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Abstract. We introduce an empirical framework for models of matching with imper-

fectly transferable utility and unobserved heterogeneity in tastes. Our framework allows

us to characterize matching equilibrium in a flexible way that includes as special cases the

classical fully- and non-transferable utility models, collective models, and settings with

taxes on transfers, deadweight losses, and risk aversion. We allow for the introduction of

a very general class of unobserved heterogeneity on agents’ preferences. Under minimal

assumptions, we show existence and uniqueness of equilibrium. We provide two algorithms

to compute the equilibria in our model. The first algorithm operates under any structure

of heterogeneity in preferences. The second algorithm is more efficient, but applies only

in the case when random utilities are logit. We show that the log-likelihood of the model

has a particularly simple expression and we compute its derivatives. As an application, we

build a model of marriage with preferences over the partner type and private consumption.

We estimate our model using the 2013 “Living Costs and Food Survey” database.
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1. Introduction

The field of Family Economics has two principal approaches to modeling and under-

standing marriage patterns: matching models emphasize market-level forces and take het-

erogeneous tastes over partners as primitives; collective models, by contrast, focus on the

impact of intra-household bargaining. Economists’ two approaches to marriage have not

themselves been “married,” however, because collective models necessarily include frictions

of a form absent from classical matching frameworks. In this paper, we develop an Imper-

fectly Transferable Utility (ITU) matching model that allows us to unify marriage matching

with the collective framework. Our setting moreover allows for the introduction of a very

general class of unobserved heterogeneity on agents’ preferences, under which existence and

uniqueness of equilibrium is typically guaranteed. We provide two algorithms to compute

the equilibria in our model, and then demonstrate a simple application in which we use the

2013 “Living Costs and Food Survey” database to estimate the extent to which frictions

appear to affect intra-household transfers.

Naturally, matching models have been extensively used to model the marriage market, in

which men and women with heterogenous tastes may form pairs; this approach, pioneered

in Economics by Becker (1973, 1991) and Shapley and Shubik (1972), focuses mainly on

matching patterns and the sharing of the surplus in a Transferable Utility (TU) setting.

While appealing from a theoretical point of view, TU matching models suffer from several

limitations. Indeed, TU models rely on the assumption that there is a numéraire good

which is freely transferable across partners. Consequently, a man and a woman who match

and generate a joint surplus Φ may decide on splitting this surplus between the utility

of the man u and the utility of the woman v in any way such that u + v ≤ Φ. In this

case, the efficient frontier in the (u, v)-space is simply a straight line of slope −1. However,

assuming this particular shape for the efficient frontier may be inappropriate—one can

think of many cases in which there are frictions that partially impede the transfer of utility

between matched partners. This possibility arises naturally in marriage markets, where

the transfers between partners might take the form of favor exchange (rather than cash),

and the cost of a favor to one partner may not exactly equal the benefit to the other. An
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extreme alternative would be to assume Nontransferable Utility (NTU) (Gale and Shapley,

1962), in which there is no possibility of compensating transfer between partners. However,

although NTU matching seems well-suited to specific examples such as school choice or

organ exchanges, where transfers are often explicitly ruled out, it is not, in general, the

most realistic assumption.

The collective model approach of Chiappori (1992), which focuses on intra-household

bargaining over a potentially complex feasible utility set, cannot generally be expressed in

terms of TU matching models, because inefficiencies in the bargaining process create transfer

frictions.1 Consequently, the matching and collective approaches to modeling marriage have

not yet been combined into a single empirical framework. Choo and Siow (2006) observed

this issue explicitly, stating that “[their] model of marriage matching should be integrated

with models of intrahousehold allocations”—an integration which, in the ten years since

Choo and Siow (2006) were writing, was not been achieved prior to our work.

In our Imperfectly Transferable Utility framework, partners match as in a classical mar-

riage model, but utility transfers within matches are not necessarily additive. As already

noted, this allows us to embed TU, NTU, and collective approaches to the marriage market.

Our framework also makes sense for thinking about labor markets—because of taxation, an

employer must pay more in wages than its employees actually receive (Jaffe and Kominers,

2014). In contrast with prior ITU matching models, our setting allows for a compact char-

acterization of equilibrium as a set of nonlinear equations, as well as efficient computational

approaches and clean comparative statics.

We prove existence and uniqueness of the equilibrium outcome in our ITU model with

general heterogeneity in tastes. In the case when the heterogeneity are logit, we show how

maximum likelihood estimation of our model can be performed in a very straightforward

manner, which we illustrate by estimating a simple collective model of matching in a market

with marital preferences and private consumption.

1There are exceptions—see, e.g., the model described in Bowning et al. (2014), pp. 83 and 118, in which

one private good is assumed to provide the same marginal utility to both members of the household, and

thus can be used to transfer utility without friction.
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Relation to the Literature. The theory of ITU matching has been studied by a number of

authors: Crawford and Knoer (1981), Kelso and Crawford (1982), and Hatfield and Milgrom

(2005) find conditions and algorithms for determining competitive equilibrium outcomes in

ITU matching markets, and analyze the structure of the sets of equilibria. Kaneko (1982),

Quinzii (1984), Alkan (1989), Alkan and Gale (1990), Gale (1984), and Demange and Gale

(1985) provide results on the existence of equilibrium and study properties of the core.

Pycia (2012) considers a general many-to-one matching setting with imperfectly transferable

utility and characterizes the sharing rules that lead to pairwise alignment of preferences and

existence of an equilibrium. Jaffe and Kominers (2014) study the problem of matching with

linear and lump-sum taxes and provide comparative statics results. Legros and Newman

(2007) find conditions under which positive assortativeness arises in ITU models; they apply

these findings to problems of matching under uncertainty with risk aversion. Chade and

Eeckhout (2014) extended the work of Legros and Newman (2007) to the case when agents

have different risky endowments. Nöldeke and Samuelson (2015) connect ITU matching

with abstract notions of convexity. Chiappori (2012) provides an illustrative example of

how collective models naturally embed into ITU matching models.

However, the literature on the structural estimation of matching models has so far been

restricted to the TU and NTU cases only. In the wake of the seminal work by Choo and

Siow (2006), many papers have exploited heterogeneity in preferences for identification in

the TU case (see Fox (2010), Chiappori, Oreffice and Quintana-Domeque (2012), Galichon

and Salanié (2014), Chiappori, Salanié, and Weiss (2014), and Dupuy and Galichon (2015)).

Choo and Seitz (2013) present one of the first attempts to reconcile the matching and the

collective approaches, albeit still in the TU case. Other research in the collective model

literature have endogenize the sharing rule, but mostly in a TU framework (see Chapter

8 and 9 in the textbook by Browning and al. (2014) for a review, and references therein,

e.g. Chiappori and al. (2009) and Iyigun and Walsh (2007)). Cherchye et al. (2015) derive

Afriat-style inequalities that result from ITU stability in collective models. Similar strategies

have been successfully applied in the NTU case (see Dagsvik (2000), Menzel (2015), Hitsch,

Hortaçsu, and Ariely (2010), and Agarwal (2015)). To the best of our knowledge, our work

is the first to provide an empirical framework for general ITU models with random utility.
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Organization of the Paper. The remainder of the paper is organized as follows. Section 2

provides an introduction to the ITU framework building off the classic TU case. Section 3

formally describes the model we consider, introduces important technical machinery used

throughout, and provides a number of examples. Section 4 introduces heterogeneity in

tastes, defines the notion of aggregate equilibrium, and relates it with the classical notion

of individual stability. Then, Section 5 determines the equations characterizing the aggre-

gate equilibrium, shows existence and uniqueness results, and provides an algorithm to find

equilibria in our framework. Section 6 deals with the important special case of logit hetero-

geneity, providing a more efficient algorithm for find equilibria in that case, and discussing

maximum likelihood estimation. Section 7 uses our tools to estimate a matching model

of marriage with consumption and assortativeness in education. Section 8 concludes. All

proofs are presented in the Appendix.

2. Prelude: From TU matching to ITU matching

We start with a brief overview of the structure of our model, which we hope will be

particularly useful for readers who have already some degree of familiarity with TU matching

models. To guide intuition, we start with the classical TU model, and show how it extends

to the more general ITU model. Although less popular than the more restrictive TU and

NTU models, ITU models have been studied in various forms in the literature (see, e.g.,

Alkan (1989), Chapter 9 in Roth and Sotomayor (1990), and Hatfield and Milgrom (2005)).

However, unlike prior work, our presentation will introduce ITU matching in a form that is

general enough to embed the TU and the NTU models, while still being amenable to the

introduction of unobserved heterogeneity in preferences.

2.1. The TU matching model. We first recall the basics of the Transferable Utility

model. In this model, it is assumed that there are sets I and J of men and women. If a

man i ∈ I and a woman j ∈ J decide to match, they respectively enjoy utilities αij and

γij , where α and γ are primitives of the model.

If i and j match, the man and the woman also may agree on a transfer wij (determined

at equilibrium) from the woman to the man (positive or negative), so that their utilities
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after transfer are respectively αij +wij and γij −wij . If i or j decide to remain unmatched,

they enjoy respective payoffs Ui0 and V0j , which are exogenous reservation utilities.

Let µij be the “matching” (also determined at equilibrium), which is equal to 1 if i and

j are matched, and 0 otherwise. Hence, a matching should satisfy the feasibility conditions

(F)


µij ∈ {0, 1}∑

j∈J µij ≤ 1∑
i∈I µij ≤ 1,

Let ui and vj be the indirect payoffs of man i and woman j, respectively. These

quantities are determined at equilibrium, and one has ui = maxj∈J {αij + wij ,Ui0} and

vj = maxi∈I
{
γij − wij ,V0j

}
, which implies in particular that for any i and j, the inequali-

ties ui ≥ αij +wij and vj ≥ γij −wij jointly hold, implying that ui + vj ≥ αij + γij should

hold for every i ∈ I and j ∈ J . Likewise, ui ≥ Ui0 and vj ≥ V0j should hold for all i and j.

Thus, the equilibrium payoffs should satisfy the stability conditions

(S)


ui + vj ≥ αij + γij

ui ≥ Ui0
vj ≥ V0j .

Finally, we relate the equilibrium matching µ and the equilibrium payoffs (u, v). If

µij > 0, then µij = 1 and i and j are matched, so the first line of (S) should hold as an

equality. On the contrary, if
∑

j µij < 1, then
∑

j µij = 0, so i is unmatched and ui = Ui0.

Similar conditions hold for j. To summarize, the equilibrium quantities are related by the

following set of complementary slackness conditions:

(CS)


µij > 0 =⇒ ui + vj = αij + γij∑
µij < 1 =⇒ ui = Ui0∑
µij < 1 =⇒ vj = V0j

.

Following the classical definition, (µ, u, v) is an equilibrium outcome in the TU matching

model if the feasibility conditions (F), stability conditions (S), and complementary slack-

ness conditions (CS) are met. The characterization of the solutions to that problem in

terms of Linear Programming are well known (see, e.g., Roth and Sotomayor, Chapter 8).
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The equilibrium outcomes (µ, u, v) are such that µ maximizes the utilitarian social welfare∑
ij µij

(
αij + γij − Ui0 − V0j

)
with respect to µ ≥ 0 subject to

∑
j µij ≤ 1 and

∑
i µij ≤ 1,

which is the primal problem; and (u, v) are the solution of the corresponding dual problem,

hence they minimize
∑

i ui +
∑

j vj subject to ui + vj ≥ αij + γij , and ui ≥ Ui0, vj ≥ V0j .

However, as we see in Section 3.4 below, this interpretation in terms of optimality is very

specific to the present TU case.

2.2. The ITU matching model. The ITU matching model is a natural generalization of

the TU model. If man i ∈ I and woman j ∈ J decide to match with transfer wij , their

utilities after transfer are respectively Uij (wij) and Vij (wij), where Uij (.) is a continuous

and nondecreasing function and Vij (.) is a continuous and nonincreasing function. (Note

that in the specialization to the TU case, Uij (wij) = αij + wij and Vij (wij) = γij − wij).

If i or j decide to remain unmatched, they enjoy respective payoffs αi0 ∈ R and γ0j ∈ R,

which are exogenous reservation utilities

As before, the matching µ has term µij equal to 1 if i and j are matched, 0 otherwise;

clearly, the set of conditions (F) defining feasible matchings is unchanged.

At equilibrium, the indirect payoffs are now given by ui = maxj∈J {Uij (wij) ,Ui0} and

vj = maxi∈I {Vij (wij) ,V0j}, which implies in particular that for any i and j, the inequalities

ui ≥ Uij (wij) and vj ≥ Vij (wij) jointly hold. However, in contrast to the TU case, adding

up the utility inequalities does not cancel out the wij term. As a way out of this problem,

we show in Section 3 that there exists a function Dij (u, v), called distance function, which

is increasing in u and v and has Dij (Uij (w) ,Vij (w)) = 0 for all w. Then ui ≥ Uij (wij)

and vj ≥ Vij (wij) jointly imply that Dij (ui, vj) ≥ Dij (Uij (w) ,Vij (w)) = 0. Hence the

equilibrium payoffs in an ITU model must satisfy the nonlinear stability conditions

(S’)


Dij (ui, vj) ≥ 0

ui ≥ Ui0
vj ≥ V0j ,
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and the nonlinear complementary slackness conditions

(CS’)


µij > 0 =⇒ Dij (ui, vj) = 0∑
µij < 1 =⇒ ui = Ui0∑
µij < 1 =⇒ vj = V0j .

A triple (µ, u, v) is an equilibrium outcome in the matching model with Imperfectly

Transferable Utility whenever conditions (F), (S’) and (CS’) are met.

3. Framework

We now give a rigorous description of the framework introduced in the previous section.

We consider a population of men indexed by i ∈ I and women indexed by j ∈ J who may

decide either to remain single or to form heterosexual pairs. It will be assumed that if i and

j match, then they bargain over utility outcomes (ui, vj) lying within a feasible set Fij , the

structure of which is described in Section 3.1. If i and j decide to remain single, then they

receive their respective reservation utilities Ui0 and V0j .

An outcome (formally defined in Section 3.2) is comprised of

• a matching µij ∈ {0, 1}, which is a binary variable equal to 1 if and only if i and j

are matched, and

• the payoffs ui and vj , which are in Fij if i and j are matched, and are equal to the

reservation utilities when i and j are unmatched.

Our concept of equilibrium, which we formalize in Definition 4 of Section 3.2, is based

on pairwise stability : an outcome (µ, u, v) is an equilibrium outcome if there is no blocking

coalition, i.e., if all the payoffs are above reservation value, and if there is no pair (i, j) of

individuals who would be able to reach a feasible pair of utilities dominating ui and vj .

We give a number of examples cases of our model in Section 3.3, including the classic

TU and NTU models, as well as several intermediate cases of interest.

3.1. The feasible bargaining sets. If man i ∈ I and a woman j ∈ J are matched, then

they bargain over a set of feasible utilities (ui, vj) ∈ Fij . We begin by describing the pairwise

bargaining sets Fij ; then, we provide two different—but equivalent—useful descriptions.
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First, we represent the feasible sets “implicitly,” by describing the efficient frontier as the

set of zeros of a function, {(ui, vj) ∈ R2 : Dij (ui, vj) = 0}. Next, we represent the feasible

sets “explicitly,” by their frontiers as the range of a map: {(Uij (wij) ,Vij (wij)) : wij ∈ R}.

3.1.1. Assumptions on the feasible sets. The following natural assumptions on the geometry

of the sets Fij will be extensively employed throughout the paper.

Definition 1. The set Fij is a proper bargaining set if the four following conditions are

met:

(i) Fij is closed.

(ii) Fij is lower comprehensive: if (u, v) ∈ Fij , then (u′, v′) ∈ Fij provided u′ ≤ u and

v′ ≤ v.

(iii) Fij is scarce: Assume un → +∞ and vn bounded by below then for N large enough

(un, vn) does not belong in F for n ≥ N ; similarly un bounded by below and vn → +∞

(iv) Fij is provisive: Assume un → −∞ and vn → −∞, then for N large enough (un, vn)

belongs in Fij for n ≥ N .

Some comments on the preceding requirements are useful at this stage. The closedness

of Fij is classically needed for efficient allocations to exist. The fact that Fij is lower

comprehensive is equivalent to free disposal; in particular, it rules out the case in which Fij
has finite cardinality. The scarcity property rules out the possibility that both partners can

obtain arbitrarily large payoffs. The fact that Fij is provisive means that if both partner’s

demands are low enough, they can always be fullfilled; in particular, it implies that Fij is

nonempty.

3.1.2. Implicit representation of the efficient frontier. We now provide an equivalent repre-

sentation of the sets Fij which is very useful for the later part of the analysis. This consists

in representing Fij as the lower level set of a function Dij , which we call distance function

because Dij(u, v) measures the (signed) distance of (u, v) from the efficient frontier of Fij ,

when running along the diagonal. See Figure 1. Dij(u, v) is positive if (u, v) is outside of
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vj

ui

Fij

D(ui, vj) < 0

D(u′i, v
′

j) > 0

(ui, vj)

(u′i, v
′

j)

Student Version of MATLAB

Figure 1. Bargaining set Fij and the transfer function.

the feasible set, and negative if (u, v) is in the interior of the feasible set; its value is 0 at

the frontier. Formally:

Definition 2. The distance function DFij : R2 → R of a proper bargaining set Fij is

defined by

DFij (u, v) = min {z ∈ R : (u− z, v − z) ∈ Fij} . (3.1)

The function DFij defined by (3.1) exists: indeed, the set {z ∈ R : (u− z, v − z) ∈ Fij}

is closed because Fij is closed, bounded above because Fij is scarce, and nonempty be-

cause Fij is provisive; hence the minimum in (3.1) exists. By the definition of DFij , one

has Fij=
{

(u, v) ∈ R2 : DFij (u, v) ≤ 0
}

, and DFij (u, v) = 0 if and only if (u, v) lies on

the frontier of Fij . The quantity DFij (u, v) is thus interpreted as the distance (posi-

tive or negative) between (u, v) and the frontier of Fij along the diagonal. In particular,

DFij (a+ u, a+ v) = a + DFij (u, v) for any reals a, u and v. By the same token, if DFij

is differentiable at (u, v), then ∂uDFij + ∂vDFij = 1. The following lemma summarizes

important properties of DFij .
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Lemma 1. Let Fij be a proper bargaining set. Then:

(i) Fij=
{

(u, v) ∈ R2 : DFij (u, v) ≤ 0
}

.

(ii) For every (u, v) ∈ R2, DFij (u, v) ∈ (−∞,+∞).

(iii) DFij is �-isotone:

(u, v) ≤
(
u′, v′

)
implies DFij (u, v) ≤ DFij

(
u′, v′

)
, and

u < u′ and v < v′ implies DFij (u, v) < DFij
(
u′, v′

)
.

(iv) DFij is continuous.

(v) DFij (a+ u, a+ v) = a+DFij (u, v).

3.1.3. Explicit representation of the efficient frontier. We now give an explicit parametriza-

tion of the efficient frontier.

Given two utilities (u, v) such that DFij (u, v) = 0, let us introduce the wedge w as the

difference w = u− v.

Definition 3. Define UFij (w) and VFij (w) as the values of u and v such that

DFij (u, v) = 0 and w = u− v. (3.2)

See figure 2. This definition (and the existence of the functions UFij and VFij ) is motivated

by the following result.

Lemma 2. Let Fij be a proper bargaining set. There are two 1-Lipschitz functions UFij
and VFij defined on a nonempty open interval (

¯
wij , w̄ij) such that UFij is nondecreasing and

VFij is nonincreasing, and such that the set of (u, v) such that DFij (u, v) = 0 is given by

{(UFij (w) ,VFij (w)) : w ∈ (
¯
wij , w̄ij)}. Further, UFij (w) and VFij (w) are the unique values

of u and v solving of (3.2), and they are given by

UFij (w) = −DFij (0,−w) , and VFij (w) = −DFij (w, 0) . (3.3)

Note that whenever u and v exist, we have U ′Fij (w) = ∂vDFij (0,−w) and V ′Fij (w) =

−∂uDFij (w, 0). Further, as UFij (w) is increasing and 1-Lipschitz, w̄ij is finite if and only if
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Figure 2. Explicit representation of the efficient frontier

the maximal utility u obtainable by the man for some feasible (u, v) ∈ Fij is finite. Similarly,

¯
wij is finite if and only if the maximal utility v obtainable by the woman for some feasible

(u, v) ∈ Fij is finite.

3.2. Basic model. Having established the structure of the feasible bargains among matched

couples, we describe the matching process. Men and women may form (heterosexual) pairs

or decide to remain unmatched. If i (resp. j) decides to remain unmatched, he (resp. she)

gets reservation utility Ui0 (resp. V0j). If i and j decide to match, they bargain over a set

Fij of feasible payoffs (u, v), where Fij is a proper bargaining set, whose associated distance

function is denoted Dij := DFij and whose functions UFij and VFij are respectively denoted

Uij and Fij .

We denote by ui (resp. vj) the (equilibrium) outcome utility of man i (resp. woman

j). At equilibrium, we must have ui ≥ Ui0 and vj ≥ V0j as it is always possible to leave

an arrangement which yields less than the reservation utility. Similarly, at equilibrium,

DF (ui, vj) ≥ 0 must hold for every i and j; indeed, if this were not the case, there would

be a pair (i, j) such that (ui, vj) is in the strict interior of the feasible set Fij , so that there

would exist payoffs u′ ≥ ui and v′ ≥ vj with one strict inequality and (u′, v′) ∈ Fij , which

would imply that i and j can be better off by matching together. Let µij be indicator



COSTLY CONCESSIONS 13

variable which is equal to 1 if i and j are matched, 0 otherwise. If µij = 1, we require that

(ui, vj) be feasible, that is Dij (ui, vj) ≤ 0, hence equality should hold.

Combining the conditions just described, we are ready to define equilibrium in our ITU

matching model. We call this equilibrium “individual” as opposed to the concept of “ag-

gregate” equilibrium defined later in Section 4.

Definition 4 (Individual Equilibrium). The triple
(
µij , ui, vj

)
i∈I,j∈J is an individual equi-

librium outcome if the following three conditions are met:

(i) µij ∈ {0, 1},
∑

j µij ≤ 1 and
∑

i µij ≤ 1;

(ii) for all i and j, Dij (ui, vj) ≥ 0, with equality if µij = 1;

(iii) ui ≥ Ui0 and vj ≥ V0j , with equality respectively if
∑

j µij = 0, and if
∑

i µij = 0.

The vector
(
µij
)
i∈I,j∈J an individual equilibrium matching if and only if there exists a

pair of vectors (ui, vj)i∈I,j∈J such that (µ, u, v) is an individual equilibrium outcome.

As we detail in the next section, our setting embeds both the standard TU matching

model, the standard NTU model, and many others.

3.3. Example Specifications. Now, we provide examples of specifications of frontiers

F (or equivalently, distance functions D) that illustrate the wide array of applications

encompassed by our framework.

3.3.1. Matching with Transferable Utility (TU). The classical TU matching model has been

widely used in Economics—it is the cornerstone of Becker’s marriage model, which has

found a vast array of applications in labor markets, marriage markets, and housing markets

(Koopmans and Beckmann, 1957; Shapley and Shubik, 1971; Becker, 1973). To recover the

TU model in our framework, we take

Fij =
{

(u, v) ∈ R2 : u+ v ≤ Φij

}
,

that is, the partners can additively share the quantity Φij , which is interpreted as a joint

surplus (see Figure 3). The Pareto efficient payoffs will be such that u + v = Φij . In this

setting, utility is perfectly transferable: if one partner gives up one unit of utility, the other
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vj

ui

Fij

Student Version of MATLAB

Figure 3. Bargaining set Fij in the TU case.

partner fully appropriates it. It is easily verified that in this case,

Dij (u, v) =
u+ v − Φij

2
, (3.4)

Uij (w) =
Φij+w

2 , and Vij (w) =
Φij−w

2 .

3.3.2. Matching with Non-Transferable Utility (NTU). Equally important is the NTU match-

ing model of Gale and Shapley (1962), which has frequently been used to model school

choice markets, organ exchange matching, and centralized job assignment. In this case,

utility is not transferable at all, and the maximum utility that each partner can obtain is

fixed and does not depend on what the other partner gets. Like the TU model, we can

embed the NTU model in our ITU framework: in this case,

Fij =
{

(u, v) ∈ R2 : u ≤ αij , v ≤ γij
}
.

which means that the only efficient pair of payoffs has u = αij and v = γij (see Figure 4).

It is easily checked that

Dij (u, v) = max{u− αij , v − γij}. (3.5)
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Figure 4. Bargaining set Fij in the NTU case.

In this case, the Pareto efficient matchings in the sense of Definition 4 coincide with

NTU-stable matchings under the classical definition. Indeed, condition (3) of that definition

implies that max
{
ui − αij , vj − γij

}
< 0 cannot hold, which is equivalent to the absence

of a blocking pair in the classical definition, while condition (2) expresses that there is no

blocking individual. Further, condition (4) and Pareto efficiency imply that if i is matched

to j, then ui = αij and vj = γij . We have Uij (w) = min
{
αij , w + γij

}
and Vij (w) =

min
{
αij − w, γij

}
.

3.3.3. Matching with marital utility and consumption. We consider a matching model of

the marriage market in which each partner’s utility depends both on his or her private con-

sumption, and his or her marital utility. More specifically, assume that if man i and woman

j are matched, their respective utilities combine marital utilities and private consumptions

in a Cobb-Douglas form, i.e. Ui = Aijc
τ
i and Vj = Γijc

τ
j , where Aij and Γij are respectively

i and j’s marital utilities, and ci and cj are their respective private consumptions, and τ is

the elasticity of substitution between marital utility and consumption. Assume the budget

of an (i, j) pair is ci+cj = Ii+Ij , where Ii and Ij are i and j’s incomes, respectively. Then,

letting ui = logUi and vj = log Vj be the log utilities, and αij = logAij + τ log (Ii + Ij) /2
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and γij = log Γij + τ log (Ii + Ij) /2, one is led to the model of matching with Exponentially

Transferable Utility (ETU), where α and γ play the role of “premuneration values,” as de-

fined in Liu et al. (2014) and Mailath et al. (2013). A particular case of the ETU model

can be found in Legros and Newman (2007, p. 1086). In our setting, the feasible set is

Fij =

{
(u, v) ∈ R2 : exp

(
u− αij
τ ij

)
+ exp

(
v − γij
τ ij

)
≤ 2

}
.

See Figure 5. The expression of Dij follows easily as

Dij (u, v) = τ ij log

exp(
u−αij
τ ij

) + exp(
v−γij
τ ij

)

2

 . (3.6)

As τ ij → 0, we recover the NTU model (3.5), and when τ ij → +∞, we obtain the

TU model (3.4). Hence, the ETU model interpolates between the nontransferable and

fully transferable utility models. Here, the parameter τ ij , which captures the elasticity of

substitution between marital well-being and consumption, equivalently parameterizes the

degree of transferability. We have

Uij (w) = −τ ij log

e−αijτij + e
−w−γij
τij

2

 and Vij (w) = −τ ij log

ew−αijτij + e
−γij
τij

2

 .

3.3.4. Matching with a Linear Tax Schedule. Our framework can also model a labor market

with linear tax: Assume the nominal wage Wij is taxed at rate 1−Rij on the employee’s side

(income tax) and at rate 1 +Cij on the firm’s side (social contributions). The tax rates are

allowed to depend on both employer and employee characteristics. Assume that if employee

i and employer j match and decide on a wage Wij , they respectively have (post-transfer)

utilities ui = αij + RijWij and vj = γij − CijWij , where αij is job j’s amenity to worker

i, and γij is the productivity of worker i on job j. This specification is called the Linearly

Transferable Utility (LTU ) model, and the feasible set is given by

Fij =
{

(u, v) ∈ R2 : λiju+ ζijv ≤ Φij

}
,
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Figure 5. Bargaining set Fij in the ETU case.

where λij = 1/Rij > 0, and ζij = 1/Cij > 0, and Φij = λijαij + ζijγij . Note that the TU

case is recovered when λij = 1 and ζij = 1. A simple calculation yields

Dij (u, v) =
λiju+ ζijv − Φij

λij + ζij
. (3.7)

The LTU model (3.7) extends that of Jaffe and Kominers (2014), in which Rij only

depends on i and ζij only depends on j. We have

Uij (w) =
Φij + ζijw

λij + ζij
and V (w) =

Φij − λijw
λij + ζij

.

3.3.5. Matching with a Nonlinear Tax Schedule. Our framework is general enough to extend

to a nonlinear tax schedule, well beyond linear taxes. Assume that if the nominal wage is

Wij , the after-tax income of employee is Rij (Wij), and the after-tax cost of employment

for the firm is Cij (Wij). The nonlinear tax schedules W 7→ Rij (W ) and W 7→ Cij (W )

are usually assumed convex and increasing, and Rij and Cij satisfy 0 < Rij (W ) < W and

0 < Cij (W ) < W . Note that they are allowed to depend on both employer and employee

characteristics. Assume that if employer i and employee j match, they enjoy respective

(post-transfer) utilities ui = αij + Rij (Wij) and vj = γij − Cij (Wij), so that the feasible
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set is given by

Fij =
{

(u, v) ∈ R2 : λij (u) + ζij (v) ≤ 0
}
,

where λij (u) = R−1
ij (u− αij) and ζij (v) = C−1

ij

(
v − γij

)
. This model was introduced by

Demange and Gale (1985) (see also Roth and Sotomayor (1990), Chapter 9).

Here, Dij (u, v) is defined as the value of t ∈ R such that there exists W ∈ R for which

u− t = αij +Rij (W ) and v− t = γij−Cij (W ). Thus, u−αij−v+γij = Rij (W )+Cij (W ),

thus W = (Rij + Cij)
−1 (u− αij − v + γij

)
, from which we deduce t = u − αij − Rij (W ).

Hence, this specification gives rise to:

Dij (u, v) = u− αij −Rij
(

(Rij + Cij)
−1 (u− αij − v + γij

))
. (3.8)

This model therefore allows for a nonlinear tax schedule that depends on the types of the em-

ployers and the employees. In this case, Uij (w) = αij +Rij((Rij + Cij)
−1 (w − αij + γij

)
),

and Vij (w) = Uij (w)− w.

3.3.6. Matching with Uncertainty. Now, we consider a model of the labor market with un-

certainty regarding match quality; such a model is considered by Legros and Newman (2007)

and Chade and Eeckhout (2014), who focus on characterizing positive assortativeness.

We assume that a worker of type i decides to match with a firm of type j, and decide on a

wage Wij . The job amenity is ẽij , where ẽij is a stochastic term learned only after the match

is formed; the distribution of ẽij may depend on i and j. The employee is risk-averse and

has an increasing and concave utility function U(·). Then the employees’ and employers’

systematic utilities are respectively ui = E [Ui (ẽij +Wij)] and vj = γij −Wij . This model

therefore has

Fij =
{

(u, v) ∈ R2 : u ≤ E
[
Ui
(
ẽij + γij − v

)]}
,

which is a particular case of the previous model with αij = 0, Rij (W ) = E [Ui (ẽij +W )],

and Cij (W ) = W , so that Dij can be deduced from these expressions of Rij and Cij by

relation (3.8).
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3.3.7. Collective Models. Finally, we consider a situation in which a man i and a woman j

have respective utilities ui (ci, li, g) and vj (cj , lj , g) which depend on private consumptions

ci and cj , private leisure li and lj , and a public good g. The wages of man i and of woman

j are respectively denoted Wi and Wj , and the price of the public good is denoted p. The

budget constraint of the household is therefore ci + cj + Wili + Wjlj + pg = (Wi +Wj)T ,

where T is the total amount of time available to each partner. The feasible set is therefore

given by

Fij =


(u, v) ∈ R2 : u ≤ ui (ci, li, g) , v ≤ vj (cj , lj , g) ,

and ci + cj +Wili +Wjlj + pg = (Wi +Wj)T

ci, cj ≥ 0, g ≥ 0, and 0 ≤ li, lj ≤ T.

 .

The “collective” approach initiated by Chiappori (1992) assumes that the outcome (u, v)

lies on the Pareto frontier of the feasible set of achievable utilities, given some exogenous

sharing rule. Assuming that i and j are exogenously matched, it assumes a pair of Pareto

weights θi and θj and such that the outcome (ui, vj) maximizes θiui + θjvj subject to

(ui, vj) ∈ Fij . In contrast, in the present context, both the existence of a match between i

and j and the sharing rule are determined endogenously by the stability conditions.

3.4. Remarks.

Remark 3.1 (Equilibrium vs. Optimality). As argued in Example 3.3.1 above, the TU

matching model (also sometimes called the Optimal Assignment Model), is recovered in

the case Dij (u, v) = u + v − Φij for some vector of joint surplus Φij , shared additively

between partners. It is well known in this case that the equilibrium conditions are the

Complementary Slackness conditions for optimality in a Linear Programming problem, so

in this case, equilibrium and optimality coincide. However, outside of this case, these

conditions are not the first-order conditions associated to an optimization problem, and

equilibrium does not have an interpretation as the maximizer of some welfare function.

Remark 3.2 (Galois connections). When Dij is strictly increasing in each of its arguments

(or equivalently, when the upper frontier of Fij is strictly downward sloping), one may

define

Uij (v) = max {u : Dij (u, v) ≤ 0} and Vij (u) = max {u : Dij (u, v) ≤ 0}
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and it can be verified that Uij and Vij are continuous, strictly decreasing, and inverse of

one another. In this case, if u and v are equilibrium payoff vectors, then

vj = max
i∈I
{Vij (ui) ,V0j} and ui = max

j∈J
{Uij (vj) ,Ui0} .

In particular, in the TU case studied in Example 3.3.1 above, Uij (v) = Φij−v and Vij (u) =

Φij−u. The maps Uij and Vij are called Galois connections, and are investigated by Noldeke

and Samuelson (2015). Our setting is more general, in the sense that it allows D to be only

weakly increasing in each of its arguments, as in the NTU case studied in Example 3.3.2

above, where Uij and Vij are not defined and continuous. Unfortunately, to our knowledge,

there is no obvious way to describe the NTU case using Galois connections.

4. Aggregate equilibrium: motivation and definition

In this section we shall add structure to our previous model by assuming that agents can

be grouped into a finite number of types, which are observable to the econometrician, and

vary according to an unobserved taste parameter. Section 4.1 precisely describes this setting.

The individual, or “microscopic” equilibrium defined in Section 3 above has a “macroscopic”

analog: the aggregate equilibrium, which describes the equilibrium matching patterns and

systematic payoffs across observable types; we define this concept in Section 4.2.

4.1. Unobserved heterogeneity. We assume that individuals may be gathered in groups

of agents of similar observable characteristics, or types, but heterogeneous tastes. We let

X and Y be the sets of types of men and women, respectively; we assume that X and Y

are finite. Let xi ∈ X (resp. yj ∈ Y) be the type of individual man i (resp. woman j). We

let nx be the mass of men of type x, and let my be the mass of women of type y. In the

sequel, we denote by X0 ≡ X ∪ {0} the set of marital options available to women (either

type of male partner or singlehood, denoted 0); analogously, Y0 ≡ Y ∪ {0} denotes the

set of marital options available to men (either type of female partner or singlehood, again

denoted 0). We assume in the sequel that Dij (., .) depends only on agent types—that is,

Dij (., .) ≡ Dxiyj (., .).

Consider a market in which men and women either decide to match or to remain single.

Let ui and vj be the utilities that man i and woman j obtain respectively on this market.
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Assumption 1. Assume that if i and j are matched, then ui = Ui+εiyj and vj = Vj +ηxij,

while if they remain single, then ui = εi0 and vj = η0j, where:

(i) the “systematic” parts of their utilities belong to the feasible set, that is (Ui, Vj) ∈ Fij,

and

(ii) the “idiosyncratic” parts of their utilities are the entries of random vectors (εiy)y∈Y0

and
(
ηxj
)
X0

which are i.i.d. draws from distributions Px and Qy, respectively.

Assumption 1 implies that there is unobserved heterogeneity only on preferences. In

other words, while two different women with the same observable type may have different

rankings of partners, a given woman will be indifferent between any men within a given

observable type. This assumption was made in Choo and Siow (2006), who were the first

to realize its analytical convenience, and it has played a central role in the subsequent

literature.2

We now introduce the following restrictions on the bargaining sets Fij :

Assumption 2. The sets Fij are such that:

(i) For i ∈ I and j ∈ J , Fij only depends on the types of i and j, hence Fij = Fxiyj ,

where xi is the type of i and yj is the type of j.

(ii) For x ∈ X and y ∈ Y, Fxy is a proper bargaining set in the sense of Definition 1.

(iii) For each man type x ∈ X , either all the w̄xy, y ∈ Y are finite, or all the w̄xy, y ∈ Y

coincide with +∞ (where w̄xy and
¯
wxy are as defined in Section 3.1.3). For each woman

type y ∈ Y, either all the
¯
wxy, x ∈ X are finite, or all the

¯
wxy, x ∈ X coincide with −∞.

The more substantial restriction introduced in Assumption 2 is part (i), which extends

the “additive separability assumption” highlighted by Chiappori, Salanié, and Weiss (2014),

building on the work of Choo and Siow (2006). In the case of TU models (see Example 3.3.1

above), our restriction simply states that the joint surplus Φij can be decomposed in the

form Φij = Φxiyj + εiy +ηjx. Note that, while the transfers Ui and Vj are allowed to vary in

2In contrast, Dagsvik (2000) and Menzel (2015) assume that the heterogeneity in tastes is of the form

εij and ηij , where the utility shocks are i.i.d. across partners, and hence is individual-specific.
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an idiosyncratic manner within observable types, it will be a fundamental property of the

equilibrium (stated in Theorem 5 below) that Ui is the same for all men i of type x matched

with a woman of type y, while Vj is the same for all the women j of type y matched with a

man of type x. As a result of Assumption 2, part (i), the notations Dxy, Uxy, and Vxy will

naturally substitute for DFxy , UFxy , and VFxy . Part (ii) simply assumes that Fxy has the

properties described in Section 3.1.1. Part (iii) is a technical assumption expressing that

given any agent (man or woman), the maximum utility that this agent can obtain with any

partner is either always finite, or always infinite; this is needed to ensure existence of an

equilibrium, and it is satisfied in all the examples we have.

We finally impose assumptions on Px and Qy, the distributions of the idiosyncratic terms

(εiy)y∈Y0 and (ηxj)x∈X0 , which are i.i.d. random vectors respectively valued in RY0 and RX0 .

Assumption 3. Px and Qy have non-vanishing densities on RY0 and RX0.

There are two components to Assumption 3: the requirement that Px and Qy have

full support, and the requirement that they are absolutely continuous. The full-support

requirement implies that given any pair of types x and y, there are individuals of these

types with arbitrarily large valuations for each other; this implies that at equilibrium,

any matching between observable pairs of types will be observed. The absolute continuity

requirement ensures that with probability 1 the men and the women’s choice problems have

a unique solution.

Transposing Definition 4 to the framework with parameterized heterogeneity, we see that(
µij , ui, vj

)
is an individual equilibrium outcome when:

(i) µij ∈ {0, 1},
∑

j µij ≤ 1 and
∑

i µij ≤ 1;

(ii) for all i and j, Dxiyj

(
ui − εiyj , vj − ηxij

)
≥ 0, with equality if µij = 1;

(iii) ui ≥ εi0 and vj ≥ η0j with equality if respectively
∑

j µij = 0 and
∑

i µij = 0.

Remark 4.1 (An informal preview of the next steps). To provide some intuition on the

definition of aggregate equilibrium to follow, we summarize the next steps. We start with

an equivalent condition to point (ii) in the definition of an individual equilibrium above
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(Definition 4): for any pair of types x ∈ X and y ∈ Y,

min
i:xi=x
j:yj=y

Dxy

(
ui − εiy, vj − ηxj

)
≥ 0,

with equality if there is a matching between a man of type x and a woman of type

y. Thus, defining Uxy = mini:xi=x
{
ui − εiyj

}
and Vxy = minj:yj=y

{
vj − ηxij

}
yields

Dxy (Uxy, Vxy) ≥ 0. We will show that under weak conditions, this is actually an equality,

hence:

Dxy (Uxy, Vxy) = 0. (4.1)

Further, one sees from the definition of Uxy and Vxy that ui ≥ maxy∈Y {Uxy + εiy, εi0}

and vj ≥ maxx∈X
{
Vxy + ηxj , η0j

}
. Again under rather weak conditions (stated in Appen-

dix A), this actually will hold as an equality, so that ui = maxy∈Y {Uxy + εiy, εi0} and

vj = maxx∈X
{
Vxy + ηxj , η0j

}
. Hence, agents face discrete choice problems when choos-

ing the type of their partner. At equilibrium, the mass of men of type x choosing type y

women should coincide with the mass of women of type y choosing men of type x. Thus,

we need to relate this common quantity µxy to the vector of systematic utilities (Uxy) and

(Vxy). This is done in the next paragraph using results from the literature on Conditional

Choice Probability (CCP) inversion, which will allow us to state a definition of aggregate

equilibrium.

4.2. Aggregate Equilibrium. An aggregate matching (or just a matching, when no con-

fusion is possible), is specified by a vector (µxy)x∈X ,y∈Y measuring the mass of matches

between men of type x and women of type y. Let M be the set of matchings, that is, the

set of µxy ≥ 0 such that
∑

y∈Y µxy ≤ nx and
∑

x∈X µxy ≤ my. For later purposes, we shall

need to consider the strict interior of M, denoted M0, i.e. the set of µxy > 0 such that∑
y∈Y µxy < nx and

∑
x∈X µxy < my. The elements of M0 are called interior matchings.
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We will look for an individual equilibrium
(
µij , ui, vj

)
with the property that there exist

two vectors (Uxy) and (Vxy) such that if i is matched with j, then ui = Uxiyj + εiyj , and

vj = Vxiyj + ηxij .
3

Under such an equilibrium, each agent is faced with a choice between the observable types

of his or her potential partners, and man i and woman j solve respectively the following

discrete choice problems

ui = max
y∈Y
{Uxiy + εiy, εi0} and vj = max

x∈X

{
Vxyj + ηxj , η0j

}
.

This yields an important extension of Choo and Siow’s (2006) original insight that the

matching problem with heterogeneity in tastes is equivalent to a pair of discrete choice

problems on both sides of the market. This will allow us to relate the vector of utilities

(Uxy) and (Vxy) to the equilibrium matching µ such that µxy is the mass of men of type x

and women of type y mutually preferring each other. In order to establish this relation, we

make use of the convex analytic apparatus of Galichon and Salanié (2015). We define the

total indirect surplus of men and women by respectively

G (U) =
∑
x∈X

nxE
[
max
y∈Y
{Uxy + εiy, εi0}

]
and

∑
y∈Y

myE
[
max
x∈X

{
Vxy + ηxj , η0j

}]
. (4.2)

By the Daly-Zachary-Williams theorem, the mass of men of type x demanding a partner

of type y is a quantity µxy = ∂G (U) /∂Uxy, which we denote in vector notation by µ ≡

∇G(U). Similarly, the mass of women of type y demanding a partner of type x is given by

νxy, where ν ≡ ∇H (V ). At equilibrium, the mass of men of type x demanding women of

type y should coincide with the mass of women of type y demanding men of type x, thus

µxy = νxy should hold for any pair, so reexpresses as ∇G(U) = ∇H (V ). Of course, U and

V are related by the feasibility equation Dxy (Uxy, Vxy) = 0 for each x ∈ X and y ∈ Y. This

leads to the following definition:

Definition 5 (Aggregate Equilibrium). The triple
(
µxy, Uxy, Vxy

)
x∈X ,y∈Y is an aggregate

equilibrium outcome if the following three conditions are met:

3While this may look like a restriction, we show in Appendix A that: (i) there always exists an individual

equilibrium of this form, and (ii) under a very mild additional assumption on the feasible sets (namely,

Assumption 2’ in Appendix A), any individual equilibrium is of this form.
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(i) µ is an interior matching, i.e. µ ∈M0;

(ii) (U, V ) is feasible, i.e.

Dxy (Uxy, Vxy) = 0, ∀x ∈ X , y ∈ Y; (4.3)

(iii) µ, U , and V are related by the market clearing condition

µ = ∇G (U) = ∇H (V ) . (4.4)

The vector
(
µxy
)
x∈X ,y∈Y an aggregate equilibrium matching if and only if there exists a

pair of vectors (Uxy, Vxy)x∈X ,y∈Y such that (µ,U, V ) is an aggregate equilibrium outcome.

Remark 4.2. A simple count of variables shows that the vector of unknowns (µ,U, V ) is

of dimension 3× |X | × |Y|. This number coincides with the number of equations provided

by (4.3) and (4.4), which is consistent with the fact, proven below, that a solution exists

and is unique.

Remark 4.3. We discuss the equivalence of individual and aggregate equilibrium in The-

orem 5 of Appendix A.

4.3. Aggregate matching equation. Before ending this section, we rewrite the system

of equations in Definition 5 as a simpler system of equations which involves the matching

vector µ only. To to this, we need to invert µ = ∇G (U) and µ = ∇H (V ) in order to

express U and V as a function of µ. For this purpose, we introduce the Legendre-Fenchel

transform (a.k.a. convex conjugate) of G and H:

G∗ (µ) = sup
U

{∑
xy

µxyUxy −G (U)

}
and H∗ (ν) = sup

V

{∑
xy

νxyVxy −H (V )

}
. (4.5)

It is a well-known fact from convex analysis (cf. Rockafellar 1970) that, under smoothness

assumptions that hold here given Assumption 3,

µ = ∇G(U) ⇐⇒ U = ∇G∗(µ) and ν = ∇H(V ) ⇐⇒ V = ∇H∗(ν),

so we may substitute out U and V as an expression of µ in the system of equations in

Definition 5, so that equilibrium is characterized by a set of |X | × |Y| equations expressed

only in terms of µ.
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Proposition 1. Matching µ ∈M0 is an aggregate equilibrium matching if and only if

Dxy

(
∂G∗ (µ)

∂µxy
,
∂H∗ (µ)

∂µxy

)
= 0 for all x ∈ X , y ∈ Y. (4.6)

Although the reformulation in Proposition 1 is not used to obtain existence and unique-

ness of an equilibrium in Section 5, it is extremely useful in Section 6 when the particular

case of logit heterogeneity is considered; in that case, equation (4.6) can be inverted easily.

Remark 4.4. In the TU setting, Dxy (u, v) = (u + v − Φxy)/2; thus, the fundamental

matching equation (4.6) can be rewritten as ∇G∗ (µ) + ∇H∗ (µ) = Φxy. In this case,

Galichon and Salanié (2015) have shown the existence and uniqueness of a solution to (4.6)

by showing that this equation coincides with the first-order conditions associated to the

utilitarian welfare maximization problem, namely

max
µ

{∑
xy

µxyΦxy − E (µ)

}
,

where Φ = α+ γ is the systematic part of the joint affinity, and E := G∗+H∗ is an entropy

penalization that trades-off against the maximization of the observable part of the joint

affinity. However, besides the particular case of Transferable Utility, Equation (4.6) cannot

be interpreted in general as the first-order conditions of an optimization problem. Hence,

the methods developed in the present paper, which are based on Gross Substitutes are very

different than those in Galichon and Salanié (2015), which rely on convex optimization.

5. Aggregate Equilibrium: existence, uniqueness and computation

In this section, we study aggregate equilibria by reformulating the ITU matching market

in terms of a demand system. The couple types xy will be treated as goods; men as

producers, and women as consumers. Each man of type x chooses to produce one of the

goods of type xy, where y ∈ Y0; similarly, each woman of type y chooses to consume one

of the goods of type xy, where x ∈ X0. The wedges Wxy are interpreted as prices, and

∂G (U (W )) /∂Uxy is interpreted as the supply of the xy good, and ∂H (V (W )) /∂Vxy is

interpreted as the demand for that good if the price vector is W . An increase in Wxy

raises the supply of the xy good and decreases the demand for it. We can define the excess
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demand function as

Z (W ) := ∇H (V (W ))−∇G (U (W )) , (5.1)

so that Zxy (W ) is the mass of women of type y willing to match with men of type x

minus the mass of men of type x willing to match with women of type y, if the vector of

market wedges is W . At equilibrium, the market wedges are such that Z (W ) = 0. In

Section 5.1, we show that our demand system satisfies the gross substitutability property;

this observation is the basis of our existence and uniqueness proofs in Section 5.2.

5.1. Reformulation as a demand system. Thanks to the explicit representation of the

feasible sets, we obtain an alternative description of our matching model as a demand

system, in the spirit of Azevedo and Leshno’s (2015) approach to NTU models without

unobserved heterogeneity. As we recall, Dxy (Uxy, Vxy) = 0 is equivalent to the existence of

Wxy such that U = U (W ) and V = V (W ), where the xy-entries of U (W ) and V (W ) are

Uxy (Wxy) and Vxy (Wxy), as introduced in Definition 3.

Proposition 2. Outcome (µ,U, V ) is an aggregate equilibrium outcome if and only if µ =

∇G (U) = ∇H (V ), and there exists a vector (Wxy) such that U = U (W ), V = V (W ), and

Z (W ) = 0. (5.2)

As we recall, Z (.) is to be interpreted as an excess demand function, and (Wxy) as a

vector of market prices: if Wxy increases and all the other entries of W remain constant,

the systematic utility Vxy of women in the xy category decreases and the utility Uxy of men

in that category increases, hence Zxy, the excess demand for category xy, decreases. It is

possible to express that in this demand interpretation various categories of goods xy are

gross substitutes, in the following sense:

Proposition 3 (Gross Substitutes). (a) If Wxy increases and all other entries of W remain

constant, then:

(a.1) Zxy (W ) decreases,

(a.2) Zx′y′ (W ) increases if either x = x′ or y = y′ (but both equalities do not hold),

(a.3) Zx′y′ (W ) remains constant if x 6= x′ and y 6= y′.



28 A. GALICHON, S. D. KOMINERS, AND S. WEBER

(b) the sum
∑

x′∈X ,y′∈Y Zx′y′ (W ) decreases.

The result implies that the excess demand function Z satisfies the gross substitutability

condition. Point (a1) means that when Wxy increases, one moves along the Pareto frontier

of the feasible set Fxy towards a direction which is more favorable to the men (Uxy increases,

Vxy decreases), and thus there is ceteris paribus less demand from women and more from

men for the category xy, and excess demand Zxy decreases. Point (a.2) expresses that when

the price of some category, say Wxy increases, and all the other entries of W remain constant,

then the prospects of women in the category xy deteriorates, thus some of these women will

switch to category x′y, and hence the excess demand Zxy for category xy increases. Point

(a.3) simply means that an agent (man or woman) does not respond to the price change of

a category which does not involve his or her type. Finally, point (b) expresses that when

the price of category xy increases, then singlehood becomes weakly less attractive for all

men, and strongly less so for men of category x; while singlehood becomes more attractive

for women, which explains that the sum of Zx′y′ over all categories, decreases.

5.2. The result. We will now state and prove a theorem that ensures the existence and

uniqueness of an equilibrium using the characterization of aggregate equilibrium as a de-

mand system introduced in Proposition 2. We show that there is a unique vector of prices

(Wxy) at which the value of excess demand is 0. This is stated in the following result:

Theorem 1 (Existence and uniqueness of a Walrasian equilibrium). Under Assumptions 1, 2,

and 3, there exists a unique vector W such that

Z (W ) = 0. (5.3)

5.2.1. Existence. The proof of existence is constructive, andW is obtained as the outcome of

the following algorithm. It is shown in the proof of Theorem 1 that one can find an initial

vector of prices
(
W 0
xy

)
for which excess demand is negative, that is Z

(
W 0
)
≤ 0. This

suggests that prices
(
W 0
xy

)
are too high. Our algorithm consists of lowering these prices

such that at each step, the excess demand at current price Z
(
W t
)

remains negative. More

precisely, we set W t
xy, the price of category xy at time t, to be such that Z

(
W t
xy,W

t−1
−xy
)

=
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0, where
(
W t
xy,W

t−1
−xy
)

denotes the price vector which coincides with W t−1 on all entries

except on the xy entry and which sets price W t
xy to the xy entry. In other words, the

prices of each category are updated in order to cancel the corresponding excess demand,

holding the prices of other categories constant. More formally, it is possible to define a map

W : RX×Y → RX×Y such that W ′ =W (W ) if and only if for all xy ∈ X × Y

Zxy
(
W ′xy,W−xy

)
= 0,

and the proposed algorithm simply consists in setting W t =W
(
W t−1

)
. By Proposition 3,

point (a.1), it follows that that W t
xy ≤ W t−1

xy for each xy. Because of the gross substi-

tutability property (Proposition 3, point (a.2)), Z
(
W t
xy,W

t
−xy
)
≤ Z

(
W t
xy,W

t−1
−xy
)

= 0, so

that excess demand is still negative at step t. Finally, it is possible to show that W t
xy re-

mains bounded by below; thus, it converges monotonically. The limit is therefore a fixed

point of W, hence a zero of Z. This leads us to the following algorithm:

Algorithm 1.

Step 0 Start with w0 = W̄ .

Step t For each x ∈ X , y ∈ Y, define W t+1 =W
(
W t
)
.

The algorithm terminates when supxy∈X×Y |W t+1
xy −W t

xy| < ε.

5.2.2. Uniqueness. The proof of uniqueness is based on a result of Berry, Gandhi, and Haile

(2013), that implies that Z is inverse isotone. Hence, if there are two vectors W and W̃

such that Z (W ) = Z
(
W̃
)

= 0, it would follow that W ≤ W̃ and W̃ ≤W altogether, hence

W = W̃ .

Combining Theorem 1 and Proposition 2, it follows that there exists a unique equi-

librium outcome (µ,U, V ), where µ, U , and V are related to W by Uxy = Uxy (Wxy),

Vxy = Vxy (Wxy), and µ = ∇G (U) = ∇H (V ).

Corollary 1 (Existence and uniqueness of an equilibrium outcome). Under Assumptions 1, 2,

and 3, there exists a unique equilibrium outcome (µ,U, V ), and µ, U , and V are related to

the solution W to system (5.3) by Uxy = Uxy (Wxy), Vxy = Vxy (Wxy), and µ = ∇G (U) =

∇H (V ).
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6. The ITU-logit model

In this section, and for the rest of the paper, we consider the model of matching with

Imperfectly Transferable Utility and logit heterogeneity. We therefore replace Assumption 3

by:

Assumption 3’. Px and Qy are the distributions of i.i.d. Gumbel (standard type I extreme

value) random variables.

Of course, Assumption 3’ is a specialization of Assumption 3, as the Gumbel distribution

has a positive density on the real line. As we show in this section, the logit assumption

carries strong implications. We shall show in Section 6.1 that the equilibrium matching

equations (4.6) can be drastically simplified, and that an algorithm more efficient than

Algorithm 1 can be used to solve them. Next, in Section 6.2, we provide a number of

illustrative applications of the logit assumption in the various example instances introduced

in Section 3.3. Finally, we will show in Section 6.3 that maximum likelihood estimation is

particularly straightforward in the logit context.

6.1. Equilibrium and computation, logit case. With logit random utilities, it is well-

known that the systematic part of the utility Uxy can be identified by the log the ratio of

the odds of choosing alternative y, relative to choosing the default option, and a similar

formula applies to Vxy, hence Uxy = log(µxy/µx0) and Vxy = log(µxy/µ0y), where µx0 =

nx−
∑

y∈Y µxy, and µ0y = my−
∑

x∈X µxy. Hence, the feasibility equationDxy (Uxy, Vxy) = 0

in expression (4.6) becomes Dxy

(
logµxy − logµx0, logµxy − logµ0y

)
= 0, which, given the

translation invariance property (v) of Lemma 1, yields

logµxy = −Dxy

(
− logµx0,− logµ0y

)
,

which explicitly defines µxy as a function of µx0 and µ0y:

µxy = Mxy

(
µx0, µ0y

)
, where Mxy

(
µx0, µ0y

)
= exp

(
−Dxy

(
− logµx0,− logµ0y

))
. (6.1)

Remark 6.1. In the search and matching literature, maps such as Mxy that relate the

mass of matches of type (x, y) to the mass of unmatched agents of type x and y are called
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aggregate matching functions (see, e.g., Petrongolo and Pissarides (2001) and Siow (2008)).

However, there is an important difference between our aggregate matching function and

much of the prior work. Here, µx0 and µ0y are the masses of men and women selected into

singlehood, which is endogenous, and determined by equilibrium equations (6.2). In the

demography literature (up to the important exception of Choo and Siow (2006) and the

subsequent literature), µx0 and µ0y are usually the masses of available men and women,

assumed to be exogenous.

The expression of µxy as a function of µx0 and µ0y, combined with the requirement

that µ ∈ M0, provides a set of equations that fully characterize the aggregate matching

equilibrium, as argued in the following result:

Theorem 2. Under Assumptions 1, 2, and 3’, the equilibrium outcome (µ,U, V ) in the

ITU-logit model is given by

µxy = Mxy

(
µx0, µ0y

)
, Uxy = log

µxy
µx0

, Vxy = log
µxy
µ0y

,

where the pair of vectors (µx0)x∈X and
(
µ0y

)
y∈Y is the unique solution to the system of

equations 
∑

yMxy

(
µx0, µ0y

)
+ µx0 = nx∑

xMxy

(
µx0, µ0y

)
+ µ0y = my.

(6.2)

Theorem 2 implies that computing aggregate equilibria in the logit case is equivalent to

solving the system of nonlinear equations (6.2)—a system of |X |+ |Y| equations in the same

number of unknowns. It turns out that a very simple iterative procedure provides a very

efficient means of solving these equations. The basic idea is each equation in the first set

of equations is an equation in the full set of (µ0y), but in the single unknown µx0. Hence,

these can be inverted to obtain the values of (µx0) from the values of (µ0y). A similar logic

applies to the second set of equations, where the values of (µ0y) can be obtained from the

values of (µx0). The proposed algorithm operates by iterating the expression of (µx0) from

(µ0y) and vice-versa. Provided the initial choice of (µ0y) is high enough, the procedure

converges isotonically, as argued in the theorem below.



32 A. GALICHON, S. D. KOMINERS, AND S. WEBER

Algorithm 2.

Step 0 Fix the initial value of µ0y at µ0
0y = my.

Step 2t+ 1 Keep the values µ2t
0y fixed. For each x ∈ X , solve for the value, µ2t+1

x0 , of µx0

such that equality
∑

y∈YMxy(µx0, µ
2t
0y) + µx0 = nx holds.

Step 2t+ 2 Keep the values µ2t+1
x0 fixed. For each y ∈ Y, solve for which is the value,

µ2t+2
0y , of µ0y such that equality

∑
x∈X Mxy(µ

2t+1
x0 , µ0y) + µ0y = my holds.

The algorithm terminates when supy |µ2t+2
0y − µ2t

0y| < ε.

Theorem 3. Under Assumptions 1, 2, and 3’, Algorithm 2 converges toward the solution

(6.2), in such a way that
(
µt0y
)

is nonincreasing with t, and
(
µtx0

)
is nondecreasing with t.

6.2. Example Specifications, logit case.

6.2.1. TU-logit Specification. In the logit case of the TU specification introduced in Sec-

tion 3.3.1, the matching function becomes

µxy = µ
1/2
x0 µ

1/2
0y exp

Φxy

2
, (6.3)

which is Choo and Siow’s (2006) formula.

6.2.2. NTU-logit Specification. In the logit case of the NTU specification introduced in

Section 3.3.2, the matching function becomes

µxy = min
(
µx0e

αxy , µ0ye
γxy
)
. (6.4)

When µx0e
αxy ≤ µ0ye

γxy , µxy = µx0e
αxy is constrained by the choice problem of men; we

say that, relative to pair xy, men are on the short side (of the market) and women are

on the long side (of the market), and visa versa. Galichon and Hsieh (2016) study this

model in detail. In particular, they show that existence and computation of a more general

version of this model can be provided via an aggregate version of the Gale–Shapley (1962)

algorithm.4

4Note that Dagsvik (2000) and Menzel (2015) obtain µxy = µx0µ0ye
αxy+γxy , in contrast with our for-

mula (6.4). The reason for this difference is that Dagsvik (2000) and Menzel (2015) assume that the

stochastic matching affinities are given by αij = αxy + εij and γij = γxy + ηij , where the εij and ηij terms

are i.i.d. type I extreme value distributions. In contrast, in our setting, αij = αxy+εiyj and γij = γxy+ηxij .
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6.2.3. ETU-logit Specification. In the logit case of the the Exponentially Transferable Utility

specification introduced in Section 3.3.3, the feasibility frontier takes the form

exp

(
Uxy − αxy

τxy

)
+ exp

(
Vxy − γxy

τxy

)
= 2,

which, when combined with the log-odds ratio formulae idenfying U and V , yields the

following expression for the matching function:

µxy =

(
e−αxy/τxyµ

−1/τxy
x0 + e−γxy/τxyµ

−1/τxy
0y

2

)−τxy
. (6.5)

As expected, when τxy → 0, formula (6.5) converges to the NTU-logit formula, (6.4).

Likewise, when τxy → +∞, (6.5) converges to the TU-logit formula, (6.3). But when τxy =

1, then (up to multiplicative constants) µxy becomes the harmonic mean between µx0 and

µ0y. We thus recover a classical matching function form—the “Harmonic Marriage Matching

Function” that has been used by demographers for decades (see, e.g. Schoen (1981)). To our

knowledge, our framework gives the first behavioral/microfounded justification of harmonic

marriage matching function. (Indeed, as Siow (2008, p. 5) argued, this choice of matching

function heretofore had “no coherent behavioral foundation.”)

6.2.4. LTU-logit Specification. In the logit case of the the Linearly Transferable Utility

specification introduced in Section 3.3.4, the matching function becomes

µxy = e(λxyαxy+ζxyγxy)/(λxy+ζxy)µ
λxy/(λxy+ζxy)
x0 µ

ζxy/(λxy+ζxy)
0y . (6.6)

In particular, when λxy = 1 and ζxy = 1, we again recover the Choo and Siow (2006)

identification formula.

6.3. Maximum likelihood estimation, logit case. In this section, we assume that (Dxy)

belongs to a parametric family
(
Dθ
xy

)
and we estimate θ by maximum likelihood. Letting

N be the total number of households in our sample, the log-likelihood of observation µ̂xy is

given (up to a N logN factor) by

l (θ) =
∑

xy∈XY
µ̂xy logµθxy +

∑
x∈X

µ̂x0 logµθx0 +
∑
y∈Y

µ̂0y logµθ0y, (6.7)
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given the expression of µθxy as a function of µθx0 and µθ0y provided in (6.1). Denoting

uθx = − logµθx0 and vθy = − logµθ0y, the expression of the log-likelihood reformulates as:

Theorem 4. The log-likelihood l (θ) is expressed using

−l (θ) =
∑

xy∈X×Y
µ̂xyD

θ
xy

(
uθx, v

θ
y

)
+
∑
x∈X

µ̂x0u
θ
x +

∑
y∈Y

µ̂0yv
θ
y, (6.8)

where the expected utilities uθx and vθy are the unique pair of vectors (u, v) solution to e−ux +
∑

y∈Y e
−Dθxy(ux,vy) = nx

e−vy +
∑

x∈X e
−Dθxy(ux,vy) = my,

(6.9)

Expression (6.8) has a striking interpretation. For a matched pair (x, y), Dxy (ux, vy) is

the signed distance to the efficient frontier. For a single individual man or woman of type

x or y, ux or vy is also the signed distance to the efficient frontier, which is 0. Hence, the

value of the likelihood is the opposite of the sum of the distances to the efficient frontier.

Therefore, we arrive at a very important re-interpretation of the maximum likelihood pro-

cedure: the maximum likelihood procedure finds the value of the parameter vector such that

the sum of the distances of uθx = − logµθx0 and vθy = − logµθ0y to the efficient frontier is

minimized.

In order to compute the Maximum Likelihood Estimator of θ by a descent method, one

typically needs the gradient of the likelihood. As µxy = M θ
xy

(
µθx0, µ

θ
0y

)
, the derivative

∂θkµxy is the sum of three contributions: ∂θkMxy, and the contributions of ∂θkµx0 and

∂θkµ0y which can be computed by the Implicit Function Theorem given that
(
µx0, µ0y

)
is a solution to system (6.2). The computational details are provided a companion note

(Galichon and Weber, 2016).

7. Application

In this section, we bring to the data a richer version of the simple model described in

Section 3.3.3—a model with marital complementarities and private consumption. It is very

hard in practice to select among models with different transferability structures simply based

on matching patterns. However, this difficulty is overcome if the data set is supplemented
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with information on transfers or information on personal expenditures. We use observations

on demographic characteristics and personal expenditures from the British Living Costs and

Food Expenditures survey (2013) to structurally estimate the British marriage market. Our

estimation procedure is carried out using the maximum likelihood procedure described in

the preceding section.

7.1. The model for estimation. We consider a simple model of matching with marital

utility and consumption, similar to the one introduced in Section 3.3.3, and logit hetero-

geneity, as introduced in Section 6. The systematic utilities of a married man of type x and

a married woman of type y paired together are specified as follows

αxy + τ log cm and γxy + τ log cw,

where cm and cw are the private consumptions of the man and the woman, respectively.

Private consumption should satisfy the budget constraint cm + cw = I (x) + I (y), where

I (x) and I (y) are the income of men of type x and women of type y, respectively. At

equilibrium, cm = cm (x, y) and cw = cw (x, y) only depend on the man and the woman’s

observable types. If a man x or a woman y chooses to remain single, they respectively

receive

αx0 + τ log I (x) and γ0y + τ log I (y) .

The systematic parts of the matching surpluses, relative to singlehood, for a married pair

x, y are given by

Uxy = αxy − αx0 + τ log

(
cm (x, y)

I (x)

)
and Vxy = γxy − γ0y + τ log

(
cw (x, y)

I (y)

)
.

Without loss of generality, we assume in the sequel that αx0 = 0 and γ0y = 0. The budget

constraint cm (x, y)+cw (x, y) = I (x)+I (y) implies an expression for the feasible set F and

the distance function Dxy. A simple calculation similar to the one in Section 3.3.3 shows

that

Dxy(Uxy, Vxy) = τ log

(
ρ(x, y) exp(

Uxy − αxy
τ

) + (1− ρ(x, y)) exp(
Vxy − γxy

τ
)

)
,

where ρ (x, y) = I(x)
I(x)+I(y) denotes the man’s share of contribution to total income of the

household.
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7.2. Estimation. Assuming logit heterogeneity, estimation follows the steps described in

Section 6. We assume that the frequency of each type of man and woman is identical, so

that nx = my = 1 for all x, y ∈ X × Y. We will not worry here about the fact that the

types are sampled from a continuous distribution of types; the theoretical model would

incorporate this feature by appealing to a continuous logit model as used in Dupuy and

Galichon (2014) or Menzel (2015), but the estimation would be identical.

The likelihood function is similar to expression (6.7), with a notable difference. Indeed,

in general, data sets do not allow the researcher to observe private consumption, but often

some proxy of personal expenditures. Indeed, our model allows us to recover the expenditure

levels, say of man i, as

cm (xi, yj) = I (xi) exp

(
uxi −Dxiyj (uxi , vyj )− αxiyj

τ

)
,

with the notation ux = − logµx0 and vy = − logµ0y. (Note that women’s private consump-

tions can be deduced by ĉwj = I (xi)+ I (yj)− ĉmi ). Assume further that we measure private

expenditures with some measurement error, that is we observe men’s private consumptions

as ĉmi = cm(xi, yj) + εij , where ε is a Gaussian measurement error with variance s2
ε , and

independently distributed across the (x, y) pairs.

Letting θ be a parameterizations of (α, γ, τ), we can now compute the log-likelihood (up

to constants):

logL (θ, sε, sη) = −
∑

(i,j)∈C

Dθ(uθxi , v
θ
yj )−

∑
i∈SM

uθxi −
∑
j∈SF

vθyj

− 2
∑

(i,j)∈C

(ĉmi − cm (xi, yj))
2

2s2
ε

− 2 |C| log sε,

where C denotes the set of matched pairs (i, j) observed in the data, SM and SF respectively

denote the set of single men and the set of single women observed in the data, and where

uθx and vθy satisfy equilibrium equations (6.2).

The parameters ξ = (θ, sε) are estimated by maximum likelihood. Estimation is per-

formed in R using the NLOPT package and the BFGS algorithm, with bound constraints

on τ and on sε (these parameters are restricted to be positive). We compute analytically
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the gradient to improve performance. At each step of the estimation process, the following

computations are performed:

(i) The parameters ξ are updated using the gradient computed in the previous step.

(ii) The updated values of α, γ and τ are deduced.

(iii) The equilibrium quantities u and v are computed using Algorithm 2,

and the predicted consumption levels are constructed.

(iv) The log-likelihood is updated.

The gradient computation procedure is part of a R package, called TraME (Transporta-

tion Methods for Econometrics; Galichon and Weber (2015)). This package simplifies the

computation and the estimation of a wide range of discrete choice and matching problems,

as it relies on a flexible formulation of these models in terms of transferability or hetero-

geneity structure. Under TraME, user-defined models can be solved using core equilibrium

algorithms (mainly via Linear Programming, Convex Optimization, Jacobi iterations, De-

ferred Acceptance, or Iterative Fitting of which Algorithm 2 is an instance of) and estimated

by maximum likelihood.

7.3. Data. To estimate our model, we use the British Living costs and Food Survey data

set (which replaced the Family Expenditure Survey in 2008) for the year 2013. The data

allows us to construct a representative sample of the British population that includes raw

estimates of personal expenditures. We focus on married heterosexual pairs, in which case

we gather information on both partners, as well as singles (never married, divorced, sepa-

rated or widowed)5 who are heads of their households. We only keep couples in which both

members have positive income, and singles with positive income. Additionally, we restrict

our attention to households of size 1 for singles and size 2 for couples (hence excluding

households with children or relatives and non-relatives), as we focus our attention on the

sharing of resources between the married partners. Another advantage of such restriction

is that we exclude from the analysis a major public good, namely, investment in children

and their education. Finally, we select households in which the head is between 25 and 40

years old, and drop singles or couples with missing information.

5Ideally, it would be preferable to focus on first-time married couples and never-married singles, but such

detailed information on marital history is usually missing in expenditures data sets.
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The total income of a matched pair is the sum of the partners’ personal incomes. Ideally,

our application would combine income data with data on private consumption. Of course,

private consumption variables are rarely available, and researchers must instead use a proxy

of personal expenditures. The data offers a variable called “Total Personal Expenditures”;

this is an imperfect measure of consumption, however, it excludes major public goods such

as rent, heating or car purchases, while aggregating individual-level expenditures on food,

household equipment, leisure goods and services, and clothing. For singles, the variable is set

equal to total personal income. For couples, personal expenditure is taken by breaking down

the total income proportionally according to each partner’s share of personal expenditures.

This ensures that the sum of personal expenditures across partners coincides with the

couple’s total income.

Table 1. Summary statistics, full sample

Married Single

Male Female Male Female

mean sd mean sd mean sd mean sd

Age 32.37 4.60 30.33 4.94 33.43 4.61 32.58 4.35

White 0.92 0.27 0.90 0.30 0.87 0.34 0.89 0.31

Black 0.01 0.11 0.02 0.14 0.04 0.20 0.05 0.21

Education 19.84 2.99 20.14 3.08 18.80 2.97 19.17 2.65

Personal Income 638.05 325.88 485.36 264.95 544.27 330.86 478.32 275.12

Share Expenditures 0.47 0.23 0.53 0.23 . . . .

Observations 161 161 76 66

To ease estimation, we use a subsample of households, randomly drawn from the full

data, with summary statistics displayed in Table (1). Our sample is mostly composed of

White individuals. Married men appears to be older than married women (with an average

age difference of two years, a fairly standard fact in marriage markets), but somewhat less

educated. The data displays large variations in personal income, and shows that women

accounts for a slightly larger share of personal expenditures than men. However, this may be
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a consequence of measurement error on private consumption, as the latter is only imperfectly

observed.

7.4. Specification and results. We use a simple parametrization of couples’ pre-transfer

utilities:

αxy = λ1|educx − educy| and γxy = λ2|educx − educy|

where educx and educy are the (standardized) ages at which the members of the couple left

the schooling system—a proxy for years of education. The parameter vector to be estimated

is ξ = (λ1, λ2, sε, τ) ∈ R4.

The results from our maximum likelihood estimation are displayed in Table (2) below.

Table 2. Estimates

Parameters λ1 λ2 sε τ LL

Estimates −0.87 −1.09 308.38 3.32 2955.93

Note : These estimates are obtained using the TraME package (Galichon and Weber (2015)) and

the NLOPT optimization routine. Parameters λ1 and λ2 measure education assortativeness,

while τ is the transferability parameter. The standard deviation of our measurement error is

estimated as sε. Finally LL provides the value of the log-likelihood at the optimal point.

Several remarks are in order. The coefficients corresponding to education assortativeness

are in line with the prior literature on marriage—they indicate that as utility decreases as

distance between the education level of the partners increases. Hence, our results suggest

positive assortative mating in education. Additionally, it appears that the penalty in utility

for a higher distance between education levels is higher for women than it is for men. This

may be reconciled with the observation that women account for a larger share of personal

expenditures. Indeed, for a given level of utility and a given education difference, our results

suggest that the woman must receive a higher compensation in terms of consumption than

the man.

An interesting interpretation of these results can be made in terms of substitutability be-

tween education assortativeness and consumption. Indeed, one can use λ and τ to compute

marginal rates of substitution (see, for example Chiappori and al. (2012)): for a man, an



40 A. GALICHON, S. D. KOMINERS, AND S. WEBER

increase of one standard deviation in the education difference must be compensated by a

26% (= 0.87/3.32) increase in consumption to keep constant the level of utility. For women,

a similar computation shows that an increase of one standard deviation in the education

difference must be compensated by a 33% increase in consumption.

The parameter τ weights the gains from consumption in this particular specification of

the utility functions. However, it has also a deeper meaning: it represents the degree of

transferability. (Recall from Section 3.3.3 that we recover the TU case when τ → +∞ and

recover the NTU case as τ → 0.) Hence, our results suggest that the marriage market

considered here is best described by an intermediate model, that is, neither by the classical

TU or NTU frameworks. Although this application is modest as it focus on a relatively

simple model of marriage with education assortativeness and consumption and makes use

of crude expenditure data, it highlights the benefits of our general ITU approach, in terms

of flexibility and implementation.

8. Discussion and perspectives

We have introduced an empirical framework for ITU matching models with unobserved

heterogeneity in tastes. Our framework includes as special cases the classical fully- and

non-transferable utility models, collective models, and settings with taxes on transfers,

deadweight losses, and risk aversion. We have characterized the equilibrium conditions,

provided results on the existence and uniqueness of an equilibrium, described algorithms

to compute the equilibrium, and worked out the maximum likelihood estimation of these

models.

The present contribution brings together a number of approaches. In terms of the tech-

niques used, it builds on concepts from Game Theory, General Equilibrium, and Economet-

rics. In terms of models allowed, it embeds models with and without Transferable Utility.

It also provides an integrated approach for both matching models and collective models.

Lastly, it can also be used in conjunction with reduced-form methodologies, as it allows to

compute the equilibrium outcome’s response to a shock in the matching primitives, e.g. a

demographic shock, and to regress the former on the latter.
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Beyond the class of problems investigated in the present paper, the methods developed

here, based on fixed point theorems for isotone functions, may be more broadly applicable.

In particular, they may be a useful tool for the investigation of matching problems with peer

effects put forward by Mourifié and Siow (2014). They may also prove useful for studying

certain commodity flow problems in trade networks, and may also extend to one-to-many

matching problems. We leave these last two extensions for further work.
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Appendix A. Relating individual and aggregate equilibria

In this Appendix, we establish a precise connection between individual equilibria (defined

in Section 3), and aggregate equilibria (defined in Section 4). It will be useful at some point

to introduce a slightly stronger assumption than Assumption 2, to handle the case when the

frontiers of the bargaining sets are strictly downward sloping. This leads us to formulate:

Assumption 2’. The sets Fij satisfy Assumption 2, and in addition, Dij is strictly in-

creasing in both its arguments for all i and j.

Note that in the NTU case, the frontier of the feasible set is not strictly downward-

sloping, and therefore Assumption 2’ is not satisfied, while it is satisfied for all the other

examples in Section 3.3.

The following result relates the individual and aggregate equilibria.
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Theorem 5. (i) Under Assumptions 1, 2, and 3, let (µ,U, V ) be an aggregate equilibrium

outcome. Then, defining

ui = max
y∈Y
{Uxiy + εiy, εi0} and vj = max

x∈X

{
Vxyj + ηxj , η0j

}
, (A.1)

there is an individual matching µij such that
(
µij , ui, vj

)
is an individual equilibrium out-

come, which is such that µij > 0 implies ui = Uxiy + εiy and vj = Vxyj + ηxj.

(ii) Under Assumptions 1, 2’, and 3, let
(
µij , ui, vj

)
be an individual equilibrium outcome.

Then, defining

Uxy = min
i:xi=x

{ui − εiy} and Vxy = min
j:yj=y

{
vj − ηjx

}
, (A.2)

and µxy =
∑

ij∈I×J µij1 {xi = x}1 {yj = y}, it follows that (µ,U, V ) is an aggregate equi-

librium outcome.

Note that deducing an aggregate equilibrium based on an individual equilibrium (part ii)

requires a slightly stronger assumption than deducing an individual equilibrium based on

an aggregate equilibrium (part i). The NTU case (not covered under Assumption 2’) thus

deserves further investigations, which are carried in Galichon and Hsieh (2016).

Theorem 5 implies that agents keep their entire utility shocks at equilibrium, even when

they could transfer them fully or partially.

Corollary 2. Under Assumptions 1, 2’, and 3, consider a pair of matched individuals i

and j of types x and y respectively. Then the equilibrium payoffs of i and j are respectively

given by ui = Uxy+εiy and vj = Vxy+ηxj, where U and V are aggregate equilibrium payoffs.

Therefore, individuals keep their idiosyncratic utility shocks at equilibrium.

This finding, which carries strong testable implications, was known in the TU case (see

Chiappori, Salanié, and Weiss (2014)). Our theorem clarifies the deep mechanism that

drives this result: the crucial assumption is that the distance function Dij should only

depend on i and j through the observable types xi and yj , and that some transfers are

possible.
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Appendix B. Proofs

B.1. Proof of Lemma 1.

Proof. (i) directly follows from the definition of D. (ii) is straightforward given requirements

(iii) and (iv) of Definition 1. Let us show (iii). Assume (u, v) ≤ (u′, v′). Then by requirement

(ii) of Definition 1, for any z ∈ R, (u′ − z, v′ − z) ∈ Fij implies (u− z, v − z) ∈ Fij . Thus

DF (u, v) ≤ DF (u′, v′), which is the first part of the claim.

Now assume u < u′ and v < v′ and DF (u, v) = DF (u′, v′). Then u − DF (u, v) <

u′−DF (u′, v′) and v−DF (u, v) < v′−DF (u′, v′). But this implies that there exists ε > 0

such that u − DF (u, v) + ε ≤ u′ − DF (u′, v′) and v − DF (u, v) + ε ≤ v′ − DF (u′, v′);

however, as (u′ −DF (u′, v′) , v′ −DF (u′, v′)) ∈ Fij , this implies, still by requirement (ii)

of Definition 1, that (u−DF (u, v) + ε, v −DF (u, v) + ε) ∈ Fij , a contradiction. Thus

DF (u, v) < DF (u′, v′), which completes the proof that DF is �-isotone.

To show point (iv) (DF is continuous), consider (u, v) and (u′, v′), and assume that

v − u ≥ v′ − u′. Then u−D (u, v) ≤ u′ −DF (u′, v′); indeed, assume by contradiction that

u −D (u, v) > u′ −DF (u′, v′), then by summation v −D (u, v) > v′ −DF (u′, v′). By the

same argument as above, this leads to a contradiction; hence, u−D (u, v) ≤ u′−DF (u′, v′).

It is easy to check that v − u ≤ v′ − u′ implies u − D (u, v) ≥ u′ − DF (u′, v′). Hence, in

general

min
(
v′ − v, u′ − u

)
≤ DF

(
u′, v′

)
−DF (u, v) ≤ max

(
u′ − u, v′ − v

)
which shows continuity of DF .

(v) One has DF (u+ a, v + a) = min {z ∈ R : (u+ a− z, v + a− z) ∈ F} by the very

definition of DF , which immediately shows that DF (u+ a, v + a) = a+DF (u, v).

B.2. Proof of Lemma 2.

Proof. The proof is divided in several parts.

First part: let us show that the set of wedges w that can be expressed as w = u − v

for u and v such that DF (u, v) = 0 is an open interval. Consider u, u′, v and v′ such that

D (u, v) = 0 and D (u′, v′) = 0, and (u, v) 6= (u′, v′). Let w = u−v and w′ = u′−v′. Assume
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w.l.o.g u′ > u, then one has necessarily v ≥ v′, hence u′ − v′ > u − v. In this case, let

ut = t (u′ − u)+u and vt = t (v′ − v)+v. Let ũt = ut−D (ut, vt) and ṽt = vt−D (ut, vt), so

that D (ũt, ṽt) = 0. One has ũt− ṽt = ut−vt = t (u′ − v′)+(1− t) (u− v) = tw′+(1− t)w,

which shows that the set of wedges is an interval, denoted I. Let us now show that this

interval is open. Call
¯
w the infimum of the interval, and assume it is finite. Then there

is a sequence (un, vn) such that un is decreasing, vn is increasing, D (un, vn) = 0 and

un − vn →
¯
w. Then by the scarcity of F , un and vn need to remain bounded, hence they

converge in F . Let (u∗, v∗) be their limit; one has D (u∗, v∗) = 0 and u∗ − v∗ =
¯
w. For

any u′ < u∗, one has D (u′, v∗) ≤ 0; hence, by scarcity of F , there is some v′ ≥ v∗ such

that D (u′, v′) = 0. u′ < u∗ and v′ ≥ v∗, thus u′ − v′ < u∗ − v∗ =
¯
w, a contradiction. Thus

¯
w ∈ I. A symmetric argument shows that if the supremum of I is finite, then it belongs in

I. Thus, I is an open interval.

Second part: let us show that U and V are well defined on I. For w ∈ I, there exists by

definition (u, v) such that D (u, v) = 0 and u − v = w. The argument at the beginning of

part (i) implies that (u, v) is unique. Hence U and V are well defined.

Third part: let us show that U is increasing and V is decreasing. Suppose w < w′ and

U (w) ≥ U (w′). Then w−U (w) < w′−U (w′), hence V (w) > V (w′), a contradiction. Thus

U (w) < U (w′), which shows that U is increasing. By a similar logic, V (w) > V (w′), and

V is decreasing.

Fourth part: let us show that U is 1-Lipschitz. Take ε > 0 and assume by contra-

diction u′ > u + ε where u = U (w) and u′ = U (w + ε). Then D (u, u− w) = 0 with and

D (u′, u′ − w − ε) = 0. Then because u′ > u and u′−ε > u, it follows thatD (u′, u′ − w − ε) >

D (u, u− w) = 0, a contradiction. Hence, 0 ≤ U (w + ε) − U (w) ≤ ε, and thus U is 1-

Lipschitz. A similar argument for V completes the proof.

Fifth part: let us show that expression (3.3) holds. By applying point (v) of Lemma 1

twice, once with a = −u and once a = −v, it follows respectively that DF (0, v − u) =

DF (u, v) − u and that DF (u− v, 0) = DF (u, v) − v. Hence, if (u, v, w) are solutions

to (3.2), it follows that u = −DF (0,−w), and thus v = −DF (w, 0). Hence (3.3) holds.

B.3. Proof of Proposition 1.
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Proof. Assume µ is an aggregate equilibrium matching. Then, by definition, there ex-

ists a pair of vectors U and V such that (µ,U, V ) is an aggregate equilibrium outcome.

Thus Dxy (Uxy, Vxy) = 0 for every x ∈ X , y ∈ Y, and µxy = ∂G (U) /∂Uxy and µxy =

∂H (V ) /∂Vxy, which inverts into

Uxy = ∂G∗ (µ) /∂µxy and Vxy = ∂H∗ (µ) /∂µxy, (B.1)

and thus by substitution,

Dxy

(
∂G∗ (µ) /∂µxy, ∂H

∗ (µ) /∂µxy
)

= 0 (B.2)

holds for every x ∈ X , y ∈ Y. Conversely, assume (B.2) holds. Then, defining U and V

by (B.1), one sees that (µ,U, V ) is an aggregate equilibrium outcome.

B.4. Proof of Proposition 2.

Proof. Assume (µ,U, V ) is an aggregate equilibrium outcome. Then Dxy (Uxy, Vxy) = 0 for

every x ∈ X , y ∈ Y, and

µxy = ∂G (U) /∂Uxy = ∂H (V ) /∂Vxy (B.3)

thus, by Lemma 2, there exists a vector (Wxy) such that for every x ∈ X , y ∈ Y,

Uxy = Uxy (Wxy) and Vxy = Vxy (Wxy) , (B.4)

where Uxy and Vxy are defined in (3.3). Thus it follows that Z(W ) = 0. Conversely, assume

that Z(W ) = 0. Then letting U and V as in (B.4), and µ such that µxy = ∂G (U) /∂Uxy, it

follows that (µ,U, V ) is an aggregate equilibrium outcome.

B.5. Proof of Proposition 3.

Proof. Recall that

Zx′y′ (W ) =
∂H

∂Vx′y′
(V (W ))− ∂G

∂Ux′y′
(U (W ))

and, because of Assumption 3, ∂G/∂Ux′y′ (U) is increasing in Ux′y′ , decreasing in Uxy if

either of the conditions x = x′ or y = y′ holds (but not both), a similar conditions holds for

H, and Wxy → Vxy (Wxy) is nonincreasing, while Wxy → Uxy (Wxy) is nondecreasing. At
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the same time, Uxy (Wxy) − Vxy (Wxy) = Wxy, so Uxy and Vxy cannot be stationary at the

same point Wxy.

Proof of (a.1): One has Zx′y′ (W ) = ∂H/∂Vx′y′ (V (W )) − ∂G/∂Ux′y′ (U (W )), thus the

map Wx′y′ → Zx′y′ (W ) is nonincreasing. At the same time, as ∂G/∂Ux′y′ (U) is increasing

in Ux′y′ and ∂H/∂Vx′y′ (V ) is increasing in Vx′y′ and as Uxy and Vxy cannot be stationary

at the same point Wxy, it follows that Wx′y′ → Zx′y′ (W ) is decreasing.

Proof of (a.2): The proof is based on the same logic as above.

Proof of (a.3): When x 6= x′ and y 6= y′, then the quantity ∂H/∂Vx′y′ (V (W )) does not

depend on Wxy and nor does ∂G/∂Ux′y′ (U (W )). Thus Zx′y′ (W ) does not depend on Wxy.

Proof of (b): One has

∑
x′∈X ,y′∈Y

Zx′y′ (W ) =
∑
y′

my′ −
∑
x′

nx′ +
∑
x′

µx′0(U (W ))−
∑
y′

µ0y′(V (W ))

where µx′0 (U) is defined as nx′ −
∑

y′∈Y ∂G (U) /∂Ux′y′ , and µ0y′ (V ) is defined as my′ −∑
x′∈X ∂H (V ) /∂Vx′y′ . But it is easy to check that µx′0 (U) = nx′ Pr(εi0 > maxy′∈Y{Ux′y′+

εiy′}), thus µx′0 (U) is decreasing with respect to all the entries of vector Ux′y′ , y
′ ∈ Y. A

similar logic applies to show that µ0y′ (V ) is decreasing with respect to all the entries of

vector Vx′y′ , x
′ ∈ X . Hence,

∑
x′∈X ,y′∈Y Zx′y′ (W ) is decreasing with respect to any entry

of the vector W .

Remark: Conditions (a.1)–(a.3) express that −Z is a Z-function, while conditions (a)

and (b) together imply that −Z is a M-function. See [48].

B.6. Proof of Theorem 1. The existence part of Theorem 1 is constructive, and consists

in showing that Algorithm 1 converges to a solution of equations (4.6); this convergence in

turns follows from two claims, which are rather classical but included here for completeness.

The uniqueness part relies on the fact that, by a result of Berry et al. (2013), the Gross

Substitute property established in Proposition 3 implies that the excess demand function

Z is inverse antitone, thus injective.

We show that:
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Claim 1. There exist two vectors wl and wu such that wl ≤ wu and

Z (wu) ≤ 0 ≤ Z
(
wl
)
.

Proof. By Assumption 2 (iii), for each x ∈ X , either all the men’s payoffs Uxy are bounded

above or they all converge to +∞. Let X1 be the set of x ∈ X such that for each y ∈ Y,

Uxy (wxy) all converge to +∞ as wxy → w̄xy. For x ∈ X1, let py = nx (1− 1/k) / |Y|,

and let Ukxy = ∂G∗/∂µxy (p). It is easy to see that Ukxy → +∞ , thus V k
xy → −∞. Hence

there exists wxy such that Uxy (wxy) = Ukxy and V k
xy = Vxy

(
wk
)
. Now for x /∈ X1, then for

each y ∈ Y, w̄xy is finite, and Uxy (wxy) all converge to a finite value Ūxy ∈ R. Then, let

Ukxy = Uxy (w̄xy − 1/k) and V k
xy = Vxy (w̄xy − 1/k), so that V k

xy → −∞ and Ukxy → Ūxy ∈ R.

We have thus constructed vectors wk such that wkxy → w̄xy for all x and y, and Vxy
(
wk
)
→

−∞, while Uxy
(
wk
)

converges to a vector of positive numbers. Thus, for k large enough,

setting wu = wk implies Z (wu) ≤ 0. A similar logic implies that there exists wl such that

Z
(
wl
)
≥ 0.

Claim 2. Z is inverse antitone: if Z (w) ≤ Z (w′) for some two vectors w and w′, then

w ≥ w′.

Proof. We show that −Z satisfies the assumptions in Berry et al. (2013), Theorem 1, see

also related results in Moré (1972), Theorem 3.3. We verify the three assumptions in Berry

et al. (2013). Assumption 1 in that paper is met because Z is defined on the Cartesian

product of the intervals (
¯
wxy, w̄xy). Next, by part (a.2) of Proposition 3 above, −Zxy (w)

is weakly decreasing in wx′y′ for x′y′ 6= xy, and letting

Z0 (w) =
∑
y′

my′ −
∑
x′

nx′ −
∑
x∈X
y∈Y

Zxy (w) ,

it follows from part (b) of Proposition 3 above that −Z0 is strictly decreasing in all the

wxy. Thus Assumption 2 and 3 in Berry et al. (2013) are also satisfied, hence −Z is inverse

isotone, Z is inverse antitone.

With these preparations, a proof of Theorem 1 can be provided.

Proof of Theorem 1. We prove existence first, then uniqueness.
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Proof of existence: It is easy to see that Z is continuous, and by the results of Proposi-

tion 3, it is strictly diagonally antitone, and off-diagonally isotone. Existence follows from

Theorem 3.1 in Rheinboldt (1970) jointly with Proposition 3 and Claim 1. The proof there

is based on a constructive argument based on nonlinear Gauss-Seidel iterations, as discussed

in Section 5.2.1.

Proof of uniqueness: As noted in Berry et al. (2013), uniqueness follows from Claim 2 as

in Corollary 1. Indeed, assume Z (w) = Z (w′). Then, by Claim 2, both inequalities w ≥ w′

and w′ ≥ w hold, and thus w = w′.

B.7. Proof of Corollary 1.

Proof. This corollary directly follows from a combination of Proposition 2 and Theorem 1.

B.8. Proof of Theorem 2.

Proof. By combining Theorem 1 with Proposition 1, it follows that Equation (4.6), namely

Dxy

(
∂G∗

∂µxy
(µ) ,

∂H∗

∂µxy
(µ)

)
= 0

has a unique solution. But when Assumption 3 is stengthened into Assumption 3’, then

∂G∗/∂µxy (µ) = log
(
µxy/µx0

)
and ∂H∗/∂µxy (µ) = log

(
µxy/µ0y

)
where µx0 = nx −

∑
y∈Y µxy and µ0y = my −

∑
x∈X µxy. Hence Equation (4.6) rewrites as

Dxy

(
logµxy − logµx0, logµxy − logµ0y

)
= 0

µx0 +
∑

y∈Y µxy = nx

µ0y +
∑

x∈X µxy = my

(B.5)

but Dxy

(
logµxy − logµx0, logµxy − logµ0y

)
= logµxy+Dxy

(
− logµx0,− logµ0y

)
, thus sys-

tem (B.5) rewrites as system (6.2). Conversely, assume
(
µx0, µ0y

)
satisfy the system (6.2).

Then, letting µxy = Mxy

(
µx0, µ0y

)
, Uxy = log

(
µxy/µx0

)
and Vxy = log

(
µxy/µ0y

)
, one has

Mint, Dxy (Uxy, Vxy) = 0 and Uxy = log
(
µxy/µx0

)
and Vxy = log

(
µxy/µ0y

)
, thus (µ,U, V )

is an aggregate equilibrium outcome.
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B.9. Proof of Theorem 3.

Proof. The proof of Theorem 2 is based on the following set of properties of Mxy

(
µx0, µ0y

)
=

exp
(
−Dxy

(
− logµx0,− logµ0y

))
, which are direct consequences of Definition 1 and of

Lemma 1. For every pair x ∈ X , y ∈ Y:

(i) Map Mxy : (a, b) 7→Mxy (a, b) is continuous.

(ii) Map Mxy : (a, b) 7→ Mxy (a, b) is weakly isotone, i.e. if a ≤ a′ and b ≤ b′, then

Mxy (a, b) ≤Mxy (a′, b′).

(iii) For each a > 0, limb→0+ Mxy (a, b) = 0, and for each b > 0, lima→0+ Mxy (a, b) = 0.

Given these properties, the existence of a solution (µx0, µ0y) is essentially an application

of Tarski’s fixed point theorem; we provide an explicit proof for concreteness. We show that

the construction of µ2t+1
x0 and µ2t+2

0y at each step is well defined. Consider step 2t+ 1. For

each x ∈ X , the equation to solve is

∑
y∈Y

Mxy(µx0, µ0y) + µx0 = nx

but the right-hand side is a continuous and increasing function of µx0, tends to 0 when

µx0 → 0 and tends to +∞ when µx0 → +∞. Hence µ2t+1
x0 is well defined and belongs in

(0,+∞). Denoting

µ2t+1
x0 = Fx(µ2t

0.),

we see that F is antitone, meaning that µ2t
0y ≤ µ̃2t

0y for all y ∈ Y implies Fx(µ̃2t
0.) ≤ Fx(µ2t

0.)

for all x ∈ X . By the same token, at step 2t + 2, µ2t+2
0y is well defined in (0,+∞), and we

can denote

µ2t+2
0y = Gy(µ

2t+1
.0 )

where, similarly, G is antitone. Thus, µ2t+2
0. = G ◦ F

(
µ2t

0.

)
, where G ◦ F is isotone. But

µ2
0y ≤ my = µ0

0y implies that µ2t+2
0. ≤ G ◦ F

(
µ2t

0.

)
. Hence

(
µ2t+2

0.

)
t∈N is a decreasing

sequence, bounded from below by 0. As a result µ2t+2
0. converges. Letting µ̄0. be its limit,

and letting µ̄.0 = F(µ̄0.), it is not hard to see that
(
µ̄0x, µ̄0y

)
is a solution to (6.2).
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B.10. Proof of Theorem 4.

Proof. Rearranging Expression (6.7) yields:

l (θ) = 2
∑
x∈X
y∈Y

µ̂xy logµθxy +
∑
x∈X

µ̂x0 logµθx0 +
∑
y∈Y

µ̂0y logµθ0y,

but log µθxy = −Dxy

(
− logµθx0,− logµθ0y

)
, thus letting uθx = − logµθx0 and vθy = − logµθ0y

yields

−l (θ) = 2
∑
x∈X
y∈Y

µ̂xyDxy

(
uθx, v

θ
y

)
+
∑
x∈X

µ̂x0u
θ
x +

∑
y∈Y

µ̂0yv
θ
y.

B.11. Proof of Theorem 5.

Proof. Proof of part (i): Let (µ,U, V ) be an aggregate equilibrium matching, and let ui

and vj as in (A.1). By definition of these quantities, one has ui − εiy ≥ Uxy and vj −

ηxj ≥ Vxy, thus Dxy

(
ui − εiy, vj − ηyj

)
≥ Dxy (Uxy, Vxy) = 0. Further, ui ≥ εi0 and

vj ≥ η0j , hence the stability condition holds. Let us show that one can construct µij so

that
(
µij , ui, vj

)
is feasible. For x ∈ X and y ∈ Y, let Ixy be the set of i ∈ I such that

xi = x and y = arg maxy∈Y0 {Uxy + εiy, εi0}. Similarly, let Jxy be the set of j ∈ J such that

yj = y and x = arg maxx∈X0

{
Vxy + ηxj , η0j

}
. The mass of Ixy is ∂G (U) /∂Uxy and the

mass of Jxy is ∂H (V ) /∂Vxy. The equilibrium condition µ = ∇G (U) = ∇H (V ) implies

therefore that the mass of Ixy and the mass of Jxy coincide. One can therefore take any

assignment of men in Ixy to women in Jxy. Let µij be the resulting individual assignment.

If µij > 0, then i ∈ Ixiyj and j ∈ Jxiyj , therefore ui = Uxy + εiy and vj = Vxy + ηxj , thus

Dxy

(
ui − εiy, vj − ηyj

)
= Dxy (Uxy, Vxy) = 0. Assume i is unassigned under

(
µij
)
; then for

all y ∈ Y, ui > Uxy + εiy, and thus ui = εi0. Similarly, if j is unassigned under
(
µij
)
, then

vj = η0j . Hence,
(
µij , ui, vj

)
is an individual equilibrium.

Proof of part (ii): Now assume
(
µij , ui, vj

)
is an individual equilibrium. Then for all i

and j, the stability condition

Dxiyj

(
ui − εiy, vj − ηjx

)
≥ 0,



COSTLY CONCESSIONS 51

holds, and holds with equality if µij > 0. Hence, for all pairs x and y, we have the inequality

min
i:xi=x

min
j:yj=y

{
Dxiyj

(
ui − εiy, vj − ηjx

)}
≥ 0,

with equality if µxy > 0, that is, if there is at least one marriage between a man of type x

and a woman of type y. Taking U and V as (A.2), and making use of the strict monotonicity

of Dxy in both its arguments, matching µ ∈ M is an equilibrium matching if inequality

Dxy (Uxy, Vxy) ≥ 0 holds for any x and y, with equality if µxy > 0. By definition of U and

V , one has

ui ≥ max
y
{Uxy + εiy, εi0} and vj ≥ max

x∈X

{
Vxyj + ηxj , η0j

}
.

Assume one of these inequalities holds strict, for instance ui > maxy {Uxy + εiy, εi0}. Then

ui − εiy > Uxy. Because D was assumed strictly increasing, this implies that for all j

Dxy

(
ui − εiy, vj − ηyj

)
> Dxy

(
Uxy, vj − ηyj

)
≥ Dxy (Uxy, Vxy) ≥ 0

thus for all j, µij = 0. Therefore i is single, but ui > εi0 yields a contradiction. Now

Assumption 3 implies µxy > 0 for all x and y, thus Dxy (Uxy, Vxy) = 0.

B.12. Proof of Corollary 2.

Proof. Let
(
µij , ui, vj

)
be an individual outcome. By part (ii) of Theorem 5, the aggregate

outcome (µ,U, V ) is such that

Uxy = min
i:xi=x

{ui − εiy} and Vxy = min
j:yj=y

{
vj − ηjx

}
,

hence Uxy ≥ ui−εiy and Vxy ≥ vj−ηjx, butDxy (Uxy, Vxy) = 0 andDxy

(
ui − εiy, vj − ηjx

)
=

0, thus, by Assumption 2’, Uxy = ui − εiy and Vxy = vj − ηjx. Hence ui = Uxy + εiy and

vj = Vxy + ηjx.
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