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Abstract
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pal anticipates receiving private information and hires an agent to take an action. The
principal can contractually tie the agent’s action to the state, but this control is incom-
plete. States not covered by a contract induce a communication game. We show that
close alignment of interests favors communication and, thus, ceding authority to the
agent, and vice versa. In the uniform-quadratic setting, optimal contracts use clauses
to separate events that induce distinct communication actions. Hence, equilibria of
the contract writing game are partitional and monotonic. The separation of distinct
communication events relaxes incentive compatibility and, therefore, helps equalize the
size of communication events. This highlights the dual role of contracting as both sub-
stituting for and facilitating communication – the principal uses contracts not only to
impose her favorite actions, but also to structure communication.
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1 Introduction

Organizations and contractual relationships need to deal with the anticipated arrival of
private information. This is the case in private sector procurement, in which the procuring
firm expects better information about final product specifications; with contractors, who
learn about projects before their employees do; and, with management, which plans to
use market analysis to direct product development. Ideally, the use of the information is
completely controlled in advance, with actions pre-specified for every possible contingency.
Private information, non-verifiability, insufficient language specificity, etc., however, may
make it difficult to institute the rules and procedures necessary to exercise this degree of
control. This introduces a potential role for non-binding communication and motivates our
investigation of when and how cheap talk is used as a substitute for contractual control of
the flow of information.

We consider a simple dyadic organization with imperfect control and the option of strate-
gic information transmission (Crawford and Sobel (1982), henceforth CS). A principal (the
sender, she) hires an agent (the receiver, he) to take an action for her. At the contracting
stage, the sender faces a competitive market for receivers and can, therefore, determine the
conditions of the hire. Prior to receiving private information about the state of the world,
the sender writes a contract that prescribes actions as a function of the state. Contracts are
lists of clauses, with each clause identifying a set of states and the action to be taken for
that set.

We assume that contracts are incomplete: there is a finite upper bound on the number
of clauses. In addition to this assumed contractual incompleteness, the sender can choose
contracts to be obligationally incomplete:1 contracts need not cover all contingencies. An
obligationally incomplete contract induces a communication game, in which the sender has
the option to provide information about states not covered by the contract, and the receiver is
free to respond optimally to that information. There is no commitment in the communication
game and messages are costless. Hence, communication is cheap talk.

The timing is as follows. In stage 1, the sender writes the contract. The contract commits
the receiver to follow instructions for specified subsets of the state space (“conditions”) and
commits the sender to provide those instructions.2 The contract is incomplete, in part
because of the effort involved in clarifying the language to the point where the descriptions
of conditions and instructions are sufficiently clear to permit third parties to verify that the
contract was faithfully executed, once states covered by the contract become verifiable.3 In
stage 2, the state is realized and privately observed by the sender. In stage 3, the sender
sends a message to the receiver. The sender cannot disclose the state. Messages are either
instructions that appear in the contract or “other messages” (cheap talk). Instructions are
the only messages that can be observed and understood by third parties. For states covered

1Ayres and Gertner (1992)
2When the contract gets executed only instructions need to be communicated and not any information

about the state beyond what is implied by the instruction.
3In addition, contracting incentivizes the adoption of measurement systems, without which the states of

nature would remain unobservable (Allen and Gale (1992)).

1



by the contract, the contract obliges the sender to communicate the stipulated instruction
to the receiver. In stage 4, after having observed the sender’s message, the receiver takes an
action. Any communicated instruction obliges the receiver to take the action that matches
the instruction. Any other communicated message leaves discretion to the receiver to take
his preferred action. Finally, in stage 5, payoffs are realized and the states covered by the
contract become verifiable: The contract establishes and clarifies the language that enables
third parties to identify instructions and the conditions under which they apply. This makes
it possible for third parties to check whether the sender gave the proper instruction given the
state, and whether the receiver’s action matched that instruction. Other communication is
too informal or too private to allow a third-party to relate the message to the realized state
and the action taken.

When writing a contract, the sender weighs the benefits of controlling the agent’s actions
against the responsiveness of those actions to information. Each contractual clause allows
the sender to enforce her preferred action, conditional on a set of states. This control over the
agent’s actions, however, is imperfect because of the assumed contractual incompleteness.
Ceding authority to the agent for some states and then relying on non-binding communication
gives the principal an additional degree of freedom. At the expense of having the agent
choose his preferred action rather than the principal’s, ceding authority to the agent can
help making the organization more responsive to information overall. The analysis of this
trade-off between control and information responsiveness is the focus of the present paper.

Under general distributional and payoff assumptions, the sender always uses the maximal
number of clauses. Optimal obligational incompleteness depends on this bound and on the
degree of incentive alignment (the sender’s bias relative to the receiver). For any fixed bias, if
the bound on the number of clauses increases without limit, optimal contracts approximate
obligationally complete contracts. Conversely, fixing the maximal number of clauses, with
near-perfect incentive alignment, nearly all states will induce communication. In that case,
the optimal contract will be highly obligationally incomplete.

Using the leading example of CS, with a uniform type distribution, quadratic loss func-
tions, and a constant bias, we can be more explicit. For any maximal number of contract
clauses, there is a value of the bias such that for any higher bias, any optimal contract will
be obligationally complete – there will be no communication. For any fixed bias, there is a
contract that allows for more actions to be induced by communication than in the standard
cheap talk game without contracting.

Our main characterization result in this uniform-quadratic-constant-bias environment es-
tablishes that whenever there is communication, contract clauses will be used to separate
events that induce distinct communication actions. As a consequence, equilibria of the con-
tract writing game are partitional and monotonic. The use of contract clause to separate
events that induce distinct communication actions relaxes incentive constraints in the com-
munication game. This makes it possible to equalize the size of communication intervals
relative to pure cheap talk. This highlights the dual role of contracting as both substituting
for and facilitating communication – the sender uses contracts not only to impose her favorite
actions, but also to structure communication.
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Finally, we explore various extensions of our setup in a setting with quadratic loss func-
tions, a comparatively large bias (that is small enough to make some communication optimal
with contracting), and a single contract clause. We show that among conditions that are
finite unions of disjoint intervals, intervals are optimal. In addition we explore the impact of
non-constant biases, non-uniform distributions, and the role of transfers. With small depar-
tures from out baseline, optimal contracts remain close to those from the uniform-quadratic
environment with a constant bias. In the case of a non-constant bias, the optimal condition
shifts toward covering states with more conflict; with a non-uniform distribution the optimal
condition shifts toward covering more likely states; and, with transfers the optimal condition
shrinks in size.

Simon (1951) is the first to draw attention to the importance of contractual incomplete-
ness. He notes that many contracts take the form of an “employment contract.” An employ-
ment contract, in exchange for a fixed wage, transfers authority to the principal rather than
providing a detailed specification of the agent’s action. In our setting, also, the principal
forgoes a detailed specification of the agent’s actions, but unlike in Simon (1951), for actions
not controlled by the contract, authority resides with the agent, and the principal resorts to
communication to influence the agent’s action.

Writing costs are sometimes used to rationalize contractual incompleteness. Dye (1985)
is the first to make writing and monitoring cost explicit. He notes that contracts with
specifications so detailed that they are sensitive to every state are prohibitively expensive to
write. The contracts he considers consist of finite lists of clauses, with conditions partitioning
the state space. The cost of writing a contract is increasing in the number of clauses.

Battigalli and Maggi (2002) explore the foundations of writing costs by making the
language in which contracts are written explicit. A contract specifies a list of clauses and a
transfer. Clauses map contingencies into instructions. More elaborate clauses require more
“primitive sentences” and are therefore more costly. This results in two types of contractual
incompleteness: rigidity – insufficient dependence on the state of the world; and discretion
– insufficient precision in the prescription of behavior.

Our environment also gives rise to rigidity and discretion: whenever the optimal contract
does not cover all states, the state space splits into a contracting region (states covered by the
contract) and a communication region (states not covered by the contract). We have rigidity
in the contracting region and discretion in the communication region. Greater alignment of
interests, which facilitates communication, favors discretion, and vice versa.

Shavell (2006) (see also Schwartz and Watson (2013)) studies the impact of contract
interpretation by courts on the writing of contracts. Again, contracts are lists of clauses,
each comprised of a condition (a set of states of the world) and an instruction.4 Because
of writing costs contracts may contain gaps – sets of states not covered by any condition.
Contracts may be incomplete in two senses: they may not be fully detailed complete, which
would require a specific clause for each contingency, and they may not be obligationally
complete (see Ayres and Gertner (1992)), having the above-mentioned gaps. One role of

4Heller and Spiegler (2008) allow for contradictory clauses, in which conditions overlap, but the corre-
sponding instructions differ.
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interpretation is to fill gaps, another to replace stated with interpreted clauses. The prospect
of interpretation, like the prospect of communication in our setting, shapes how contracts
are written.

Since Simon (1951), the interplay of information and authority has played an important
role in the study of organizations. Aghion and Tirole (1997) distinguish the right to make
a decision (formal authority) from the power to influence a decision (real authority). Either
the principal or the agent has formal authority. Real authority requires information that
players can acquire at a cost. There is no explicit model of communication.

Dessein (2002) examines the conditions under which an uninformed principal cedes au-
thority to a better-informed agent.5 He adopts an incomplete contracting approach in which
authority, but not actions, can be contracted upon. The principal has a choice between dele-
gating decision rights to the agent and making decisions herself after communicating with the
agent. In our setting, the principal has the informational advantage but may cede authority
to the agent if sufficiently closely aligned incentives make communication attractive.

Deimen and Szalay (2019) compare delegation with communication when there is en-
dogenous information. In their setup, the agent can choose how much and what kind of
information to acquire. The principal can choose whether to delegate decision rights or to
rely on communication from the agent. In contrast, in our setup there is communication
when the decision rights are left with the agent, and it is from the principal to the agent.

Aumann and Hart (2003), Golosov, Skreta, Tsyvinski and Wilson (2014), and Krishna
and Morgan (2004) examine different versions of models with repeated cheap talk. One
feature that these models have in common with ours is that new communication opportunities
may arise as the result of subsets of types having been removed: if at some stage the sender
sends a message that is only used by a strict subset of types, at the following stage the
receiver can concentrate beliefs on the remaining types. Removing types may facilitate
communication for the remaining types since fewer incentive constraints have to be dealt
with. In Aumann and Hart (2003) and Krishna and Morgan (2004) types exit because they
prefer not to take their chances in a jointly controlled lottery. In Golosov et al. (2014)
types are induced to exit by receiver actions that follow each communication round. In our
setting, types are removed from the communication game by being covered by a condition
in the contract.

We abstain from modeling transfers explicitly in the main analysis, consistent with Bat-
tigalli and Maggi (2002), Shavell (2006), Dessein (2002), and others. In our environment,
transfers play no role in providing incentives to supply information or to induce actions. We
briefly discuss an example in the extensions that suggests that our results can be expected
to generalize if we allow for ex ante transfers.6

5In the literature on optimal delegation (See, for example, Holmström (1977), Holmström (1984),
Melumad and Shibano (1991), Szalay (2005), Alonso and Matouschek (2008), Kováč and Mylovanov (2009),
and Amador and Bagwell (2013)), the uninformed principal decides how to optimally constrain the decision
rights of the informed agent.

6Formally, our model corresponds to the limit of cases in which the agent cares primarily about the
wage and only secondarily about the decision that is made. The more the agent cares about his wage, the
less reason there is for the principal to compromise on the decision. In the extreme, when the agent has a
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The paper is structured as follows. After presenting the model in Section 2, we introduce
the communication subgame in Section 3. Section 4 offers a simple example of optimal
contracts. In Section 5, we study properties of sender-optimal equilibria, first in a general
framework, Section 5.1, and then under the assumption of having a uniform type distribution
and quadratic payoff functions with a constant bias, Section 5.2. We discuss extensions in
Section 6. In the final section we summarize our findings and suggest possible directions for
future work. All proofs are in the Appendix.

2 Model

We consider a game with two players, a sender, S, and a receiver, R. They interact in
two phases. In the first phase, prior to the sender receiving information about the state
of the world, the sender writes a contract. That contract determines how information is
dealt with in the second phase. Contract clauses specify actions as a function of the state
of the world.7 We refer to these actions as instructions. By assumption, the clauses in the
contract are coarse, and the sender may choose a contract that does not cover all states of
the world. For states covered by the contract, the instruction specified by the respective
clause is implemented. For the remaining states, a communication game is played.

The payoff and information structure closely follows CS. The players’ payoffs, US(y, θ, b)
for the sender and UR(y, θ) for the receiver, depend on the receiver’s action y ∈ R, the state
of the world θ ∈ [0, 1], and a parameter b > 0 that measures the divergence of preferences
between the sender and the receiver.8 The state is drawn from a common prior distribution F
with continuous density f that is positive everywhere; f(θ) > 0 for all θ ∈ [0, 1]. The payoff
functions U i, for i = R, S, are assumed to be twice continuously differentiable. Denoting
derivatives by subscripts, we assume that the payoff functions are strictly concave: U i

11 <
0; the sorting condition U i

12 > 0 holds; and, for all θ, there is an action yi(θ) such that
U i

1(yi(θ), θ) = 0. We assume that yS(θ) > yR(θ) for all θ ∈ [0, 1].
At the beginning of the contract-writing game G, the sender writes a contract C =

{(Ck, xk)}Kk=1. The contract specifies K clauses (Ck, xk), k = 1, . . . , K. There is an exoge-

nous maximal number of clauses K̂.9 Each clause (Ck, xk) consists of a condition Ck ⊆ [0, 1]
and an instruction xk ∈ R. The interpretation is that if condition Ck holds – i.e., θ ∈ Ck is
realized – then the receiver is instructed to take the action y = xk. Contracts must satisfy:
Ck′∩Ck′′ = ∅ for all k′ 6= k′′ (to avoid contradictions); Ck is an interval for each k = 1, . . . , K

lexicographic preference that favors his wage, any action the principal prescribes in the contract will be her
own favored action, conditional on the available information, as is the case in the model we analyze in the
paper.

7Note that we assume that there are no transfers, and therefore there is no incentive provision through
contingent transfers.

8For notational convenience, we will sometimes suppress the dependence of the sender’s payoff on the
bias b.

9This corresponds to a limiting case of writing costs that are increasing in the number of clauses (see,

e.g., Dye (1985)). Writing costs are zero for the first K̂ clauses and prohibitive thereafter.
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(motivated by keeping contracts simple);10 and
⋃K
k=1Ck is a closed set. Denote the lower

(upper) endpoint of the interval Ck by Ck (Ck). For any δ ∈ R, we refer to the clause
(Ck + δ, xk + δ) as the δ-translation of the clause (Ck, xk) and to the condition Ck + δ as
the δ-translation of the condition Ck.

11 We allow for an empty contract without clauses, in
which case we adopt the convention that K = 0. An obligationally complete contract covers
the entire state space, in which case

⋃K
k=1Ck = [0, 1]. Denote the set of all contracts by C.

Sometimes, it will be convenient to highlight the maximal number of clauses and the sender’s
bias, in which case we make the dependence of the game on these parameters explicit and
write G(K̂, b) for the contract writing game.

After the contract C is written and observed by the receiver, the state θ is realized and
privately observed by the sender. For any state covered by the contract – e.g., θ ∈ Ck′ –
the instruction stipulated for that state, xk′ , is implemented. For any state not covered by
the contract C, the sender sends a message m ∈ M to the receiver, where M is an infinite
measurable space. After observing the sender’s message, the receiver takes an action y ∈ R.

Every contract C induces a communication subgame, ΓC, in the event that the state θ
belongs to the gap L(C) := [0, 1] \

⋃K
k=1 Ck in the contract – i.e., θ ∈ L(C). In this commu-

nication subgame, the commonly known type distribution F C is the prior F concentrated
on the set L(C). If the contract C is empty, we denote the resulting communication sub-
game by Γ0. The communication subgame Γ0 is simply a CS game. If we want to make the
dependence of the communication subgame on the bias parameter explicit, we write ΓC(b).
A (behavior) strategy σ : L(C) → ∆(M) of the sender in the communication subgame ΓC

maps states to distributions over messages. A strategy ρ : M → R for the receiver in ΓC

maps messages to actions. Given the strict concavity of the receiver’s utility, the restriction

to pure receiver strategies is without loss of generality. A sender strategy
(
C;
(
σC
′)
C′∈C

)
in

the contract-writing game G specifies a contract C and for every possible communication

subgame ΓC
′

a strategy σC
′
. A receiver strategy

((
ρC
′)
C′∈C

)
in the game G specifies a strat-

egy ρC
′

for every possible communication subgame ΓC
′
. We are interested in sender-optimal

subgame-perfect equilibria of the contract-writing game G(K̂, b), denoted by e(K̂, b). We
refer to the contracts chosen in these equilibria as optimal contracts.

3 Communication

For a strategy profile (σC, ρC) in communication subgame ΓC, we say that a communication
action y is induced by that profile if there is a type θ and a message m in the support of

10Sets other than intervals require more detailed and, therefore, more costly descriptions. In Section 6.1
we explore a departure from the assumption that conditions are intervals. We show that in the leading
example of CS, for a sufficiently large bias (that is small enough to make some communication optimal with
contracting), contracts with single conditions that are intervals are optimal among contracts with single
conditions that are non-trivial unions of disjoint intervals.

11Here, for any set C ⊂ R and any δ ∈ R, C + δ denotes the Minkowski sum of the sets C and {δ} – i.e.,
C + δ := {c′ ∈ R|∃c ∈ C s.t. c′ = c+ δ}.

6



σC(θ) such that ρC(m) = y. If, in addition, (σC, ρC) is an equilibrium profile, we say that
action y is induced in equilibrium. As in CS, if the actions that are induced in equilibrium
are 0 < y1 < y2 < . . . < yn−1 < yn < 1, there are n + 1 critical types 0 = θ0 < θ1 <
θ2 < . . . < θn−1 < θn = 1 such that type θj is indifferent between actions yj and yj+1 for
j = 1, . . . , n − 1. We follow the convention of referring to the indifference requirement for
critical type θj, j = 1, . . . , n − 1, as that type’s arbitrage condition. Since a critical type
may belong to a condition Ck, unlike in CS, critical types do not necessarily bound the sets
of types who induce a common action. In an equilibrium that induces n actions, we refer
to the interval (θj−1, θj) as step j, for j = 1, . . . , n. We call an equilibrium that induces n
actions an n-step equilibrium.

Given an equilibrium eC of the communication subgame ΓC, we refer to an interval
(
θ, θ
)

of types as a communication interval if there is an action y that is induced with positive
probability in eC, θ = inf{θ ∈ [0, 1]|θ induces y}, and θ = sup{θ ∈ [0, 1]|θ induces y}. Ob-
serve that for each action yj that is induced in equilibrium, the corresponding communication
interval is a (possibly strict) subset of the step (θj−1, θj). For an illustration, see Figure 1.

θ

x, y

0 1
C1 C2 C3

x1

x2

x3

θ1 θ2 θ3

y1

y2

y3

y4

Figure 1: Contract with conditions Ci and instructions xi for i = 1, 2, 3 and induced 4-step
equilibrium with critical types θ1, θ2, θ3 and actions yj for j = 1, 2, 3, 4.

The standard communication game introduced by CS is included in our setup as subgame
Γ0, in which no contract is written. It is straightforward to see that CS’s Lemma 1 holds for
all communication subgames, including those induced by contracts with a positive number
of clauses.

Lemma 1 (CS Lemma 1) There exists an ε > 0, uniform over all communication subgames
ΓC, such that for every equilibrium in ΓC and all actions y and y′ induced in that equilibrium,
|y − y′| ≥ ε. There is an upper bound on the number of actions that are induced in equilibrium
that is uniform across all communication subgames
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Proof. See CS Lemma 1. That ε is uniform over all communication subgames follows from
the fact that the type distribution plays no role in the proof. �

The maximal number of actions N(C) that can be induced in communication subgame ΓC

can vary with the distribution F C that is induced by contract C. At the same time, since ε is
uniform across communication subgames, there is an upper bound N̂ ∈ N on the number of
equilibrium actions that is uniform across all communication subgames – i.e., N(C) ≤ N̂ ∈ N
for all C ∈ C.

Another fact familiar from CS remains true in our setting: For every communication
subgame ΓC, all equilibria are interval partitional. That is, for every equilibrium action, the
set of types who induce that action is of the form I ∩ L(C), where I ⊂ [0, 1] is an interval.

4 Example

Suppose that payoff functions are quadratic, US(y, θ, b) = −(θ+b−y)2, UR(y, θ) = −(θ−y)2,

and the type distribution is uniform on [0, 1]. Consider G
(
K̂, b

)
= G

(
1, 1

3

)
, the contracting

game with maximally one clause and a bias b = 1
3
. Recall that this bias is too large for more

than one action to be induced in a CS game – i.e., with only cheap talk and no contract. In
contrast, we will see that in G

(
1, 1

3

)
the optimal contract with a single clause gives rise to

a communication game with an equilibrium that induces two communication actions.12

We call a contract an n-step contract if n is the maximal number of communication
actions possible in equilibrium with that contract. Let C∗n be an optimal contract among n-
step contracts and EUS (C∗n) the corresponding sender-optimal equilibrium payoff. When no
contract is written, denote the sender’s payoff from a sender-optimal equilibrium by EUS (0).

Clearly, for any bias b > 0 and irrespective of the contract C, it is the case that any
two equilibrium actions in the induced cheap-talk game ΓC must be at least a distance 2b
apart. Therefore, for biases b ∈

(
1
4
, 1

2

)
in the game G(1, b) no contract exists that induces an

equilibrium with more than two communication actions. Hence, there are four candidates for
optimality: no contract, and 0-step, 1-step, or 2-step contracts. An optimal contract in this
example maximizes the sender’s expected payoff among the optima of these four options.

The first option – where no contract is written – results in the standard cheap talk
game, Γ0, being played. For b = 1

3
, in this game, there is no information conveyed in any

equilibrium. The receiver’s action after every equilibrium message is y∗ = 1
2
, and the sender’s

expected payoff is EUS(0) = − 1
12
− 1

9
= −0.194 (for an illustration, see Figure 2 first left

panel).
The second option is for the sender to write an optimal obligationally complete contract

with one condition C∗0 =
{(

[0, 1] , 1
2

+ 1
3

)}
that covers the entire type set [0, 1] and imposes

her optimal action (for an illustration, see Figure 2 second left panel). This contract increases
her expected payoff to EUS (C∗0) = − 1

12
= −0.083. It leaves no room for communication,

12The details of our analysis can be found in the Appendix.
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raising the question of whether the sender can gain from reducing the size of the condition
and allowing for some communication.

The third option has the sender write a contract that allows for a 1-step equilibrium.
It is not optimal for the sender to place the single condition C =

[
C,C

]
in the interior of

the state space, since moving it to either extreme of [0, 1] reduces variance and there are no
incentive issues. It is without loss of generality to consider the case with C = 1. Given the
condition [C, 1], the optimal instruction is given by x = 1+C

2
+ 1

3
. The sender’s problem of

determining the optimal C is

max
C

∫ C

0
−
(
s+

1

3
− C

2

)2

ds+

∫ 1

C
−
(
s+

1

3
− C + 1

2
− 1

3

)2

ds,

where the first integral is the expected sender payoff from communication, while the second
integral is the expected sender payoff for states covered by the contract. The solution to
this maximization problem is reached at C = 1

2
(1 − 4

9
) = 0.278. Hence, a 1-step optimal

contract is given by C∗1 =
{([

1
2
(1− 4

9
), 1
]
, 1

2
+ 1

4
(1− 4

9
) + 1

3

)}
. For an illustration, see the

third left panel of Figure 2. For this contract, the sender’s expected payoff is higher than
for the previous ones: EUS (C∗1) = −0.064.

The sender’s fourth option is to write a contract that makes a 2-step equilibrium pos-
sible. We can limit our attention to contracts and equilibria in which the single condition
C contains the sender’s critical type, θ1, that is indifferent between the two communication
actions. This follows because (a) having the condition C belonging to the interior of the
lower communication interval would be inconsistent with b = 1

3
and (b) having the condi-

tion C belonging to the interior of the upper communication interval can be ruled out by
the following improvement: First, shift C down to the original critical type (thus improv-
ing payoffs by variance reduction) and then, if necessary, shift C again to restore incentive
compatibility, while, at the same time, taking advantage of the benefit from equalizing the
length of communication intervals. That is, it suffices to consider θ1 ∈ [C,C]. Therefore, we
can find an optimal contract by solving

max
C,C

−
∫ C

0

(
s+

1

3
− C

2

)2

ds−
∫ C

C

(
s+

1

3
−
(
C + C

2
+

1

3

))2

ds−
∫ 1

C

(
s+

1

3
−
(
C + 1

)
2

)2

ds

s.t. C +
1

3
− C

2
≤
(
C + 1

)
2

− C − 1

3
.

The first integral in the objective function is the sender’s expected payoff conditional on the
lower communication action being taken; the third integral is the sender’s expected payoff
conditional on the higher communication action being taken; and, the middle integral is the
sender’s expected payoff conditional on the contract action being taken. The constraint is
analogous to the usual arbitrage condition in sender-receiver games. It ensures that types in
the interval [0, C] prefer the lower communication action to the higher one. We can ignore the
constraint that requires types in the interval [C, 1] to prefer the higher communication action
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to the the lower communication action because it is automatically satisfied in the solution to
the above problem; if it were not satisfied we could shift the condition C, thereby make the
length of the two communication intervals more equal, and hence increase the expected sender

payoff. The solution is given by C∗2 =
{([

1
3

(
2−

√
1 + 12

9

)
, 1

3

(
1 +

√
1 + 12

9

)]
, 1

2
+ 1

3

)}
. See

the fourth left panel of Figure 2, for an illustration. The sender’s expected utility in this
case equals EUS (C∗2) = −0.062.

Thus, with K̂ = 1 and b = 1
3
, the sender-optimal contract is unique and given by

C∗2 .13 The optimal contract induces two communication actions, y1 and y2, while without a
contract, the maximal feasible number of communication actions would be one. In this sense,
contracting facilitates communication. Notice also that the two communication intervals are
of equal length. This contrasts with non-trivial communication in CS equilibria of the game
with a uniform type distribution and a constant bias, where higher communication actions
are associated with longer communication intervals. In CS, this difference in the length of
communication intervals, which is dictated by incentive constraints, is costly to the sender.
The sender would prefer having all communication intervals to be of equal length. In our
setting, this can be achieved with a contract: The contract relaxes incentive constraints for
types adjacent to the contract condition. As long as those constraints are slack, it pays to
shift the condition in the contract in the direction of equalizing the lengths of communication
intervals.

Γ0:
θ

0 1

y
Γ0:

θ
0 1

y

C∗0 :
θ

0 1

x
C̃∗0 :

θ
0 1

x1 x2

C∗1 :
θ

0 1

xy
C∗1 :

θ
0 1

xy

C∗2 :
θ

0 1

xy1 y2

θ1

C̃∗3 :
θ

0 1

x1 x2y1 y2 y3

θ1 θ2

Figure 2: Left: the four candidates for optimal contracts, with K̂ = 1 and b = 1
3 : Γ0, C∗0 , C∗1 , C∗2 .

Right: two candidates for optimal contracts with K̂ = 2: obligationally complete C̃∗0 for b = 1
3 , and 3-step

C̃∗3 for b = 1
5 .

Next, we want to see how the optimal contract changes with the parameters b and K̂.
Consider, first, the case in which we keep b = 1

3
and relax the constraint on the number of

conditions by letting K̂ = 2. In that case, the optimal contract will be obligationally com-

13Our analysis in Section 6.1 below implies that this remains the optimal contract if we permit conditions
that are finite unions of disjoint intervals.
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plete with the two conditions dividing the state space into two equal-length intervals, C̃∗0 =
{([0, 0.5] , 0.583) , ([0.5, 1] , 1.083)}. For the second case, we now lower the bias to b = 1

5
and

keep K̂ = 2. There is a unique optimal contract C̃∗3 = {([0.063, 0.468] , 0.466) , ([0.532, 0.937] ,
0.934)}, which induces three communication actions. This is, again, more than the maximal
number of two actions that can be induced in an equilibrium of the communication game
without contracting. See the right panel of Figure 2, for an illustration.

Hence, if we keep the bias fixed while increasing the bound on the number of clauses,
contracting drives out communication. If, instead, we lower the bias while fixing the upper
bound on the number of contract clauses, communication replaces contracting. We will see
that both of these observations generalize.

In both cases,
(
K̂ = 1, b = 1

3

)
and

(
K̂ = 2, b = 1

5

)
, the conditions in the optimal con-

tracts contain critical types, θ1 and θ1, θ2. We will find that this fact – that at an optimum,
every maximal connected set of conditions contains a critical type – also generalizes.

We discuss variations of this example with a condition composed of multiple disjoint
intervals, with non-constant bias, with a nonuniform distribution, and with the possibility
of transfers, in Section 6.

5 Sender-Optimal Equilibria

In this section, we characterize sender-optimal equilibria of the contract writing gameG(K̂, b)
and the contracts that the sender writes in those equilibria.

For general preferences, we begin by showing that an optimal contract always exhausts
the bound on the number of clauses. We then provide two limit results in terms of the bound
on the number of clauses, K̂, and the size of the bias, b. Increasing the bound, in the limit,
contracts drive our communication. Conversely, fixing the bound, if we let the bias converge
to zero, communication takes over.

If we restrict attention to quadratic payoff functions, a constant bias, and a uniform
type distribution, we can be specific about how much communication is possible with a (not
necessarily optimal) contract. We use that to show how more communication is possible
with, rather than without, a contract. We give a sufficient condition in terms of the bias
and the bound on the number of clauses for optimal contracts to be obligationally complete.
Finally, we examine how contracts are used to structure communication. Here, we find that
in any sender-optimal equilibrium, any maximal connected union of conditions, which we
call a condition cluster, contains a critical type. If communication induces more than one
action, there is at least one cluster that separates two communication intervals – i.e., this
cluster contains a critical type that is not 0 or 1. Having such an “interior” critical type
belong to a cluster implies that the incentive constraints cannot be tight: either the highest
type in the communication interval below or the lowest type in the communication interval
above that cluster does not have to satisfy the usual arbitrage condition. Such a contract
relaxes the incentive constraints and this facilitates communication.

11



5.1 General Preferences

When writing a contract, the sender trades off the benefit from directly controlling the action
against the resulting rigidity. By writing a condition, the sender benefits from being able to
prescribe her preferred action for that condition. At the same time, when increasing the size
of a condition, the sender incurs both a rigidity cost and a potential communication loss:
since there is a bound on the number of clauses, any increase in the set of states covered by
the contract requires increasing the size of a condition. A downside from increasing the size
of a condition is that, on average, the mandated action matches the sender’s preferred action
less closely. This entails a rigidity cost. Increasing the set of states covered by the contract
also impacts communication. Here, the impact is ambiguous and depends on the bias. If the
conflict of interest is large, there is little role for communication, and the sender may prefer
mandating an action over ceding authority to the receiver. If, however, incentives are closely
aligned, communication can be used to make the action highly sensitive to the state. Trying
to substitute contracting for communication can result in breaking that close link and, thus,
in a communication loss.

While there is a rigidity cost and a potential communication loss from increasing the cov-
erage of the contract with a fixed number of clauses, it is always beneficial to use all available
clauses. There is clearly a strict gain from using at least one clause: take any sender-optimal
equilibrium of the communication subgame Γ0 that is induced by an empty contract. Then,
for any equilibrium action y, introduce a clause with the following properties: the condition
is equal to the interval of types who induce that action y; and the instruction is equal to the
sender’s favorite action given that set of types. Since the condition corresponds to a step
in the communication equilibrium, we still have an equilibrium in the new communication
game. Furthermore, since we are substituting the sender-optimal action for the receiver
optimal action after turning the step into a condition, the sender’s payoff strictly increases.
The following result then follows because any clause that is used can be improved upon by
subdividing it into two clauses, with additional gains for the sender.

Proposition 1 If C = {(Ck, xk)}Kk=1 is an optimal contract in G(K̂, b), then K = K̂.

It is perhaps worth noting that the literature has found that, sometimes, prima facie
useful and readily available clauses will not be included in a contract. Allen and Gale
(1992) and Spier (1992) have pointed out that in the presence of asymmetric information
agents may prefer non-contingent contracts. This is the case when proposing a contingent
contract would send an unfavorable signal. Bernheim and Whinston (1998) observe that
if some aspects of performance are non-verifiable, it may be advantageous not to include
other, verifiable, aspects in a contract. In essence, once a contract needs to be incomplete
in some dimensions, the contract will give rise to some form of strategic interaction. In
that case, there can be instances in which the quality of that strategic interaction can be
improved by not specifying some obligations, even when they are verifiable. In our case, the
signaling aspect is absent and while there is strategic interaction for states not covered by
the contract, any given contract that does not use all available clauses can be improved upon
without impacting the strategic interaction.

12



As it becomes easier to write detailed contracts (with increasing K̂), we might expect
that contracts replace communication. The following result makes this intuition precise. For
any event Φ ⊆ [0, 1] with Prob(Φ) > 0, define player i’s optimal action conditional on the
event Φ by

y∗i(Φ) := arg max
y

∫
Φ

U i(y, θ)dF (θ), i = S,R.

Before stating and proving the result, we note the following helpful observation.

Lemma 2 For all b ≥ 0 and all η > 0, there exists a γ > 0 such that for all Φ ⊆ [0, 1] with
Prob(Φ) ≥ η, ∫

Φ

US(yS(θ), θ, b)dF (θ)−
∫

Φ

US(y∗S(Φ), θ, b)dF (θ) > γ.

This observation establishes that for every sufficiently likely set of types Φ, there is a
strictly positive lower bound γ for the sender’s utility gain from receiving her ideal action
yS(θ) for every type in that set, rather than the action y∗S(Φ) that maximizes her expected
payoff across types in that set. For every strictly positive probability η, this bound, γ,
is uniform across all events that have at least that probability η. With this in hand, we
can show that as the bound on the number of clauses grows without limit, the probability
measure of the gap in the optimal contract converges to zero.

Proposition 2 For any sequence {LK̂}∞K̂=1
of gaps arising in sender-optimal equilibria

e(K̂, b) of contract-writing games G(K̂, b), K̂ = 1, 2, . . . ,

lim
K̂→∞

Prob(LK̂) = 0.

The proof shows that, not leaving any gaps and using all available clauses, with an
increasing number of clauses, it is possible to approximate the sender’s ideal payoff arbitrarily
closely. For any gap, on the other hand, we know from Lemma 1, that there is a limit to how
many actions can be induced. Thus, with a nonvanishing gap, there will be a nonnegligible
set of types who receive a common action. Lemma 2, however, implies that, on this set of
types, there will be a significant loss relative to the sender’s ideal payoff.

If, instead, we fix the bound on the number of clauses K̂, with sufficiently small biases
communication dominates nearly all the information processing. To obtain this result, we
impose the following continuity property: for any sequence of biases {bi}∞i=1 with limi→∞ bi =
0 and any sequence {e(bi)}∞i=1 of sender-optimal equilibria in the games {Γ0(bi)}∞i=1, the
sender’s payoffs in those equilibria converge to

∫
[0,1]

US(yS(θ), θ, 0)dF (θ).14

Proposition 3 For any sequence {Li}∞i=1 of gaps in sender-optimal equilibria e(bi) of games

G(K̂, bi) with limi→∞ bi = 0,
lim
i→∞

Prob(Li) = 1.

14Spector (2000), Agastya, Bag and Chakraborty (2015), and Dilmé (2018) provide conditions on primitives
that ensure that this continuity property holds.
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Here, the proof establishes that without any clauses, as the bias approaches zero, there
is a sequence of communication equilibria that approximate the sender’s ideal payoff. If, on
the other hand, there is a nonvanishing set of types for which actions are controlled by the
contract, then there must be one nonnegligible set of types who receive a common action.
Once again, Lemma 2 implies that on this set of types, there will be a significant loss relative
to the sender’s ideal payoff.

5.2 Quadratic Losses and constant bias

We now assume that the players’ payoff functions are quadratic and that the bias is con-
stant.15 The ability to write clauses changes the communication environment and the number
of actions that can be induced through communication. The following result holds without
imposing additional assumptions on the type distribution. It characterizes the maximal
number of communication actions that can be induced (without regard for optimality).

Proposition 4 For any b, there exist a K̂, a contract C, and an equilibrium of the commu-
nication subgame ΓC with n induced actions if and only if n < 1 + 1

2b
.

For the proof of sufficiency, we construct equilibria in which communication intervals are
very short, and clauses are used to generate just sufficient separation to satisfy the sender’s
incentive compatibility constraints.

For the remainder of the paper, we assume that the type distribution is uniform on [0, 1].
The following well-known fact will be useful to indicate how to improve the sender’s expected
payoff.

Observation 1 Suppose that, given any distribution over [θ, θ] ⊆ [0, 1], the sender/receiver
takes an optimal action. Then, the sender’s expected payoff is decreasing in the variance of
that distribution.

As an illustration of how we use this observation, see Figure 3. Suppose that we have
a contract C1 such that in a sender-optimal equilibrium eC1 of ΓC1 for some action y, the
set [θ, θ] ∩ L(C1) is the set of types inducing that action. Suppose, further, that there is an
alternative contract C2 that differs from C1 only in that conditions Cj, j ∈ J , in the interior
of [θ, θ] are replaced by conditions C ′j ⊂ [θ, θ], j ∈ J , such that for each j ∈ J , C ′j is a

translation of Cj and [θ, θ] ∩ L(C2) forms an interval. Then, if ΓC2 has an equilibrium eC2

in which types in [0, 1] \ [θ, θ] behave as before and types in [θ, θ] ∩ L(C2) send a common
distinct message y′, the sender’s payoff from eC2 exceeds that from eC1 .

A second way to improve the sender’s payoff also proves useful.

Observation 2 Let θi < θi ≤ θj < θj and θj − θj − δ > θi − θi + δ. Suppose that the

receiver takes action yδi =
θi+θi+δ

2
for types in

(
θi, θi + δ

)
and action yδj =

θj+θj+δ

2
for types

in
(
θj + δ, θj

)
. Then, the expected sender-payoff conditional on

(
θi, θi + δ

)
∪
(
θj + δ, θj

)
is

increasing in δ.
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C1:
θ

θ θ

x1 x2 x3y
C2:

θ
θ θ

x′1 x′2 x′3 y′

Figure 3: A payoff improvement by translations of Cj for J = 3 and a bias b = 0.025.

C0:
θ

θi θi θj θj

y0
i

y0
j

Cδ:
θ

θi θi + δ θj + δ θj

yδi yδj

Figure 4: A payoff improvement by a δ-translation of C.

For an illustration, see Figure 4, in which the left panel depicts δ = 0. Enlarging (shrink-
ing) a communication interval increases (decreases) the variance in this interval. Considering
two intervals of different lengths, if the smaller interval is enlarged by the same amount δ as
a larger interval is decreased, having a symmetric strictly concave utility function in which
payoffs only depend on the distance from the ideal point implies that the gain in the larger
outweighs the loss in the smaller. Equalizing the lengths of the intervals reduces the expected
conditional variance.

We are now equipped to study the sender’s problem. We first compare the maximal
number of receiver actions that can be induced in equilibrium in our setup with the maximal
number in the standard CS game without a contract. Proposition 4 states that the max-
imal number of actions that can be induced in an equilibrium of an appropriately chosen
communication subgame equals

n̂ :=

⌈
1

2b

⌉
.

By contrast, the maximal number of actions that can be induced in a CS equilibrium with
a uniform type distribution equals

n∗ :=

⌊
1

2
+

√
1

4
+

1

2b

⌋
.

For b < 1
2
, it is the case that

n∗ < n̂.

Thus, for sufficiently small b, the maximal number of actions that can be induced in an equi-
librium of a suitably chosen communication subgame strictly exceeds the maximal number of
actions than can be induced in an equilibrium of the corresponding CS game. With b = 1

10
,

for example, we have n̂ = 5, whereas n∗ = 2.

15We discuss an example with a non-constant bias in the extensions in Section 6.2.
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In the general setup, Proposition 2 shows that if we increase the number of clauses,
contracts drive out communication. For the uniform-quadratic setting, the next proposition
gives an explicit number of clauses such that an optimal contract covers the entire state
space.

Proposition 5 If K̂ > 1
2b

, then any optimal contract is obligationally complete.

The intuition for the proof is similar to that for Proposition 2. An upper bound on what
can be achieved from communication is given by full revelation. Using this fact, we get an
upper bound on the sender’s payoff from a contract that leaves a communication region of
size λ. Differentiating this upper bound with respect to λ, we find that the derivative is
negative for sufficiently large K̂. Hence, for any sufficiently large K̂, we want to reduce the
size λ of the communication region to zero.

The conditions in a contract can be separated or contiguous. For convenience, we intro-
duce the following notation. Given a contract C = {(Ck, xk)}Kk=1, a union of conditions Ck
is maximal connected if it is connected and not contained in a larger connected union. We
call each maximal connected union of conditions C a condition cluster.

The following proposition shows that no condition cluster can be strictly inside of a
communication interval. Moreover, if there is influential communication, there is at least
one condition cluster that contains an interior critical type.

Proposition 6 Suppose that the contract C = {(Ck, xk)}K̂k=1 is optimal in the contract-
writing game G, and the equilibrium eC is sender-optimal in the communication subgame
ΓC. Then, for every condition cluster C, there is a critical type θ with C ∩ {θ} 6= ∅. If,
in addition, the equilibrium eC induces at least two communication actions, then there is a
condition cluster C and a critical type θ 6= 0, 1 with C ∩ {θ} 6= ∅.

We know from Proposition 1 that an optimal contract uses all available clauses. The
more clauses the contract has, the less rigid it is. Since the number of clauses is finite,
however, there is always some residual rigidity. The sender can reduce this rigidity by
writing an obligationally incomplete contract. Introducing a gap makes it possible to induce
at least one additional action, which is a communication action. Thus, leaving a gap makes
the actions more sensitive to the state of the world. If, in addition, the bias is small,
Proposition 3 shows that it becomes feasible and attractive to use communication to induce
a large number of actions. With all available clauses being used and communication inducing
more than one action, Proposition 6 shows that there is an interesting interaction between
contracts and communication. The sender uses contracts not only to impose her favorite
actions, but also to structure communication. Contract clauses are used to separate events
that induce distinct communication actions and, therefore, to relax incentive constraints
in the communication game. The relaxation of incentive constraints makes it possible to
equalize the size of communication intervals relative to pure cheap talk.16 This highlights
the dual role of contracting as both substituting for and facilitating communication.

16A similar effect arises in Kolotilin, Li and Li (2013). There the receiver has the power to commit a set
of actions from which to chose.

16



Intuitively, the sender uses condition clusters to relax the sender’s incentive constraints
that pin down the bounds of the communication intervals. The first part of the proof of
Proposition 6 shows that there is a critical type contained in every condition cluster. The
second part then proves that, for influential communication, there is a condition cluster that
contains an interior critical type.

To prove the first part of Proposition 6, we start with any contract that does not satisfy
the properties indicated in the proposition. We proceed by modifying that contract in several
steps. We ensure in each step that the sender’s payoff increases: the typical argument is
that properly translating a condition cluster increases shorter communication intervals while
it decreases longer intervals. At the end of the first part, we check that, indeed, we obtain
an equilibrium. In the first step, we use the fact that there can be no more than one
condition in any communication interval (see Lemma A.3 in the Appendix). We consider
a candidate-optimal contract C and a corresponding equilibrium eC with a communication
interval containing a single condition in its interior. We then translate that condition to the
lower bound of the communication interval. The new contract is C0. In the second step, we
adjust the strategies in the communication game such that, locally (in between condition
clusters), incentive compatibility is restored. The resulting game is called ΓC1 , with contract
C1 = C0. We sketch steps one and two in Figure 5.

Step 0: C
θ

θi θi+1 θi+2

yi yi+1 yi+2 yi+3

Step 1: C0
θ

θi θi+1 θi+2

yi yi+1 yi+2 yi+3

Step 2: C1
θ

θi θi+2

yi yi+1 yi+2 yi+3

Figure 5: Sketch of the first two steps in the first part of the proof of Proposition 6.

In order to restore incentive compatibility locally, we have to raise the action yi+2. This
makes the action less attractive for the type θ̃ that is at the top at the newly created condition
cluster (see Figure 6 for an illustration). In fact, it may make action yi+1 more attractive
than yi+2. In the third step, we address incentive-compatibility problems of this kind – that
is, for types that are separated by condition clusters. To do so, we identify the highest
condition cluster such that a type θ̃ at the upper boundary of that cluster prefers to deviate
to a message inducing an action below the cluster. In multiple steps that maintain the local
equilibrium conditions, we properly translate the respective condition cluster upwards to
restore incentive compatibility for type θ̃. The resulting contract is C2. We iterate the third
step for all lower condition clusters to obtain a global equilibrium.

In the second part of the proof of Proposition 6, we show that the sender’s payoff can
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Step 2: C1
θ

θ̃θi θi+2

yi yi+1 yi+2 yi+3

Step 3: C2
θ

θi θi+2

yi yi+1 yi+2 yi+3

Figure 6: Sketch of the third step in the first part of the proof of Proposition 6.

be increased when more than one action is induced in equilibrium and all condition clusters
are at the extremes. For an illustration of the steps in the argument, see Figure 7.

C:
θ

0 1

x

θ1 θ2

y1 y2 y3

C′:
θ

0 1

x′

θ1 θ2

y′1 y2 y3

Cλ:
θ

0 1

xλ

θλ1 θλ2

yλ1 yλ2 yλ3

Figure 7: Second part of proof: payoff improvement by translations.

The first panel of Figure 7 shows a contract C with a single condition located at the left
extreme of the type space and a corresponding three-step communication equilibrium. We
replace contract C by a new contract C ′ that translates the condition upwards such that the
first critical type θ1 becomes its new upper boundary. Since we do not change the length
of any communication interval, payoffs remain the same. However, type θ1 now strictly
prefers action y2 over y′1. Moreover, the length of the communication interval inducing
action y′1 is smaller than the length of the communication interval inducing y2. Together,
this implies that we can translate the condition further upwards to Cλ while maintaining
incentive compatibility and increasing payoffs. This shows that the contract C that we
started with cannot be optimal.

As a consequence of Proposition 6, we obtain that sender-optimal equilibria of the
contract-writing game G are partitional and monotonic:

Corollary 1 Suppose that the contract C = {(Ck, xk)}K̂k=1 is part of a sender-optimal equi-
librium eG in the contract-writing game G and induces a sender-optimal n-step equilibrium
eC in the communication subgame ΓC. Then, the equilibrium eG is
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1. partitional – there is a partition P =
{
P1, P2, . . . , PK̂+n

}
of the type space [0, 1] into

intervals such that each P ∈ P is either a condition of C or a communication interval
in eC; and,

2. monotonic – for any two P, P ′ ∈ P, P 6= P ′, with inf(P ′) ≥ sup(P ), the actions a(P ′)
and a(P ) taken for states in P ′ and P satisfy a(P ′) > a(P ).

While the partitional structure given in Part 1. is an immediate consequence of Proposi-
tion 6, monotonicity requires slightly more thought. The relevant case to consider is the one
in which a communication interval P ′ is directly above a condition P . For this case, we show
in the Appendix, if we had a(P ′) ≤ a(P ) (and keeping in mind that a(P ′) is the receiver-
optimal action on P ′ and a(P ) is the sender-optimal action on P ), we could form a new
contract clause (P ∪ P ′, a(P ) + ε) that, for sufficiently small ε, would result in a payoff im-
provement for the sender, resulting in a contradiction. This implies that any sender-optimal
equilibrium of G is monotonic.

With only a single condition, the following result illustrates the impact of using contract-
ing to relax incentive constraints in the communication subgame. Whenever the optimal
contract induces non-trivial communication in the communication subgame, the lengths of
the communication intervals flanking the condition differ by less than 4b (the amount by
which the lengths of communication intervals increase in CS from one to the next). This
shows how contracting helps to equalize the lengths of communication intervals.

Corollary 2 Suppose K̂ = 1, the contract C with condition [C,C] is optimal, and C induces
at least two communication actions in the sender-optimal equilibrium eC of the communica-
tion subgame ΓC. If θi−1, θi, and θi+1 are critical types in the equilibrium eC with θi ∈

[
C,C

]
,

then
∣∣θi+1 − C

∣∣ < |C − θi−1|+ 4b; and, if θi ∈
(
C,C

)
, then

∣∣θi+1 − C
∣∣ ≤ |C − θi−1|.

In summary, in the uniform-quadratic environment with a constant bias, optimal con-
tracts never place conditions in the interior of communication intervals; if there is nontrivial
communication, conditions are used to relax incentive constraints; equilibria of the contract-
writing game G are partitional and monotonic; and, the ability to relax incentive constraints
is used to equalize the lengths of communication intervals.

6 Extensions

In this section, we explore various extensions in the context of our example from Section
4. We, first, consider allowing more general conditions than just intervals. Here, we find
that among conditions that are finite unions of disjoint intervals, intervals are optimal.
In the subsequent subsections, we explore the impact of non-constant biases, non-uniform
distributions, and the role of transfers. We find that with these small departures, optimal
contracts remain close to those from the uniform-quadratic environment with a constant
bias. In the case of a non-constant bias, optimal conditions shift toward covering states with
more conflict; with a non-uniform distribution optimal conditions shift toward covering more
likely states; and, with transfers optimal conditions shrink in size.
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6.1 Finite unions of disjoint closed intervals as conditions

We assume, in our model, that conditions take the form of intervals. In this section, we show
that, in the framework of the example, it is indeed never optimal to split the condition into
finitely many disjoint intervals. The sender can improve her payoff by translating all these
disjoint intervals so that they merge into one contiguous interval.

Let C be a condition that is a finite union of components Dj, j = 1, . . . , J, with J > 1;
each component is a closed interval,

[
Dj, Dj

]
, and components are disjoint. Suppose that

there is a two-step equilibrium e in the induced communication subgame that is characterized
by a critical type θ1. Let y1 (y2) be the action induced by types θ < θ1 (types θ > θ1) in the
equilibrium e. We define j′ as the index of the maximal component that is entirely below θ1

– if there is any. Similarly, j′′ is the index of the minimal component that is not entirely
below θ1 – if there is any.

We aim at increasing the sender’s payoff by constructing a new contiguous condition C̃
and then, if necessary, shifting it to restore a two-step equilibrium in the induced communi-
cation subgame. Let

C̃ = [C̃, C̃] =

[
min{θ1, Dj′′} −

j′∑
j=1

Dj −Dj,min{θ1, Dj′′}+
J∑

j=j′′

Dj −Dj

]
.17

Thus, C̃ is obtained by translating all components Dj for j ≤ j′ that are entirely below
the critical type θ1 upward so that they are contiguous and bounded on the right-hand

side by θ1 (if θ1 < Dj′′) or by Dj′′ (if θ1 ∈ Dj′′). Similarly, C̃ is obtained by translating all
components Dj for j ≥ j′′ that are above min{θ1, Dj′′} downward so that they are contiguous
and bounded on the left-hand side by min{θ1, Dj′′}. Let ỹ1 (ỹ2) denote the receiver’s best

reply to prior beliefs concentrated on the set [0, C̃] ([C̃, 1]). For an illustration, see Figure 8.

C:
θ

0 1θ1

D1 Dj′ . . .Dj′′ DJ

y1 y2

C̃:
θ

0 1θ1
C̃ C̃

ỹ1 ỹ2

Figure 8: Improving payoffs by making the condition-components Dj contiguous.

We, then, have the following observation.

Lemma 3 Suppose that {j ≤ J |Dj < θ1} is nonempty. Then min{θ1, Dj′′} − y1 ≥ C̃ − ỹ1.

17If all components are strictly below θ1 and therefore there is no Dj′′ , we adopt the convention that
min{θ1, Dj′′} = θ1.
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To understand the significance of this observation, recall that in the equilibrium e type
min{θ1, Dj′′} weakly prefers action y1 to action y2. Lemma 3 implies that types [0, C̃] prefer
inducing action ỹ1 to action y2. Thus, translating the components that are entirely below
θ1 upward, and having types below θ1 – that are not covered by the new contract – send a
common message in the resulting communication game preserves incentive compatibility for
low types.

With this in hand, we can prove that dividing a condition into components cannot be
optimal.

Proposition 7 Suppose that we allow contracts with conditions C that are finite unions of
disjoint closed intervals. Then, for b > 1

4
and K̂ = 1, any optimal contract is nonempty and

the condition in that contract is a single interval.

To prove the result, we observe that, by Proposition 4, there cannot be more than two
communication actions in equilibrium. If there is only one communication action, by Ob-
servation 1, it cannot be optimal to split the condition into disjoint components. Thus,
consider a two-step equilibrium e that is characterized by some critical type θ1 and induced
by a condition C that is a finite union of disjoint components Dj, j ≤ J .

The sender strictly gains by replacing condition C by condition C̃ defined above. First,
note that the sender’s payoff conditional on the event C̃ exceeds the sender’s payoff con-
ditional on the event C in the original contract by Observation 1. Second, suppose the
receiver responds to messages sent by types in [0, C̃] with action ỹ1 and to messages sent by

types in [C̃, 1] with action ỹ2. Then, the sender’s payoff conditional on the event [0, 1] \ C̃
exceeds the sender’s payoff conditional on the event[0, 1] \ C in the original contract, again,
by Observation 1.

Since ỹ2 ≥ y2, Lemma 3, implies that types below C̃ prefer action ỹ1 to action ỹ2. Thus,

if we also had the reverse hold for types above C̃, we would have an equilibrium in the
communication game induced by condition C̃ and we would be done.

Consider then the possibility that incentive compatibility is violated for types above C̃

– i.e., that type C̃ strictly prefers action ỹ1 to action ỹ2. Then, since b > 0, it must be the

case that the length of the interval [C̃, 1] exceeds that of the interval [0, C̃]. Thus, there

exists δ > 0 such that type C̃ + δ is the critical type characterizing the two-step equilibrium
induced by condition C̃ + δ. Note that in this new equilibrium the communication intervals

are of more equal length than the intervals [0, C̃] and [C̃, 1]. Hence, by Observation 2, the
sender’s payoff conditional on the event [0, 1] \ (C̃ + δ) exceeds that from the event [0, 1] \ C̃.

6.2 Non-constant Bias

In the main text, we first assume an arbitrary strictly positive bias and then, in the uniform-
quadratic setup, a strictly positive constant bias. If the bias is non-constant, it is intuitive
that the sender rather covers states with higher disagreement in the contract than states with
lower disagreement. In this section, we show in the context of Example 1 that the sender
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indeed optimally covers states with higher bias in the contract relative to the constant-bias
case. However, if the maximal bias is sufficiently low, the sender still prefers an obligationally
incomplete contract that allows for communication. While the structure of the optimal
contract in the example was symmetric, here, the gaps differ in their length: the gap is
larger for states in which the interests are more aligned.

As in Example 1, we assume that the players’ loss functions are quadratic and the state
is uniformly distributed on [0, 1]. Here, instead of a constant bias b = 1

3
, the sender’s bias is

state-dependent and of the form b(θ) = 1
3

+ 1
30
θ.

We compare all cases analyzed in the example. The optimal obligationally complete
contract has an instruction xb = 0.85, compared to x = 0.83 with a constant bias. The
sender’s payoff equals −0.0890. Allowing for one-step communication, the optimal con-
tract with state-dependent bias is C∗1b = {[0.28, 1], 0.99}; with constant bias we have C∗1 =
{[0.285, 1], 0.97}. Given that the states close to 1 – with high bias – are covered under both
types of biases, it is intuitive that the optimal contracts are similar. The sender’s payoff
equals −0.0672. Finally, considering two-step communication, the optimal contract with
state-dependent bias is C∗2b = {[0.25, 0.96], 0.96}, compared to the case with constant bias
C∗2 = {[0.16, 0.84], 0.83}. The sender’s payoff equals −0.0640.18

For an illustration see Figure 9. The conditions on top of the axes refer to the optimal
contracts with constant bias while the conditions below the axes indicate the optimal con-
tracts with state-dependent bias. The figure illustrates the intuitive impact of an increasing
bias. If the bias is increasing in the state instead of constant, the optimal instruction as well
as optimal condition shift upwards. The sender prefers covering states with a higher bias
to covering states with a smaller bias because under communication the receiver’s action
diverges more from the sender’s preferred action.

C∗0 :

C∗0b: θ
0 1

x

xb

C∗1 :

C∗1b: θ
0 1

x

xb

C∗2 :

C∗2b: θ
0 1

x

xb

Figure 9: Example 1 with constant bias b = 1
3

on top and with state-dependent bias,
b(θ) = 1

3
+ 1

30
θ below: the obligationally complete contracts, 1-step optimal contracts, and

the 2-step optimal contracts.

18We can show that for the state-dependent bias considered in this section, the optimal two-step equilibrium
hast the same structure as in the constant bias case – i.e., the critical type optimally is in the contracting
region.
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While communication intervals are no longer of identical size, it remains the case that
contracting relaxes incentive constraints. With the bias function of the example, no com-
munication would be possible without contracting: for any candidate first communication
interval, the length of the second communication interval that is implied by incentive com-
patibility would be too long. Here, as in the constant bias case, that constraint no longer
binds. The second communication interval is shorter than the first.

6.3 Nonuniform Distribution

Here, we explore in the context of Example 1 how the optimal contract changes under a
non-uniform distribution. We find that the sender prefers to cover more likely states in the
contract. Compared to a uniform distribution where the solution in Example 1 is symmetric,
when higher states are more likely the contracting regions are shifted upwards to the more
likely states and the optimal solution is no longer symmetric.

As in Example 1, we assume that the players’ loss functions are quadratic and the bias
is a constant b = 1

3
. Instead of a uniform distribution U([0, 1]), we assume that the state is

distributed on [0, 1] with density f(θ) = 9
10

+ 2
10
θ.

We compare all four cases analyzed in the example. In the case of no contract, the receiver
takes his preferred action xf = 0.52. The sender’s payoff, in this case, equals −0.1942. The
optimal obligationally complete contract has an instruction xf = 0.85, compared to x = 0.83
with a uniform distribution. The sender’s payoff equals −0.0831. Allowing for one-step
communication, the optimal contract under the distribution f is C∗1f = {[0.29, 1], 0.99};
while with a uniform distribution, we have C∗1 = {[0.28, 1], 0.97}. The sender’s payoff equals
−0.0625. Finally, considering two-step communication, the optimal contract under f is
C∗2f = {[0.23, 0.91], 0.91}, compared to the case with constant bias C∗2 = {[0.16, 0.84], 0.83}.
The sender’s payoff equals −0.0620.

For an illustration see Figure 10. The conditions on top of the axes refer to the optimal
contracts with uniform distribution while the conditions below the axes indicate the optimal
contracts with distribution f .

For the distribution with an increasing density compared to a uniform distribution, the
optimal instruction as well as the optimal condition shift upwards. The sender prefers
covering states that occur more frequently in the contract rather than states that have a
lower probability: for states covered by the condition the sender gets her preferred action
rather than the receiver’s preferred action. Once more, the contract is used to relax incentive
constraints, and thereby makes communication feasible, when otherwise it would not be.

6.4 Transfers

For the main analysis, we abstain from modeling transfers from the principal to the agent.
We believe that this does not entail a significant loss of generality. Two common uses of
transfers in the literature do not apply to our setup. Under moral hazard, the agent needs
to be incentivized to take particular actions; here, however, actions that are governed by the
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Figure 10: Example 1 with uniform distribution on top and with distribution, f(θ) = 9
10

+
2
10
θ below: the obligationally complete contracts, 1-step optimal contracts, and the 2-step

optimal contracts.

contract are fully under the control of the principal. Under screening, the principal tries to
gather information about the agents private type, whereas in our setup, there is no private
information on the agent’s side. Whatever role remains for transfers is minimal as long
as the agent cares primarily about his wage. At the extreme, the agent has lexicographic
preferences for a higher wage. This case matches our model.

In the context of our example (Section 4), we here discuss a slightly less extreme case in
which the agent assigns some, but small, weight to his payoff from the action. We find that
adding transfers has little effect on the optimal contract as long as he agent cares primarily
about the wage.

We denote by w the receiver’s wage and by uR the receiver’s reservation utility. The
players’ payoffs can be rewritten in the following form US(y, θ, b, w) = −(θ+ b− y)2−w and
UR(y, θ, w) = −α(θ−y)2+(1−α)w, where α > 0 denotes the (small) weight the receiver puts
on the payoff that depends on his action relative to his wage. The sender’s objective now is to
maximize EUS(y, θ, b, w) subject to the individual rationality (IR) constraint EUR(y, θ, w) ≥
uR. Since the IR constraint is binding at the maximum, this amounts to maximizing weighted
joint surplus, US(y, θ, b, w) = −(θ + b− y)2 − α

1−α(θ − y)2 − uR

1−α .

We compare all four cases analyzed in the example. The bias is b = 1
3

and we vary α =
0.1 (= 0.5). For the case of no contract nothing changes. Considering optimal contracts we
obtain the following. In case of an obligationally complete contract, the optimal instruction
with transfers is xt = 0.80 (= 0.67) compared to x = 0.83 without transfers. Allowing
for one-step communication, an optimal contract with transfers is C∗1t = {[0.32, 1], 0.96} (=
{[0.44, 1], 0.89}), while without transfers we have C∗1 = {[0.28, 1], 0.97}. Finally, considering
two-step communication, the optimal contract with transfers is C∗2t = {[0.19, 0.81], 0.8} (=
{[0.28, 0.72], 0.67}), compared to the case without transfers with C∗2 = {[0.16, 0.84], 0.83}.

For an illustration see Figure 11. The condition on top of the axis refers to the optimal
contract without transfers while the condition below the axis indicates the optimal contract
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with transfers, for α = 0.1 (= 0.5) on the left-hand-side (right-hand-side).
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Figure 11: Example 1 with transfers, b = 1
3
, α = 0.1 left panel and α = 0.5 right panel: the

obligationally complete contracts, 1-step optimal contracts, and the 2-step optimal contracts.

Recall that the introduction of transfers changes the sender’s problem to one closer to
joint-surplus maximization. In her optimization problem, the sender has to take the receiver’s
payoff into account. It is, therefore, intuitive that the optimal instruction decreases in the
direction of the receiver-preferred action which is at the midpoint of the condition. Moreover,
the trade-off between communication (receiver-optimal action) and contract (sender-optimal
instruction) becomes less extreme. As a result, the length of the condition shrinks and
becomes more equal to the length of the communication intervals. This reduces the overall
variance and increases the sender’s payoff.

7 Conclusion

In this paper, we study how a principal who anticipates receiving private decision-relevant
information and who needs to rely on an agent to act on that information organizes the
use of that information, when her ability to control that use is limited. We capture limited
control by restricting the principal to contracts that allow for only a bounded number of
clauses, and are, therefore, with an infinite state space, not fully detailed complete.

In such an environment, in addition to being constrained to writing contracts that are
not fully detailed complete, the principal may opt for contracts that are not obligationally
complete. That is, the principal may elect to have some states of the world not covered by the
contract. The principal may be motivated to do so when the interests of the principal and the
agent are sufficiently closely aligned. In this case, cheap-talk communication in conjunction
with leaving discretion to the agent becomes an attractive substitute for mandating actions
via coarse contract clauses.

We find that the principal always makes use of the maximal number of contract clauses,
but sometime excludes states from being covered by the contract. With little conflict of in-
terest, communication drives out contracting and vice versa. The sender uses contracts not
only to impose her favorite actions, but also to structure communication. Contract clauses
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are used to separate events that induce distinct communication actions and, therefore, to re-
lax incentive constraints in the communication game. The relaxation of incentive constraints
makes it possible to equalize the size of communication intervals relative to pure cheap talk.
This highlights the dual role of contracting as both substituting for and facilitating commu-
nication.

There are a number of natural variations on the theme of our paper. We already explored
conditions that are unions of multiple disjoint intervals, non-constant biases, non-uniform
type distributions, and transfers in our example. In the case of conditions that are unions of
multiple disjoint intervals we find that single intervals are optimal; with a non-constant bias,
we find that optimal conditions shift toward covering states with more conflict; with a non-
uniform distribution optimal conditions shift toward covering more likely states; and, with
transfers optimal conditions shrink in size. For these variations, we expect the main insight
from our paper – that contracts are used, in part, to facilitate communication – survive.

A more significant departure from our basic model would be to allow for imperfect en-
forcement of contract clauses. It is, for example, clear that sometimes at the interim stage
the principal would prefer to send one of the cheap talk messages, rather than insist on
having the applicable contract clause enforced. Giving the principal that option with some
probability would remove the clean separation of contract actions and communication ac-
tions that we maintain throughout. In this paper, we deliberately completely decouple the
choice of contract actions and non-contract actions. As a result, once the contract is in
place, there is a well-defined cheap-talk game that can be analyzed in isolation. Relaxing
this decoupling would considerably complicate the analysis, and is, therefore, left to future
work.
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A Appendix

Example Section 4 In the CS game Γ0, the only equilibrium for b = 1
3

is the babbling
equilibrium, where the receiver takes the action y = 1

2
. The resulting payoff for the sender

is given by ∫ 1

0

−
(
s+ b− 1

2

)2

ds = − 1

12
− b2 = −0.194.

The sender’s expected payoff from an obligationally complete contract prescribing the
optimal instruction x = 1

2
+ b is given by∫ 1

0

−
(
s+ b− 1

2
− b
)2

ds = − 1

12
= −0.083.

The sender’s problem of writing an obligationally incomplete contract
(
[C, 1] , 1+C

2
+ b
)

allowing for one-step communication is given by

max
C

∫ C

0

−
(
s+ b− C

2

)2

ds+

∫ 1

C

−
(
s+ b− C + 1

2
− b
)2

ds

=max
C
− (1− C)3

12
− C

9
− C3

12
.

For b = 1
3
, solving the first order condition yields C = 1−4b2

2
= 0.278 and a resulting payoff

for the sender of − 1
48
− b2

2
+ b4 = −0.064.

The sender’s optimization problem for writing an obligationally incomplete contract([
C,C

]
, C+C

2
+ b
)

allowing for 2-step communication is given by

max
C,C

∫ C

0
−
(
s+ b− C

2

)2

ds+

∫ C

C
−
(
s+ b−

(
C + C

2
+ b

))2

ds+

∫ 1

C
−

(
s+ b−

(
C + 1

)
2

)2

ds.

s.t. C + b− C

2
≤
(
C + 1

)
2

− C − b,

where the (sender’s IC) constraint ensures that types below C prefer to induce the lower of
the two communication actions. Simplifying the objective yields

−C
3

12
− b2C −

(
C − C

)3

12
−
(
1− C

)
12

(
12b2 +

(
1− C

)2
)
.

Solving the first order conditions results in

C =
[
C,C

]
= [

1

3

(
2−
√

1 + 12b2
)
,
1

3

(
1 +
√

1 + 12b2
)

] = [0.157, 0.843] .
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Note that the solution satisfies the sender’s IC constraint for all b ∈
(

1
4
, 1

2

)
. This follows

from the equivalence of the following three inequalities and the fact that the third inequality
is satisfied for all b.

C + b− C

2
≤
(
C + 1

)
2

− C − b
1

3

(
2−

√
1 + 12b2

)
+ b− 1

6

(
2−

√
1 + 12b2

)
≤ 1

6

(
1 +

√
1 + 12b2

)
+

1

2
− 1

3

(
2−

√
1 + 12b2

)
− b

1

3
+ 2b ≤ 2

3

√
1 + 12b2.

The sender’s resulting payoff is −0.062. Comparing the resulting payoffs for b = 1
3
, it is

straightforward to see that

EUS(C0, 1) < EUS

((
[0, 1] ,

1

2
+ b

)
, 1

)
< EUS (C∗1 , 1) < EUS (C∗2 , 2) . (1)

For biases b ∈
(

1
4
, 1

2

)
, the first two inequalities follow since we have

EUS(C0, 1) = − 1

12
− b2

< EUS
((

[0, 1] ,
1

2
+ b

)
, 1

)
= − 1

12

< EUS (C∗1 , 1) = − 1

12
+

(
b2 − 1

4

)2

.

To show the last inequality in (1), EUS (C∗1 , 1) < EUS (C∗2 , 2), we have to show that(
b2 − 1

4

)2 − 1
12

= b4 − b2

2
− 1

48
< 1

108

(
−5 + 4

√
1 + 12b2 + 48b2

(
−3 +

√
1 + 12b2

))
. Note that

for b = 0 we have(
b2 − 1

4

)2

− 1

12
= − 1

12
< − 1

108
=

1

108

(
−5 + 4

√
1 + 12b2 + 48b2

(
−3 +

√
1 + 12b2

))
.

Moreover, for b = 1
2
, we obtain(

b2 − 1

4

)2

− 1

12
= − 1

12
=

1

108

(
−5 + 4

√
1 + 12b2 + 48b2

(
−3 +

√
1 + 12b2

))
.

Thus the difference between these utilities, EUS (C∗2 , 2)− EUS (C∗1 , 1), is zero at b = 1
2
. The

result follows, because the difference between these utilities is monotone decreasing in b for
all b ∈

(
1
4
, 1

2

)
:

d

db

(
EUS (C∗2 , 2)− EUS (C∗1 , 1)

)
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= b− 4b3 +
1

108

(
48b√

1 + 12b2
+

576b3

√
1 + 12b2

+ 96b
(
−3 +

√
1 + 12b2

))
=
b

3

(
−5 +

4√
1 + 12b2

+ b2

(
−12 +

48√
1 + 12b2

))
= − b

3

(
5 + 12b2 − 4

√
1 + 12b2

)
.

The expression on the right-hand side is negative if and only if 5 + 12b2 > 4
√

1 + 12b2. Since
both sides of the inequality are positive, this is equivalent to 144b4 − 72b2 + 9 > 0. The
polynomial on the left-hand side has two zeros, b = ±1

2
, is strictly positive at b = 0 and is

therefore strictly positive for b ∈
(

1
4
, 1

2

)
. This implies that the derivative of the difference of

the utilities is strictly negative for b ∈
(

1
4
, 1

2

)
. Hence, we have that EUS (C∗2 , 2) > EUS (C∗1 , 1).

Finally, consider K̂ = 2 and b = 1
5
. The sender’s problem for optimal contracts with

3-step equilibria is

max
C1,C2

−
∫ C1

0

(
s+ b− C1

2

)2

ds−
∫ C1

C1

(
s+ b−

(
C1 + C1

2
+ b

))2

ds

−
∫ C2

C1

(
s+ b− C1 + C2

2

)2

ds−
∫ C2

C2

(
s+ b−

(
C2 + C2

2
+ b

))2

ds−
∫ 1

C2

(
s+ b− C2 + 1

2

)2

ds

subject to C1 + b− C1

2
≤ C1 + C2

2
− C1 − b and C2 + b− C1 + C2

2
≤ C2 + 1

2
− C2 − b.

For b = 1
5

the contract that solves this problem is

C∗3 = {([0.063, 0.468] , 0.466) , ([0.532, 0.937] , 0.934)} .

This contract yields an expected sender payoff of −0.01874. �

Proof of Proposition 1. For any measurable set Φ ⊆ [0, 1] with Prob(Φ) > 0 define

y∗i(Φ) := arg max
y

∫
Φ

U i(y, θ)dF (θ), i = S,R.

Suppose C is an optimal contract in G(K̂, b). If the contract is empty, K = 0, or the union

of conditions has measure zero, µ
(⋃K

k=1Ck

)
= 0, then ΓC is a CS game. Hence, each

equilibrium action in an equilibrium of ΓC is induced by an interval of types. Consider a
sender optimal equilibrium eC of ΓC. Since there are only finitely many equilibrium actions,
there is an action ŷ that is induced with positive probability. Let [θ, θ] be the closure of the
set of types who induce action ŷ in eC. For every ε > 0 such that τ + ε < θ, there is a set
[τ, τ + ε] ⊂ [θ, θ] with y∗R([τ, τ + ε]) = ŷ. Evidently, also y∗R

(
[θ, θ] \ [τ, τ + ε]

)
= ŷ. Since

yS(θ) 6= yR(θ) and both yS and yR are continuous and [0, 1] is compact, there exists ε0 > 0
such that |yS(θ)− yR(θ)| > ε0 for all θ ∈ [0, 1]. Continuity of yS and yR and compactness of
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[0, 1] further imply that there exists δ > 0 such that |yS(θ)−yR(θ+ δ)| > ε0 for all θ ∈ [0, 1].
Hence, if we choose ε < δ then y∗S([τ, τ + ε]) > y∗R([τ, τ + ε)] = ŷ. Hence, the alternative
contract C ′ = {(C1, x1)}, where C1 = [τ, τ +ε)] and x1 = y∗S([τ, τ +ε]) allows an equilibrium
eC
′

in ΓC
′

in which types outside of [τ, τ + ε] induce the same actions and receive the same
payoffs as in the equilibrium eC in ΓC, while the sender is strictly better off if condition C1

is realized. It follows that K ≥ 1, and therefore an optimal contract is never empty.
Consider any contract C with K < K̂ and a sender optimal equilibrium in the communi-

cation game ΓC. Consider replacing the contract C by a contract C ′ that splits the condition
CK = [CK , CK ] (taking the condition CK to be closed is without loss of generality) into

two conditions C̃K = [CK , C̃) and ˜̃CK = [C̃, CK) with CK < C̃ < CK and leaves all other

clauses unchanged. Then US
11 < 0 and US

12 > 0 imply that y∗S(C̃K) < y∗S(CK) < y∗S( ˜̃CK),
which implies that the sender is strictly better off under the new contract, conditional on
the event CK being realized, while incentives in the communication games ΓC

′
and ΓC are

identical. This implies that optimal contracts must have K = K̂. �

Proof of Lemma 2. By continuity of f and compactness of [0, 1], f is bounded. Therefore,
for all δ > 0 there is an ε0 > 0 such that for all Φ ⊆ [0, 1] with Prob(Φ) > δ, `(Φ) > ε0
(where ` denotes Lebesgue measure). Hence, for all δ > 0 there is an ε1 > 0 such that for
all Φ ⊆ [0, 1] with Prob(Φ) > δ, for all θ ∈ [0, 1] there exists Ψ ⊆ Φ such that |θ − θ′| > ε1
for all θ′ ∈ Ψ and `(Ψ) > ε1. This and the fact that y∗S(Φ) is the ideal point of some type
θ(Φ) ∈ [0, 1] imply that for all δ > 0 there is an ε1 > 0 such that for all Φ ⊆ [0, 1] with
Prob(Φ) > δ, there exists Ψ ⊆ Φ such that |θ(Φ)− θ′| > ε1 for all θ′ ∈ Ψ and `(Ψ) > ε1.

Since the derivative of yS is strictly positive and continuous it has a strictly positive
lower bound. Therefore, for all ε1 > 0 we can find ε2 > 0 such that for all θ, θ′ ∈ [0, 1] with
|θ − θ′| > ε1, we have |yS(θ)− yS(θ′)| > ε2. This and the continuity of US imply that for all
ε1 > 0 we can find ε3 > 0 such that for all θ, θ′ ∈ [0, 1] with |θ−θ′| > ε1, we have US(yS(θ), θ)
- US(yS(θ′), θ) > ε3. This, the fact that f is everywhere positive, and the observation at the
end of the previous paragraph imply the statement. �

Proof of Proposition 2. Suppose not. Then there is a sequence of gaps {LK̂}∞K̂=1
with a subsequence {LK̂i}

∞
i=1 and κ > 0 such that Prob(LK̂i) > κ for all i. From Lemma

1, there is an upper bound N̂ on the number of actions induced in any equilibrium of any
communication subgame. Hence for every K̂i, i = 1, . . . , there is an action that is induced
by a subset ΦK̂i

of LK̂i that has at least probability κ

N̂
. Hence, by Lemma 2 there exists

ε > 0 such that ∫
Φ
K̂i

US(yS(θ), θ)dF (θ)−
∫

Φ
K̂i

US(y∗S(ΦK̂i
), θ)dF (θ) > ε

for all i = 1, . . . . This implies that for every i = 1, . . . the sender’s payoffs in e(K̂i, b) are
bounded from above by ∫

[0,1]

US(yS(θ), θ)dF (θ)− ε.
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Continuity of yS follows from the maximum theorem and uniform continuity from the
fact that [0, 1] is compact. By assumption US is continuous. Uniform continuity of US

follows from compactness of
[
minθ∈[0,1] y

S(θ),maxθ∈[0,1] y
S(θ)

]
× [0, 1]. For any K̂, partition

the interval [0, 1] into K̂ equal length intervals I1 := [θ0, θ1] and Ik := (θk−1, θk], k = 2, . . . , K̂.

For each K̂ = 1, 2, . . ., define the function US
K̂

: [0, 1] → R by the property that US
K̂

(θ) =

US(yS(θk), θ) for all θ ∈ Ik and all k = 1, . . . , K̂. Then
∫

[0,1]
US
K̂

(θ)dF (θ) is the sender’s

payoff from writing the contract CK̂ = {(Ck, xk)}K̂k=1 where Ck = Ik and xk = yS(θk).

Uniform continuity of yS and US imply that for any ε̃ > 0 we can choose K̂ sufficiently large
(and therefore δ := θk − θk−1 appropriately small) such that 0 ≤ US(yS(θ), θ) − US

K̂
(θ) < ε̃

for all θ ∈ [0, 1]. Therefore we have

lim
K̂→∞

∫
[0,1]

US
K̂

(θ)dF (θ) =

∫
[0,1]

US(yS(θ), θ)dF (θ),

and therefore a contradiction with the supposition that e(K̂i, b) is sender optimal in G(K̂i, b)
for all i = 1, 2, . . . . �

Proof of Proposition 3. Suppose not. Then there is an ε0 > 0 and a subsequence {Lj}∞j=1

(reindexed for convenience) with Prob(Lj) < 1 − ε0 for all j. Hence, for every j there is a
condition Cj in the contract Cj that is part of the equilibrium e(bj) with Prob(Cj) ≥ ε0

K̂
. By

Lemma 2 there is an ε1 > 0 such that∫
Cj
US(yS(θ), θ, 0)dF (θ)−

∫
Cj
US(y∗S(Cj), θ, 0)dF (θ) > ε1

for all j. The space of intervals of length `, ε0
K̂
≤ ` ≤ 1 is compact. Hence, the sequence

{Cj}∞j=1 has a convergent subsequence. After reindexing, use {Cj}∞j=1 to denote that subse-
quence in the sequel, and denote the limit by C. By continuity,∫

C

US(yS(θ), θ, 0)dF (θ)−
∫
C

US(y∗S(C), θ, 0)dF (θ) ≥ ε1.

Hence, appealing to continuity again, for sufficiently large j,∫
Cj
US(yS(θ), θ, bj)dF (θ)−

∫
Cj
US(y∗S(Cj), θ, bj)dF (θ) ≥ ε1

2
.

This implies that for sufficiently large j in this subsequence the sender’s payoffs in the
equilibria e(bj) are bounded away from

∫
[0,1]

US(yS(θ), θ, 0)dF (θ). This contradicts optimality

of the equilibria in the sequence {e(bj)}, since by the continuity property the communication
games Γ0(bj) have equilibria whose payoffs converge to

∫
[0,1]

US(yS(θ), θ, 0)dF (θ) with j →
∞. �

Proof of Proposition 4. Consider necessity first. For each action yj with j < n
that is induced in equilibrium define tj := sup{θ ∈ [0, 1]|θ induces yj}. The receiver’s ideal
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action if he knew the type to be tj would be y = tj. Therefore, by single crossing, yj ≤ tj.
Incentive compatibility requires that (tj +b−yj)2 ≤ (tj +b−yj+1)2. Since yj+1 > yj, we have
tj+b−yj > tj+b−yj+1. Thus incentive compatibility and the fact that tj+b−yj > tj−yj ≥ 0
imply that

tj + b− yj ≤ yj+1 − tj − b,

and since tj ≥ yj, we need yj+1−yj ≥ 2b. Since every action is induced by a positive measure
of types and by the single crossing property, we have y1 > 0. Hence, if n actions are induced,
then (n− 1)2b < 1.

For the converse, consider a contract C with n−1 conditions Ck, k = 1, 2, . . . , n−1, where
each condition is of length 2b+ ε, any two adjacent conditions Ck and Ck+1 are separated by
an interval

(
Ck, Ck+1

)
of length ε, and C1 = [ε, 2b + 2ε]. Since we assume that n < 1 + 1

2b
,

we can choose ε > 0 such that nε+ (n− 1)(2b+ ε) = 1, and hence such a contract exists. In
the communication subgame ΓC let the sender use a strategy σC that prescribes that types
in any interval

(
Ck, Ck+1

)
separating two adjacent conditions Ck and Ck+1 send a common

message different from the message sent by any other such interval. Then the receiver has a
best reply ρC to the sender’s strategy σC that prescribes an action yk ∈

(
Ck, Ck+1

)
for the

message send by types in the interval
(
Ck, Ck+1

)
. Notice that

Ck+1 + b− Ck = b+ ε = 2b+ ε− b = Ck+1 − Ck+1 − b.

Therefore, (for any distribution) given the receiver’s strategy, types in
(
Ck, Ck+1

)
have no

incentive to mimic types in
(
Ck+1, Ck+2

)
and a fortiori any higher types. Similarly, since

Ck+1 − Ck − b = ε− b < 3b+ ε = Ck + b− Ck

types in
(
Ck, Ck+1

)
have no incentive to mimic types in

(
Ck−1, Ck

)
and a fortiori any lower

types. This implies global incentive compatibility for the sender strategy σC against ρC.
Hence

(
σC, ρC

)
is an equilibrium strategy pair for the communication subgame ΓC. �

Proof of Proposition 5. By Observation 1, the expected payoff from partitional commu-
nication is always bounded from above by the expected payoff from fully revealing commu-
nication. Therefore, the expected payoff from a contract with K̂ conditions that specifies a
communication region of size λ is bounded from above by

−λb2 − K̂
∫ 1−λ

K̂

0

(
x− 1− λ

2K̂

)2

dx

= −λb2 − 1

12

1

K̂2
(1− λ)3.

The derivative of this expression with respect to λ, −b2 + (1−λ)2

4K̂2
, is negative for b2 > 1

4K̂2
.

Therefore, for K̂ > 1
2b

it is optimal to reduce the size λ of the communication region to zero.
�
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Lemma A.1 Suppose that for an equilibrium eC there is a communication interval
(
θ, θ
)

for

which the conditions C`, ` = 1, . . . , k, are the ones satisfying C` ⊂
(
θ, θ
)
. Then the action

induced by types in
(
θ, θ
)
∩ L(C) is

y∗R
(
(θ, θ

)
∩ L(C)) =

1

2

θ
2 −

∑k
`=1C

2

` +
∑k

`=1C
2
` − θ2

θ −
∑k

`=1C` +
∑k

`=1C` − θ
.

Proof of Lemma A.1. The action induced by the types in
(
(θ, θ

)
∩ L(C)) solves

max
y
−
∫ C1

θ

(s− y)2 ds−
k−1∑
`=1

∫ C`+1

C`

(s− y)2 ds−
∫ θ

Ck

(s− y)2 ds.

The FOC is given by

(C1 − y)2 − (θ − y)2 +
k−1∑
`=1

(
C`+1 − y

)2 −
k−1∑
`=1

(
C` − y

)2
+
(
θ − y

)2 −
(
Ck − y

)2
= 0.

Rearranging, we get(
C2

1 − θ2 +
k−1∑
`=1

C2
`+1 −

k−1∑
`=1

C
2

` + θ
2 − C2

k

)
−2a

(
C1 − θ +

k−1∑
`=1

C`+1 −
k−1∑
`=1

C` + θ − Ck

)
= 0,

equivalent to
(
−θ2 +

∑k
`=1C

2
` −

∑k
`=1 C

2

` + θ
2
)
− 2a

(
−θ +

∑k
`=1 C` −

∑k
`=1C` + θ

)
= 0.

We conclude by observing that the SOC is negative. �

Lemma A.2 Suppose that for an equilibrium eC there is a communication interval
(
θ, θ
)

such that the following holds: the conditions C`, ` = 1, . . . , k, are the ones satisfying C` ⊂(
θ, θ
)
, and the boundaries of the conditions satisfy C1 > θ, Ck < θ, and for i < j, Ci > Ci−1

if i > 1 and Cj < Cj+1 if j < k. Then, for any sufficiently small ε > 0, there exist δ > 0 and
a contract C ′ that differs from contract C only in the following way: condition Ci is replaced by
its (−ε)-translation, condition Cj is replaced by its δ-translation, these translations continue
to satisfy Ci, Cj ⊂

(
θ, θ
)
, they do not change the ordering of the conditions, and

y∗R
(
(θ, θ

)
∩ L(C ′)) = y∗R

(
(θ, θ

)
∩ L(C)).

Any ε > 0 and δ > 0 for which this is the case satisfy δ = ε
Ci−Ci
Cj−Cj

.

Proof of Lemma A.2. Replacing Ci by its (−ε)-translation raises the action y∗R
(
(θ, θ

)
∩

L(C ′)) and replacing Cj by its δ-translation lowers it. Furthermore, y∗R
(
(θ, θ

)
∩L(C ′)) varies

continuously with ε and δ. Thus, existence follows from continuity.
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By Lemma A.1,

y∗R
(
(θ, θ

)
∩ L(C)) =

1

2

θ
2 −

∑k
l=1C

2

l +
∑k

l=1 C
2
l − θ2

θ −
∑k

l=1C l +
∑k

l=1 C l − θ
.

Similarly, y∗R
(
(θ, θ

)
∩ L(C ′)) =

1

2

θ
2 −

∑
l 6=i,j C

2

l −
(
Ci − ε

)2 −
(
Cj + δ

)2
+
∑

l 6=i,j C
2
l + (Ci − ε)

2 +
(
Cj + δ

)2 − θ2

θ −
∑

l 6=i,j C l −
(
Ci − ε

)
−
(
Cj + δ

)
+
∑

l 6=i,j C l + (Ci − ε) +
(
Cj + δ

)
− θ

.

Setting both expressions equal to each other and noting that the denominators are identical,
we can simplify to get

−C2

i − C
2

j + C2
i + C2

j = −
(
Ci − ε

)2 −
(
Cj + δ

)2
+ (Ci − ε)

2 +
(
Cj + δ

)2
.

Hence, ε
(
Ci − Ci

)
= δ

(
Cj − Cj

)
. �

Lemma A.3 For any optimal contract C and any communication interval (θ, θ) of a sender-
optimal equilibrium eC of the communication subgame ΓC there is no more than one condition
C with C ⊂ (θ, θ).

Proof of Lemma A.3. Suppose that the contract C contains more than one clause (C, x)
with C ⊂ (θ, θ). Since there is a finite number of clauses and the corresponding conditions
are ordered, there is a minimal condition, Cmin, and a maximal condition, Cmax, satisfying
Cmin ⊂ (θ, θ) and Cmax ⊂ (θ, θ). We now show that we can improve upon the assumed

contractC. For any ε > 0 let δ = ε
Cmin−Cmin

Cmax−Cmax
. Consider ε > 0 such that ε < Cmin − θ and

δ < θ−Cmax. Consider the contract C ′ which differs from contract C only in that the clauses
(Cmin, xmin) and (Cmax, xmax) have been replaced by the (−ε)-translation of (Cmin, xmin) and
the δ-translation of (Cmax, xmax). Let ŷ be the action induced by types in (θ, θ) ∩ L(C) in
the postulated sender optimal equilibrium eC. By Lemma A.2, if all types in (θ, θ) ∩ L(C ′)
send a common message m(ŷ) that is among the messages to which the receiver responds
with action ŷ in eC, then m(ŷ) also induces action ŷ. This implies that the game ΓC

′
has

an equilibrium eC
′

in which the receiver strategy is the same as in eC, the sender strategy is
the same for all types in L(C ′) \ (θ, θ), and types in (θ, θ) ∩ L(C ′) send m(ŷ). The change in
payoffs from replacing the contract-equilibrium pair (C, eC) by the pair (C ′, eC′) is given by:
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∫ Cmin

Cmin−ε
− (s+ b− ŷ)2 ds−

∫ Cmin

Cmin−ε
− (s+ b− ŷ)2 ds

+

∫ Cmax+δ

Cmax

− (s+ b− ŷ)2 ds−
∫ Cmax+δ

Cmax

− (s+ b− ŷ)2 ds

= ε
Cmin − Cmin

Cmax − Cmax

((
Cmax + Cmax − Cmin − Cmin

) (
Cmax − Cmax

)
+ ε

(
Cmax − Cmax + Cmin − Cmin

))
.

This expression is strictly positive since ε > 0, Cmin − Cmin > 0, Cmax − Cmax > 0, and
Cmax + Cmax > Cmin + Cmin. �

Proof of Proposition 6. Part I. Under the assumptions of the proposition, for every
condition cluster C there is a critical type θC with C ∩ {θC} 6= ∅:

Since for every equilibrium in which the sender mixes there is an outcome equivalent
equilibrium in which her strategy is pure, it is without loss of generality to have the sender
strategy be pure in the equilibrium eC. Denote the strategy profile corresponding to the
equilibrium eC by fC =

(
σC, ρC

)
. It follows from Lemma A.3 that it suffices to look at the

case where the interior of each communication interval of the equilibrium eC contains at most
one condition. Hence, it suffices to show that for any k = 1, . . . , K̂, the condition Ck does
not belong to the interior of a communication interval for the equilibrium eC.

Suppose otherwise, i.e., for the contract C and the equilibrium eC there is at least one
communication interval with a condition in its interior. We will gradually replace the contract
C by other contracts and the strategy profile fC by other strategy profiles. At each iteration
we will ensure that sender payoffs strictly increase. At the end we will verify that the strategy
profile we obtain is an equilibrium profile.

Let the equilibrium eC have n steps, and therefore n communication intervals Ij, j =
1, . . . , n. For each communication interval Ij let the sender send message mj and denote
the action induced by types in Ij by yj. Denote the critical types from equilibrium eC by
θCj , j = 0, 1, . . . , n. At each replacement of the prevailing contract and strategy profile, the
number of steps as well as the number communication intervals remains constant at n. Types
in communication interval Ij continue to send message mj after each replacement and the
receiver best responds to the sender’s replacement strategy. After all unsent messages, have
the receiver use the same response as after message m1. As the response to m1 changes with
each replacement, change the response to unsent messages in the same way.

Step 1. Replace the contract C and the strategy profile fC by a new contract C0 and a
new strategy profile fC0 :

(a) Change the contract as follows: Consider any condition Ck such that there is a com-
munication interval Ij with Ck ⊂ (θj, θj). If θj does not belong to a condition, replace
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Ck by its −(Ck − θj)-translation. If θj does belong to a condition, replace Ck by the
−(Ck − θj)-translation of the left-open interval Ck \ {Ck}.

(b) Change the sender strategy as follows: For any communication interval Ij that was
affected by a translation (i.e., there was a condition Ck ⊂ (θj, θj)), after the translation

have the sender send message mj for types θ with θj + (Ck − Ck) < θ < θj. For
any communication interval Ij that was not affected by a translation have the sender
continue to send message mj.

(c) Change the receiver strategy as follows: Let the receiver best respond to the new sender
strategy and respond to all unsent messages the same way he responds to message m1.

We make no claim that the new strategy profile fC0 is an equilibrium profile of the
communication game ΓC0 . The question of equilibrium is addressed after the final iteration.
By Observation 1, we have a strict payoff improvement for the sender over the payoff from
eC in ΓC if players adopt the strategy profile fC0 in the communication game ΓC0 .

After the replacement of the contract C by the contract C0 there is some number L ≤ K̂
of condition clusters C`, ` = 1, . . . , L. Denote the minimal (maximal) type in each con-
dition cluster C` by C` (C`). Refer to the communication interval with lower bound
C` by I+(C`, f

C0) and let y+(C`, f
C0) be the receiver’s best reply to beliefs concentrated

on I+(C`, f
C0). Similarly, let I−(C`, f

C0) stand for the communication interval with up-
per bound C` and let y−(C`, f

C0) be the receiver’s best reply to beliefs concentrated on
I−(C`, f

C0).
Observe that type C` (weakly) prefers action y−(C`, f

C0) to action y+(C`, f
C0): y−(C`, f

C0)
is no further from C` than that type’s preferred equilibrium action under the original equi-
librium eC and y+(C`, f

C0) is no closer to C` than that type’s preferred equilibrium action
under eC.

Step 2. As noted before, the strategy profile fC0 will generally violate incentive com-
patibility for the sender given the contract C0 and the receiver’s strategy. With the ultimate
goal of reestablishing equilibrium, we begin by restoring incentive compatibility locally by
replacing the strategy profile fC0 by a new strategy profile fC1 while leaving the prevailing
contract unchanged, i.e., C1 = C0.

Between any two condition clusters C` and C`+1 with ` < L, and similarly between
CL and 1, restore equilibrium locally. In order to obtain a local equilibrium between C` and
C`+1, alter the sender strategy in that range and the receiver’s responses to messages sent by
types in that range so that the receiver best responds to those messages and sender types in
that range have no incentive to mimic other types in that range. For now, ignore incentives
to mimic types between other condition clusters. We address those incentives later. Modify
strategies as follows:

(a) If none of the critical types θC from the equilibrium eC satisfy C` < θC < C`+1, leave
sender and receiver strategies unchanged – they already satisfy the local-equilibrium
condition. Otherwise, suppose that the critical types θC satisfying C` < θC < C`+1
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are θCi , . . . , θ
C
i′ . Note that given the postulated receiver behavior in fC0 , type θCi is the

only critical type in the range
(
C`,C`+1

)
for which incentive compatibility is violated.

Define λC := θCi −C`.

(b) In order to restore equilibrium locally between C` and C`+1, consider replacing θCi , . . . , θ
C
i′

in the specification of the sender’s and receiver’s strategies by θi, . . . , θi′ , where θi =
C`+λ and θj+1−θj = θCj+1−θCj − λ−λC

i′+1−i , j = i, . . . , i′−1, and λC ≤ λ ≤
(
θCi+1 − θCi

)
(i′+

1− i) +λC. The last condition ensures that the length of the second step θi+1− θi (and
thus all subsequent steps) remains positive. For types in the range

(
C`,C`+1

)
, have the

new sender strategy prescribe that the sender send message mi in the interval (C`, θi),
message mj in (θj−1, θj) , j = i + 1, . . . , i′, and message mi′+1 for types in

(
θi′ ,C`+1

)
.

Otherwise, leave the sender strategy unchanged. Adjust the receiver’s strategy so that
the receiver best responds to messages mj, j = i, . . . , i′ + 1, given the new sender
strategy, leaving all other responses unchanged.

(c) For λ = λC, type θi (weakly) prefers the action that is induced by types in the interval
(C`, θi) to the action that is induced by types in the interval (θi, θi+1). If θi is indifferent,
we are done. Otherwise, it must be the case that the length of the interval (θi, θi+1)
exceeds that of (C`, θi). Consider increasing λ from λ = λC to the value λ′′ at which the
lengths of these two intervals become the same. At that point type θi strictly prefers
the action that is induced by types in the interval (θi, θi+1) to the action that is induced
by types in the interval (C`, θi). Therefore, existence of a λ′ with λ′′ ≥ λ′ ≥ θi − C`

that restores equilibrium locally between C` and C`+1 follows from continuity the
payoff function, the intermediate value theorem, and the fact that as we vary λ in
the manner described, the arbitrage conditions for types θj, j = i + 1, . . . , i′ continue
to be satisfied, since the lengths of adjacent intervals (θj−1, θj) , j = i + 1, . . . , i′, and(
θi′ ,C`+1

)
, continue to differ by 4b.

The total change of behavior required to restore equilibrium locally between C` and C`+1,
as just described, can be decomposed into i′ + 1 − i steps. In the kth step λ is increased
by λ′−λC

i′+1−i , the intervals (θi+(k′−1), θi+k′) with 1 ≤ k′ < k are all shifted up by that amount,
and the interval (θi+k−1, θi+k) is reduced in size by the same amount by keeping θi+k fixed
while θi+k−1 increases. In the final step the interval whose size is reduced is

(
θi′ ,C`+1

)
. By

Observation 2 we have a payoff improvement at every step. Denote the strategy profile that
results from restoring local equilibria in the game ΓC1 between all pairs of adjacent condition
clusters by fC1 .

Step 3. We next turn to addressing incentive constraints that involve types that are
separated by condition clusters.

Observe that when we replace fC0 by fC1 in ΓC1 , for any condition cluster C`, we have∣∣I+(C`, f
C1)
∣∣ ≥ ∣∣I+(C`, f

C0)
∣∣ and

∣∣I−(C`, f
C1)
∣∣ ≤ ∣∣I−(C`, f

C0)
∣∣. In combination with type

C` having preferred action y−(C`, f
C0) to action y+(C`, f

C0) prior to the strategy-profile
replacement, this implies that none of the types equal to or less than C`, have an incentive
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to induce any action greater than y−(C`, f
C1) available to them given the profile fC1 . There-

fore, if none of the types C`, ` = 1, . . . , L have an incentive to induce an action less than
y+(C`, f

C1) available to them given the profile fC1 , the combination of local equilibria forms
an equilibrium overall.

If instead there is a type C` who prefers inducing an action less than y+(C`, f
C1) that is

available given the profile fC1 , let ˆ̀ be the maximal ` such that this is the case. Consider
the set of actions that are induced by types θ > C ˆ̀. Refer to the types who are indifferent

among adjacent actions in this set of actions as ˆ̀-critical types. Use ˜̀ to denote the minimal
` > ˆ̀ such that there is an ˆ̀-critical type θ̃ ∈

[
C`,C`

)
, if there is such a type. If there is no

ˆ̀-critical type θ̃ ∈
[
C`,C`

)
for all ` > ˆ̀, proceed without introducing ˜̀. Note that if this

case we have that either C` is an ˆ̀-critical type for all ` > ˆ̀ or Cˆ̀ is the rightmost condition

cluster (ˆ̀= L).
Note that if θj−1, θj and θj+1 are ˆ̀-critical types such that θj = C` and neither θj−1 nor

θj+1 belong to a condition cluster, then we have

θj + b− θj−1 + (θj − (C` −C`))

2
=
θj+1 + θj

2
− θj − b, (2)

which is equivalent to

θj+1 − θj = θj − θj−1 + 4b+ (C` −C`). (3)

This is the standard arbitrage condition in the CS uniform quadratic example extended to
the case where the ˆ̀-critical type θj is the upper endpoint of a condition cluster. If θj−1

belongs to the condition cluster C`−1, replace θj−1 by C`−1 in the above expression, and if
θj+1 belongs to the condition cluster C`+1, replace θj+1 by C`+1.

Consider replacing the condition cluster Cˆ̀ by its λ translation (for notational conve-
nience also denoted by Cˆ̀) for values λ > 0 that make it possible to

(a) maintain local equilibrium for types in the range (C ˆ̀−1,C ˆ̀) (if ˆ̀> 1, and in the range
(0,C ˆ̀) otherwise) (this is achieved by choosing λ sufficiently small and increasing the
length of each communication interval in this range by λ divided by the number of
communication intervals in this range),

(b) maintain local equilibrium in the range (C ˆ̀,C ˜̀) and preserve indifference for all types

θ such that θ = C` with ˆ̀ < ` < ˜̀ (by condition (3), this is achieved by choosing
λ sufficiently small and reducing the sizes of communication intervals in the range
(C ˆ̀,C ˜̀) all by λ divided by the number of communication intervals in this range).

For each λ, denote the strategy that maintains local equilibrium for types θ > C ˆ̀−1 by fλ.

Note that if, prior to the λ translation of Cˆ̀, type C ˆ̀ prefers inducing an action less
than y+(Cˆ̀, fC1) that is available given the profile fC1 , as postulated, it has to be the case
that

∣∣I+(Cˆ̀, fC1)
∣∣ > ∣∣I−(Cˆ̀, fC1)

∣∣. As a consequence of replacing Cˆ̀ by its λ translation
and maintaining local equilibria in the ranges specified above, the lengths of communication
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intervals in the range (C ˆ̀−1,C ˆ̀) increase and the lengths of communication intervals in the

range (C ˆ̀,C ˜̀) decrease. It is easily checked that for all λ between λ = 0 and the value of
λ that equalizes

∣∣I+(C`, f
λ)
∣∣ and

∣∣I−(C`, f
λ)
∣∣ the local equilibria in the ranges (C ˆ̀−1,C ˆ̀)

and (C ˆ̀,C ˜̀) can be preserved, as described above. Hence by payoff continuity and the
intermediate value theorem, there exists a value of λ for which we have an equilibrium in
the auxiliary game that is obtained by restricting the type space to (C ˆ̀−1,C ˜̀), leaving all

condition clusters C` with ` 6= ˆ̀ unchanged, and replacing Cˆ̀ by its λ-translation. Denote
this value of λ by λ′. Monotonicity of type C ˆ̀’s payoff differential from actions y+(Cˆ̀, fλ)
and y−(Cˆ̀, fλ) implies that λ′ is unique. By a similar argument there exists a unique value
of λ such that local equilibria in the ranges (C ˆ̀−1,C ˆ̀) and (C ˆ̀,C ˜̀) are preserved as above

and, in addition, we have θ̃ = C ˜̀. Denote this value of λ by λ′′.
Define λmin := min{λ′, λ′′} and note that with the λmin translation of Cˆ̀ we have θ̃ ∈[

C`,C`

]
. Let n1 be the number of communication intervals in the range (C ˆ̀−1,C ˆ̀) and

n2 the number of communication intervals in the range (C ˆ̀,C ˜̀). If we replace Cˆ̀ by its
λmin translation while preserving local equilibria in the ranges (C ˆ̀−1,C ˆ̀) and (C ˆ̀,C ˜̀) as
indicated above, this increases the length of each communication interval Ij, in the range
(C ˆ̀−1,C ˆ̀) by λmin

n1
and lowers the length of each communication interval Ij in the range

(C ˆ̀,C ˜̀) by λmin

n2
.

We can decompose the replacement of Cˆ̀ by its λmin-translation and the corresponding
preservation of local equilibria in the ranges (C ˆ̀−1,C ˆ̀) and (C ˆ̀,C ˜̀) into n1 ·n2 steps of size
λmin

n1·n2
. Define Ij(0) := Ij. At the rth step, r = 1, . . . , n1 · n2,

(1) identify two intervals Ij′(r) ⊆ (C ˆ̀−1,C ˆ̀) and Ij′′(r) ⊆ (C ˆ̀,C ˜̀) among those that

have been established by step r − 1 and which satisfy |Ij′(r)| < |Ij′ + λmin

n1
| and |Ij′′(r)| >

|Ij′′ − λmin

n2
|,

(2) increase the length of the former by λmin

n1·n2
by changing its right endpoint,

(3) reduce the length of the latter by the same amount by changing its left endpoint,
(4) replace all intervals Ij(r) ⊆ (C ˆ̀−1,C ˆ̀) with j > j′ by their λmin

n1·n2
-translation,

(5) replace all intervals Ij(r) ⊆ (C ˆ̀,C ˜̀) with j < j′′ by their λmin

n1·n2
-translation,

(6) replace the Cˆ̀ that resulted from step r − 1 by its λmin

n1·n2
-translation,

(7) have the sender send the same message in Ij(r) that she sent in Ij(r − 1) for all j,
(8) have the receiver best respond to the the new sender strategy.

By Observation 2 we have a strict payoff improvement at every step.

Denote the contract that results from replacing Cˆ̀ by its λmin-translation by C2. Denote
the strategy profile that results from preserving local equilibria in the ranges (C ˆ̀−1,C ˆ̀) and

(C ˆ̀,C ˜̀) as described above while otherwise being identical with fC1 by fC2 .
If λmin = λ′, identify the maximal ` such that type C` prefers inducing an action less

than a+(C`, f
C2) that is available given the profile fC2 , if there is such an `. Otherwise we

are done. Note that this ` necessarily satisfies ` < ˆ̀. Make this ` the new ˆ̀ and repeat the
construction that, starting with C1 and the strategy profile fC1 , gave us C2 and fC2 .

If instead λmin = λ′′, identify the minimal ` > ˆ̀ such that there is a critical type θ̃ in the
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set
[
C`,C`

)
(note that this `, if it exists, is necessarily larger than ˜̀). If there is no such `

we are done. Make this ` the new ˜̀ and repeat the construction that, starting with C1 and
the strategy profile fC1 , gave us C2 and fC2 .

Starting with any Ci and fCi obtained in this manner construct Ci+1 and fCi+1 using the
same procedure. Since there are finitely many indices ` and at each step either ˆ̀ drops or
˜̀ rises, this process terminates and that at that point we have an equilibrium with a strict
payoff improvement.

Part II. If the equilibrium eC induces at least two communication actions, then there is
a condition clusters C and a critical type θ 6= 0, 1 with C ∩ {θ̃} 6= ∅:

Suppose for contradiction that the equilibrium eC induces at least two communication
actions, and that for all critical types θ̃ 6= 0, 1 and all condition clusters C, it is the case
that C ∩ {θ̃} = ∅. Let n > 1 be the number of communication intervals in eC. Then any
condition cluster C satisfies either 0 ∈ C or 1 ∈ C, and there is a critical type θ1 ∈ (0, 1).

Consider the case where 0 ∈ C for a condition cluster C. Let the contract C ′ only differ
from C by replacing the condition cluster C by its (θ1 −C)-translation, C ′. Evidently, the
game ΓC

′
has an equilibrium eC

′
in which types θ ∈ (0, θ1−C) send the message sent by types

in (θ1, θ2) in equilibrium eC, and all other types behave as they did before in equilibrium eC.
The sender’s expected payoff in the equilibrium eC

′
is the same as in eC, type θ1−C strictly

prefers the action that is induced by types in (0, θ1−C) to all other equilibrium actions and
type θ1 strictly prefers the action that is induced by types in the communication interval
that is bounded below by θ1 to all other equilibrium actions.

Since the incentive constraints of types C ′ = θ1−C and C
′
= θ1 in the new equilibrium

eC
′

are slack, for any sufficiently small λ > 0 we can replace contract C ′ by a contract Cλ
that only differs from C ′ by replacing the condition cluster C ′ by its λ-translation, Cλ, so
that the game ΓC

λ
has an equilibrium eC

λ
, in which, relative to eC

′
, the length of the first

communication interval increases by λ and the lengths of all the remaining communication
intervals are reduced by λ

n−1
. Combining this with the fact that in eC, and therefore in eC

′
,

the first is the smallest communication interval, repeated application of Observation 1 (as
before) implies that for any sufficiently small λ > 0 the sender’s expected payoff from eC

λ

strictly exceeds that from eC. It follows that eC cannot have been optimal.
For the case where 1 ∈ C for a condition cluster C, consider the contract C ′′ that only

differs from C by replacing the condition cluster C by its −(C − θn−1)-translation, C ′′. In
this case, the game ΓC

′′
has an equilibrium eC

′′
in which types θ ∈ (1− (C − θn−1), 1) send

the message sent by types in (θn−1,C) in equilibrium eC and all other types behave as they
did before in equilibrium eC. Similar to the previous case, the incentive constraints of types

C ′′ and C
′′

are slack,
(
C
′′
, 1
]

= (1− (C − θn−1), 1] is the largest communication interval,

and therefore for sufficiently small λ > 0 one can increase equilibrium payoffs by replacing
C ′′ by its λ translation. �

Proof of Corollary 1. Part 1. is an immediate consequence of Proposition 6. For Part 2.,
note that it suffices to prove the claim for P and P ′ that are adjacent to each other. If P ′ is
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a condition of C, or both P and P ′ are communication intervals, the result is an immediate
consequence of our assumptions on the payoff functions U i, i = S,R.

Suppose, therefore, that P ′ is a communication interval and P a condition of C with
inf(P ′) ≥ sup(P ). For each P ∈ P use x(P ) to denote the sender-preferred action given P
and y(P ) to denote the receiver preferred action given P. In order to derive a contraction,
suppose that we have that a(P ′) ≤ a(P ) – i.e., y(P ′) ≤ x(P ). The cross-partial condition
implies that x(P ′) > x(P ).

∫
P ′
US(x, θ)dθ is an integral over strictly concave functions and,

therefore, itself strictly concave. This implies that
∫
P ′
US(x, θ)dθ is strictly increasing for all

x < x(P ′). Therefore, since y(P ′) ≤ x(P ) < x(P ′), and

d

dx

(∫
P

US(x, θ)dθ

)∣∣∣∣
x=x(P )

= 0,

we obtain that for sufficiently small ε > 0,∫
P

US(x(P ), θ)dθ +

∫
P ′
US(y(P ′), θ)dθ <

∫
P∪P ′

US(x(P ) + ε, θ)dθ.

This, however, implies that there exists ε > 0 such that the sender would strictly prefer to
have a single condition P ∪ P ′ with instruction x(P ) + ε (of course, a further improvement
could be achieved by replacing the instruction x(P ) + ε by the instruction x

(
P ∪ P ′

)
if they

differ). This gives us the desired contradiction. �

Proof of Lemma 3. Slightly abusing notation, also use J to denote the set {1, . . . , J}.
If {j ∈ J |Dj < θ1} is nonempty and, thus, j′ is well-defined for j ≤ j′, let t2j := Dj and
t2j−1 := Dj. In addition, let t2j′+1 := min{θ1, Dj′′} if j′′ is well-defined, and t2j′+1 := θ1

otherwise. Define

Xj′ :=

j′∑
j=1

t2j − t2j−1 and Yj′ :=

j′∑
j=1

t22j − t22j−1.

Note that

y1 =
t1

t2j′+1 −Xj′

t1
2

+

j′∑
j=1

t2j+1 − t2j
t2j′+1 −Xj′

t2j+1 + t2j
2

=
t22j′+1 −

∑j′

j=1 t
2
2j − t22j−1

2(t2j′+1 −Xj′)

=
t22j′+1 − Yj′

2(t2j′+1 −Xj′)
,

and

ỹ1 =
t2j′+1 −Xj′

2
.
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Showing that
t2j′+1 − y1 ≥ t2j′+1 −Xj′ − ỹ1

is equivalent to showing that

t2j′+1 −
t22j′+1 − Yj′

2(t2j′+1 −Xj′)
≥ t2j′+1 −Xj′

2
⇔

2t2j′+1(t2j′+1 −Xj′)− (t22j′+1 − Yj′) ≥ (t2j′+1 −Xj′)
2 ⇔

Yj′ ≥ X2
j′ .

To prove that Yj′ ≥ X2
j′ , we proceed by induction. Since t22−t21 = (t2−t1)(t2 +t1) ≥ (t2−t1)2,

the claim holds for j′ = 1. Suppose, it holds for j′. We show that it then also holds for j′+1.

(Xj′+1)2

=

(
j′+1∑
j=1

t2j − t2j−1

)2

=

(
j′∑
j=1

t2j − t2j−1 + t2(j′+1) − t2(j′+1)−1

)2

=

(
j′∑
j=1

t2j − t2j−1

)2

+ 2

(
j′∑
j=1

t2j − t2j−1

)(
t2(j′+1) − t2(j′+1)−1

)
+
(
t2(j′+1) − t2(j′+1)−1

)2

<

(
j′∑
j=1

t2j − t2j−1

)2

+ 2t2(j′+1)−1

(
t2(j′+1) − t2(j′+1)−1

)
+
(
t2(j′+1) − t2(j′+1)−1

)2

=

(
j′∑
j=1

t2j − t2j−1

)2

+ t22(j′+1) − t22(j′+1)−1

≤
j′∑
j=1

t22j − t22j−1 + t22(j′+1) − t22(j′+1)−1 (by the induction hypothesis)

= Yj′+1.

�

Proof of Proposition 7. For any condition C, use x(C) to denote the sender’s optimal
instruction given that condition. Non-emptiness of the optimal contract follows from Propo-
sition 1. Consider any contract C with a condition C =

⋃J
j=1 Dj and sender-optimal action

x(C), where the sets Dj ⊂ [0, 1], j = 1, . . . J , are closed intervals with Dj < Dj+1 for j < J.
We show that whenever J > 1 the contract C can be improved upon. Proposition 4 implies
that for b > 1

4
, there cannot be more than two communication actions.
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By Observation 1, any equilibrium with a single communication action can be improved

upon, by replacing the condition C by the condition C̃ :=
[
1−

∑J
j=1Dj −Dj, 1

]
and replac-

ing x(C) by x(C̃) – i.e., by consolidating the condition, moving it the to the right endpoint
of the type space, and adjusting the instruction accordingly.

Suppose there is an equilibrium with two communication actions. Denote the lower of
the two communication actions by y1, the higher of the two communication actions by y2,
and the critical type by θ1. Suppose that there exists ̂ ∈ J such that either D̂ < θ1 < D̂+1,

θ1 < D1, or DJ < θ1. Replace the contract C by the contract C̃ with condition C̃ and
instruction x(C̃), where

C̃ =

[
θ1 −

̂∑
j=1

Dj −Dj, θ1 +
J∑

j=̂+1

Dj −Dj

]
.

Let ỹ1 be the receiver’s best reply to beliefs concentrated on [0, C̃] and ỹ2 be the receiver’s

best reply to beliefs concentrated on [C̃, 1].
The sender’s payoff conditional on the event C̃ exceeds the sender’s payoff conditional

on the event C in the original contract by Observation 1. If we let the receiver take action

ỹ1 for types in [0, C̃] and action ỹ2 for types in [C̃, 1], then the sender’s payoff conditional on
the event [0, 1] \ C̃ exceeds the payoff from the event [0, 1] \ C under the original contract,
again by Observation 1.

If D̂ < θ1 < D̂+1 for some ̂, then

ỹ2 − (C̃ + b) ≥ y2 − (θ1 + b) = θ1 + b− y1 ≥ C̃ + b− ỹ1.

The inequality on the left follows because ỹ2 ≥ y2 and C̃ ≤ θ1; the equality in the middle is
the usual arbitrage condition; and, the inequality on the right is implied by Lemma 3. As a
result, all types in [0, C̃] prefer action ỹ1 to action ỹ2.

If, in addition, type C̃ prefers action ỹ2 to action ỹ1, then these actions are equilibrium
actions in the communication game that is induced by the condition C̃. Suppose, instead,

that type C̃ strictly prefers action ỹ1 to action ỹ2. Then, since b > 0, it must be the case

that the length of the interval [C̃, 1] exceeds that of the interval [0, C̃]. Hence, there exists

δ > 0 such that type C̃ + δ is indifferent between y(0, C̃ + δ) and y(C̃ + δ, 1). Therefore
we have a two-step equilibrium in the communication game that is induced by the contract

with condition [C̃ + δ, C̃ + δ]. Note that in this equilibrium, the communication intervals are
of more equal length. Therefore, by Observation 2, the sender’s payoff in this equilibrium
– which is the payoff conditional on the event [0, 1] \ (C̃ + δ) – exceeds that from the event
[0, 1] \ C̃, where we had the receiver take action ỹ1 for types in [0, C̃] and action ỹ2 for types

in [C̃, 1].
If θ1 < D1, then

ỹ2 − (C̃ + b) = ỹ2 − (θ1 + b) ≥ y2 − (θ1 + b) = θ1 + b− y1.
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As a result, all types in [0, C̃] = [0, θ1] prefer action ỹ1 to action ỹ2. If, in addition, type C̃
prefers action ỹ2 to action ỹ1, then these actions are equilibrium actions in the communication
game that is induced by the condition C̃. In that case, the sender strictly prefers the contract
with condition C̃ and instruction x(C̃) to the original contract for the same reasons as given

before. Suppose, instead, that type C̃ strictly prefers action ỹ1 to action ỹ2. Then, as before,
we can find a δ such that the sender strictly prefers the contract with condition C̃ + δ and
instruction x(C̃ + δ) to the original contract.

IfDJ < θ1, then the exact same argument that we used for the case in whichD̂ < θ1 < D̂

for some ̂ implies that we can find an alternative contract (and equilibrium in the associated
communication game) that the sender strictly prefers to the original contract.

It remains to consider the case in which there exists a ̂ ∈ J such that θ1 ∈ D̂. Note that
it is impossible to have either θ1 ∈ D1 if D1 = 0, or θ1 ∈ DJ if DJ = 1; in either case, there
would not be two communication actions to make type θ1 indifferent. Hence, 0 < D̂ and

D̂ < 1.
Replace the contract C by the contract C̃ with condition C̃ and instruction x(C̃) where

C̃ =

[
D̂ −

̂−1∑
j=1

Dj −Dj, D̂ +
J∑

j=̂+1

Dj −Dj

]
.

Let ỹ1 be the receiver’s best reply to beliefs concentrated on [0, C̃] and ỹ2 be the receiver’s

best reply to beliefs concentrated on [C̃, 1]. Lemma 3 implies that

ỹ2 − (C̃ + b) ≥ y2 − (D̂ + b) ≥ D̂ + b− y1 ≥ C̃ + b− ỹ1.

With this in hand, we can use the exact same argument that we employed for the case
in which D̂ < θ1 < D̂+1 for some ̂ to argue that there exists a δ ≥ 0 and a contract with

condition [C̃ + δ, C̃ + δ] that the sender strictly prefers to the contract C̃. �
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