether index ij is in the first or the second block;

1For k > b, there are no k-tuples (i1, ..., ik) with indices in k different blocks, andNk = 0. The upper boundNk = O(bkdkT )

trivially holds also in this case. However, this case will not occur with our choice of sequence k, since (37) implies k = o(b), see

below.
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we have
{
k

2

}
different possibilities. Once we have fixed the blocks, we have O(dk) alternatives to

select the indices. By block dependence, the expectation E[φi1,tkφi1,t1φi2,t1φi2,t2 · · ·φik,tk−1
φik,tk ]

can be splitted into two expectations, and at least a pair of indices in the k-tuple (t1, ..., tk) must be

equal for the expectation not to vanish. Hence the term O(T k−1).

Suppose the expectation E[φi1,tkφi1,t1φi2,t1φi2,t2 · · ·φik,tk−1
φik,tk ] is splitted into two expectations,

with r1 indices ij in the first block, and r2 indices in the second block, r1 + r2 = k. Then,

E[φi1,tkφi1,t1φi2,t1φi2,t2 · · ·φik,tk−1
φik,tk ] = O(δ2(r1−1)) × O(δ2(r1−1)) = O(δ2(k−2)). Hence,

Q2 = O(δ2(k−2)).

• Generic m: We have

Nm = O(bm)×
{
k

m

}
×O(dk)×O(T k−m+1), (33)

Qm = = (δ2(k−m)), (34)

where the Stirling number of the second kind
{
k

m

}
=

1

m!

m∑
j=0

(−1)m−j
(
m

j

)
jk gives the number of

different ways in which we can divide k objects into m (non-empty) groups (see e.g. Rennie and

Dobson (1969)) and
(
k

m

)
is a binomial coefficient.

From bounds (32), (33) and (34), and using d = O(n/b), we get:

Ik ≤ const

nk

k∑
m=1

bmdk
{
k

m

}
T k−m+1δ2(k−m)

= const× T
k∑

m=1

{
k

m

}
(δ2T/b)k−m. (35)

4) We exploit the following upper bound for the Stirling numbers of the second kind (see Rennie and

Dobson (1969), Theorem 3)
{
k

m

}
≤ 1

2

(
k

m

)
mk−m. Then, we get:

k∑
m=1

{
k

m

}
(δ2T/b)k−m ≤ 1

2

k∑
m=1

(
k

m

)
(δ2T/b)k−m ≤ 1

2

k∑
m=0

(
k

m

)
(kδ2T/b)k−m

=
1

2
(1 + kδ2T/b)k, from the binomial theorem. Thus, from (35), we get:

Ik ≤ constT (1 + kδ2T/b)k. (36)

5) Assume that the sequence k = kn ↑ ∞ is such that:

kδ2T/b = o(1), T = O(ek). (37)
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From (36) and (37), we get Ik ≤ (2e)k. Then, from (31):

1

nk

∑
i1,...,ik

∑
t1,...,tk

|E[ei1,tkei1,t1ei2,t1εi2,t2ei3,t2 · · · eik−1,tk−1
eik,tk−1

eik,tk ]| ≤ (2eω)k,

i.e., the bound in Assumption A.3 holds with C = 2eω.

6) Let us now verify the compatibility of the different rates, i.e., that we can choose sequences δ = nβ

and k = c log(n), β, c > 0, such that
√
T/δq−1 = o(1) and they match conditions (37). Let n ≥ T γ̄ and

b ≥ nα, with γ̄ > 1 and α ∈ (0, 1). Condition T = O(ek) is satisfied if c ≥ 1/γ̄. Condition kδ2T/b = o(1)

implies:

β <
1

2
(α− 1/γ̄). (38)

Condition
√
T/δq−1 = o(1) implies:

β >
1

2γ̄(q − 1)
. (39)

Then, there exists a power β > 0 satisfying conditions (38) and (39) if, and only if,
1

2
(α− 1/γ̄) >

1

2γ̄(q − 1)
,

i.e.

γ̄ >
1

α

q

q − 1
. (40)

This condition provides a restriction on the relative growth rate of the cross-sectional and time series di-

mensions in terms of: (i) the strength of cross-sectional dependence, and (ii) the existence of higher-order

moments of the error terms. We can have γ̄ (arbitrarily) close to 1, if cross-sectional dependence is suffi-

ciently weak and the tails of the errors are sufficiently thin. Condition (40) clarifies the link between the

behaviour of expectations of products of error terms and the assumption of a bounded largest eigenvalue

used for example in Chamberlain and Rothschild (1983) p. 1294 for arbitrage pricing theory.
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A diagnostic criterion for approximate factor structure

Patrick Gagliardini, Elisa Ossola and Olivier Scaillet

Appendix 4 Proofs of technical Lemmas

A.4.1 Proof of Lemma Lemma 7

We follow the arguments in the proof of Lemma 2.2 in Yin, Bai, and Krishnaiah (1988). From the conditions

δ ≥ nβ , T/n = o (1) , we have:

P (E 6= Ξ i.o.) ≤ lim
k→∞

∞∑
m=k

P

 ⋃
2m−1≤n<2m

n⋃
i=1

T⋃
t=1

{|εi,t| > δ}


≤ lim

k→∞

∞∑
m=k

P

(
2m⋃
i=1

2m⋃
t=1

{|εi,t| > 2(m−1)β}

)

≤ lim
k→∞

∞∑
m=k

22mP
(
|εi,t| > 2(m−1)β

)
.

Thus, part (i) follows from the summability condition:

∞∑
m=1

22mP
(
|εi,t| > 2(m−1)β

)
<∞. (41)

To prove the summability condition (41). We use the Chebyshev inequality and Assumption A.2. We have

P
(
|εi,t| > 2(m−1)β

)
≤ E[|εi,t|q]/2(m−1)βq ≤M/2(m−1)βq. Therefore, we get:

∞∑
m=1

22mP
(
|εi,t| > 2(m−1)β

)
≤M

∞∑
m=1

22m

2(m−1)βq
= M2βq

∞∑
m=1

1

2(βq−2)m
<∞,

since qβ > 2.

Part (ii) is a straightforward consequence of part (i), since P (Ẽ 6= Ξ̃ i.o.) ≤ P (E 6= Ξ i.o.).
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A.4.2 Proof of Lemma Lemma 8

We follow the arguments in Bai and Yin (1993), p. 1278. We use the von Neumann inequality (von Neumann

(1937)): for any n× T matrices A and B,

tr(A′B) ≤
T∑
k=1

µk(A
′A)1/2µk(B

′B)1/2. (42)

We have:[
µ

1/2
1

(
1

n
Ξ̃Ξ̃′

)
− µ1/2

1

(
1

n
ẼẼ′

)]2

≤
T∑
k=1

[
µ

1/2
k

(
1

n
Ξ̃Ξ̃′

)
− µ1/2

k

(
1

n
ẼẼ′

)]2

= tr

(
1

n
Ξ̃Ξ̃′

)
+ tr

(
1

n
ẼẼ′

)
− 2

T∑
k=1

µ
1/2
k

(
1

n
Ξ̃Ξ̃′

)
µ

1/2
k

(
1

n
ẼẼ′

)
.

The last term in the r.h.s. is bounded by the von Neumann inequality (42):[
µ

1/2
1

(
1

n
Ξ̃Ξ̃′

)
− µ1/2

1

(
1

n
ẼẼ′

)]2

≤ tr

(
1

n
Ξ̃Ξ̃′

)
+ tr

(
1

n
ẼẼ′

)
− 2

1

n
tr
(

Ξ̃Ẽ′
)

=
1

n
tr
[
(Ξ̃− Ẽ)(Ξ̃− Ẽ)′

]
. (43)

The elements of matrix Ξ̃− Ẽ are Ii,tE[εi,t1{|εi,t| ≤ δ}]. By the zero-mean property of the errors εi,t, the

Minkowski inequality and Assumption A.2, we have:

|E[εi,t1{|εi,t| ≤ δ}]| = |E[εi,t1{|εi,t| > δ}]| ≤ E[|εi,t|q]1/qP [|εi,t| > δ]1/q̄,

where 1/q + 1/q̄ = 1, with q defined in Assumption A.2. By the Chebyshev inequality and Assumption

A.2, we get:

E[|εi,t|q]1/qP [|εi,t| > δ]1/q̄ ≤ = E[|εi,t|q]1/q
(
E[|εi,t|q]

δq

)1/q̄

=
E[|εi,t|q]
δq−1

≤ M

δq−1
.

Thus, we get:

1

n
tr
[
(Ξ̃− Ẽ)(Ξ̃− Ẽ)′

]
=

1

n

∑
i

∑
t

Ii,tE[εi,t1{|εi,t| ≤ δ}]2 ≤ T
M2

δ2(q−1)
. (44)

From inequalities (43) and (44), we get |µ1/2
1

(
1

n
Ξ̃Ξ̃′

)
− µ1/2

1

(
1

n
ẼẼ′

)
| ≤
√
T
M

δq−1
. Since the sequence

δ = δn is such that
√
T/δq−1 = o(1), the conclusion follows.
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A.4.3 Proof of Lemma Lemma 9

We have:

2

 A 0

0 D

−
 A B

B′ D

 =

 A −B

−B′ D

 ,

and:

(
x′1 x′2

) A −B

−B′ D

 x1

x2

 =
(
x′1 −x′2

) A B

B′ D

 x1

−x2

 ≥ 0,

for all x = (x′1, x
′
2)′.

A.4.4 Proof of Lemma Lemma 10

By repeated application of the Weyl inequality for eigenvalues (see Appendix 2 (i) ) we have:

µk+1(A1 + ...+Ak) ≤ µk(A1 + ...+Ak−1) + µ2(Ak)

≤ µk−1(A1 + ...+Ak−2) + µ2(Ak−1) + µ2(Ak)

· · ·

≤ µ2(A1) + ...+ µ2(Ak).

Appendix 5 Verification that conditional independence implies

Assumption 2

Let us verify that 2 is true if the latent factors are independen of the lagged stock-specific instruments,

conditional on the observable factors and the lagged common instruments.

We have:

ht ⊥ {Zi,t−1, i = 1, ...} | ft, Zt−1 ⇒ ht ⊥ {x̃i,t−1, i = 1, ...} | ft, Zt−1

⇒ ht ⊥ {x̃i,t−1, i = 1, ...} | xt

⇒ EL[ht|xi,t−1, i = 1, ...] = EL[ht|xt],

where A ⊥ B|C denotes independence of A and B conditional on C.
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Appendix 6 Link with Stock and Watson (2002)

We consider the EM algorithm proposed by Stock and Watson (2002):

˜̃εi,t =


ε̂i,t, if Ii,t = 1,

θ̂iĥt, if Ii,t = 0.

The statistic is ξ = µ1

( ˜̃ε˜̃ε′

nT

)
− 1

nT

∑
i

∑
t

(1− Ii,t)
(
θ̂iĥt

)2
− g (n, T ) . Below we show that ξ is the

difference of the EM criteria under the two models. Comparing the two test statistics gives the following

link:
1

nT

∑
i

∑
t

(1− Ii,t)
(
θ̂iĥt

)2
=

1

nT

∥∥ε̃− ˜̃ε
∥∥2
.

To study the EM algorithm, we work as if the true error terms εi,t are observed when Ii,t = 1. This

error is replaced by the residual ε̂i,t. We consider the jth iteration of the algorithm. Let ζ̃ =
(

Θ̃, H̃
)

denotes the estimates of Θ and H obtained from the (j − 1)th iteration, and let Q
(
ζ, ζ̃
)

= Eζ̃ [L (ζ) |ε] ,

where L (ζ) =
1

nT

∑
i

∑
t

(
ε∗i,t − θiht

)2
, and Eζ̃ [·|ε] denotes conditional expectation given the panel of

observations under parameter ζ̃. We study Q
(
ζ, ζ̃
)

under the two models. Under bothM1 andM2, we

consider a pseudo model for the innovations such that ui,t ∼ i.i.d.
(

0, σ2
i,t

)
• UnderM1: we get

Q0

(
ζ, ζ̃
)

= E

[
1

nT

∑
i

∑
t

(
ε∗i,t
)2 |ε] =

1

nT

∑
i

∑
t

E
[(
ε∗i,t
)2 |ε] .

We have

E
[
ε∗i,t|ε

]
=


εi,t, if Ii,t = 1,

0, if Ii,t = 0,

and V
[
ε∗i,t|ε

]
=


0, if Ii,t = 1,

σ2
i,t, if Ii,t = 0.

and E
[(
ε∗i,t
)2 |ε] = Ii,tε

2
i,t + (1− Ii,t)σ2

i,t. Thus,

Q0 = Q0

(
ζ, ζ̃
)

=
1

nT

∑
i

∑
t

Ii,tε
2
i,t +

1

nT

∑
i

∑
t

(1− Ii,t)σ2
i,t.
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• UnderM2: we get

Q1

(
ζ, ζ̃
)

= Eζ̃

[
1

nT

∑
i

∑
t

(
ε∗i,t − θiht

)2 |ε]

=
1

nT

∑
i

∑
t

Eζ̃

[(
ε∗i,t − θiht

)2 |ε]
=

1

nT

∑
i

∑
t

Eζ̃

[(
ε∗i,t − Eζ̃

[
ε∗i,t|ε

]
+ Eζ̃

[
ε∗i,t|ε

]
− θiht

)2
|ε
]

=
1

nT

∑
i

∑
t

Vζ̃
[
ε∗i,t|ε

]
+

1

nT

∑
i

∑
t

(
Eζ̃
[
ε∗i,t|ε

]
− θiht

)2
.

We have

ε̃i,t := Eζ̃
[
ε∗i,t|ε

]
=


εi,t, if Ii,t = 1,

θ̃ih̃t, if Ii,t = 0,

and V
[
ε∗i,t|ε

]
=


0, if Ii,t = 1,

σ2
i,t, if Ii,t = 0.

Thus, Q1

(
ζ, ζ̃
)

=
1

nT

∑
i

∑
t

(
˜̃εi,t − θiht

)2
+

1

nT

∑
i

∑
t

(1− Ii,t)σ2
i,t, and the values of ζ that

minimize Q1

(
ζ, ζ̃
)

can be calculated by min
ζ

1

nT

∑
i

∑
t

(
˜̃εi,t − θiht

)2
. This minimization problem

reduces to the usual PCA on data ˜̃ε: min
ζ

1

nT

∑
i

∑
t

(
˜̃εi,t − θiht

)2
=

1

nT

∑
i

∑
t

˜̃ε2
i,t − µ1

(
ε̃ε̃′

nT

)
.

Therefore, at convergence with ζ̂ = ζ̃, we have

Q1

(
ζ̂, ζ̃
)

=
1

nT

∑
i

∑
t

˜̃ε2
i,t − µ1

(
ε̃ε̃′

nT

)
+

1

nT

∑
i

∑
t

(1− Ii,t)σ2
i,t

=
1

nT

∑
i

∑
t

Ii,tε
2
i,t +

1

nT

∑
i

∑
t

(1− Ii,t)
(
θ̂iĥt

)2

−µ1

( ˜̃ε˜̃ε′

nT

)
+

1

nT

∑
i

∑
t

(1− Ii,t)σ2
i,t.

Finally, the difference of the two EM criteria is

Q0 −Q1

(
ζ̂, ζ̂
)

= µ1

( ˜̃ε˜̃ε′

nT

)
− 1

nT

∑
i

∑
t

(1− Ii,t)
(
θ̂iĥt

)2
,

which gives the interpretation of the test statistic.
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Appendix 7 Monte-Carlo experiments

In this section, we perform simulation exercises on balanced and unbalanced panels in order to study the

properties of our diagnostic criterion. We pay particular attention to the probability of diagnosing the correct

model and its interaction with n and T in finite samples. The simulation design mimics the empirical features

of our data. The balanced case serves as benchmark to understand when T and n are sufficiently large to

apply theory. The unbalanced case shows that we can exploit the guidelines found for the balanced case

when we substitute the average of the sample sizes of the individual assets, i.e., a kind of operative sample

size, for T . To summarize our Monte Carlo findings, we do not face any finite sample distortions for the

selection rule underM1 for most combinations of n and T , since we get estimates of Pr(ξ < 0|M1) close

to 1, and underM2 when n is larger than 3, 000, since we get estimates of Pr(ξ > 0|M2) close to 1. In

light of these results, we do not expect to face significant diagnostic bias in our empirical application.

A.7.1 Balanced panel

UnderM1, we simulate S datasets of excess returns from a one-factor model (CAPM). A simulated dataset

includes: a vector of factor loadings bs ∈ Rn, and a variance-covariance matrix Ωs ∈ Rn×n. At each

simulation s = 1, ..., S, we randomly draw n ≤ 10, 410 assets from the sample of our empirical analysis

that comprises 10,410 individual stocks with Ti ≥ 12. The assets are listed by industrial sectors. We use

the classification proposed by Ferson and Harvey (1999). The vector bs is composed by the estimated factor

loadings for the n randomly chosen assets. At each simulation, we build a block diagonal matrix Ωs with

blocks matching industrial sectors. The n elements of the main diagonal of Ωs correspond to the variances of

the estimated residuals of the individual assets. The off-diagonal elements of Ωs are covariances computed

by fixing correlations within block equal to the average correlation of the industrial sector computed from

the 10, 410× 10, 410 thresholded variance-covariance matrix of estimated residuals. Hence we get a setting

in line with the weak block dependence case shown in GOS to exhibit an approximate factor structure.

Let us define Rsi,t the simulated excess returns of asset i at time t as follows

Rsi,t = bsift + εsi,t, for i = 1, ..., n, and t = 1, ..., T, (45)

where ft is the market excess returns and εsi,t is the error term. In Equation (45), we impose the intercepts to
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be zero to satisfy the no-arbitrage restrictions for tradable factors. The n×1 error vectors εst are independent

across time and Gaussian with mean zero and variance-covariance matrix Ωs
B . We apply our diagnostic

criterion on every simulated dataset of excess returns. Since the panel is balanced, we do not need to fix

χ2,T . We only use χ1,T = 15. However, this trimming level does not affect the number of assets n in the

simulations.

In order to study the properties underM2, we generate data under a three-factor alternative hypothesis,

i.e., two omitted factors, and then we estimate a one-factor model to get the residuals. We build the simulated

dataset as above except that we use estimated loadings, variance, and covariances for the Fama-French model

on the CRSP dataset instead of the CAPM estimates.

In order to understand how our diagnostic criterion works for different finite samples, we perform ex-

ercises combining different values of the cross-sectional dimension n and the time dimension T . Table 7

reports estimates of Pr(ξ < 0|M1) and Pr(ξ > 0|M2), i.e., selection probabilities of the correct model

estimated from the simulated datasets.
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Table 7: Selection probabilities, balanced case

T 150 500

n 150 500 1,000 1,500 150 500 1,000 1,500

Pr(ξ1 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ2 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ3 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌1 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌2 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌3 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ1 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ2 > 0|M2) 0.9580 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ3 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌1 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌2 > 0|M2) 0.9640 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌3 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

A.7.2 Unbalanced panel

Let us repeat similar exercises as in the previous section, but with unbalanced characteristics for the simu-

lated datasets. We introduce these characteristics through a matrix of observability indicators Is ∈ Rn×T .

The matrix gathers the indicator vectors for the n randomly chosen assets. We fix the maximal sample size

T = 528 as in the empirical application.

In the unbalanced setting, the excess returns Rsi,t of asset i at time t underM1 is:

Rsi,t = bsift + εsi,t, if Isi,t = 1, for i = 1, ..., n, and t = 1, ..., T, (46)

where Isi,t is the observability indicator of asset i at time t in simulation s. Under M2, we again replace

CAPM estimates with estimates for the Fama-French model to get a three-factor alternative.
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In Tables 8 and 9, we provide the operative cross-sectional and time-series sample sizes in the Monte-

Carlo repetitions for trimming χ1,T = 15 and four different levels of trimming χ2,T . More precisely, in Table

8, we report the average number n̄χ of retained assets across simulations, as well as the minimum min(nχ)

and the maximum max(nχ) across simulations (rounded). For the lowest level of trimming χ2,T = T/12,

all assets are kept in all simulations, while for the level of trimming χ2,T = T/60 on average we keep

about two thirds of the assets. In Table 9, we report the average across assets of the T̄i, that are the average

time-series size Ti for asset i across simulations, as well as the min and the max of the T̄i. Since the

distribution of Ti for an asset i is right-skewed, we also report the average across assets of the median Ti.

For trimming level χ2,T = T/60, the average mean time-series size is about 180 months, while the average

median time-series size is 140 months.

Table 10 reports estimates of Pr(ξ < 0|M1) and Pr(ξ > 0|M2). These probabilities are close to 1 for

most combinations of cross-sectional sample size n and trimming level χ2,T . The detection probability for

modelM2 is low only for trimming level χ2,T = T/240 and cross-sectional sample sizes n = 500, 1000. In

fact, in Table 8, we see that the operative sample size is too small in such cases (below 100 in all simulations).

For n = 3, 000, or larger, the probabilities Pr(ξ < 0|M1) and Pr(ξ > 0|M2) are 1 for all trimming levels.

Table 8: Operative cross-sectional sample size

trimming level χ2,T = T
12

χ2,T = T
60

n 500 1,000 3,000 6,000 9,000 500 1,000 3,000 6,000 9,000

n̄χ 500 1,000 3,000 6,000 9,000 326 651 1,955 3,905 5,857

min (nχ) 500 1,000 3,000 6,000 9,000 299 613 1,890 3,820 5,823

max (nχ) 500 1,000 3,000 6,000 9,000 359 694 2,018 3,977 5,903

trimming level χ2,T = T
120

χ2,T = T
240

n 500 1,000 3,000 6,000 9,000 500 1,000 3,000 6,000 9,000

n̄χ 194 388 1,161 2,325 3,488 65 128 386 772 1,158

min (nχ) 162 348 1,080 2,245 3,437 44 97 338 712 1,123

max (nχ) 223 434 1,223 2,398 3,533 88 162 442 826 1,185
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Table 9: Operative time-series sample size

trimming level χ2,T = T
12

χ2,T = T
60

χ2,T = T
120

χ2,T = T
240

mean
(
T̄i
)

126 175 235 365

min
(
T̄i
)

113 158 216 331

max
(
T̄i
)

141 190 260 400

mean(median (Ti)) 88 141 198 344
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Table 10: Selection probabilities, unbalanced case

trimming level χ2,T = T
12

χ2,T = T
60

n 500 1,000 3,000 6,000 9,000 500 1,000 3,000 6,000 9,000

Pr(ξ1 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ2 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ3 < 0|M1) 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌1 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌2 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌3 < 0|M1) 0.0020 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ1 > 0|M2) 0.9520 1.0000 1.0000 1.0000 1.0000 0.9960 1.0000 1.0000 1.0000 1.0000

Pr(ξ2 > 0|M2) 0.6180 0.9980 1.0000 1.0000 1.0000 0.9380 1.0000 1.0000 1.0000 1.0000

Pr(ξ3 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌1 > 0|M2) 0.9480 1.0000 1.0000 1.0000 1.0000 0.9960 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌2 > 0|M2) 0.6140 0.9980 1.0000 1.0000 1.0000 0.9360 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌3 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

trimming level χ2,T = T
120

χ2,T = T
240

n 500 1,000 3,000 6,000 9,000 500 1,000 3,000 6,000 9,000

Pr(ξ1 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0040 1.0000 1.0000 1.0000

Pr(ξ2 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.1140 1.0000 1.0000 1.0000

Pr(ξ3 < 0|M1) 0.0000 0.9660 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000

Pr(ξ̌1 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0040 1.0000 1.0000 1.0000

Pr(ξ̌2 < 0|M1) 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.1480 1.0000 1.0000 1.0000

Pr(ξ̌3 < 0|M1) 0.0000 0.9800 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000

Pr(ξ1 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ2 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ3 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌1 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌2 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pr(ξ̌3 > 0|M2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000


