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1 Introduction

There is growing evidence that firms matter for worker earnings. In a survey of the empirical
literature concerned with estimation of worker and firm fixed effects on earnings, Card et al.
(2018) summarize that firm effects explain around 20% of the variation in worker earnings.1 A
standard explanation for this proposed by the literature is that employers are heterogeneous in
some innate characteristics – productivity and amenities, for example – with this heterogeneity
then passing through into differences in earnings of otherwise similar workers. At the same time,
a separate, emerging literature has documented that a substantial share of firm heterogeneity
is explained by differences in the connections that firms form with each other in a production
network. For instance, using firm-to-firm transactions data for Belgium, Bernard et al. (2019)
show that variation in both the number and characteristics of a firm’s customers and suppliers
explains more than half of the variation in firm sales. Motivated by these two facts – that
network heterogeneity matters for firm heterogeneity and firm heterogeneity matters for earnings
heterogeneity – we investigate in this paper the importance of the production network structure
for earnings inequality, both theoretically and empirically.

This research agenda is important for at least two reasons. First, many countries have
witnessed secular increases in earnings inequality, largely driven by growing inequality between
firms (Song et al. (2019)). At the same time, technological improvements have led to a greater
role for value chains in production (Antràs and de Gortari (2020)). A quantitative economic
framework capturing both earnings inequality and production network linkages is needed to
study these developments in parallel. This will afford a better understanding of how changes in
the structure of the production network affect both differences in earnings across workers in the
cross-section and the volatility of these earnings over time. Second, many countries in both the
developed and developing world have responded to growth in earnings inequality by adopting
policies that aim to mitigate these trends, such as minimum wage requirements. Yet, little is
known about how network linkages matter for the effects of such policy initiatives, despite the
fact that these linkages are fundamental to the organization of production.

We shed light on these issues by studying a panel dataset from Chile that combines matched
employer-employee records with firm-to-firm transactions data. This allows us to observe both
the earnings for every employee at each firm in our data and the buyers and sellers of every firm.
We use the data to structurally estimate the parameters of a quantitative general equilibrium
model, which features imperfectly competitive labor markets and production network linkages
between firms. Counterfactual simulations of the model then allow us to quantify the impor-
tance of the production network for earnings inequality, earnings volatility, and the effects of a

1Bonhomme et al. (2020) show that correcting for the well-known limited mobility bias in these estimates
lowers the firm effect share of earnings variance, but increases the importance of the covariance between worker
and firm effects (explaining 15% of earnings variance among US workers).
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minimum wage policy. The outline of our approach is as follows.
First, in section 2, we develop the theoretical framework. We build on the model of labor

markets in Lamadon et al. (2019), where workers are heterogeneous in ability and firms have
wage-setting power arising from workers’ idiosyncratic preferences for employment at different
firms.2 The model also allows for employer amenities that vary at the worker-firm level and
complementarties in production between worker ability and firm technology, which drive the
heterogeneous sorting of workers to firms. We enrich this by introducing a production structure
in which firms produce output using both labor and materials (intermediate inputs), where the
latter are sourced from suppliers in a production network as in Huneeus (2019) and Lim (2019).
Firms are heterogeneous in the sets of customers and suppliers they are connected to in the
network, as well as in total factor productivities (TFPs), labor productivities, and buyer-seller
productivities (relationship capabilities).

This framework delivers an earnings equation that nests a well-known class of reduced-
form earnings models, such as those studied by Abowd et al. (1999) and Bonhomme et al.
(2019). Given our structure, the firm effects (wage premia) in this earnings equation depend
endogenously on both firm productivities and the set of firm-to-firm linkages in the production
network. In particular, we show that the relevance of the production network for the firm effect
of a firm i at time t, Wit, can be summarized by two sufficient statistics. First, a demand shifter
Dit, which captures both the number of customers that the firm is connected to and the demand
received from each of these customers. Second, a materials price index Zit, which captures both
the number of suppliers that the firm is connected to and the price charged by each of these
suppliers. Our model hence forges a direct link between the structure of the network and worker
outcomes.3

To illuminate the key mechanisms in the model and the quantitative findings that follow
from it, we then derive three comparative static results, which are presented in section 3. First,
we characterize how changes in demand Dit and input price indices Zit that firms face in the
production network affect worker earnings through a combination of scale and substitution ef-
fects (Proposition 1). An increase in demand (∆Dit > 0) generates a positive scale effect on
earnings by directly raising the marginal revenue product of labor (MRPL) for all workers at
a firm. A fall in input costs (∆Zit < 0), on the other hand, generates both a positive scale
effect and a substitution effect, where the latter occurs as firms adjust the ratio of labor to
materials used in production. Lower input costs can therefore lead to either higher or lower

2Employer differentiation as a source of labor market has been studied extensively in the literature. See Rosen
(1986), Manning (2003), Sorkin (2018), Card et al. (2018), and Chan et al. (2019), just to name a few examples.

3Instead of employer differentiation, labor market power could also arise from concentration (Berger et al.
(2019), Jarosch et al. (2019)) or search frictions (Burdett and Mortensen (1998), Postel-Vinay and Robin (2002),
Taber and Vejlin (2018)). Like ours, most of these models imply that wages are a markdown below the marginal
revenue product of labor (MRPL) at a firm, where the firm effect on earnings is the component of the MRPL that
is common to all workers at a firm. Hence, the mechanisms that we highlight regarding the interaction between
the production network and worker earnings are relevant for a broader class of models of the labor market.
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earnings, depending on the comparison of two key elasticities: the price elasticity of demand σ

(which determines the strength of scale effects) and the elasticity of substitution between labor
and materials ε (which determines the strength of substitution effects). Second, we examine the
passthrough from firm productivity shocks to worker earnings, showing that first-order changes
in earnings can be characterized using only knowledge of {σ, ε}, the labor supply elasticity γ,
and observable network and factor cost shares (Proposition 2). Third, we establish a novel link
connecting between-firm changes in earnings with within-firm changes in employment compo-
sition (Proposition 3). Through this mechanism, increases in between-firm earnings inequality
lead to reductions in within-firm earnings inequality, due to general equilibrium effects in labor
markets.

We then turn toward identification of the model parameters in section 4. We first state the
assumptions needed for identification. These restrictions follow leading papers in the respective
literatures on firm labor market power (Lamadon et al. (2019)), estimation of worker and firm
effects on earnings (Bonhomme et al. (2019)), firm-to-firm networks (Bernard et al. (2019)), and
production function estimation (Doraszelski and Jaumandreu (2018)). Under these assumptions,
we formally establish identification results for each model parameter.

An important contribution of this paper is the development of a novel approach for the
identification of the labor-materials substitution elasticity ε. It is well-known in the literature
on production function estimation that ε can be identified from the relationship between firms’
relative expenditures on labor versus materials and the relative prices of these inputs. Unlike
standard models that assume homogeneous labor and material inputs, however, firms in our
setting pay heterogeneous wages to different workers and heterogeneous prices to suppliers of
different inputs. In this environment, we show that one should measure input costs using theo-
retical price indices for labor and materials that reflect the aggregation of these heterogeneous
input costs. Our model further shows that the labor and material price indices correspond
exactly to the firm effect on earnings Wit and the materials price index Zit, respectively. In
particular, Wit can be identified from the decomposition of earnings into worker and firm effects
as in Lamadon et al. (2019) and Zit can be identified from the decomposition of firm-to-firm
transaction values into buyer and seller effects as in Bernard et al. (2019), where the seller ef-
fects reflect the marginal costs and hence output prices for every supplier of a firm. Given these
theory-consistent price indices, one can then identify ε by applying the instrumental variables
strategy of Doraszelski and Jaumandreu (2018), where the instruments correspond to, among
other things, lagged input prices Wi,t−s and Zi,t−s for s > 0. This identification strategy for
ε hence leverages a key feature of our data, since it requires linked employer-employee and
firm-to-firm transaction records.

The remaining model parameters are then identified as follows. First, the labor supply
elasticity is identified from the passthrough of firm wage bill shocks to changes in worker earnings,
since this parameter controls the extent of firm labor market power. Second, the price elasticity
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of demand is identified from an adjusted measure of profit-sales ratios, as this parameter governs
the markups that firms charge. Third, worker abilities and production complementarities are
identified from worker-firm effects on earnings, following the approach in Bonhomme et al.
(2019). Fourth, firm amenities are identified from residual variation in employment shares of each
worker ability type that is not explained by observed variation in wages. Fifth, firm relationship
capability is identified from variation in the share of a firm’s sales in the production network
(as opposed to sales to final consumers), since this parameter affects only the productivity of
relationships with other firms in the network. Sixth, labor productivity is identified from residual
variation in relative expenditures on labor versus materials that is not explained by variation in
the relative price indices of these inputs. Finally, TFP is identified from firm effects on earnings,
since this parameter directly determines the MRPL of a worker type at a firm, given all other
determinants of the MRPL described above.

In section 5, we then take the model to data and implement estimation of its parameters,
building on our identification results. We begin by providing a detailed description of the data
that we rely on for our analysis. The highlights of these data are two linked administrative
datasets from the Chilean Internal Revenue Service. First, matched employer-employee records
(2005-2018), providing information about labor income (wages and other measures) for every
worker in the formal private sector. Second, value-added tax records (2005-2010), in which firms
report transaction values with each of their customers and suppliers. To our knowledge, there
are only three other papers that study linked employer-employee and firm-to-firm transactions
data. Adao et al. (2020) use data from Ecuador to measure the effects of international trade
on individual-level factor prices, while Demir et al. (2018) study the effects of trade-induced
product quality upgrading on wages in Turkey. Both of these analyses assume a market price
for skill and focus on the effects of trade shocks. In contrast, we allow for imperfect competition
in labor markets and use our data to speak to the role of the production network itself in shaping
earnings inequality. Finally, Alfaro-Ureña et al. (2020) adopt an event study research design to
examine the effects on worker earnings in Costa Rica when a local firm starts interacting with
multinationals. In contrast, we use our data to address both worker-level earnings and aggregate
outcomes such as earnings inequality, which requires a general equilibrium model.

Next, we discuss our estimation results, the highlights of which can be summarized as follows.
First, we estimate an elasticity of substitution between labor and materials of 1.5, indicating
gross substitutability of these two inputs. Second, we estimate a labor supply elasticity of 5.5,
which is consistent with other estimates in the literature (for example, see Staiger et al. (2010),
Azar et al. (2019), Kline et al. (2019), Lamadon et al. (2019), Dube et al. (2019), and Kroft
et al. (2019)). Third, we estimate a price elasticity of demand equal to 4.2. Combined with the
preceding result, this implies that reductions in input costs lead to higher wages (as established
in Proposition 1). Fourth, we find that the variance of firm effects on earnings explains around
11% of total log earnings variance across workers, while the covariance between firm and worker
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effects explains 20%. This is consistent with similar estimates in the literature and confirms
an important role for firms in determining worker earnings in our data. Fifth, in decomposing
firm-to-firm transactions into buyer and seller effects, we find that the former account for 12%
of total variation in log transaction values while the latter account for 34%. These shares are
similar to those reported by Bernard et al. (2019) using Belgian data (approximately 13% and
26% respectively).

Our empirical results also indicate substantial heterogeneity in firm-to-firm matching in
the network. Two features in particular are important for understanding the effects of this
heterogeneity on earnings inequality. On one hand, larger, higher-paying, and more productive
firms tend to form more connections with buyers and suppliers. This heterogeneity in the
extensive margin of the network therefore amplifies heterogeneity in own-firm characteristics.
On the other hand, we observe negative assortative matching on firm sales, employment, TFP,
and degree (number of customers or suppliers). For example, the average TFP of a firm’s
customers or suppliers is negatively correlated with the firm’s own TFP. This heterogeneity in
the intensive margin of the network therefore dampens heterogeneity in own-firm characteristics.
Hence, heterogeneity in the production network overall does not necessarily make firms more
different from each other and does not mechanically induce greater earnings inequality. Rather,
how network heterogeneity affects earnings inequality is a quantitative question.

Finally, in section 6, we use the estimated model to investigate the importance of the pro-
duction network for worker earnings through a series of counterfactual simulations. We examine
three sets of exercises. First, we quantify the share of earnings variance that is attributable to
heterogeneity in each set of primitives in our model: worker abilities, firm productivities, firm
amenities, and production network linkages. This extends the usual earnings variance decom-
position into worker and firm effects by accounting for the structural dependence of firm effects
on underlying primitives. Our novel finding is that network heterogeneity accounts for 21%
of earnings variance, with upstream heterogeneity in matching with suppliers accounting for
12% and downstream heterogeneity in matching with customers accounting for 9%. In contrast,
own-firm productivities and amenities jointly account for 12% of earnings variance. Hence, we
find that heterogeneity in the production network is in fact a key driver of earnings inequality.

Second, we quantify the importance of network linkages for earnings volatility. We do this by
estimating the stochastic processes for firm TFP and labor productivity, simulating productivity
shocks from these processes, and leveraging our analytic characterization of passthrough from
firm productivity shocks to worker earnings. We find that indirect passthrough of shocks to a
firm’s customers and suppliers in the production network explains between 20-25% of earnings
volatility, depending on worker ability type, with own-firm productivity fluctuations explaining
the remainder. This result contributes to the empirical literature studying the relationship
between firm shocks and worker earnings (for example, Guiso et al. (2005) and Chan et al.
(2021)) by extending the analysis to account for passthrough via the network. It also builds on
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work by Dhyne et al. (2020), who show that the passthrough from foreign demand shocks to a
firm’s revenue depends not only on the firm’s direct exposure to exports, but also on its indirect
exposure through domestic network linkages.

Lastly, we examine a minimum wage (MW) application by simulating an equilibrium under
a wage floor equal to the 20th percentile of earnings in the baseline equilibrium. This exercise
is similar to the study of MW policies by Haanwinckel (2020), but we extend the analysis to
consider the role of the production network. Our counterfactual findings indicate that this
policy induces a reallocation of low-ability workers from small to large firms, driven by the exit
of small firms from the labor markets for these workers, consistent with findings in Dustmann
et al. (2020). We also find that this policy reduces the variance of log earnings by 18.6%, with
earnings for workers that are paid the MW at the smallest quintile of firms increasing by around
12%. Furthermore, we find important within-firm spillover effects on workers that earn above
the MW, with earnings for these workers increasing by around 3.5% at the smallest quintile of
firms.4 We highlight two findings on the importance of the production network for these effects.
The first is a positive one: a firm’s ability to respond to the MW policy by substituting materials
for labor explains 40% of the spillover effects on unconstrained worker earnings. The second
result is a negative one accompanied by an important insight. Consistent with the empirical
literature, we find that the MW policy increases producer prices at the most constrained firms by
around 1.5%. However, propagation of these effects through network linkages is quantitatively
negligible, because the firms that are most likely to be constrained by the wage floor also tend
to be the least important buyers and sellers in the production network.5

2 Model

The economy is populated by a set of workers ΩL and a set of firms ΩF . Workers are heteroge-
neous in a characteristic that we refer to as ability, denoted by a, with an exogenous measure of
each ability type denoted by L (a) and the set of abilities denoted by A ⊂ Rd+. The theoretical
results established in this section do not require restrictions on the dimension d of the worker
ability space.6 Firms are also heterogeneous in a variety of characteristics that we specify below.
While the model allows for dynamics, all meaningful economic decisions can be analyzed stat-
ically. Nonetheless, estimation of the model will involve panel data and hence in anticipation
of this, we index (discrete) time by t to make explicit the variables that are allowed to vary

4These spillovers are distinct from the spillovers emphasized by Engbom and Moser (2018), which occur
between firms.

5In contrast, existing research has shown that network linkages can be important for propagating shocks that
affect sectors or firms more broadly and not just those that are relatively unimportant buyers or sellers. See for
example Caliendo et al. (2017), Baqaee and Farhi (2019, 2020), Lim (2019), and Huneeus (2019).

6When taking the model to data, we will assume d = 2 with worker ability comprised of a time-invariant and
time-varying component.
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temporally.

2.1 Labor market

Firms and workers interact in the labor market as follows. Each firm i posts a wage wit (a) that
is conditional on worker ability a. We take the price of final consumption that workers face as
the numeraire, hence wages should be interpreted in real terms. Each worker observes all wage
offers for her ability type and chooses an employer to maximize utility, where the utility of a
worker with ability a employed at firm i is given by:

uit (a) = logwit (a) + log τt + log gi (a) + β−1εit (2.1)

In addition to receiving labor income, workers are also residual claimants to firm profits, which
are rebated through a lump-sum income transfer τt that is independent of employer. Workers
also derive utility from amenities gi (a) offered by firm i and idiosyncratic preferences εit for
employment firm i, with β an inverse measure of the preference dispersion across firms.

We highlight several important features of this utility specification. First, lump-sum transfers
τt are paid to workers in proportion to their income. This is necessary to ensure that transfers
do not affect the sorting of workers across firms. Second, firms have complete information about
the ability of every worker but cannot observe idiosyncratic preferences εit. Hence, wages are
conditioned only on ability, which will imply the existence of inframarginal workers at every firm
who enjoy positive rents from their employment. Third, differences in amenities gi (·) allow for
vertical differentiation across potential employers, while differences in idiosyncratic preferences
εit introduce horizontal differentiation. The former rationalizes heterogeneity in compensating
differentials across firms for workers of a given ability, while the latter is the source of labor
market power for firms. Fourth, we follow the literature on discrete choice and assume that
idiosyncratic preferences are characterized as follows.

Assumption 2.1. The distribution of idiosyncratic preferences across workers, εt ≡ {εit}i∈ΩF ,
is a multivariate Gumbel distribution with cumulative distribution function:

Fε (εt) = exp

−
∑
i∈ΩF

e
− εit

ρ

ρ (2.2)

where ρ ∈ (0, 1].

The parameter ρ controls the correlation of idiosyncratic preferences across firms: as ρ ap-
proaches zero, workers view all firms as perfect substitutes, whereas as ρ approaches one, id-
iosyncratic preferences across firms become independent random variables. Note also that As-
sumption 2.1 imposes structure on the cross-sectional distribution of εt but does not otherwise
restrict its time-series properties.
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Under Assumption 2.1, the probability that a worker with ability a chooses to work at firm
i is given by:

Pit (a) =
[
gi (a)wit (a)

It (a)

]γ
(2.3)

where γ ≡ β/ρ. Hence, labor supply is more elastic when preference shocks are less dispersed or
more correlated. In what follows, only γ will be of interest and not β or ρ separately. The term
It (a) is an aggregate of wage and amenity values offered by all firms in the labor market for
workers of ability a, which we henceforth refer to as the labor market index for these workers:

It (a) ≡

 ∑
i∈ΩF

[gi (a)wit (a)]γ
 1
γ

(2.4)

Appealing to a law of large numbers, the total supply of workers of ability a for firm i can then
be written as:

Lit (a) = κit (a)wit (a)γ (2.5)

where κit (a) is a firm-specific labor supply shifter:

κit (a) ≡ L (a)
[
gi (a)
It (a)

]γ
(2.6)

We further assume that the cardinality of the set of firms ΩF is large enough such that each
firm views itself as atomistic in the labor market. In choosing wages for workers of any ability
a ∈ A, each firm thus views the labor market index It (a) as invariant to its own choices. Hence,
equation (2.5) implies that every firm behaves as though it faces an upward-sloping labor supply
curve with a constant elasticity γ that is common to all firms and worker ability types.

2.2 Final demand

Workers use their income to finance consumption, with consumption utility derived from a
constant elasticity of substitution (CES) aggregate of products produced by all firms in the
economy. For a worker of ability a employed at firm i, this is given by:

vit (a) =

 ∑
j∈ΩF

cijt (a)
σ−1
σ

 σ
σ−1

(2.7)

where cijt (a) denotes the worker’s consumption of firm j’s output and σ > 1 denotes the
elasticity of substitution across products. Since we take the unit price of the final consumption
aggregate in equation (2.7) as the numeraire, consumption utility can also be expressed as
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vit (a) = wit (a) τt, which corresponds to the first two terms in the utility specification (2.1).7

Aggregate final demand for firm i′s output Cit ≡
∑
j∈ΩF

∑
a∈A cjit (a)Ljt (a) is then:

Cit = Etp
−σ
Fit (2.8)

where pFit is the price of firm i’s output for final sales and Et is aggregate consumer income:

Et =
∑
i∈ΩF

∑
a∈A

wit (a)Lit (a) +
∑
i∈ΩF

πit (2.9)

with πit denoting profit earned by firm i. Note that Et is also equivalent to aggregate value-added
in the economy.

2.3 Production technologies

Firms produce output using labor and materials. Combining Lit (a) workers of ability a with
Mit (a) units of materials at firm i produces f [φit (a)Lit (a) ,Mit (a)] units of output, where
φit : A → R+ maps worker ability into productivity. We allow the labor productivity function
φit to vary by firm, which will capture potential worker-firm complementarities in production.
Total output of firm i is then a linear aggregation of output produced by workers of all abilities:

Xit = Tit
∑
a∈A

f [φit (a)Lit (a) ,Mit (a)] (2.10)

where Tit denotes total factor productivity (TFP) of firm i. The production function f satisfies
the following standard properties.

Assumption 2.2. The production function f is: (i) strictly increasing in both arguments;
(ii) strictly concave in both arguments; and (iii) homogeneous of degree one.

Furthermore, we assume that labor productivity can be decomposed as follows.

Assumption 2.3. Productivity of ability a workers at firm i is of the form φit (a) = φi (a)ωit.

In other words, we assume that any worker-firm complementarities are time-invariant, with all
time variation in labor productivity accounted for by ωit, which we henceforth refer to simply
as labor productivity of firm i. This assumption will be important for identification of the
productivity terms.

While firms hire workers in the labor market as described in section 2.1, materials are sourced
through firm-to-firm trade in the production network. We denote the set of firm i’s customers
and suppliers by ΩC

it ⊂ ΩF and ΩS
it ⊂ ΩF respectively. Where convenient for exposition, we will

7In other words, the indirect consumption utility function is vit (a) = wit(a)τt
Pt

, where Pt ≡
(∑

i∈ΩF p
1−σ
Fit

) 1
1−σ

is the unit price of the final consumption bundle and we normalize Pt = 1.
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also describe the production network in terms of a matching function mijt, which is equal to 1
if j ∈ ΩS

it and 0 otherwise. Materials for firm i are then aggregated by combining inputs from
all of its suppliers using a CES technology:

Mit =

 ∑
j∈ΩSit

ψ
1
σ
ijt (xijt)

σ−1
σ


σ
σ−1

(2.11)

where xijt denotes the quantity of inputs purchased by i from j and ψijt is a relationship-
specific productivity shifter. As is standard in the literature, we assume the same elasticity of
substitution across products in equation (2.11) as in the consumption utility function (2.7). This
simplifies the firm’s profit maximization problem as it ensures that both final and intermediate
demand have the same price elasticity. The total allocation of materials to a firm’s workers must
then be equal to total materials sourced by the firm:

∑
a∈A

Mit (a) da = Mit (2.12)

Note that the production network is not restricted to be bipartite: firms can simultaneously
be buyers and sellers. However, we treat the set of active buyer-seller relationships in the
economy as exogenous. This allows us to focus on how labor market outcomes are determined
conditional on a given production network structure. In the counterfactual simulations described
below, we then study how changes in the production network structure alter these labor market
outcomes.8

2.4 Output market structure and profit maximization

We assume a market structure of monopolistic competition in output markets: each firm in the
economy produces a unique product and sets prices for each of its customers taking the prices
set by all other firms as given. Demand by firm i for inputs from firm j then takes the standard
form implied by the CES production technology (2.11):

xijt = ∆itψijtp
−σ
ijt (2.13)

8The introduction of imperfect labor market competition complicates the modeling of endogenous production
network formation because it implies that firms face increasing marginal costs of production. Hence, the incentive
for a firm to sell to one customer depends on its existing set of customers. This violates the key assumptions
needed for tractability in existing models of endogenous production network formation (e.g. Huneeus (2019) and
Lim (2019)).
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where pijt is the price charged by seller j to buyer i. The term ∆it is a firm-specific intermediate
demand shifter that we refer to as network demand:

∆it = EMit (Zit)σ−1 (2.14)

where EMit is total material cost and Zit is the unit cost of materials for firm i, both of which
are characterized below.

As in the labor market, we assume that firms behave atomistically in the output mar-
ket. Hence, in choosing output prices, firms take as given the network demands of each of
its customers and perceive a constant price elasticity of demand equal to −σ. Note that the
upward-sloping labor supply curves faced by each firm imply that marginal costs of production
are increasing in output. Hence, a firm’s relationships with each of its customers are inherently
interlinked: a reduction in the price charged to one customer increases demand and hence raises
both output and marginal cost, which in turn affects the choice of prices charged to other cus-
tomers. However, even though we allow firms to charge different prices to different customers,
the following result establishes that it is never optimal for them to do so.9

Claim 1. The profit-maximizing price charged by a firm i to each of its customers j (including
final consumers) does not vary across customers:

pjit = pit, ∀j ∈ ΩC
it ∪ {F}

Intuitively, each firm maximizes profits by choosing prices such that marginal revenue from
each customer is equal to marginal cost. Since demand features a constant and common price
elasticity of −σ, marginal revenue is proportional to price. Furthermore, even though marginal
cost is increasing, it depends only on total output of the firm and hence is common across
customers. As a result, each firm optimally chooses to charge a common price to each of its
customers in equilibrium.10

With this result, we can express total demand for firm i’s output as:

Xit = Ditp
−σ
it (2.15)

where Dit is a demand shifter for the firm given by the sum of final demand (common to all
firms) and the network demands of the firm’s customers:

Dit = Et +
∑
j∈ΩCit

∆jtψjit (2.16)

9Proofs of all claims and propositions are relegated to Section A of the appendix.
10In recent work, Kikkawaa et al. (2020) develop a model of firm-to-firm trade with oligopolistic competition

in output markets that features buyer-seller specific markups, while abstracting from imperfect competition in
factor markets.
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Similarly, the unit cost of materials can be expressed as:

Zit =

 ∑
j∈ΩSit

ψijtΦjt


1

1−σ

(2.17)

where Φit is the network productivity of firm i, an inverse measure of the firm’s price:

Φit ≡ p1−σ
it (2.18)

Finally, we can now write the profit-maximization problem for firm i concisely as a choice over
its production inputs:

πit = max
{wit(a),Mit(a)}a∈A

{
D

1
σ
itX

σ−1
σ

it −
∑
a∈A

wit (a)Lit (a)− Zit
∑
a∈A

Mit (a)
}

(2.19)

subject to the labor supply curves (2.5) and production technology (2.10). Note that the unit
material cost Zit given by equation (2.17) already reflects the firm’s optimal choice of inputs
across its suppliers.

2.5 Wage determination

Wages are determined by the solution to the firm’s profit maximization problem. First, note
that since the price of materials is invariant with respect to worker ability, the marginal rev-
enue product of materials must be equalized across worker ability types in equilibrium. Hence,
materials are allocated to workers in proportion to their productivity:

Mit (a) = νitφi (a)ωitLit (a) (2.20)

where νit is an endogenous variable equal to materials per efficiency unit of labor at firm i.
The first-order condition for wit (a) in the firm’s profit maximization problem then allows us

to express equilibrium wages as:

wit (a) = ηφi (a)Wit (2.21)

where we have defined η ≡ γ
1+γ for brevity. Equation (2.21) states the familiar result that

wages are a constant markdown η ∈ (0, 1) over the marginal revenue product of labor (MRPL)
of the respective worker types, φi (a)Wit. Note that in the limit as labor supply becomes
infinitely elastic (γ → 1), the markdown η approaches unity as in the benchmark with perfectly
competitive labor markets. The component of wages that is common to all workers employed
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at firm i, Wit, is given by:
Wit = 1

µ
D

1
σ
itX

− 1
σ

it ωitTitfL (1, νit) (2.22)

where fL denotes the derivative of f with respect to its first argument and we have defined
µ ≡ σ

σ−1 for brevity. We henceforth refer to Wit as the firm-level wage.
Similarly, the first-order condition for materials implies:

Zit = 1
µ
D

1
σ
itX

− 1
σ

it TitfM (1, νit) (2.23)

where fM denotes the derivative of f with respect to its second argument. Equilibrium output
for firm i can also be expressed as:

Xit = Titf (1, νit) L̄it (2.24)

where L̄it ≡
∑
a∈A φi (a)ωitLit (a) is the total efficiency units of labor hired by the firm. This

can be written as:

L̄it = (ηWit)γ ωitφ̃it (2.25)

where we define φ̃it as the sorting composite for firm i:

φ̃it ≡
∑
a∈A

κit (a)φi (a)1+γ (2.26)

since this varies across firms only due to primitives that affect differential sorting of worker types
across firms (gi (·) and φi (·)).

Given the labor supply shifters κit (·) (which are determined by equilibrium in labor mar-
kets) and the network statistics {Dit, Zit} (which are determined by equilibrium in output mar-
kets), equations (2.22)-(2.24) define a system of three equations in the three firm-level variables
{Wit, νit, Xit}. The solution to this system determines the firm-level wage Wit and hence the
wage of every worker employed at firm i. This system of equations plays a key role in the model
since it mediates the interaction between the production network and the labor market for each
firm. We study the properties of this system in more detail below in section 3.

2.6 Sales, profits, and costs

Anticipating the empirical application of the theory, we also derive expressions in the model for
observables in the data. In particular, sales, profits, labor costs, and material costs for firm i
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are given respectively by:

Rit = DitΦit (2.27)

πit = DitΦit

[ 1
σ

+ 1− η
µ

[
fL (1, νit)
f (1, νit)

]]
(2.28)

ELit = ηWitL̄it (2.29)

EMit = ZitνitL̄it (2.30)

while sales from firm j to firm i can be written concisely in terms of the buyer’s network demand,
the seller’s network productivity, and relationship-specific productivity:

Rijt = ∆itΦjtψijt (2.31)

Note from equations (2.27) and (2.28) that the ratio of firm profits to sales is variable, which is
a departure from standard models with constant returns to scale in production (where η = 1).

2.7 Welfare

Finally, we present a measure of welfare. Aggregating utility (2.1) over workers of a given ability
type and accounting for the optimal sorting of workers to firms gives us the following measure
of welfare for workers at each firm.

Claim 2. The average utility of workers of ability a that are employed at firm i is:

ūit (a) = log It (a) + log τt + const. (2.32)

where the value of the transfer τt is equal to the aggregate ratio of value-added to labor income:

τt = Et∑
i∈ΩF E

L
it

(2.33)

Note that expected utility for a given worker type is equalized across firms in equilibrium, which
is a standard result that follows from the distributional assumption over workers’ idiosyncratic
preferences in Assumption 2.1.

3 Comparative Static Results

Before taking the model to data, we develop several comparative static results to highlight the
mechanisms through which the production network and labor market interact. We present these
results in two sections. Section 3.1 studies comparative static results treating wages wit (a) as
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the object of interest. Section 3.2 then discusses comparative statics focusing on the composition
of employment within a firm.

3.1 Wages

First, we examine the determinants of the wages that are offered by a firm. To do so, we study
the system of equations (2.22)-(2.24) highlighted in section 2.5. Recall that this determines the
firm-level wage Wit and hence wages for every worker at the firm wit (a), given values for the
firm’s demand shifter Dit, material input cost Zit, TFP Tit, labor productivity ωit, and labor
supply shifters κit (·). To describe our first result, let εit ≡

[
log(fL(1,νit)/fM (1,νit))

d log νit

]−1
denote the

elasticity of substitution between labor and materials under the optimal choice of νit.11 The
following proposition then summarizes the main comparative static results in this system.

Proposition 1. The wage offered by firm i to workers of ability a, wit (a), is:

(i) strictly increasing in Dit and Tit;

(ii) strictly increasing in ωit if εit > 1;

(iii) strictly decreasing in Zit if σ > εit, strictly increasing in Zit if σ < εit, and independent of
Zit if σ = εit; and

(iv) strictly decreasing in κit (a′) for all a′ ∈ A.

Part (iv) of Proposition 1 is a standard supply-side effect, where an upward shift of the labor
supply curve tends to reduce wages. The intuition for parts (i)-(iii) can then be understood in
terms of scale and substitution effects. First, since firms face upward sloping labor supply curves,
any increase in employment must be accompanied by higher wages. Hence, wages increase in
response to shocks that induce the firm to increase its scale, such as an increase in the demand
shifter Dit or TFP Tit.

Second, a fall in material cost Zit also generates positive scale effects for the firm. However,
there is an additional substitution effect, as firms respond by substituting away from labor toward
materials. Intuitively, the scale effect is mediated by the elasticity of substitution across goods, σ:
when products are more substitutable, demand is more sensitive to price, and hence reductions
in input costs translate into larger increases in sales. On the other hand, the substitution effect
is naturally mediated by the elasticity of substitution between labor and materials, εit. In
particular, when εit > 1 (labor and materials are substitutes), the substitution effect leads to a
reduction in wages, whereas when εit < 1 (labor and materials are complements), it leads to an

11For a general production function f , the elasticity of substitution between workers and materials may depend
on the inputs chosen and hence may vary by firm. In the estimation below, we impose a restriction on the functional
form of f that ensures ε is constant across all firms, although this is not required for the comparative static results
discussed here.
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increase in wages. Therefore, the condition σ > εit reflects the case in which the postiive scale
effect dominates the potentially negative substitution effect. Since σ > 1, a sufficient condition
for this to hold is εit < 1, in which case the scale and substitution effects both operate in the
same direction. In our estimation of the model’s parameters described below, we find that the
condition σ > εit in fact holds and hence lower material costs induce higher wages.

Third, changes in labor productivity ωit exert similar scale and substitution effects on wages
as changes in material costs. However, the two are not equivalent, since an improvement in
labor productivity directly increases the MRPL, whereas a decline in material costs only affects
the MRPL endogenously through changes in material inputs. Hence, a sufficient condition for
wages to be increasing in ωit is εit > 1, which is weaker than the corresponding condition for
wages to be declining in Zit (εit > σ). We find that this condition is satisfied empirically in
our estimation results described below and hence improvements in labor productivity increase
wages.

We next characterize how wages respond to exogenous shocks to TFP Tit and labor pro-
ductivities ωit, accounting for the effect of these shocks on {Dit, Zit} through the production
network. We will restrict attention to shocks that do not affect aggregate income Et and the
labor market indices It (·) in order to highlight the main mechanisms of interest. To describe
the result, let Ŷit ≡ d log Yit denote the marginal log change in a firm-level variable Yit and
Ŷt ≡

{
Ŷit
}
i∈ΩF

the vector of these log changes for all firms. In addition, let ΣC
t denote the sales

share matrix, ΣS
t the input share matrix, εt the vector of labor-material substitution elasticities,

and sLt the vector of labor shares in production costs.12

Proposition 2. The passthrough to wages from shocks to productivities y ∈ {T, ω} can be
decomposed as:

Ŵt =
[
Hdirect
y,t +Gdowny,t +Gupy,t +Ginty,t

]
ŷt (3.1)

where:

Gdowny,t ≡ Hdown
t

∞∑
d=1

(
ΣC
t H

C
t

)d
Hdown
y,t , Gupy,t ≡ H

up
t

∞∑
d=1

(
ΣS
t H

S
t

)d
Hup
y,t (3.2)

and Ginty,t is a matrix polynomial of interaction terms in
{

ΣC
t ,ΣS

t

}
. All elements of the matrices

H and coefficients of Ginty,t depend only on γ, σ, εt, and sLt .

This expression for passthrough can be interpreted as follows. The first term Hdirect
y,t captures

direct passthrough from shocks to a firm’s productivity to its own wages. The second term Gdowny,t

12The (i, j)-element of ΣCt is the share of firm i’s sales accounted for by firm j: Rjit/Rit. The (i, j)-element of
ΣSt is the share of firm i’s materials expenditures accounted for by firm j: Rijt/EMit . Labor shares of cost sLit are
equal to ELit/

(
ELit + EMit

)
.
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captures passthrough from downstream productivity shocks that affect a firm’s customers, where
the dth term in the sum captures the effects of shocks d steps downstream. Intuitively, the
importance of downstream shocks for a firm’s wages depends on the matrix of sales shares in the
network, ΣC

t . Similarly, the third term Gupy,t captures passthrough from upstream productivity
shocks that affect a firm’s immediate and indirect suppliers, with the input share matrix ΣS

t

determining the importance of each upstream firm. The last term Ginty,t accounts for interactions
between downstream and upstream shocks, which arise from the fact that marginal costs are
increasing and hence are dependent on scale.13

The following remark characterizes a special case of the result in Proposition 2 to provide
deeper insight into the determinants of the strength of passthrough. As shown in Proposition
1, upstream shocks that affect firm input costs Zit have no effect on wages if σ = εit. This
eliminates the complex interaction effects that arise from increasing marginal costs and allows
us to simplify the expression for passthrough as follows.

Remark 1. Suppose that σ = εit globally. Then the passthrough to wages from shocks to firm
TFPs and labor productivities is given by:

Ŵt = σ − 1
γ + σ

(
I− ΣC

t

)−1
T̂t + σ − 1

γ + σ
ω̂t (3.3)

where I is the
∣∣∣ΩF

∣∣∣-dimensional identity matrix.

This result highlights the dependence of passthrough on the labor supply elasticity γ and the
price elasticity of demand σ. In particular, passthrough is increasing in σ because the MRPL
is more sensitive to changes in productivity when σ is large, whereas passthrough is decreasing
in γ because firms have less market power in labor markets when γ is large. Furthermore, in
this special case of the model with σ = εit, the importance of downstream buyers in terms of
passthrough can now be measured simply by the Leontief inverse of the sales share matrix ΣC

t .
On the other hand, since scale and substituton effects exactly offset each other when σ = εit as
discussed above, there is no downstream or upstream passthrough of labor productivity shocks.
Finally, when ΣC

t = 0, equation (3.3) is identical to the passthrough of firm TFP shocks to
wages in the Lamadon et al. (2019) model, which does not have intermediate inputs.

Note that Proposition 2 implies that one can estimate the passthrough from TFP or labor
productivity shocks at one firm in the network to wages at any other firm, as long as one is
able to observe

{
ΣC
t ,ΣS

t , s
L
t

}
and can estimate {σ, γ, εit}. In particular, one does not require

knowledge of relationship productivities {ψijt} or other features of the production function f to
compute the passthrough matrices. We will leverage this result in the counterfactual analysis
below and use the passthrough equation (3.1) to decompose the sources of earnings volatility.

13Section B.1 of the appendix provides a simple three-firm example that illustrates these interactions.
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3.2 Within-firm employment composition

Note from equation (2.21) that the relative wage paid by a firm i to workers of abilities a′

and a depends only on the ratio φi(a′)
φi(a) . Since this ratio is exogenous, relative wages between

different worker ability types within a firm are also exogenous. Hence, the results in Propositions
1 and 2 are mainly relevant for understanding the drivers of between-firm earnings inequality.
Nonetheless, note from equations (2.5), (2.6), and (2.21) that relative employment Lit(a′)

Lit(a) depends
endogenously on the relative labor market indices It(a′)

It(a) , which in turn depend on the wages
offered by all firms for workers of abilities a′ and a. Therefore, the composition of workers within
a firm varies endogenously, which gives rise to endogenous within-firm earnings inequality. The
following proposition connects changes in employment composition within a firm to changes in
the firm-level wages studied in section 3.1.

Proposition 3. Marginal changes in relative employment are related to marginal changes in
firm-level wages as follows:

L̂it
(
a′
)
− L̂it (a) = −γ

[
covj

(
Λjt

(
a′
)
, Ŵjt

)
− covj

(
Λjt (a) , Ŵjt

)]
(3.4)

where Λjt (a) denotes the share of ability a workers hired by firm j and covj denotes the covari-
ance operator across firms.

To illustrate the intuition for this result, consider the effect of an increase in the firm-level
wage Wit for some firm i on the market indices It (·). Recall from equation (2.3) that the share of
ability a workers hired by firm i is proportional to [gi (a)wit (a)]γ , which is firm i’s “contribution”
to the market index It (a). Furthermore, since an increase in Wit raises the wage offer at firm i

by the same amount for all workers regardless of ability, the differential effects of this change on
It (a) for different abilities a depend on how many workers of each ability type are hired by the
firm. Hence, a high covariance between labor market shares Λit (a′) and changes in firm-level
wages Ŵit reflects a large increase in labor market competition for ability a′ workers, which
induces all firms to reduce employment of such workers relative to others.

Proposition 3 then implies the following prediction linking within- and between-firm earnings
inequality. Suppose that, as we find in our data, firms with higher values of Wit account for larger
shares of employment of higher ability workers. Then, any shock that leads to an increase in
the dispersion of firm-level wages also leads to a relative increase in competition for high ability
workers versus low ability workers, since the covariance term covj

(
Λjt (a) , Ŵjt

)
increases and

more so when a is high. As Proposition 3 establishes, this leads all firms to reduce employment
of higher ability workers relative to lower ability workers. Since relative wages are exogenous,
this implies a reduction in within-firm wage dispersion as well. In sum, shocks that increase
between-firm earnings inequality also tend to reduce within-firm earnings inequality.14

14We illustrate this further in appendix B.2 with a simple two-firm example.
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4 Identification of Model Parameters

We now turn towards identification of the model’s parameters. In section 4.1, we first impose
additional assumptions needed for identification. We then discuss identification results for each
model parameter of interest in section 4.2. As we move toward connecting the model with
worker-level and firm-level data, we now explicitly index individual workers by m.

4.1 Assumptions for identification

We impose three additional sets of assumptions: (i) functional form assumptions (section 4.1.1);
(ii) assumptions regarding stochastic processes and orthogonality of shocks (section 4.1.2); and
(iii) a steady-state assumption (section 4.1.3).

4.1.1 Functional form assumptions

Assumption 4.1. The production function f takes the following CES form:

f (φL,M) =
[
λ

1
ε (φL)

ε−1
ε + (1− λ)

1
ε M

ε−1
ε

] ε
ε−1 (4.1)

where λ ∈ [0, 1] and ε ∈ (0,∞).

As shown in Proposition 1, the elasticity of substitution between labor and material inputs
plays a key role in mediating the effects of upstream shocks in the production network on worker
earnings. The CES functional form in Assumption 4.1 allows us to parsimoniously account for
this through a single parameter, ε. Furthermore, this functional form nests a model without
intermediates: in the limit as λ → 1, output is produced using labor alone and the model
simplifies to a version of the model studied in Lamadon et al. (2019).

Assumption 4.2. The ability of worker m at time t, amt, is comprised of a permanent (time-
invariant) component ām and a transient (time-varying) component âmt. The labor productivity
function takes the following form:

log φi (amt) = θi log ām + log âmt (4.2)

and the firm amenity function depends only on permanent worker ability, gi (amt) = gi (ām).

We refer to the parameter θi as the production complementarity of firm i. The distinction
between permanent and transient worker ability follows Lamadon et al. (2019) and is important
for the identification of worker-firm interaction effects on worker earnings. In the model, there are
two sources of worker-firm sorting: workers of different abilities may have different productivity
levels in different firms through φi (at) and may value the amenities of these firms differently
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through gi (at). Assumption 4.2 restricts these determinants of sorting to be time-invariant,
which facilitates identification based on earnings at the worker-firm-time level.

Assumption 4.3. Log relationship-specific productivity between buyer i and seller j at time t is
given by:

logψijt = logψit + logψjt + log ψ̃ijt (4.3)

where ψit denotes the relationship capability of firm i and log ψ̃ijt is a residual.

As discussed in section 4.2.6, Assumption 4.3 will be important for decomposing observed
firm-to-firm transactions into buyer and seller effects, which we will then use to construct firm-
specific material prices Zit as specified in equation (2.17).

4.1.2 Stochastic processes and orthogonality conditions

The sources of heterogeneity in the model can now be summarized as follows: workers are
heterogeneous with respect to χLmt ≡ {ām, âmt}, firms are heterogeneous with respect to χFit ≡
{Tit, ωit, ψit, θi, gi (·)}, and buyer-seller matches are heterogeneous with respect to χMijt ≡

{
ψ̃ijt

}
.

We now specify stochastic processes for these variables and describe the orthogonality conditions
that characterize them.

Assumption 4.4. Log transient worker ability, log âmt, follows a stationary mean-zero stochastic
process that is independent of permanent worker ability ām.

Stationarity of transient ability implies that we can treat the supply of workers of each
ability type, {L (a)}a∈A, as time-invariant, which is consistent with the steady-state assumption
that we impose below. Note that all mean differences in ability across workers are captured by
differences in permanent ability.

Assumption 4.5. Time-varying firm productivities {Tit, ωit, ψit} follow stationary first-order
Markov processes:

log Tit = F T (log Ti,t−1) + ξTit (4.4)

logωit = Fω (logωi,t−1) + ξωit (4.5)

logψit = Fψ (logψi,t−1) + ξψit (4.6)

where the Markov innovations
{
ξTit , ξ

ω
it, ξ

ψ
it

}
are iid across both firms and time.

The Markov structure of firm productivities follows well-known papers in the literature on
production function estimation such as Olley and Pakes (1996) and Doraszelski and Jaumandreu
(2018). As described below, we adopt the approach proposed in the later paper to estimate
parameters of the production function f and hence adopt this Markov structure. This will
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not be required otherwise for estimation of the productivity variables themselves. Stationarity
of {Tit, ωit, ψit} also implies that the cross-sectional distribution of firm characteristics χFit is
time-invariant, which is consistent with the steady-state assumption that we impose below.

Assumption 4.6. Relationship productivity residuals ψ̃ijt are iid across firm pairs and time.

As with Assumption 4.3, this will be important for decomposing observed firm-to-firm trans-
actions into buyer and seller effects. Note that this does not imply that relationship productivi-
ties ψijt are serially uncorrelated. Instead, persistence of ψijt is allowed for through the Markov
structure of firm relationship capabilities ψit in Assumption 4.5.

Assumption 4.7. The stochastic processes for worker characteristics χLmt, firm characteristics
χFit , and firm-to-firm characteristics χMijt are mutually independent.

Together with the conditions imposed in Assumption 4.2, independence of the stochastic pro-
cesses for worker and firm characteristics ensures that residual worker earnings due to transient
ability shocks are uncorrelated with the characteristics of the worker’s firm. This is the same as
the orthogonality assumption imposed in Lamadon et al. (2019). Note also that independence
of firm characteristics and relationship productivity residuals does not imply that firms match
at random, only that they do not match based on the residual ψ̃ijt.

4.1.3 Steady-state

The last assumption that we impose for identification is that the data are characterized by a
steady-state of the model in which general equilibrium terms do not vary over time.

Assumption 4.8. Aggregate income, Et, and the labor market indices, It (·), are time invariant.

This is equivalent to the restriction that there are no aggregate (economy-wide) shocks in the
model and implies that the labor supply shifters κit (·) are time-invariant.15 As discussed in
section 4.2.2, this assumption will be important for the identification of firm effects in earnings.

4.2 Identification results

The parameters of the model that we seek to identify – denoted by Θ – can now be summarized
as: (i) the labor supply elasticity, γ; (ii) production function parameters, {σ, ε}; (iii) worker
abilities for every worker m, {ām, âmt}; (iv) firm productivity parameters for every firm i,
{Tit, ωit, ψit, θi}; (v) amenity values for every firm i and worker m, gi (ām); and (vi) relationship
productivity residuals for every buyer-seller firm pair ij, ψ̃ijt. We now describe identification of
each of these parameters.

15The Lamadon et al. (2019) model allows for multiple regions of production with aggregate shocks within
each region, but the identification strategy rules out economy-wide aggregate shocks across all regions. Since we
abstract from multiple production regions, our steady-state assumption is equally restrictive.
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4.2.1 Labor supply elasticity

We identify the labor supply elasticity γ from the passthrough of firm-level changes in wage bills
ELit to worker-level wages wmt. Here, we follow Lamadon et al. (2019) and allow for measurement
error in firm wage bills, such that wage bills in the data ËLit are related to wage bills in the model
ELit as follows:

logELit = log ËLit + eLit (4.7)

where eLit denotes an MA(k) measurement error given by eLit =
∑k
s=0 δ

L,suLi,t−s for some weights
δL,s and mean-zero shocks uLit that are iid across firms and time. We allow the shocks uLit
to be correlated with the firm productivity innovations specified in equations (4.4)-(4.6) only
contemporaneously, so that E

[
ξxitu

L
is

]
6= 0 only if s = t, for all x ∈ {T, ω, ψ} and i ∈ ΩF .

Combining equations (2.21), (2.29), and (4.2), we can then express the wage for worker m
at firm i as:

logwimt = θi log ām −
1

1 + γ
log φ̃i + 1

1 + γ
log ËLit + 1

1 + γ
eLit + log âmt (4.8)

Under Assumption 4.2, the worker-firm productivity term θi log ām is time-invariant, while under
Assumption 4.8, the sorting composite φ̃i is time-invariant. Restricting attention to workers
that do not change employers between t and t+ 1 (stayers), we can then take first-differences of
equation (4.8) and write:

∆ logwimt = 1
1 + γ

∆ log ËLit + ∆ log âmt + 1
1 + γ

∆eLit (4.9)

Note that the passthrough of changes in firm-level wage bills to worker-level wages is informative
about the coefficient 1

1+γ and hence the labor supply elasticity γ. Intuitively, γ controls the
extent of imperfect competition in the labor market and hence mediates the extent of rent-sharing
between a firm and its employees. Furthermore, equation (4.8) makes clear why identification
of γ should rely only on stayers: the change in earnings for a worker that switches employers
between t and t + 1 is driven not only by rent-sharing but also by changes in permanent firm
characteristics

{
θi, φ̃i

}
and hence cannot be used to identify γ.

Note that under the structural assumptions of the model, the wage bill is a sufficient statis-
tic for all firm-level shocks that matter for worker-level wages. This implies that in the ab-
sence of measurement error, the residual in equation (4.9) contains only worker-level shocks
(∆ log âmt). However, with measurement error in wage bills, the unobserved error term in equa-
tion (4.9) contains a component that is potentially correlated with the observed wage bill since
E
[
∆ log ËLit∆ log eLit

]
6= 0. To address this, note that E

[
log ËLis∆eLit

]
= 0 for all s < t − k − 1

since ∆eLit depends only on measurement error shocks uLit in periods {t− k − 1, · · · , t}. Hence,
under Assumption 4.7, lagged changes in wage bills log ∆ËLis for any s < t − k − 1 are valid
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instruments for log ∆ËLit in identifying γ from equation (4.9). This requires serial correlation in
∆ËLit to be non-zero with at least k + 2 lags, which is consistent with the Markov processes for
firm productivities specified in Assumption 4.5.

To provide context, we point out that identification of γ from equation (4.9) resembles the
passthrough analysis in Guiso et al. (2005) and Lamadon et al. (2019). The key difference is
that both of these papers treat the firm-level shock of interest as value-added, whereas our
model implies that the relevant variable is the firm wage bill.16 In Guiso et al. (2005), the
relevance of value-added is based on a reduced-form model of worker earnings and hence is
not structurally derived. Lamadon et al. (2019) go one step further and model the structural
relationship between firm and worker outcomes, but because intermediate inputs are absent
from their model, the wage bill is a constant fraction of value-added for any given firm. Hence,
the passthrough coefficient 1

1+γ in equation (4.8) can be identified from either changes in value-
added or the wage bill. In contrast, with both imperfect competition in output markets and
intermediate inputs in our model, the wage bill is no longer proportional to firm value-added
and identification stems from changes in the former instead of the latter.17

4.2.2 Worker and firm wage effects

Next, we discuss identification of the worker and firm effects in the earnings equation (4.8). We
first follow Lamadon et al. (2019) and rewrite this as:

log w̃imt = θi log ām︸ ︷︷ ︸
worker-firm interaction

+ log W̄i︸ ︷︷ ︸
firm FE

+ log âmt︸ ︷︷ ︸
residual

(4.10)

where W̄i ≡ 1
η

(
ĒLi /φ̃i

) 1
1+γ is a time-invariant firm effect that depends on both φ̃i and the

firm’s mean wage bill over time ĒLi , while log w̃imt ≡ logwimt− 1
1+γ

(
logELit − log ĒLi

)
is worker

earnings residualized by the innovation in its employer’s wage bill. Equation (4.10) is of the
same form as the reduced-form model of earnings in Bonhomme et al. (2019), who show that
the model implies the following restriction:

E
[

1
θj

(
w̃jm,t+1 − log W̄j

)
− 1
θi

(
w̃im,t − log W̄i

)
|m ∈M i→j

t,t+1

]
= 0 (4.11)

16There are also subtle differences in the assumptions placed on the stochastic processes for firm-level shocks.
Guiso et al. (2005) assume that log value-added follows an AR(1) process with innovations comprised of a unit
root process plus an MA(1) process. Lamadon et al. (2019) make the same assumptions as Guiso et al. (2005)
but constrain the AR(1) coefficient to be zero. In contrast, we allow for non-linear first-order Markov processes in
firm primitives that determine firm wage bills (Assumption 4.5) and MA(k) measurement errors in wage bills, but
consider only stationary processes for firm and worker shocks (which is necessary for the steady-state described
in Assumption 4.8 to exist).

17In appendix D.1, we document our estimates of the labor supply elasticity γ using value-added shocks instead
of wage bill shocks and show that we obtain different results. Hence, the distinction is both theoretically and
empirically relevant.
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where the expectation is taken over the set of workers M i→j
t,t+1 that move from firm i at time t to

firm j at time t+ 1.
In theory, equation (4.11) gives

∣∣∣ΩF
∣∣∣2 moment conditions for identification of 2

∣∣∣ΩF
∣∣∣ parame-

ters. Intuitively, changes in earnings that accompany changes in employers are informative about
the firm-specific determinants of earnings

{
θi, W̄i

}
. In practice, however, we follow Bonhomme

et al. (2019) and restrict the firm effects
{
θi, W̄i

}
to vary only by K clusters of firms, so that

θi = θk(i) and W̄i = W̄k(i), where we refer to k (i) as the earnings cluster of firm i. Although
not strictly necessary for identification, this reduces the dimension of the parameter set that
needs to be estimated and ameliorates the well-known limited mobility bias issue. We discuss
the clustering procedure in more detail below.

Given identification of
{
θk(i), W̄k(i)

}
, permanent worker ability is then identified from:

log ām = E
[

log w̃imt − log W̄k(i)
θk(i)

]
(4.12)

and transient worker ability is identified as the residual in earnings given identification of all
other determinants of earnings. Furthermore, the time-varying firm effect Wit can be recovered
from:

logWit = log W̄k(i) + 1
1 + γ

(
logELit − log ĒLi

)
(4.13)

Note that even though the time-invariant firm effect W̄k(i) is restricted to vary only by cluster,
the full time-varying firm effect Wit is firm-specific.

4.2.3 Amenities

Just as we restrict production complementarities θi to vary only by firm cluster for purposes of
estimation, we impose a similar restriction on the firm amenity function:

gi (a) = g̃iḡk(i) (ā) (4.14)

This is the same decomposition of amenities as in Lamadon et al. (2019). The component
ḡk(i) (ā) allows for worker-firm variation in amenities but restricts this to be the same for firms
within a cluster, again for the purpose of reducing dimensionality. Variation in amenities across
firms within a cluster is then accounted for by g̃i.

In Appendix D.3, we show that the cluster-ability component of amenities can be identified
from:

ḡk (ā) = (ā)−θk [Λkt (ā)]
1
γ (4.15)

where Λkt (ā) is the share of workers of permanent ability ā that are employed by firms in cluster
k. Since a firm with a high value of amenities is able to attract a large share of workers at a
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lower wage, the amenities component ḡk (ā) is intuitively identified from cluster-ability level em-
ployment shares after controlling for the relevant determinants of earnings heterogeneity across
cluster-ability groups, namely permanent worker abilities ā and production complementarities
θk. Similarly, the firm-specific component of amenities can be identified from:

g̃i = 1
Wit

(
Λ̄it

Λ̄k(i)t

) 1
γ

(4.16)

where Λ̄it and Λ̄k(i)t denote the shares of employment across all worker types accounted for by
firm i and cluster k (i) respectively. The firm-specific component of amenities is hence intuitively
identified from within-cluster employment shares Λ̄it

Λ̄k(i)t
controlling for the relevant determinant

of earnings heterogeneity within clusters, namely the firm-level wage Wit.

4.2.4 Firm relationship capability and relationship-specific productivity

Using equations (2.31) and (4.3), we can write log sales from firm j to firm i as:

logRijt = γ log η + log ∆̃it︸ ︷︷ ︸
buyer effect

+ log Φ̃jt︸ ︷︷ ︸
seller effect

+ log ψ̃ijt (4.17)

where ∆̃it ≡ ∆itψit and Φ̃it ≡ Φitψit. Under Assumption 4.3, the assignment of buyers to
sellers is independent of ψ̃ijt and hence E

[
log ∆̃it log ψ̃ijt

]
= E

[
log Φ̃it log ψ̃ijt

]
= 0.18 The

buyer effect ∆̃it is hence identified from purchases by firm i from all its suppliers controlling
for total sales by these suppliers, while the seller effect Φ̃jt is identified from sales by firm j to
all its customers controlling for total expenditures by these customers. This follows Bernard
et al. (2019). Note that this identification strategy only requires cross-sectional moments, in
contrast with the worker and firm earnings effects in equation (4.10), which are identified based
on movements of workers across firms over time. The difference in intermediate input markets
is that matching occurs many-to-many: each seller can have several buyers at once and each
buyer can have several sellers.

Next, from equations (2.8) and (2.13), the share of a firm’s total sales that come from the
network (i.e. excluding final sales) can be expressed as:

snetit =
ψit
∑
j∈ΩCit

∆̃jtψ̃jit

Et + ψit
∑
j∈ΩCit

∆̃jtψ̃jit
(4.18)

18Bernard et al. (2019) find strong evidence in support of this assumption using Belgian firm-to-firm transac-
tions data.
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Solving for ψit, we obtain:

ψit = Et

(
snetit

1− snetit

)
1∑

j∈ΩCit
∆̃jtψ̃jit

(4.19)

Firm relationship capability ψit is therefore identified (up to a normalizing constant) from ob-
servable network sales shares snetit and terms

{
∆̃jt, ψ̃ijt

}
that are identified from equation (4.17).

Intuitively, a higher value of ψit increases sales only within the network but not to final con-
sumers. Hence, after controlling for total final expenditure Et and characteristics of a firm’s
customers within the network through

∑
j∈ΩCit

∆̃jtψ̃jit, variation in snetit is informative about ψit.

4.2.5 Demand price elasticity

In Appendix D.5, we show that the price elasticity of demand σ is identified from the following
moment condition:

σ = E
[

Ritη̃it
Ritη̃it − ELit − EMit

]
(4.20)

where η̃it ≡ η

(
1 + EMit

ELit

)(
1 + η

EMit
ELit

)−1
is a firm-specific correction factor that accounts for

imperfect competition in the labor market. Intuitively, σ controls the extent of product differen-
tiation and hence is a key determinant of firm profits. We thus identify σ from firm sales Rit and
input expenditures

{
ELit , E

M
it

}
. Note that as γ → ∞, the correction factor η̃it approaches one

and σ is identified from the population average sales-profit ratio, as in standard CES production
models with perfectly competitive labor markets.

4.2.6 Labor-materials substitution elasticity and labor productivity

In Appendix D.6, we show that a firm’s relative expenditure on materials versus labor can be
expressed as:

log E
M
it

ELit
= log

[1
η

(1− λ
λ

)]
+ (ε− 1) log Wit

Zit
+ (1− ε)Fω (logωi,t−1) + (1− ε) ξωit (4.21)

where Wit is identified from equation (4.13) and Zit =
(∑

j∈ΩSi
Φ̃jtψitψ̃ijt

) 1
1−σ depends only on

identified terms discussed in section 4.2.4.19 Equation (4.21) is the standard relationship between
relative factor expenditures and relative factor prices implied by cost minimization under the
CES technology in Assumption 4.1. With the first-order Markov structure of productivity

19Although we allow for measurement error in firm wage bills in section 4.2.1, we follow the production function
estimation literature and assume that relative input costs are observed without error, so that EMit

EL
it

= ËMit
ËL
it

.
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innovations in Assumption 4.5, identification of the substitution elasticity ε follows the strategy
in Doraszelski and Jaumandreu (2018), which uses lagged values of input expenditures and
factor prices as instruments for the regressor and a control function (in lagged factor prices
and expenditures) to control for the lagged labor productivity term Fω (logωi,t−1). Given an
estimate of ε, labor productivities are easily recovered as residuals in the relationship between

relative input expenditures and prices, ωit =
[

1
η

(
1−λ
λ

)(
ELit
EMit

)] 1
ε−1 (Wit

Zit

)
.

Note that the relevant factor prices are firm-specific, instead of market-specific as is com-
monly assumed in the production function estimation literature: Wit due to imperfect competi-
tion in the labor market and Zit due to heterogeneity in the production network. Furthermore,
as pointed out in Doraszelski and Jaumandreu (2018), the weight on labor in the production
function λ is not separately identified from the average level of labor productivity ωit across
firms. This is intuitive, since both λ and ωit control the productivity of labor relative to ma-
terials. Hence, in what follows we set λ to an arbitrary constant in the interval (0, 1). This is
without loss of generality in the context of the results that we present below.20

4.2.7 Firm TFP

We have now established identification of all parameters of interest Θ except for firm TFPs,
Tit. For this, we require (at least)

∣∣∣ΩF
∣∣∣ moment conditions. We construct these using the time-

varying firm effects Wit, identification of which is given by equation (4.13). Note that one can
write these firm effects in general as:

Wit = Fi (Tt|Θ−T ) (4.22)

where Tt ≡ {Tit}i∈ΩF , Θ−T ≡ Θ \ Tt, and {Fi}i∈ΩF is a set of known functions that depend
on the structural relationships of the model. Given identification of all other parameters Θ−T ,
equation (4.22) hence provides a set of moments for exact identification of firm TFPs.

We choose this approach because it ensures that the model replicates the firm effects on
earnings that we estimate from the data, which in turn guarantees that the model matches ob-
served earnings for a given worker conditional on also replicating the worker’s observed choice of
employer. This allows us to examine changes in earnings under various counterfactual scenarios
with the confidence that the baseline model provides a good fit to observed earnings. Note that
in the limit of our model without intermediates (λ → 1), logWit is linear in log Tit and hence
identification is trivial. With intermediates, however, the functions Fi are in general defined

20This can be seen from the production function (2.10). Output for a given worker ability type (omitting

firm, time, and ability indices) can be written as X = T̃
[
(φω̃L)

ε−1
ε +M

ε
ε−1

] ε
ε−1

, where T̃ ≡ (1− λ)
1
ε−1 T and

ω̃ ≡
(

λ
1−λ

) 1
ε−1 ω. Hence, the production function is parameterized in terms of T̃ and ω̃ instead of {λ, T, ω}

separately.
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implicitly and involve complex non-linearities, which hence requires a numerical solution for the
TFP vector.21

5 Estimation of Model Parameters

We first describe the data that we use to estimate the model in section 5.1. Our estimation
results are presented in section 5.2 and the fit of the model to data is assessed in section 5.3.

5.1 Data Sources and Sample Selection

To implement estimation of the model’s parameters, we use four administrative datasets from
the Internal Revenue Service (IRS, or SII for its acronym in Spanish) in Chile. These datasets
cover the entire formal private sector in Chile. Below, we describe the data sources, sample
selection, and key variables.

First, we use a matched employer-employee dataset (IRS tax affidavits 1887 and 1879) that
reports annual earnings from each job that a worker has from 2005-2018. Earnings include
wages, salaries, bonuses, tips, and other sources of labor income deemed taxable by the IRS.
As earnings are reported net of social security payments, we adjust the earnings measure to
include these payments. Second, we use a database from the civil registry that has the year of
birth of each individual who is alive in 2018. We merge this dataset with the employer-employee
dataset using workers’ unique tax IDs to measure the age of every worker. Third, we use a
firm-to-firm dataset (IRS tax form 3323) that is based on value-added tax (VAT) records from
2005-2010. Each firm in this dataset reports the full list of its intermediate buyers and suppliers,
as well as the total gross value of transactions with each buyer and supplier. As reporting occurs
semi-annually, we aggregate this data to the annual level to make it consistent with the other
datasets. Since this dataset reports transactions gross of taxes, we measure transactions net
of taxes by using the flat value-added tax rate of 19% that was in effect in Chile during the
sample period. Finally, we use an administrative dataset (IRS tax form 29) that contains a set
of firm balance sheet characteristics from 2005-2018. We use this dataset to measure total sales
and material cost for each firm. Firms in each of the datasets above are assigned a unique tax
ID that is consistent across datasets, which facilitates the merging of these datasets. In what
follows, we define a firm as a tax ID.22

For the firm-to-firm dataset, we impose the following sample restrictions. We drop rela-
tionships involving firms that do not report value-added or employment, or firms that report

21Due to these features of the Fi functions, establishing a unique solution for Tt given a vector of firm effects
Wt is not trivial. Nonetheless, we have explored the potential for multiplicity by varying the initial guess for the
TFP vector and never find multiplicity to occur in practice.

22As all tax forms are reported at the headquarter-level, plant-level information is not available. Furthermore,
while it is possible that a firm has several tax IDs, information that allows us to observe firm ownership is not
available.
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negative value-added, sales, or materials. Next, we implement an iterative procedure that drops
firms that have only one relationship, as in Bernard et al. (2019), which is required for the
decomposition of firm-to-firm transaction values into buyer and seller effects. After imposing
these sample restrictions, the dataset includes 32 million firm-to-firm-year observations and 17
million observations of unique firm pairs. This corresponds to 593 (923) thousand supplier-year
(buyer-year) observations and 195 (289) thousand unique suppliers (buyers). We refer to this
restricted dataset as the baseline firm-to-firm dataset.

For the employer-employee dataset, we impose the following sample restrictions following
the criteria of Lamadon et al. (2019). In each year, we start with all individuals aged 25-60
who are linked to at least one employer. We identify links using only information on labor
contracts (tax affidavit 1887). Next, we drop firms that have missing or negative value-added,
sales, or materials in the balance sheet data (tax form 29). Then, we keep for each worker the
firm that pays the highest earnings in a given year. Since we do not have hours worked or a
direct measure of full-time employment, we follow the literature by including workers for whom
annual earnings are above a minimum threshold (Song et al., 2019). We set the threshold equal
to 32.5% of the national average of earnings in order to make our estimates comparable to the
cross-country study of earnings inequality in Bonhomme et al. (2020). After imposing these
sample restrictions, the dataset includes 42 (2) million worker-year (firm-year) observations and
6,497 (488) thousand unique workers (firms). We refer to this restricted dataset as the baseline
employer-employee dataset. Finally, for both the employer-employee and firm-to-firm datasets,
we transform nominal variables to 2015 real dollars.

Starting from the baseline employer-employee dataset, we define two subsamples that we will
use in different parts of the paper. The first, which we refer to as the stayers sample, restricts
the baseline sample to workers observed with the same employer for at least 8 consecutive years.
This restriction is needed to allow for a flexible specification of how worker’s earnings evolve
over time. We also omit the first and last years of these spells to avoid concerns over workers
exiting and entering employment during the year, confounding the measure of annual earnings.
The stayers sample is also restricted to firms with at least 10 stayers every year which helps
to ensure sufficient sample size to perform the analyses at the firm level. The stayers sample
includes 6,571 (603) thousand spells and 725 (6) thousand unique workers (firms).

The second, which we refer to as the movers sample, restricts the baseline to workers observed
at multiple firms over time. In other words, the firm that pays a worker her greatest earnings
in a given year is not the same firm in all years. Following previous work and motivated by
concerns about limited mobility bias, we also restrict the movers sample to firms with at least
two movers (Lamadon et al., 2019). Finally, as in the previous literature (Abowd et al., 1999;
Lamadon et al., 2019), we restrict this sample to firms that belong to the largest connected set
of firms, which in our dataset represents 99.9% of workers. The movers sample includes 40 (1.4)
million worker-year (firm-year) observations and 6,184 (201) thousand unique workers (firms).
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Finally, for the purpose of estimating the elasticity of substitution between labor and ma-
terials, we merge the baseline employer-employee and the baseline firm-to-firm dataset using
the unique tax IDs discussed above. We implement this merge at the firm-year level and thus
exclude in the merged dataset the set of firms that do not have information in either the employer-
employee or the firm-to-firm dataset. The sample includes 126 thousand firm-year observations
and 48 thousand unique firms. We refer to this merged dataset as the baseline firm-level dataset.

Appendix Table A.1 compares the size of the three employer-employee datasets, the firm-to-
firm dataset and the firm dataset we use throughout the paper. Detailed summary statistics of
these samples are provided in Appendix Table A.2. The samples are broadly similar. The most
noticeable differences are that the stayers sample has older, higher-earning workers and higher
labor share, as well as larger firms in terms of employment and degree (number of suppliers and
buyers). Nonetheless, the firms in the stayers sample are broadly similar to the firms in the
baseline employer-employee dataset in terms of value-added per worker, materials share of sales,
and intermediate sales as a share of total sales.

5.2 Estimation results

In this section we present the estimation results for each of the parameters in the model. Hence-
forth, we follow Lamadon et al. (2019) in removing age and year effects from measured wages.
Specifically, we assume that measured wages ẅmt are related to model wages wmt through
log ẅmt = β

′
ΥΥmt + logwmt, where Υmt is a vector of year and cubic age effects. We estimate

βΥ via OLS and construct logwmt = log ẅmt − β
′
ΥΥmt as our measure of wages for subsequent

steps of the estimation.

5.2.1 Labor supply elasticity

We estimate the labor supply elasticity γ using equation (4.9) applied to the stayers sample, with
lagged values of ∆ log ËLit as instruments. We assume an MA(1) process for the measurement
errors eLit, which implies that lagged changes in wage bills ∆ log ËLit for any s < t − k − 1 are
valid instruments. Hence, we use a cubic polynomial of instruments with 3 to 5 lags of wage bill
changes and choose the specification with the highest F-statistic. We do not use lags above 5 in
order to avoid reducing the sample size available for implementing the estimation.

Our preferred specification based on the criterion above is shown in Column 1 of Table 1,
which uses 3, 4 and 5 lags of wage bill changes as instruments. We find that the passthrough
elasticity of changes in firm wage bills to changes in worker earnings is around 0.15, which implies
a labor supply elasticity of γ = 5.5.23 For comparison, we also report estimation results that

23For robustness, we also estimate γ using the difference-in-difference estimator proposed by Lamadon et al.
(2019). Results obtained using this approach are discussed in Appendix D.1. We find the same estimate using
this alternative approach.
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we obtain from other specifications. In Column 2, we use wage bill changes with the minimum
instruments allowed by the MA(1) process – 3 lags of wage bill changes (with a cubic polynomial)
– and find that the passthrough elasticity increases to 0.18 (γ = 4.6). The estimates reported
in Columns 1-2 are in line with estimates from the literature of the passthrough elasticity from
firm shocks to worker earnings.24 Finally, in Column 3, we report the OLS estimate that ignores
measurement error in wage bills. We find that the passthrough elasticity is substantially larger
at 0.27. This implies γ = 2.7, which is half of our preferred estimate.

Table 1: Estimation of labor supply elasticity (γ)

∆ logwimt
(1) (2) (3)

∆ log ẼLit 0.155 0.177 0.268
(0.006) (0.007) (0.001)

γ 5.5 4.6 2.7

Strategy GMM GMM OLS
Instruments Accumulated Lags 5 3
First Stage F-Stat 2325 1426
Number of Observations 2,507,868 2,507,868 2,507,868

Notes: This table presents results from the passthrough regression based on equation (4.9). All GMM
strategies use different instruments of cubic polynomials of lags of wage bill and is implemented in two stages
with a robust weighting matrix used to compute standard errors. Column 1 (our preferred specification)
uses changes of wage bill lagged for 3, 4 and 5 periods as instruments. Column 2 uses changes of wage bill
lagged for 3 periods as instruments. Column 3 estimates the model with OLS, which ignores measurement
error on the wage bill.

5.2.2 Worker and firm effects on earnings

To estimate the worker and firm effects in the earnings equation (4.10), we use the movers sample.
We first follow Bonhomme et al. (2019) and assign each firm in our data to one of ten earnings
clusters via a K-means clustering algorithm that targets moments of the within-firm distribution
of residualized earnings w̃imt.25 This groups together firms whose earnings distributions are the
most similar, which is motivated by the restriction that the firm-level determinants of these
earnings – the firm fixed effect log W̄i and production complementarity θi – do not vary within
a cluster. With the cluster assignment in hand, we then estimate

{
log W̄i, θi

}
by cluster via

24For example, in a review of the literature, Card et al. (2018) report values for this elasticity between 0.10
and 0.15. Lamadon et al. (2019) in particular estimate a passthrough elasticity of 0.15. Note that these estimates
rely on different sources of variation. Whereas we use changes in wage bills (as justified by our model), Card et al.
(2018) review estimates using value added per worker while Lamadon et al. (2019) use changes in value added.

25Appendix D.2 provides more details including diagnostics of the clustering procedure and robustness of our
results with respect to the number of clusters.
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limited information maximum likelihood, based on the moment condition (4.11).26

Our results are presented in Table 2, where clusters are sorted according to the firm fixed
effect log W̄i. We observe a positive correlation between log W̄i and θi, indicating that firms with
higher wage premia are also those where workers of higher ability are more productive.27 In ad-
dition, the estimates that we obtain for θi are indicative of strong production complementarities.
For example, they imply that workers in the top 2% of the permanent ability distribution are
around 40% more productive when employed at firms in the highest W̄i earnings cluster than
at firms in the lowest W̄i cluster.

Table 2: Estimates of firm fixed effects and production complementarities

Cluster 1 2 3 4 5 6 7 8 9 10

log W̄i 0 0.25 0.61 0.89 1.06 1.24 1.50 1.69 1.80 1.92
θi 1 1.13 1.42 1.66 1.77 1.91 2.19 2.37 2.44 2.26

Notes: This table presents estimates of the firm fixed effect log W̄i and production complementarities θi
in the earnings Equation (4.10) using the movers sample. Clusters are sorted in ascending order of the
firm fixed effect, log W̄i. Note that log W̄i and θi are normalized to zero and one respectively for firms in
the first earnings cluster.

We also use our estimates to perform a preliminary decomposition of the variance of log
worker earnings, which will inform the counterfactual simulations that we examine below. We
follow Lamadon et al. (2019) and base this exercise on the following transformation of compo-
nents in the earnings equation (4.10):

logwimt = xm + f̄i + f̂it + ρij + log âmt (5.1)

where the transformed components are defined as follows:

xm ≡ θ̄ (log ām − log ā) , f̄i ≡ log ηW̄i + θi log ā (5.2)

ρim ≡
(
θi − θ̄

)
(log ām − log ā) f̂it = logWit − log W̄i

This transformation separates the worker-firm interaction effect θi log ām into worker and firm
effects, thus facilitating interpretation of the variance decomposition that follows. Here, log ā
and θ̄ denote the average values of log ām and θi respectively, where both averages are calculated
at the worker-level. Intuitively, xm is a measure of productivity for worker m when employed at
the average firm, f̄i is the time-averaged firm effect on earnings when matched with the average
worker, f̂it accounts for time-variation in the firm effect, and ρim captures non-linear interactions

26We thank Lamadon et al. (2019) for providing the code for this step of the estimation procedure.
27This positive correlation is also document in Lamadon et al. (2019) using US data.
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between worker and firm effects.28 Hence, the variance of log earnings can be decomposed as:

var (logwimt) = var (xm)︸ ︷︷ ︸
1. worker effect var.

+ var
(
f̄i
)

︸ ︷︷ ︸
2. firm fixed effect var.

+ var
(
f̂it
)

︸ ︷︷ ︸
3. time-varying firm effect var.

(5.3)

+ 2cov (xm, fit)︸ ︷︷ ︸
4. sorting cov.

+ var (ρim) + 2cov (ρim, xm + fit)︸ ︷︷ ︸
5. interactions

+ var (log âmt)︸ ︷︷ ︸
6. residual

where fit ≡ f̄i + f̂it and all variances are computed at the worker-level.
Column 1 of Table 3 presents the shares of log earnings variance accounted for by each

component in equation (5.3). Unsurprisingly, the variance of the worker effect accounts for the
majority (57.0%) of earnings variance. However, we also find that firms play an important role.
The variance of the total firm effect fit accounts for 10.8% of the log earnings variance, with
most of this share accounted for by cross-sectional heterogeneity rather than variation over time.
The sorting of workers to firms is even more important, with the sorting covariance explaining
19.8% of the log earnings variance. The interaction term, on the other hand, explains little.29

Note that in the context of the structural model, the firm effect is endogenously determined
by firm primitives, including network connections. In the counterfactual simulations below, we
expand on this in detail to quantify the contributions of each primitive to earnings inequality.

For comparison, Table 3 also presents variance decomposition results obtained under three
alternative approaches. In Column 2, we estimate the earnings equation (4.10) without resid-
ualizing worker earnings by firm innovations in wage bills, which eliminates the time-varying
component of the firm effect f̂it. This has a negligible effect on the variance shares of the re-
maining components. In Column 3, we repeat the approach in Column 2 but set θi = 1 for all
firms, which eliminates production complementarities and hence the interaction term in equa-
tion (5.3). This leads to a slightly smaller share for the firm effect. In Column 4, we repeat the
approach in Column 3 but estimate the earnings equation without grouping firms into earnings
clusters, which is equivalent to the approach in Abowd et al. (1999). This increases the share of
the firm effect and decreases the share of the sorting covariance, which is qualitatively similar
to the effects of firm clustering reported in Bonhomme et al. (2019, 2020).

28In what follows, we abuse terminology somewhat by referring to both W̄i and fi as “firm fixed effects” on
earnings even though these correspond to slightly different concepts.

29For comparison, Lamadon et al. (2019) find the following variance shares using US data: worker effect
variance, 71.6%; fixed firm effect variance, 4.3%; time-varying firm effect variance, 0.3%; sorting covariance,
13.0%; interactions, 0.9%; and residual, 10.0%. Hence, we find a slightly larger role for firm effects and sorting.
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Table 3: Earnings variance decomposition results

share of earnings variance explained by: (1) (2) (3) (4)
1. worker effect variance 57.0 56.6 56.8 58.7
2. firm fixed effect variance 10.3 10.2 7.8 12.3
3. time-varying firm effect variance 0.5 - - -
4. sorting covariance 19.8 20.5 19.9 14.4
5. interactions -2.0 -2.1 - -
6. residual 14.4 14.8 15.5 14.6

time-varying firm effects yes no no no
production complementarities yes yes no no

firm clustering yes yes yes no
Notes: This table presents variance decomposition results for worker earnings using the movers sample.
Column 1 is based on the model-consistent specification in Equation (5.3). Columns 2-4 successively remove
time-varying firm effects f̂it, production complementarities θi, and firm clustering respectively from the
estimation procedure. Thus, Column 4 corresponds to estimates following the approach from Abowd et al.
(1999), whereas Column 1-3 corresponds to estimate following the approach from Lamadon et al. (2019)
and Bonhomme et al. (2019).

5.2.3 Amenities

Amenities gi (ā) are identified for each value of permanent worker ability ā from equations (4.15)
and (4.16). However, to reduce the dimension of the parameters that we estimate, we average log
amenity values across workers in each of 50 quantiles of ā. These estimates are shown in Figure
1, where we further average log amenity values by deciles of firm sales and worker permanent
ability for presentation purposes. We highlight two observations. First, for a given worker type,
we find lower amenity values at larger firms. Second, this negative relationship is stronger for
workers of higher ability.

Note that amenities can also be interpreted as residuals in employment shares that are not
explained by observed wages. Therefore, our procedure for estimating amenities allows the
model to fit the observed share of each worker type employed at each firm earnings cluster. The
fit to shares constructed at the cluster level is shown in Figure 2, from which we observe the
sorting of high-ability workers to firms with high wage premia (large values of W̄i).

5.2.4 Firm relationship capability and relationship-specific productivity

We estimate firm buyer effects ∆̃it, firm seller effects Φ̃it, and residual relationship productivities
ψ̃ijt via a two-way fixed effects OLS regression based on equation (4.17). Details of the imple-
mentation are discussed in Appendix D.4. Of the total variance in log transaction values across
all relationships, we find that 11.8% is explained by the buyer effect, 33.6% by the seller effect,
−0.5% by the covariance of the seller and buyer effect and the remaining 55.1% by residual
relationship productivity. Therefore, both firm-specific and relationship-specific characteristics
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Figure 1: Distribution of Amenities

Notes: This figure shows the joint distribution of amenity estimates log gi (ā) by deciles of firm sales
and worker permanent ability. Values are normalized for presentation purposes such that: (i) average log
amenities within the smallest decile of firm sales are equal across deciles of worker permanent ability, and
(ii) the smallest value of mean log amenities across sales-ability quantiles is equal to zero.

Figure 2: Model fit to employment shares by firm earnings cluster and worker ability

Notes: Firm earnings clusters are sorted in ascending order of the time-invariant firm earnings effect, W̄i.
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are important determinants of variation in firm-to-firm sales.
With estimates of these effects in hand, we then recover firm relationship capabilities ψit

using equation (4.19) and data on network sales shares snetit . As described in section 4.2.4, this
approach only identifies ψit up to a constant. Hence, we calibrate the overall level of ψit to
match the aggregate ratio of gross output to value-added in the sample.

5.2.5 Demand price elasticity

We estimate σ using the sample moment analog of the adjusted sales-profit ratio population
moment in equation (4.20). Pooling observations across years, we find an average value of
σ = 4.2, which implies an output markup of around 31%. We also investigate an alternative
method for estimating σ, by choosing this parameter to match the aggregate profit share of sales
directly in the model simulations. Using this approach, we find a similar estimate of σ = 3.6.
These estimates are in line but on the low end of the range of typical values estimated in the
literature, which is to be expected given that we constrain the product substitution elasticity to
be same across all goods in the economy.30

5.2.6 Labor-materials substitution elasticity and labor productivity

We implement the approach in Doraszelski and Jaumandreu (2018) to estimate the labor-
materials substitution elasticity ε and labor productivities ωit from equation (4.21), which we
repeat here for convenience:

log E
M
it

ELit
= log

[1
η

(1− λ
λ

)]
+ (ε− 1) log Wit

Zit
+ (1− ε)Fω (logωi,t−1) + (1− ε) ξωit (5.4)

Following the production function estimation literature, we adopt a control function approach to
control for Fω(·), approximating this non-parametrically using a cubic polynomial in log EMit−1

ELit−1

and log Wit−1
Zit−1

. To instrument for log Wit
Zit

, we use polynomials of one-period lagged input ex-
penditures and factor prices of labor and materials, {EMit−1, E

L
it−1,Wit−1, Zit−1}. For all factor

prices, we use the estimated values of Wit and Zit, as described in sections 4.2.2 and 4.2.6. Since
there are many potential instruments available, we implement estimation using all possible com-
binations of the instruments and vary the order of the polynomials used. We then choose the
specification that delivers a first-stage F-statistic greater than 10 and a p-value of the Hansen J
test above 0.1. If there is more than one specification that satisfies these criteria, we choose the
one with the highest F-statistic.

Table 4 presents our results. Our preferred specification based on the criteria above is shown
30For example, Broda and Weinstein (2006) find an average value of σ = 4 across SITC-3 product categories,

estimated using trade data for the US between 1990 and 2001, and report that estimates of σ increase when using
data at higher levels of disaggregation.

36



in Column 1. This specification uses quadratic polynomials in {EMit−1, E
L
it−1} as instruments

and delivers an estimate of ε = 1.5 (s.e.=0.058). This implies that labor and materials are
substitutes in the production function (ε > 1), a result that holds with statistical significance.
For comparison, we also present the estimates of ε that we obtain under other specifications.
In Column 2, we use cubic polynomials in {EMit−1, E

L
it−1,Wit−1, Zit−1} as instruments instead of

applying the instrument selection criteria discussed above. With this specification, we find that
ε = 1.0 (s.e.=0.027). In Column 3, we estimateWit using the wage model and estimation strategy
in Abowd et al. (1999), which does not address the issue of limited mobility bias. Applying the
instrument selection criteria above, we use a linear polynomial in {EMit−1, E

L
it−1,Wit−1, Zit−1} as

instruments and find ε = 1.6 (s.e.=0.094), which is not statistically different from our preferred
estimate in Column 1. Finally, in Column 4 we follow the standard approach in the literature of
using average firm wages instead of the model-consistent firm-level wage Wit. Our instrument
set in this case is comprised of quadratic polynomials in {Wit−1, Zit−1}. We find ε = 1.05
(s.e.=0.043), which is not statistically different from one. Note that this specification is not
consistent with our theory since the model-consistent price index of labor is Wit and not the
average wage.31

Despite differences in the estimates of ε across the four specifications in Table 4, we find in
all cases that σ > ε, which holds with statistical significance (recall from section 5.2.5 that we
estimate σ = 4.2). This result has important implications for the counterfactual exercises that
we study below, since from Proposition 1, it implies that reductions in material input costs Zit
have positive effects on wages.

31The previous literature has estimated a value of ε below one (Doraszelski and Jaumandreu, 2018; Oberfield
and Raval, 2019). Doraszelski and Jaumandreu (2018) use the ratio of the average cost of labor to the average
input cost as the main right-hand side variable. Thus, our estimates, which are based on constructed price
indices, are not strictly comparable. Nevertheless, in Column 4, we move closer to the empirical specification in
Doraszelski and Jaumandreu (2018) by using the average wage instead of our model-based labor price index. Our
estimate of ε falls and becomes more similar to their estimates. However, some important differences remain. In
particular, we do not observe the average intermediate input price in our production network dataset (since we
only observe transaction values) and as such, we cannot replicate their exact specification. A further difference is
that their sample is restricted to the manufacturing sector, whereas our sample spans all sectors.
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Table 4: Estimation of Elasticity of Substitution between Materials and Labor (ε)

logEM/EL

(1) (2) (3) (4)

logW/Z 0.553 0.023 0.623
(0.058) (0.027) (0.094)

log w̄/Z 0.052
(0.043)

ε 1.55 1.02 1.62 1.05

Model for Wage Component BLM BLM AKM Average
Instruments {EMit−1, E

L
it−1} {EMit−1, E

L
it−1,Wit−1, Zit−1} {EMit−1, E

L
it−1,Wit−1, Zit−1} {Wit−1, Zit−1}

Instrument Polynomial Quadratic Cubic Linear Quadratic
First Stage F-Stat 130 45 84 186
Hansen’s J Test 0.121 0.000 0.379 0.003
Number of Observations 44,967 44,967 44,967 44,967

Notes: This table presents the results of the estimation of ε outlined in Section 4.2.6 by using the baseline
firm-level dataset described in section 5.1. In particular, the table presents estimates of equation (5.4).
Column 1, which is our preferred result because it is consistent with our theory and also satisfy the
selection criteria of instruments that delivered an F-stat above 10 and a p-value of Hansen’s J test above
0.1, presents estimates of equation (5.4). Column 2 presents estimates of equation (5.4) including all
available instruments: expenditure and input prices with a cubic polynomial. Column 3 and 4 presents
estimates from equation (5.4) but using different measures of labor price. Column 3 uses the AKM wage
model to estimate Wit and Column 4 uses the average wage of the firm, as in Doraszelski and Jaumandreu
(2018). Note that Column 4 presents a Hansen’s J test p-value lower than 0.1. That happens because
across all specifications using the average wage as the price index of labor, that is the highest Hansen’s J
test p-value achieved. All specifications are estimated with a two-stage GMM. A robust weighting matrix
is used.

5.2.7 Firm TFPs

We estimate firm TFPs by fitting the reduced-form estimates of firm-level wages Wit as speci-
fied in equation (4.22). Since this requires numerical solution of a non-linear set of equations,
we first perform a secondary clustering procedure to further reduce the dimensionality of the
parameter space. We do this also in anticipation of the counterfactual simulations discussed
below, which will require numerical solution of the general equilibrium model and hence ne-
cessitates a reduction in dimensionality from the 29 thousand firms in the baseline firm-level
sample. Therefore, within each earnings cluster k, we again cluster firms into k′ subclusters
via a K-means clustering algorithm targeting the other primitives {ωit, ψit, g̃i} that have been
estimated at the firm-level. For our baseline results, we use k′ = 10 subclusters for a total of
100 firm cluster-subcluster pairs that we henceforth simply refer to as firm groups.

Table 5 shows the correlation matrix of our TFP estimates, other estimated firm primitives,
and observed sales. These are computed at the firm group level, weighted by the number of firms
in each group. We highlight four observations. First, we find a negative correlation between
TFP and labor productivity, although TFP is positively correlated with the product Tω.32

32We estimate similar standard deviations for log TFP and labor productivity, both around 1.8.
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Note that one can interpret this product as a total measure of labor productivity and T as the
productivity of material inputs alone. Hence, firms that use labor more efficiently also tend to
tend to be firms that use materials more efficiently. Second, we find positive correlation between
production complementarities θ and both TFP and labor productivity. Therefore, higher-ability
workers tend to be more productive at firms that are also inherently more productive. Third, we
find negative correlation between relationship productivity ψ and TFP, but positive correlation
between ψ and ω. This implies that firms that are more productive do not necessarily have
more productive relationships. Fourth, firm-level amenities are negatively correlated with all
productivity primitives except ψ, which is consistent with Figure 1. Finally, T , Tω, and θ are
all positively correlated with sales, which is reassuring.

Table 5: Correlation Matrix of Firm Characteristics

logω log Tω logψ θ log g̃ logR

log T -0.59 0.30 -0.82 0.13 -0.08 0.46
logω 0.60 0.41 0.36 -0.15 -0.03

log Tω -0.32 0.56 -0.25 0.42
logψ -0.18 0.05 -0.59
θ -0.87 0.77

log g̃ -0.60

Notes: Correlations are computed at the firm group level weighted by
the number of firms in each group.

5.2.8 The network

To quantify the importance of the production network for worker earnings, we measure the
fraction of potential buyer-seller linkages between each pair of 100 × 100 firm groups in each
year. We then take the average of this across years as our measure of the network {mijt}i,j∈ΩF

in the counterfactual simulations that we study below. Figure 3 shows the patterns of matching
that we observe in the network in terms of sales, employment, average wages, and TFP, where
we further bin firms by decile on each variable for presentation purposes. We highlight two
features of the network that are particularly important for understanding the effects of network
heterogeneity on earnings inequality.

First, firms with larger sales, employment, average wages, and estimated TFPs tend to
have more customers and suppliers. This dimension of heterogeneity in network connections
is substantial. For example, firms in the largest TFP decile have around 3 times the number
of suppliers as firms in the smallest TFP decile and 14 times the number of customers. These
differences in the extensive margin of the network therefore amplify differences in own-firm char-
acteristics, suggesting that network heterogeneity contributes positively to differences in mean
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earnings across firms and therefore to earnings inequality overall. Second, we observe negative
assortative matching on sales, employment, TFP, and degree (number of customers or suppliers).
For example, the average TFP of a firm’s customers or suppliers is negatively correlated with the
firm’s own TFP. This stems from the fact that more productive firms sell to firms with both high
and low TFP, whereas less productive firms sell mainly to high TFP firms. This heterogeneity in
the intensive margin of the network therefore dampens heterogeneity in own-firm characteristics
and suggests that network heterogeneity has a negative effect on earnings inequality. Hence,
heterogeneity in the production network overall does not necessarily make firms more different
from each other and does not mechanically induce greater earnings inequality. Rather, how
network heterogeneity affects earnings inequality is a quantitative question.33

Figure 3: Firm-to-firm matching in the production network

Notes: Each subfigure shows the fraction of all potential buyer-seller relationships that are formed between
each buyer-seller firm decile pair, where deciles are computed in terms of the indicated firm-level outcome.

5.3 Model fit

Table 6 shows the fit of the estimated model to key moments in the data. There are several
important takeaways. First, the model matches observed aggregate factor shares well (panel
(a)). This is by construction: the value-added share of sales is targeted through the mean of ψijt
(section 5.2.4), the aggregate labor share of value-added is targeted through σ (section 5.2.5),

33Negative matching on sales, employment, and degree has been documented in various other firm-to-firm
datasets. See for example Bernard et al. (2018, 2019), Huneeus (2019), and Lim (2019). We also find weakly
positive assortative matching on average wages in the data, which is consistent with findings reported by Demir
et al. (2018).
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and the labor-material cost ratio is targeted through the labor-materials substitution elasticity
ε and labor productivities ωit (section 5.2.6).

Second, since we estimate amenities by fitting observed employment shares (section 5.2.3)
and firm TFP by fitting the firm effects in the earnings equation (section 5.2.7), the model
closely replicates the observed earnings distribution (panel (b)). This is despite the fact that
our amenities estimates are at a level coarser than the worker-firm level, which implies that the
model does not perfectly replicate the observed assignment of individual workers to firms. In
the counterfactual exercises below, we also show that the simulated model provides a good fit
to the components of earnings variance in equation (5.3).

Finally, the model provides a reasonable fit to the dispersion in firm-level outcomes such as
sales and wage bills, although the predicted moments have slightly lower variance (panel (c)).
This is to be expected given that we restrict the estimates of firm production complementarities
and TFP to vary only at the earnings cluster and group level respectively, thereby effectively
abstracting from within-cluster variation. The model also slightly overpredicts the firm size-
wage premium, which as discussed above is due to mismatch on sales rather than earnings. The
correlation between sales and network statistics such as out-degree (number of customers) and
in-degree (number of suppliers), on the other hand, matches more closely with the data.

Table 6: Fit of the model to aggregate, worker, and firm moments

(a) Aggregate (b) Worker earnings (c) Firm-level

data model data model data model
labor share of VA 0.24 0.24 s.d. 0.75 0.80 sales, s.d. 1.60 1.27
VA share of sales 0.39 0.39 Gini coeff. 0.48 0.49 wage bill, s.d. 1.66 1.30

labor/material cost 0.13 0.15 90/10 ratio 7.10 7.37 mean wage, s.d. 0.57 0.50
75/25 ratio 2.91 2.76 corr(sales, avg. wage) 0.53 0.73
75/50 ratio 1.81 1.79 corr(sales, out-degree) 0.53 0.70
50/25 ratio 1.61 1.54 corr(sales, in-degree) 0.78 0.75

Notes: Empirical moments are averages over years in 2005-2010. All variables are in logs except those
expressed in shares or ratios.

6 Model Counterfactuals

We now use the estimated model to assess the role of production networks in determining worker
outcomes by studying a series of counterfactual exercises. First, we perform counterfactual simu-
lations to quantify the sources of earnings inequality (section 6.1). This extends the preliminary
variance decomposition of earnings in Table 3 by relying on the structure of the model to further
decompose the firm effects fit in the earnings equation (5.1). These effects are endogenously de-
termined by firm primitives, including network connections, and matter for earnings inequality
through both var (fit) and the sorting covariance cov (xm, fit). Second, we leverage the theoret-
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ical expressions for the passthrough of firm productivity shocks to worker earnings described in
Proposition 2 to decompose the sources of earnings volatility (section 6.2). Finally, we present
a minimum wage application (section 6.3), highlighting the role of networks in mediating the
effects of such policies on earnings inequality.

These exercises will rely on simulations of the model that require an iterative numerical
solution algorithm. Since this is not computationally feasible at the level of individual workers
and firms, we group workers into 50 × 50 quantiles by permanent and transient ability and
aggregate firms to the group level as described in section 5.2.7.

6.1 The sources of earnings inequality

The variance decomposition of earnings presented in Table 3 provides evidence that firms are
quantitatively important in shaping earnings inequality. Since the firm effect fit in this decom-
position is determined endogenously by model primitives, however, the question of why firms
matter for earnings inequality requires further analysis. In particular, what drives the variance
of the firm effect (which accounts for 10.8% of earnings variance) and the covariance between
the worker and firm effects (which accounts for 19.8%)? We now use our structural model to
shed light on these questions.

To begin, note that all heterogeneity in worker earnings wimt is accounted for in the model
by heterogeneity in the following primitives: (i) the extensive and intensive margins of the
production network, {mijt, ψijt}; (ii) firm productivities, {Tit, ωit}; (iii) production complemen-
tarities, θi; (iv) amenities, gi (·); (v) permanent worker ability, ām; and (vi) transient worker
ability, âmt. To quantify the contribution of each set of primitives to earnings inequality, we
then simulate counterfactual equilibria of the model in which each dimension of heterogeneity
is eliminated by replacing the relevant parameters by their corresponding means across firms
or workers. For example, to quantify the importance of heterogeneity in supplier matching for
earnings inequality, we replace the observed network {mijt, ψijt} with a counterfactual network{
m̂S
ijt, ψ̂

S
ijt

}
that is randomized across suppliers while holding constant the total supplier count

and mean relationship productivity across suppliers for each firm:

m̂S
ijt = 1

|ΩF |
∑
j∈ΩF

mijt, log ψ̂ijt = 1
|ΩF |

∑
j∈ΩF

logψijt (6.1)

We follow an analogous procedure to quantify the importance of heterogeneity in customer
matching and in the other model primitives listed above.34

Note that eliminating heterogeneity in a given set of primitives Θ not only removes the
contribution to earnings variance arising from var (Θ), but also from the covariance between

34In each counterfactual simulation, we also hold constant the aggregate ratio of gross output to value-added
by recalibrating the grand mean of relationship productivity ψijt (see section 5.2.4). This keeps the overall
importance of materials relative to labor constant as various dimensions of primitive heterogeneity are eliminated.
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Θ and all other sets of primitives. Therefore, the reduction in earnings variance that arises
from eliminating heterogeneity in Θ cannot be attributed to Θ alone. To address this, we simu-
late counterfactuals by eliminating all possible combinations of heterogeneity in the primitives
listed above and compute the Shapley value for each primitive in terms of its effect on earn-
ings variance.35 This procedure and the formal definition of the Shapley value is described in
Appendix E. Intuitively, this provides an average measure of the reduction in earnings variance
when heterogeneity in one set of primitives is eliminated under all possible combinations of het-
erogeneity in the remaining primitives. This procedure can hence be viewed as a generalization
of the reduced-form variance decomposition exercise described in section 4.2.2 that allows us to
quantify the share of variance accounted for by high-dimensional objects such as the production
network.

To provide context, we point out that this exercise is similar in spirit to the structural coun-
terfactual exercise examined by Lamadon et al. (2019), in which they examine the dependence
of the firm effect variance and sorting covariance on TFP and amenities. The key difference is
that we expand the set of firm primitives to allow for heterogeneity in the production network.
Hence, we are able to precisely quantify the contribution of this dimension to earnings variance
and its individual components relative to other dimensions of heterogeneity such as TFP. The
inclusion of the network in the set of model primitives introduces a technical challenge: unlike
the model in Lamadon et al. (2019), which is log-linear in TFP Tit and the sorting composite
φ̃i, the dependence of the firm effect fit on its underlying primitive determinants in our model
does not afford an additively separable representation. This arises from the non-linearities in
the input-output structure of our model. Therefore, we require an iterative numerical solution
procedure, the details of which are provided in Appendix F.

Table 7 presents our findings. The first two rows compare the results of the earnings variance
decomposition in equation (5.3) from the raw data (as documented in Column 1 of Table 3)
and in the baseline of our simulated model. There are two reasons for potential discrepancies
between these two sets of values. First, the empirical decomposition uses data at the level
of individual workers and only aggregates firms only by earnings cluster, whereas the model
simulations aggregate both workers and firms into groups (as described in the preface to this
section). Second, given the restriction on amenities gi (·) described in section 4.2.3, the model
does not perfectly rationalize employment shares of different worker ability types within an

35To illustrate, consider two univariate primitives, ΘA and ΘB , and suppose the variance of earnings in
the baseline can be expressed as var (ΘA) + var (ΘB) + 2cov (ΘA,ΘB). The change in earnings variance from
eliminating heterogeneity in ΘA relative to the baseline is δA1 = var (ΘA) + 2cov (ΘA,ΘB). The change in
earnings variance from eliminating heterogeneity in ΘA relative to the equilibrium in which heterogeneity in ΘB

has already been eliminated is δA2 = var (ΘA). The Shapley contribution of ΘA to earnings variance is then
δA1+δA2

2 = var (ΘA) + cov (ΘA,ΘB). The Shapley approach is therefore equivalent to splitting the covariance
equally between ΘA and ΘB in this univariate linear case, but generalizes the variance decomposition of the form
in equation (5.3) to cases where ΘA is high-dimensional (for example, the production network) and where the
dependence of earnings is not linear in primitives.
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earnings cluster. Nonetheless, we see that the model provides a good fit to the empirical variance
decomposition shares.

Column 1 shows the share of total earnings variance accounted for by each set of model prim-
itives (rows a-g). Similar to the results from the preliminary decomposition in Table 3, we find
that permanent worker ability (row a) accounts for just over half of log earnings variance, while
transient worker ability (row b) accounts for 13.8%. Firm-specific primitives (rows c-g) account
for the remaining 32.4% of earnings variance. In particular, we find network heterogeneity to
be a key driver of earnings inequality: heterogeneity in upstream connections with suppliers
accounts for 11.9% of log earnings variance (row c), while heterogeneity in downstream connec-
tions with customers explains 8.6% (row d). Network heterogeneity overall therefore explains
approximately 60% of the firm primitive share of earnings variance (20.5% out of 32.4%). The
remaining firm-specific primitives (rows e-g) jointly account for 11.9% of log earnings variance,
with more important roles for TFP, labor productivity, and production complementarity than
for amenities.

To provide context for these findings, we note that the result that network heterogeneity
explains the majority of the firm primitive share of earnings variance mirrors the findings in
Bernard et al. (2019), who report that more than half of the variance in log firm sales is explained
by heterogeneity in network connections. Hence, our findings are consistent with evidence that
network connections matter for firm-level outcomes in general. These findings also show that
it is important to account for production networks, as not doing so will load heterogeneity in
networks onto other factors like TFP.

To provide further insight into the role of each set of primitives in shaping earnings inequality,
we also report in Columns 2-5 of Table 7 the share of each component of earnings (as defined in
equation (5.1)) accounted for by various model primitives.36 Naturally, worker ability accounts
for almost all of the variance in the worker effect (Column 2).37 Interestingly, our results reveal
that network heterogeneity explains almost all of the variance of the firm effect (Column 3).
However, this heterogeneity matters less for sorting (Column 4). This indicates that good
network connections are important for how much a firm pays its workers overall, but less so for
determining the types of workers that sort to a firm. Finally, we see that network heterogeneity is
not important for interactions (Column 5), although this component contributes little to overall
earnings variance to begin with.

36Since the model-based variance decomposition is purely cross-sectional, we do not distinguish between the
fixed component f̄i and the innovation component f̂it of the firm effect fit.

37Given the definition of the worker effect in (5.2), changes in firm primitives such as TFP and labor produc-
tivity also affect the worker effect through the term θ̄, which is computed as an average across workers rather than
firms. Hence, changes in firm primitives that affect the allocation of workers across firms also directly change the
worker effect.
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Table 7: Earnings variance decomposition results

(1) (2) (3) (4) (5)

earnings
variance

worker
effect

variance

firm
effect

variance

sorting
covariance interactions

share of earnings variance (data) 100 57.0 10.8 19.8 -2.0
share of earnings variance (model) 100 52.5 9.8 20.8 3.1
of which:

a. worker permanent ability, ām 53.8 48.6 -1.5 4.1 2.6
b. worker transient ability, âmt 13.8 - - - -
c. supplier network, {mijt, ψijt}j∈ΩSit

11.9 0.9 7.9 2.7 0.4
d. customer network, {mjit, ψjit}j∈ΩCit

8.6 -0.1 6.7 1.5 0.4
e. firm productivities, {Tit, ωit} 6.1 7.5 -4.3 3.3 -0.5
f. production complementarities, θi 4.6 -4.0 -2.7 8.6 2.6
g. amenities, gi (·) 1.2 -0.4 3.6 0.5 -2.6

Notes: The first two rows show results from the earnings variance decomposition of equation (5.3) in
the data and baseline model simulation. Values in the first row are the same as in Column 1 of Table 3.
Subsequent rows show the share of earnings variance (Column 1) and each component of earnings variance
(Columns 2-5) that are accounted for by each set of model primitives. Variance shares are computed using
the Shapley approach described in Appendix E. Units are in percentage points.

6.2 The sources of earnings volatility

Firm-to-firm network connections may matter not only for the cross-sectional variance of worker
earnings, but also for the volatility of earnings over time. Recall that Proposition 2 establishes
this theoretically, showing how the production network mediates the passthrough of firm pro-
ductivity shocks

{
T̂t, ω̂t

}
to changes in worker earnings via the passthrough matrices Hdirect,

Gdown, Gup, and Gint, which account for direct, downstream, upstream, and interaction effects
respectively. We now leverage this result to examine empirically the role of the production
network in shaping earnings volatility. We proceed as follows.

First, we use our estimates of model parameters {γ, σ, ε} and observed network and labor cost
shares

{
ΣC
t ,ΣS

t , s
L
t

}
to compute the passthrough matrices

{
Hdirect, Gdown, Gup, Gint

}
. We fur-

ther split the network passthrough matrices Gdown and Gup into direct and indirect components
based on the representation of these terms in equation (3.2):

Gdown,directy,t ≡ Hdown
t

(
ΣC
t H

C
t

)
Hdown
y,t , Gup,directy,t ≡ Hup

t

(
ΣS
t H

S
t

)
Hup
y,t (6.2)

Gdown,indirecty,t ≡ Hdown
t

∞∑
d=2

(
ΣC
t H

C
t

)d
Hdown
y,t , Gup,indirecty,t ≡ Hup

t

∑
d=2

(
ΣS
t H

S
t

)d
Hup
y,t (6.3)

The direct components therefore account for passthrough from shocks to immediate customers
and suppliers, whereas the indirect components account for passthrough from further away in
the network.
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Next, we estimate the stochastic processes for TFP and labor productivity. To do this, we
model the joint process for {log Tit, logωit} as a vector autoregression (VAR) with two lags.38

Given our estimates of {Tit, ωit} for each of the six years in our sample, we then estimate the VAR
model and simulate a large number of draws (tsim = 10, 000) for {Tit, ωit} from its stationary
distribution. We treat changes in these simulated draws as the shocks

{
T̂t, ω̂t

}
described in

Proposition 2. This approach allows us to characterize earnings volatility using shocks drawn
from the entire estimated distribution of productivities instead of using only estimated draws
from the six years in our sample.

With the passthrough matrices and productivity shocks in hand, we then simulate counterfac-
tual changes in worker earnings using equation (3.1). This provides a first-order approximation
to the changes in earnings that arise from firm productivity fluctuations. This approximation is
useful because it allows us to decompose earnings volatility into economically-meaningful com-
ponents using Proposition 2. Following the same procedure for the variance analysis described in
section 6.1, we measure the importance of each component of passthrough for earnings volatility
in terms of its Shapley contribution to the absolute percentage change in worker earnings over
consecutive years averaged over the tsim periods. We repeat this for workers in each quantile of
the permanent ability distribution to examine heterogeneous effects across worker types.

Figure 4 presents our findings, with each bar showing the mean absolute percentage change in
earnings driven by the simulated productivity fluctuations for workers in each ability decile, and
the shares of each bar representing the Shapley contributions of each component of passthrough
to the earnings volatility measure. We highlight four key observations. First, the effects of own-
employer productivity shocks account for the majority (75-80%) of worker earnings volatility, as
expected. However, the contribution of passthrough from the production network is substantial,
accounting for the remainder (20-25%) of simulated earnings volatility. We also observe that the
network contributions are more important for the passthrough of TFP shocks compared with
labor productivity shocks. This follows from the fact that the scale effects of labor productivity
shocks are partially offset by substitution effects, as discussed in section 3.1, whereas TFP shocks
exert only scale effects.

Second, as a share of total earnings volatility, network contributions are relatively more im-
portant for low-ability workers than for high-ability workers. This is driven less by differences
in the extent of network passthrough across worker types, however, and more by the fact that
own-employer shocks are more important for high-ability workers. This in turn stems from
the disproportionate sorting of high-ability workers to large firms that tend to experience more
volatile productivity fluctuations. For example, the estimated standard deviations of the pro-
ductivity processes for employers of workers in the top ability decile are around 30% higher than
for employers of workers in the lowest ability decile.

38This generalizes the first-order Markov structure in Assumption 4.5 to allow for second-order dependence
but imposes linearity on the transition functions FT and Fω.
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Figure 4: Components of earnings volatility generated by productivity fluctuations

Notes: The vertical axis of each figure shows the mean absolute percentage change in worker earnings
across 10,000 simulated periods. These changes are generated using estimates of the passthrough matrices
and productivity shocks described in Proposition 2. The shares of each bar represent the Shapley value
contribution to earnings volatility of different forms of passthrough, where these values are computed
following the procedure described in Appendix E.

Third, the importance of upstream shocks relative to downstream shocks is greater for low-
ability workers than for high-ability workers. For instance, upstream shocks are four times as
important as downstream shocks for workers in the lowest ability decile, whereas upstream and
downstream shocks contribute almost equally for workers in the highest ability decile. This
suggests that low-ability workers tend to be employed at firms that rely on more volatile supply
chains, whereas high-ability workers tend to be employed at firms that face slightly more volatile
demand conditions.

Finally, indirect passthrough of productivity shocks via the network matters as much if
not more than passthrough from directly connected customers and suppliers. For example, for
workers in the highest decile of permanent ability, indirect upstream passthrough accounts for
around half of the total network passthrough share. This indicates that it is important for the
analysis of earnings volatility to account for the full structure of the production network, rather
than considering only direct customers and suppliers of each firm.

6.3 A minimum wage application

We conclude our counterfactual exercises by examining the role of production networks in shap-
ing the effects of minimum wage (MW) policies, which are often used for the purpose of miti-
gating earnings inequality. We introduce this by adding to the model a constraint that requires
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each firm to pay any worker that it hires a wage no less than some wage floor wmin.39 In
our simulations below, we set the value of wmin equal to the 20th percentile of earnings in the
baseline equilibrium without a wage floor.

Recall that without the MW constraint, the optimal wage offered by firm i to workers of
ability a is w∗it (a) = ηφi (a)Wit, where φi (a)Wit is the MRPL of workers of ability a at firm i.
The optimal wage schedule under a wage floor of wmin can then be expressed as:

wit (a) =


w∗it (a) , if wmin ≤ w∗it (a)

wmin, if w∗it (a) < wmin ≤ φi (a)Wi

0, if wmin > φi (a)Wit

(6.4)

Wages for workers in A∗it ≡ {a ∈ A : wmin ≤ w∗it (a)} are not constrained by the MW policy,
since the optimal wage that the firm would like to offer exceeds the wage floor. In contrast,
the wage floor is binding for workers in Aminit ≡ {w∗it (a) < wmin ≤ φi (a)Wi}, but the firm still
prefers to hire these workers because the wage floor does not exceed their MRPL at the firm.
However, the firm rejects all workers in A0

it ≡ {wmin > φi (a)Wit} because the lowest wage it
can offer these workers exceeds their MRPL at the firm. Hence, it is now possible that some
firms exit the market for certain types of workers. In the discussion below, we refer to A∗it, Aminit ,
and A0

it as unconstrained, MW, and rejected worker types respectively for firm i.
Panels (a)-(d) of Table 8 show the reallocation of employment across firms induced by the

MW policy, where we aggregate employment changes by quantiles of firm size (F#) and worker
permanent ability (W#).40 Panel (a) shows changes in employment of all worker types (as
percentages of aggregate employment), while panels (b)-(d) show changes in employment sepa-
rately for unconstrained, MW, and rejected worker types respectively. Similarly, panels (e)-(g)
show changes in mean log worker earnings induced by the MW policy (excluding rejected worker
types, which have zero earnings under the MW policy). We observe that reallocation of employ-
ment occurs mainly among low-ability workers, who move from small firms to large firms, with
smaller reallocation of high-ability workers in the opposite direction (panel (a)). Furthermore,
the MW policy increases earnings for all workers except those of the highest ability that are also
employed at the largest firms (panel (e)). These changes are a composite of three sets of effects.

First, employment of MW workers increases for all firms (panel (b)). This occurs because
firms are constrained to raise wages for these workers to the wage floor, with earnings for MW
workers increasing by around 12% at the smallest firms and by around 8% at the largest firms

39See Haanwinckel (2020) for a formal discussion of the problem and equilibrium solution.
40Let Qfirm,Rq and Qworker,āq denote the set of firms and worker types in the qth quantiles of the firm size and

worker permanent ability distributions respectively, where firm size is computed under the baseline equilibrium.
Cell (q, q′) of panel (a) of Table 8 shows

∑
i∈Qfirm,Rq

´
A∩Qworker,ā

q′

[
L̂i (a)− Li (a)

]
da. Panels (b), (c), and (d)

show the same thing but replacing A with Â∗i , Âmini , and Â0
i respectively. Note that the values in panels (b)-(d)

for a given cell (q, q′) aggregate to the corresponding value in panel (a).
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(panel (f)).41 Note that the relative increase in earnings for MW workers is smaller at larger
firms, since MW workers employed at larger firms are typically paid more than at small firms
before the MW policy. Hence, overall log earnings variance falls by 18.6% under the policy.

Second, there are spillover effects on both employment and earnings of unconstrained workers.
Notice that the spillover effects on employment largely account for the reallocation of high-
ability workers from large to small firms (panel (c)). Furthermore, even though the earnings
of unconstrained workers are not directly affected by the MW policy by definition, earnings
increase by around 3.5% for unconstrained worker types in the smallest quintile of firms (panel
(g)), which is around a quarter of the direct effect on MW workers at the same firms. In contrast,
earnings for unconstrained workers at the largest firms fall. We examine the determinants of
these spillover effects when considering the role of the production network below.

Finally, firms reject low-ability workers whose MRPLs fall below the wage floor (panel (d)).42

Worker rejection is more prevalent at smaller firms, where productivity and hence MRPLs tend
to be lower. Furthermore, worker rejection dominates the positive employment effects for MW
workers at small firms, reducing employment of low-ability workers overall. Large firms, on the
other hand, are less constrained by the MW policy as they have higher MRPLs to begin with.
These firms absorb the excess supply of low-ability workers generated by exit of smaller firms
from the labor market for these workers. Hence, employment of low-ability workers – earning
both unconstrained and minimum wages – increases for large firms.

What is the relevance of the production network for the effects of the MW policy documented
above? We highlight two key results. First, the ability of a firm to respond to the MW policy
by adjusting the material inputs that it sources from the network is quantitatively important
in explaining the spillover effects on unconstrained workers. Formally, note that the change in
log earnings for unconstrained workers of ability a at firm i can be expressed using equations
(2.22)-(2.24) as:

∆ logwit (a) = − 1
σ

∆ log L̄it︸ ︷︷ ︸
L-scale effect

− 1
σ

∆ log ν̃it︸ ︷︷ ︸
M-scale effect

+ 1
ε

∆ log ν̃it︸ ︷︷ ︸
M-substitution effect

+ 1
σ

∆ logDit︸ ︷︷ ︸
GE demand effect

(6.5)

where ν̃it ≡
[
λ

1
ε + (1− λ)

1
ε ν

ε−1
ε

it

] ε
ε−1

is a monotonic transformation of the optimally chosen ratio

of materials per efficiency unit of labor νit and ∆X ≡ X̂ −X denotes the change in outcome X.
The first term, which we label the L-scale effect, can be considered the direct effect of the MW

policy: a firm that responds by reducing the total efficiency units of labor that it hires contracts
41Note that the sets of MW worker types Aminit need not be identical across firms i and hence it is possible for

employment of these worker types to increase across all firms despite the fact that supply of a given ability type
a is exogenously fixed at L (a).

42There are also some worker types that are rejected by all firms, leading to an aggregate unemployment rate
of 2.05% as shown in the bottom row of panel (a).
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Table 8: Changes in employment and earnings under a 20% minimum wage

change in employment change in mean log earnings

all worker
types, A

(a) W1 W2 W3 W4 W5 (e) W1 W2 W3 W4 W5
F1 -1.53 -0.06 0.06 0.06 0.07 F1 8.99 7.52 5.38 4.24 3.71
F2 -1.86 -0.20 0.02 0.07 0.09 F2 6.53 3.73 2.35 1.82 1.65
F3 -1.08 -0.30 -0.08 0.02 0.06 F3 5.33 2.04 1.03 0.67 0.57
F4 -0.98 -0.39 -0.14 -0.01 0.06 F4 5.16 1.75 0.83 0.47 0.39
F5 3.86 0.54 0.09 -0.13 -0.29 F5 3.99 1.74 0.53 0.08 -0.24

unemp. 1.59 0.41 0.05 0.00 0.00

min. wage
worker
types, Aminit

(b) W1 W2 W3 W4 W5 (f) W1 W2 W3 W4 W5
F1 0.40 0.29 0.08 0.02 0.00 F1 12.26 11.67 11.22 11.26 10.86
F2 0.60 0.31 0.09 0.02 0.01 F2 10.19 9.32 9.23 9.48 9.76
F3 0.71 0.29 0.09 0.02 0.00 F3 9.43 8.39 8.27 8.32 8.50
F4 1.04 0.39 0.13 0.03 0.00 F4 9.40 8.53 8.22 7.67 9.32
F5 2.97 0.93 0.46 0.13 0.00 F5 8.43 8.59 7.66 8.42 6.66

unconstrained
worker
types, A∗it

(c) W1 W2 W3 W4 W5 (g) W1 W2 W3 W4 W5
F1 0.07 0.09 0.08 0.07 0.08 F1 3.61 3.41 3.38 3.44 3.58
F2 -0.02 0.06 0.10 0.09 0.09 F2 1.73 1.51 1.47 1.48 1.56
F3 -0.14 -0.09 0.01 0.04 0.06 F3 0.75 0.67 0.58 0.52 0.54
F4 -0.22 -0.18 -0.04 0.03 0.06 F4 0.57 0.47 0.40 0.36 0.37
F5 1.85 0.02 -0.14 -0.20 -0.29 F5 -0.53 0.05 0.02 -0.06 -0.24

rejected
worker
types, A0

it

(d) W1 W2 W3 W4 W5
F1 -2.00 -0.43 -0.10 -0.03 -0.01
F2 -2.43 -0.57 -0.16 -0.04 -0.01
F3 -1.65 -0.51 -0.18 -0.05 0.00
F4 -1.80 -0.60 -0.22 -0.07 0.00
F5 -0.96 -0.41 -0.23 -0.05 0.00

Notes: Rows (F#) and columns (W#) indicate quantiles of firm size and permanent worker ability
respectively. Employment changes are shown in units of percentages of aggregate employment. Earnings
changes are shown in units of log differences multiplied by 100.
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in scale and increases its output price, which then raises MRPLs for all unconstrained workers at
the firm. The second and third terms account for the readjustment of material inputs sourced
from the production network. On one hand, an increase in νit holding employment constant
increases firm output, which implies a lower output price and a lower MRPL for all workers at
the firm. We refer to this as the M-scale effect. On the other hand, an increase in νit also makes
each worker at the firm more productive, hence raising MRPLs directly. We refer to this as the
M-substitution effect. Note that the relative strength of the M-scale and M-substitution effects
are determined by the parameters σ and ε respectively. Since we estimate σ > ε, an increase in
νit increases MRPLs on net and hence increases worker earnings. Finally, the last term captures
changes in demand shifters that occur through general equilibrium effects, where any fall in
demand lowers the output price that a firm is able to charge and hence reduces MRPLs for all
workers.

Table A.6 in the appendix provides detailed results of the decomposition in equation (6.5)
by various worker-firm groups. We summarize the key observations pertaining to the role of
the production network here by noting that the readjustment of material inputs amplifies the
positive spillover effects on earnings of unconstrained workers at small firms, explaining around
40% of the total spillover effect at the smallest quintile of firms (approximately 1.5% out of
3.5% increase in earnings). This occurs because the MW policy raises the effective cost of labor
for small firms that are likely to be constrained by the wage floor, inducing them to substitute
towards material inputs and increasing the optimally chosen ratio of materials per effective unit
of labor. In contrast, for the largest firms, the excess supply of low-ability workers generated
by exit of small firms from the labor market for these workers lowers the effective cost of labor,
inducing substitution away from materials toward labor. Hence, the readjustment mechanism
lowers earnings for unconstrained workers on net.

Our second result on the role of the production network in shaping the effects of the MW
policy is a negative one. Existing studies have found that firms increase prices in response
to MW policies (see Lemos (2008) for a survey of these effects). This evidence suggests the
potential for propagation of the MW policy effects through the network, affecting firms who sell
to and buy from other firms in the network that are heavily constrained by a wage floor. These
effects enter into equation (6.5) in two ways. First, changes in ν̃it may stem from changes in
material costs Zit and hence from changes in the output price pjt charged by each supplier j to
firm i. Second, changes in demand Dit can arise from changes in the network demand ∆jt for
each customer j of firm i, which are also dependent on the output prices of these customers.
Therefore, our model allows us to quantitatively assess the importance of network propagation
for MW policy effects.

In doing so, we arrive at an important insight: propagation of MW effects through the
network is quantitatively negligible because the firms that tend to be the most constrained by a
wage floor also tend to be the least important buyers and sellers in the network. For example,
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we find that half of all workers that earn the MW in our counterfactual scenario are employed
by firms that account for only 6% of total sales and 3% of total expenditures in the network.
This is consistent with the firm-to-firm matching patterns documented in Figure 3, which shows
that lower-paying firms are substantially less connected in the network than higher-paying firms.
Therefore, although we find that the MW policy raises output prices by as much as 1.5% for
the most affected firms, the passthrough of this to changes in material costs and demand for the
customers and suppliers of these constrained firms is minimal.

In sum, in evaluating the effects of MW policies on worker earnings, we find that it is
important to account for readjustment of sourcing behavior in the network by constrained firms,
but also that one can safely abstract from propagation of the MW policy effects through the
network linkages themselves.

7 Conclusion

Matched employer-employee and firm-to-firm transactions datasets have attracted substantial
interest from researchers in recent years, but these have largely been studied in isolation from
each other. We have argued in this paper that the ability to link these two rich sources of
data offer novel and important insights into a fundamental set of economic questions, and have
provided a unified quantitative framework linking a theory of labor markets with a theory of
production networks to uncover these insights.

Our analysis establishes three important takeaways. First, heterogeneity in network linkages
matters for earnings inequality, explaining 21% of log earnings variance in total, with upstream
heterogeneity accounting for 12% and downstream heterogeneity accounting for 9%. Second,
passthrough of firm productivity shocks via network linkages matters for earnings volatility,
explaining 20-25% of these fluctuations in earnings. Third, how firms substitute material inputs
for labor in response to minimum wage policies matters for the spillover effects of these policies on
earnings for above-minimum wage workers, explaining 40% of these effects, although propagation
of the policy’s effects through network linkages is quantitatively negligible.

We conclude with four potential directions for future research on the interaction between
workers and production networks. First, there is growing evidence that worker outsourcing is
a key driver of increases in earnings inequality (Goldschmidt and Schmieder (2017)). However,
there are as yet no studies documenting such evidence where both worker flows between firms
and firm-to-firm linkages are simultaneously observed. The ability to observe these jointly will
allow for a refinement of the definition of outsourcing and hence of the study of its effects on
worker earnings. For example, worker transitions between linked buyers and sellers may differ
fundamentally in both cause and effect from worker transitions between unrelated firms.

Second, there is growing interest among both policymakers and researchers in understanding
the effects of automation on worker outcomes. It is natural to view these effects as arising
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from the substitution of labor by inputs such as industrial robots. For example, Acemoglu and
Restrepo (2020) estimate the effects of increased robot usage on employment and wages in US
labor markets, finding robust negative effects. More recent theoretical work by Jackson and
Kanik (2020) develops a model of robot-labor substitution that accounts for production network
linkages between firms. A quantitative study of the mechanisms highlighted by this literature
using matched employer-employee and firm-to-firm transactions data is therefore likely to yield
important insights.

Third, an emerging literature has emphasized the importance of production network linkages
for determining optimal industrial policy (Liu (2019)). However, this literature has largely
focused on outcomes in product markets such as sales and aggregate output, while abstracting
from labor market frictions. The framework that we have developed in this paper offers a natural
starting point for the extension of such policy analyses to consider implications for heterogeneous
workers, in a context with imperfect competition in labor markets and production network
linkages.

Finally, while we consider in this paper how changes in the production network structure
affect worker earnings, there is also nascent evidence that worker flows between firms shape the
formation of network linkages. For example, Patault and Lenoir (2020) document using French
data that movements of sales managers across firms induce the formation of new buyer-seller
relationships. This evidence points toward the need for a better understanding of the economic
determinants of both worker transitions and firm-to-firm relationship formation, which linked
employer-employee and firm-to-firm transactions data are well-suited to examine.
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A Proofs of Claims and Propositions

A.1 Proof of Claim 1

Omitting time subscripts for brevity, the profit-maximization problem for a firm i can be written
generally as:

max
{pji}j∈ΩC

i
∪{F}


∑

j∈ΩCi ∪{F}i

pjixji − C [Xi|li (·) , Zi]

 (A.1)

s.t. xji = ∆jψjip
−σ
ji (A.2)

Xi =
∑

j∈ΩCi ∪{F}

xji (A.3)

where ψFi = 1. Here, C [Xi|li (·) , Zi] denotes the total cost of producing Xi units of output given
the labor supply functions li (·) and material input cost Zi. The latter depends on the prices
charged by suppliers of firm i, which firm i takes as given in the problem above. Importantly,
the total production cost for firm i depends only on total output of the firm Xi and not on how
this output is allocated to each customer.

The first-order condition for the profit-maximization problem with respect to pji is then:

(1− σ) ∆jψjip
−σ
ji = −σC ′ [Xi|li (·) , Zi] ∆jψjip

−σ−1
ji (A.4)

Solving for the optimal price yields:

pji = σ

σ − 1C
′ [Xi|li (·) , Zi] (A.5)

Note that the right-hand side of (A.5) does not vary by customer j. Hence, the optimal prices
set by firm i do not vary by customer and are equal to the standard CES markup over the firm’s
marginal cost. The existence of imperfect competition in the labor market implies that marginal
cost is not constant, but this does not break the standard CES markup result.

A.2 Proof of Claim 2

Let Fεi
[
εi, {εj}j 6=i

]
denote the partial derivative of the idiosyncratic preference shock CDF (2.2)

with respect to the shock for firm i:

Fεi
[
εi, {εj}j 6=i

]
= exp

−
∑
i∈ΩF

e
− εit

ρ

ρ∑
i∈ΩF

e
− εit

ρ

ρ−1

e
− εi
ρ (A.6)

First, consider the problem of a worker of a given ability who is choosing which firm to work
for. For brevity, we omit time and ability indices. The probability that firm i is chosen by this
worker is:
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Pi = P[log (wigi) + 1
β εi ≥ log (wjgj) + 1

β εj , ∀j 6= i] (A.7)

= P[εj ≤ log
(
wigi
wjgj

)β
+ εi,∀j 6= i] (A.8)

=
ˆ ∞
−∞

Fεi

[
εi,

{
log

(
wigi
wjgj

)β
+ εi

}
j 6=i

]
dεi (A.9)

=
ˆ ∞
−∞

e−Ψρi e
−εiΨρ−1

i e−εidεi (A.10)

where Ψi ≡
∑
j∈ΩF

(
wjgj
wigi

)β/ρ
. Using the change of variables z = Ψρ

i e
−εi , we can write this as:

Pi = 1
Ψi

ˆ ∞
0

e−zdz (A.11)

= (wigi)β/ρ∑
j∈ΩF (wjgj)β/ρ

(A.12)

which gives the firm choice probability (2.3).
Next, let Gεi denote the CDF of the idiosyncratic preference shock for employment at firm

i, εi, conditional on firm i being chosen. This is given by:

Gεi (ε) = 1
Pi

ˆ ε

−∞
Fεi

[
εi,

{
log

(
wigi
wjgj

)β
+ εi

}
j 6=i

]
dεi (A.13)

= 1
Pi

ˆ ε

−∞
e−Ψρi e

−εiΨρ−1
i e−εidεi (A.14)

Using the change of variables z = Ψρ
i e
−εi , we can write this as:

Gεi (ε) = 1
PiΨi

ˆ ∞
Ψρe−ε

e−zdz (A.15)

= exp
(
−Ψρ

i e
−ε) (A.16)

which is a univariate Gumbel distribution with mean log Ψρ
i +Γ, where Γ is the Euler-Mascheroni

constant. Average utility of workers employed at firm i is then given by:

ūi = logwigi + 1
β

ˆ ∞
−∞

εidGεi (εi) + log τ (A.17)

= logwigiΨρ/β
i + log τ + Γ

β
(A.18)

= log

 ∑
j∈ΩF

(wjgj)β/ρ
ρ/β + log τ + Γ

β
(A.19)

To determine the value of the transfer τ , note that the aggregate value of transfers to workers
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must equal aggregate profits in the economy:

(τ − 1)
∑
i∈ΩF

∑
a∈A

wi (a)Li (a) =
∑
i∈ΩF

πi (A.20)

Solving for τ :

τ =
∑
i∈ΩF πi +

∑
i∈ΩF

∑
a∈Awi (a)Li (a)∑

i∈ΩF
∑
a∈Awi (a)Li (a) (A.21)

where the numerator in (A.21) is aggregate value-added and the denominator is aggregate labor
income.

A.3 Proof of Proposition 1

In what follows, we omit firm and time subscripts for brevity and all derivatives of the production
function f are evaluated at {φL,M} = {1, ν}. Totally differentiating (2.22)-(2.24) for a given
firm, we obtain:

Ŵ + 1
σ
X̂ −

(
fLMν

fL

)
ν̂ = 1

σ
D̂ + T̂ + ω̂ (A.22)

1
σ
X̂ −

(
fMMν

fM

)
ν̂ = 1

σ
D̂ + T̂ − Ẑ (A.23)

−γŴ + X̂ −
(
fMv

f

)
ν̂ = T̂ + ω̂ +

∑
a∈A

sφ (a) κ̂ (a) (A.24)

where sφ (a) ≡ κ(a)φ(a)1+γ´
A κ(a′)φ(a′)1+γda′

is the share of the firm’s efficiency units of labor that are derived

from workers of ability a. Solving for
{
Ŵ , X̂, ν̂

}
, we obtain:

Ŵ = ΓD̂ + (σ − 1) ΓT̂ − (σ − ε) εmΓẐ + [σ − 1− (σ − ε) εM ] Γω̂ (A.25)
− Γ

∑
a∈A

sφ (a) κ̂ (a)

X̂ = (γ + εεM ) ΓD̂ + σ (γ + εεm + 1− εM ) ΓT̂ − σ (γ + ε) εMΓẐ (A.26)
+ σ (1− εM ) (1 + γ) Γω̂ + σ (1− εM ) Γ

∑
a∈A

sφ (a) κ̂ (a)

v̂ = εΓD̂ + ε (σ − 1) ΓT̂ − ε (γ + σ) ΓẐ − ε (1 + γ) Γω̂ (A.27)
− εΓ

∑
a∈A

sφ (a) κ̂ (a)

where εM ≡ fMν
f denotes the elasticity of f with respect to materials, ε ≡

(
fLMν
fL
− fMMv

fM

)−1
de-

notes the elasticity of substitution between labor and materials, and Γ ≡ [γ + σ − (σ − ε) εM ]−1.
Note that the coefficients on D̂ and T̂ on the right-hand side of equation (A.25) are strictly

positive, the sign of the coefficient on Ẑ depends only on the sign of σ− ε, and the coefficient on
ω̂ is strictly positive whenever ε > 1. This establishes the comparative static results described
in Proposition 1.
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A.4 Proof of Proposition 2

In what follows, we omit time subscripts for brevity and denote by Ŷ the vector of changes in
a firm-specific variable Ŷi for all firms. We first establish the following relationship between the
production function elasticity εM ≡ fMν

f and the labor share of cost sL at a given firm.

Lemma 1. The elasticity of the production function with respect to materials at firm i satisfies
εM,i = 1− s̃Li , where s̃Li ≡

sLi
sLi +η(1−sLi ) is an adjusted measure of the labor cost share.

Proof. From equations (2.29) and (2.30), we can express the labor share of cost for firm i as:

sLi = η

η + νi (Zi/Wi)
(A.28)

where recall η ≡ γ
1+γ . Then, from the first-order conditions (2.22) and (2.23), relative factor

prices can be expressed as:
Zi
Wi

= fM (1, νi)
fL (1, νi)

(A.29)

Combining (A.28) and (A.29) and using the result that f = fMν + fL for a homogeneous of
degree one function f (see Assumption 2.2) establishes the result.

Next, we derive an expression for marginal changes in demand shifters, D̂. Totally differen-
tiating equation (2.16) gives:

D̂ = ΣC∆̂ (A.30)

where we have used the result that the share of firm j’s sales accounted for by firm i can be
expressed using (2.8), (2.16) and (2.31) as:

ΣC
ijt ≡

Rijt∑
k∈ΩCit∪{F}

Rkit
= ∆j

Di
(A.31)

Recall also that we are assuming no changes in general equilibrium variables and hence ∆̂Ft = 0.
Totally differentiating (2.14) and using (2.30), we obtain:

∆̂ = γŴ + σẐ + ν̂ (A.32)

Then, taking the ratio of the first-order conditions for the profit-maximization problem (2.22)-
(2.23) and totally differentiating gives:

Ŵ − Ẑ = ε−1ν̂ (A.33)

where here ε denotes a
∣∣∣ΩF

∣∣∣ × ∣∣∣ΩF
∣∣∣ diagonal matrix with ith-diagonal element equal to the

elasticity of substitution between labor and materials for firm i, εi ≡
[
fLM (1,νi)νi
fL(1,νi) − fMM (1,νi)vi

fM (1,νi)

]−1
.

Combining (A.30), (A.32), and (A.33), we then obtain the following expression for marginal
changes in demand shifters:

D̂ = ΣC
[
(γ + ε) Ŵ + (σ − ε) Ẑ

]
(A.34)

Next, we derive an expression for marginal changes in material costs, Ẑ. Totally differenti-
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ating equation (2.17) gives:
Ẑ = − 1

σ − 1ΣSΦ̂ (A.35)

where we have used the result that the share of firm i’s input expenditures accounted for by
firm j can be expressed using (2.17) and (2.31) as:

ΣS
ijt ≡

Rijt∑
k∈ΩSit

Rikt
= Φjtψijt

Z1−σ
it

(A.36)

Then, from (2.15) and (2.18), we can express marginal changes in network productivities as:

Φ̂ = σ − 1
σ

(
X̂ − D̂

)
(A.37)

Hence, combining (A.35) and (A.37), we obtain the following expression for marginal changes
in material costs:

Ẑ = 1
σ

ΣS
(
D̂ − X̂

)
(A.38)

Now equations (A.25)-(A.27), (A.34), and (A.38) define a linear system in
{
Ŵ , X̂, ν̂, D̂, Ẑ

}
,

given changes in TFP T̂ and labor productivity ω̂. Recall that we are assuming no changes in
general equilibrium variables and hence κ̂ (·) = 0. Eliminating X̂ and ν̂ from this system, we
can write the remaining equations as:

Ŵ = HWT T̂ +HWωω̂ +HWDD̂ +HWZẐ (A.39)

D̂ = ΣC
[
HDT T̂ +HDωω̂ +HDDD̂ +HDZẐ

]
(A.40)

Ẑ = ΣS
[
HZT T̂ +HZωω̂ +HZZẐ +HZDD̂

]
(A.41)

where the H matrices are all
∣∣∣ΩF

∣∣∣ × ∣∣∣ΩF
∣∣∣ diagonal matrices. Using Lemma 1, the matrices

summarizing the dependence of
{
Ŵ , D̂, Ẑ

}
on productivity shocks

{
T̂ , ω̂

}
have ith-diagonal

elements given by:

HWT
i = (σ − 1) Γi HWω

i =
[
(σ − 1)− (σ − ε)

(
1− s̃Li

)]
Γi

HDT
i = (γ + ε) (σ − 1) Γi HDω

i = (1 + γ) (σ − ε) s̃Li Γi
HZT
i = −

[
γ + ε

(
1− s̃Li

)
+ s̃Li

]
Γi HZω

i = − (1 + γ) s̃Li Γi
(A.42)

while the matrices summarizing the interrelation between
{
Ŵ , D̂, Ẑ

}
have ith-diagonal elements

given by:

HWT
i = (σ − 1) Γi HWD

i = Γi HWZ
i = − (σ − ε)

(
1− s̃Li

)
Γi

HDT
i = (γ + ε) (σ − 1) Γi HDD

i = (γ + ε) Γi HDZ
i = (σ − ε) (γ + σ) s̃Li Γi

HZT
i = −

[
γ + ε

(
1− s̃Li

)
+ s̃Li

]
Γi HZD

i = s̃Li Γi HZZ
i = (γ + ε)

(
1− s̃Li

)
Γi

(A.43)

Note that all the coefficients in equations (A.39)-(A.41) depend only on {γ, σ, ε}, network shares{
ΣC ,ΣS

}
, and labor shares of cost sL. Hence, the dependence of Ŵ on productivity shocks T̂
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and ω̂ depends only on these terms, as claimed in Proposition 2.
The interpretation of the system (A.39)-(A.41) is as follows. Equation (A.39) says that

changes in earnings depend on (i) own TFP and labor productivity shocks (HWT and HWω);
(ii) shocks to downstream firms (HWD); and (iii) shocks to upstream firms (HWZ). We hence
first define the direct passthrough matrices in Proposition 2 as:

Hdirect
y ≡ HWy, y ∈ {T, ω} (A.44)

Next, consider equation (A.40). This says that the change in the network demand for a firm
depends on (i) shocks to TFP and labor productivity of the firm’s customers (HDT and HDω);
(ii) changes in the network demand for the firm’s customers (HDD), and (iii) changes in the
network input cost of the firm’s customers (HDZ). The first term captures direct downstream
passthrough, the second term captures higher-order downstream passthrough, and the third term
captures interactions between downstream and upstream shocks due to the fact that marginal
costs are increasing (and hence are dependent on scale). All of these are averaged across the
firm’s customers weighted by sales shares through ΣC . Note that we can rewrite equation (A.40)
as:

D̂ =
[
I − ΣCHDD

]−1
ΣC

[
HDT T̂ +HDωω̂ +HDZẐ

]
(A.45)

Let us first ignore the interaction term involving HDZ for now and return to this later. We
define the downstream passthrough matrices in Proposition 2 as:

Gdowny ≡ HWD
[
I − ΣCHDD

]−1
ΣCHDy, y ∈ {T, ω} (A.46)

By expanding the Leontief inverse
[
I − ΣCHDD

]−1
, we can again rewrite this as:

Gdowny ≡ Hdown
∞∑
d=1

(
ΣCHC

)d
Hdown
y (A.47)

where Hdown ≡ HWD, HC ≡ HDD, and Hdown
y ≡

(
HDD

)−1
HDy. This is of the form in

Proposition 2.
Next, consider equation (A.41). This says that that the change in input cost for a firm

depends on (i) shocks to TFP and labor productivity of the firm’s suppliers (HZT and HZω); (ii)
changes in the network input cost of the firm’s suppliers (HZZ), and (iii) changes in the network
demand for the firm’s suppliers (HZD). As with the downstream channel, the first effect captures
direct upstream passthrough, the second term captures higher-order upstream passthrough, and
the third term captures interactions between downstream and upstream shocks. All of these are
averaged across the firm’s suppliers weighted by input cost shares through ΣS . Note that we
can rewrite equation (A.41) as:

Ẑ =
[
I − ΣSHZZ

]−1
ΣS

[
HZT T̂ +HZDD̂

]
(A.48)

Again, let us first ignore the interaction term involving HZD for now and return to this later.
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We define the upstream passthrough matrices in Proposition 2 as:

Gupy ≡ HWZ
[
I − ΣSHZZ

]−1
ΣSHZy, y ∈ {T, ω} (A.49)

By expanding the Leontief inverse
[
I − ΣSHZZ

]−1
, we can again rewrite this as:

Gupy ≡ Hup
∞∑
d=1

(
ΣSHS

)d
Hup
y (A.50)

where Hup ≡ HWZ , HS ≡ HZZ , and Hup
y ≡

(
HZZ

)−1
HZy. This is of the form in Proposition

2.
Finally, we can write the passthrough from productivity shocks to firm wages as:

Ŵ =
[
Hdirect
T +GdownT +GupT +GintT

]
T̂ +

[
Hdirect
ω +Gdownω +Gupω +Gintω

]
ω̂ (A.51)

where the terms Ginty for y ∈ {T, ω} account for the remaining HDZ and HZD interaction terms
that we ignored in equations (A.40) and (A.41). The expressions for passthrough in Remark 1
follow from setting σ = εit in the definitions in (A.42) and (A.43).

B Comparative Static Examples

B.1 Downstream and upstream interaction effects of TFP shocks

We provide a simple example to illustrate the interactions between downstream and upstream
effects of TFP shocks on firm-level wages described in section 3.1. Consider three firms that
are linked in a supply chain as shown in Figure A.1 and suppose that there is a positive shock
to TFP for the firm in the middle of the sub-chain (T̂2 > 0). This shock has several effects on
wages in the supply chain.

Figure A.1: Example of interaction between upstream and downstream effects of TFP on wages

First, as shown in Proposition 1, the direct effect of the shock is an increase in wages at the
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firm hit by the shock (Ŵ2 > 0). Second, there is upstream propagation of the shock to firm 1:
it leads to higher demand for firm 1’s output (D̂1 > 0) due to an increase in scale for firm 2,
which increases wages at firm 1 (Ŵ1 > 0). Third, there is downstream reflection of the shock
back from firm 1 to firm 2: due to increasing marginal costs, higher demand for firm 1 raises
its price of output (p̂1 > 0), which increases firm 2’s input cost (Ẑ2 > 0) and has non-neutral
effects on wages at firm 2 if σ 6= εit (Ŵ2 ≷ 0). Fourth, there is downstream propagation of the
shock to firm 3: it reduces the price of firm 2’s output (p̂2 < 0), which reduces firm 3’s input
cost (Ẑ3 < 0) and has non-neutral effects on wages at firm 3 if σ 6= εit (Ŵ3 ≷ 0). Finally, there is
upstream reflection of the shock back from firm 3 to firm 2: changes in input cost and wages at
firm 3 lead to lower demand for firm 2 (D̂2 < 0) which leads to lower wages at firm 2 (Ŵ2 < 0).

B.2 Firm dispersion and within-firm employment composition

To illustrate the intuition behind Proposition 3, consider a simple example in which the economy
consists of two firms, 1 and 2. For brevity, omit time subscripts and let hi (a) ≡ gi (a)φi (a)
denote the composite of amenities and labor productivity. Then the relative market indices for
two worker types a′ and a is:[

It (a′)
It (a)

]γ
= [h1 (a′)W1]γ + [h2 (a′)W2]γ

[h1 (a)W1]γ + [h2 (a)W2]γ (B.1)

Note that the right-hand side of equation (B.1) is strictly increasing in the relative firm wage
W2
W1

if and only if the following condition holds:

h2 (a′)
h2 (a) >

h1 (a′)
h1 (a) (B.2)

Intuitively, if the comparative advantage (in terms of amenities and labor productivity) of a′-
ability workers versus a-ability workers is higher at firm 2 than firm 1, then any shock to the
economy that increases the firm-level wage of firm 2 relative to firm 1 will increase relative
competition for a′-ability workers relative to a-ability workers.

What is the effect of an increase in W2
W1

on the within-firm earnings distribution in this
example? Suppose for concreteness that W2 > W1 and φi (a′) > φi (a) for all i ∈ ΩF , so
that a′-ability workers are more productive than a-ability workers in all firms and hence earn
higher wages. Suppose also that equation (B.2) holds, which implies that high-ability workers
have a comparative advantage in high-wage firms. Then, an increase in W2

W1
raises labor market

competition for high-ability workers relative to low-ability workers and thus reduces employment
of the former relative to the latter within all firms. This implies that an increase in between-
firm wage dispersion reduces within-firm employment dispersion if the comparative advantage
condition holds. Since relative wages are exogenous, this implies a reduction in within-firm wage
dispersion as well.
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C Data Details

Table A.1: Overview of Sample Sizes

Panel A: Firm-to-Firm Dataset Links Suppliers Buyers
Sample Unique Observation-Years Unique Observation-Years Unique Observation-Years

Baseline 16,831,546 31,743,495 194,615 592,622 289,344 923,155

Panel B: Employer-Employee Dataset Workers Firms
Sample Unique Observation-Years Unique Observations-Years

Baseline 6,496,849 41,954,008 487,504 2,315,927
Movers 6,183,692 40,130,960 200,592 1,378,554
Stayers: Complete Spells 953,865 8,472,302 64,670 602,622
Stayers: 10 Stayers per Firm 724,957 6,571,483 5,726 61,823

Panel C: Firm Dataset Firms
Sample Unique Observations-Years

Baseline 47,685 125,726

Notes: This table provides an overview of the samples used throughout the paper.

Table A.2: Descriptive Satistics of Datasets

Dataset Employer-Employee Firm Firm-to-Firm
Panel A: Worker Characteristics Baseline Movers Stayers Baseline Baseline

Mean Log Worker Earnings (Log US ) 9.36 9.38 9.74 9.17 9.22
Median Log Worker Earnings (Log US ) 9.25 9.27 9.66 9.02 9.10
Mean Worker Age 40.2 40.1 42.6 39.3 39.8
Median Worker Age 39.4 39.4 42.6 38.5 39.0

Panel B: Firm Characteristics Baseline Movers Stayers Baseline Baseline

Mean Number of Workers 9 20 281 27 12
Median Number of Workers 2 4 94 7 2
Mean Wage Bill per Worker (US ) 10,199 11,145 7,833 9,440 8,306
Median Wage Bill per Worker (US ) 6,943 8,323 6,672 7,103 5,490
Mean Value Added per Worker (US ) 56,315 58,610 50,077 49,604 50,091
Median Value Added per Worker (US ) 23,424 25,659 26,583 23,389 18,771
Mean Log Value Added (Log US ) 11.0 11.8 14.6 12.2 10.9
Median Log Value Added (Log US ) 11.0 11.7 14.8 12.1 10.9
Mean Labor Share 0.49 0.45 0.70 0.42 0.49
Median Labor Share 0.32 0.34 0.21 0.34 0.32

Panel C: Production Network Characteristics Baseline Movers Stayers Baseline Baseline

Mean Number of Suppliers 67 67 306 67 35
Median Number of Suppliers 36 36 208 36 19
Mean Number of Buyers 80 80 580 80 34
Median Number of Buyers 8 8 59 8 4
Mean Materials Share of Sales 0.58 0.58 0.55 0.58 0.57
Median Materials Share of Sales 0.61 0.61 0.60 0.61 0.61
Mean Intermediate Share of Sales 0.40 0.40 0.45 0.40 0.38
Median Intermediate Share of Sales 0.38 0.38 0.50 0.38 0.33

Notes: This table provides descriptive statistics of all the samples used in the paper.
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D Estimation Details

D.1 Labor supply elasticity

For robustness, we also follow Lamadon et al. (2019) and estimate γ using a difference-in-
difference approach (DiD). For this, we follow a three step procedure. First, for each year,
we order firms according to log changes of the wage bill of the firm. Second, we identify the
treatment when firms have log changes of their wage bill above the median of log changes of
wage bill across firms each year. Finally, we plot difference in wage bill of treated and control
firms both at each year (t = 0) and years before (t < 0) and after (t > 0). We perform this step
for each calendar year and weight firms by the number of workers.

Results are presented Figure A.2. By construction, the treatment and control groups differ
in the wage bill from period t = −1 to t = 0. On average, firms in the treatment group face an
increase of 21 log points growth in their wage bill relative to firms in the control group. The
effect of the treatment appears to be permanent in levels up to 5 years after the treatment.
Figure A.2 also shows the effect on the average earnings of firms. On average, firms in the
treatment group face an increase of 3.25 log points of their average earnings relative to firms in
the control group. Once again, the effect of the treatment appears to be permanent in levels up to
5 years after the treatment. Finally, firms in the treatment and control group do not experience
statistically significant differences up to 5 years before the treatment, for both the wage bill
and the average earnings. Through the lens of a DiD design, these results imply a passthrough
rate of firms shocks of around 0.155 (= 0.0325/0.21). From equation (4.8), this implies a labor
supply elasticity of γ̂ = 5.5, which is the same as our preferred estimate documented in the main
text.

Figure A.2: Difference-in-difference Estimate of passthrough of Firm Shocks to Worker Earnings

-.2
0

.2
.4

-5 -4 -3 -2 -1 0 1 2 3 4 5

Log Wage Bill - No Mean Effect Log Average Wage Effect

Notes: This figure presents the results from the Lamadon et al. (2019) difference-in-difference approach
to estimating passthrough of wage bill shocks to worker wages.

D.2 Worker and firm wage effects

To estimate the Bonhomme et al. (2019) decomposition of worker earnings from equation (4.10),
we first cluster firms using a k-means clustering algorithm intoK = 10 groups. We use a weighted
K-means algorithm with 100 randomly generated starting values. We use firms’ empirical dis-
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tributions of log earnings on a grid of 10 percentiles of the overall log-earnings distribution.
Second, we use these K groups as the relevant firm identifier in the Bonhomme et al. (2019) esti-
mation approach. This procedure yields estimates of the firm fixed effect W̄i and the worker-firm
production complementarity θi for every firm i ∈ ΩF , as well as the permanent and transient
components of ability for every worker.

To assess robustness of our results to the number of clusters used, Table A.3 documents the
share of variance of wages accounted for by the firm fixed effect W̄i. We implement this for
the basic model of Abowd et al. (1999) and also the basic version of the model of Bonhomme
et al. (2019) with only firm and worker fixed effects for different levels of K (thus, excluding
interactions and time-varying firm effects). First, one can see that the basic version of the
model of Bonhomme et al. (2019) implies a role for the firm fixed effect that is significantly
lower than the model of Abowd et al. (1999), consistent with previous literature that has found
that addressing the limited mobility bias inherent in estimates of Abowd et al. (1999) decreases
the share of the variance accounted for by the firm fixed effect (Bonhomme et al., 2020). Second,
as one increases K from 10 to 50, the share of the variance of wages accounted for the firm fixed
effects increases only 0.7 percentage points from 7.8 to 8.5%. At least with this piece of evidence,
this implies that the limited mobility bias does not represent a substantially bigger problem for
K = 50 than what it represents for K = 10.

Table A.3: Share of Log Earnings Variance Accounted for by the Firm Fixed Effect

Estimation Strategy Number of Clusters Firm Fixed EffectShare

AKM 12.3
BLM 10 7.8
BLM 50 8.5

Notes: This table documents the share of the log of earnings variance accounted for by the firm fixed
effect. It is documented for the estimation strategy of Abowd et al. (1999) (row 1), for the estimation
strategy of Bonhomme et al. (2019) with K = 10 clusters (row 2) and the estimation strategy of Bonhomme
et al. (2019) with K = 50 clusters (row 3). Note that this table documents the version of the wage models
following the estimation strategy of Lamadon et al. (2019) documented in Section 5.2.2 without interactions
and without time-varying firm effects. Thus, the share documented in row 2 corresponds to the same one
document in row 2 and column 3 of Table 3.

To further assess whether clustering with K = 10 or K = 50 makes a difference, we docu-
ment how much clusters account for the variance of firm-level characteristics. Tables A.4-A.5
document the share of the variance of variables accounted for by within-cluster variation. Table
A.4 shows the within-cluster share of variance of variables in levels, whereas Table A.5 shows the
same evidence for variables in ratios. Although there is substantial heterogeneity across firms
that the clustering procedure of Bonhomme et al. (2019) does not account for, this result does
not vary significantly if one uses K = 10 or K = 50 clusters.
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Table A.4: Within Clusters Share of Total Variance of Variables in Levels

Number Clusters Total Sales Materials Wage Bill Employment Number of Buyers Number of Suppliers Firm-to-Firm Sales

10 79 90 67 88 90 85 95
50 74 86 62 84 88 81 92

Notes: This table documents the share of the variance of each variable accounted for by the within cluster
variance. It is implemented for K = 10 and K = 50 and for variables in levels.

Table A.5: Within Clusters Share of Total Variance of Variables in Ratios

Number Clusters Wage Bill/Sales Materials/Sales Materials/Wage Bill Sales/Employment Wage Bill/Employment Materials/Employment

10 96 97 95 92 26 99
50 95 97 95 90 21 98

Notes: This table documents the share of the variance of each variable accounted for by the within cluster
variance. It is implemented for K = 10 and K = 50 and for variables in ratios.

D.3 Amenities

To estimate firm amenities, we begin with the labor supply equation (2.5). It will be useful for
the exposition to write this explicitly in terms of permanent and transient worker abilities:

Lit (ā, â)
L (ā, â) = [gi (ā)wit (ā, â)]γ∑

j∈ΩF [gj (ā)wjt (ā, â)]γ (D.1)

where note that under Assumption 4.2, amenity values only vary across workers in relation to
permanent ability ā. Next, consider the equilibrium wage equation (2.21). Under assumption
4.2, we can write this as:

wit (ā, â) = ηāθi âWit (D.2)

The average wage paid by firm i to workers with permanent ability ā is hence:

w̄it (ā) = ηāθiE [â]Wit (D.3)

where E [â] denotes the average value of transient ability. Under Assumptions 4.2 and 4.4, this
mean does not depend on permanent ability of the worker or the identity of the firm. Combining
(D.2) and (D.3), we then have:

wit (ā, â) = w̄it (ā) â

E [â] (D.4)

Substituting this into (D.1) and using the decomposition of amenities in equation (4.14), we
obtain:

Lit (ā, â)
L (ā, â) =

[
g̃iḡk(i) (ā) āθk(i)Wit

]γ
∑
j

[
g̃j ḡk(j) (ā) āθk(j)Wjt

]γ (D.5)

Now notice that the employment share of workers of ability {ā, â} varies across firms only in
relation to permanent ability ā. This is a direct implication of Assumption 4.2, which implies
that workers do not sort to firms based on transient ability â. Therefore, the share of workers
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of permanent ability ā employed by firm i is also given by equation (D.5). Summing this (D.5)
across all firms within cluster k, we can similarly express the share of workers of permanent
ability ā that are employed by firms in cluster k as:

Λkt (ā) =
∑
i∈k

[
g̃iḡk (ā) āθkWit

]γ
∑
j

[
g̃j ḡk(j) (ā) āθk(j)Wjt

]γ (D.6)

Next, note that for each value of permanent ability ā, equilibrium outcomes are invariant
to scaling gi (ā) by a constant for all firms i. Therefore, we are allowed to choose one nor-
malization of amenity values for each permanent worker ability type ā. For this, we choose∑
j

[
g̃j ḡk(j) (ā) āθk(j)Wjt

]γ
= 1. Furthermore, mean differences in amenity values can be loaded

onto either g̃i or ḡk(i) (ā). Hence, we are allowed to choose one normalization of the values for
g̃i for each firm cluster. For this, we choose

∑
i∈k [g̃iWit]γ = 1. With these normalizations,

equations (4.15) and (4.16) follow immediately.

D.4 Firm relationship capability and relationship-specific productivity

To estimate equation (4.17), firms must have multiple connections. To identify seller fixed
effects, each seller needs to have at least two buyers. Similarly, to identify buyer fixed effects,
each buyer needs to have at least two sellers. In the data, some firms have either one supplier
or one seller. Hence, we implement the aforementioned restriction using an iterative approach
known as “avalanching”. Specifically, we first drop firms with one supplier or seller. Doing
this may result in additional firms that have one supplier or seller, hence in the next step, we
drop these firms as well. We continue this process until firms are no longer dropped from the
sample. The algorithm takes three iterations to converge in practice and reduces the sample
size of firm-to-firm linkages from a total of 32 million transactions to 31.7 million transactions,
that is, a reduction of 1% of transactions. Hence, the avalanching algorithm has little impact
on our sample size. Bernard et al. (2019) report that avalanching also eliminates around 1% of
firm-to-firm links in the production network for Belgium.

D.5 Product substitution elasticity

To derive equation (4.20), first note that from equations (2.27) and (2.28), the share of firm
profits in total sales is:

πit
Rit

= 1
σ

[
1 + (σ − 1) (1− η) fL (1, νit)

f (1, νit)

]
(D.7)

Under the CES functional form for the production function in Assumption 4.1, we can write
this as:

πit
Rit

= 1
σ

1 + (σ − 1) (1− η)

1 + η
EMit
ELit

 (D.8)
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Solving for σ and using the fact that πit = Rit − ELit − EMit , we obtain:

σ = Ritη̃it
Ritη̃it − ELit − EMit

(D.9)

where η̃it ≡ η

(
1 + EMit

ELit

)(
1 + η

EMit
ELit

)−1
. Hence, we estimate σ using the sample average of the

right-hand side of (D.9), which is observable given our estimate of the labor supply elasticity γ
and data on firm sales, labor costs, and material costs.

D.6 Labor-materials substitution elasticity and labor productivity

To derive equation (4.21), first note that under the CES production function specified in As-
sumption 4.1, a firm’s relative expenditure on materials versus labor inputs can be expressed
using equations (2.22), (2.23), (2.29), and (2.30) as:

log E
M
it

ELit
= log

[1
η

(1− λ
λ

)]
+ (ε− 1) log Wit

Zit
+ (1− ε) logωit (D.10)

Using the Markov process for labor productivity (4.5) to substitute for ωit in (D.10) then gives
equation (4.21).

For estimation of ε using equation (4.21), we follow the approach in Doraszelski and Jauman-
dreu (2018). To control for Fω (ωi,t−1), we first rearrange the t − 1 version of equation (D.10)
to write:

logωi,t−1 = 1
ε− 1 log

[1
η

(1− λ
λ

)]
− 1
ε− 1 log

EMi,t−1
ELi,t−1

+ log Wi,t−1
Zi,t−1

(D.11)

≡ G
(

log
EMi,t−1
ELi,t−1

, log Wi,t−1
Zi,t−1

)
(D.12)

Substituting this into (4.21), we obtain:

log E
M
it

ELit
= log

[1
η

(1− λ
λ

)]
+ (ε− 1) log Wit

Zit
+H

(
log

EMi,t−1
ELi,t−1

, log Wi,t−1
Zi,t−1

)
(D.13)

+ (1− ε) ξωit (D.14)

where H (·, ·) ≡ (1− ε)Fω [G (·, ·)]. Hence, we control for the term H using a third-degree
polynomial in lagged relative expenditures log ẼMi,t−1

ẼLi,t−1
and lagged relative input prices log W̃i,t−1

Zi,t−1
.

We then instrument for relative input prices at date t using all available lags of logged input
expenditures and constructed prices from dates t− 1 and earlier.

D.7 Firm TFP

We choose values for TFP Tit to fit the estimated firm-level wages Wit as specified in equa-
tion (4.22). We do this using an iterative numerical procedure that is similar in spirit to the
equilibrium solution algorithm described in section F:
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1. Compute
{
φ̃it
}
i∈ΩF

from (2.26), using (2.4), (2.6), and the estimated firm-level wages
{Wit}i∈ΩF .

2. Guess Et.

(a) Guess {Dit, Zit}i∈ΩF .
(b) Compute the values of {Tit}i∈ΩF implied by equation (F.1), given the estimated firm-

level wages {Wit}i∈ΩF .
(c) Compute new guesses of {Dit}i∈ΩF from (2.16) and {Zit}i∈ΩF from (2.17).
(d) Iterate on steps (a)-(c) until convergence.

3. Compute a new guess of Et from (2.9), using (2.5), (2.19), and (2.21).

4. Iterate on steps 1-2 until convergence.

In practice, we also add as an outer loop iterations over guesses of mean relationship productivity
(as described in section 5.2.4) and the product substitution elasticity σ (as described in section
5.2.5), targeting the aggregate value-added share of gross output and labor share of value-added
respectively.

E A Shapley value approach for model counterfactuals

In the counterfactual exercises studied in sections 6.1 and 6.2, we deal with interdependencies
between model primitives in shaping outcomes of interest using the following approach. Let Θ
denote the estimated vector of values for all model primitives and let X (Θ) denote the value of
some equilibrium outcome X under this parameter vector. Now, define some N subsets of the
parameter vector {θn}Nn=1 such that Θ = ∪Nn=1θn and denote N ≡ {1, · · · , N}. We are interested
in computing values of outcome X under known counterfactual values θ̂n for each subset of the
parameter vector. Therefore, let Θ̂S ≡

{
∪n∈S θ̂n

}
∪{∪n/∈Sθn} denote the parameter vector under

counterfactual values for parameter subsets in S for some S ⊆ N . We define the Shapley value
Xn for parameter subset n in relation to outcome X as follows:

Xn =
∑

S⊆N\{n}

|S|! (N !− |S|!− 1)
N !

[
X
(
Θ̂S∪{n}

)
−X

(
Θ̂S

)]
(E.1)

For example, suppose that X is the variance of log earnings across all workers, θn is the estimated
vector of firm TFPs, and θ̂n is a counterfactual vector of firm TFPs with each value equal to the
mean of θn across firms. Then, we measure the contribution of TFP heterogeneity to earnings
variance as − Xn

X(Θ) . By construction of the Shapley value, these measures sum to one across all
n ∈ N .

F Solution Algorithm

We solve numerically for an equilibrium of the model using the following solution algorithm.

1. Guess Et.
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(a) Guess
{

∆it,Φit, φ̃it
}
i∈ΩF

.

(b) Compute {Dit}i∈ΩF from (2.16) and {Zit}i∈ΩF from (2.17).
(c) Solve for {Wit, νit, Xit}i∈ΩF from (2.22), (2.23), and (2.24).

(d) Compute new guesses of {∆it}i∈ΩF from (2.14), {Φit}i∈ΩF from (2.18), and
{
φ̃it
}
i∈ΩF

from (2.26).
(e) Iterate on steps (a)-(d) until convergence.

2. Compute a new guess of Et from (2.9), using (2.5), (2.19), and (2.21).

3. Iterate on steps 1-2 until convergence.

Note that step 1(c) involves numerical solution of a system in {Wit, νit, Xit}. This system can
be reduced to one in firm-level wages alone:

W γ+ε
it

[
λW 1−ε

it + (1− λ)Z1−ε
it

]σ−ε
1−ε φ̃1+γ

it = λ

µσηγ
Dit (Titωit)σ−1 (F.1)

which has a unique solution for Wit given
{
Dit, Zit, φ̃it

}
. Solutions for νit and Xit are then easy

to recover given Wit.

G Detailed results for a minimum wage counterfactual

Table A.6 shows the results of the decomposition in equation (6.5), which decomposes the
spillover effects on earnings for unconstrained workers under a 20% minimum wage policy.

Panel (a) shows the L-scale effects, which we see are typically positive for all worker and
firm types. The MW policy induces a reduction in total efficiency units of labor for most firms,
especially small firms that are likely to reject many low-ability workers. Hence, this reduces
the scale of these firms, increases their output prices, and raises the MRPLs of unconstrained
workers.

Panels (b) and (c) show the M-scale and M-substitution effects. Here, we see opposite
patterns for small versus large firms. Since small firms are likely to be constrained by the wage
floor, the MW policy raises the effective cost of labor for these firms, inducing them to substitute
towards material inputs and increasing the optimally chosen ratio of materials per effective
unit of labor. As discussed above, the M-substitution effect dominates the M-scale effect and
readjustment of material inputs amplifies the positive spillover effects on unconstrained workers
at small firms. Quantitatively, we find that this amplification is important: for example, it
accounts for around one-third of the total spillover effect on earnings for unconstrained workers
at the smallest quintile of firms. For the largest firms, the excess supply of low-ability workers
generated by exit of small firms from the labor market for these workers lowers the effective
cost of labor, inducing substitution away from materials toward labor. Hence, the M-scale and
M-substitution effects have signs that are opposite to the effects for smaller firms, with the
readjustment mechanism lowering earnings for unconstrained workers on net.

Finally, panel (d) shows the GE demand effect. This is negative for all workers at all firms,
which is largely due to a reduction in consumer income generated by the MW policy, which
lowers demand for all firms and reduces MRPLs.
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Table A.6: Decomposition of spillover earnings effects under a 20% minimum wage

(a) L-Scale Effect (b) M-Scale Effect

W1 W2 W3 W4 W5 W1 W2 W3 W4 W5
F1 2.52 2.41 2.39 2.43 2.51 F1 -1.03 -0.96 -0.96 -0.97 -1.01
F2 1.41 1.31 1.30 1.30 1.33 F2 -0.48 -0.40 -0.38 -0.39 -0.42
F3 0.82 0.76 0.71 0.67 0.68 F3 -0.20 -0.17 -0.14 -0.12 -0.13
F4 0.68 0.63 0.59 0.57 0.57 F4 -0.17 -0.13 -0.11 -0.09 -0.10
F5 -0.02 0.36 0.35 0.29 0.18 F5 0.14 -0.02 -0.01 0.01 0.06

(c) M-Substitution Effect (d) GE Demand Effect

W1 W2 W3 W4 W5 W1 W2 W3 W4 W5
F1 2.43 2.29 2.27 2.31 2.40 F1 -0.32 -0.32 -0.32 -0.32 -0.32
F2 1.14 0.94 0.91 0.92 0.99 F2 -0.34 -0.35 -0.35 -0.35 -0.35
F3 0.47 0.40 0.34 0.30 0.31 F3 -0.34 -0.33 -0.33 -0.32 -0.32
F4 0.40 0.31 0.25 0.22 0.23 F4 -0.34 -0.34 -0.34 -0.34 -0.34
F5 -0.34 0.06 0.03 -0.03 -0.15 F5 -0.31 -0.34 -0.34 -0.34 -0.33

Notes: Rows (F#) and columns (W#) indicate quantiles of firm size and permanent worker
ability respectively. The effects shown in each panel correspond to the terms in equation (6.5).
Units are in log changes multiplied by 100.
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