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Abstract

This paper studies a bilateral trade game where (i) the buyer is uncertain

about her desired consumption amount (needs) of a perfectly divisible good and

receives a signal about it, and (ii) the seller posts a take-it-or-leave-it price to the

buyer. The interplay between information design and monopoly pricing is dis-

cussed where the standard posterior-mean method does not apply. The seller

trades off between surplus creation and extraction. We identify a condition un-

der which the buyer consumes up to her maximum individually rational level.

Where this condition fails, we provide a closed-form characterization of the opti-

mal price and information structure and discuss the welfare implications.
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1 Introduction

In numerous markets, sellers hold significant control over the information deter-
mining buyers’ consumption decisions. For instance, when launching a new drug,
pharmaceutical companies employ various techniques to enhance product visibility
and positively influence prescribing patterns, including the deployment of profes-
sional sales representatives, the dissemination of promotional literature and physi-
cian’s samples, the organization of continuing medical education activities and con-
ferences. In particular, they often sponsor or directly design “seeding clinical trials”
to persuade physicians to increase prescribing the new drug being marketed (Kessler
et al., 1994).1 These prevalent information provision practices employed by sellers
with market power give rise to several important questions. What constitutes the
optimal form of information design for sellers in such markets? How information
design interacts with sellers’ pricing strategies? What are the welfare implications?

This paper studies information design in a bilateral game between a seller and
a buyer trading a perfectly divisible good. The buyer chooses how much to consume
to satisfy her unknown needs. The seller sets a price for the good and designs an
information disclosure policy. Our primary objective is to characterize the informa-
tion structure that maximizes the seller’s revenue and explore the associated welfare
implications.

To understand what drives the seller’s optimal information policy, it is illuminat-
ing to consider two extreme information policies. On the one hand, if no information
is provided, the buyer cannot make an informed choice. This ultimately results in the
buyer not being able to consume according to her idiosyncratic needs. The inefficient
allocation limits the trade surplus for the seller to extract through optimal pricing.
On the other hand, if the buyer is perfectly informed, the seller cannot exploit the
information asymmetry, and so he has to give up some of the rent he would have
otherwise been able to extract. These two extreme cases illustrate a trade-off between
surplus creation and extraction. The competition between these two forces pins down
the optimal policy.

One of our contributions is identifying a tractable payoff structure that (i) captures
the buyer’s decision on how much to buy and (ii) enables us to study information de-
sign. We specify the buyer’s needs as a one-dimensional random variable. The buyer

1It is estimated that the pharmaceutical industry spends roughly the same amount of money on
marketing strategies such as “persuading” physicians as it does on innovation investments (Lak-
dawalla, 2018).
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can choose any consumption level to satisfy her needs, and she receives a reward if
and only if her consumption exceeds her needs. That is, if the buyer consumes insuf-
ficiently, her consumption benefit is negligible; if she consumes more than her needs,
her payoff is constant. This specification offers both tractability and real-world ap-
plicability, as it aligns with various scenarios, such as the pharmaceutical industry,
where inadequate or infrequent medical treatment provides minimal if any, benefit.

Our analysis begins by deriving a sufficient and necessary condition under which
the no-disclosure policy maximizes the seller’s revenue. If this condition is met, the
buyer’s consumption almost surely exceeds her need, gains from trades are fully re-
alized, but all the surplus is extracted by the seller. This condition requires that the
buyer’s prior distribution of type must be sufficiently high in terms of first-order
stochastic dominance. The role of this condition indicates a sharp difference be-
tween selling divisible goods and indivisible goods through information design. In
the indivisible-good settings, what matters for the buyer’s decision is the posterior
mean of her purchase utility, and the seller’s optimal policy is to disclose no informa-
tion and charge at the buyer’s expected value, extracting all the surplus (Bergemann
and Pesendorfer, 2007). In our divisible-good setting, the buyer has more flexibil-
ity in decision making to gain surplus. The posterior mean of purchase utility is no
longer a sufficient statistics for the buyer’s decision, and full surplus extraction via
no disclosure is not always feasible to the seller.

In the interesting case where the aforementioned condition fails, the seller prefers
a partial information disclosure. We solve the seller’s revenue-maximizing problem
in two steps. As a first step, we study the demand-maximizing information design
problem given a price. The optimal information structure can be solved in closed
form. It has several interesting features. First, the buyer is always persuaded to con-
sume more than her optimal uninformed consumption level. In fact, any buyer type
that would make a positive purchase to fulfill her needs under complete information
will end up consuming more than necessary under the demand-maximizing infor-
mation structure. Second, the optimal design of information will result in the same
gains from trade as a policy of full disclosure, achieved by increasing the buyer’s
consumption. However, the buyer’s expected consumer surplus remains the same
as that of no disclosure. Consequently, under a fixed price, the optimal information
design benefits the seller by expanding the gains from trade to the level of full disclo-
sure, while maintaining the buyer’s consumer surplus at the level achieved under no
disclosure.
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With the closed-form solution to the demand-maximizing information design prob-
lem, we then solve the standard monopoly pricing problem. The seller’s optimal
price trades off between enlarging gains from trade and extracting consumer sur-
plus. We characterize the optimal price using the standard constrained optimization
technique.

An interesting tension in our model is that the two instruments available to the
seller, pricing and information design, have opposing effects on the equilibrium amount
of supply. First, according to the textbook theory, a revenue-maximizing monopolist
tends to set the price too high, causing the buyer to underconsume relative to the first
best. Second, as an information designer, the seller’s payoff strictly increases in the
buyer’s purchase, so he is determined to exaggerate the buyer’s needs, inducing the
buyer to overconsume. The welfare properties of the monopoly allocation, resulting
from the interplay between these two countervailing forces, is therefore ambiguous
in general. We derive a simple sufficient condition for the buyer to almost certainly
consume above her needs (but below the maximum individually rational level). In
this case, the monopoly allocation fully realizes gains from trade.2

Our baseline model focuses on the interplay between optimal information design
and linear pricing. This restriction of the seller’s feasible mechanism set is well-
founded in various applications, driven by cultural and industry norms or consumer
arbitrage. For example, hourly rates are prevalent in the service industry, and phar-
maceutical companies often sell their products at a uniform price to uninsured con-
sumers, either directly or through retailers (Lakdawalla, 2018). More importantly, the
linear pricing approach effectively showcases the implications for optimal informa-
tion disclosure when granting consumers greater decision-making flexibility. It en-
sures minimal deviation from the literature on pricing and information design with
divisible goods, facilitating direct comparison with corresponding results.

Despite the prevalence of linear pricing in practice, delving into more general
mechanisms accessible to the seller nevertheless holds significant theoretical inter-
est. In this regard, we examine the possibility of price discrimination. We first show
that the seller can achieve full surplus by either implementing a non-linear pricing
policy or pricing based on the buyer’s realized signal. Next, we show that, if the

2It is important to notice that our welfare analysis focuses on allocation efficiency but ignores
the marginal cost of production. This is a reasonable simplification for industries where production
marginal cost is negligible such as pharmaceutical and digital markets. The presence of a positive but
constant marginal cost will introduce an extra factor in determining the optimal pricing. The analysis
is upon request.
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seller is constrained to any particular pricing mechanism, our analytical method re-
mains applicable with a straightforward transformation of the original information
design problem.

Finally, we consider potential adverse effects arising from consumption in a sim-
ple linear setting. This concern is especially relevant in cases like pharmaceuticals.

Related Literature and Contribution This paper belongs to the fast-growing litera-
ture studying the interaction between information design and pricing. We explore the
seller’s trade-off in pricing and information design to sell perfectly divisible goods.
On the contrary, the literature mainly focuses on the setting with indivisible goods
and each consumer makes a buy-or-not choice. As aforementioned, with flexible
information provision, the optimal policy to sell indivisible goods is to provide no
information and charge at the buyer’s expected value (Roesler and Szentes, 2017).
We show that introducing divisibility will drive the optimal policy away from this
trivial result.3 In a recent paper, Hwang et al. (2022) investigate competitive informa-
tion provision and pricing in an otherwise standard heterogeneous-product oligopoly
model where each seller simultaneously decides the price and how much information
to disclosure about his product. They show that intense competition induces firms to
provide precise product information, and strategic advertising has ambiguous impli-
cations for market prices and consumer surplus.4

Bergemann et al. (2022) consider optimal pricing-quality menu and information
structure that jointly maximize the seller’s revenue in a setting a la Mussa and Rosen
(1978). They also consider the trade off between surplus creation and extraction and
show that an optimal mechanism must offer finitely many items even with a contin-
uum of buyer values. In their setup, the buyer’s marginal utility of quality is her
private information. The product payoff structure makes the posterior mean of the
buyer’s value sufficient for her consumption decision, allowing them to utilize some

3Another way to do make monopolist’s information design non-trivial is to introduce costly inspec-
tion. Anderson and Renault (2006) consider a search setting where the buyer decides if to sample her
true product value after receiving the information disclosed by the seller, showing that the optimal
disclosure is partial. Several recent papers extend the analysis by introducing buyers’ private infor-
mation. See, e.g., Johnson and Myatt (2006), Lyu (2021), Smolin (2022), Shi and Zhang (2021), and Wei
and Green (2022).

4More broadly, our paper relates to the literature examining classical industrial organization prob-
lems through the lens of information design. See Condorelli and Szentes (2020), Hinnosaar and Kawai
(2020), Evans and Park (2022), Ichihashi (2020), and Zhang (2022) as examples for monopoly pricing,
and Armstrong and Zhou (2022), Au and Whitmeyer (2023), Dogan and Hu (2022), Shi and Zhang
(2020), Elliott et al. (2021) for oligopoly competition.
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standard techniques. On the contrary, our setting is able to explore the new implica-
tions when the buyer’s incentive relies on the curvature of her posterior distribution.

Our paper also contributes to the literature of information design with large state
and action space. We identify a tractable persuasion setting with a closed-form so-
lution. With a continuum of states, the literature mainly focuses on the so-called lin-
ear persuasion environment where players only care about the posterior mean of the
state. See, e.g., Gentzkow and Kamenica (2016), Dworczak and Martini (2019), and
Kleiner et al. (2021). Yang and Zentefis (2023) consider a large-state-space persuasion
problem where only the posterior quantile of the state is payoff-relevant. Neither
the posterior mean nor the quantile of the buyer’s type is sufficient for her decision
in our setting. Kolotilin et al. (2022) establish a “first-order-approach” in solving a
class of persuasion problems with large state and action space. In their persuasion
problems, it is without loss to focus on the so-called “pairwise signal” information
policy. Their results are derived under the assumption of the receiver’s expected util-
ity being single-peaked in her action for any belief about the state. In our setting,
this assumption is violated and pairwise signal is suboptimal in general.5 Also see
Smolin and Yamashita (2022) who develop a certification solution method for con-
cave information-design problems with large state and action space. Their method is
effective in solving many optimal information design with multiple receivers.

Contemporaneous with our paper, Brzustowski (2023) considers a persuasion prob-
lem with a similar payoff structure as our benchmark model.6 There are substantial
differences between our papers. First, Brzustowski (2023) uses a duality approach to
characterize the optimal information disclosure. In contrast, our characterization of
optimal information policy relies heavily on direct and intuitive construction. Sec-
ond, we focus on the joint optimization of monopoly price and information structure,
while Brzustowski (2023) focuses on persuasion per se.

Organization The outline of this paper is as follows. In Section 2, we set up the
model. Sections 3 provides some illustrative examples to demonstrate the benefit of
information design. In Section 4 derives a sufficient and necessary condition under
which the buyer consumes up to the maximum individually rational level. The rest
of the analysis assumes this condition fails and characterizes the optimal information

5A counterexample is upon request.
6Also see Ely and Szydlowski (2020) who consider a dynamic persuasion problem where the re-

ceiver’s payoff is identical to the buyer in our model.
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design and price in order. Section 5 derives the seller’s optimal solution when the
prior distribution function is concave. Section 6 study the seller’s problem under an
arbitrary prior. Section 7 extends the baseline model by incorporating price discrimi-
nation and more general payoff of the buyer. Section 8 concludes.

2 Model

Players and payoffs. Consider a bilateral trade game between a seller and a buyer. A
seller (he) sells a perfectly divisible good at a per-unit price p. The seller has a constant
marginal cost, which is normalized to zero.7 The buyer (her) chooses how much to con-
sume to satisfy her unknown needs. To fix the idea, it is intuitive to picture the buyer
as a patient needing medication or therapy. She knows she needs some consump-
tion but does not know how much or how frequently she needs it. For simplicity,
we model the buyer’s uncertain needs as a single-dimensional random variable – her
type. If a type-θ buyer purchases q units of the good at price p, her payoff is

Iq≥θ − pq,

where IA is an indicator function and equals 1 if and only if event A is true. In words,
the buyer receives a reward 1 if and only if her consumption exceeds a threshold
θ ∈ [0, 1]. The reward reflects the payoff gain of a customer having her needs satis-
fied. In the pharmaceutical example, θ corresponds to the drug’s ideal treatment du-
ration/frequency or minimum effective concentration (MEC) for a patient (buyer).8

The pharmaceutical company chooses a uniform unit price for all patients (either di-
rectly or through retailers).

Since the buyer’s type is bounded above by 1, it is without loss to assume that
the buyer’s action set to be [0, 1]. We say the buyer overconsumes if her purchase is
strictly greater than her type θ. In particular, we say q = 1 is the buyer’s maximum
individually rational consumption.

7This is a reasonable normalization in many industrial where the primary cost concern arises from
R&D, whereas the marginal production cost is negligible. Also, it will become clear that introducing a
constant marginal production cost does not substantially affect our analysis. See the end of section 5.3
for more discussion.

8Formally, MEC is the minimum plasma concentration of a drug needed to achieve sufficient drug
concentration at the receptors to produce the desired pharmacologic response. In the baseline model,
we ignore the possible side effect of consumption. This realistic consideration will be addressed in
Section 7.
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Information structure. The buyer does not observe her type but believes it is dis-
tributed according to a cumulative distribution function (CDF) F◦ supported on [0, 1].
Assume that F◦ is differentiable, F◦(0) = 0, and whenever it is well-defined, the PDF
f◦ = F′

◦ > 0 is differentiable.
The buyer receives a signal about her type. We specify the information structure

as a state-dependent probability measure over a measurable signal space. For each
(realized) signal s ∈ S, the buyer forms her posterior distributions Fs according to the
Bayes’ rule. Let τ ∈ ∆(S) denote the ex-ante distribution over states, which must sat-
isfy the standard Bayes plausible condition (Kamenica and Gentzkow, 2011), which
is ∫

s∈S
Fs(θ)τ(ds) = F◦(θ), ∀θ ∈ [0, 1]. (1)

That is, the expectation over posterior distributions must equal the prior.
It is intuitive to consider some familiar information structures. The first example

is full disclosure which perfectly reveals the buyer’s type and each signal leads to a
posterior putting probability one on the buyer’s true type. The second example is no
disclosure where S = {s} and Fs = F◦. The third example is a simple cutoff disclosure
characterized by a threshold θ∗ ∈ (0, 1), indicating whether the buyer’s type is above
the threshold value θ∗. Specifically, if θ ≤ θ∗, the signal is s = L; otherwise, the signal
is s = H. We plot it in Figure 1. The buyer’s posterior is

FL(θ) =


F◦(θ)
F◦(θ∗)

if θ ∈ [0, θ∗]

1 otherwise
, and FH(θ) =

0 if θ ∈ [0, θ∗]
F◦(θ)−F◦(θ∗)

1−F◦(θ∗)
otherwise

.

Condition (1) implies that τ(L)FL(θ) + τ(H)FH(θ) = F◦(θ), ∀θ where τ(L) = F◦(θ∗)
and τ(H) = 1 − F◦(θ∗) are the probabilities of the signal being L and H, respectively.

A particular type of information structure of interest is the recommendation (or
direct) information structure, where each signal is indexed by a consumption rec-
ommendation q. A recommendation information structure is incentive-compatible (or
obedient) if the recommendation is always consistent with the buyer’s optimal choice
given her posterior:

q ∈ arg max
q̂∈[0,1]

{Fq(q̂)− pq̂}, ∀q, (IC)

where Fq(q̂) =
∫ 1

0 Iq̂≥θdFq(θ) is the buyer’s benefit by choosing q̂ and pq̂ is the mone-
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θ
1θ∗

1

0

F◦

FL

FH

Figure 1: Illustration of cutoff information structure. The thin black curve corresponds to the prior
CDF F◦, the light blue thick curve corresponds to the posterior CDF FL induced by signal s = L, and
the dark red thick curve corresponds to the posterior CDF FH induced by signal s = H.

tary cost. Let
H(q) = τ([0, q]), ∀q ∈ [0, 1],

be the corresponding CDF of consumption recommendation. Let h(q) = H′(q) whenever
it is well-defined. So a recommendation information structure can be described by a
pair (H, F) where F = {Fq(·)}q∈[0,1] and Bayes plausible condition (1) becomes

∫
q∈[0,1]

Fq(θ)dH(q) = F◦(θ), ∀θ ∈ [0, 1]. (BP)

Design problem. We are interested in the seller’s optimal information structure.
Thanks to the standard argument (Myerson, 1986; Kamenica and Gentzkow, 2011), it
is without loss to focus on the recommendation information structure. The informa-
tion design problem can be written as if the seller chooses a price and an incentive-
compatible recommendation information structure simultaneously to maximize his
revenue, i.e.,

sup
p,H,F

p
∫ 1

0
qdH(q), (⋆)

s.t. constraints (IC) and (BP). Notice that our baseline model does not allow the
seller’s price to be contingent on the buyer’s received signal. This applies to the set-
tings where (i) the buyer’s signal is private and the seller cannot design more general
mechanism to elicit the buyer’s private information, or (ii) the seller interacts with
many buyers whose types are independently drawn according to F◦, and he must

8



post a uniform price to all buyers. The alternative setting is briefly discussed in sec-
tion 7.

It is technically convenient to reformulate program (⋆) as a standard monopoly
pricing problem,

sup
p

pD(p),

where D(p) corresponds to the seller’s demand function under optimal information
design; i.e.,

D(p) = sup
H,F

∫ 1

0
qdH(q), (2)

s.t. constraints (IC) and (BP). Therefore, one can solve program (⋆) in two steps. First,
derive the demand function as a solution to information design problem (2) for each
price p, then plug the demand function into the seller’s revenue-maximizing problem
and derive the optimal price.

3 Illustrative Examples

Before moving to the formal analysis, it is illuminating to consider some simple ex-
amples to elaborate the features of the seller’s optimal design.

Uniform Prior. Suppose the buyer’s type is uniformly distributed on [0, 1]. First, as
a benchmark, imagine that the buyer’s type is perfectly disclosed. In this case, if the
price is sufficiently low (p ≤ 1/θ), the buyer consumes exactly the amount to satisfy
her needs (q = θ); otherwise, she consumes nothing (q = 0). Hence, the demand
function is

D(p) =
∫ min{1/p,1}

0
θdθ = min

{
1

2p , 1
2

}
,

which is constant for any p ∈ (0, 1] and unit-elastic for any p ≥ 1. Apparently, the
seller’s maximum revenue under full disclosure is 1/2.

Next, we argue that the seller’s revenue is maximized by the no-disclosure infor-
mation structure. To see why, the buyer chooses q ∈ [0, 1] to maximize her expected
payoff

F◦(q)− pq.

For any q ∈ [0, 1], the buyer’s marginal benefit of consumption

f◦(q) = 1,
9



is weakly greater than her marginal cost as long as p ≤ 1. So q = 1 is incentive
compatible for any p ≤ 1. By setting p = 1, the seller’s revenue is 1, which equals the
gains from trade of the game, and so the optimality follows.9

This example has two noticeable features. First, that information design does not
help the seller under a uniform prior. Under no disclosure, the seller fully exploits
the buyer’s ignorance and extracts all the gains from trade, leaving the buyer with
zero consumer surplus. Second, the buyer will purchase up to the maximum individ-
ually rational consumption. In this case, she knows that she is over-consuming with
probability one. This may sound surprising given that the fundamental feature of the
Bayesian persuasion literature is that the receiver cannot be fooled on average.

Concave Prior. Consider a piece-wise linear and concave prior F◦ such that

F◦(θ) =


3
2 θ if θ ∈ (0, 1

3 ]

1
6 + θ if θ ∈ (1

3 , 2
3 ]

1
2 +

1
2 θ if θ ∈ (2

3 , 1]

.

The corresponding PDF f◦ = F′
◦ is well-defined almost everywhere. We plot the

PDF and CDF in Figure 2. Under no disclosure, the buyer’s marginal benefit f◦(q)
decreases on [0, 1]. If p = 1, the buyer’s optimal purchase quantity is q∗ = 2/3,
and the seller’s profit is 2/3. It is straightforward to verify that no other price yields
a higher profit under this information structure. In this case, the buyer’s consumer
surplus is 1/6.

In this case, information design benefits the seller. We construct a binary-signal in-
formation structure under which the seller’s payoff increases without deviating from
price p = 1. One signal is heavy and leads to a uniform type distribution on [0, 1] such
that FH(θ) = θ, ∀θ ∈ [0, 1]; whereas the other one is light and has a piecewise linear
and concave type CDF such that

FL(θ) =

2θ if θ ∈ (0, 1
3 ]

1
3 + θ if θ ∈ (1

3 , 2
3 ]

.

9It is easy to verify that a similar analysis extends to the case with a convex F◦. Again, suppose that
the seller provides no information and charges price p = 1. The buyer’s marginal benefit is weakly
increasing for any q ∈ [0, 1), and so her optimal purchase is either q = 0 or q = 1. In fact, both options
yield the same payoff, 0. Since we break the tie to favor the seller, the seller’s profit is 1.
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θ11/3 2/3

1

0

F◦

FL
FH

(a) Prior CDF and information design.

θ

f◦(θ)

1/3 2/3 1

1/2

1

3/2

(b) Prior PDF and information design.

Figure 2: We use differential shades to distinguish different signals. Panel (a) visualizes the resulting
CDFs of the prior (thin black) and two posterior distributions (light and dark blue). Panel (b) describes
how to allocate the probability mass of the prior PDF into two signals.

θ

fH(θ)

1/3 2/3 1

1

(a) Posterior PDF when s = H.

θ

fL(θ)

1/3 2/3 1

1

2

(b) Posterior PDF when s = L.

Figure 3: The buyer’s posterior PDF conditional on heavy and light signals respectively.

Two signals are sent with equal probability, i.e., µ(L) = µ(H) = 1/2. It is easy to see
that this is a feasible information structure, i.e., F◦(θ) = 1

2 FL + 1
2 FH(θ), ∀θ, which is

plotted in Figure 2a. For any interval [θ1, θ2] ⊆ [0, 1], one can immediately rewrite the
Bayes-plausible condition as

FH(θ2)− FH(θ1)

2
+

FL(θ2)− FL(θ1)

2
= F◦(θ2)− F◦(θ1).

Intuitively, an information structure specifies how to split the prior probability mass
in this interval according to signals. See Figure 2b for a visualization.

Figure 3 plots the posterior distribution for each signal. If s = H, the posterior be-
lief FH is uniform. As in the previous example, the buyer finds it incentive-compatible
to choose q = 1, but she enjoys zero consumer surplus. If s = L, the posterior is FL
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supported on [0, 2/3], and the buyers’ marginal benefit is

fL(q) =

2 if θ ∈ (0, 1
3 ]

1 if θ ∈ (1
3 , 2

3 ]
.

So it is optimal for the buyer to choose q = 2/3, and her consumer surplus is 1/3.
The above binary information structure has several remarkable features. First,

each signal leads to a demand that is weakly larger than the buyer’s uninformed op-
timal choice, 2/3. The seller’s total revenue is 1/2 × (1 + 2/3) > 2/3, so he benefits
from information design. It will soon become clear that this is the seller’s optimal rev-
enue. Second, upon receiving each signal, the buyer still almost surely overconsume
according to her posterior belief (but may be lower than the maximum individually
rational level). Hence, gains from trade are fully realized as under full disclosure.
Third, the buyer’s expected consumer surplus remains to be 1/6 as under no dis-
closure. In this case, information design increases the seller’s revenue by expanding
the equilibrium realization of gains from trade without affecting the buyer’s welfare.
These properties hold for optimal design in more general settings.

4 Preliminary Analysis

This section establishes a condition on the buyer’s prior under which information
design does not benefit the seller. We begin with a simple observation that the seller’s
profit is bounded above by 1. To see this, note the buyer can always choose q = 0 and
receives a payoff 0. Therefore, regardless of her belief, the buyer’s individually rational
consumption must satisfy

q ≤ 1
p

. (IR)

Since it is strictly suboptimal to consume more than 1, the (IR) constraint will always
be slack if p < 1. We can immediately observe that the seller’s profit is bounded
above by 1, and this profit upper bound will be achieved if and only if the buyer
purchases the maximum individually rational consumption q = 1 (corresponding
to no disclosure) at price p = 1. Under such an allocation, the buyer almost surely
overconsumes and receives a zero payoff. The following proposition identifies that

F◦(q) ≤ q, ∀q ∈ [0, 1], (3)
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q

F◦

1q̂

1

0

Figure 4: Illustration of Proposition 1. If the prior CDF (dashed thick curve) is below the 45-degree
line, the buyer’s payoff is maximized at q = 1. If the prior CDF (solid thick curve) is above the 45-
degree line for some q̂ < 1, then the buyer buys strictly less than 1.

is a sufficient and necessary condition under which some information structure achieves
the seller’s profit supremum.

Proposition 1. The seller’s profit is 1 if and only if condition (3) holds.

Proposition 1 offers a benchmark where information disclosure is unnecessary for
revenue-maximizing. Condition (3) says that the prior CDF F◦ is below the 45-degree
line. The argument is simple. The seller’s maximum profit can be achieved if and only
if the buyer always chooses q = 1 under price p = 1, which can take place only under
no disclosure. In this case, the 45-degree line describes the buyer’s cost, whereas the
prior CDF describes the buyer’s expected benefit, and it is straightforward that q = 1
is a best response to price p = 1 if and only if F◦ is below the 45-degree line (see
Figure 4).

To avoid a trivial case, we assume that condition (3) in Proposition 1 fails, and so
the information design benefits the seller. It is worth mentioning that in our model
full disclosure is never optimal. Formally,

Proposition 2. For any prior CDF F◦ and any price p, a full disclosure is never optimal.

The suboptimality of full disclosure should not be surprising given the misaligned
preferences between the two parties and the seller’s preference is state-independent.
Given full disclosure, the seller can always exaggerate some low types’ needs with
a sufficiently small probability and maintain the buyer’s incentive compatibility to
follow the recommendation.
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In sum, whenever condition (3) in Proposition 1 fails, it is in the seller’s best in-
terest to keep the buyer partially informed. In what follows, we elaborate on the
benefit and cost of information disclosure and derive the form of the seller’s optimal
information structure.

5 Analysis under Concave Prior

This section assumes that the prior CDF F◦ is concave. As we shall show, this case
is sufficient to demonstrate most economic insights without getting into too much
technical complication, and most results can be extended to more general settings.

5.1 No Disclosure Benchmark

To set up the benchmark, we first examine the equilibrium outcome of the bilateral
trade under no disclosure. The buyer’s uninformed problem is

max
q∈[0,1]

F◦(q)− pq.

By the concave prior assumption, the buyer has a decreasing marginal benefit f◦.
Denote

q∗ ≡


0 if f◦(θ) < p, ∀θ

1 if f◦(θ) > p, ∀θ

max{θ ∈ [0, 1]| f◦(θ) = p} otherwise

. (4)

It corresponds to the buyer’s largest incentive-compatible consumption level and the
demand function faced by the seller under no disclosure. If the price is sufficiently
high, the buyer does not consume; if the price is sufficiently low, the buyer chooses
q = 1; otherwise, the buyer’s problem has an interior solution at which her marginal
consumption benefit equals the marginal cost. Moreover, the consumer surplus can
be written as ∫ q∗

0
[ f◦(θ)− p]dθ. (5)

By the standard argument, the buyer’s optimal choice q∗ and her consumer surplus
weakly decreases in p. In this case, the seller’s optimal price must maximize his
revenue pq∗, denote p∗◦ and q∗◦ as the optimal price and the corresponding optimal
choice of quantity, respectively.
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In the rest of this section, we drive the seller’s revenue-maximizing information
structure and price. To do so, we divide the optimal design problem into two parts
and solve them sequentially. First, given a price p, we study a demand-maximizing
information design problem (sections 5.2) with a value function to be the seller’s de-
mand D(p). Second, given the optimal demand function D(p), the seller chooses an
optimal price to maximize his revenue pD(p) (section 5.3).

5.2 Demand-Maximizing Information Design

To begin with, we characterize the buyer’s behavior under a demand-maximizing in-
formation structure.10 The following lemma identifies a sufficient and necessary con-
dition under which the demand-maximizing information structure always induces
the buyer to overconsume.

Lemma 1. Fix a price p > 0. Under a demand-maximizing information structure (H, F),

Fq(q) = 1, (6)

holds almost surely (except for a set of consumption quantities being recommended with zero
probability) if and only if p ≤ 1.

Condition 6 says that the buyer’s posterior belief never puts positive probability
beyond the recommended consumption q. Therefore, if the buyer always follows the
recommendation, she must overconsume, regardless of her type. Lemma 1 claims
that under a demand-maximizing information structure, condition 6 holds almost
surely if and only if p ≤ 1. Lemma 1 also suggests a natural way to break the study
of demand-maximizing information design into two cases, depending on whether
p ≤ 1. The argument for Lemma 1 is intuitive, so we present the proof sketch here.

Necessity. When p > 1, the individually rational constraint (IR) for buyer types
θ ∈ (1/p, 1] is binding regardless of the buyer’s posterior, and so these buyer types
won’t overconsume under any information structure.

Sufficiency. For the sake of contradiction, suppose that p ≤ 1 and condition (6)
fails for a set of consumption being recommended with positive probability. We will

10Our demand-maximizing information design problem shares some similarities to the market seg-
mentation problem in Bergemann et al. (2015). In their setting, the revenue-maximizing seller is per-
suaded to choose a continuous action — price; whereas in our setting, the utility-maximizing buyer is
persuaded to choose a continuous action — consumption.
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construct a more informative information structure that strictly increases the seller’s
demand. The construction is simple and goes as follows. Imagine that upon receiving
a recommendation q, the buyer forms a posterior belief such that Fq(q) < 1 and she
finds the recommendation to be incentive compatible. We can further refine Fq using a
cutoff disclosure with threshold q without modifying posterior associated with other
signals. When signal q is supposed to be sent, one instead sends qL if θ ≤ q and
discloses the true state θ if θ > q. When the buyer receives qL, she still wants to
choose q because her posterior belief FqL = Fq(θ)/Fq(q) for θ ∈ [0, q], which is denser
than Fq, thus her marginal benefit of purchase has been increased. When the buyer
receives recommendation θ, she observes the true state and her consumption equals
to θ, which is higher than q. Overall, the buyer’s expect level of consumption must
be greater than q.

5.2.1 Information Design when p ≤ 1

The following proposition characterizes the demand-maximizing information struc-
ture when p ∈ (0, 1].

Proposition 3. Suppose that F◦ is concave and p ∈ (0, 1]. The seller’s demand is maximized
by (H∗, F∗) such that

H∗(q) =


0 if q < q∗

f◦(q∗)− f◦(q)
p if q∗ ≤ q < 1

1 if q = 1

, (7)

where q∗ is the buyer’s optimal uninformed consumption defined in (4). For each recommen-
dation signal q ∈ [q∗, 1], the buyer posterior belief is supported on [0, q] and such that

Fq(θ) ≤ 1 − pq + pθ, ∀θ ∈ [0, q]. (8)

and the equality holds for θ ∈ {q∗, q}. The buyer’s ex ante consumer surplus is equal to the
one under no disclosure given by equation (5).

Proposition 3 provides a closed-form solution to the demand-maximizing infor-
mation design problem, generalizing the insights from the concave prior example in
Section 3. Figure 5a shows the probability distribution of consumption recommen-
dations, as described by equation (7): the buyer will receive consumption recom-
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(b) An example of posterior PDF conditional on q

Figure 5: Optimal Information Structure when p ∈ (0, 1]

mendation 1 with probability f◦(1)/p, and recommendation q ∈ [q∗, 1) according to
probability density − f ′◦(q)/p. The optimal information structure (H∗, F∗) never al-
ways recommends the buyer to purchase less than q∗, leading to a greater demand
than no disclosure. Therefore, we obtain the first implication of Proposition 3: that is,
information design benefits the seller under concave prior

To see why (H∗, F∗) is incentive compatible, note that for each signal q, the buyer’s
posterior support is bounded by q; i.e., Fq(q) = 1. Hence

Fq(q)− pq = 1 − pq ≥ Fq(q̂)− pq̂, ∀q̂ ≤ q,

where the inequality holds due to expression (8). So the buyer has no incentive to
consume less than the recommended consumption q. Moreover, any consumption
greater than q is strictly dominated, and so the buyer’s incentive compatibility fol-
lows. This leads us to the second implication of Proposition 3: because each recom-
mendation signal persuades the buyer to consumes up to the upper bound of her
posterior distribution support, the buyer is overconsuming almost surely.

In general, there are multiple posterior beliefs F∗ satisfying conditions (BP) and
(8). A quick example is for each recommendation q ∈ [q∗, 1), the posterior has a
well-defined PDF such that

f ∗q (θ) =

p + 1−pq
F◦(q∗)−pq∗ ( f◦(θ)− p) if θ ∈ [0, q∗)

p if θ ∈ [q∗, q]
, (9)
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which is plotted in Figure 5b. It can be verified that the pair (H∗, F∗) satisfies con-
dition (BP), making it a valid information structure (see Appendix B for details). To
understand the incentive compatibility of this construction, notice that f ∗q (·) corre-
sponds to the buyer’s marginal benefit of consumption, and in this example, it is
weakly greater than the marginal cost p if and only if q̂ ≤ q. By the standard argu-
ment, the buyer finds it optimal to follow the recommendation to consume q. Intu-
itively, the information structure is designed such that each recommendation signal q
persuades the buyer to increase her consumption from the optimal uninformed con-
sumption q∗ to q. The optimal design does so by ensuring the buyer’s marginal ben-
efit equals her marginal cost at any point between q∗ and q. This point-wise equality
ensures the buyer’s consumer surplus being constant by choosing any consumption
in [q∗, q]. This is by no mean general. What matters for the optimality is that the buyer
receives the same consumer surplus by consuming q∗ and q.

The last implication of Proposition 3 is about the welfare consequence of informa-
tion design. For each recommendation signal q, the buyer’s consumer surplus is

∫ q∗

0
[ fq(θ)− p]dθ = Fq(q∗)− pq∗,

because she is indifferent between choosing q∗ and q. By condition (BP), the buyer’s
ex-ante consumer surplus under (H∗, F∗) is

∫ 1

0
Fq(q∗)dH(q)− pq∗ = F◦(q∗)− pq∗,

which is identical to her consumer surplus under no disclosure given by expression
(5). In other words, the benefit of designing information for the seller comes from
enlarging the gains from trade without affecting the buyer’s welfare. This property
can be intuitive seen from Figure 5b where the buyer’s marginal benefit fq(·) is equal
to the marginal cost p in the interval [q∗, q], leaving the buyer a zero surplus gain by
increasing her consumption from q∗ to q.

On The Form of (H∗, F∗). The rigorous proof of Proposition 3 is relegated to the
Appendix. The rest of this section provides some heuristic geometry intuition to
understand the construction and the optimality of (H∗, F∗). We find it easy to provide
intuition in a “discretized” problem where (i) the prior PDF f◦ is a decreasing step
function characterized by a sequence of discontinuous points {θi}n

i=0 such that θ◦ =
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Figure 6: Illustrating the Construction of Optimal Information Structure in Step i

0, θn = 1 and f◦ is constant in any [θi, θi+1), and (ii) the buyer’s choice set is q ∈
{θi}n

i=0. See an example in Figure 6a. Our original problem can be approximated by
a discretized problem with sufficiently many steps prior PDF. For simplicity, assume
that f◦(θm+1) = p, so the buyer’s uninformed optimal choice is q∗ = θm+1. The
objective of information design is to maximize the seller’s demand

n

∑
i=0

τ(θi)θi,

where τ(θi) corresponds to the probability of recommending q = θi where τ(θi) cor-
responds to the probability of recommending q = θi. In this case, the optimal (H∗, F∗)

makes consumption recommendation q = 1 with probability τ∗(1) = f◦(1)/p, q = θi

with probability

τ∗(θi) =
1
p
[ f◦(θi)− f◦(θi+1)], (10)

for each i ∈ {m + 1, ..., n}, and τ∗(θi) = 0, ∀i ≤ n. We claim that (H∗, F∗) can be ob-
tained by splitting the prior probability mass by recommendation signals step by step
following a greedy algorithm. First, we maximize the probability of recommending
q = θn = 1 subject to the buyer’s incentive compatibility. Next, given the remaining
probability mass of the prior, we maximize the probability of recommending q = θn−1

subject to the buyer’s incentive compatibility, and so on.
To begin with, we assign a mass of f◦(1) to the probability of recommending q = 1,

such that the buyer’s type is uniformly distributed on [0, 1], as shown in the dark blue
area in Figure 6a. Without further action, the buyer holds a uniform posterior belief
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over θ ∈ [0, 1], and she will prefer to follow the consumption recommendation q = 1
based on the standard marginal benefit-and-cost calculation. On top of that, we inject
some probability mass of low buyer types θ ∈ [0, θn−1] (there is no mass left for buyer
types greater than θn−1) to increase the probability of recommending q = 1. Natu-
rally, adding a mass of low buyer types will dilute the fraction of high buyer types in
the resulting posterior distribution. To maintain the buyer’s incentive to consume up
to level q = 1, the maximum mass fraction of low buyer types being injected is 1 − p
so that the resulting posterior PDF (and the buyer’s expected marginal benefit of con-
sumption) f1(θ) ≥ p, ∀θ ∈ [0, 1]. Obviously, the type distribution of the injected mass
is irrelevant for maintaining the buyer’s incentive compatibility as long as the total
mass is bounded by (1/p − 1) f◦(1). For optimality, we choose to use the types sup-
ported on [0, θm] according to the type distribution [ f◦(θ)− p]/[F(θm)− pθm] (corre-
sponding to a proportion of the light blue area in Figures 6a with identical population
structure). The resulting posterior PDF is in Figure 6b.

The same procedure is then applied to construct the probability of recommending
q = θn−1, θn−2, ..., θm+1 in decreasing order. For each θi, we first assign a mass of
[ f◦(θi)− f◦(θi+1)]θi to the probability of recommending q = θi such that the buyer’s
type is uniformly distributed on [0, θi]. Then we add a mass of (1 − 1/pθi)[ f◦(θi)−
f◦(θi+1)]θi according to distribution [ f◦(θ)− p]/[F(θm)− pθm] supported on [0, θm].
Because

n−1

∑
i=m+1

f◦(θi)− f◦(θi+1)

p
+

f◦(1)
p

=
f◦(θm+1)

p
= 1,

the total mass of the prior will be exhausted in n − m + 1 steps.11

Intuitively, a smooth prior PDF can be approximated by a step function with suf-
ficiently many steps. As the number of steps of the function goes to infinity, each
step gets arbitrarily short. At the limit, the buyer’s choice set {θi} becomes arbitrarily
rich, so the buyer’s choice is arbitrarily closed to the one when her choice set is [0, 1].
Also, the cumulative probability ∑θi∈{q∗,...,q} τ∗(θi) converges to [ f◦(q∗)− f◦(q)]/p =

H∗(q). At q = 1, the mass point point of recommendation q = 1 remains to be f◦(1)/p
as in Figure 5b.

11One may notice that the above demonstration has the flavor of the one in Bergemann et al. (2015)
in that the designer segments the buyers iteratively into different posteriors (or “market segments”
in Bergemann et al. (2015)). In Bergemann et al. (2015), for each market segment, the seller is barely
incentivized to keep the price low. In our paper, for each posterior, the buyer is barely incentivized to
keep the purchasing quantity high. Our formal proof, however, takes a different approach by showing
that every information structure which yields a seller revenue high than (H, F) does shall break (BP).
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Figure 7: Illustrating the Optimality of Greedy Algorithm Construction

What remains is to understand why one cannot generate a larger demand than
the greedy algorithm construction. For example, it might seem reasonable to modify
the greedy construction by increasing the probability of recommending θi while de-
creasing the probability of recommending θi+j > θi, in the hope of achieving higher
demand. In what follows, we use an example to demonstrate why this approach
cannot increase the demand.

To illustrate this point, let’s consider a deviation in the first two steps of the greedy
algorithm construction. We set τ(1) = 0 and start by maximizing τ(θn−1). As a
result, there will be a loss in demand equal to τ∗(1) = f◦(1)/p because q = 1 will
no longer be recommended. On the other hand, what would be the demand gains
if we increase the probability of recommending q = θn−1? It can be calculated as
θn−1 f◦(1)/p, which is less than the demand loss.

In order to ensure buyer’s incentive compatibility, we ensure that the posterior
PDF is greater than p in [0, q], resembling Figure 7b. The relative fraction of areas A
and C is pθn−1, so the fraction of areas B and D must be 1 − pθn−1. Hence, the total
probability of recommending q = θn−1 must be the mass of areas A and C divided by
pθn−1. In other words, the demand for recommending q = θn−1 is given by:

{
[ f◦(θn−1)− f◦(1)]θn−1︸ ︷︷ ︸

mass of C

+ f◦(1)θn−1︸ ︷︷ ︸
mass of A

} 1
pθn−1

θn−1 = τ∗(θn−1)θn−1 + f◦(1)θn−1/p.

Therefore, the demand gains from this deviation amount to f◦(1)θn−1/p, which is
strictly lower than the demand loss. Hence, we conclude such a deviation is subopti-
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mal.
This example further highlights the fundamental difference between our informa-

tion design problem and models where agents’ payoffs only depends on the posterior
mean. When constructing an alternative posterior belief for signal θn−1, adding mass
to high buyer types (area B) does not prove to be more effective than adding mass
to low buyer types (area A) in satisfying the buyer’s obedient constraint. The key
factor in persuading the buyer to consume q lies in increasing the value of Fq(q) =∫ q

0 fq(θ)dθ, rather than the conditional expectation given the signal q. Therefore,
adding mass to high buyer types (area B) holds no advantage over adding mass to
low buyer types (area D) when it comes to convincing the buyer to choose q.

5.2.2 Information Design when p > 1

Now we move to the case where p > 1 and the individual rationality constraint (IR)
restricts the high-type buyer from fulfilling her needs. Specifically, the buyer will
never purchase more than 1/p units of the good, regardless of her belief, making
it impossible to fully realize the gains from trade through information design. That
is to say, the graph of the prior CDF F◦ is “truncated” by θ = 1/p. The complete-
information choice of the buyer with type θ ≥ 1/p is 0. Therefore, it is revenue-
equivalent to treat the mass of these types as the one of type-0, and the effective prior
CDF becomes

F̊(θ) =

F◦(θ) + 1 − F◦
(

1
p

)
if θ ∈ [0, 1

p )

1 if θ ≥ 1
p

.

The following lemma is intuitive.

Lemma 2. Fix p > 1. Suppose information structure (H, F) maximizes the seller’s demand
when the prior is F◦. In that case, there exists an information structure (H, F̃) maximizing
the seller’s demand when the prior is F̊, and vice versa.

Lemma 2 says that the seller finds it optimal to make consumption recommenda-
tions according to H, under both prior F◦ and F̊ and obtain the same payoff despite
having different posterior distributions. Armed with Lemma 2, one can analyze the
demand-maximizing information structure as in the case with p ≤ 1. The following
proposition derives a demand-maximizing information structure.
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Proposition 4. Suppose that F◦ is concave and p > 1. The seller’s demand is maximized by
a recommendation information structure (H∗, F∗) such that

H∗(q) =


0 if q < q∗

f◦(q∗)− f◦(q)
p if q∗ ≤ q < 1

p

1 if q = 1
p

, (11)

where q∗ is defined by equation (4), and for each q ∈ [q∗, 1/p], the buyer’s posterior belief is
supported on [0, q] ∪ [1/p, 1] and the buyer is indifferent in q̂ ∈ {q∗, q} which are weakly
preferred to any q̂ ∈ (q∗, q).

The buyer with type θ > 1/p receives a consumption recommendation q ∈ [q∗, 1/p]
and therefore will underconsume q < θ. However, the buyer with type θ ≤ 1/p, ac-
cording to Proposition 4, will still overconsume almost surely. Interestingly, under
complete information, the buyer will satisfy her needs if and only if θ ≤ 1/p. So
when p > 1, although the demand-maximizing information structure cannot fully re-
alize gains from trade, it does realize the same gains from trade as the full disclosure
policy.

As in the previous case, there are multiple incentive-compatible and Bayes-plausible
F∗ being consistent with H∗. One example is that for each q ∈ [q∗, 1/p], the posterior
satisfies F∗

q (q) = 1 and has a well-defined PDF such that

f ∗q (θ) =

p +
F◦( 1

p )−pq
F◦(q∗)−pq∗ ( f◦(θ)− p) if θ ∈ [0, q∗)

p if θ ∈ [q∗, q]
. (12)

This information structure is incentive compatible because for each recommendation
q, the buyer’s marginal benefit of consumption f ∗q is weakly greater than the price
p for any q̂ ∈ [0, q]. Moreover, the buyer is indifferent in q̂ ∈ [q∗, q], implying the
consumer search under (H∗, F∗) equals the one under no disclosure as in the previous
case.

5.3 Optimal Pricing

This section studies the seller’s optimal pricing. We begin with deriving the seller’s
revenue under the optimal information structure for each price p > 0. By equation
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(7), the seller’s demand function for p ≤ 1 is

D(p) = EH∗
[q] =

1
p

[ ∫ 1

q∗
(− f ′◦(q))qdq + f◦(1)

]
, ∀p ∈ (0, 1], (13)

where the expectation is taken over consumption recommendation q according to
CDF H∗. The seller’s revenue, by applying integration by parts, can be expressed as

π(p) ≡ pD(p) = 1 −
∫ q∗

0
[ f◦(q)− p]dq, (14)

which corresponds to the gray area below min{ f◦(θ), p} in Figure 8a. Equation (14)
says that the seller’s revenue equals the fully realized gains from trade of the game,
minuses the buyer’s ex-ante consumer surplus under no disclosure. As discussed in
section 5.2, the buyer overconsumes almost surely under optimal information struc-
ture, so the game’s gains from trade are fully realized. Also, the buyer’s expected
payoff equals the one under no disclosure. Hence, the seller benefits from optimal in-
formation design by fully exploiting the enlarged gains from trade without affecting
the buyer’s welfare.

f◦

p CS

θ
1/p1q∗

(a) revenue when p ≤ 1

f◦

p CS

θ
1/p 1q∗

(b) revenue when p > 1

Figure 8: revenue (gray area) and consumer surplus (CS)

Evidently, π(p) is strictly increasing on (0, 1] since q∗ strictly decreases.12 The eco-
nomics is simple. First, increasing the price does not affect the equilibrium realized
gains from trade as long as p < 1 because the buyer always overconsumes under
the corresponding optimal information structure. Second, increasing the price low-

12Precisely, denote the supremum of supp(F◦) as θ̄, even if θ̄ ̸= 1, a similar analysis shows that π(p)
is strictly increasing on (0, 1/θ̄], and the optimal price is bounded below by 1/θ̄.
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ers the buyer’s optimal uninformed consumption and her consumer surplus. To see
this, notice that the buyer’s optimal uninformed consumption q∗ satisfies

f◦(q∗) = p.

Because the marginal benefit is diminishing under concave prior, q∗ decreases in p
by the standard implicit function theorem argument, then it is immediately that the
buyer’s consumer surplus decreases in p under no disclosure, as well as under the
corresponding demand-maximizing information structure. So the seller’s optimal
price cannot be lower than 1.

When p ≥ 1, the buyers’ individual rationality prevents them from consuming
q > 1/p, and so H∗ is supported on [q∗, 1/p]. The seller’s revenue is

π(p) = F◦
( 1

p

)
−

∫ q∗

0
[ f◦(q)− p]dq, (15)

which corresponds to the gray area in Figure 8b. In this case, the realized gains from
trade are F◦(1/p) since the buyer types θ ∈ (1/p, 1] cannot receive the reward. More-
over, the buyer’s consumer surplus remains the one under no disclosure. Interest-
ingly, the seller’s revenue may not be monotone in the price when p > 1. This is
because increasing p expands the range of consumption recommendations (by low-
ering q∗) but lowers the upper bound of the buyer’s consumption 1/p. The first effect
raises the seller’s revenue, whereas the second reduces it. Therefore, the seller faces a
trade-off between enlarging and extracting the realized gains from trade.

Remarkably, any price p > f◦(0) is strictly dominated. This is because when p >

f◦(0), increasing p can only lower the realized gains from trade without extracting
more consumer surplus. We summarize the above discussion as follows.

Lemma 3. The seller’s optimal price belongs to [1, f◦(0)].13

Therefore, the seller’s pricing problem is maxp∈[1, f◦(0)] π(p), where the objective
function π(p) is given by equation (15). The optimal price can be characterized by
the standard Kuhn–Tucker theorem (see Theorem M.K.2 of Mas-Colell et al. (1995)).
The following proposition characterizes the seller’s optimal “interior” price.

13Notice that f◦(0) ≥ 1 because f◦ is a decreasing PDF.
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Proposition 5. Suppose that F◦ is concave. If the optimal price is p∗ ∈ (1, f◦(0)), then it
must satisfy the following first-order condition (FOC),

f−1
◦ (p) =

1
p2 f◦

( 1
p

)
, (FOC)

and the gains from trade of the game are not fully realized.

Proposition 5 offers a simple closed-form characterization of the optimal price
when information is designed to facilitate monopoly pricing. We give a numerical
example where the interior optimal price is solved as the unique solution to condition
(FOC).

Example 1. Suppose that f◦(θ) = 2(1 − θ). By formula (15), the seller’s revenue is

π(p) =
2
p
− 1

p2 − 4 − 4p + p2

4
,

which is right continuous and increasing at p = 1, thus p = 1 is suboptimal. Then the
FOC with respect to p is − 2

p2 +
2
p3 + 1 − p

2 = 0, which exactly matches (FOC). The only
solution in [1,+∞) is an interior solution which is also the unique optimal price: p∗ = 2. As
a comparison, the uninformed demand q∗ = 1 − p/2, and so the seller’s optimal price under
no disclosure is 1/2 = p∗◦ < p∗.14

We end this section by briefly discussing a corner solution. In our problem, two
conflicting forces are jointly determining the equilibrium allocation. First, the tradi-
tional monopoly pricing logic incentivizes the seller to supply insufficiently to raise
the price. Second, the seller’s optimal information structure persuades the buyer to
overconsume. We can derive a simple condition under which the information design
force offsets the traditional monopoly-pricing withholding inefficiency, fully realizing
the gains from trade.

Corollary 1. If

f−1
◦ (p) <

1
p2 f◦

( 1
p

)
, ∀p ∈ [1, f◦(0)], (16)

then the seller’s optimal price is p = 1, and the gains from trades of are fully realized.

14The price rank is by no mean general. Whether the monopoly price is higher under optimal infor-
mation design depends on the form of the prior distribution.
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Corollary 1 sharply contrasts the common wisdom in textbook models of monopoly
pricing without information design, claiming that monopoly allocation often causes a
deadweight loss due to insufficient supply (see, e.g., chapter 12.B of Mas-Colell et al.
(1995)). The monopolist in our setting induces the buyer to overconsume rather than
underconsume. We provide a numerical example where condition (16) holds.

Example 2. Suppose that f◦(θ) = 1.5 − θ. By formula (15), the seller’s revenue is

π(p) =
2 − (p − 3

2 +
1
p )

2

2
.

Note that the FOC with respect to p is −(p − 3
2 + 1

p )(1 − 1
p2 ) = 0, which exactly matches

(FOC). The value of the left-hand side of the FOC is strictly larger than 0 when p > 1, thus
the unique optimal price is p = 1.

Notice that our model implicitly rules out any social cost caused by the buyer’s
overconsumption. Two caveats of this implicit assumption deserve some attention.
The first one is the cost of production. We trivialize the production decision by setting
the seller’s marginal cost to zero. This assumption enables us to focus on a pure-
exchange economy and allocation efficiency. If, instead, the seller’s marginal cost is
strictly positive, then overconsumption obviously leads to social waste.15 The second
one is that the buyer may suffer from some adverse effects of overconsumption. For
tractability, we assume the buyer’s payoff is constant for any q ∈ [θ, 1]. For some
applications, it may be more realistic to believe the buyer’s payoff to decrease for
q ≥ θ. Then the overconsumption induced by the monopolist will certainly cause
social loss. We will briefly discuss such a model in section 7.

6 Analysis under General Prior

Now we proceed to solve the seller’s problem under an arbitrary prior supported on
[0, 1], and show that the economics being discussed in the previous section is robust
in more general settings. The idea is first to construct an auxiliary problem with a
concave prior F̂◦ and then show that the solution to the auxiliary problem solves the
seller’s original problem.

15When the marginal cost is positive but constant, the seller’s design problem is unchanged since (i)
the cost is irrelevant to the buyer’s decision and (ii) the objective of information design is to maximize
the demand. What matters is the choice of optimal price, which solves max(p − c)D(p).
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To set up the auxiliary problem, we define the corresponding concave distribution
of an arbitrary prior. For each prior F◦, define F̂◦ as the upper convex closure of F◦;
i.e.,

F̂◦(θ) ≡ sup{z|(θ, z) ∈ co(F◦) : θ ∈ [0, 1]}, ∀θ, (17)

where co(F◦) denotes the convex hull of the graph of F. Then the following lemma
is straightforward given the definition of F̂◦. It is the cornerstone of the rest of the
argument in this section.

Lemma 4. Suppose that F̂◦ is defined as in (17) for an arbitrary prior F◦. Then

1. F̂◦(0) = 0, F̂◦(1) = 1 and F̂◦ is increasing and right-continuous.

2. F̂◦ is concave and F̂◦ ≥ F◦, ∀θ. Moreover, for any concave CDF F supported on [0, 1],

F ≥ F◦, ∀θ ⇒ F ≥ F̂◦, ∀θ.

3. f̂◦ = F̂′
◦ is well-defined almost everywhere and weakly decreasing.

Lemma 4 makes three statements. First, F̂◦ is a concave CDF supported on [0, 1].
Second, F̂◦ is the lowest concave distribution which is first-order stochastically dom-
inated by F◦. Third, F̂◦ has a well-defined PDF f̂◦ almost everywhere, which is non-
increasing. The first two points are self-evident given the definition of F̂◦. The third
one deserves more discussion. By construction, F̂◦ is concave, so it is differentiable
almost everywhere. Its derivative f̂◦ decreases due to the concavity of F̂◦. As in My-
erson (1981), the concavification of CDF F◦ implies an ironing of the corresponding
PDF f◦. That is, f̂◦(θ) is flat in the set of θ such that F̂◦(θ) > F◦(θ). See Figure 9
for visualizing prior CDF concavification and the corresponding ironing of the prior
PDF. Notice that, we must have∫

θ: f◦(θ) ̸= f̂◦(θ)
[ f◦(θ)− f̂◦(θ)]dθ = 0, (18)

because both f◦ and f̂◦ are PDFs. That is, in the set of θ where f being “ironed” (e.g.,
[q, q̄] in Figure 9b), the area below f and f̂ must be identical.

6.1 Buyer’s Uninformed Optimal Choice

To see how the concavified prior F̂◦ helps our analysis, we begin with the buyer’s
optimal choice under no disclosure.
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Figure 9: Illustrating the Prior CDF Concavification and PDF Ironing

Lemma 5. Under no disclosure, the buyer’s uninformed optimal consumption satisfies

q∗ ≡


0 if f̂◦(θ) < p, ∀θ

1 if f̂◦(θ) > p, ∀θ

max{θ ∈ [0, 1]| f̂◦(θ) = p} otherwise

. (19)

Lemma 5 implies that the relevant marginal benefit for the buyer’s optimal un-
informed decision is the ironed PDF, f̂◦, instead of the buyer’s marginal benefit of
consumption, f◦. To see the intuition, consider the example in Figure 9b. If the price
p ∈ [p, p̄], the buyer’s marginal consumption benefit equals the marginal cost at mul-
tiple consumption levels {q1, q2, q3}, but not all of them are optimal. Apparently, it
is strictly suboptimal to choose q2 at which f◦(q) = p and f ′◦(q) > 0 (the gray dot
in Figure 9b) because the buyer can always strictly improves her payoff by slightly
increasing the consumption, so we end up with {q1, q3} (black dots in Figure 9b).
Lemma 5 says that it is optimal to choose the q1 if and only if the price is above f◦(q).
To see the intuition, it is sufficient to examine the change in the buyer’s expected pay-
off by increasing her consumption from q1 to q3. When p ≤ f◦(q), it is intuitive from
the Figure 9b to see

∫ q2

q1

[ f◦(θ)− p]dθ︸ ︷︷ ︸
(−)

+
∫ q3

q2

[ f◦(θ)− p]dθ︸ ︷︷ ︸
(+)

≥
∫ q̄

q
[ f◦(θ)− f̂◦(θ)]dθ︸ ︷︷ ︸

0

,

by equation (18). That is, the buyer suffers from payoff loss by increasing consump-
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tion from q1 to q2. However, the loss will be compensated by the payoff gain by
further increasing consumption from q2 to q3. The overall payoff change is positive
because the price is sufficiently low. When p ≥ f◦(q), the argument is symmetric
except that the inequality will take the opposite direction.

6.2 Demand-Maximizing Information Design

We begin characterizing the information design for an exogenously given price as in
previous sections. The following proposition derives the seller’s demand-maximizing
information structure when p ≤ 1. The seller’s optimum is achieved as if maximizing
the demand in an auxiliary problem where the prior is F̂◦.

Proposition 6. Suppose that condition (3) fails and p ∈ (0, 1]. The seller’s expected payoff
is maximized by (H∗, F∗) such that

H∗(q) =


0 if q < q∗

f̂◦(q∗)− f̂◦(q)
p if q∗ ≤ q < 1

1 if q = 1

, (20)

where q∗ satisfies (19), and for each consumption recommendation q ∈ [q∗, 1], the buyer type
distribution is such that

F∗
q (θ) ≤ 1 − pq + pθ, ∀θ ∈ [0, q], (21)

where the equality must hold at θ ∈ {q∗, q}.

Proposition 6 states that in the optimal information structure, the distribution H
for consumption recommendations is solved as if the prior distribution were F̂◦. This
means that, as before, the buyer will never be advised to choose q < q∗. Additionally,
any q belonging to the set q̂ : F̂◦(q̂) > F◦(q̂) will not be recommended either because
the corresponding f̂◦ is constant. Inequality (21) ensures the buyer’s incentive com-
patibility, similar to the concave-prior case.

However, unlike in the concave-prior case , we cannot construct an optimal infor-
mation structure such that the buyer’s obedient constraint (21) is be binding for the
entire interval [q∗, q] given each signal q (recall the posterior in equation (9)). In par-
ticular, when dealing with an auxiliary problem with a concave prior F̂◦ (as described
in Proposition 3), we can follow the previous procedure and the resulting solution
specifies a set of posteriors such that, for each recommendation q, the posterior PDF
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Figure 10: Optimal information structure when p ∈ (0, 1] under general prior

is equal to p on [q∗, q], resulting in the buyer being indifferent to any choice within
this interval. Unfortunately, this policy does not satisfy the Bayes plausible constraint
for the original problem. In order to rectify this, as shown in Figure 10b, some curva-
ture needs to be introduced to the posterior PDF fq on [q∗, q] to counteract the effect
of prior convexification. A quick example of F∗ is that for each q, the buyer’s prior
has a well-defined PDF such that

f ∗q (θ) =


p + (1 − pq) f◦(θ)−p

F◦(q∗)−pq∗ if θ ∈ [0, q∗)

p · f◦(θ)
f̂◦(θ)

ds if θ ∈ [q∗, q]

0 if θ ∈ (q, 1]

.

Now we consider the case where p > 1. In this case, the seller’s problem is more
complex. As before, the buyer’s individually rational constraint (IR) prevents buyers
from consuming more than 1/p units. What matters for information design is the
shape of the prior CDF for θ ∈ [0, 1/p]. Therefore, we define the “truncated prior
CDF” as Fp : [0, 1/p] → [0, 1] s.t. Fp(θ) = F◦(θ), ∀θ ∈ [0, 1/p], and adjust the concav-
ification of the prior CDF as follows.

F̂p(θ) ≡

sup
{

z|(θ, z) ∈ co(Fp)
}

if θ ∈ [0, 1
p ]

F◦(θ) if θ ∈ ( 1
p , 1]

, (22)

Whenever it is well-defined, let f̂ p = F̂p′. See Figure 11 for a graphic demonstration
of the construction of F̂p and f̂ p.
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prior Fp and f p respectively, whereas the dashed curves correspond to F̂p and f̂ p.

Proposition 7. Suppose that condition 3 fails and p > 1. The seller’s expected payoff is
maximized by an information structure (H∗, F∗) such that

H∗(q) =


0 if q < q∗

f̂ p(q∗)− f̂ p(q)
p if q∗ ≤ q < 1

p

1 if q = 1
p

, (23)

where q∗ is the buyer’s uninformed optimal consumption given by expression (19).

The intuition of Proposition 7 is similar to Proposition 4. Due to constraint (IR),
the buyer will never purchase more than 1/p units of the good. Thus it is revenue-
equivalent to treat the mass of types {θ : θ ≥ 1/p} as the one of type-0, and the
effective prior CDF becomes F̊. By Proposition 4, purchase outcome H∗ characterized
by (23) maximizes seller profit when the prior is ˚̂Fp, where

˚̂Fp =

F̂p(θ) + 1 − F̂p
(

1
p

)
if θ ∈ [0, 1

p )

1 if θ ≥ 1
p

.

Then by Proposition 6, H∗ maximizes seller revenue16 when the prior is F̊. Lastly, by
Lemma 2, H∗ maximizes seller revenue when the prior is F◦.

Finally, we are ready to characterize the seller’s optimal pricing. By condition (20)

16Here we ignore the prerequisite p ≤ 1 in Proposition 6, since (IR) never binds under prior F̂.

32



and (23), the seller’s expected demand is

D(p) = EH∗
[q] =


1
p

[ ∫ 1
q∗(− f̂ ′◦(q))qdq + f◦(1)

]
if p ∈ (0, 1]

1
p

[ ∫ 1
p

q∗(− f̂ ′p(q))qdq + f◦( 1
p )
]

if p > 1
,

where the expectation is taken over q according to CDF H∗. The seller’s revenue, by
applying integration by parts (for more details see the proof of Proposition 8), can be
expressed as

π(p) ≡ pD(p) =

1 −
∫ q∗

0 [ f̂◦(q)− p]dq if p ∈ (0, 1]

F̂p( 1
p )−

∫ q∗

0 [ f̂ p(q)− p]dq if p > 1
. (24)

By the same argument of Lemma 3, π(p) is strictly increasing on (0, 1] since q∗ strictly
decreases in p. Thus any price strictly below 1 is not revenue maximizing. Similarly,
the optimal price is bounded above by a price p̄ such that p̄ = f̂ p̄(0), note that f̂ p(·) →
f◦(·) as p → f◦(0) from the right, thus p̄ = f◦(0). As in Section 5.3, the seller’s pricing
problem is

max
p∈[1, f◦(0)]

{
F̂p(

1
p
)−

∫ q∗

0
[ f̂ p(q)− p]dq

}
. (25)

Proposition 8. If the seller’s optimal price is p ∈ (1, f◦(0)), then it must satisfy the interior
FOC

f̂−1
◦ (p) =

1
p2 f◦

( 1
p

)
. (26)

Proposition 8 is a generalization of Proposition 5 and has almost identical eco-
nomics behind. The only highlight of Proposition 8 is that the FOC condition (26)
depends on the prior PDF f◦ and its ironing f̂◦ rather than f̂ p. Therefore, despite
the information design process under the hood, the seller is simply facing a classical
downward sloping demand curve which can be pinned down directly using primi-
tives ( f◦ and f̂◦), and (26) capture’s the condition under which the price elasticity of
demand equals to 1. To see this, note that an interior solution to programming (24)
must satisfy the following FOC

d(F̂p( 1
p ))

dp︸ ︷︷ ︸
profit gain

−
d(
∫ q∗

0 ( f̂ p(s)− p)ds)
dp︸ ︷︷ ︸

profit loss

= 0. (27)

33



f◦

f̂ p B

A

C

p

1/p
θ

1

(a) equivalent representation of profit

f◦

dp

d(1/p)

gain
loss

θ
1

(b) profit gain/loss due to price change

Figure 12: Illustrating the Prior CDF Concavification and PDF Ironing

For a price increment dp, the first term on the left-hand side of equation (27) captures
the increase in profit due to the expansion in the range of consumption recommenda-
tion, and the second term captures the profit loss due to the decrease in upper bound
of individual buyer’s consumption.

In what follows, we explain that for every price p > 1, (i) F̂p(θ) = F̂◦(θ) for

every θ ∈ [0, q∗], and (ii)
d(F̂p( 1

p ))

dp =
d(F◦( 1

p ))

dp , then equation (27) can be simplified into
equation (26). To start with, the profit gain is illustrated by the blue area in Figure
12b. The underlining logic is that a price increment does not affect f̂ p on [0, q∗] (note
that q∗ is conditional on p and decreases as p increases). To see this, note that f̂ p

is weakly decreasing, thus p must be strictly higher than f̂ p( 1
p ), otherwise the area

below f̂ p is larger than p · 1
p = 1, which violates the presumption that f̂ p is a PDF.

Therefore, a price increment only affects the concavification process, i.e. affects f̂ p,
on the rightmost horizontal part of f̂ p (precisely, the interval where f̂ p(θ) = f̂ p( 1

p )),
leaving the segment to the left of q∗ “untouched”. As the above analysis holds for
all p ∈ [0, 1], F̂p(·) ≡ F̂◦(·) on [0, 1

p ], and the profit gain can be expressed as q∗dp =

f̂−1
◦ (p)dp, i.e. the blue area in Figure 12b.

The profit loss is illustrated by the red area in Figure 12b. Note that, as both f◦ and
f̂ p are PDFs, the area below f◦ and f̂ p should be the same, implying F̂p( 1

p ) = F◦( 1
p ).

Consequently, the seller’s profit can be expressed as

F̂p(
1
p
)−

∫ q∗

0
[ f̂ p(q)− p]dq︸ ︷︷ ︸

area A+C in Figure 12a

= F◦(
1
p
)−

∫ q∗

0
[ f̂ p(q)− p]dq︸ ︷︷ ︸

area B+C in Figure 12a

= F◦(
1
p
)−

∫ q∗

0
[ f̂◦(q)− p]dq.
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The second equality holds due to the property of PDF ironing. Thus, the profit loss
associated with a price increment dp can be expressed as d(F◦( 1

p )) = − 1
p2 f◦( 1

p )dp,
i.e. the red area in Figure 12b. The FOC for the optimal interior solution can be
characterized by f◦ and f̂◦ only.

7 Extension

This section extends the baseline model by allowing (1) the seller to use more general
selling mechanisms, and ( 2) the buyer to have a more general payoff structure. We
show that the analysis in the baseline model is illuminating to understand the optimal
design in more complex settings.

7.1 On Price Discrimination

So far, we have assumed the seller cannot conduct any type of price discrimination.
This assumption makes sense in many industries. For instance, hourly rates are
widely used in service industry, and pharmaceutical companies sell their products
to uninsured consumers largely at uniform price either directly or through retailers
(Lakdawalla, 2018). However, it is still interesting to understand the interplay be-
tween information design and selling mechanism design.

Joint Design of Disclosure and Non-Linear Pricing. Suppose that the seller can
jointly design the information structure and a non-linear price scheme. At first glance,
this problem is challenging since one can no longer divide the design problem into
demand-maximizing information design and optimal price. We show that a simple
extension of our analytical method in the baseline model can be applied to solve the
optimal information design problem under arbitrary non-linear pricing scheme. The
key idea, roughly speaking, is to reformulate the seller’s information design problem
as recommending the buyer a monetary spending rather than a consumption amount.

We begin to notice that if the seller is allowed to choose an arbitrary non-linear
pricing policy, together with information design, he can extract full surplus from the
buyer. To see this, consider the no-disclosure information structure. The seller offers
a two-part tariff where the lump-sum fee is one, and the per-unit charge is zero. By
doing so, the seller essentially makes the good indivisible. The buyer will choose
q = 1 and get a zero payoff. Clearly, the seller extracts all the gains from trade, so the
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policy is revenue-maximizing. This is consistent with the observation in indivisible
good settings (Bergemann and Pesendorfer (2007) and Roesler and Szentes (2017)).

To meaningfully study a joint design of non-linear pricing policy and information
in our setting, it is necessary to either impose realistic restrictions on the set of feasible
mechanisms or the set of information structures. In what follows, we make some brief
discussion on each direction.

Information Design under a Fixed Non-Linear Pricing Policy. In applications, the
seller’s pricing policy may be constrained due to the retail channels, industry and
culture norms, etc. To understand the seller’s optimal choice when facing constraints
on non-linear pricing policies, we consider his optimal information design problem
under an arbitrary pre-determined non-linear pricing scheme. We use R(q) to denote
the buyer’s total monetary transfer to the seller by purchasing q units of the good. For
simplicity, we assume that R(q) is continuously differentiable through [0, 1], R(0) =
0, p(q) = R′(q) > 0 is the marginal price at q. The analysis can be easily extended if R
is piece-wisely continuously differentiable.

By choosing q, the buyer’s payoff is 1q≥θ − R(q), so

q∗∗ = max{θ ∈ [0, 1]|R(q) ≤ F◦(θ)}

is the maximum individually rational choice for the buyer. For this section we focus
on the case where R(1) ≤ 1, thus q∗∗ = 1. The case with general R(q) can be studied
following the same truncation procedure as in Section 5.2.2.

Next, we define f̃◦(r) such that

f̃◦(r) = f̃◦(R(q)) =
f◦(q)
p(q)

,

where r = R(q) is the total monetary transfer from the buyer to the seller for con-
sumption q. Note that

∫ R(1)
0 f̃◦(r)dr =

∫ 1
0

f◦(q)
p(q) p(q)dq = 1, thus f̃◦(r), r ∈ [0, R(1)] is a

well defined PDF. For this section we focus on the case where f̃◦(r) is decreasing in r.
The case with general f̃◦(r) can be studied following the same ironing procedure as
in Section 6.

For expository convenience, we reformulate the seller’s problem as if he recom-
mends the buyer how much money to spend R(q) rather than how much to good to purchase
q, and we focus on the buyer’s belief about R(q) rather than q. This is without loss of
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any generality because q ↔ R(q) is a bijection. Precisely, fix an arbitrary information
structure (H, F), let r = R(q), r̂ = R(q̂), define information structure (K, F̃) such that
H(q) ≡ K(R(q)) and F̃r(r̂) ≡ Fq(q̂) for every q̂ ∈ [0, 1]. Then (K, F̃) is Bayes plausible
since ∫ R(1)

0
F̃r(r̂)dK(r) ≡

∫ 1

0
F̃r(r̂)K′(R(q))p(q)dq ≡

∫ 1

0
Fq(q̂)dH(q) ≡ F◦.

Buyer’s IC constraint can be written as

r ∈ arg max
r̂∈[0,R(1)]

F̃r(r̂)− r, ∀r.

We show that recommending quantity q under information structure (H, F) is equiv-
alent to recommending spending r = R(q) under (K, F̃). For every q′ ∈ [0, 1], the
buyer’s posterior belief about her expected payoff of spending R(q′) to purchase q′

is the same in both cases, i.e.
∫ R(q′)

0 f̃◦(r̂)dr̂ =
∫ q′

0
f◦(q̂)
p(q̂) p(q̂)dq̂ =

∫ q′

0 f◦(q̂)dq̂. Then
according to the IC constraint, the buyer will spend r to purchase q in both cases.

Suppose there is no information disclosure. The buyer chooses to purchase q∗, or,
equivalently, spending r∗ = R(q∗) such that

r∗ = max{r ∈ [0, R(1)]| f̃◦(r) = 1}.

The following proposition characterizes the revenue-maximizing information struc-
ture when f̃◦(r) is decreasing and R(1) ≤ 1.

Proposition 9. Suppose that f̃◦(θ) and R(1) ≤ 1. The seller’s revenue is maximized by a
recommendation information structure (K∗, F̃∗) such that

K∗(r) =


0 if r < r∗

f̃◦(r∗)− f̃◦(r) if r∗ ≤ r < R(1)

1 if r = R(1)

.

The proof is exactly the same as the proof of Proposition 3. To see this, set p =

1, relabel H∗ as K∗, q as r, q∗ as r∗, and f◦ as f̃◦. Then it is clear that the optimal
information design problem with prior belief f◦ and fixed non-linear pricing policy
R(q) is equivalent to the information design problem with prior belief f̃◦ and linear
price p = 1. Then Proposition 9 becomes a direct application of Proposition 3.
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Privately Informed Buyer. In practice, it is reasonable to believe that the buyer may
have some private information that is not up to the manipulation by the seller. For in-
stance, we assume that the buyer’s maximum consumption payoff is common knowl-
edge. In many applications, it may be the buyer’s private information. Then the seller
faces a more challenging problem and the buyer can secure some rent due to her in-
formation advantage.17

Specifically, suppose that the buyer’s utility is not fixed at 1, but instead is a ran-
dom variable µ with support [0, 1] and is the buyer’s private information. First, note
that under any incentive-compatible direct mechanism, the buyer reports µ truthfully
in equilibrium, denote the corresponding seller optimal information structure and
price as (Hµ, Fµ) and pµ, respectively. Then we consider the alternative incentive-
compatible design as follows: for every µ, the seller can instead choose to disclose
no information, offer a two-part tariff where the lump-sum fee is µ −

∫ 1
0 (Iq≥θ · µ −

pµ)Hµ(q)dq and the per-unit price is zero. His revenue would be weakly higher for
every µ, is

µ −
∫ 1

0
(Iq≥θ · µ − pµ)H∗

µ(q)dq = µ
[
1 −

∫ 1

0
Iq≥θ · Hµ(q)dq

]
+ pµ

∫ 1

0
Hµ(q)dq

≥ pµ

∫ 1

0
Hµ(q)dq.

The buyer’s expected payoff, on the other hand, is still
∫ 1

0 (Iq≥θ · µ − pµ)Hµ(q)dq, the
same as under (Hµ, Fµ) and pµ. Thus her incentive to follow the recommendation is
unchanged and she will still truthfully report her private information. In summary,
the seller’s expected revenue is weakly higher under this alternative design, but he
can no longer fully extract the surplus.

Signal-Contingent Pricing We end this extension by consider another type of price
discrimination, which allows the seller to price based on the realized signal. An op-
timal policy is to provide a perfect disclosure and post a linear price p = 1/θ. Then,
each buyer type will consume up to her needs, so the gain from trade is maximized.
Moreover, each buyer type incurs a monetary transfer θ × 1/θ = 1, receiving a zero
surplus, so the seller’s profit is maximized. This is essentially the textbook first degree

17Some recent development has been made in settings of indivisible goods. See, e.g., Bergemann
et al. (2016), Wei and Green (2022) and Smolin (2022).
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of price discrimination.18

7.2 On Buyer’s Payoff Structure

The baseline model assumes the buyer receives a reward if her consumption exceeds
her type. This assumption implies that consumption (within a certain range) will not
create significant negative side effects. It makes sense in insurance and financial/law
consultation services. However, when the buyer consumes medication, it is natural to
assume consumption has adverse consequences. As an example, we add a constant
marginal disutility of consumption to our baseline model, demonstrating how to ad-
just our framework to incorporate adverse consequences of consumption. Suppose
the buyer’s payoff is

Iq≥θ − ℓq − pq,

where ℓ > 0 is the per-unit loss capturing the negative consequence of consumption.
Therefore, constraint (IC) of the information design problem is replaced by

q ∈ arg max
q̂∈[0,q̄]

Fq(q̂)− ℓq̂ − pq̂, ∀q,

where the buyer’s consumption benefit is unchanged but the consumption cost is
replaced by (ℓ+ p)q. Denote the solution to the original problem when the price is p
as (H∗, F∗)|p. Note that (H∗, F∗)|p maximizes seller’s revenue and quantity of good
sold simultaneously. Thus, when consumption has linear adverse consequences, fix
any price p, the seller’s demand is maximized by a recommendation information
structure (H∗, F∗)|(ℓ+ p), and the demand is simply D(ℓ+ p). If we further denote
p̂ = p + ℓ, then the seller’s revenue maximizing problem is simply

max
p̂

( p̂ − ℓ)D( p̂)

Therefore, adding a constant marginal consumption disutility is mathematically equiv-
alent to introducing a constant marginal production cost.

18One can further consider the setting where the buyer privately observes the realized signal and
the seller designs a mechanism to elicit such private information as in Eső and Szentes (2007) and Li
and Shi (2017). We leave the discussion for future research.
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8 Conclusion

We study monopoly pricing and information disclosure for selling a perfectly divis-
ible good, and characterize a revenue-maximizing information design and the cor-
responding optimal price. Looking ahead, there are several intriguing directions to
explore. Firstly, while we have primarily focused on allocation efficiency and disre-
garded production costs arising from overconsumption, it would be fascinating to ex-
tend our research in this direction. Introducing constant marginal costs into our anal-
ysis is relatively straightforward, but considering non-constant marginal costs poses
technical challenges as it disrupts the separation between demand-maximizing infor-
mation design and monopoly pricing. Secondly, it would be natural to investigate
an oligopoly model where multiple sellers compete in terms of pricing and informa-
tion disclosure. This would allow us to assess how competition impacts equilibrium
prices and information provision, offering valuable insights into market dynamics.
Thirdly, characterizing the buyer’s optimal information structure is an interesting
area of study. By exploring this, we can gain insights into policy discussions con-
cerning mandatory information disclosure by sellers.

More broadly, it is worth considering information design in other bilateral games
with a similar payoff structure. For example, consider a master-apprentice relation-
ship (Becker, 1964; Mokyr, 2019; Ely and Szydlowski, 2020) where the apprentice
spends costly effort to gain knowledge from the master. The apprentice does not
know how much effort is sufficient to complete the training (the training difficulty).
One can model the training difficulty as a realization of a random variable — train-
ing threshold, and the apprentice receives a reward if and only if her effort exceeds
the realized training threshold. The master, who knows the difficulty of the training,
benefits from the apprentice’s effort for production. One can apply our technique to
study the master’s joint design of information provision and optimal wage.
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A Appendix: Omitted Proofs

A.1 Proofs for Section 4

Proof of Proposition 1. The seller’s optimal profit is 1 if and only if p = 1 and buyers
choose q = 1 under no disclosure. For sufficiency, under no disclosure, if F◦(q) ≤
q, ∀q, then 1 ∈ arg maxq∈[0,1] F◦(q) − q. For necessity, suppose that ∃q ∈ [0, 1] s.t.
F◦(q) > q. Since F◦(1) = 1, and so 1 /∈ arg maxq∈[0,1] F◦(q)− q.

Proof of Proposition 2. Suppose that the seller’s optimal information structure is a
full disclosure when prior is F◦ and price is p.

Suppose p ≤ 1. If F◦ is weakly convex then F◦ is below the 45-degree line F◦(q) =
q. By Proposition 1, the seller’s profit is p under no disclosure and a full disclosure
is not optimal. If F◦ is not weakly convex, then there exists an interval (θ1, θ2) where
0 < θ1 < θ2 ≤ 1 and f◦ is strictly decreasing on (θ1, θ2). In this case, consider the
following information structure. If q ̸= θ2 then

Fq(θ) =

0 if θ < q

1 if q ≤ θ ≤ 1
,

if q = θ2 then

Fq(θ) =


0 if θ < θ1

θ−θ1
θ2−θ1

if θ2 ≤ θ ≤ θ1

1 if θ1 ≤ θ ≤ 1

,

and the distribution of purchase outcome is

H(q) =

F◦(q) if q /∈ (θ1, θ2)

F◦(q)− f◦(θ2)(q − θ1) if q ∈ (θ1, θ2)
.

Using some simple algebra we can verify that the above information structure is
Bayesian plausible and is direct. Then an integration of H(q) over [0, 1] show that
it yields strictly higher seller profit than a full disclosure does.

Next suppose p > 1, there exists an interval (θ3, θ4) where 0 < θ3 < θ4 ≤ 1
p and

(F◦(1)− F◦( 1
p )) ·

pθ4
1−pθ4

> F◦(θ4)− F◦(θ3) (for instance, one can set θ4 sufficiently close
to 1/p and θ3 sufficiently close to θ4). In this case, consider the following information
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structure. If q /∈ (θ3, θ4) then

Fq(θ) =

0 if θ < q

1 if q ≤ θ ≤ 1
,

if q ∈ (θ3, θ4) then

Fq(θ) =


0 if θ < q

pq if q ≤ θ ≤ 1
p

pq + (1 − pq)
F◦(θ)−F◦( 1

p )

1−F◦( 1
p )

if 1
p ≤ θ ≤ 1

,

and the distribution of purchase outcome is

H(q) =



F◦(q) if q ≤ θ3

F◦(q) +
∫

θ∈(θ3,q]
1−pq

pq dF◦(θ) if q ∈ (θ3, θ4)

F◦(q) +
∫

θ∈(θ3,θ4]
1−pq

pq dF◦(θ) if q ∈ (θ4, 1
p ]

F◦(q) +
∫

θ∈(θ3,θ4]
1−pq

pq dF◦(θ)−
∫

θ∈(θ3,θ4]
1−pq

pq dF◦(θ) ·
F◦(q)−F◦( 1

p )

F◦(1)−F◦( 1
p )

if q ∈ ( 1
p , 1]

.

Using some simple algebra we can verify that the above information structure is
Bayesian plausible. The consumer purchases q when the recommendation is less or
equal to 1/p and purchases zero otherwise. Then an integration of H(q) over [0, 1/p]
shows that it yields strictly higher seller profit than a full disclosure does.

A.2 Proofs for Section 5

Proof of Lemma 1 . For sufficiency, suppose that Q is the collection of all recommen-
dations such that ∀q ∈ Q, Fq satisfies condition (6), and τ(Q) < 1. We claim that
Fq(q) ∈ (0, 1), ∀q ̸∈ Q. Immediately, we have

• q ̸∈ Q ⇒ q < 1,

• Fq(q) = 0 ⇒ q = 0 for any p > 0. But this is weakly dominated by q = 1 if
p ≤ 1. So q > 0, Fq(q) > 0, ∀q ̸∈ Q, ∀p ∈ (0, 1].

In what follows, we construct an alternative information structure τ̃ outperform-
ing τ. This construction is slightly different from the one in the main text. It (a) yields
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more profit than τ does, (b) is a direct information policy, and (c) condition (6) holds
almost surely under τ̃. Properties (b) and (c) are not necessary for the proof of Lemma
1, but they help establish other results, including Proposition 3.

Specifically, for each recommendation q such that q ∈ Q under information struc-
ture τ, τ̃ makes the same recommendation as τ does. For each recommendation q
such that q /∈ Q under τ, τ̃ recommends q if the true state θ < q and recommends θ if
θ ≥ q.

Under this alternative information structure,

• If the recommendation q is in Q, then purchasing quantity q is a best response.
To see this, consider an arbitrary q ∈ Q, a consumer receiving recommenda-
tion q knows that the true state either equals to q or is distributed according to
posterior Fq. Either way, her best response is to purchase q.

• If the recommendation q is not in Q, we claim that purchasing quantity q is still
a best response. To see this, consider an arbitrary q /∈ Q, a consumer receiving
recommendation q knows that the true state θ either equals to q or is distributed
according to a posterior denoted by F−, where

F−(θ) =


Fq(θ)

Fq(q)
if θ < q

1 if θ ≥ q
.

If θ = q then it is obvious that the buyer’s best response is qp,F. Thus we focus
on the later case, θ ∼ F−. First, because F−(q) = 1, it is strictly suboptimal to
purchase more than q. Second, for any q′ < q, we have

1
Fq(q)

[Fq(q)− Fq(q′)] > Fq(q)− Fq(q′) ≥ p(q − q′),

where the first inequality holds because Fq(q) < 1 and the second one holds
because q is a best response to posterior Fq. In sum, q is a best response.

Therefore, by adopting τ̃ instead of τ, the seller’s profit gain is

∫
q/∈Q

∫ 1

q
(θ − q) fq(θ)dθτ(dq) > 0.

In conclusion, if p ∈ (0, 1], condition (6) holds almost surely. Otherwise, through
construction τ → τ̃, we can find an alternative information structure which (a) yields
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more profit than τ does, (b) is direct, and (c) condition (6) holds almost surely under
τ̃.

The following lemma is helpful to prove Proposition 3.

Lemma 6. Suppose p ∈ (0, 1]. For each posterior distribution Fq, condition (6) holds; i.e.,
Fq(q) = 1 if and only if Fq first-order stochastically dominates (FOSD) GFq where

GFq(θ) =


1 − pθ̄Fq if θ = 0

1 − pθ̄Fq + pθ if θ ∈ (0, θ̄Fq ]

1 if θ ∈ (θ̄Fq , 1]

,

and θ̄Fq ≡ min{θ ∈ [0, 1]|Fq(θ) = 1}.

Proof of Lemma 6. We begin with the necessity. When the buyer’s posterior belief
is GFq , her best response is to purchase θ̄Fq and her payoff is 1 − pθ̄Fq . If Fq does not
FOSD GFq , there exists θ′ ∈ [0, θ̄Fq) such that

Fq(θ
′) > GFq(θ

′).

Then purchasing θ′ yields an expected payoff

Fq(θ
′)− pθ′ > GFq(θ

′)− pθ′ = 1 − pθ̄Fq + pθ′ − pθ′ = 1 − pθ̄Fq ,

where the last term of the inequality is the buyer’s expected payoff of purchasing
θ̄Fq when her posterior belief is Fq. Therefore, purchasing θ̄Fq is not the buyer’s best
response.

For sufficiency, note that given Fq FOSD GFq , for each θ′ ∈ [0, θ̄Fq ], purchasing θ′

yields an expected payoff

Fq(θ
′)− pθ′ ≤ GFq(θ

′)− pθ′ = 1 − pθ̄Fq .

Since it is strictly suboptimal to purchase more than θ̄Fq , the buyer’s largest best re-
sponse is θ̄Fq .

Now we are ready to prove the optimality of (H∗, F∗) specified in Proposition 3.
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Proof of Proposition 3. For the sake of contradiction, suppose that another infor-
mation structure yields a higher profit than (H∗, F∗), then we can apply the same
construction method (τ → τ̃) as in the proof of Lemma 1 on this information struc-
ture. The result is a new recommendation information structure (H†, F†) which yields
higher profit than (H∗, F∗) does, and condition (6) holds almost surely, i.e.,

∫ 1

0
qdH†(q) >

∫ 1

0
qdH∗(q), (28)

and F†
q (q) = 1 except for a subset Q ∈ S such that τ(Q) = 0.

Step 1. We claim and prove that there exists q† such that

∫ 1

q†
qdH†(q) >

∫ 1

q†
qdH∗(q) (29)

H†(q†) = H∗(q†). (30)

The argument is as follows. If H†(q∗) = 0 = H∗(q∗), then by condition (28), q† = q∗.
If H†(q∗) > 0, then define

q† = inf{q ∈ (0, 1]|H†(q) = H∗(q)}.

which must exist; otherwise H∗ FOSDs H†, contradicting to condition (28). Evidently,
condition (30) holds. Also,

∫ q†

0
qdH†(q) <

∫ q†

0
qdH∗(q),

because H†(·) ≥ H∗(·), ∀θ ∈ [0, q†]. By condition (28), condition (29) must hold.

Step 2. We apply the first step result to (H†, F†). Then

∫ 1

q†
[1 − F†

q (q
†)]dH†(q) ≥

∫ 1

q†
[1 − GF†

q
(q†)]dH†(q)

≥
∫ 1

q†
p(q − q†)dH†(q)

= p
∫ 1

q†
qdH†(q)− pq†

∫ 1

q†
dH†(q)

> p
∫ 1

q†
qdH∗(q)− pq†

∫ 1

q†
dH∗(q).
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Figure 13: Illustration of step 1 in the proof of Proposition 3

where the first inequality holds because in an information structure satisfying condi-
tion (6), F†

q FOSDs GF†
q
, the second one holds because 1 − GF†

q
(q†) = q − q†, the third

(strict) inequality holds due to conditions (29) and (30). Plugging (7) into the last term
of the inequality, after some simple algebra, yields

∫ 1

q†
[1 − F†

q (q
†)]dH†(q) > −

∫ 1

q†
qd f◦(q) + q†

∫ 1

q†
d f◦(q) + (1 − q†) f◦(1)

= −q f◦(q)|1q† +
∫ 1

q†
f◦(q)dq + q†

∫ 1

q†
d f◦(q) + (1 − q†) f◦(1)

= − f◦(1) + q† f◦(q†) + F◦(1)− F◦(q†)

+q† f◦(1)− q† f◦(q†) + (1 − q†) f◦(1)

= 1 − F◦(q†).

which violates the Bayes plausible condition (BP).

Proof of Lemma 2. Note that the corresponding PDF f̊ (θ) is well defined and differ-
entiable on (0, 1

p ], and f̊ (θ) = f◦(θ) for every θ ∈ (0, 1
p ]. Suppose that information

structure (H, F) maximizes the seller’s profit when the prior is F◦. The seller’s profit
is p

∫
q∈[0,1/p] qdH(q). We show that, when the prior is F̊, there exists an information

structure (H, F̃) under which the seller obtains profit p
∫

q∈[0,1/p] qdH(q). Thus, any
information structure which maximizes the seller’s profit when the prior is F̊ yields
at least the same profit as (H, F̃) does. Moreover, we show that if there exists an
information structure which yields a profit higher than p

∫
q∈[0,1/p] qdH(q) when the
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prior is F̊, then there exists an information structure which yields a profit higher than
p
∫

q∈[0,1/p] qdH(q) when the prior is F◦. This violates our presumption that (H, F)
maximizes the seller’s profit when the prior is F◦. In summary, (H, F̃) maximizes the
seller’s profit when the prior is F̊.

Step 1. Precisely, we construct (H̃, F̃) as follows: for every state θ ∈ (0, 1
p ], H̃(q|θ) ≡

H(q|θ), for every state θ ∈ ( 1
p , 1], H̃(q|θ) = 1 for every q ≥ 0, i.e. always recommends

0, when θ = 0, H̃(q|θ) ≡
∫
( 1

p ,1]
f◦(θ)H(q|θ)dθ

F◦(1)−F◦( 1
p )

.

Under the above information structure, for every q, the unconditional distribution
of recommendation

H̃(q) =
∫
(0, 1

p ]
f̊ (θ)H̃(q|θ)dθ + H̃(q|θ = 0)F̊(0)

=
∫
(0, 1

p ]
f◦(θ)H̃(q|θ)dθ + H̃(q|θ = 0)[F◦(1)− F◦(

1
p
)]

=
∫
(0, 1

p ]
f◦(θ)H(q|θ)dθ +

∫
( 1

p ,1]
f◦(θ)H(q|θ)dθ

= H(q).

H̃(q) is the unconditional distribution of recommendation under (H̃, F̃) (when the
prior is F̊), and H(q) is the unconditional distribution of recommendation under
(H, F) (when the prior is F◦). The first equality is a decomposition of H̃, the second
equality follows the definition of F̊ (which implies f̊ (θ) = f◦(θ) for every θ ∈ (0, 1

p ]

and F̊(0) = 1− F◦( 1
p ) = F◦(1)− F◦( 1

p )), the third equality follows the definition of H̃,
and the fourth equality follows the definition of H.

For every q ∈ [0, 1/p]

F̃q(θ) =

Fq(θ) + 1 − Fq(
1
p ) if θ ∈ [0, 1/p)

1 if θ ≥ 1/p
.

It is straight forward that

∫
q∈[0,1]

F̃q(θ)dH̃(q) =
∫

q∈[0,1]
Fq(θ)dH(q) + 1 − F◦(

1
p
) = F̊(θ), ∀θ ∈ [0,

1
p
],

thus (H, F̃) satisfies Bayesian Plausiblity.
Moreover, we show that (H̃, F̃) is still a recommendation information structure,
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i.e. for every recommendation q̂, the buyer purchases q = q̂. Note that (H, F)
is a direct policy, q = q̂ maximizes Fq̂(q) − pq. Then fix q̂ ∈ (0, 1

p ], for every q,
Gq̂(q)− pq = Fq̂(q)− pq + (1 − F◦( 1

p )) and the buyer is never going to choose q > 1
p .

Thus, q̂ also maximizes Gq̂(q)− pq, and (H̃, F̃) is also a recommendation information
structure. As H̃(q) ≡ H(q) and both are direct, it is straightforward that the seller’s
profit under (H̃, F̃) is p

∫
q∈[0,1/p] qdH̃(q) = p

∫
q∈[0,1/p] qdH(q), i.e. the same as the

seller profit under (H, F).

Step 2. When the prior is F̊, suppose that there exists an information structure (H†, F†)

which yields strictly higher seller profit than (H, F) does (when the prior is F◦). For
the sake of contradiction, we construct (H̃, F̃) as follows: for every state θ ∈ (0, 1

p ],
H̃(q|θ) ≡ H†(q|θ), for every state θ ∈ ( 1

p , 1], H̃(q|θ) ≡ H†(q|θ = 0), when θ = 0, H̃
always recommends q = 0. Then (H̃, F̃) yields the same seller profit (when the prior
is F◦) as (H†, F†) does (when the prior is F̊), which contradicts our presumption that
(H, F) is the seller optimal information structure when the prior is F◦. The specific
steps of the proof are a mirror image of Step 1 and is therefore omitted.

Proof of Proposition 4. Lemma 2 shows that the optimal purchase outcome H when
the prior is F◦ also optimizes the seller’s problem when the prior is F̊. We modify
Lemma 1 slightly.

Lemma 7. Fix any price p > 1 and a corresponding prior F̊. In an seller optimal information
structure τ,

F̃q(q) = 1,

holds almost surely (except for a subset Q such that τ(Q) = 0).

The proof follows the proof of Lemma 1.
Next, note that Lemma 6 and its proof is still applicable when p > 1. The rest of

the proof follows the proof of Proposition 3 exactly, where Lemma 1 is replaced by
Lemma 7 wherever applicable.

A.3 Proofs for Section 6

Proof of Proposition 6. We begin with a roadmap of the proof in three steps.
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Step 1.(Lemma 8.) Fix F◦, we construct a transformation such that every information
structure (H, F) maps to a “transformed prior” G(H,F) which is weakly concave and
is FOSDed by F◦. Moreover, when the prior is G(H,F), the optimal seller profit is the
same as the seller profit under information structure (H, F) (when the prior is F◦).

Step 2. (The first argument of Lemma 9.) Following Lemma 4, F̂◦ FOSDs the trans-
formed prior G(H,F). As both F̂◦ and G(H,F) are weakly concave, we can use Proposi-
tion 3 to show that the optimal seller profit under prior F̂◦ is higher than under prior
G(H,F). By step 1, the latter one equals the seller profit under (H, F) (when the prior
is F◦). Thus, under prior F◦, every information structure yields a profit weakly lower
than the optimal seller profit under prior F̂◦, which sets an upper bound for seller
profit under prior F◦.

Step 3. (The second argument of Lemma 9.) Under prior F◦, we show that (H∗, F∗)

is Bayesian plausible and attains a seller profit exactly the same as the optimal seller
profit under prior F̂◦, i.e. the upper bound proposed in Step 2. Combine Step 2 and 3,
(H∗, F∗) maximizes seller profit when the prior is F◦.

Note that Lemma 1 and Lemma 6 and their proofs are still applicable for general
prior. Thus, in every seller optimal information structure (H, F), Fq(θ) FOSDs GFq(θ)

for almost every q ∈ [0, 1] (except for q sent with zero measure probability). In the
following lemma, we construct an optimal information structure corresponding with
posterior set {GFq(θ)}q∈[0,1].

Lemma 8. Fix F◦, consider any direct information structure (H, F) which satisfies condition
(6), F◦ FOSDs G(H,F) where

G(H,F)(θ) =
∫

q∈[0,1]
GFq(θ)dH(q).

G(H,F)(θ) is a weakly concave CDF function and is FOSDed by F◦. When the prior is G(H,F),
the seller’s profit is maximized by a “transformed information structure” (H, G) and equals
to the seller profit under information structure (H, F) (when the prior is F◦).

Proof. For every q ∈ [0, 1], GFq(θ) is a weakly concave function (excluding the atom at
θ = 0) on support (0, 1]. By definition, G(H,F)(θ) =

∫
q∈[0,1] GFq(θ)dH(q) is a weighted

sum of {GFq}q∈supp(H), therefore it must be weakly concave in θ on (0, 1]. Precisely

G(H,F)(θ) =
∫

q∈[0,1]
GFq(θ)dH(q)
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=
∫

q∈[0,θ]
1dH(q) +

∫
q∈(θ,1]

(1 − pq + pθ)dH(q)

=
(
1 − p + p

∫ 1

0
H(q)dq

)
+

(
pθ − p

∫ θ

0
H(q)dq

)
, (31)

whose derivative with respect to θ is p(1 − H(θ)), which is weakly decreasing in θ.
Also, for every q, Fq FOSDs GFq(·), thus Fq(θ|q) ≤ GFq(θ) for every θ, which further
implies

F◦(θ) =
∫

q∈[0,1]
Fq(θ)dH(q) ≤

∫
q∈[0,1]

GFq(θ)dH(q) = GH,F(θ),

i.e. F◦ FOSDs G(H,F).
For expository convenience, we specify a “transformed information structure”

which maximizes seller profit when the prior is G(H,F). Suppose the prior is G(H,F),
as G(H,F) is weakly concave, we can solve for the seller optimal information structure
using Proposition 3. Denote (H̃, G) as this optimal information structure (for prior
G(H,F)). By Proposition 3, (H̃, G) is a recommendation information structure, and the
unconditional probability measure that the recommendation is in [0, q] is

H̃(q)− H̃(0) = − 1
p
· [p(1 − H(q))− p(1 − H(0))]

= H(q)− H(0).

The first equation is from Proposition 3. The second equation is from (31), which
implies g(H,F)(θ) = p

(
1 − H(θ)

)
. Let q = 1 then we have H̃(0) = H(0). Thus,

when the prior belief is G(H,F), H̃(·) ≡ H(·) is exactly the optimal purchase outcome
specified in Proposition 3. Then the seller profit under (H̃, G) is p

∫
[0,1] qdH̃(q) =

p
∫
[0,1] qdH(q), i.e. when the prior belief is G(H,F), the optimal seller profit equals the

seller profit under (H, F) (when the prior is F◦).
Lastly, every posterior Gq(θ) ∈ G consists of an atom of mass 1 − pq at θ = 0 and

an uniform distribution on (0, q]. By definition, Gq(·) ≡ GFq(·) for every q ∈ [0, 1].
Thus

G(H,F)(θ) =
∫

q∈[0,1]
GFq(θ)dH(q) =

∫
q∈[0,1]

Gq(θ)dH(q),

which verifies that (H, G) is Bayesian plausible when the prior is G(H,F).

Next, we use these results to prove that (H∗, F∗) proposed by Proposition 6 is
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indeed a seller optimal information structure.

Lemma 9. Fix prior F◦, any (optimal) information structure cannot yield more profit than
(H∗, F∗) does; we also verify that (H∗, F∗) is a direct information structure and is Bayesian
plausible.

Proof. For the first argument, suppose that the seller optimal information structure
under prior F◦ is (H, F). By our analysis above, G(H,F) is a concave CDF. By Lemma 8,
when the prior belief is G(H,F), the seller optimal information structure is (H, G), and
(H, G) (when the prior is G(H,F)) yields the same seller profit as (H, F) does (when
the prior is F◦).

As G(H,F) is concave and is FOSDed by F◦, by Lemma 4, F̂◦ FOSDs G(H,F), i.e.
F̂◦(θ) ≤ G(H,F)(θ) for every θ ∈ [0, 1]. We use Proposition 3 to show that, when
the prior is F̂◦, the optimal seller profit is weakly higher than the seller profit under
(H, G) (when the prior is G(H,F)), and thus is weakly higher than the seller profit
under (H, F) (when the prior is F◦). To see this, note that by the definition of H∗

and Proposition 3, purchase outcome H∗ maximizes seller profit when the prior is F̂◦.
Then by condition (20), we have

p
∫
[q∗,1]

qdH∗(q) = p
∫

q∈[q∗,1)
qd

( f̂◦(q∗)− f̂◦(q)
p

)
+ p · 1 · f̂◦(1)

p

=
∫

q∈[q∗,1)
qd f̂◦(q) + f̂◦(1)

= 1 −
∫ 1

q∗
[ f̂◦(q)− p]dq

≥ 1 −
∫ 1

q∗
[g(H,F)(q)− p]dq

≥ 1 −
∫ 1

q∗|g(H,F)

[g(H,F)(q)− p]dq,

where q∗|g(H,F) is the maximum value of q such that g(H,F)(q∗|g(H,F)) = p. The left
hand side of the first equation is the optimal seller profit when the prior is F̂◦; the
three equations follows condition (14); the first inequality is due to the fact that F̂◦
FOSDs G(H,F); and the right hand side of the last inequality is the optimal seller profit
when the prior is g(H,F). The second inequality is less obvious, which is explained
as follows. As g(H,F) is decreasing, if f̂◦(q∗) ≥ g(H,F)(q∗|g(H,F)), then g(H,F)(θ) ≤ p

for every θ ∈ [q∗|g(H,F), q∗] and
∫ q∗

q∗|g(H,F)
[g(H,F)(q)− p]dq ≤ 0; otherwise if f̂◦(q∗) <
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g(H,F)(q∗|g(H,F)), then g(H,F)(θ) ≥ p for every θ ∈ [q∗, q∗|g(H,F)] and
∫ q∗|g(H,F)

q∗ [g(H,F)(q)−
p]dq ≥ 0. Either way, we have

∫ 1
q∗ [g(H,F)(q)− p]dq ≥

∫ 1
q∗|g(H,F)

[g(H,F)(q)− p]dq, which
proves the second inequality. In summary, any (optimal) information structure can-
not yield more profit than (H∗, F∗) does.

For the second argument, we show that (H∗, F∗) is Bayesian plausible under prior
F◦. We first prove that for every recommendation q, F∗

q (·) is a well defined prob-
ability distribution. We partition the state space [0, 1] into a series of non-adjacent
intervals (θi, θ̄i) for i = 1, 2, · · · , k such that for every i, F̂◦(θ) > F◦(θ) if and only if
θ ∈ ∪i=1,2,··· ,k(θi, θ̄i), and θi ≤ θ̄i. As F̂◦ and F◦ are continuously differentiable, there
is a finite number of such intervals. Notice that f̂◦(θ) is horizontal when θ ∈ (θi, θ̄i),
therefore, by the definition of (H∗, F∗), every q ∈ ∪i=1,2,··· ,k(θi, θ̄i) is never recom-
mended with positive density. Then for every q recommended with (possibly) posi-
tive density∫

[0,1]
F∗

q (θ)dθ

=
∫
[0,q∗]

[p +
( f◦(θ)− p)(1 − pq)

F◦(q∗)− pq∗
]dθ +

∫
(q∗,q]

p
f◦(θ)
f̂◦(θ)

dθ

= [pθ +
(F◦(θ)− pθ)(1 − pq)

F◦(q∗)− pq∗
]|q

∗

0 + p
∫
[θ̄j,s]

f◦(θ)
f̂◦(θ)

dθ + pΣk−1
i=j

∫
[θ̄i+1,θi]

f◦(θ)
f̂◦(θ)

dθ

+p
∫
[0,θk]

f◦(θ)
f̂◦(θ)

dθ + pΣk
i=j

∫
(θi,θ̄i)

f◦(θ)
f̂◦(θ)

dθ

= pq∗ + 1 − pq + pq − pq∗

= 1,

where j satisfies θ̄j ≤ q and θ j−1 ≥ q. Thus F̂∗
q (θ) is a well defined probability dis-

tribution. The tricky step is the third equation. It is due to the fact that f◦(θ) =

f̂◦(θ) for θ ∈ ∪i=1,2,··· ,k−1[θ̄i+1, θi] ∪ [θ1, 1] ∪ [0, θk], and
∫
(θi,θ̄i)

f◦(θ)
f̂◦(θ)

dθ = θ̄i − θi for

i = 1, 2, · · · , k. The last argument,
∫
(θi,θ̄i)

f◦(θ)
f̂◦(θ)

dθ = θ̄i − θi, is derived as follows.

Note that f̂◦(θ) is horizontal in (θi, θ̄i), thus for every θ ∈ (θi, θ̄i), f̂◦(θ) =
F̂◦(θ̄i)−F̂◦(θi)

θ̄i−θi
,

also note that
∫
(θi,θ̄i)

f◦(θ)dθ = F◦(θ̄i) − F◦(θi) = F̂◦(θ̄i) − F̂◦(θi). Combine the two

arguments above,
∫
(θi,θ̄i)

f◦(θ)
f̂◦(θ)

dθ = F◦(θ̄i)−F◦(θi)

f̂◦(θ)
= θ̄i − θi. Then the sum of the last

four terms in the left hand side of the third equation is just the sum of the measure
of ∪i=j,j+1,··· ,k−1[θ̄i+1, θi], [θ̄1, 1], ∪[0, θk], and ∪i=j,j+1,··· ,k(θi, θ̄i), these four regions do
not intersect each other and they exactly covers [0, q], thus their measures sum to q.
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Next, for every θ ∈ [0, 1], the posterior beliefs should place on θ a mass equal to
the prior belief f◦(θ). For θ < q∗, the proof is the same as the Bayesian plausibility
check for Proposition 3 and is therefore omitted (see Appendix B for details). For
θ ≥ q∗, the proof is as follows

∫
[0,1]

f ∗q (θ)dH∗(q) =
∫
[θ,1)

f◦(θ)
f̂◦(θ)

d f̂◦(q)+
f◦(θ)
f̂◦(θ)

f̂◦(1) =
f◦(θ)
f̂◦(θ)

( f̂◦(θ)− f̂◦(1)+ f̂◦(1)) = f◦(θ).

Lastly, we show that (H∗, F∗) satisfies (6), i.e. it is a recommendation information
structure. This is straightforward as the solution constructed by Proposition 3 is a
recommendation information structure.

Combine the above arguments, (H∗, F∗) is a recommendation information struc-
ture which is Bayesian plausible, and no other recommendation information struc-
ture can yield strictly higher profit than (H∗, F∗) does. Thus, (H∗, F∗) maximizes the
seller’s profit when the prior is F◦.

Proof of Proposition 7. Note that Lemma 2, 6, and 7 and their proofs are still valid
under general prior. Thus, following Proposition 4, purchase outcome H∗ charac-
terized by (23) maximizes seller profit when the prior is ˚̂Fp. Then by Proposition 7,
H∗ maximizes seller profit when the prior is F̊. Lastly, apply Lemma 2 again, H∗

maximizes seller profit when the prior is F◦.

Proof of Proposition 8. Note that f̂ p is almost everywhere well defined (except for
θ = 1

p ) and F̂p contains no atom. For p ∈ [1, f◦(0)], we first show that seller profit has
a closed form expression (as well as a simple graphic illustration).

Lemma 10. Seller profit is π(p) ≡ F̂p( 1
p )−

∫ q∗

0 ( f̂ p(q)− p)dq, i.e. the intersection of the
area below f̂ p and the rectangle [0, 1

p ]× [0, p].

Proof. Given the seller optimal information structure characterized by condition (23),
the seller’s profit is

p
∫ 1

p

q∗
qdH(q) = p

∫ 1
p

q∗
(− 1

p
d f̂ p(q)/dq) · qdq +

1
p

f̂ p(
1
p
) · p/p

53



= −
∫ 1

p

q∗
qd f̂ p(q) +

1
p

f̂ p(
1
p
)

= −q f̂ p(q)|
1
p
q∗ +

∫ 1
p

q∗
f̂ p(q)dq +

1
p

f̂ p(
1
p
)

= − 1
p

f̂ p(
1
p
) + q∗ f̂ p(q∗) + F̂p(

1
p
)− F̂p(q∗) +

1
p

f̂ p(
1
p
)

= F̂p(
1
p
) + pq∗ − F̂p(q∗)

= F̂p(
1
p
)−

∫ q∗

0
( f̂ p(q)− p)dq. (32)

The right hand side of the last equation in (32) is the intersection of the area below
f p∗ and the square [0, 1

p ]× [0, p].

As p increases from 1, the first term of the right hand side of (32) strictly decreases;
the second term (including the negative sign) strictly increases. Next, we take first or-
der derivative of (32) to measure the changes in these two terms with respect to small
changes in p, to find out the local monotonicity of the seller’s profit with respect to p.
Note that as p changes, function f̂ p changes, thus q∗ is conditional on p. Therefore,
the main technical difficulty is that both the variables ( 1

p and q∗) and the functions
(Fp∗ and f p∗) are changing in p, making the FOC intractable. To solve this problem,
we use the following lemmas to simplify the FOC of (32).

Lemma 11. For every price p > 1, F̂p(θ) = F̂◦(θ) for every θ ∈ [0, q∗|p].

Proof. By the definition of concave closure, for every θ ∈ [0, 1], F̂p(θ) ≤ F̂◦(θ). We
partition the state space [0, 1] into a series of non-adjacent intervals (θi, θ̄i) for i =

1, 2, · · · , k such that F̂◦(θ) > F◦(θ) if and only if θ ∈ ∪i=1,2,··· ,k(θi, θ̄i), and θ̄i ≥ θi ≥
θ̄i+1. As F◦ and F̂◦ are continuously differentiable, there is a finite number of such
intervals.

Fix any p, if F̂◦( 1
p ) = F◦( 1

p ), then 1
p is not in ∪i=1,2,··· ,k(θi, θ̄i). We show that

{(θ, F̂◦(θ)) : θ ∈ [0, 1/p]} is the concave closure of {(θ, F◦(θ)) : θ ∈ [0, 1/p]}, i.e.
F̂p(θ) = F̂◦(θ) for every θ ∈ [0, 1

p ]. To see this, consider an arbitrary point A : (x1, y1)

such that x1 ≤ 1
p , y1 ≤ F̂◦(x1). Then by the definition of concave closure, either y1 ≤

F◦(x1), or there exists two points B : (x2, y2) and C : (x3, y3) such that x2 ≤ 1
p , x3 ≤ 1

p
and y2 ≤ F◦(x2), y3 ≤ F◦(x3), and A is a linear combination of B and C. Suppose
y1 > F◦(x1), then x1 ∈ (θi, θ̄i) for some i, then let B =

(
θ̄i, F◦(θ̄i) − (F̂◦(x1) − y1)

)
,

C =
(
θi, F◦(θi)− (F̂◦(x1)− y1)

)
, A = x1−θi

θ̄i−θi
· B + θ̄i−x1

θ̄i−θi
· C. Lastly, it is straightforward
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that [0, 1
p ] ⊇ [0, q∗|p], otherwise an integration of the PDF over θ ∈ [0, 1] is greater

than 1 · p > 1. Thus, F̂p(θ) = F̂◦(θ) for every θ ∈ [0, q∗|p].
If F̂p( 1

p ) < F̂◦( 1
p ), then 1

p is in (θi, θ̄i) for some i. Denote as x the infimum of the
values of θ such that F◦(θ′) < F̂◦(θ′) for every θ′ ∈ [θ, 1

p ), we prove f̂−1
◦ (p) ≤ x.

Suppose otherwise, f̂−1
◦ (p) > x, then

F̂◦(1) = 1 ≥ F̂◦(
1
p
) =

∫ 1
p

◦
f̂◦(θ)dθ > x · p + (

1
p
− x)p = 1,

and we reach a contradiction. The second inequality is the key. Note that by the
property of concave closure, f̂◦(θ) = f̂◦( 1

p ) for every θ ∈ (x, 1
p ), and f̂◦ is continuous.

Thus, if f̂−1
◦ (p) > x, then f̂−1

◦ (p) > 1
p as well. Consequently, f̂◦(θ) > p for both

θ ∈ [0, x) and θ ∈ [x, 1
p ], which gives us the second inequality.

Lastly, note that F◦(x) = F̂◦(x), as f̂−1
◦ (p) ≤ x, by the same argument as the

F̂◦( 1
p ) = F◦( 1

p ) case, the concave closure of {(θ, F◦(θ)) : θ ∈ [0, x]} is {(θ, F̂◦(θ)) :
θ ∈ [0, x]}. Then, as f̂−1

◦ (p) ≤ x, we have F̂p(θ) = F̂◦(θ) for every θ ∈ [0, q∗|p] (by
definition, q∗|p = f̂−1

◦ (p)).

Lemma 12. Fix F◦, for every p ≥ 1,
d(F̂p( 1

p ))

dp =
d(F◦( 1

p ))

dp .

Proof.

d(F̂p( 1
p ))

dp
=

F̂p+dp( 1
p+dp )− F̂p( 1

p )

dp
=

F◦( 1
p+dp )− F◦( 1

p )

dp
=

d(F◦( 1
p ))

dp
.

To get the second equality, note that {(θ, F̂p(θ)) : θ ∈ [0, 1/p]} is the concave closure
of {(θ, F◦(θ)) : θ ∈ [0, 1/p]}, then the value of F̂p(θ) and F◦(θ) must be the same at
θ = 1

p . Similarly, {(θ, F̂p+dp(θ)) : θ ∈ [0, 1
p+dp ]} is the concave closure of {(θ, F◦(θ)) :

θ ∈ [0, 1
p+dp ]}, then the value of F̂p+dp(θ) and F◦(θ) must be the same at θ = 1

p+dp .

By Lemma 11 and 12,
∫ q∗

0 ( f̂ p(s)− p)ds =
∫ q∗

0 ( f̂◦(s)− p)ds and
d(F̂p( 1

p ))

dp =
d(F◦( 1

p ))

dp .
Denote as π(p) the sellers profit, then we have

dπ(p)
dp

=
d(F̂p( 1

p ))

dp
−

d(
∫ q∗

0 ( f̂ p(s)− p)ds)
dp

=
d(F◦( 1

p ))

dp
−

d(
∫ q∗

0 ( f̂◦(s)− p)ds)
dp
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= − 1
p2 f◦(

1
p
) + q∗|p

= − 1
p2 f◦(

1
p
) + f̂−1

◦ (p).

Whenever π(p) reaches a local extremum, the above equation equals to 0, i.e.
f̂−1
◦ (p) = 1

p2 f◦( 1
p ). Thus, the global optimal solution p∗ must satisfy condition (26).

B Online Supplementary Materials

Here we verify that the pair (H∗, F∗) specified in Proposition satisfies condition (BP).
For every recommendation q ∈ [q∗, 1]

F∗
q (q)

=
∫
[0,q]

f ∗q (θ)dθ

=
∫
[0,q∗]

[p +
( f◦(θ)− p)(1 − pq)

F◦(q∗)− pq∗
]dθ +

∫
(q∗,q]

pdθ

= [pθ +
(F◦(θ)− pθ)(1 − pq)

F◦(q∗)− pq∗
]|q

∗

0 + p(q − q∗)

= pq∗ + 1 − pq + pq − pq∗

= 1,

thus f ∗q (θ) is a well defined probability distribution. Next, for every θ < q∗

∫
q∈[0,1]

F∗
q (θ)dH∗(q)

=
∫

q∈[0,1)
F∗

q (θ)dH∗(q) + F∗
1 (θ)[H

∗(1)− lim
q→1

f◦(q∗)− f◦(q)
p

]

= −
∫
[q∗,1)

∫
[0,θ]

[p +
( f◦(θ′)− p)(1 − pq)

F◦(q∗)− pq∗
]dθ′

f ′◦(q)
p

dq +
∫ θ

0
[p +

(1 − p)( f◦(θ)− p)
F◦(q∗)− pq∗

]dθ
f◦(1)

p

= −
∫
[q∗,1)

[pθ +
(F◦(θ)− pθ)(1 − pq)

F◦(q∗)− pq∗
]

f ′◦(q)
p

dq + [pθ +
(1 − p)(F◦(θ)− pθ)

F◦(q∗)− pq∗
]

f◦(1)
p

= −
∫
[q∗,1)

θ f ′◦(q)dq −
∫
[q∗,1)

F◦(θ)− pθ

F◦(q∗)− pq∗
f ′◦(q)

p
dq +

∫
[q∗,1)

F◦(θ)− pθ

F◦(q∗)− pq∗
pq

f ′◦(q)
p

dq
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+θ f◦(1) + f◦(1)
1 − p

p
F◦(θ)− pθ

F◦(q∗)− pq∗

= −θ f◦(1) + θ f◦(q∗)−
F◦(θ)− pθ

F◦(q∗)− pq∗
1
p
( f◦(1)− f◦(q∗)) +

F◦(θ)− pθ

F◦(q∗)− pq∗
(q f◦(q)|1q∗ −

∫ 1

q∗
f◦(q)dq)

+θ f◦(1) + f◦(1)
1 − p

p
F◦(θ)− pθ

F◦(q∗)− pq∗

= −θ f◦(1) + θ f◦(q∗) +
F◦(θ)− pθ

F◦(q∗)− pq∗
(− 1

p
f◦(1) +

1
p

f◦(q∗) + f◦(1)− q∗ f◦(q∗)− F◦(1) + F◦(q∗))

+θ f◦(1) + f◦(1)
1 − p

p
F◦(θ)− pθ

F◦(q∗)− pq∗

= −θ f◦(1) + θ f◦(q∗) +
F◦(θ)− pθ

F◦(q∗)− pq∗
f◦(1)(1 −

1
p
) + F◦(θ)− pθ

+θ f◦(1) + f◦(1)
1 − p

p
F◦(θ)− pθ

F◦(q∗)− pq∗

= F◦(θ).

The limits of the integration is changed from [0, 1) into [q∗, 1) because the density
of H∗(q) is positive only when q ∈ [q∗, 1), also note that f◦(q∗) = p by definition.
Similarly, for every q ≥ θ ≥ q∗∫

q∈[0,1]
Fq(θ)dH(q) = F◦(θ), ∀θ ∈ [0, 1]∫

q∈[0,1)
F∗

q (θ)dH∗(q) + F∗
1 (θ)[H

∗(1)− lim
q→1

f◦(q∗)− f◦(q)
p

]

= −
∫
[q∗,1)

f ′◦(q)
p

[1 − p(q − θ)]dq + [1 − p(1 − θ)]
f◦(1)

p

= −(
1
p
+ θ) f◦(q)|1q∗ +

∫
[q∗,1)

qd f◦(q) +
f◦(1)

p
− f◦(1)(1 − θ)

= − 1
p

f◦(1) +
1
p

f◦(θ)− θ f◦(1) + θ f◦(θ) + f◦(1)− θ f◦(θ)− F◦(1) + F◦(θ)

+
1
p

f◦(1)− f◦(1) + f◦(1)θ

= F◦(θ)− F◦(1) +
1
p

f◦(θ) = F◦(θ).

Combine the above arguments, (H∗, F∗) is Bayesian plausible.
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