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Abstract

Workers in an important category of jobs select tasks autonomously. We study

the tradeoff between monetary bonuses and non-monetary prizes as tools for guiding

their choices. An optimal incentive scheme prioritizes workers for prizes in return for

taking on underserved tasks, and this prioritization increases as incentives power up.

Bonuses may additionally be used when incentives are sufficiently high-powered, but

the optimal bonus is often non-monotone in the strength of incentives. Our results

have important implications for the design of worker reward programs on freelancing
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1 Introduction

An important category of jobs afford workers autonomy regarding the tasks or projects that

they take on. This flexibility is a defining feature of freelance work, where workers choose

projects or clients rather than being assigned them. Freelance roles have become increas-

ingly important due to the growth of online platforms which match freelancers and clients

in the markets for ride-hailing (Uber, Lyft, Curb), lodging (Airbnb, VRBO), food deliv-

ery (Grubhub, Doordash, UberEats), coding and design work (upwork), and other services

(Taskrabbit, Mechanical Turk).1 Autonomy is similarly a central aspect of basic research,

for instance as conducted by university faculty, who are free to allocate their time across

research projects as well as between research and non-research tasks such as teaching. In ad-

dition, autonomy is a well-documented feature of jobs at firms utilizing “flat” organizational

structures2 or which reserve time for employees to pursue side projects.3

Whenever workers enjoy autonomy, organizations may need to reward them for undertak-

ing particular tasks to ensure that all necessary work is completed. For instance, ride-hailing

platforms may need to reward drivers for working in high-demand locations or during rush

hour. Similarly, universities may need to reward faculty for covering teaching shortfalls

or undertaking burdensome administrative work such as department chairmanships. And

software companies may need to reward engineers for prioritizing stability and usability

enhancements over more glamorous projects such as launching a new product.4

1The growth of freelance work on these platforms is a phenomenon which has been variously described

as the “gig economy” or “platform economy” in the media.
2Such structures are perhaps most commonly associated with tech firms. For instance, the game

publisher Valve emphasizes in their employee handbook that employees choose their own projects under

a “Flatland” organizational structure (https://cdn.cloudflare.steamstatic.com/apps/valve/Valve_

NewEmployeeHandbook.pdf). The software developer Github relied on a similar organizational structure

described as “open allocation” for a number of years (Burton et al. 2017) Some firms in other industries

have been described as following similar organizing principles, for instance W. L. Gore & Associates’s “lat-

tice organization” (Grønning 2016) and Sun Hydraulics’s “horizontal management” system (Hill and Suesse

2003).
3Prominent examples of programs offering dedicated time for side projects include 3M’s “15% rule”

(https://www.3m.co.uk/3M/en_GB/careers/culture/15-percent-culture/) and Google’s “20% time”

(https://abc.xyz/investor/founders-letters/2004-ipo-letter/), both of which refer to a percentage

of an employee’s time which they are free to allocate.
4A former tech lead of the Google sheets team has described how a preference for product launches over

bug fixes distorted the projects that software engineers spent time on (Lloyd 2022).

2

https://cdn.cloudflare.steamstatic.com/apps/valve/Valve_NewEmployeeHandbook.pdf
https://cdn.cloudflare.steamstatic.com/apps/valve/Valve_NewEmployeeHandbook.pdf
https://www.3m.co.uk/3M/en_GB/careers/culture/15-percent-culture/
https://abc.xyz/investor/founders-letters/2004-ipo-letter/


In general, such rewards can take either monetary or non-monetary forms. In the ride-

hailing market, drivers could be rewarded through cash bonuses or valuable non-cash prizes

such as priority matching with high-value trips.5 Similarly, hosts on Airbnb could be re-

warded with cash rebates or increased visibility to guests.6 And engineers at software com-

panies could be rewarded with bonuses or an increased chance of promotion. In this paper,

we study the optimal use of both types of rewards to incentivize autonomous workers.

Both monetary and non-monetary rewards are costly to deploy. While the financial

cost of a monetary reward is straightforward, preferentially awarding prizes like the ones

discussed above distorts their allocation. For instance, if Google promotes engineers who

have completed underserved projects into management roles over more talented peers, it

may reduce the productivity of its engineering teams. Similarly, if Uber drivers who work

during high-demand periods are prioritized for high-value trips, riders may end up waiting

longer to be picked up. It is therefore not clear ex ante how an organization should balance

the costs of these two forms of incentives.

We build a simple, flexible model of autonomous work to answer this question. In our

model, a large population of workers within an organization choose freely between two al-

ternative tasks. Workers have heterogeneous intrinsic preferences over tasks, and the orga-

nization’s goal is to incentivize a specified proportion of workers to choose each task. It can

reward particular task choices with a monetary bonus, and it can additionally commit to

preferentially distribute a valuable non-monetary prize which is in limited supply.7 The or-

ganization has distributional preferences over prizes, summarized by a worker-specific match

value that varies across the population and is realized only after tasks are chosen.

We characterize the optimal incentive scheme, which involves setting a prize priority and

monetary bonus for choosing an underserved task. The organization commits in advance

to the match standard necessary to earn a prize, conditional on a worker’s task choice, and

5Uber prominently uses monetary rewards to reallocate drivers toward high-demand areas via its surge-

pricing program (Lu, Frazier, and Kislev 2018). Its “Uber Pro” program rewards drivers with both money

and non-cash prizes: a status badge visible to riders, priority matching for airport pickups, and flexibility to

filter trips by origin and destination (https://www.uber.com/us/en/drive/uber-pro/rewards/).
6Airbnb’s “Superhost” program rewards hosts with cash rebates as well as non-cash prizes: featured

placement in promotional emails and a status badge visible to guests, who can filter for Superhosts during

searches (https://www.airbnb.com/d/superhost).
7We assume that the supply of prizes is fixed throughout our analysis. We discuss this assumption further

in Section 9.
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it optimally employs a (strictly) lower standard for workers selecting an underserved task.

Depending on the environment, the optimal scheme may couple this priority with a bonus.

The optimal priority is determined by a first-order condition equating the (rising) marginal

cost of the priority with the (constant) marginal cost of bonuses.

Our main results concern how the optimal use of each incentive tool varies with desired

incentive power, as measured by the fraction of workers the organization wishes to undertake

an underserved task. In general, the optimal prize priority increases as incentives grow

stronger (Theorem 1). In contrast, the optimal bonus may vary non-monotonically with

incentive power (Theorem 2). In a benchmark class of models in which worker match values

are uniformly-distributed, this non-monotonicity manifests as a hump-shaped response to

rising incentive power (Proposition 2).

These results are shaped by two novel effects which illuminate the distinction between

monetary and prize rewards. First, a group-size effect reduces the marginal cost of prize

incentives relative to bonuses as more workers choose the underserved task. Intuitively,

prizes are in fixed supply and are reallocated across workers, while bonuses are in variable

supply and are awarded to a single group of workers. This distinction means that only prize

incentives directly penalize workers choosing the overserved task, and this impact is larger

the fewer workers are in this group. As a result, the optimal prize priority rises as incentives

power up. This effect also favors a reduction in the use of bonuses.

The optimal use of bonuses is additionally shaped by a gap-size effect stemming from

the organization’s distributional preferences over prizes. These preferences mean that the

marginal cost of prize incentives rises as prizes are reallocated to increasingly mismatched

workers, favoring the use of money on the margin to increase the gap between the rewards

for each task. The gap-size effect tends to dominate when desired incentives are weak, while

the group-size effect wins out when they are strong, generating a potentially non-monotone

response of the optimal bonus.

We additionally explore how the size of the prize endowment affects the shape of an

optimal scheme. We show that the bonus and prize priority are largest when prizes are

particularly scarce or plentiful, and both shrink for intermediate prize endowments (Theorem

3). This effect is driven by non-uniformity of the match distribution: When the marginal

prize-winner is in the tails of the match distribution, significant incentives require a large

prize priority; on the other hand, near the center of the distribution incentives can be cheaply
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provisioned with a small priority.8 When match value is uniformly distributed, this force is

absent and we show that the optimal prize priority and bonus are independent of the prize

endowment (Proposition 3).9

Our results provide a number of testable predictions for incentive design in real-world

organizations. In Section 7 we translate our abstract results into concrete predictions about

incentive schemes in several contexts. We then propose hypothetical datasets involving

plausibly measurable covariates which could be used to evaluate these predictions.

The remainder of the paper is structured as follows. Section 1.1 discusses related lit-

erature. Section 2 describes our model, and Section 3 formalizes the incentive schemes we

study. We derive an optimal incentive scheme in Section 4. We characterize how the optimal

scheme changes with the magnitude of required incentives in Section 5 and with the size of

the prize endowment in section 6. We discuss testable predictions of our model in Section 7.

Section 8 provides further details regarding the optimal provision of incentives when prize or

monetary incentives become scarce. We offer concluding remarks and directions for future

research in Section 9. All proofs are relegated to the Appendix.

1.1 Related literature

Our paper contributes to a large body of work studying the use of incentive pay and non-

monetary prizes such as career advancement10 as motivational tools within organizations.

In particular, existing work emphasizes how linking rewards to performance can encourage

workers to exert unobserved effort. For surveys of theoretical and empirical work making

this point, see Milgrom and Roberts (1992), Prendergast (1999), and Gibbons and Roberts

(2013). This literature focuses on the incentive effects of rewards and has typically ab-

stracted from matching effects, especially in formal models.11 For instance, the literature

8Formally, the relevant measure of central tendency in our context is the distribution’s mode, and we

impose a unimodality assumption to ensure that the distribution’s center is unambiguously identified.
9More precisely, this result holds for a range of prize endowments under which prize incentives have not

been exhausted. Additional forces shape the optimal scheme outside this range, which we explore further in

Section 8.1.
10Career advancement can take the form of promotion within an organizational hierarchy, as in the tour-

naments literature, or external rewards such as visibility to the labor market (Waldman 1984; Bar-Isaac and

Lévy 2022).
11One exception is Schöttner and Thiele (2010), who analyze how performance pay to overcome moral

hazard impacts the quality of promoted candidates in tournaments.
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on tournaments (Lazear and Rosen 1981; Rosen 1986; Green and Stokey 1983; Nalebuff and

Stiglitz 1983) interprets prizes flexibly as money or promotion but assumes that the cost of

awarding a prize is independent of the recipient.

Our work differs from these studies in two ways. First, in our setting organizations wish

to influence (observable) task choices rather than (unobservable) effort. Second, matching

is a first-order concern when awarding non-monetary prizes. The combination of these two

features generates a novel tradeoff between different types of rewards. In particular, linking

prizes to task choices degrades matching and naturally limits their use as rewards, whereas

linking prizes to performance facilitates matching whenever performance is a signal of match

value as well as effort.12

Our interest in comparing monetary and non-monetary prizes connects our work to a

literature studying the design of status hierarchies (Auriol and Renault 2008; Besley and

Ghatak 2008; Moldovanu, Sela, and Shi 2007; Dubey and Geanakoplos 2020). These papers

consider how conferral of status can be used alongside, or in place of, money as a motiva-

tional tool. Status is an intangible reward which, unlike the tangible prizes we consider,

has no intrinsic value to the organization. Its use is instead constrained by an inverse re-

lationship between the value of status to workers and the extent to which it is awarded.

Designing status rewards therefore involves very different considerations from distributing

tangible prizes. Additionally, status incentives are likely muted in many settings involving

autonomous workers, notably on freelancing platforms.

Our paper is also related to a literature studying the design of pricing systems in ride-

hailing markets (Bimpikis, Candogan, and Saban 2019; Guda and Subramanian 2019; Buch-

holz 2022; Cachon, Daniels, and Lobel 2017). These papers highlight how non-uniform

pricing can improve the allocation of drivers when market conditions vary across time or

space. In all of these papers, drivers are incentivized exclusively through monetary pay-

ments. We complement their analysis by considering how alternative non-monetary prizes,

such as priority matching with high-value trips (as discussed in footnote 5), can be used in

conjunction with money to reduce incentive costs.

12Lazear (2004) makes this point theoretically in a model without incentive concerns. Benson, Li, and Shue

(2019) empirically examine promotion-for-performance policies for salespeople and find that performance is

an important predictor of managerial ability.
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2 Model

A continuum of workers of mass 1 complete a mix of two tasks A and B for an organization.

Each worker chooses exactly one task to complete, and workers have heterogeneous intrinsic

preferences over tasks, summarized by a dollar value ν capturing the strength of a worker’s

preference for task B over A. Intrinsic values are independently and identically distributed

across the population of workers, with ν ∼ F . We assume that R+ ⊂ supp(F ) and that F

has a continuous, positive density function f on R+. (We allow for F (0) > 0 but require

no assumptions on the smoothness of the value distribution for negative values.) Worker

preferences are not observed by the organization.

The organization’s goal is to ensure that a fraction N of workers choose task A, where

N ≥ F (0). Task choices are observable, but workers are autonomous—the organization

may not assign tasks. The organization can motivate workers to choose task A by paying

monetary bonuses and allocating non-monetary prizes which are valued by workers. Prizes

are indivisible and at most one prize can be allocated to a given worker. Workers assign a

common dollar value V > 0 to earning a prize, which is known to the organization. A worker

with intrinsic preference ν who chooses task i and is promised a bonus T and a probability

σ ∈ [0, 1] of earning a prize enjoys total payoff13

U = ν · 1{i = B}+ V · σ + T.

The organization has unlimited financial resources and is additionally endowed with a

fixed mass β ∈ (0, 1) of prizes to allocate. It earns a positive worker-specific profit from

allocating a prize which varies across workers. We assume that these profits are determined

and observed by the organization only after workers choose tasks, and that the organization’s

distributional preferences are drawn independently of workers’ intrinsic preferences or task

choices.

We summarize each worker’s suitability for a prize by their match quantile q ∼ U([0, 1]).

The organization earns profits ρ(q) from allocating a prize to a worker with match quantile

q, where ρ is non-negative, continuous, and increasing in q. We will refer to ρ(q) as the match

value of a worker of match quantile q. It will be convenient to decompose ρ as ρ(q) = R·ρ0(q),

13For concreteness, we normalize payoffs so that each worker earns a payoff of 0 from choosing task A

and v from choosing task B. Since we abstract from workers’ participation decision, this normalization is

innocuous. See Section 9 for further discussion of the participation margin.

7



where ρ0 is a baseline match value function and R > 0 is a parameter that we allow to vary

across environments. If the organization promises a worker with match quantile q a bonus

T and probability σ of winning a prize, it generates expected profits

Π = ρ(q) · σ − T

from that worker.

3 Incentive schemes

The organization may commit to a scheme for allocating money and prizes as a function of

workers’ task choices and match quantiles. We assume that workers cannot be charged a fee

at the time of task choice or when receiving a prize, and so all transfers must flow from the

organization to workers.14

All payoffs are additive in allocation decisions, and it is therefore without loss to restrict

attention to schemes in which bonuses are not contingent on a worker’s match quantile or

prize allocation. Additionally, since workers do not observe their match quantile before

choosing a task, they care only about the ex ante probability of winning a prize and not the

correlation between prizes and match values. As a result, given a pool of prizes promised

to workers choosing a given task, the organization optimally prioritizes the best-matched

workers within the group for prizes.

An incentive scheme may therefore be summarized by a triplet C = (qA, qB, TA, TB),

where qi ∈ [0, 1] is the match standard that must be met to earn a prize after choosing

task i ∈ {A,B}, and Ti ≥ 0 is the bonus paid for choosing that task.15 We will refer to

∆q ≡ qB − qA as the relative prize priority implemented by a given incentive scheme, and

∆ρ ≡ ρ(qB)− ρ(qA) as the absolute prize priority.

14Our assumption that workers are not charged for prizes is consistent with observed practice on freelancing

platforms and in promotion decisions. More broadly, a floor on permissible transfers, which we normalize to

zero for convenience, captures a commitment to a minimum base wage. In Section 9 we discuss the possibility

of designing this wage to control the supply of workers.
15Without loss, we assume that match standards and transfers are non-random. Since all players are

risk-neutral over transfers, random transfers can be replaced by their means without disturbing payoffs or

incentives. Meanwhile, workers are risk-neutral over match standards, while the organization’s profits are

strictly concave. As a result, replacing match standards with their means preserves incentives and raises

profits.
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Given a scheme C, the gap in task payoffs v(C) ≡ TA − TB + V · ∆q is also the highest

intrinsic preference ν for which a worker chooses task A. A scheme C is feasible if it allocates

no more prizes than are available and achieves the required target:β ≥ F (v(C))(1− qA) + (1− F (v(C)))(1− qB)

N = F (v(C))

The organization’s payoff from a feasible incentive scheme is

Π(C) = N ·
[∫ 1

qA

ρ(q) dq − TA
]

+ (1−N) ·
[∫ 1

qB

ρ(q) dq − TB
]
.

It will be convenient to describe the organization’s task-mix goal via a threshold prefer-

ence target v ≥ 0 rather than a group-size target N. Given a preference target v, the implied

group-size target is N = F (v). Going forward, we will refer to a desired preference target v

as simply the target. With this convention, the feasibility constraints may be writtenβ ≥ F (v)(1− qA) + (1− F (v))(1− qB)

v = TA − TB + V ·∆q

The following result establishes that, without loss, we may focus on incentive schemes

which pay no bonus for choosing task B.

Lemma 1. Suppose that a feasible incentive scheme C = (qA, qB, TA, TB) satisfies TB > 0.

Then there exists another feasible scheme C ′ = (q′A, q
′
B, T

′
A, T

′
B) such that Π(C ′) > Π(C) and

T ′B = 0.

To streamline notation, we will write T without subscript to refer to the bonus paid to

workers choosing task A, and we will describe an incentive scheme via a triple C = (qA, qB, T ).

The feasibility constraints for an incentive scheme implementing a given target v areβ ≥ F (v)(1− qA) + (1− F (v))(1− qB)

v = T + V ·∆q

The following result establishes existence of a unique optimal scheme as well as some

basic properties of this scheme.

Lemma 2. The set of feasible incentive schemes is non-empty, and there exists a unique

optimal scheme C∗ = (q∗A, q
∗
B, T

∗), which satisfies T ∗ ∈ [0, v) and q∗B > 1− β > q∗A whenever

v > 0.
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Notably, an optimal scheme always distorts the allocation of prizes: ∆q∗ ≡ q∗B − q∗A > 0.

This result arises because the first misallocated prize is free to first order. On the other

hand, the first dollar of bonuses incurs a first-order cost, and so it may be that T ∗ = 0.

4 Characterizing an optimal scheme

In the absence of a task-mix goal, the organization optimally awards prizes strictly in order

of match value, ignoring each worker’s task choice. The match standards under this policy

are qFBA = qFBB = 1− β, yielding total profits

ΠFB ≡ F (v)

∫ 1

1−β
ρ(q) dq + (1− F (v))

∫ 1

1−β
ρ(q) dq.

Any incentive scheme C = (qA, qB, T ) which chooses (qA, qB) 6= (1 − β, 1 − β) distorts the

allocation of prizes and reduces the organization’s profits. Define

∆R(qA, qB) ≡ (1− F (v))

∫ qB

1−β
ρ(q) dq − F (v)

∫ 1−β

qA

ρ(q) dq

to be this allocational loss. The first term represents the match value lost from withholding

prizes from workers choosing task B, while the second term represents the value gained from

allocating extra prizes to workers choosing task A. The first term is always larger than the

second when (qA, qB) 6= (1− β, 1− β), resulting in a positive loss.

The problem of designing an optimal incentive scheme can be divided into two steps.

First, given a specified bonus T, the organization minimizes the loss ∆R(qA, qB) among all

feasible schemes C paying this bonus. Second, it maximizes total profits over T, using the

loss-minimizing scheme found in the first part.

For a given bonus T ≥ 0, let C(T ) be the set of feasible incentive schemes paying T.

Define

∆R∗(T ) ≡ min
C∈C(T )

∆R(qA, qB)

to be the minimized loss calculated in the first step. Then the profit function maximized in

the second step is

Π∗(T ) ≡ ΠFB −∆R∗(T )− F (v) · T.

The following lemma establishes that the loss function resulting from the first step is a

decreasing, convex function of the bonus.

10



Lemma 3. Whenever v > 0, there exists a bonus T ∈ [0, v) such that:

• ∆R∗(T ) =∞ for all T < T ,

• ∆R∗(T ) is finite, decreasing, and strictly convex on [T , v].

The minimized loss ∆R∗(T ) is finite only if there exists a feasible incentive scheme deliv-

ering bonus T. When v is relatively small, there exists such a scheme for any bonus T ≥ 0,

in which case T = 0. However, for large v sufficient incentives cannot be provisioned by prize

incentives alone, and a minimal bonus T > 0 is required, a result formally established in the

following lemma:

Lemma 4. There exists a target v0 ∈ (0, V ] such that T = 0 when v ∈ [0, v0] while T is

positive and increasing in v on (v0,∞).

For bonuses in the feasible range [T , v], there exist many feasible incentive schemes.16

These schemes all involve some reallocation of prizes from workers choosing task B to task

A; some may, in addition, allocate only a fraction of the prize endowment, a feature we refer

to as prize burning. The unique loss-minimizing incentive scheme is characterized by the

property that it minimizes prize burning.

As the specified bonus increases, fewer prizes need be misallocated through reallocation

or burning, leading to a downward-sloping loss ∆R∗. Further, the marginal misallocated

prize becomes less costly the fewer prizes have already been misallocated, since the gap

between the match value of the marginal prize-winners shrinks and the lost match value

from a burned prize falls. As a result, ∆R∗ is strictly convex. This convexity implies that

the second-stage profit function Π∗ is strictly concave in T on [T , v]. The maximum of Π∗ can

therefore be characterized by the property that 0 is a superderivative of Π∗ at the maximum.

This derivation of an optimal scheme utilizes the bonus T as the primary design variable

and is useful for proving our main results. A complementary characterization focuses on the

optimal magnitude of prize incentives. This approach is more complex to formalize, because

prize incentives might be furnished either through reallocation or burning. However, it can

be simply described in environments where no prizes are burned, and we will rely on this

heuristic when developing intuition for our main results.17

16There also exist feasible incentive schemes for a range of bonuses above v. However, as established in

Lemma 2, the optimal bonus never lies in this range, and so we ignore such bonuses.
17See the proof of Theorem 1 for a general derivation which accounts for the possibility of prize-burning.
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Intuitively, an optimal scheme can be designed by reallocating prizes across tasks until

either the reward gap between tasks equals the incentive target v, or else the marginal cost

of further reallocation equals the (constant) marginal cost of bonuses. These marginal costs

can be explicitly calculated to obtain a useful first-order condition for the optimal magnitude

of prize incentives.

Using money to raise the reward gap T + V ·∆q by a dollar costs the organization F (v)

dollars, since the extra bonus must be paid to every worker choosing task A. The marginal

cost of bonuses is therefore MCB = F (v). Meanwhile, reallocating a mass σ of prizes from

group B to group A lowers qA by σ/N and raises qB by σ/(1− F (v)). Hence

∆q =
σ

F (v) · (1− F (v))
,

meaning that the organization must reallocate a mass ∆σ = F (v)·(1−F (v))/V of the prize to

increase the reward gap by a dollar. The cost of this reallocation is ∆ρ(σ) ·∆σ to first order,

where ∆ρ(σ) is the gap between the marginal prize-winner’s match value in each group. The

marginal cost of prize incentives is therefore MCP (σ) = ∆ρ(σ) · F (v) · (1− F (v))/V .

The marginal cost of prizes is rising in σ, reflecting the convexity of prize incentive costs

noted earlier. The optimal mass of reallocated prizes σ∗, and therefore the optimal prize

priority ∆ρ∗ = ∆ρ(σ∗), is then uniquely determined by the optimality condition

MCP (σ∗)

MCB
= ∆ρ∗ · (1−N) ≤ 1, (FOC)

with equality if the optimal bonus is non-negative.

5 Role of the target

In this section we present our main results, which describe how an optimal scheme is shaped

by the desired magnitude of incentives. We find that raising the incentive target increases the

optimal magnitude of prize incentives but has an ambiguous effect on the size of the optimal

bonus. Specifically, the prize priority increases with the target, while the bonus tends to

first increase and later decrease as the target increases. The increasing prize priority and

eventually declining bonus reflect a decline in the relative cost of prize incentives as workers

move between tasks, a force we designate the group-size effect. Meanwhile, the initially

increasing bonus reflects convexity in the cost of reallocating successive prizes, a force we

label the gap-size effect.
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Figure 1: The feasible frontier ∆R∗ (in blue) lies tangent to an isoprofit line (in red) at the

optimal bonus T ∗.

In section 5.2 we develop these results in a baseline setting in which match values are

uniformly distributed across the population of workers. We then generalize the results to

arbitrary match distributions in section 5.3.

5.1 Preliminaries

The optimal tradeoff between bonus and prize incentives depends on whether prizes are

available to be reallocated (or burned) on the margin. The following lemma connects this

availability to the size of the incentive target.

Lemma 5. There exists a target v ∈ [v0,∞) such that:

• If v < v, then either T = 0 or T ∗ > T .

• If v ≥ v, then C∗ = (max{0, 1− β/F (v)}, 1, T ).

When v < v, any lower bound T > 0 on feasible bonuses imposed by limited prize

incentives is non-binding. As a result, both tools are available on the margin under an
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optimal contract, and the optimal tradeoff between them is determined by balancing their

marginal costs. Conversely, when v ≥ v prize incentives are exhausted and the marginal

cost of bonuses rises above the marginal cost of the last unit of prize incentives. Our main

results characterize how the optimal scheme varies with v when prize incentives have not

been exhausted.

5.2 Uniform match values

We now present results under the assumption that match values are uniformly distributed

across the population of workers. Since the match-value function ρ is the inverse distribution

function of match values, uniform match values correspond to a linear match-value function:

Assumption 1. ρ(q) = R · (q + b) for some b ≥ 0.

We first characterize how optimal prize incentives vary with the target. We establish

that both the absolute and relative prize priorities ∆ρ∗ = ρ(q∗B)− ρ(q∗A) and ∆q∗ = q∗B − q∗A
are increasing in v, as is the match standard q∗B for workers choosing task B.

Proposition 1. Suppose that Assumption 1 holds. Optimal prize incentives vary with v as

follows:

• ∆q∗ and ∆ρ∗ are increasing in v on [0, v̄].

• q∗B is increasing in v on [0, v̄].

This monotonicity stems from a group-size effect affecting incentive costs as workers shift

between tasks. Recall the optimality condition (FOC), which balanced the marginal costs

of monetary and prize incentives and set the optimal magnitude of prize incentives. When

the optimal bonus is positive, this condition may be written

∆ρ∗

V
· (1−N)︸ ︷︷ ︸

group-size effect

= 1 (FOC’)

where we have set F (v) = N to emphasize the fact that the term 1 − F (v) captures the

number of workers choosing task B. Since the right-hand side of (FOC’) is declining in the

group size N, the absolute prize priority ∆ρ∗ equalizing the marginal cost of the two tools
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is therefore increasing in N, or equivalently in the target v = F−1(N). We refer to this

phenomenon as the group-size effect.

Intuitively, monetary incentives operate by raising the payoff of choosing task A, while

prize incentives operate through a combination of an increased payoff to task A and a de-

creased payoff to task B. As more workers choose task A, more money and/or prizes must be

allocated to the group to raise each worker’s payoff by a given amount. This force raises the

marginal cost of manipulating that group’s payoff symmetrically for each tool.18 However,

a corresponding reduction in the number of workers choosing task B reduces the cost of

raising their match standard (i.e., withholding prizes from well-matched workers), an effect

which benefits only prize incentives. The group-size effect therefore lowers the marginal

cost of prize incentives relative to bonuses, encouraging the organization to provision more

incentives through prizes.

Under uniform match values, the absolute and relative prize priorities are related via the

identity ∆ρ = R ·∆q. Thus a rise in ∆ρ∗ induces a corresponding rise in ∆q∗. The behavior

of q∗B is closely linked to the behavior of ∆q∗. The overall number of prizes allocated must

satisfy the resource constraint, under which the number of available prizes is a weighted

average of the fraction of prize-winners in each group, with weights equal to the group

sizes.19 Mechanically, as the gap between the fraction of prize-winners in each group rises

while group sizes are held fixed, q∗A must fall while q∗B rises. Hence a rising ∆q∗ implies a

rising q∗B. A reallocation of workers toward task A amplifies this effect by increasing the

weight on the larger prize allocation in the resource constraint, requiring a compensating

rise in q∗B for a given ∆q∗ as v rises.

This same logic implies that the behavior of q∗A as v rises is ambiguous. On the one

hand, a rising ∆q∗ implies a smaller q∗A, holding group sizes fixed. But on the other hand

a shift in the group sizes requires a larger q∗A to balance the resource constraint, holding

∆q∗ fixed. These two forces compete, and either may dominate. This possibility is formally

demonstrated below in Theorem 2.

We next characterize how optimal monetary incentives vary with the target v. For this

18If the marginal prize is burned rather than reallocated, then this force affects only monetary incentives,

further strengthening the group-size effect.
19For simplicity, this exposition focuses on environments in which no prizes are burned. Otherwise, incen-

tive power from reallocating prizes must be exhausted, in which case q∗A = 0 and q∗B = ∆q∗. A similar logic

therefore links the behavior of q∗B and ∆q∗.
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result we impose a monotonicity condition on the virtual value function ϕ(v) ≡ v − (1 −
F (v))/f(v). Monotonicity of the virtual value function is a familiar assumption in the mech-

anism design literature and is satisfied by a variety of common distributional families.

Assumption 2. ϕ is increasing for v ≥ 0 and ϕ(∞) > 0.

We establish that T ∗ is quasiconcave in v under Assumption 2. Quasiconcavity implies

that T ∗ is either nondecreasing or hump-shaped,20 and we further establish that the latter

behavior arises under some model parameterizations.

Proposition 2. Suppose that Assumptions 1-2 hold. Then optimal bonus incentives vary

with v as follows:

• T ∗ is quasiconcave in v on [0, v̄].

• T ∗ = 0 for v > 0 sufficiently small.

• If R is sufficiently large, then T ∗ > 0 for some v ∈ [0, v].

• If V is sufficiently large, there exists a non-degenerate interval of parameters R for

which T ∗ is non-monotone in v on [0, v̄].

The behavior of T ∗ as a function of v is determined by the interplay of two forces: the

group-size effect just discussed, which tends to depress the optimal bonus as the target rises;

and a gap-size effect, which tends to increase it. To understand these effects, decompose the

total required reward gap v into

v = T + V ·∆q.

As v rises, the reward gap must grow through a combination of a larger bonus and/or

increased reallocation of prizes. Consider the exercise of increasing this gap without allowing

employees to actually switch tasks. In this benchmark, the group size N remains fixed,

in which case ∆q∗ = ∆ρ∗/R is determined by (FOC’) independently of the reward gap.

Essentially, prize incentives are naturally limited by the convexity of prize reallocation costs,

and all marginal incentives are optimally provisioned through bonuses. T ∗ therefore grows

with the reward gap, a phenomenon we call the gap-size effect.

20Because the optimal bonus must be non-negative and vanishes at v = 0, the remaining possibility that

T ∗ is decreasing is ruled out.
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Figure 2: An optimal bonus T ∗ which is both quasiconcave and nonmonotone in v.

The group-size effect and gap-size effect oppose one another, leading to an ambiguous

total effect of increased incentives on the optimal bonus. Proposition 2 establishes that

the gap-size effect dominates when v is small, while the group-size effect dominates when

v is large. This behavior can be understood by expanding the optimality condition (FOC’)

which pins down the optimal bonus whenever T∗ > 0. Using the identities ∆ρ = R ·∆q and

v = T + V ·∆q, this optimality condition may be written in terms of T ∗ as

1 =
R

V 2
· (v − T ∗)︸ ︷︷ ︸

gap-size effect

· (1− F (v))︸ ︷︷ ︸
group-size effect

.

Under Assumption 2, the function (v− T )(1− F (v)) is single-peaked in v for any choice

of T. This behavior ensures that the optimal bonus is quasiconcave in v. In particular, the

marginal cost of prize incentives (as captured by the gap-size effect) is sufficiently modest

for small targets that the optimal bonus is 0 when v is close to zero. Additionally, T ∗ is

single-peaked provided that the first-order condition stated above holds with equality over a

sufficiently wide range of v. This outcome is ensured when V is sufficiently large (implying

that v̄ is large) and R is neither too small (which would yield T ∗ = 0 everywhere) nor too

large (which would entail very small prize incentives everywhere and global dominance of
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the gap-size effect). Figure 2 provides an illustration of a non-monotone, quasiconcave T ∗.

5.3 General match values

We continue our analysis by relaxing the uniform match value assumption. Instead, we

impose only the mild condition that the (inverse) match distribution function be smooth at

two key quantiles.

Assumption 3. ρ is continuously differentiable near q = 1− β and q = 1.

We also dispense with the monotonicity condition previously imposed on the virtual value

function. We now require only that the hazard rate of the value distribution not vanish too

rapidly.21

Assumption 4. limv→∞ v
f(v)

1−F (v)
=∞.

We first generalize the results of Proposition 1 describing how optimal prize incentives

change with the target. We additionally provide a formal statement of the possibility that

q∗A is non-monotone in the target.

Theorem 1. Optimal prize incentives vary with v as follows:

• ∆ρ∗ is increasing in v on [0, v̄].

• q∗B is increasing in v on [0, v̄].

• If Assumption 4 holds and V is sufficiently large, then q∗A is non-monotone in v on

[0, v̄].

Unlike in the uniform match value case, we can no longer guarantee that the optimal

relative prize priority ∆q∗ varies monotonically with v. However, it remains true that the

absolute prize priority ∆ρ∗ varies monotonically, for the same reasons as in the uniform

match value case. The logic for monotonicity of q∗B is also similar: Ignoring the group-size

effect, increasing v would lead to an increase in ∆q∗ and therefore a mechanical increase in

q∗B. While the group-size effect has an ambiguous effect on ∆q∗ for general match distribu-

tions, it continues to unambiguously amplify the effect of v on q∗B. Additionally, as noted

21The boundary condition ϕ(∞) > 0 imposed in Assumption 2 implies that lim infv→∞ v f(v)
1−F (v) ≥ 1.

Assumption 4 slightly strengthens this requirement to accommodate non-uniform match distributions.
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in the discussion following Proposition 1, the effect of a changing target on q∗A is in general

ambiguous regardless of the match distribution.

We next prove an analogue of Proposition 2 describing how the optimal bonus changes

with the target. Under non-uniform match values, quasiconcavity of T ∗ is no longer assured.

Nonetheless, the general phenomenon of non-monotonicity continues to hold for appropriate

choices of V and R. (Recall that we have assumed that ρ(q) = R · ρ0(q), where ρ0 is a

fixed reference match-value function and R is a scale factor. As a result, when we allow the

parameter R to vary, we hold fixed the shape of the match distribution and vary only its

scale.)

Theorem 2. optimal bonus incentives vary with v as follows:

• T ∗ = 0 for sufficiently small v > 0.

• If R is sufficiently large, then T ∗ > 0 for some v ∈ [0, v].

• If Assumptions 3-4 hold and V is sufficiently large, there exists a non-degenerate in-

terval of parameters R for which T ∗ is non-monotone in v on [0, v̄].

This result relies on the same basic interplay between the group- and gap-size effects that

drove Proposition 2, although this interplay is more complex when ρ is nonlinear. In general,

the optimality condition (FOC’) characterizing a nonzero T ∗ can be written

1 =

[
ρ

(
1− β +

F (v)

V︸ ︷︷ ︸
group

(v − T ∗)︸ ︷︷ ︸
gap

)
− ρ
(

1− β − 1− F (v)

V︸ ︷︷ ︸
group

(v − T ∗)︸ ︷︷ ︸
gap

)]
· (1− F (v))︸ ︷︷ ︸

group

.

The appearance of v in the terms v− T ∗ reflects the gap-size effect, which tends to increase

the optimal usage of bonuses as v rises. Meanwhile, terms involving F (v) reflect changing

group sizes. As in the uniform match value case, the final term 1− F (v) captures increased

incentive power in group B as the size of that group shrinks.

The additional appearances of F (v) reflect the fact that as group sizes change, match

standards must shift systematically across both groups to maintain a fixed relative prize

priority. When match values are uniform, level shifts of the match standards qA and qB do

not affect the marginal cost of prize incentives (which is controlled by ∆ρ). However, for

more general distributions this shift can either increase or decrease the ∆ρ corresponding

to a given ∆q. As a result, the direction of the group-size effect is ambiguous, and the
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Figure 3: An optimal bonus T ∗ which is nonmonotone but not quasiconcave in v.

interplay between the gap- and group-size effects is complex. In particular, quasiconcavity

of T ∗ in v can no longer be ensured. (Figure 3 illustrates the possibilities in this more

general environment.) Nonetheless, the proof of the theorem establishes that the gap-size

effect continues to dominate for small v while the group-size effect both dominates and tends

to reduce the relative cost of prizes for large v.

Given the weaker guarantees on the shape of T ∗ promised by Theorem 2, we do not require

the monotone virtual cost assumption required to prove Proposition 2. However, we do still

need a condition on the limiting behavior of the value distribution F in order to ensure

that the group-size effect dominates for large v. Intuitively, the term (v − T )(1 − F (v))

appearing in the first-order condition for the uniform match value case is decreasing for

large v provided that the value hazard rate f(v)/(1 − F (v)) vanishes no faster than 1/v

asymptotically. Assumption 4 imposes this asymptotic condition, which the proof of the

Proposition shows is sufficient to ensure dominance of the group-size effect for large v under

general match distributions.
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6 Role of the resource constraint

We now complement our main results by studying how an optimal incentive scheme de-

pends on the number of prizes available to the organization. Our primary finding is that,

when match values are uniformly distributed, β has no impact on the optimal magnitude of

monetary or prize incentives. We establish this result in Section 6.2. We then extend our

analysis to general single-peaked match distributions in 6.3, where we show that variation

in β induces a U-shaped response of both bonuses and the (absolute) prize priority.

6.1 Preliminaries

Our main results focus on the structure of the optimal scheme in environments where prize

incentives have not been exhausted for either group. As the following lemma establishes, in

such environments prizes are neither too scarce nor too plentiful.22

Lemma 6. Suppose that v ∈ (0, V ). Then there exist prize endowments β and β satisfying

0 < β < β < 1 such that:

• q∗B < 1 if and only if β > β.

• q∗A > 0 if and only if β < β.

We will show that as β varies within [β, β], all variation in the optimal incentive scheme

is driven by non-uniformity of the match distribution. Outside this range, the optimal

incentive scheme may additionally vary with β in order to avoid burning prizes (if β > β) or

because prize incentives are exhausted (if β < β). These possibilities arise only when q∗A = 0

or q∗B = 1, i.e., when prizes are awarded unselectively to workers choosing task A or are

withheld entirely from workers choosing task B. We defer further discussion of the optimal

incentive scheme in these regimes until Section 8.1.

6.2 Uniform match values

We now establish that, when match values are uniformly distributed, the number of available

prizes has no impact on the optimal magnitude of monetary or prize incentives within the

range [β, β].

22The upper bound v < V on the target ensures that β < β. For larger targets, this region is degenerate

or empty when R is sufficiently small.
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Proposition 3. Suppose that v ∈ (0, V ) and Assumption 1 holds. Then T ∗, ∆q∗, and ∆ρ∗

are independent of β on [β, β].

In general, the prize endowment β enters the tradeoff between prizes and bonuses only

insofar as it affects how a given relative priority ∆q, which controls the strength of prize

incentives, translates into an absolute priority ∆ρ = ρ(qB) − ρ(qA), which controls the

marginal cost of prize incentives. In general, given a desired relative priority ∆q, a change

in the prize endowment shifts both qA and qB uniformly to satisfy the resource constraint.

Under uniform match values, ∆ρ = R · ∆q, implying that uniform shifts to the match

standards do not affect the relationship between ∆q and ∆ρ. As a result, β drops out of the

tradeoff between bonuses and prizes completely.

Proposition 3 establishes the perhaps surprising result that β plays no role in the opti-

mal mix of prize and monetary incentives. However, β does enter the form of an optimal

scheme via the individual match standards for each group. Specifically, when more prizes

are available, the match standards shift downward to reflect the larger number of workers

who earn prizes.

6.3 General match values

We now study the role of the resource constraint when match values are not uniformly dis-

tributed across the population of workers. As noted in the discussion following Proposition

3, the irrelevance of β for optimal incentives in that result relied crucially on a direct pro-

portionality between the relative and absolute prize priorities. When ρ is nonlinear, ∆ρ and

∆q are no longer proportional, opening a new channel for β to affect the shape of an optimal

scheme.

Our main result in this subsection characterizes the effect of this channel under a mild

regularity condition on the match distribution. We require that the match value density func-

tion be single-peaked, which corresonds to an inverse-sigmoidal shape for ρ. To streamline

exposition, we also enforce a symmetric-density assumption at the edges of the distribution.

Definition 1. A function f : [0, 1] → R is inverse-sigmoidal if it is continuously differen-

tiable and increasing and f ′ is single-troughed.

Assumption 5. ρ is inverse-sigmoidal and ρ′(0) = ρ′(1).
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When the match distribution has a single-peaked density, we establish that absolute

incentives, as measured by both T ∗ and ∆ρ∗, are weakest for intermediate β and grow

stronger when β is small or large.

Theorem 3. Suppose that v ∈ (0, V ) and Assumption 5 holds. Then there exist prize

endowments βL ∈ [β, β) and βH ∈ (β, β], satisfying βL ≤ βH , such that:

• T ∗ is decreasing, ∆q∗ is increasing, and ∆ρ∗ is constant in β on [β, βL],

• T ∗ = 0, ∆q∗ is constant, and ∆ρ∗ is single-troughed in β on (βL, βH),

• T ∗ is increasing, ∆q∗ is decreasing, and ∆ρ∗ is constant in β on [βH , β].

Further, there exists a non-degenerate interval of parameters R for which β < βL < βH <

β.

An optimal scheme is designed by reallocating prizes across groups until either the target

has been achieved, or else the marginal cost of further reallocation equals the (constant)

marginal cost of bonuses. In the first case, no bonuses are paid; otherwise, bonuses are used

to provision all residual incentives. The marginal cost of reallocation is directly proportional

to the (absolute) prize priority ∆ρ, since this gap records the cost of reallocating one more

prize. Meanwhile, the contribution of prize incentives to the target is V ·∆q. The optimal

choice of ∆ρ (and hence also T ) therefore depends on the linkage between ∆ρ and ∆q.

When the match distribution is single-peaked, there are many workers with similar match

values in the middle of the match distribution. As a result, in this portion of the distribu-

tion the organization can generate significant prize incentives through reallocation without

distorting total match value very much. Conversely, in the tails of the distribution workers

have relatively differentiated match values, and so redistribution incurs a large allocative

cost here. The prize endowment β acts as a shifter on the match standards qA and qB and

determines where in the distribution they lie. When β is intermediate, these standards cor-

respond to match values in the middle of the distribution, while for extreme values of β they

correspond to match values in the tails.

If R is sufficiently small, then for intermediate β the incentive cost of reallocating prizes

is small enough that bonuses are not used. In that case, ∆q∗ = v/V is independent of β,

inducing variation in the absolute prize priority ∆ρ∗ to maintain a fixed relative priority ∆q∗.

Given the linkage between ∆q∗ and ∆ρ∗ described above, ∆ρ∗ is therefore single-dipped in β.
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Figure 4: Optimal bonus T ∗, relative prize priority ∆q∗, and absolute prize priority ∆ρ∗ as

functions of the prize endowment β.

Meanwhile, for extreme β, achieving the target by reallocating prizes incurs a large incentive

cost; if R is sufficiently large, then bonuses are optimally used. In this regime, ∆ρ∗ remains

fixed at the level equalizing the marginal costs of the two tools. Since in this case ∆ρ∗ does

not respond to variation in β, the linkage between ∆q and ∆ρ described above implies that

∆q∗ decreases as β becomes more extreme, with a corresponding increase in T ∗.

7 Testable predictions

Our results offer testable predictions about observable aspects of incentive schemes in real

markets. As one example, consider Uber’s problem of incentivizing drivers to pick up riders

in underserved locations. Theorem 2 predicts that monetary incentives may be used most

intensively when misallocation of drivers is moderate, such as during a daily rush hour.

Conversely, when drivers are overwhelmingly needed in a particular location, such as during

exceptionally heavy demand driven by a concert or sporting event, Uber might prefer not

to pay bonuses to every driver serving the event. Instead, Theorem 1 predicts that it might

24



boost supply mostly by withholding prizes such as priority ride-matching from drivers shun-

ning the event. Predictions such as this one could be evaluated given sufficiently rich data

on worker choices and rewards.

As another example, consider Google’s problem of incentivizing software engineers to

spend time on side projects that create significant value for the company. Theorem 3 pre-

dicts that the optimal bonus and prize priority are roughly U-shaped in the number of

available promotions, with both incentives weakening as the marginal promoted employee

tends toward mediocrity. Supposing that Google is a relatively hierarchical company with

few available promotions, a drop in the company’s growth rate should move the marginal

promoted employee deeper into the right tail of the talent distribution. In that case, Theo-

rem 3 predicts that the company may reward high-value side projects with both more money

and a larger weight in promotion decisions when the company is growing slowly than when

it is growing quickly.

The data requirements for evaluating our model’s predictions are reasonably modest in

many applications. To bring our model to the data, an analyst would need to observe the

distribution of worker task choices; any incentive payments made to them; the allocation of

non-monetary prizes; and a measure of worker match values for these prizes. In the platform

markets discussed above, these variables may either be directly observed by the platform

operator or could be plausibly proxied with variables which are observed.

For instance, consider our ride-hailing example above. Task choices might correspond to

the number of times a driver has picked up fares in areas with many unmatched riders, or the

fraction of days that the driver has worked during rush hour; match value could be proxied

by metrics like the time to pickup; incentive payments could be estimated by payments from

surge pricing and other driver incentive programs; and the strength of prize incentives could

be estimated by regressing proxies for prioritization—such as frequency of airport pickups,

rating of matched riders, and wait time between matches—on past task choices, controlling

for match value and other pertinent factors such as driver rating.

As an alternative route to evaluating our model predictions, an analyst could survey

management practices using the techniques developed in Bloom and Reenen (2007). While

those techniques were developed to evaluate the connection between performance incentives

and worker productivity, they could be fruitfully deployed to understand how autonomous

workers are managed. In particular, managers could be surveyed on the contexts in which
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tasks go underserved; the tools used to encourage workers to complete these tasks; and

in particular the extent to which managers view non-cash prizes as effective rewards for

completing particular tasks. Managers could also be surveyed on the extent to which task

allocation concerns guide decisions about the quantity and value of prizes or recruitment of

new workers, topics we discuss further in Section 9.

8 The limits of incentives

Our main results focus on environments in which money and prize incentives are plentiful.

In particular, we place no limits on the size of the bonus pool, and we place bounds on v and

β ensuring that prize incentives are not exhausted in an optimal incentive scheme. These

assumptions allow us to cleanly characterize the tradeoff between the two tools when both

are available. However, in some organizations one or the other tool might be in short supply.

We now discuss how an optimal incentive scheme is affected by such constraints.

8.1 Scarce prize incentives

Scarce prize incentives can be formally captured in our model by either a large v (relative to

the value V of a prize) or a prize endowment β which is close to 0 or 1. In such environments,

prize incentives may be exhausted:

Definition 2. A feasible incentive scheme C = (qA, qB, T ) exhausts prize incentives if qB −
qA = min{1, β/F (v)}.

An incentive scheme exhausts prize incentives by maximizing ∆q = qB − qA among all

feasible schemes. If β ≤ F (v), then this maximum is achieved by allocating all prize to

workers choosing task A and none to workers choosing task B. Otherwise, it is achieved by

guaranteeing all workers a prize in return for choosing task A and burning all excess prizes

to ensure that no workers choosing task B receive one. In either case, qB = 1 under any

scheme which exhausts prize incentives. The following lemma demonstrates that q∗B = 1 is

in fact a necessary and sufficient condition for exhausting prize incentives under an optimal

scheme:23

23There exist additional suboptimal schemes which set qB = 1 but do not exhaust prize incentives. These

schemes unnecessarily burn prize by setting qA > max{1− β/F (v), 0}.
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Lemma 7. C∗ exhausts prize incentives if and only if q∗B = 1.

When the target v grows large, Lemma 5 demonstrated that eventually q∗B = 1 and there-

fore an optimal incentive scheme exhausts prize incentives. Meanwhile, Lemma 6 established

that prize incentives are not exhausted under an optimal scheme when v < V and β > β. On

the other hand, since q∗B = 1 for β ≤ β, prize incentives are optimally exhausted for small

β.24

For small targets (v < V ), it is not necessary to exhaust prize incentives to achieve the

target when β is close to 1. Essentially, in this limit prize incentives do not become scarce

because prizes can be burned. When v > V, however, the situation changes. In this regime,

burning prizes is not sufficient to provision incentives. It is then possible for prize incentives

to be exhausted for large β, provided that R is small enough that the organization prefers

to burn all excess prizes before resorting to bonuses:

Proposition 4. Suppose that v > V. If β is sufficiently close to 1, then C∗ exhausts prize

incentives when R is sufficiently small.

8.2 Scarce monetary incentives

Scarce monetary incentives can be captured by augmenting our model with a financial con-

straint reflecting total money available to the organization to pay bonuses. Formally, a

financial constraint requires that F (v) · T ≤ M, where M captures available financial re-

sources. Since this constraint tightens as v grows, the set of feasible incentive schemes is

non-empty only if the target is not too large, a result formalized by the following result.

Lemma 8. Given available financial resources M > 0, there exists a target v∗ ∈ (v0,∞)

such that the set of feasible incentive schemes is non-empty if and only if v ≤ v∗. The target

v∗ is increasing in M and satisfies v∗ = v0 when M = 0 and v∗ →∞ as M →∞.

The set of targets v ∈ [0, v∗] for which the financial constraint binds may have a complex

structure. However, the constraint can be shown to never bind when M is sufficiently large:

Lemma 9. If M is sufficiently large, then the optimal bonus without a financial constraint

is no larger than M/F (v) for all v ∈ [0, v∗].

24This result continues to hold when v ≥ V.
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Further, no matter the size of M, the financial constraint does not bind for sufficiently

small targets. Indeed, Lemma 2 established the bound T ∗ < v on the (unconstrained)

optimal bonus. Hence whenever v is small enough that vF (v) ≤ M , the constraint is

guaranteed to lie slack. Whether the constraint binds for larger targets depends on the cost

of misallocating prizes, as measured by R. The following result establishes that the financial

constraint never binds for feasible targets if R is small, while conversely the constraint must

bind for v sufficiently close to v∗ provided that R is sufficiently large:

Proposition 5. If R is sufficiently small, then the optimal bonus without a financial con-

straint is no larger than M/F (v) for all v ∈ [0, v∗].

If R is sufficiently large, then for v sufficiently close to v∗, the optimal bonus under a

financial constraint equals M/F (v) and is smaller than the optimal bonus with no constraint.

Whenever the financial constraint does bind, strict concavity of Π∗(T ) in T implies that

T ∗ = M/F (v). The optimal bonus is therefore mechanically decreasing in the target when

the constraint binds. In that case, the targeting constraint implies that the optimal relative

prize priority ∆q∗ = (v − T ∗)/V is increasing in the target, and it can be shown that

whenever ∆q∗ increases so does the optimal absolute priority ∆ρ∗.25 A financial constraint

therefore exerts a force complementary to the group-size effect which simultaneously boosts

the optimal strength of prizes incentives and diminishes the strength of monetary incentives

as v rises.

9 Discussion and conclusion

In this paper we identify a fundamental economic tradeoff between monetary and non-

monetary incentives for autonomous workers. We formally illustrate this tradeoff in a stylized

setting where prizes and workers are in fixed supply, prizes have a fixed value, and the incen-

tive target is exogenous. Generalizing these model elements would shed light on additional

dimensions of the incentive design problem.

A central element of our model is a fixed endowment of prizes which are profitable for the

organization to allocate. This endowment may arise naturally from high-level organizational

design decisions. For instance, Uber may determine how much to prioritize drivers with high

25This result is immediate under uniform match values. In the proof of Theorem 1, we show that under

general match distributions, a rising ∆q∗ continues to imply a rising ∆ρ∗. See Lemma A.2.
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ratings and low cancellation rates in order to maximize rider satisfaction. Similarly, Airbnb

may choose the number of Superhost badges to award in order to maximize their impact

on guest booking decisions. And Google may identify a set of profitable projects to assign

to engineering teams. In all of these cases, the number of workers who qualify these prizes

determines a natural prize endowment.

Organizations may benefit from boosting the supply of prizes beyond this natural level to

strengthen worker incentives.26 Of course, this tactic is costly—too much priority matching

for drivers leads to long wait times for riders, an abundance of Superhosts dilutes the signaling

value of the badge to guests, and excess engineering teams waste resources on unprofitable

projects. Our model could be used to weigh the incentive benefits of generating extra prizes

against the costs of these activities in order to determine the optimal supply of prizes.

A closely related possibility is that organizations might be able to influence the value V of

individual prizes. In some cases, this value derives directly from the scarcity of the prize—for

instance, Superhost badges may be valued by hosts to the extent that they distinguish their

bearers from the broader population. But in other cases, the prize itself may be subject

to design—for instance, as in Bar-Isaac and Lévy (2022), where a job can be made more

attractive to workers by increasing its visibility to an external labor market. Our model

could similarly be used to shed light on the tradeoffs involved in this design decision.

Organizations may also be able to achieve task goals not just by moving workers between

tasks, but also by attracting new workers. Freelancing platforms, for instance, sometimes

offer sign-up bonuses or raise base wages to attract additional workers. Our model could be

enhanced with an extensive margin of participation to study how these tools should be used

in conjunction with rewards for task-switching to meet overall task goals.

Finally, organizations may have some flexibility to adjust their task allocation targets in

order to economize on incentive costs. Our model provides a cost function for achieving par-

ticular goals, which could be coupled with an organizational production function to optimize

over task allocations. Enhancing the model in this way would permit a fuller assessment

of the costs of autonomy, which could then be compared against alternative institutional

arrangements that provide more top-down direction to workers.

26See Ke, Li, and Powell (2018) for a related example of an organizational setting in which high-level

positions are optimally oversupplied in order to provide prizes for workers in low-level positions.
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A Proofs

A.1 Proof of Lemma 1

Fix such a scheme C = (qA, qB, TA, TB). If TA ≥ TB, then let T ′A = TA − TB and C ′ =

(qA, qB, T
′
A, 0). This modification preserves the total number of prizes awarded and induces

the same fraction of workers to choose task A. Hence C ′ is feasible. Since a lower bonus

is paid to workers choosing each task under C ′ than under C, it must therefore be that

Π(C ′) > Π(C).
Suppose instead that TA < TB. Then set

q′A = qA + (1− F (v))
TB − TA

V
, q′B = qB − F (v)

TB − TA
V

and C ′ = (q′A, q
′
B, 0, 0). Note that

V · (q′B − q′A) = V · (qB − qA) + TA − TB = v,

and so C ′ induces the required fraction of workers to choose each task. Since v > 0, it must

be that qB > q′B > q′A > qA and so q′A and q′B lie in [0, 1]. Additionally,

F (v)(1− q′A) + (1− F (v))(1− q′B) = F (v)(1− qA) + (1− F (v))(1− qB),

and so C ′ allocates the same number of prizes as C. Therefore C ′ is feasible.

Let n ≡ ∆q · F (v) · (1 − F (v)) and n′ ≡ ∆q′ · F (v) · (1 − F (v)) be the number of

prizes reallocated between groups under the two incentive schemes. The difference in profits

between the two schemes can be written

Π(C ′)− Π(C) = F (v) · TA + (1− F (v)) · TB + ΠP (n′)− ΠP (n),

where

ΠP (m) ≡ F (v)

∫ 1

1−B−m/F (v)

ρ(q) dq + (1− F (v))

∫ 1

1−B+m/(1−F (v))

ρ(q) dq

is the match value generated by prizes under a scheme which reallocates m prizes and

B ≡ F (v)(1 − qA) + (1 − F (v))(1 − qB) is the total number of prizes allocated across both
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groups. Note that

Π′P (m) = ρ

(
1−B − m

F (v)

)
− ρ

(
1−B +

m

1− F (v)

)
< 0,

and so ΠP (n′) > ΠP (n) given that ∆q′ < ∆q. Therefore Π(C ′) > Π(C), as claimed.

A.2 Proof of Lemma 2

The scheme C = (1− β, 1− β, v) is feasible, and so the set of feasible schemes is non-empty.

The bounds qA, qB ∈ [0, 1] and TA ≥ 0 along with the targeting constraint v = T + V ·∆q
imply that the set of feasible schemes is bounded. Further, the feasibility constraints are

weak inequalities which are continuous in (qA, qB, T ). Hence the set of feasible schemes is

compact. Meanwhile, Π is continuous in (qA, qB, T ). The extreme value theorem therefore

implies that an optimal scheme C∗ = (q∗A, q
∗
B, T

∗) exists.

We next prove that this optimum is unique. Note that Π is additively separable in

(qA, qB, T ), linear in T , and strictly concave in qA and qB given that ρ is an increasing

function. Meanwhile, all feasibility constraints are linear in in (qA, qB, T ). So fix any optimal

scheme C∗∗ = (q∗∗A , q
∗∗
B , T

∗∗), and suppose by way of contradiction that C∗∗ 6= C∗. At least

one of q∗A 6= q∗∗A or q∗B 6= q∗∗B must hold, since otherwise the targeting constraint implies that

also T ∗ = T ∗∗ and therefore C∗ = C∗∗. But in that case, any convex combination of C∗ and

C∗∗ preserves feasibility given the linearity of each constraint in all variables. Further, this

mixture must strictly increase profits given linearity of Π in T and strict concavity in qA and

qB. This result contradicts the presumed optimality of each scheme.

Now, fix v > 0 and any feasible scheme C = (qA, qB, T ) satisfying T ≥ v. We next

establish that C is not an optimal scheme and therefore that T ∗ < v. The bound T ≥ 0

combined with the targeting constraint implies that qA ≥ qB, in which case the resource

constraint implies that qA ≥ 1− β since the resource constraint must hold. If T ∗ > v, then

qA > qB so that qB < 1. If T ∗ = v and qA = qB = 1, then C ′ = (1 −∆, 1−∆, T ) is feasible

for sufficiently small ∆ and yields a strictly higher profit for the organization than C. So

assume that qB < 1. Define the family of schemes

C ′(∆) = (qA −∆ · (1− F (v))/V, qB + ∆ · F (v)/V, T −∆).

The scheme C ′(∆) satisfies the targeting and resource constraint for all ∆, and for sufficiently

small ∆ > 0 it is feasible given that qA ≥ 1 − β > 0 and qB > 1 and T ≥ v > 0. Profits
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under this scheme are

Π(C ′(∆))

= Π(C) + F (v)

(
∆ +

∫ qA

qA−∆·(1−F (v))/V

ρ(q) dq

)
− (1− F (v))

∫ qB+∆·F (v))/V

qB

ρ(q) dq.

Differentiating wrt ∆ yields

d

d∆
Π(C ′(∆)) = F (v) +

F (v)(1− F (v))

V

[
ρ

(
qA −∆

1− F (v)

V

)
− ρ

(
qB + ∆

F (v)

V

)]
.

At ∆ = 0 this expression becomes

d

d∆
Π(C ′(∆))

∣∣∣∣
∆=0

= F (v) +
F (v)(1− F (v))

V
[ρ(qA)− ρ(qB)] ,

which is strictly positive given that qA ≥ qB. Hence Π(C ′(∆)) > Π(C) for sufficiently small

∆ > 0.

Given that T ∗ < v, the targeting constraint requires that q∗B > q∗A. The resource constraint

therefore requires that q∗B > 1 − β. Now, if q∗A ≥ 1 − β, then the resource constraint is

slack under C∗. In this case, for sufficiently small ∆ > 0 the scheme C ′ = (q∗A − ∆, q∗B −
∆, T ∗) is feasible and strictly increases the match value from prizes, so that Π(C ′) > Π(C∗),
contradicting the optimality of C∗. Therefore q∗A < 1− β.

A.3 Proof of Lemma 3

For T ≤ v, define Q(T ) ≡ (v − T )/V ∈ [0, 1]. The set C(T ) consists of triples (qA, qB, T )

such that (qA, qB) ∈ [0, 1]2 and the systemqB − qA = Q(T )

F (v)qA + (1− F (v))qB ≥ 1− β

is satisfied. Fix T ∈ [0, v]. The first constraint implies that the set of feasible quantiles

(qA, qB) is totally ordered using the usual vector order. Since ∆R is increasing in both

qA and qB, it is therefore minimized by the smallest feasible (qA, qB). Using the targeting

constraint to eliminate qB from the resource constraint yields

qA ≥ 1− β − (1− F (v))Q(T ).
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Hence, provided that the feasible set is non-empty, the quantiles (q∗∗A (T ), q∗∗B (T )) which

minimize ∆R(qA, qB) satisfy

q∗∗A (T ) = max{0, 1− β − (1− F (v))Q(T )}, q∗∗B (T ) = max{Q(T ), 1− β + F (v)Q(T )}.

This set of quantiles is feasible if and only if q∗∗B (T ) ≤ 1. Otherwise, no (qA, qB) satisfying

the targeting and resource constraints satisfies qB ≤ 1, in which case C(T ) is empty. Note

that q∗∗B (T ) is continuous and decreasing in T, and q∗∗B (v) = 1− β < 1. Hence T ≡ inf{T ∈
[0, v] : q∗∗B (T ) ≤ 1} ∈ [0, v), and q∗∗B (T ) ≤ 1 iff T ≥ T . In particular, ∆R∗(T ) is finite iff

T ≥ T .

Going forward, we restrict attention to T ∈ [T , v]. Let Q ≡ Q(T ). Since Q is linear and

decreasing in T, the function ∆R∗(T ) is decreasing and strictly convex in T on [T , v] if and

only if the function

∆R∗∗(Q) ≡ (1− F (v))

∫ max{Q,1−β+F (v)Q}

1−β
ρ(q) dq − F (v)

∫ 1−β

max{0,1−β−(1−F (v))Q}
ρ(q) dq

it is increasing and strictly convex in Q on [0, Q]. Let Q ≡ sup{Q ∈ [0, Q] : 1 − β − (1 −
F (v))Q > 0} ∈ (0, Q]. Then on [0, Q], we have

∆R∗∗(Q) = (1− F (v))

∫ 1−β+F (v)Q

1−β
ρ(q) dq − F (v)

∫ 1−β

1−β−(1−F (v))Q

ρ(q) dq.

Differentiating this expression wrt Q yields

d∆R∗∗

dQ
= F (v)(1− F (v)) [ρ(1− β + F (v)Q)− ρ(1− β − (1− F (v))Q)] .

Since ρ is increasing, this derivative is nonnegative and increasing in Q on [0, Q]. Hence ∆R∗∗

is increasing and convex in Q on this interval. Meanwhile, on (Q,Q] we have

∆R∗∗(Q) = (1− F (v))

∫ Q

1−β
ρ(q) dq − F (v)

∫ 1−β

0

ρ(q) dq,

which has derivative
d∆R∗∗

dQ
= (1− F (v))ρ(Q).

Since ρ is nonnegative and increasing, so is this derivative. Hence ∆R∗∗ is increasing and

convex in Q on (Q,Q]. Since ∆R∗∗ is additionally continuous on [0, Q], it follows that it is

increasing on [0, Q]. Finally, when Q < Q, we have

d∆R∗∗

dQ−
(Q) = F (v)(1− F (v))

[
ρ(Q)− ρ(0)

]
< (1− F (v))ρ(Q) =

d∆R∗∗

dQ+
(Q),

and so ∆R∗∗ has a convex kink at Q = Q. Hence ∆R∗∗ is strictly convex on [0, Q].
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A.4 Proof of Lemma 4

Recall from the proof of Lemma 3 that T = inf{T ∈ [0, v] : q∗∗B (T ) ≤ 1}. Since q∗∗B (T ) =

max{Q(T ), 1 − β + F (v)Q(T )}, this expression may be equivalently written T = inf{T ∈
[0, v] : Q(T ) ≤ 1 and 1− β + F (v)Q(T ) ≤ 1}, where Q(T ) = (v − T )/V.

The inequality Q(T ) ≤ 1 is equivalently T ≥ v − V, while the inequality 1 − β +

F (v)Q(T ) ≤ 1 is equivalently T ≥ v − V · β/F (V ). Hence

T = max

{
0, v − V, v − V · β

F (v)

}
.

This expression is clearly nondecreasing in v and increasing whenever it is positive. Addi-

tionally, it vanishes if and only if v ≤ V and vF (v) ≤ V · β. Since vF (v) is increasing in v,

these two inequalities are satisfied if and only if v ≤ v0, where

v0 ≡ max{v ∈ [0, V ] : vF (v) ≤ β · V }.

Clearly v0 ∈ (0, V ], proving the result.

A.5 Proof of Lemma 5

For v ≥ v0, define

Π′0(v) ≡


1−F (v)
F (v)

· ρ(1)
V
− 1, F (v) < β

(1− F (v)) · ρ(1)−ρ(1−β/F (v))
V

− 1, F (v) ≥ β

Note that Π′0 is decreasing and right-continuous in v and Π′0(v) → −1 as v → ∞. We

complete the proof by demonstrating that v ≡ min{v ≥ v0 : Π′0(v) ≤ 0} has the claimed

properties. Since T = 0 for v < v0, there is nothing to prove on this regime, so we focus on

v ≥ v0.

The proof of Lemma 3 established that

Π∗(T ) ≡ ΠFB − F (v) · T − (1− F (v))

∫ max{(v−T )/V,1−β+F (v)(v−T )/V }

1−β
ρ(q) dq

+ F (v)

∫ 1−β

max{0,1−β−(1−F (v))(v−T )/V }
ρ(q) dq

for all T ∈ [T , v]. Define

T ≡ v − (1− β)V

1− F (v)
.
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For all T 6= T , the derivative dΠ∗/dT exists and equals

dΠ∗

dT
(T ) = F (v) ·

(
1− F (v)

V
·∆ρ̄(T )− 1

)
,

where

∆ρ̄(T ) ≡

ρ
(
1− β + F (v)v−T

V

)
− ρ

(
1− β − (1− F (v))v−T

V

)
, T > T (v)

ρ
(
v−T
V

)/
F (v), T < T (v)

Additionally, at T = T one-sided derivatives of Π∗ exist and equal

dΠ∗

dT+
(T ) =

dΠ∗

dT
(T+),

dΠ∗

dT−
(T ) =

dΠ∗

dT
(T−).

Suppose first that F (V ) ≥ β. Then v0 ≤ V satisfies v0F (v0) = V · β, implying F (v0) =

β · V
v0
≥ β. Hence F (v) ≥ β for all v ≥ v0. In this case T = v − V · β/F (v) and T ≥ T for

all v ≥ v0. Hence
dΠ∗

dT
(T ) = F (v) · Π′0(v)

for all v ≥ v0. Since T ∗ = T if and only if this derivative is non-positive, and since Π′0(v) ≤ 0

if and only if v ≥ v, it follows that T ∗ = T on [v0,∞) if and only if v ≥ v. When v ≥ v, we

have q∗∗A (T ∗) = 1− β/F (v) and q∗∗B (T ∗) = 1, and so C∗ = (1− β/F (v), 1, T ) for all v ≥ v, as

claimed. Meanwhile for v ∈ (v0, v) (supposing this interval is non-empty) we have T ∗ > T,

while for v ∈ [0, v0] we have T = 0. So v satisfied the stated properties when F (V ) ≥ β.

Now suppose that F (V ) < β. Then v0 = V, and for v ∈ [V, F−1(β)) we have T = v − V
and T > T . Hence

dΠ∗

dT
(T ) = F (v) · Π′0(v)

for all v ∈ [V, F−1(β)). Meanwhile for v ≥ F−1(β) we have T = v − V · β/F (v) and T ≥ T ,

in which case again
dΠ∗

dT
(T ) = F (v) · Π′0(v).

It follows that T ∗ = T on [v0,∞) if and only if v ≥ v. When v ≥ v, we have q∗∗A (T ∗) =

max{0, 1−β/F (v)} and q∗∗B (T ∗) = 1, and so C∗ = (max{0, 1−β/F (v)}, 1, T ) for all v ≥ v, as

claimed. Meanwhile for v ∈ (v0, v) (supposing this interval is non-empty) we have T ∗ > T,

while for v ∈ [0, v0] we have T = 0. So v satisfied the stated properties when F (V ) < β.
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A.6 Proof of Proposition 1

The comparative statics involving ∆ρ∗ and q∗B are a special case of the corresponding results

established in Theorem 1. The comparative static involving ∆q∗ follows from the fact that

∆ρ∗ = R ·∆q∗ under Assumption 1.

A.7 Proof of Proposition 2

Throughout this proof, we will write v explicitly as an argument of quantities which depend

on it. We will additionally make free use of concepts and notation developed in the proof of

Lemma 5. We begin with a technical lemma useful for establishing quasiconcavity:

Lemma A.1. Let

α(v) ≡ v − K

1− F (v)

for some K ∈ R on a non-empty interval [v0, v1] ⊂ R+. If Assumption 2 holds, then α is

strictly quasiconcave on [v0, v1].

Proof. α is continuously differentiable everywhere and satisfies the ordinary differential equa-

tion

α′(v) =
α(v)− ϕ(v)

v − ϕ(v)
.

Any critical point v∗ of α must therefore satisfy α(v∗) = ϕ(v∗). Under Assumption 2, the

virtual cost ϕ is increasing, implying that for any two critical points v∗ and v∗∗ > v∗ we have

α(v∗∗) > α(v∗).

Fix w0 and w1 > w0 in [v0, v1]. Strict quasiconcavity requires that α(v) > min{α(w0), α(w1)}
for all v ∈ (w0, w1). Suppose by way of contradiction that this condition were violated. Then

there exists a minimizer w∗ ∈ (w0, w1) of α on [w0, w1]. This minimizer must be a critical

point. If there existed another critical point w∗∗ ∈ [w0, w
∗), then α(w∗) > α(w∗∗), contra-

dicting the minimality of w∗ on [w0, w1]. Hence α′(v) 6= 0 for every v ∈ [w0, w
∗). This fact,

combined with the minimality of w∗ and the continuity of α′, implies that α′(v) < 0 for every

v ∈ [w0, v
∗). In particular, α′(w0) < 0.

Now, α′(w∗) = 0 implies that α(w∗) = ϕ(w∗). Meanwhile, α′(w0) < 0 implies that

α(w0) < ϕ(w0) given that v > ϕ(v) for all v. But then monotonicity of ϕ implies that

α(w0) < α(w∗), a contradiction of the minimality of w∗. So strict quasiconcavity must

hold.

38



Note that the objective Π∗(T ; v) and the constraint set [T , v] are both continuous in v,

and therefore the optimal bonus T ∗(v) is continuous in v as well. Under Assumption 1, we

have

∆ρ̄(T ; v) =

R · v−TV , T > T (v)

R ·
(
v−T
V

+ b
)/
F (v), T < T (v)

The facts that T ∗(v) = 0 for v sufficiently small and maxv∈[0,v] T
∗(v) > 0 for R sufficiently

large are special cases of the corresponding results in Theorem 2. We next prove quasicon-

cavity. Let Φ(v) ≡ v(1 − F (v)). Note that T (v) > 0 if and only if Φ(v) > (1 − β)V. Since

Φ′(v) = −ϕ(v)f(v), Assumption 2 implies that Φ is single-peaked on [0,∞). Let v∗ ∈ (0,∞)

be this peak and Φ∗ ≡ Φ(v∗). There exist between zero and two positive solutions to the

equation Φ(v) = (1 − β)V. Let vL > 0 and vH > vL denote these solutions when two exist.

Otherwise, let vL = vH = v∗ if (1−β)V ≥ Φ∗ and vH =∞ if (1−β)V ≤ Φ(∞). In all cases,

T (v) > 0 if and only if v ∈ (vL, vH).

Case 1: vL = vH or v ≤ vL. In this case T (v) = 0 for all v ∈ [0, v). Since additionally

either T (v) = 0 or T ∗(v) > T (v) for all v < v, in this case the optimal bonus T ∗(v) is the

unique solution to the first-order condition

dΠ∗

dT
(T ; v) = F (v) ·

(
(v − T )(1− F (v)) · R

V 2
− 1

)
≤ 0,

with equality if T ∗(v) > 0. This condition yields the optimal bonus

T ∗(v) = max

{
v − V 2/R

1− F (v)
, 0

}
for all v ∈ [0, v). Continuity of T ∗ allows us to extend this identity to v = v. Lemma A.1

ensures that the function

τ(v) ≡ v − V 2/R

1− F (v)

is strictly quasiconcave on [0, v]. Hence it is positive, if at all, on an interval, ensuring that

T ∗(v) = max{τ(v), 0} is quasiconcave on [0, v].

Case 2: vL < v̂ ≡ min{vH , v} and T ∗(vL) > 0. Then T ∗(vL) > T (vL) and therefore
dΠ∗

dT
(T (vL); vL) > 0. Since T (vL) = 0, this condition is equivalently

(vL − T (vL))(1− F (vL)) · R
V 2

> 1,
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implying in particular

vL(1− F (vL)) · R
V 2

> 1.

Since vL(1 − F (vL)) = (1 − β)V, this latter inequality is equivalently (1 − β) · R
V
> 1. But

then whenever T (v) > T (v), we have

dΠ∗

dT+
(T (v); v) = F (v)

[
(v − T (v))(1− F (v)) · R

V 2
− 1

]
= F (v)

[
(1− β) · R

V
− 1

]
> 0,

meaning that T ∗(v) > T (v) whenever T (v) > T (v). Reasoning very similar to the previous

case therefore allows us to conclude that

T ∗(v) = max

{
v − V 2/R

1− F (v)
, 0

}
on v ∈ [0, v], and therefore that T ∗ is quasiconcave on this interval.

Case 3: vL < v̂ and T ∗(vL) = 0. In this case the first-order condition

dΠ∗

dT
(0; vL) = F (vL) ·

(
Φ(vL) · R

V 2
− 1

)
= F (vL) ·

(
(1− β) · R

V
− 1

)
≤ 0

must hold. Additionally, for v < vL we have T (v) = T (v) = 0 and

dΠ∗

dT
(0; v) = F (v) ·

(
Φ(v) · R

V 2
− 1

)
,

which is negative given that Φ(v) < (1 − β) · V = Φ(vL) for all v < vL. So T ∗(v) = 0 for

v ≤ vL. It is therefore sufficient to establish quasiconcavity on [vL, v].

For v ∈ (vL, v̂) we have

dΠ∗

dT+
(max{T (v), T (v)}; v) = F (v) ·

(
(1− F (v))(v −max{T (v), T (v)}) · R

V 2
− 1

)
≤ F (v) ·

(
(1− F (v))(v − T (v)) · R

V 2
− 1

)
= F (v) ·

(
(1− β) · R

V
− 1

)
≤ 0.

Hence T ∗(v) ≤ max{T (v), T (v)} on (vL, v̂). But also T ∗(v) ≥ T (v), and for every v < v and

this inequality is strict if T (v) > 0. Thus if T (v) ≥ T (v) on (vL, v̂), where T (v) > 0, we

would conclude that T (v) < T ∗(v) ≤ T (v), a contradiction. So it must be that T (v) > T (v)

and T ∗(v) ≤ T (v) on (vL, v̂).
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On (vL, v̂), the left-hand derivative of Π∗ at T (v) is

dΠ∗

dT−
(T (v); v) = F (v) ·

[(
1− β
F (v)

+ b · 1− F (v)

F (v)

)
· R
V
− 1

]
,

where the bracketed term is decreasing in v. Hence there exists a v0 ∈ [vL, v̂] such that

T ∗(v) = T (v) for v ∈ [vL, v0] while T ∗(v) < T (v) for v ∈ (v0, v̂).

We next establish quasiconcavity on the intervals [vL, v0] and [v0, v̂]. This claim is trivial

on a degenerate interval, so for this argument we assume that each interval is non-degenerate.

On [vL, v0], we have

T ∗(v) = T (v) = v − (1− β)V

1− F (v)
,

which is strictly quasiconcave by Lemma A.1. Meanwhile, on (v0, v̂) the optimal bonus is

characterized by the first-order condition

dΠ∗

dT
(T ; v) = F (v) ·

[
1− F (v)

F (v)
·
(
v − T
V

+ b

)
· R
V
− 1

]
≤ 0,

with equality if T ∗(v) > 0. This first-order condition has the unique solution

T ∗(v) = max

{
v − V 2/R

1− F (v)
+ V · b+

V 2

R
, 0

}
,

which by continuity of T ∗ must also hold at v = v0, v̂. Lemma A.1 ensures that the function

τ(v) ≡ v − V 2/R

1− F (v)

is strictly quasiconcave. It therefore exceeds −V ·B−V 2/R (if at all) on an interval, implying

that T ∗(v) = max{τ(v) + V · b+ V 2/R, 0} is quasiconcave.

We next prove that T ∗ is quasiconcave on [vL, v̂]. If v0 ∈ {vL, v̂} then this claim is

immediate, so suppose that v0 ∈ (vL, v̂). Quasiconcavity on [vL, v0] and [v0, v̂] implies quasi-

concavity on [vL, v̂] so long as T ∗ has a (weakly) concave kink at v0. Using the expressions

for T ∗ to the left and right of v0 derived above, we have

dT ∗

dv−
(v0) = 1− (1− β) · V · f(v0)

(1− F (v0))2
,

dT ∗

dv+
(v0) = 1− V 2

R
· f(v0)

(1− F (v0))2
.

Since (1−β) · R
V
≤ 1 in the current case, it follows that the left-hand derivative is no smaller

than the right-hand one, as claimed.
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If v̂ = v, then we have established quasiconcavity on [vL, v] and therefore [0, v]. So suppose

instead that v̂ = vH < v. Then for all v ∈ [vH , v] we have Φ(v) ≤ Φ(vH) = (1 − β) · V and

therefore

dΠ∗

dT
(T (v); v) = F (v) ·

(
(1− F (v))(v − T (v)) · R

V 2
− 1

)
≤ F (v) ·

(
Φ(v) · R

V 2
− 1

)
≤ F (v) ·

(
(1− β) · R

V
− 1

)
≤ 0.

Hence T ∗(v) = T (v) on [vH , v]. But for v < v this is possible only if T (v) = 0, and so

T ∗(v) = 0 on [vH , v). Thus by continuity also T ∗(v) = 0. This fact, combined with quasicon-

cavity of T ∗ on [0, vH ], implies that T ∗ is quasiconcave on [0, v].

To complete the proof of the proposition, we construct an interval of parameters R for

which T ∗(v) is non-monotone on [0, v] when V is sufficiently large. Suppose that V >

Φ∗/(1− β). Then T (v) = 0 for all v and therefore

T ∗(v) = max

{
v − V 2/R

1− F (v)
, 0

}
on [0, v]. For v sufficiently small, we have T ∗(v) = 0. Non-monotonicity is therefore ensured

whenever T ∗(v) > 0 and dT ∗

dv
(v) < 0. Equivalently, we require

V 2

v(1− F (v))
< R < V 2 f(v)

(1− F (v))2
.

These two inequalities define a non-degenerate interval if and only if ϕ(v) > 0. Since v ≥ v0,

it is sufficient that ϕ(v0) > 0. Note that v0 is continuous and increasing in V, and for V large

enough that F (V ) > β we have v0F (v0) = V · β, implying that v0 →∞ as V →∞. Hence

if V is chosen large enough, there exists a non-degenerate interval of R on which T ∗(v) is

non-monotone.

A.8 Proof of Theorem 1

Throughout this proof, we will write v explicitly as an argument of quantities which depend

on it. The objective function Π∗(T ; v) stated in the proof of Proposition 2 may be equivalently
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written in terms of ∆q using the targeting constraint v = T + V ·∆q, yielding

Π∗(∆q; v) ≡ ΠFB − F (v) · (v − V ·∆q)− (1− F (v))

∫ max{∆q,1−β+F (v)∆q}

1−β
ρ(q) dq

+ F (v)

∫ 1−β

max{0,1−β−(1−F (v))∆q}
ρ(q) dq

over the constraint set ∆q ∈ [0, Q(v)], where

Q(v) ≡ min{v/V, β/F (v), 1}.

Note that T (v) > 0 is equivalent to Q(v) < v/V. Hence for every v < v, either Q(v) = v/V or

else ∆q∗(v) < Q(v). Additionally, since Π∗ is continuous in ∆q and v and Q(v) is continuous

in v, the maximum theorem implies that ∆q∗(v) is continuous in v. And whenever v > 0,

Lemma 2 implies that ∆q∗(v) > 0.

Define

Q(v) ≡ 1− β
1− F (v)

and

∆ρ(∆q; v) ≡ ρ (max{∆q, 1− β + F (v)∆q})− ρ (max{0, 1− β − (1− F (v))∆q})

for ∆q ∈ [0, Q(v)]. Then Π∗ is differentiable for all ∆q 6= Q(v), with derivative

dΠ∗

d∆q
(∆q; v) = F (v) · [V − (1− F (v))∆ρ(∆q; v)]

for ∆q < Q(v) and

dΠ∗

d∆q
(∆q; v) = F (v) ·

[
V − 1− F (v)

F (v)
(∆ρ(∆q; v) + ρ(0))

]
for ∆q > ∆Q(v). The profit function additionally has one-sided derivatives at ∆q = Q(v)

(whenever Q(v) ∈ [0, Q(v)]) with

dΠ∗

d∆q−
(Q(v); v) =

dΠ∗

d∆q
(Q(v)−; v),

dΠ∗

d∆q+
(Q(v); v) =

dΠ∗

d∆q
(Q(v)+; v).

For every v < v, the optimal relative prize priority ∆q∗(v) is the unique ∆q satisfying the

appropriate first-order condition with respect to Π∗(∆q; v) over [0, v/V ]. Note in particular

that dΠ∗/d∆q > 0 at ∆q = 0, so that ∆q∗(v) > 0. Meanwhile, the optimal absolute priority

satisfies ∆ρ∗(v) = ∆ρ(∆q∗(v); v).
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Lemma A.2. If ∆q∗(v) < ∆q∗(v′) for v, v′ ∈ [0, v] satisfying v < v′, then ∆ρ∗(v) < ∆ρ∗(v′).

Proof. The inequality ∆q∗(v) < ∆q∗(v′) implies that ∆q∗(v) ∈ [0, Q(v′)), and so ∆ρ(∆q; v′)

is defined for ∆q ∈ [∆q∗(v),∆q∗(v′)]. Note that ∆ρ(∆q; v′) is increasing in ∆q on [0, Q(v′)],

since ρ is increasing and max{∆q, 1−β+F (v)∆q} is increasing in ∆q while max{0, 1−β−
(1− F (v))∆q} is nonincreasing in ∆q. So we have

∆ρ(∆q∗(v′); v′) > ∆ρ(∆q∗(v); v′).

We next establish that ∆q∗(v) ≤ Q(w) for every w ∈ [v, v′]. Note that Q(w) = w/V

for w ≤ v0 and Q(w) = min{β/F (v), 1} for w ≥ v0. Hence Q is increasing to the left

of v0 and nonincreasing to the right. Thus the desired result holds so long as ∆q∗(v) ≤
min{Q(v), Q(v′)}. The inequality ∆q∗(v) ≤ Q(v) holds by feasibility, while ∆q∗(v) ≤ Q(v′)

holds given the hypothesis ∆q∗(v) < ∆q∗(v′) combined with feasibility of ∆q∗(v′).

To complete the proof, we establish that ∆ρ(∆q∗(v);w) is nondecreasing in w on [v, v′].

If ∆q∗(v) = 0 then ∆ρ(∆q∗(v), w) = 0 for all w, so this result is immediate. Otherwise,

whenever F (w) > (1− β)/∆q∗(v)− 1 we have

∆ρ(∆q∗(v);w) = ρ(1− β + F (w)∆q∗(v))− ρ(1− β − (1− F (w))∆q∗(v)),

which has derivative

∂

∂w
∆ρ(∆q∗(v);w) = ∆q∗(v) · f(w) ·∆ρ(∆q∗(v);w) > 0.

Hence ∆ρ(∆q∗(v);w) is increasing in w on this range. Meanwhile, whenever F (w) ≤ (1 −
β)/∆q∗(v)− 1 we have

∆ρ(∆q∗(v);w) = ρ(∆q∗(v))− ρ(0),

So ∆ρ(∆q∗(v);w) is independent of w on this range. It follows that ∆ρ(∆q∗(v);w) is non-

decreasing in w on [v, v′], allowing us to conclude that

∆ρ(∆q∗(v′); v′) > ∆ρ(∆q∗(v); v′) ≥ ∆ρ(∆q∗(v); v)

and therefore that ∆ρ∗(v′) > ∆ρ∗(v).

Lemma A.3. For every v ≥ 0, the inequality

∆ρ∗(v) ≤ V

1− F (v)

holds.
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Proof. The inequality is trivial if v = 0, so suppose v > 0. If ∆q∗(v) ≤ Q(v), then the fact

that ∆q∗(v) > 0 for every v > 0 means that ∆q∗(v) must satisfy the one-sided first-order

condition
dΠ∗

d∆q−
(∆q∗(v); v) = F (v) · [V − (1− F (v))∆ρ∗(v)] ≥ 0

(with equality whenever ∆q∗(v) < Q(v)), which is equivalent to the stated inequality. On

the other hand, if ∆q∗(v) > Q(v), then the first-order condition

dΠ∗

d∆q
(∆q∗(v); v) = F (v) ·

[
V − 1− F (v)

F (v)
(∆ρ∗(v) + ρ(0))

]
≥ 0

must hold (with equality whenever ∆q∗(v) < Q(v)), or equivalently

∆ρ∗(v) ≤ F (v) · V

1− F (v)
− ρ(0).

Since F (v) < 1 and ρ(0) ≥ 0, this inequality implies the desired one.

We now prove that ∆ρ∗(v) is increasing in v on [0, v]. It is sufficient to prove this property

on [0, v), since continuity of ∆q∗(v) implies continuity of ∆ρ∗(v), so that strict monotonicity

on [0, v) implies the same property on [0, v].

Fix any v0, v1 ∈ [0, v̄) satisfying v1 > v0. Suppose first that ∆q∗(v1) > Q(v0). Then

mechanically ∆q∗(v0) ≤ Q(v0) < ∆q∗(v1), implying ∆ρ∗(v0) < ∆ρ∗(v1) by Lemma A.2.

Suppose next that Q(v1) ≤ Q(v0) and ∆q∗(v1) ∈ [Q(v1), Q(v0)]. If Q(v1) = v1/V, then

Q(v0) ≤ v0/V < Q(v1), and so ∆q∗(v1) < Q(v1). On the other hand, if Q(v1) < v1/V, then

v1 < v implies that ∆q∗(v1) < Q(v1). Hence in either case the one-sided first-order condition

dΠ∗

d∆q+
(∆q∗(v1); v1) = F (v1) ·

[
V − 1− F (v1)

F (v1)
(∆ρ(∆q∗(v1); v1) + ρ(0))

]
≤ 0

must hold (with equality if ∆q∗(v1) > Q(v1)), implying

V ≤ 1− F (v1)

F (v1)
(∆ρ(∆q∗(v1); v1) + ρ(0)) <

1− F (v0)

F (v0)
(∆ρ(∆q∗(v1); v1) + ρ(0)).

Now, Q(v) = v/V for v ≤ v0 and Q(v) = min{β/F (v), 1} for v ≥ v0. Hence Q is

increasing to the left of v and nonincreasing to the right. Since ∆q∗(v1) < Q(v1) and

∆q∗(v1) ≤ Q(v0), it follows that ∆q∗(v1) ≤ Q(v) for all v ∈ [v0, v1]. Additionally, since Q(v)

is increasing in v and ∆q∗(v1) ≥ Q(v1), we must have ∆q∗(v1) > Q(v) for all v ∈ [v0, v1], in
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which case ρ(∆q∗(v1); v) = ρ(∆q∗(v1)) − ρ(0) for v ∈ [v0, v1] and therefore ρ(∆q∗(v1); v1) =

ρ(∆q∗(v1); v0). Hence

V <
1− F (v0)

F (v0)
(∆ρ(∆q∗(v1); v0) + ρ(0)),

an inequality equivalent to
dΠ∗

d∆q
(∆q∗(v1); v0) < 0

and therefore implying ∆q∗(v0) < ∆q∗(v1). Lemma A.2 then allows us to conclude that

∆ρ∗(v0) < ∆ρ∗(v1).

Finally, suppose that ∆q∗(v1) < Q(v1). Then ∆q∗(v1) > 0 means that the first-order

condition
dΠ∗

d∆q
(∆q∗(v1); v1) = F (v1) · [V − (1− F (v1))∆ρ∗(v1)] = 0

must hold, implying

∆ρ∗(v1) =
V

1− F (v1)
>

V

1− F (v0)
.

Lemma A.3 therefore yields the inequality ∆ρ∗(v1) > ∆ρ∗(v0).

We next prove that q∗B(v) is increasing in v on [0, v]. The optimal absolute prize priority

may be written ρ∗(v) = ρ(q∗B(v))− ρ(q∗A(v)), where

q∗B(v) = max{∆q∗(v), 1− β + F (v)∆q∗(v)},

q∗A(v) = max{0, 1− β − (1− F (v))∆q∗(v)}.

Fix v0 and v1 > v0 in [0, v]. If q∗A(v1) ≥ q∗A(v0), then the fact that ρ∗(v1) > ρ∗(v0) implies

q∗B(v1) > q∗B(v0). So suppose that q∗A(v0) > q∗A(v1). Then in particular q∗A(v0) > 0, and

therefore

q∗A(v0) = 1− β − (1− F (v0))∆q∗(v0) > q∗A(v1) ≥ 1− β − (1− F (v1))∆q∗(v1),

or after rearrangement

∆q∗(v1) ≥ 1− F (v0)

1− F (v1)
∆q∗(v0) > ∆q∗(v0).

Then since max{∆q, 1− β + F (v)∆q} is increasing in ∆q and nondecreasing in v, it follows

that q∗B(v1) > q∗B(v0).
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Finally, we show that q∗A(v) is non-monotone whenever V is sufficiently large. Let Φ(v) ≡
v(1− F (v)). This function has derivative

Φ′(v) = (1− F (v))

(
1− v f(v)

1− F (v)

)
.

Under Assumption 4, there exists a v∗ > 0 such that Φ′(v) < 0 for all v > v∗. Then since

Φ(v) ≤ v for all v ≥ 0, it follows that Φ has a finite maximum Φ∗ on R+. It is sufficient for

non-monotonicity that ∆q∗(v) = v/V and Q(v) ≥ v/V for all v ∈ [0, v0] and v0 > v∗, since

the first two assumptions imply that

q∗A(v) = 1− β − Φ(v)

V

on [0, v0], and the final assumption implies non-monotonicity of Φ(v) on [0, v0]. We will show

that all three assumptions hold for sufficiently large V.

Note that v0 is continuous and increasing in V, and for V large enough that F (V ) > β

we have v0F (v0) = V ·β, implying that v0 →∞ as V →∞. Hence v0 > v∗ for V sufficiently

large. Meanwhile, the condition Q(v) ≥ v/V is equivalent to Φ(v) ≤ (1 − β) · V. Then

V > Φ∗/(1 − β) ensures that Q(v) ≥ v/V for all v ∈ [0, v0]. Finally, whenever v ≤ v0

we have Q(v) = v/V, so that ∆q = v/V is feasible, and whenever Q(v) ≥ v/V we have

∆q∗(v) = v/V whenever the first-order condition

V ≥ (1− F (v)) ·
[
ρ

(
1− β +

vF (v)

V

)
− ρ

(
1− β − Φ(v)

V

)]
holds. This condition is satisfied for all v whenever V > ρ(1).

A.9 Proof of Theorem 2

Throughout this proof, we will write v explicitly as an argument of quantities which depend

on it. We will additionally make free use of concepts and notation developed in the proof of

Lemma 5.

We begin by proving that T ∗(v) = 0 for v sufficiently small. Note that T (v) = T (v) = 0

for v sufficiently small. In this regime, T ∗(v) = 0 if and only if the first-order condition

dΠ∗

dT
(0; v) = F (v)·

{
1− F (v)

V
·
[
ρ

(
1− β +

vF (v)

V

)
− ρ

(
1− β − v(1− F (v))

V

)]
− 1

}
≤ 0

holds, which is true for sufficiently small v given continuity of ρ.
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We next prove that maxv∈[0,v] T
∗(v) > 0 for R sufficiently large. For this it is sufficient

to show that T ∗(v0) > 0 for R large. Since T (v0) = 0, we have T ∗(v0) > 0 if and only if the

first-order condition

dΠ∗

dT
(0; v) = F (v0) ·

(
(1− F (v0)) ·∆ρ̄0(0; v0) · R

V
− 1

)
> 0,

where v0 and ∆ρ̄0(0; v0) ≡ ∆ρ̄(0; v0)/R are independent of R. Since ∆ρ̄0(0; v0) > 0, this

condition holds whenever R is sufficiently large.

We next derive conditions on R under which T ∗ is non-monotonic. The threshold costs

T (v) = T (v) = 0 for sufficiently small v, in which case the slope of the profit function at

T = 0 equals

dΠ∗

dT
(0; v) = F (v) ·

{
1− F (v)

V
·
[
ρ

(
1− β +

vF (v)

V

)
− ρ

(
1− β − v(1− F (v))

V

)]
− 1

}
.

This expression is continuous in v and equals −F (0) < 0 at v = 0, meaning that T ∗(v) = 0

for v sufficiently small. It is therefore sufficient for non-monotonicity of T ∗(v) that T ∗(v0) = 0

and maxv∈[0,v0] T
∗(v) > 0.

Recall that T (v) = 0 if and only if Φ(v) ≤ (1−β)V, where Φ(v) = v(1−F (v)). As noted

in the proof of Theorem 1, Assumption 4 ensures that Φ has a finite maximum Φ∗ on R+.

Hence whenever V > Φ∗/(1 − β), we have T (v) = 0 for all v ≥ 0. We maintain this lower

bound on V going forward.

Note that v0 is continuous and increasing in V, and for V sufficiently large that F (V ) > β,

we have v0F (v0) = V ·β. We maintain this lower bound on V going forward. An implication

of this identity is that v0 →∞ as V →∞ and therefore v0/V = β/F (v0)→ β as V →∞.
For v ∈ [0, v0], define

Γ(v, V ) ≡ 1− F (v)

V
·
[
ρ0

(
1− β +

vF (v)

V

)
− ρ0

(
1− β − v(1− F (v))

V

)]
.

When v ≤ v0, the inequality T ∗(v) > 0 is equivalent to R > 1/Γ(v, V ). Note that at v = v0

we have

Γ(v0, V ) =
1− F (v0)

V
·
[
ρ0 (1)− ρ0

(
1− v0

V

)]
.

Under Assumption 3, ρ0 is continuously differentiable in a neighborhood of 1 and 1 − β.

Then since 1 − v/V approaches 1 − β as V → ∞, it follows that Γ(v, V ) is differentiable

in a neighborhood of v for sufficiently large V. We maintain this lower bound on V going

forward.
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The following lemma completes the proof by establishing that Γ(V ) ≡ maxv∈[0,v0] Γ(v, V ) >

Γ(v0, V ) for V sufficiently large, in which case T ∗(v0) = 0 and maxv∈[0,v0] T
∗(v) > 0 for R in

the non-empty interval (1/Γ(V ), 1/Γ(v0, V )).

Lemma A.4. ∂Γ
∂v

(v0, V ) < 0 for V sufficiently large.

Proof. Differentiating Γ with respect to v and evaluating at v = v0 yields

∂Γ

∂v
(v0, V ) =

f(v)

V
· (γ(V )−∆ρ0(V )) ,

where

γ(V ) ≡ 1− F (v0)

V
·
[
ρ′0(1) ·

(
v0 +

F (v0)

f(v0)

)
− ρ′0

(
1− v0

V

)
·
(
v0 −

1− F (v0)

f(V 0)

)]
and

∆ρ0(V ) ≡ ρ0(1)− ρ0

(
1− v0

V

)
.

It is sufficient to establish that γ(V ) < ∆ρ0(V ) when V is large. Note that ∆ρ0(V ) →
ρ0(1)− ρ0(1− β) > 0 as V →∞. Meanwhile, γ(V ) may be equivalently written

γ(V ) =
v0

V
·
[
ρ′0(1) ·

(
1− F (v0) +

F (v0)

v0h(v0)

)
− ρ′0

(
1− v0

V

)
·
(

1− 1

v0h(v0)

)
(1− F (v0))

]
,

where h(v) = f(v)/(1− F (v)) is the hazard rate of F. Under Assumption 4, vh(v)→∞ as

v →∞. Hence γ(V )→ 0 as V →∞, establishing the result.

A.10 Proof of Lemma 6

Throughout this proof, we will write β explicitly as an argument of quantities which depend

on it. Define

β
0
≡ vF (v)

V
, β0 ≡ 1− v(1− F (v))

V
.

These prize endowments are interior whenever v ≤ V. Additionally, β0 − β0
= 1 − v/V, so

that β0 > β
0

when v < V. Recall from the proof of Lemma 5 that

T (β) = max

{
0, v − V, v − V · β

F (v)

}
.

Then when v < V , the minimal feasible bonus T (β) vanishes if and only if β ≥ β
0
.Meanwhile,

the threshold bonus

T (β) = max

{
0, v − (1− β)V

F (v)

}
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defined in the proof of Lemma 5 vanishes if and only if β ≤ β0.

When β ∈ (β
0
, β0), the cost-minimizing match standards q∗∗A (T ; β) and q∗∗B (T ; β) corre-

sponding to any feasible bonus T ∈ [0, v] (constructed in the proof of Lemma 3) are interior.

Hence in particular the optimal match standards q∗A(β) and q∗B(β) must be interior.

Meanwhile, for β ≤ β
0

we have T (β) = 0 and T (β) > 0. In this regime, q∗∗A (T ; β) > 0

for every feasible T ∈ [T (β), v]. However, q∗∗B is decreasing in T and q∗∗B (T (β); β) = 1. Hence

q∗B(β) < 1 if and only if T ∗(β) > T (β), i.e., if

dΠ∗

dT
(T (β); β) > 0.

Using the expression for this derivative derived in the proof of Proposition 2, this condition

is equivalently

ρ(1)− ρ
(

1− β

F (v)

)
>

V

1− F (v)
.

The left-hand side of this condition is increasing in β and vanishes at β = 0. So define

β ≡ max

{
β ≤ β

0
: ρ(1)− ρ

(
1− β

F (v)

)
≤ V

1− F (v)

}
.

Then q∗B(β) < 1 if and only if β > β.

Finally, for β ≥ β0 we have T (β) = 0 and T (β) > 0. In this regime, q∗∗B (T ; β) < 1 for

every feasible T ∈ [0, v]. However, q∗∗A (T ; β) > 0 if and only if T > T (β). Hence q∗A(β) > 0 if

and only if T ∗(β) > T (β), i.e., if

dΠ∗

dT+
(T (β); β) > 0.

Using the expression for this derivative derived in the proof of Lemma 5, this condition is

equivalently

ρ

(
1− β

1− F (v)

)
− ρ(0) >

V

1− F (v)
.

The left-hand side of this condition is decreasing in β and vanishes at β = 1. So define

β ≡ min

{
β ≥ β0 : ρ

(
1− β

1− F (v)

)
− ρ(0) ≤ V

1− F (v)

}
.

Then q∗A(β) > 0 if and only if β < β.
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A.11 Proof of Proposition 3

Throughout this proof, we will write β explicitly as an argument of quantities which depend

on it. Lemma 6 ensures that q∗B(β) < 1 and q∗A(β) > 0 whenever β ∈ (β, β). The former

inequality implies T ∗(β) > T (β) whenever T (β) > 0, while the latter implies T ∗(β) > T (β)

whenever T (β) > 0, where T is as defined in the proof of Lemma 5. As established in the

proof of Proposition 2, under Assumption 1 the optimal bonus T ∗(β) is therefore

T ∗(β) = max

{
v − V 2/R

1− F (v)
, 0

}
for all β ∈ (β, β), which does not vary with β. Since additionally the objective Π∗(T ; β)

and the constraint set [T (β), v] are continuous in β, the optimal bonus T ∗(β) is continuous

in β, so that T ∗(β) must also be independent of β on the larger set [β, β]. The targeting

constraint then implies that ∆q∗(β) = (v−T ∗(β))/V is likewise independent of β, and since

∆ρ∗(β) = R ·∆q∗(β) under Assumption 1, so is ∆ρ∗.

A.12 Proof of Theorem 3

Throughout this proof, we will write β explicitly as an argument of quantities which depend

on it. First note that Π∗(T ; β) is continuous in (T, β) and T (β) is continuous in β. As a

result T ∗(β) is continuous in β.

Next, as discussed in the proof of Proposition 3, for β ∈ (β, β) the inequalities T ∗(β) >

T (β) and T ∗(β) > T (β) must hold whenever, respectively, T (β) > 0 and T (β) > 0. Then

given the expressions for dΠ∗/dT derived in the proof of Lemma 5, for β ∈ (β, β) the optimal

bonus T ∗(β) must satisfy the first-order condition

dΠ∗

dT
(T ; β) = F (v) ·

(
(1− F (v)) ·∆ρ0(T ; β) · R

V
− 1

)
≤ 0,

with equality if T ∗(β) > 0, where

∆ρ0(T ; β) ≡ ρ0

(
1− β + F (v)

v − T
V

)
− ρ0

(
1− β − (1− F (v))

v − T
V

)
.

Since this expression for dΠ∗/dT is continuous in both T and β and T ∗(β) is continuous in

β, it follows that this first-order condition must additionally hold at β = β, β.

51



In particular, T ∗(β) = 0 for β ∈ [β, β] if and only if β ∈ [β
0
, β0] (with these quantities as

defined in the proof of Lemma 6) and

R ≤ V

(1− F (v))Γ(β)
,

where Γ(β) ≡ ∆ρ0(0; β).

Lemma A.5. Γ is single-troughed on [β
0
, β0].

Proof. Under Assumption 5, Γ is differentiable and

Γ′(β) = ρ′0

(
1− β − v(1− F (v))

V

)
− ρ′0

(
1− β +

vF (v)

V

)
.

At the endpoints β
0

and β0 we have

Γ′(β
0
) = ρ′0

(
1− v

V

)
− ρ′0 (1)

and

Γ′(β0) = ρ′0 (0)− ρ′0
(

1− v

V

)
.

The assumption that ρ′0 is single-troughed with ρ′0(0) = ρ′0(1) implies that ρ′0(0), ρ′0(1) > ρ′0(q)

for every q ∈ (0, 1). The fact that v ∈ (0, V ) therefore implies Γ′(β
0
) < 0 < Γ′(β0).

Continuity of ρ′0 implies that Γ′ is also continuous, so there exists some β∗0 ∈ (β
0
, β0) such

that Γ′(β∗0) = 0. To complete the proof, we must show that this crossing point is unique.

Letting q∗ be the unique trough of ρ′0, we must have

1− β∗0 −
v(1− F (v)

V
< q∗ < 1− β∗0 +

v(F (v)

V
,

or else ρ′0 would be strictly monotone between these two endpoints, violating Γ(β∗0) = 0. But

then ρ′0 (1− β − v(1− F (v))/V ) is locally increasing in β around β∗0 , while ρ′0 (1− β + vF (v)/V )

is locally decreasing, implying that Γ′ is locally increasing in β near β∗0 . Since this argument

applies to any zero of Γ′, it has at most one zero, establishing uniqueness.

Let β∗0 ∈ (β
0
, β0) be the unique minimizer of Γ on [β

0
, β0], and define

R ≡ V

(1− F (v))Γ(β∗0)
.

Then if R > R, the optimal bonus is positive for all β ∈ [β, β], and if R = R then the

optimal bonus is positive except at β = β∗0 . Let βL = βH ∈ (β, β in either case, with their
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values to be defined later. Otherwise, T ∗(β) = 0 on a non-degenerate interval [βL, βH ] with

β
0
≤ βL < β∗0 < βH ≤ β0. Additionally define

R ≡ V

(1− F (v)) min{Γ(β
0
),Γ(β0)}

.

If R > R, then βL > β
0

and βH < β0. The fact that Γ is single-troughed implies Γ(β0) <

min{Γ(β
0
),Γ(β0)}, so that R > R and there exists a non-degenerate interval of parameters

R for which β
0
< βL < βH < β0, and hence also β < βL < βH < β.

Suppose that the interval (βL, βH) is non-empty. By definition, T ∗(β) = 0 on this interval.

Clearly then ∆q∗(β) = (v−T ∗(β))/V is also independent of β on the interval. Additionally,

∆ρ∗(β) = R ·∆ρ0(T ∗(β); 0) = R ·∆ρ0(0; β) = R · Γ(β)

for β ∈ (βL, βH). Then since (βL, βH) contains β∗0 , the optimal absolute prize priority ∆ρ∗ is

single-troughed on (βL, βH).

Next, suppose that βL > β. Then on [β, βL) we have T ∗(β) > 0, in which case it must

satisfy the first-order condition

(1− F (v)) ·∆ρ0(T ∗(β); β) · R
V

= 1.

Since β does not appear in this condition except indirectly through ρ0, it follows that

ρ0(T ∗(β); β) is independent of β and therefore so is ∆ρ∗(β) = R · ρ0(T ∗(β); β). An identical

argument holds on (βH , β] whenever βH < β.

We complete the proof by signing the slope of T ∗(β) outside (βL, βH), with the corre-

sponding comparative statics for ∆q∗(β) then following from the targeting equation ∆q∗(β) =

(v − T ∗(β))/V. If βL = β or βH = β, then there is nothing to prove in that region, so for

what follows we assume that βL > β and βH < β. Note that ∆ρ0(T ; β) is continuously

differentiable with respect to both T and β, and its derivative with respect to T is negative

everywhere. The implicit function theorem therefore implies that T ∗(β) is differentiable on

(β, βL) and (βH , β) and

dT ∗

dβ
(β) = V · ρ′0 (q∗A(β))− ρ′0 (q∗B(β))

F (v) · ρ′0 (q∗B(β)) + (1− F (v)) · ρ′0 (q∗A(β))
,

where

q∗A(β) = 1− β − (1− F (v))
v − T ∗(β)

V
, q∗B(β) = 1− β + F (v)

v − T ∗(β)

V
.
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It additionally possesses one-sided derivatives at the endpoints of these intervals, with the

same formula applying.

Note that any stationary point of T ∗ on [β, βL] or [βH , β] must satisfy

ρ′0 (q∗A(β)) = ρ′0 (q∗B(β)) .

Additionally, at a stationary point q∗A(β) and q∗B(β) are both locally decreasing in β, so that

dT ∗/dβ > 0 just above the stationary point while dT ∗/dβ < 0 just below it. In other words,

any stationary point of T ∗ on [β, βL] or [βH , β] must be a local minimum.

Additionally, at β = β we have q∗B(β) = 1 and q∗A(β) ∈ (0, q∗B(β)). Then under As-

sumption 5 it must be that ρ′0
(
q∗A(β)

)
< ρ′0

(
q∗B(β)

)
and therefore dT ∗

dβ+
(β) < 0. Similarly, at

β = β we have q∗B(β) = 0 and q∗A(β) ∈ (q∗B(β), 1), in which case ρ′0
(
q∗A(β)

)
> ρ′0

(
q∗B(β)

)
and

therefore dT ∗

dβ−(β) > 0.

Consider first the case that βL = βH . Then T ∗ is differentiable everywhere on [β, β], and

in light of the results of the previous paragraphs it must have at least one stationary point

β∗ ∈ (β, β). Since any stationary point is a local minimum, this stationary point is therefore

unique. Letting βL = βH = β∗ yields the claimed behavior of T ∗.

Now consider the case that βL < βH . Then T ∗(βL) = T ∗(βH) = 0, and so it must be that
dT ∗

dβ−(βL) ≤ 0 and dT ∗

dβ+
(βH) ≥ 0. But since any stationary point of T ∗ on [β, βL] must be a

local minimum and therefore unique, and since dT ∗

dβ−(β) < 0, it follows that dT ∗

dβ
(β) < 0 for

all β ∈ [β, βL). In other words, T ∗ is decreasing on [β, βL]. A very similar argument implies

that T ∗ is increasing on [βH , β].

A.13 Proof of Lemma 7

Recall from the proof of Lemma 3 that

q∗B = max{∆q∗, 1− β + F (v)∆q∗}.

If q∗B < 1, then ∆q∗ < 1 and 1 − β + F (v)∆q∗ < 1, with the latter bound equivalent to

∆q∗ < β/F (v). Thus ∆q∗ < min{β/F (v), 1}, and so prize incentives are not exhausted.

Conversely, if q∗B = 1, then one of two cases is possible. If ∆q∗ ≥ (1 − β)/(1 − F (v)),

then ∆q∗ = q∗B = 1, in which case the hypothesized bound on ∆q∗ implies that β ≥ F (v).

In this case ∆q∗ = min{1, β/F (v)} and incentives are exhausted. The remaining possibility

is that ∆q∗ < (1− β)/(1− F (v)), in which case ∆q∗ = β/F (v) and the hypothesized bound
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on ∆q∗ implies that F (v) > β. Thus in this case too ∆q∗ = min{1, β/F (v) and incentives

are exhausted.

A.14 Proof of Proposition 4

Using the notation and concepts developed in the proof of Lemma 5, when v > V and β is

sufficiently close to 1 we have β > F (v) and T = v − V and T > T . In this regime, T ∗ = T

if and only if the first-order condition

dΠ∗

dT
(T ) = F (v) ·

(
1− F (v)

F (v)
· ρ0(1) · R

V
− 1

)
≤ 0

holds, which is true for R sufficiently small. Whenever β > F (v) and T ∗ = T = v − V, we

have ∆q∗ = 1 = min{1, β/F (v)}. Thus C∗ exhausts prize incentives in this regime.

A.15 Proof of Lemma 8

The set of feasible schemes is non-empty if and only if T ≤M/F (v). This inequality trivially

holds if v ≤ v0. Otherwise, using the expression for T derived in the proof of Lemma 5, it

holds whenever

max

{
v − V, v − V · β

F (v)

}
≤ M

F (v)
.

The left-hand side of this inequality is continuous and increasing in v, vanishes at v = v0, and

grows without bound as v →∞. Meanwhile the right-hand size is continuous and decreasing

in v and is positive at v = v0. Hence there exists a unique v∗ ∈ (v0,∞) at which this

inequality holds with equality, and it is satisfied if and only if v ∈ [v0, v
∗].

Given M and v∗(M), for every M ′ > M we have

max

{
v∗(M)− V, v∗(M)− V · β

F (v∗(M))

}
=

M

F (v∗(M))
<

M ′

F (v∗(M))
,

from which it follows that v∗(M) < v∗(M ′). Additionally, when M = 0 we have

max

{
v − V, v − V · β

F (v)

}
> 0 =

M

F (v)

for every v > v0, so that v∗ = M in this limit. In the other direction, given any v we have

max

{
v − V, v − V · β

F (v)

}
<

M

F (v)

for M sufficiently large, so that limM→∞ v
∗(M) =∞.
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A.16 Proof of Lemma 9

Let M ≡ maxv∈[0,v] F (v)T ∗(v), where T ∗(v) is the optimal unregulated bonus under target

v. If M ≥ M, the unconstrained optimal bonus is no larger than M/F (v) for all v ≤ v.

Meanwhile, for v > v Lemma 5 ensures that T ∗(v) = T (v). Since T (v) < M/F (v) for all

v < v∗, it follows that T ∗(v) ≤M/F (v) for all v ∈ (v, v∗].

A.17 Proof of Proposition 5

Throughout this proof, we will write v explicitly as an argument of quantities which depend

on it. Additionally, we will freely employ concepts and notation developed in the proof of

Lemma 5.

We first show that the financial constraint does not bind on [0, v∗) for sufficiently small

R. For this it is sufficient that T ∗(v) = T (v) for all v ≤ v∗, since T (v) ≤ M/F (v) for all

v ≤ v∗. The optimal bonus equals T (v) if and only if the first-order condition

dΠ∗

dT
(T (v); v) = F (v) ·

{
(1− F (v)) ·∆ρ̄0(T (v); v) · R

V
− 1

}
≤ 0

holds, where ∆ρ̄0(T ; v) ≡ ∆ρ̄(T ; v)/R is independent ofR. Note that ∆ρ̄0(T ; v) ≤ ρ0(1)/F (v)

for every v and T ∈ [T (v), v], and so it is sufficient that

1− F (v)

F (v)
· ρ0(1) · R

V
≤ 1

for all v < v∗. Since the left-hand side is decreasing in v, this condition holds whenever

R ≤ F (0)

1− F (0)
· V

ρ0(1)
.

We now show that the financial constraint binds close to v∗ for sufficiently large R.

Suppose that T ∗(v) > M/F (v) for some v ≤ v∗, where T ∗(v) is the optimal bonus with no

financial constraint. Then dΠ∗

dT−(M/F (v); v) > 0, so that the optimal bonus under a financial

constraint equals M/F (v). Since T ∗(v) and M/F (v) are continuous in v, it is therefore

sufficient for the result to show that T ∗(v∗) > M/F (v∗) when R is sufficiently large.

Recall from the proof of Lemma 8 that v∗ satisfies the identity T (v∗) = M/F (v∗). Hence

we need to show that T ∗(v∗) > T (v∗) when R is large. This inequality is satisfied if and only

if the first-order condition

dΠ∗

dT
(T (v∗); v∗) = F (v∗) ·

{
(1− F (v∗)) ·∆ρ̄0(T (v∗); v∗) · R

V
− 1

}
> 0

holds. This inequality holds whenever R is sufficiently large.
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