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1 Introduction

A considerable body of recent research has documented a large, persistent and ubiquitous degree

of productivity dispersion across production units, leading in turn to a revival of interest in the

causes and consequences of resource misallocation. For instance, Hsieh and Klenow (2009) have

found substantial aggregate output increases if one managed to lower this dispersion by improving

the allocation of resources across production units. Alternatively interpreting dispersion as a con-

sequence of exogenous increases in uncertainty, Bloom (2009) has shown the recessionary effects

of higher productivity dispersion. The implicit assumption in the literatures growing out of these

seminal papers is that a high level of productivity dispersion is a sign of resource misallocation in

an economy and therefore reduces welfare. But does higher productivity dispersion always depress

output and welfare? In this paper, we explore the opposite hypothesis: we show theoretically that

optimal behavior of agents may lead to increased productivity dispersion. Novel empirical evidence

from data on multi-plant firms supports our hypothesis. We then build a model of investment

in multi-plant firms which, calibrated to U.S. manufacturing, attributes up to half of the empir-

ically observed productivity dispersion to optimal firm behavior rather than misallocation. As a

consequence, our theoretical and empirical work suggests that the gains from reducing inefficient

distortions in developing economies to the level of the U.S. are considerably larger than previously

thought.

To illustrate our theoretical argument, consider an economy with many production units which

are perfectly identical in terms of technology, productivity and capital. Given their state, each unit

would find it optimal to undertake an investment project of a fixed size, but cannot do so for a lack

of access to external finance. With this extreme financing constraint, no investment activity takes

place and productivity dispersion across units – conceptualized as the dispersion in capital returns

– remains zero. Suppose instead that there is a benevolent planner with a limited amount of funds.

These funds suffice to finance the investment project in some but not all plants. So the planner

optimally finances the investment project in as many plants as the funds permit. Productivity

dispersion would then rise, reflecting investment in some plants and no investment in others. A

naive interpretation of this higher productivity dispersion would assume that the latter allocation

is less efficient than the former where no investment takes place at all. Yet, in reality, the higher

dispersion in the latter case is the outcome of a benevolent planner doing his best to overcome a

financing constraint and generating more investment, capital and output in the aggregate.

This example demonstrates that productivity dispersion – commonly taken as an indicator for

insufficient factor reallocation – may rise or fall with efficiency and thus aggregate output, while

reallocation intensity and aggregate output are monotonically linked. It is therefore unclear how

much of the empirically observed productivity dispersion reflects inefficient distortions and how

much reflects (constrained) efficient behavior. This ambiguity warrants an empirical investigation
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into the origins of productivity dispersion. While research in the above mentioned literatures are

concerned with the impact of misallocation and uncertainty on the aggregate economy, there is little

work on why and where in the economy such significant dispersion originates in the first place. Yet,

identifying the agents and frictions that are mainly responsible for the substantial productivity

dispersion is crucial to assessing how much of that dispersion reflects constrained optimal behavior

versus true misallocation. This knowledge in turn is relevant for policymakers interested in fostering

growth and mitigating recessions. In the present paper, we fill this gap in the literature by jointly

studying the dispersion of capital returns between firms and between plants within firms. As a

starting point, we document two novel empirical findings based on the plant-level data from the

U.S. Annual Survey of Manufactures: First, more than half of the overall dispersion originates

across plants within the same firm rather than between firms. Second, when overall dispersion rises

in recessions, we show that it rises primarily within firms rather than between firms. Our findings

are quantitatively significant: a typical firm may increase its output by about 28% if it shifted an

optimal amount of resources towards high-return plants. In strong downturns such as the 1980/82

recession, this potential output gain increases to 35%.

This focus on both the plant and the firm is relevant for a number of reasons: First, it allows

us to highlight the fact that the firm and the market are two fundamentally different allocation

mechanisms. In the micro-founded macroeconomic literature, plants are typically treated as inde-

pendent decision makers. Yet, the allocation of resources across plants could conceivably be affected

if they are part of an integrated firm or are required to share scarce firm inputs such as logistics

and external credit. Consequently, understanding how firms work differently than markets may

shed new light on the causes of resource (mis)allocation or how the economy copes with aggregate

disturbances such as credit or uncertainty shocks.

Second, our findings potentially inform us on whether firms or markets are the most appropriate

determinants of allocative efficiency and economic growth: if the dispersion of capital returns across

plants reflects resource misallocation, then our empirical findings may indicate that firms are in

fact inferior to markets at allocating inputs. In other words, distorsions such as principal-agent

problems, transaction costs and asymmetric information may not be mitigated significantly by

firms.

Third, the economy-wide effects of aggregate shocks are often largely shaped by frictions that

hamper resource reallocation at the micro level. While a large variety of micro-level frictions has

been suggested and studied in the literature, little effort has been made to understand at what

granular level these frictions matter quantitatively. Since we are studying the dispersion of capital

returns, we give some examples of frictions that interfere with capital reallocation and investment

in general. For instance, some studies have highlighted the lumpy nature of investment at the plant

level (see Doms and Dunne (1998) and Gourio and Kashyap (2007)), while others have found that

capital expenditures at the level of the firm is fairly smooth (Eberly et al. (2012)). In the literature
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on uncertainty shocks, Bloom et al. (2012) combine such shocks with non-convex adjustment costs of

capital that are most pertinent at the plant level. Christiano et al. (2014), in contrast, focus instead

on financial constraints, a class of frictions that are of relevance at the level of the firm. These two

separate ways of modeling the effects of uncertainty shocks require empirical productivity dispersion

to fluctuate at different aggregation levels. Hence, documenting at which level of aggregation the

dispersion of capital returns is most prevalent and volatile could eludicate the type of reallocation

frictions that are most relevant.

All of the above reasons are strong arguments to investigate further the extent and dynamics of

productivity dispersion. In this paper, our focus is on questions related to the link between within-

firm dispersion in capital returns and investment activity. For instance, why do firms tolerate

such large dispersion of capital returns across their plants? As an allocation mechanism of scarce

resources, are firms less efficient than the market? Or is this dispersion simply optimal given the

constraints, both internal and external, faced by the firm? How much do firms discriminate in

allocating capital across their plants? At first sight, they appear to do so to a large extent: we

find that dispersion in investment rates across plants is also large and more important within than

between firms. In line with other studies highlighting the lumpy nature of investment (see Doms

and Dunne (1998) and Gourio and Kashyap (2007)), we find that this dispersion is largely driven

by investment spikes in a small number of plants. Yet, the correlation between a plant’s capital

return and a plant’s investment within a firm is not very strong even when the firm invests as a

whole. Moreover, we find that this correlation is even lower in periods of tight credit, exactly when

the within-firm dispersion of capital returns is largest. Eisfeldt and Rampini (2006) document a

similar mis-timing of capital returns dispersion and capital reallocation between firms. Though we

confirm their evidence, we find the larger portion of dispersion and mis-timed reallocation to occur

between plants within firms.

This last finding hints at a potential role for external financial frictions in shaping the degree

of capital misallocation within the firm. To investigate this channel, we build a novel dynamic

investment model of a multi-plant firm that features technological, organizational and financial

interdependencies and constraints. The purpose of the model is threefold. First, we wish to establish

how much of the empirically observed dispersion in capital returns and investment rates can be

explained by our model. Second, we investigate the relative importance of the various frictions and

their interactions as determinants of this apparent misallocation. Third, we study how much of the

countercyclical dispersion in capital returns could result from optimal firm behavior.

Because of the focus in the literature on single-plant models, we are required to build a new

model of a firm operating multiple distinct plants. Yet, in shaping our framework, we are mindful

of the many frictions and imperfections that have been suggested in models of capital accumulation

and reallocation (see Caballero (1999) for an overview). The investment literature, for example,

has argued that “technological” frictions such as a fixed cost of investing are crucial to replicate the
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lumpy aspect of investment documented empirically (see among others Abel and Eberly (1994),

Caballero et al. (1995), Cooper and Haltiwanger (2006), Gourio and Kashyap (2007)). Others have

instead focused on the central role played by financing frictions, arguing that they offer a natural

explanation for the documented role of cash flow in investment regressions (see among others Fazzari

et al. (1988), Gilchrist and Himmelberg (1995)). Most of these papers have considered frictions

in isolation.1 We are the first to nest real and financial frictions in a model of a multi-plant firm.

While some, mostly technological, frictions matter at the level of the plant, others such as financial

or organizational imperfections affect the firm as a whole. We argue that modeling a multi-plant

structure is crucial to understanding the effects of various frictions and their interactions. For

instance, focusing solely on firm-level frictions would counterfactually predict the absence of any

dispersion in capital returns across plants within firms. On the other hand, with only plant-level

frictions, one would expect to see no difference between plants in single-unit versus multi-unit firms.

our understanding about which micro-level frictions matter for aggregate outcomes may be affected

by the multi-plant structure of firms in the economy.2 Though its first aim is to characterize the

investment policy of multi-plant firms, our model will also enable us to address questions about the

aggregate effects of plant- and firm-level frictions.

In our model, firms operate plants that face both fixed and convex adjustment costs while

the firm organizes internal and costly external financing of investment. When firms are credit

constrained, they leverage internal capital markets and focus investment on only a few plants even

if most of their plants are equally productive. This credit constrained investment policy leads to a

rise in the dispersion of capital returns within the firm. In other words, had the firm unlimited access

to external funds, it would invest in a way to minimize further this dispersion, to the extent allowed

by the technological constraints it faces. This is consistent with Asker et al. (2014) and Bartelsmann

et al. (2013), who have shown that non-convexities such as fixed investment adjustment costs or

overhead labor can lead to endogenous dispersion of capital returns in equilibrium. Our model

contains both features, but we show that their impacts can be magnified by the presence of costly

external finance. In the face of such financing constraints, we document that the firm’s optimal

policy is to allocate internal funds to only a handful of its plants in a given period, postponing

investment projects in its other plants. This staggered allocation of scarce resources implies that an

externally credit constrained firm will display heightened capital returns and investment dispersion

across its plants for several periods. The serial correlation of large investment projects, however,

will increase in credit-constrained firms compared to their unconstrained counterparts. Using micro

data from the U.S. Annual Survey of Manufactures, we find empirical support for these predictions

at the micro and macro levels.

1Gomes (2001) and Eisfeldt and Muir (2013) who have combined real and financial frictions in a unified model of
a firm operating one plant are notable exceptions.

2We study this question in a companion paper Kehrig and Vincent (2015): “Financial Frictions and Investment
Dynamics in Multi-Plant Firms.”
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As described above, our model can explain dispersion of capital returns and investment rates

within firms qualitatively. But dispersion may result from various other reasons beyond the scope of

our model mechanism. We therefore analyze the quantitative predictions of our model. Calibrating

it to micro-level moments in our data, we find that introducing financial firm-level constraints

increases capital returns dispersion within the firm by 43% compared to dispersion already caused

by technological non-convexities at the plant level. This suggests that our mechanism is quite

powerful in generating substantial and countercyclical within-firm heterogeneity. This also means

that dispersion of capital returns within financially-constrained firms is not necessarily an indicator

of misallocation or inefficient investment policies, but rather the by-product of the firm’s effort to

mitigate external financial frictions. On the contrary, if the firm did not leverage its internal capital

market, dispersion might remain at a lower level, but overall investment, growth and output would

be lower as well. Internal capital markets thus help an economy cope more easily with periods of

tight financial funding.

In a counterfactual exercise, we find that the existence of internal capital markets in multi-

plant firms can increase within-firm dispersion by up to 20%, yet also raise aggregate investment

and output by up to 8% and 5%, respectively, relative to an economy in which the pooling of

resources within the firm is shut down. We view this finding as a cautionary tale to interpreting

higher productivity dispersion as a sign of resource misallocation.

We see our project as a first step into modeling how the organizational structure of a firm

may impact the micro-level adjustment of capital, as well as understanding the role of firms for

efficiency. Some theoretical research has been done on the efficiency of internal versus external

capital markets: Stein (1997), Malenko (2012) study mostly principal-agent problems between a

firm’s owner and manager in a single-plant setup. Whether internal capital markets are more or less

efficient is theoretically ambiguous: Gertner et al. (1994) show that division managers may exploit

imperfect monitoring by firm headquarters to build up “inefficient empires.” On the other hand,

Scharfstein and Stein (2000) say that firms are likely to monitor investment spending better than

outside financiers, thus improving capital allocation. Eisfeldt and Papanikolaou (2013) stress the

importance of organizational or intangible capital at the firm level in order to understand a firm’s

productivity, albeit without the multi-plant dimension we are interested in. With the exception

of Lamont (1997), Schoar (2002), Giroud (2013), empirical research on within-firm dynamics is

scarce. That said, our paper currently falls short of thoroughly studying the general equilibrium

effects on multi-plant firms in the spirit of Thomas (2002) and Khan and Thomas (2008). On the

empirical front, we believe that taking seriously this firm-plant dichotomy and the joint investment

dynamics of plants within a firm offers a new dimension for the researcher to identify various types

of frictions.

Our paper is organized as follows. In Section 2, we describe the data and show evidence on

the importance of the within-firm dimension for the dispersion of capital returns and investment.
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Section 3 describes our multi-plant model of the firm and analyses its predictions when an external

financing constraint is introduced. Section 4 conducts various quantitative exercises geared towards

understand the nature of productivity dispersion and carry out counterfactual exercises. In Section

5, we investigate whether the model predictions are borne out in the micro-level data. Section 6

concludes.

2 Returns dispersion between and within firms

2.1 Data sources and variables of interest

We use annual Census data on manufacturing plants described in detail in Appendix A.1. Our

main object of interest are the dispersions of real returns of capital and the real investment rates

across plants in the economy. They reflect the differences in capital returns and capital reallocation,

respectively. In a standard frictionless economy, agents should choose investment rates in a way

to equalize expected returns on capital. Hsieh and Klenow (2009), Asker et al. (2014) among

others assess misallocation by studying the dispersion of revenue total factor productivity, denoted

TFPR. While this is appropriate in their context, it is not in ours where we want to proceed to

study investment. Investment should not necessarily flow towards the units with the highest TFPR

if they already operate a large capital stock. In fact, investment should flow to units with high

expected capital return. This return is defined as the proceeds of one unit of capital at the end of

next period – the value of undepreciated capital plus its marginal revenue product – divided by the

cost of next period’s capital in the current period. We define industry output as the numéraire,

and the price of next period’s capital k′ in terms of this period’s numéraire is denoted by P k
′

t . Let

δ denote the industry-wide depreciation rate, MRPKnt the marginal revenue product of capital in

plant n in year t, ynt and knt plant n’s real value added and capital stock, respectively. Then the

expected gross return, ER̃nt+1, in a given year and industry is

ER̃nt+1 = E
P kt+1(1− δ) +MRPKnt+1

P k
′

t

.

We assume all units in an industry face the same price of capital, P k
′

t , and depreciation rate

δ. Then the only source of heterogeneity in returns stems from differences in expected marginal

revenue products of capital, MRPKnt+1. In a large set of models with Cobb-Douglas technology,

this object is proportional to the expected average product of capital, E yt+1

kt+1
. Equalizing expected

capital returns is hence closely related to equalizing the marginal revenue product of capital. Since

we do not measure expected returns, we approximate them by realized capital returns. This is a

good approximation if capital is chosen one period in advance, all other inputs are chosen statically

and total factor productivity is sufficiently persistent. Only unexpected innovations to profitability
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will then make the realized and the expected return different. All these assumptions are plausible

and widely used in the macroeconomic and investment literature. From now on we study the

logarithm of realised returns, labeled Rnt+1, and refer to its dispersion as “(net) capital returns

dispersion”

V art
(
Rnt+1

)
= V art

(
E log

yt+1

kt+1

)
. (1)

In order to study the dispersion of capital returns in equation (1) as well as that of capital

reallocation as measured by investment rates requires us to compute real value added, the real

capital stock and real investment, denoted by int. To obtain real value added, we first compute

nominal value added as sales less intermediate and energy inputs, corrected for inventory changes

and resales, and deflate the resulting measure by the 6-digit NAICS shipment price deflator from

the NBER-CES manufacturing database. The real capital stock, knt, is the sum of structure

and equipment capital each of which are expressed as real replacement values at current market

conditions. These replacement values for both structure and equipment capital are individually

computed with the perpetual inventory method using investment expenditures and depreciation

rates after initializing the capital stock at a transformed book value when observed for the first

time. We transform these nominal book values into nominal market values and finally deflate

this measure using BEA’s price deflators for capital goods at the 3-digit NAICS industry level.

Like capital, we compute real investment as the sum of real structure and equipment investment by

deflating the respective nominal investment expenditures by the 3-digit NAICS industry investment

price deflators from the BEA. Our capital measure denotes the beginning-of-year stock values while

our investment and value added measures refer to flow values during the year.

2.2 Dispersion of returns and reallocation within firms

The goal of our empirical work is to study and document the dispersion of capital returns and

capital reallocation. In addition to informing researchers about the empirical patterns necessary

to calibrate micro-founded macroeconomic models, we place a novel emphasis on assessing the

relative importance of dispersion across firms and within firms. To get an idea of the relevance of

multi-plant firms, Table 1 displays aggregate economic statistics by firm type. While single-plant

firms dominate in numbers, it is the multi-plant firms that operate the majority of the capital

stock, produce most output and generate most investment. Moreover, about half the capital stock

is operated by firms which consist of five or more plants. This suggests that firms have to consider

a complex hierarchy of production units when allocating capital inside their firm. We now proceed

to what extent capital returns and investment rates differ across plants within multi-plant firms

and how that compares to the differences between firms.

We denote the cross-sectional variance of capital returns displayed in equation (1) by σt. Since
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Table 1: Economic activity by firm type in U.S. manufacturing

Share of...
plants value added capital stock investment

Single-plant firms 0.760 0.298 0.260 0.293
Multi-plant firms 0.240 0.702 0.740 0.707

Firms with at least...
... 5 plants 0.122 0.438 0.499 0.462
... 10 plants 0.073 0.244 0.293 0.267
... 15 plants 0.051 0.157 0.184 0.173

Note: The sample underlying this table comprises all establishments in the Census of Manufactures 1972-2007 less
administrative records. The share of each variable in multi-plant vs. single-plant firms is computed for each Census
year and then averaged across Census years.

capital returns are expressed in units of industry good per unit of capital, comparing dispersion of

capital returns across industries is not very meaningful. Any arbitrary definition of what constitutes

a typical good in an industry will automatically impact the dispersion of measured capital returns

in the economy. We therefore focus on dispersion of capital returns within a typical industry and

report results that are averaged across industries (details on the aggregation provided in Appendix

A.3.1). We define an industry at the 4-digit NAICS level which makes goods within such industries

sufficiently homogeneous to compare their capital returns while leaving enough observations in an

industry-year cell to reliably study heterogeneity. In a given 4-digit NAICS industry, capital returns

dispersion can be decomposed into the dispersion between firms, denoted by σBt , and the average

dispersion between plants within firms, denoted by σWt :

V art (Rnt) ≡ σt =
∑
j

ωjt
(
Rjt −Rt

)2
︸ ︷︷ ︸
σB
t average between-firm

+
∑
j

ωjt

Nj∑
n∈j

ωjnt
(
Rnjt −Rjt

)2
︸ ︷︷ ︸

σW
jt within firm j︸ ︷︷ ︸

σW
t average within-firm

(2)

where n indicates the plant, j the firm and t the year. Rnjt denotes the logarithm of the net capital

return of plant n belonging to firm j in year t, Rjt the average return in firm j in an industry,

and Rt the average level of returns in a given industry. ωnjt is the weight of plant n at time t,

ωjt that of firm j and ωjnt that of plant n just inside firm j. While unweighted dispersion is our

benchmark, we also consider capital weighted dispersion to get a measure of “economic relevance.”

In the former case ωnjt = 1/Nt (where Nt is the number of observations), in the latter ωnjt = knjt/kt

and accordingly for ωjt and ωjnt. The basic results of that decomposition are displayed in Panel A.
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of Table 2.

Table 2: Cross sectional moments of capital and investment

Capital returns Investment rates
log(y/k) i/k

A. Dispersion across and within firms
Share of overall variance originating ...

... between firms 0.399 0.321

... between plants within firms 0.601 0.679

B. General moments across plants
Standard deviation 0.915 0.306

(0.003) (0.009)

Inter-decile range 2.162 0.164
(0.012) (0.036)

Coefficient of skewness 0.554 6.221
(0.005) (0.005)

Kelley skewness 0.118 0.491

Excess kurtosis 1.699 60.213
(0.011) (0.011)

Note: Data underlying Panel A. are our benchmark panel comprising annual plant-level data from the ASM 1972-
2009. Moments in Panel B. are based on all Census years 1982-2007 are computed for each industry and years first
before being aggregated by industry and the averaged across years. For details see Appendix A.2.

Two results from our simple accounting exercise stand out: First, overall dispersion in capital

returns is large. In the average industry and year, the standard deviation of log capital returns

is 0.915. This means that a plant one standard deviation above the mean produces e0.915 ≈ 2.5

times the value added as the average plant with the same capital stock; the difference between the

plant at the 90th percentile compared to that at the 10th percentile even implies an e2.162 ≈ 8.7-fold

value added difference. Reallocating capital to high-return plants in the same industry should hence

result in a considerable boost in aggregate output. If one interprets capital returns dispersion as

misallocation, this means that the economy foregoes a lot of income.

The second conclusion of our accounting exercise is that the majority of dispersion occurs inside

firms rather than between firms: over 60% of capital returns dispersion in a given industry is ex-

plained by variation of capital returns within firms. The aforementioned benefits from reallocation

would thus firstly stem from reallocation across the production plants within a given firm. Analo-

gously to the above exercise, we document that a plant one standard deviation (0.709) above the

firm’s average produces twice the value added with the same capital stock as the firm on average.

Interestingly, the cross-sectional distribution of capital returns is positively skewed which is

consistent with the presence of credit constraints: productive firms may have too little capital which
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thus drives up their return and skews the returns distribution to the right. Following Kelley (1947),

p. 250, we define the Kelley skewness as γKelley = R90+R10−2R50

R90−R10 . This quantiles based measure of

skewness is 0.118 on average which means that the top half of the distribution, R90−R50 is about

1.118/0.882 = 27% more spread out as the bottom half of the distribution, R50 −R10.

Investment rates also differ substantially across production plants which means that capital is

allocated very differently across these units. Since investment rates are measured in percentage

points, they are not subject to the same industry-specific measurement problems present with

capital returns. The cross-sectional standard deviation of 30.9% is large given that the average

plant in the economy has an investment rate of 10.2%. Like with capital returns dispersion, the

majority of investment rate dispersion originates within firms rather than between firms: within a

given industry the within-firm share of investment rate variance amounts to almost 70%.

2.3 Robustness

Our main empirical result is that most dispersion in capital returns and capital reallocation orig-

inates within firms rather than between firms. In this section, we briefly consider if this result

is driven by a particular subset in our benchmark sample or could just reflect measurement error.

Details for these robustness exercises can be found in Appendices A.3.2 and A.3.3. At this point, we

give a concise overview of the main robustness checks we consider and whose results are displayed

in Figure 1.

Note the baseline result of within-firm versus between-firm dispersion of both capital returns

(navy blue on the left) and investment rates (light blue on the right) in the top panel of Figure 1.

Our first robustness check rules out our result being driven by entry, exit or life cycle dynamics.

We therefore redo the decomposition on a strongly balanced panel, but as seen in Panel (a) the

share of within-firm dispersion is even larger at 81% and 90%, respectively.

Second, we want to rule out that temporary plant-level noise artificially increases the within-

firm share of dispersion. In firms with many plants this plant-level noise would disappear at the

firm level. The between-firm variance would then not be biased a lot while the within-firm variance

would be biased upward. It is therefore conceivable that between-firm dispersion is more precisely

measured as within-firm dispersion which might reflect a considerable portion of high-frequency

noise. To rule out that effect, we construct rolling 5-year windows of average capital returns and

investment rates for each plant. This time aggregation should equally filter out high-frequency noise

at the plant level. Redoing the between-firm/within-firm decomposition of this sample of five-year

window shows that the importance of the within-firm share of dispersion persists. As shown in

Panel (b) of Figure 1, the within-firm share of overall dispersion in an industry are 55% and 66%,

respectively. This suggests that plant-level noise does play some role in inflating the within-firm

share, but it does not make up more than a small five percentage point difference.

In Panels (c) and (d) of Figure 1 we carry out the decomposition separately for publicly traded
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Figure 1: Within-firm share of overall dispersion σW
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and privately held firms. While within-firm dispersion dominates in both subsamples, private firms

appear to be characterized by a larger share of within-firm dispersion of 71% and 80%, respectively.

This points to differential access to finance as a potential source of higher dispersion.

Our next robustness checks revolve around economic relevance. Instead of using the unweighted

decomposition, we consider capital weights for the ω’s in equation (12) and redo the decomposi-

tion. Panel (e) shows the within-firm share of dispersion which declines slightly, but remains still

dominant at 54% and 68%, respectively. In Panel (f), we display the results from focusing only on

equipment capital which can more easily reallocated across production units than structure capital.

Again, the results of the unweighted between-firm/within-firm decomposition are almost unchanged

at 59% and 63%, respectively.

Even though our benchmark definition of an industry is fairly fine at the level of the 4-digit

NAICS industry, heterogeneous products could potentially lead to spurious differences of capital

returns that merely reflect changing product composition within industries. Instead of just defining

industries finer at the 6-digit NAICS level, we go one step further and limit attention to those

6-digit NAICS industries considered in Foster et al. (2008) which produce an almost perfectly

homogeneous good such as cement, sugar, coffee beans etc.3 Naturally, we expect the within-firm

share of dispersion to be smaller because many firms have operations in several 6-digit industries

within the same 4-digit industry. But even in these homogeneous and fine industries, the within-

firm share of dispersion in capital returns and investment rates displayed in Panel (g) amounts to

56% and 69% respectively.

Lastly, we only consider the Census years which allow us to focus on the full sample of manufac-

turing plants in the economy. This means we can consider many small firms with a low within-firm

dispersion which are not sampled every year in the ASM. Panel (h) shows that the within-firm

share or dispersion is slightly lower but still remains dominant at 57% and 66%, respectively.

Our robustness checks show that the dominance of the within-firm share of dispersion in both

capital returns and investment rates does not appear to be an artifact of life-cycle dynamics, high-

frequency measurement error at the plant level, the predominance of multi-plant firms with little

capital, the type of capital heterogeneous products or the sampling of the ASM. In Appendix A.3.3

we rule out our results driven by further variants of measurement error.

3 A model of the multi-plant firm

In this section, we describe, solve, simulate and analyze a simple model of a firm comprised of several

plants. We study how various plant- and firm-level frictions interact with the optimal allocation of

capital by the firm across its plants. The interdependency of a plant’s capital allocation varies. At

3These industries comprise Sugar (31131), Bakery products (311812), Coffee (31192), Block ice (312113), Plywood
(321211), Corrugated Boxes (322211), Gasoline (32411), Carbon Black (32518), Cement (32731), Concrete (32732).
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one extreme, the firm is a collection of disconnected plants: decisions are made on a plant-by-plant

basis, without any interactions between them. We show that in the presence of frictions at the

firm level, the firm alters the size and timing of plant-level investment plans which may result in

dispersed capital returns across its plants. At the other extreme, firm-level frictions may induce the

firm to treat several perfectly identical plants differently. After describing and solving the problem

of the multi-plant firm, we will examine how much dispersion in capital returns a calibrated version

of our model can generate and how much capital returns dispersion remains unexplained.

3.1 The problem of the firm

We focus on the basic problem of a firm that operates two plants n, n = A,B. We limit our model to

only two plants in an effort to keep the numerical analysis of our model, which features non-convex

policies, computationally feasible. A larger number of plants would increase the state vector of a

firm which contains the capital stock and the technology level of each plant; in addition to that,

any interactions between plants within the same firm would increase exponentially in the number

of plants thus complicating the analysis without adding insight in the underlying fundamental

economic mechanisms. Our choice to limit attention to two-plant firms allows us to consider the

interactions of several plants within the organizational unit of the same firm while minimizing

the computational burden. We first consider the technology and constraints at the level of the

individual plant before extending the analysis to the level of the firm. In the following, lower case

letters refer to plant variables, upper case letters to firm variables and bold upper case letters refer

to vectors of a firm’s plant variables. For better readability, we omit time subscripts and denote

variables in the next period by a prime.

3.1.1 Technology and frictions at the plant level

Each plant n is characterized by total factor productivity which may include a firm-specific compo-

nent that is common to both plants. The plant operates a Cobb-Douglas production function which

combines the beginning-of-period capital stock knt and other variable inputs in order to produce

output ynt. While capital is fixed throughout the period, we assume that plants can freely choose

any other variable inputs in perfectly competitive markets. This means we can substitute out any

static first-order condition for variable inputs and write plant revenues net of variable factor costs

as

ynt = zntk
α
nt. (3)

znt contains plant total factor productivity and prices of other statically chosen production factors

and α is the scaled production elasticity of capital. The productivity level of plant n which belongs

to firm j consists of a firm component common to both plants in the firm and an idiosyncratic
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plant component; both evolve as follows:

znjt = ρpznjt−1 + ηnjt

zjt = ρfzjt−1 + ηjt.

with Eηnjt = Eηjt = 0, V (ηnjt) = (σf )2 and V (ηjt) = (σf )2.

The capital stock of plant n depreciates every period at rate δ and grows with investment int,

so it evolves over time according to the conventional expression

knt+1 = (1− δ)knt + int.

As documented in a number of studies (see Cooper and Haltiwanger (1993), Cooper et al. (1999),

Doms and Dunne (1998), Caballero and Engel (1999) among others), investment dynamics at the

plant level are characterized by lumpiness: multiple periods of inactivity (no or only small amounts

of maintenance investment) are followed by “investment spikes.”4 The traditional modeling feature

used to reproduce this stylized fact is to introduce a fixed cost of investing: the firm must pay

a certain cost, ψknt, if investment is greater than zero. Such costs can arise because investment

activity – no matter how small or large – has a disruptive effect on production activities in the

short run, for example. The parameter ψ regulates how much revenue is foregone when the plants

needs to shut down production in order to install new capital. As a result of aggregation, firm-level

investment activity will be less lumpy, as documented in Eberly, Rebelo and Vincent (2012).

In addition to this non-convex adjustment cost, we include a traditional quadratic adjustment

cost. This convex adjustment cost captures the notion that larger investment projects become

increasingly disruptive with size.5 The parameter γ below captures the importance of this margin.

To summarize, frictions at the plant level will be expressed as:

θ (int, knt) =

[
ψI
{
int
knt

> ϑ

}
+ γ

(
int
knt

)2
]
knt (4)

where I is an indicator function equal to 1 if the plant investment rate is above ϑ; ψ is a parameter

regulating the foregone sales if the plant undergoes an investment, and γ regulates the impact of

the quadratic adjustment cost. Everything is scaled by the plant’s capital stock knt in order to

eliminate size differences.

Combining equations (3) and (4) above, plant cash flow is

πnt = zntk
α
nt − θ(int, knt). (5)

4Investment spikes are usually defined as investment rates exceeding 15% or 20%.
5This formulation is similar to assuming lower profitability during large capital adjustments which has been

documented by Power (1998), Sakellaris (2004).
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3.1.2 Technology and frictions at the firm level

What sets plants in a multi-unit firm apart from their identical counterparts in single-unit firms?

What are the economic benefits the firm provides to its own plants? This section discusses the

allocation of funds within the firm.

A firm collects the cash flow from all plants and decides on how to allocate funds across its

plants for investment projects. This means firm cash flow is

Πt = πAt + πBt − Φ. (6)

Managing firm-wide operations requires overhead inputs such as firm management which every firm

needs to pay in order to be functional. This overhead fixed cost, denoted by Φ, reflects items such

as management costs, overall firm infrastructure, expenditures for R&D, marketing etc. Hence,

compared to single-unit firms, multi-unit firms benefit from operating two plants with the same

corporate overhead.

Second, while all production and investment activities take place at the level of the individual

plant, only the firm is capable of organizing external finance. This assumption is realistic and

sensible: while large and complex firms like General Electric operate hundreds of plants, only the

firm issues bonds, borrows from banks or raises equity. Typically, the firms then allocate these

funds in an internal capital market to individual plants. Consistent with this empirical pattern,

we assume that it is the firm that co-ordinates investment plans across all its plants, organizes

financing of investment through either internal cash flow or external borrowing and allocates funds

to plants where investment is put in place. Only if desired firm-wide investment exceeds firm cash

flow, the firm attempts to borrow amount Bt+1 at net interest rate Rt so that all investment gets

financed:

iAt + iBt = It ≤ Πt +Bt+1. (7)

Organizing external financing, however, is an imperfect process. Following the literature on

financial frictions, we assume there are two types of frictions: First, there is a financial participation

cost ζKt if the firm wants to borrow at all. This cost reflects the effort to establish a relationship with

a lender, expenditures for various information and disclosure requirements and other administrative

expenses independent of the loan amount. Like the real investment adjustment cost above, this

cost is scaled by the capital stock. Second, we assume that the firm can divert a fraction 1/λ of

the loan amount Bt+1 to its private benefit. This diversion of resources cannot be observed or

prevented by the lender. As a consequence, the lender will require collateral which it can seize in

case it discovers ex post that the firm did divert funds. We assume that firms pledge a fraction

ξ of the value of their capital stock, Kt = (kAt + kBt), as collateral. Given the posted collateral,

lenders will limit the loan such that the diverted loan amount never exceeds the collateral in order
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to avoid ex post moral hazard unprofitable for the borrower:

Bt+1

λ
≤ ξKt. (8)

Note that one can think of λξ as the maximum leverage the lender is willing to tolerate. We

summarize the cost of external finance in the following function

Θ(Bt+1,Kt) =


0 if Bt+1 = 0

ζKt if 0 < Bt+1 ≤ ξλKt

∞ if Bt+1 > ξλKt.

(9)

Note that Θ(·) captures the net present value of the borrowing cost associated with Bt+1. The

interest rate payments next periods have a net present value of βRtBt+1. Since there is no risk in

our model, the firm’s borrowing rate Rt is equal to the risk-free interest rate which in turn equals

the inverse of the discount rate, so the net present value of the linear part of borrowing costs exactly

equals Bt+1. Of course, this would change once we introduce any risk of bankruptcy along the lines

of Townsend (1979) which would drive up Rt above the risk-free rate and make the middle portion

of the borrowing cost in equation (9) monotonically increasing in the borrowing amount Bt+1.

Total cost of investment in a given plant depends on the investment amount in that plant, the

combined investment in the rest of the firm, whether or not the firm needs to borrow and if it

possibly runs into the collateral constraint. The total cost of investment in plant A then consists

of fixed and quadratic adjustment costs (real costs θ(iAt/kAt) in equation (4)) as well as fixed

borrowing costs (financial costs Θ(Bt+1,Kt) in equation (9)). The latter part depends on how

much the other plant in the firm, plant B, invests as it dictates how fast and how much the firm

needs to borrow. Thus, investment in one plant imposes an externality on investment in the rest

of the firm because it depletes internal funds and imposes a borrowing cost that is shared by the

entire firm.

We plot the total cost of investment in Figure 2 to illustrate the multiple non-convexities and

how the interaction of investment across plants shape the cost of investment for the firm. Note

that in these plots we assume that ψ, the parameter that regulates the fixed costs of investing in

a plant, is “small” in the sense that the minimum investment in one plant can be financed using

internal funds of the firm. If they were excessive, even the minimum investment to justify the

fixed investment adjustment costs would require borrowing. In that case, the effective fixed cost of

investing in any plant would be (ψ + ζ)knt.
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Figure 2: Total cost of investment

(a) Total cost of investing in plant A when
iBt can be fully financed internally

(b) Total cost of investing in plant A when
iBt cannot be financed internally
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ψkA
λξK + Π – iBΠ – iB
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Financial Cost
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(c) Total investment costs from the firm’s perspective

Note: Panel (a) on the left displays total cost of investing in plant A when investment in the rest of the firm does
not exceed internal funds 0 ≤ iBt ≤ Πt. Then, small amounts of iAt can be financed with left over internal funds
(Πt − iBt) without incurring borrowing costs. Any investment exceeding that amount makes the cost level jump due
to the fixed borrowing cost ζKt. Panel (b) on the right displays the case when the firm already needs to borrow to
finance investment in the rest of the firm. Even zero investment in plant A means fixed and linear borrowing costs
ζKt + R(iBt − Πt). Investment in either case is always limited by the collateral constraint: Bt+1 ≤ ξλK ⇔ iAt ≤
ξλK + Πt − iBt. Panel (c) shows the the total cost jointly for kAt = 1, kBt = 3, ζ = ψ = 0.02, γ = 0.04, ϑ = 0.03,
ξ = 0.05, λ = 2 and Πt = 1.4.
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3.1.3 Firm value and firm policy

We define the vectors of technology levels and capital stocks within the firm as Zt = {zAt, zBt}
and Kt = {kAt, kBt}, respectively. Given the plant-level fixed adjustment cost, the firm’s state

will consist of the distribution of capital stocks Kt and technology levels Zt across plants within

the firm. The firm chooses investment in either plant A and B in order to maximize firm value

which consists of the net present value of discounted future gross profits net of investment and

borrowing costs. When choosing the investment levels in either plant, the firm takes into account

the various adjustment costs and whether or not borrowing is required to finance the desired level

of investment. The firm’s problem can be written in recursive form as:

V (Zt,Kt) = max
iAt,iBt,Bt+1

{
Πt − It − Φ−Θ(Bt+1,Kt) + βEV (Zt+1,Kt+1)

}
s.t. k′nt = (1− δ) knt + int ∀n = A,B

Bt+1 ≤ ξλKt.

It ≤ Πt +Bt+1.

This value function embeds three non-convexities: the fixed investment adjustment cost, ψ, the

fixed borrowing cost, ζ, and the collateral constraint ξλ.6 All three non-convexities give rise to

“inaction regions” in the firm’s state space where the firm may choose to not change investment

and/or borrowing even though the underlying productivity shocks z do. In those regions, the

realized capital return will also differ from that of a frictionless investment model. The three non-

convex investment/borrowing costs make the solution of the firm problem fairly complex and there

are consequentially at most seven different7 cases of investment-borrowing decisions each of which

reflect investment and borrowing (in)activity in the various parts of the firm.

We illustrate the investment policy for plant A and the firm’s borrowing policy in Figure 3 for a

given amount of investment in plant B assuming that internal funds Πt are sufficient to finance small

amounts of investment. In principle, investment in either plant iAt is monotone in its productivity

zAt. The fixed investment adjustment costs prevent small amounts of investment that would not

justify paying the fixed cost ψkAt. So investment will not change unless z exceeds a threshold

z0(kAt). At z0(kAt) the expected benefit from investing, E ∂V ′

∂k′At
iAt, equals the fixed costs, ψkAt.

Because the latter are modeled proportional to kAt and because of decreasing returns to scale, the

first threshold will depend on kAt. Note that z0 does not depend on firm variables. Investment

6We refer to these frictions as non-convexities even though the last one is strictly speaking only a non-
differentiability; but it has similar results for the dispersion of capital returns within the firm as the non-convexities.

7With three binary decisions, there are eight cases, but when neither plant invests the firm would never borrow
thus making one case redundant. We restrict the investment fixed adjustment cost ψ to be small. If it were extremely
high, even the minimum investment which justifies paying the fixed cost would require firm borrowing and there
would only be four cases. Then, there is no role for an internal capital market to finance investment because it never
suffices even for the minimum investment in one of the two plants.
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jumps and then increases monotonically in productivity. The quadratic investment adjustment cost

regulated by γ increase the marginal cost of investing but do not break the monotonicity. Plant

investment increases until the firm’s internal funds are exhausted at z1
At(kAt; zBt, kBt). Notice that

this second threshold of productivity for plant A depends on investment in the rest of the firm, i.e.

iBt, and vice versa. This is because investment expenditures in the other plants entail a negative

externality for plant A as it depletes internal funds of the firm.

As with the fixed adjustment cost at the plant level, the fixed borrowing costs, ζKt, prevent

the firm from borrowing small external funds. This means there is another region of productivities

[z1
At(·), z2

At(·)] where investment does not respond to productivity. Only at productivities above

z2
At(zAt, kAt; zBt, kBt) is it worthwhile for the firm to pay the fixed borrowing cost. This third

threshold depends on investment needs in the entire firm and hence depends on the levels and the

distribution of capital stocks and the productivity shocks. Investment again increases monotonically

in productivity above z2
At(·) until productivity threshold z3

At(zAt, kAt; zBt, kBt) at which point the

firm’s borrowing demands are limited by the collateral constraint.

3.2 The effects of financial constraints on capital allocation and capital returns

In the previous section, we described how investment at the individual plant is affected by firm-

level frictions. Understanding these micro-level dynamics is helpful to gain intuition about the joint

dynamics of capital returns and capital reallocation within the firm, which is central to the model.

We will now describe the effect of each firm-level financial constraint on the dispersion of returns

and investment rates and further moments that can be empirically checked in the data. We will

explain how interactions between the plants within the firm shape the investment and borrowing

policy qualitatively and then assess these patterns quantitatively.

For the quantitative analysis, we solve the model using a value function iteration procedure

which is described in detail in Appendix B. Once we obtain the optimal investment and borrowing

policy, we simulate a panel of 1,000 two-plant firms for 1, 000 periods and study the resulting

within-firm and between-firm dynamics of investment and capital returns. We repeat this exercise

several times changing the calibration of the various investment and financing frictions to assess

their quantitative effects.

3.2.1 Benchmark model

The model with only quadratic investment adjustment costs is our benchmark. We choose this

because comparing the effect of frictions to a completely frictionless model would make many

moments such as capital returns dispersion zero thus rendering quantitative comparisons useless.

We exclude fixed investment costs from the benchmark because this non-convexity will itself be a

significant and known source of returns dispersion which we want to compare to the new firm-level
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Figure 3: Firm borrowing and plant investment
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Note: Schematic illustration of firm borrowing, plant investment policy functions and realized capital returns. This
illustration assumes that the other plant does not invest at all and that physical adjustment costs ψ are smaller than
fixed borrowing costs ζ, so that firms start investing without having to borrow; otherwise z0 and z2 would coincide.

21



frictions.

3.2.2 Effects of fixed borrowing costs: Less frequent borrowing, lumpier investment

The fixed borrowing costs imply that the firm will only borrow amounts large enough to justify

paying the fixed costs. The firm tries to smooth these costs over time by “saving”, which in our

model happens through capital accumulation. More capital makes it less likely future borrowing

will be needed as often, which in turn reduces the incidence of the fixed borrowing costs. This

results in prolonged periods during which the firm will not borrow and finance all – if any –

investment internally. Realized capital returns then fluctuate with productivity shocks and will

start to diverge as the firm refrains from borrowing and investing in order to align capital returns.

As a consequence, within-firm dispersion of capital returns may reflect the fixed borrowing costs

faced by the firm rather than misallocation. Below, we will study the quantitative impact of this

firm friction on within-firm dispersion.

Our model makes further predictions that we can utilize to study the effects of fixed borrowing

costs. First, fixed borrowing costs lead to investment spikes that are synchronized across plants

within the firm. Since the firm only borrows rarely, it will then find it optimal to borrow large

amounts and pay the fixed investment adjustment costs in both plants. In those periods of firm-

wide investment, the correlation between investment and capital returns is high, while the opposite

is true during the long periods of internally-financed small investment projects. The latter tend

to dominate, leading to lower overall correlation between investment and capital returns. Finally,

because fixed borrowing costs make investment at the plant level even lumpier, the autocorrelation

becomes even more negative and so does investment at the firm level.

3.2.3 Effects of collateral constraints: Staggered investment across plants

Collateral constraints also limit firm access to external finance. Unlike borrowing costs, however,

they prevent borrowing large sums and do not discourage borrowing small amounts: in that sense,

they have an effect opposite to that of fixed borrowing costs. The firm will only run into that

constraint if it wants to borrow large sums, which happens when both plants receive large positive

technology shocks. The firm will try to smooth out this type of borrowing constraint by staying

away from it which means to borrow more often and smaller amounts. This constraint is particularly

binding when both plants receive a technology shock. Because it faces a borrowing limit, the firm

utilizes its internal capital market to finance capital projects in one plant at a time. In other words,

it rotates investment plans across its plants. Seen over time, investment across the individual plants

within a firm looks staggered.

Because the collateral constraint makes the firm borrow more often and smaller amounts, the

correlation between investment and capital returns increases. Perhaps most interestingly, the cor-
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relation of investment within the firm drops sharply to negative reflecting the staggering pattern

of investment across a firm’s plants. Consistent with that, the firm avoids large investment spikes

in its plants at the same time.

4 Quantitative analysis

4.1 Calibration

Table 3 summarizes the parameter values used for the quantitative analysis. Most values are based

on moments from the ASM dataset and are in line with calibrated parameters generally used in the

investment literature. Of note, the fixed investment adjustment costs are lower than those estimated

in Cooper and Haltiwanger (2006), Asker et al. (2014). This is because the fixed borrowing costs ζ

reinforce the effects of fixed investment adjustment costs ψ. As a result, estimating a model that

does not take into account firm structure will confound the two and bias the inferred value for ψ

upwards. In addition, when we use the value from Cooper and Haltiwanger (2006), we find that the

minimum investment projects needed to justify the fixed adjustment costs are so large that they

usually require borrowing. While this case may be theoretically possible, it seems not very plausible

that even minimal investment cannot be financed out of the combined firm’s internal funds.

Given the lack of hard evidence to support the calibration of the borrowing fixed cost ζ, we

remain conservative and pick a small value equal to only 0.01% of the firm capital stock. Also, we

start with no firm fixed production cost, which mostly acts as a scale factor anyway.

Table 3: Model Calibration

Parameter Meaning Value Target/Source

β Discount rate 0.95 Long-run real interest rate
α Production elasticity 0.636 ASM data
δ Depreciation rate 0.089 Mean from BLS Mfg capital tables
ψ Fixed inv. adj. cost 0.039 Cooper and Haltiwanger (2006)
γ Quadratic inv. adj. cost 0.049 Cooper and Haltiwanger (2006)
ζ Fixed borrowing cost 10−4 See text
ξ Size of collateral 0.1 10% of capital can be posted as collateral
λ Collateral constraint 2.5 Borrowing firm can divert 40% of loan
Φ Firm fixed cost 0 See text
ρp TFP persistence plant 0.6 serial correlation of log(y/k)p: 0.25

ρf TFP persistence firm 0.85 serial correlation of log(y/k)f : 0.31

σp TFP shock plant 0.25 volatility of log(y/k)p: 0.33

σf TFP shock firm 0.24 volatility of log(y/k)f : 0.26
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4.2 Financial constraints, investment activity and dispersion

In order to better understand the behavior of the firm, we now turn our attention to the model

simulations. We focus on the impact of external financial constraints on various moments to get a

better sense of the behavior of the multi-plant firm.

From the first panel of Figure 4, we can see where the increase in dispersion comes from: as

the collateral constraint limits the ability of the firm to borrow, the correlation in investment

activity across plants within the firm drops dramatically from its benchmark value of 0.42 in the

unconstrained case. In fact, for low-enough values of λ, the cross-plant investment correlation turns

negative, reaching a trough of -0.19 with our parameterization.

Figure 4: Effect of external financial constraints on the multi-plant firm economy
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The second panel illustrates the mechanics behind the drop in correlation. Here, we plot two

additional moments. The first one represents the probability of observing synchronized investment

spikes, i.e. investment rates above 15% in both plants at the same time. As the collateral constraint

is tightened and access to internal finance is limited, the firm cannot allocate large amounts of capital

to both plants at the same time, even following a positive firm-level shock. Conceivably, an option

for the firm would be to invest smaller amounts in both firms to restrain how much it needs to

borrow on capital markets. But because of the presence of investment fixed costs, the firm would
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rather instead opt for desynchronization of investment activity across its plants. That is, in the

event of large positive firm-level shock, the firm allocates capital first to the plant with the highest

(expected) return on capital, then does the same for the second plant in the following period. This

is why the frequency of rotating spikes, i.e. an investment spike in one plant followed by a spike in

the other plant, rises as external financing becomes more limited.

Third, we plot in the the top panel of Figure 4 the relationship between the tightness of the

collateral constraint, determined by the parameter λ, and the degree of dispersion of logged ex-

pected capital returns (log (ynt/knt)) and investment (int/knt) within the firm. Both moments are

normalized to 1 in the scenario where the collateral constraint is not binding (λ = ∞). As the

constraint is tightened (λ gets smaller), dispersion within the typical firm rises sharply, increasing

by more than 40% for investment and 20% for capital returns once λ = 2.5 (firm cannot borrow

more than 25% its capital stock). The increase in dispersion eventually slows down, and dispersion

can even fall as the constraint becomes so binding that the firm rarely invests at all.

4.3 Aggregate implications: the social value of multi-plant firms

In the previous section, we studied how a multi-unit firm optimally allocates capital across its plants

when it is faced with limited access to external financing in addition to the traditional frictions

found in the literature. We found that the firm tends to stagger investment activity across its plants

to limit borrowing activity. As a result, dispersion of investment but also capital returns within

the firm rises.

In what follows, we ask ourselves a different but related question: could the rise in dispersion

observed within the firm be socially optimal, i.e. associated with higher aggregate output? To

investigate this issue, we simulate two almost identical economies, but for the presence of internal

capital markets. The first economy is similar to the exercise we have done so far: we simulate a

panel of 1,000 two-plant firms for 1,000 periods, where each firm can pool capital across its plants

to post as collateral. The second economy also consists of 1,000 two-plant firms subjected to the

same shocks. This time, however, each plant within the firm is considered to be a standalone unit:

it must borrow on its own by posting its specific capital as collateral. Besides that, it faces exactly

the same constraints and frictions as the plants in multi-unit firms. In other words, we create a

“wall” between the plants that bars them from pooling resources when comes the time to access

external financial markets. This exercise allows us to specifically isolate the role of the firm in

creating internal capital markets and allocating new investment across its plants.8

Table 4 compares a number of moments across the two economies under the presence of collateral

constraints (λ = 2.5), as well as the case in which such constraints are absent (λ = ∞). In this

latter scenario, the single-plant and multi-plant firm economies are by definition identical. In line

with our previous findings, we find that the presence of financial frictions raises dispersion in a

8We leave to future work the simulation of a full general equilibrium model with an endogenous interest rate.
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world of multi-unit firms. With standalone plants, however, dispersion tends to fall relative to

the unconstrained benchmark. Similarly, the correlation of investment across plants turns negative

within multi-unit firms, yet increases somewhat once the plants cannot pool resources and need to

borrow on their own.

The bottom panel of the table pertains to the aggregates across our economies: we sum up

output, investment and capital across all firms for each period, and take the time-series average.

One can notice a striking result: the multi-plant firm is capable of undoing most if not all the

effets of financial frictions, with aggregate variables remaining almost unchanged relative to the

unconstrained benchmark. This is true even if the presence of collateral constraints raises dispersion

of capital returns. On the other hand, the same frictions imposed on an economy populated by

firms comprised of standalone plants exhibits lower aggregate output and lower dispersion.

Table 4: Comparing multi-plant (MUF) and single-plant (SUF) firms

Moment No frictions λ = 2.5
(MUF = SUF) MUF SUF

1. Plant-level moments
Share of within-firm dispersion of E[log(y/k)] 0.150 0.193 0.123
Share of within-firm dispersion of i/k 0.298 0.615 0.353
Corr(i/kAt, i/kBt) 0.437 -0.095 0.320

2. Aggregate Moments
Aggr I 0.474 0.471 0.457
Aggr K 0.534 0.530 0.514
Aggr Y 0.130 0.130 0.127
Aggr V 314.2 312.7 307.7

We investigate this finding further by simulating the impact of a tightening of the collateral

constraint in our two economies. The left panel of 5 shows the relative dispersion of capital returns

as λ decreases, i.e. borrowing becomes more limited. In line with our previous findings, we can see

that as the constraint is tightened, the multi-unit firm optimally decides to generate more dispersion,

even if it could always decide to standalone-plants case by shutting down internal capital markets.

This optimal strategy at the firm level translates into higher levels of aggregate investment, capital

and output relative to an identical economy but for the fact that plants cannot pool resources to

access external finance.

To summarize, the insight from our model is that higher capital returns dispersion can be an

outcome of constrained efficient behavior by multi-plant firms. This higher dispersion is not a sign

of resource misallocation in the economy, but instead of an optimal decision by the firm to stagger

investment activity in order to circumvent financial constraints.

In other words, our findings cast doubt on the notion that dispersion in capital returns neces-
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Figure 5: Multi-plant vs. single-plant firms, dispersion and aggregates

Note: Each value corresponds to the ratio of a specific moment in the multi-plant-firms economy (MUF) relative to
the same moment for the economy composed of firms that cannot pool capital across plants (SUF). Ratios of average
within-firm capital returns dispersion (left panel) and aggregate investment, capital and output (right panel) are
plotted for various values of the collateral constraint parameter λ.

sarily indicates inefficiencies.

4.4 Rethinking the gains from eliminating misallocation

• Previous sections showed that measured dispersion reflects both inefficient distortions and

constrained efficient behavior of multi-plant firms.

• Developing countries have almost no multi-plant firms while in the U.S. multi-plant firms

account for he majority of economic activity.

• Thus, dispersion in developing economies reflects solely distortions while in the U.S. almost a

quarter of dispersion can be attributed to constrained-efficient firm behavior (see quantitative

analysis in Section 4.3 above).

• Fostering output in developing countries can be done in two ways:

First, give them multi-plant firms, so these firms can reallocate internally; this would increase

dispersion, output and welfare. Difference in returns dispersion now reflects distortions only,

not differences in firm complexity; this difference is larger than previously thought.

Second, reduce inefficient distortions. Because they were previously underestimated, bringing

down distortions to U.S. levels comes with larger output and welfare gains.
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• Conventional welfare gains exercises only consider the second avenue and underestimated the

true dimension of distortions.

• So, there are two additional output and welfare gains here:

First, gain from giving developing economies a more complex firm structure which facilitates

within-firm reallocation and increases output (previously not considered).

Second, gain which results from bringing down distortions to U.S. levels (previously underes-

timated).

• We intend to quantify both gains.

5 Collateral constraints in multi-plant firms: empirical evidence

5.1 Firm-level evidence

The previous sections documented a set of new facts and proposed a new theoretical model which

challenged the notion that high dispersion in capital returns necessarily reflects misallocation. While

our model is consistent with many data facts, we now want to demonstrate its empirical relevance

more directly. To do that, we verify the crucial features of our model mechanism in firms which

operate exactly two plants as in our model. The crux of the model mechanism was a collateral

constraints which limited external finance. The tighter this financing constraint, the more relevant

a firm’s internal capital market becomes which the firm uses to finance investment in at least a

subset of its plants. This meant that the more financially constrained, the more dispersed capital

returns, capital reallocation and the more prevalent “rotating investment spikes” as opposed to

“synchronized investment spikes.” We check for these patterns in two-plant firms in the data. As an

empirical proxy for the tightness of the collateral constraint, we choose the amount of the pledgeable

collateral which we identify as proportional to the plant’s capital stock.

5.2 Evidence for collateral constraints I: Staggering investment

We first check if unconstrained two-plant firms exhibit more synchronized investment spikes in

the wake of a firm-level technology shock. As the pledgeable collateral of a firm shrinks, our

model would predict that synchronized investment spikes become less common and firms transition

towards “rotating investment spikes.”

We first estimate the likelihood of synchronized investment spikes after a firm-wide technology

shock using the following probit model:

Pr(Xsync
jt = 1|Xjt) = Φ

(
Xjtβ

)
(10)
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where Xjt is a vector of controls which includes is the firm’s level of the productivity shock, ηjt,

and the dummy variable Xsync
jt is defined as follows

Xsync
jt =

1 if
iAt
kAt

> 0.15 and
iBt
kBt

> 0.15

0 otherwise.

We focus on the firm’s investment response to a firm shock because this provides the cleanest

example of the changing investment patterns as the financial constraint tightens. We estimate

equation (10) separately for ten deciles of two-plant firms along the value of the pledgeable collateral

and evaluate the marginal likelihood of a synchronized investment spike in the wake of a firm-wide

technology shock, i.e. a shock experienced by both plants. For disclosure requirements we have to

smooth the results of these deciles using a cross-sectional rolling-window average of five adjacent

deciles. Normalizing the probability of a “synchronized investment spike” to unity for the least

financially constrained firms, we plot the normalized probabilities in Figure 6 (solid dark blue line).

It shows that the financially most constrained firms are only 80% as likely as the least constrained

firms to respond to a firm-wide technology shock with an investment spike in both plants.

Figure 6: Synchronized and rotating investment spikes after firm TFP shocks
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In a similar vein, we estimate probit models where we regress a dummy variable if the firm

experiences a “rotating investment spike,” that is, both plants experience an investment spike in

the wake of a firm productivity shock, but just in subsequent periods. We estimate

Pr(Xrotate
jt = 1|Xjt) = Φ

(
Xjtβ

)
(11)

where Xjt is a vector of controls which includes is the firm’s level of the productivity shock, ηjt,
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and the dummy variable Xrotate
jt is defined as follows

Xrotate
jt =


1 if

iAt
kAt

> 0.15 and
iBt
kBt

< 0.15 and
iAt+1

kAt+1
< 0.15 and

iBt+1

kBt+1
> 0.15

1 if
iAt
kAt

< 0.15 and
iBt
kBt

> 0.15 and
iAt+1

kAt+1
> 0.15 and

iBt+1

kBt+1
< 0.15

0 otherwise.

Again, we evaluate the marginal probabilities, smooth them across deciles and normalize the prob-

ability in the least constrained group to unity. The results are plotted as the starred orange line in

Figure 6. In line with the model, the financially most constrained firms are more likely to respond

to firm shocks with a rotating investment spike. That is, the firms contemporaneously invests in

only one plant and invests in the other plant in the subsequent period. The empirical difference

of the likelihood of a rotating investment spike increases a lot with our proxy measure of financial

constraint: The most constrained firms are twice as likely to revert to rotating investment spikes

than financially unconstrained ones. All in all, we view this evidence as strong support for the

presence of our model mechanism.

5.3 Evidence for collateral constraints II: Within-firm dispersion

Lastly, we consider the within-firm dispersion in capital returns and capital reallocation. According

to our model, firms which are more credit constrained should experience more dispersion while

firms with a lot of pledgeable collateral should have an easier time managing to equate returns. We

compute the two dispersion measures by decile of pledgeable collateral and divide by the mean level

in each decile to account for level differences. Unlike the standard deviation, the resulting coefficient

of variation is dimensionless and can be easily compared across deciles. Again, we smooth out the

results across deciles as in the previous subsection and plot the results in Figure 7.

Indeed, computing the within-firm dispersion measures shows that investment dispersion mono-

tonically declines in our proxy for credit constraints: the most constrained firms have investment

dispersion within firms that is about three times as large as that for the least constrained firms.

The difference in capital returns is even stronger: the most constrained firms are about six times

as dispersed as the least constrained firms.

6 Conclusion

This paper showed that dispersion in capital returns need not indicate distortions. Motivated by

the evidence that dispersion mostly occurred within firms rather than across firms, we built a model

of a firm operating several plants. Such firms dispose over an internal capital market that helps

easing external financial constraints and supports aggregate investment, capital and output. Most

importantly, economies with multi-plant firms may well exhibit more dispersion in capital returns
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Figure 7: Productivity and investment dispersion (CV) within 2-plant firms
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than economies with single-plant firms, but still produce more aggregate output with the same

technologies.
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A Additional empirical evidence

A.1 Data

We mainly use confidential data on manufacturing establishments collected by the U.S. Census
Bureau which comprise the 1972-2009 Annual Survey of Manufactures (ASM), the Census of Man-
ufactures (CMF) from 1972-2007 and the Longitudinal Business Database (LBD) from 1976-2009.
These data inform us about age, output, capital stocks, investment expenditures and other inputs
at the level of the individual establishment. In the manufacturing sector, Census defines an “es-
tablishment” as a business location where the principal activity is production; we hence think of
an “establishment” as a production plant. The Census data also contain information about the
ownership of each plant (denoted by the variable FIRMID) which allows us to construct the ier-
archical plant structure of “firms” necessary for our main object of interest, the within-firm and
between-firm component of heterogeneity in returns, productivity and reallocation.

From the Census of Manufactures (CMF) and the Annual Survey of Manufactures (ASM)
we construct a large dataset of plants in the U.S. manufacturing sector. In order to obtain a
consistent longitudinal panel, we limit attention to the ASM and the ASM portion of the CMF
data (identified by establishment type ET=0). We prefer the ASM over the CMF as our benchmark
dataset because we want to test dynamic implications of our model of investment in multi-plant
firms the highest possible frequency. Many aspects of out mechanism would disappear at the
quinquennial frequency of the CMF. By focusing on the ASM portion in all years, we automatically
eliminate all administrative observations (identified by AR=1) which are imputed mainly off industry
means and would thus corrupt moments of the distribution we are interested in. Our resulting panel
spans the years 1972-2009, which allows us to study the long-run features of the dispersion of capital
returns and reallocation. Every year, we observe about 55k plants which total up to 2.1 million
observations.

We combine the Census data with industry-level data from several publicly available sources:
input and output price deflators from the NBER-CES Manufacturing Industry Database (NBER-
CES), various asset data from the the Capital Tables published by the Bureau of Labor Statistics
(BLS) and the Fixed Asset Tables published by the Bureau of Economic Analysis (BEA). Unless
otherwise noted, all datasets are at annual frequency. Most of the information contained in the non-
Census datasets (BEA, BLS, NBER-CES) other than the manufacturing data are merely needed to
estimate productivity and the replacement value of capital at current market conditions.9 To avoid
outliers driving our results about dispersion and the investment-productivity link, we drop the 1%
tails of the productivity and investment rate distributions in a given 4-digit NAICS industry.

A firm is defined as all manufacturing plants within the same FIRMID10 in a given year and
4-digit NAICS industry. If the same firm is active in several industries, we define each industry
operations as separate firms. Our within-firm dispersion measures are hence an understatement
because we ignore the between-industry component if within-firm dispersion.

9For more details about the primary data and their transformation needed to obtain measures of the real capital
stock and to estimate productivity, see the description in the appendix to Kehrig (2015).

10Song et al. (2015) identify firms off the EIN, the employer identification number, which comes from tax records.
Since we are interested in organizational control rather than tax liability and because the same FIRMID may operate
hundreds of EINs for tax purposes, we prefer FIRMID to indicate firms.
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A.2 Empirics of cross-sectional moments

• Provide details how Table 2, Panel B. was constructed.

• First, we compute cross-plant moments Mit and their standard errors in a given industry i
and year t. We adopt the formulae for the first four moments, the inter-quantile range and
their standard errors from Kendall and Stuart (1987). Kelley skewness is a quantile based
measure of skewness whose predecessor was proposed by Kelley (1947).

• Then, we aggregate across industries using that industry’s share in the capital stock:

Mt =
∑
i

ωitMit

Standard errors are computed according to this aggregation:

SEMt
=

√∑
i

(
ωitSEMit

)2

• Resulting “aggregate” time series of cross-sectional moments reveals:

– cross-plant standard deviation increases about 10 log points per decade; though the
within-firm between-firm split remains unchanged

– cross-plant skewness becomes more positive over time: Kelley skewness increases from
around zero (unskewed) to 0.25 (right tail about 1.66 times as wide a bottom tail).

• put some time series graphs here a la Gopinath et al. (2015)

A.3 Empirics of between-firm and within-firm moments

In this section, we detail how we compute the within-firm and between-firm dispersion in capital
returns and capital reallocation which underly Table 2, Panel A. and the robustness exercises in
Section 2.3.

A.3.1 Returns dispersion between and within firms

First, we decompose the overall variance in capital returns into three components: one between
industries (reflecting differences in measurement and the definition of capital and value added),
one between firms in a given industry and one across plants within a firm and industry. We define
firms that operate plants in separate industries as different firms, thus biasing the true within-firm
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component of dispersion downward.

σt =
∑
n

ωnjit
(
Rnjit −Rt

)2
=
∑
i

ωit
(
Rit −Rt

)2
︸ ︷︷ ︸
σInd
t between-industry

+
∑
i

ωit
∑
j∈i

ωijt
(
Rjit −Rit

)2
︸ ︷︷ ︸

σB
it between firms within ind. i︸ ︷︷ ︸

σB
t average between-firm

+
∑
i

ωit
∑
j

ωijt

Nj∑
n∈j

ωjint
(
Rnjit −Rjit

)2
︸ ︷︷ ︸

σW
jit within firm j and industry i︸ ︷︷ ︸

σW
t average within-firm

(12)

where n indicates the plant, j the firm, i the 4-digit NAICS industry and t the year. Rnjit denotes
the capital return of plant n belonging to firm j and industry i in year t, Rjit the average return

in firm j in industry i, Rit the average return in industry i, and Rt the average level of returns in
the economy.

An industry’s level of capital return is determined by the level of P kt and the asset bundle
it typically reflects in that industry. This and other industry-specificities in measurement will
artificially drive σInd – an object which we ignore for its lack of economic meaning. In our empirical
analysis in Section 2, we focus on σBi and σWi only as it is meaningful to compare them and how
much of the dispersion in capital returns within an industry originates within firms as opposed to

between firms in that same industry: Wi ≡
σW
i

σWi+σB
i

. When computing an “aggregate” number for

W, we compute the average of industry ratios which is weighted by ωi, i.e. that industry’s share in
plants or capital, depending if we are looking at unweighted or capital weighted dispersion.

Although investment rates do not suffer from the industry-specific measurement issues like
capital returns, we proceed in a similar way to assess between-firm and within-firm investment rate
dispersion.

A.3.2 Robustness

Table 5 provides the underlying details for each sample cut presented in Section 2.3. Equation (12)

is applied to each of these subsamples individually to check how much σW

σW +σB changes.
“Full panel” comprises all plants sampled in the ASM 1972-2009 as described in Appendix A.1.

“Mid-age” limits attention to plants which are at least three years old and three years away from
death. “Balanced panel” refers to plants perpetually alive and perpetually sampled from 1972-2009.
The two previous subsamples are aimed at filtering out the dispersion effects of life-cycle dynamics
such as strong investment in early stages and divestment/depreciation in the later stages of a plant’s
life. “5-year averages” computes 1/Tnt

∑2
τ=−2Rnt+τ where Tnt is the number of periods plant n is

observed in the five-year window around period t.
“Homogeneous industries” refers to those 6-digit NAICS industries considered by Foster et al.

(2008) which produce almost homogeneous goods. While the shift to 6-digit NAICS industries
likely reduces the importance of the within-firm share because firms are now defined to consist of
plants at only a 6-digit NAICS industry, this exercise allows us to assess how much our results
could be driven by product heterogeneity within 4-digit NAICS industries.

Splitting the sample into firms that are publicly traded and privately held examines the effect

37



Table 5: Capital returns dispersion within and between firms

Sample Covered share of V ar(log(y/k)) V ar(i/k)
value capital b/w plants b/w firms b/w plants b/w firms
added stock within firms within ind.’s within firms within ind.’s

Full panel 0.643 0.724 0.601 0.399 0.679 0.321
Mid-age plants 0.518 0.586 0.595 0.405 0.685 0.315
Balanced panel 0.167 0.219 0.809 0.191 0.895 0.105
5y-averages 0.405 0.472 0.554 0.446 0.656 0.344
Public firms 0.043 0.086 0.685 0.315 0.767 0.233
Private firms 0.511 0.419 0.713 0.287 0.795 0.205
K-weighted 0.126 0.143 0.540 0.460 0.680 0.320
Equipment 0.643 0.724 0.591 0.409 0.631 0.369
Homog. Ind.’s 0.641 0.723 0.559 0.441 0.689 0.311
Census 0.708 0.778 0.566 0.434 0.663 0.337

of access to financial markets and their control matters for the dispersion of capital returns.
“K-weighed” refers to the decomposition of (12) where the ω weights are the capital stock of

each plant, i.e. ωnjt =
knjt

Kt
where Kt is the aggregate capital stock n year t. “Equipment” limits

attention to value added per equipment capital only. “Census” finally comprises the cross section
of all plants in Census years which includes many more smaller plants not sampled in the ASM but
limits attention to the quinquennial frequency.

A.3.3 Measurement error

• Tackled already measurement error at plant level by looking at moving averages over 5-year
windows

• Also consider measurement error which is more fixed over time; to tackle this, we consider
capital returns which are computed using separate measures of capital and values added.

– K – use appropriately deflated values of TAB instead of PIM

– Y – use administrative data on sales from IRS instead TVS from CMF/ASM

– Y – use collected data on actual production from PCU instead of TVS

• all these should be correlated with the K and Y measures in the ASM (since they measure the
same underlying object), but still be different at time due to different coverage or handling
by the statistical agency

• we recompute capital returns using the three alternative measures and redo the cross-sectional
within-firm between-firm decomposition on these alternative measures.

• If dominance of within-firm share is true, then this should show up in all of these measures.
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• Since using these alternative measures limits our sample at times, we also recompute the
within-firm between-firm decomposition so we are comparing the moments for the same un-
derlying sample where we have both our benchmark measure as well as the alternative.

• Turns out, the differences in the within-firm share are marginal and almost always lie in the
95% error bands of the other measure. Only when using value added from the PCU the
benchmark differs from the alternative which yields an even higher within-firm share. Error
bands constructed from averaging across 86 NAICS-4 industries.

• This means that our main result of the within-firm dispersion accounting for the largest
portion in overall dispersion does not go away when using alternative measures of output and
capital.

Table 6: Accounting for measurement error

Alt. Measure Corr
(

log
( y
k

)bench
,

(
σW

σW +σB

)bench (
σW

σW +σB

)alt
log
( y
k

)alt)
I: CMF 1972-2007 KTAB 0.979 0.563 0.556

(0.008) (0.005)

II: CMF 2002-2007 Y IRS 0.990 0.538 0.542
(0.005) (0.005)

III: ASM 1974-2007 Y PCU 0.494 0.581 0.626
(0.015) (0.017)

Note: Table displays the within-firm share of overall dispersion for alternative measures of value added Y – collected
either from tax records or separately measured in the Plant Capacity Utilization Survey (PCU) – and capital K (real
replacement value at current market prices directly computed from book values instead from the perpetual inventory
method). Correlation of the computed capital returns measures are positive, some are high and the within-firm share
of overall capital returns dispersion is not statistically different at the 95% except when using value added from the
PCU which yields an even higher within-firm share. Error bands constructed from averaging across 86 NAICS-4
industries.

A.3.4 Returns skewness between and within firms

Like the cross-sectional variance, the cross sectional skewness can be decomposed into a skewness
component across plants within firms and one between firms. Let g denote the skewness of capital
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returns:
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where ωjt =
∑

n∈j ωnjt and ωjnt = ωnjt/ωjt.

B Model solution

— to be done —

C Estimating technology for multi-plant firms

C.1 Setup

Our quantitative analysis rests on the calibrated values for the production function and technology
shocks. Identifying technology shocks is hence a crucial determinant of our quantitative analysis.
Firm-level and plant-level shocks regulate how much capital returns dispersion emerge from the
volatility of shock processes rather than constraints the firm faces when choosing its internal resource
allocation. In this section we describe how we identify parameters α, ρf , ρp, σf and σp in the model.
We estimate these consistent with the assumptions of the economic model in Section 3. In doing
that, we extend the estimation of technology shocks in Cooper and Haltiwanger (2006) to a multi-
plant setting. In addition to identifying technology shocks in a setting for multi-plant firms, we
also refine their previous empirical work by defining a 3-digit NAICS industry as the common
environment for firms. This allows production functions, long-run technology growth and TFP
shocks to differ across those industries.

Plants face an inverse demand curve p = y−ν , so sales are y1−ν . Output y is produced using
a Cobb-Douglas technology with capital k and other variable inputs which are chosen free of ad-
justment costs in markets where the firm is price taker. Assuming that the production elasticities
of all variable inputs sum to ξ, gross profits of plant n which belongs to firm j at time t can be
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written (in logs) as

πnjt = log(1− ξ) + (1− ν)ynjt

= log(1− ξ) + (1− ν)

[
α̃

1− ξ
knjt + tfpnjt

]
. (13)

In contrast to the body of the paper, all variables are logged for ease of reading. We assume that
log technology follows a stochastic process with trend growth

tfpnjt = Ã+ g̃t+ Ãt + α̃nj + z̃njt + z̃jt. (14)

Trend growth g̃ is common across all units as is the scaling parameter Ã and the stochastic com-
ponent Ãt which is stationary and fluctuates around zero. Every plant has a fixed technology level
α̃nj which embeds long-run plant profitability. In addition to the aggregate effect Ãt, the stochastic
portion of technology contains a firm component, z̃jt, and an idiosyncratic plant component, z̃njt.
The firm component is defined as the firm average, so that znjt denotes a plant’s deviation from
the firm average technology, that is:

∑
n∈j znjt = 0 ∀t. Substituting equation (14) into equation

(13) yields

πnjt = log(1− ξ) + (1− ν)

[
α̃

1− ξ
knjt + Ã+ g̃t+ Ãt + α̃nj + z̃njt + z̃jt

]
= αknjt +A+ gt+At + αnj + znjt + zjt (15)

where α = (1−ν)α̃
1−ξ , A = log(1−ξ)+(1−ν)Ã, g = (1−ν)g̃ and analogous definitions for At, αnj , znjt

and zjt. If one abstracts from common and long-run productivity factors, equation (15) corresponds
to the logged version of equation (3) in the model section. We can also map this equation into the
data: we measure πnjt as the log value of sales less all variable input costs (salaries, wages, fringe
benefits, materials and energy) deflated by the 5-digit shipment price deflator of the NBER-CES
manufacturing database and knjt as the log value of the real stock of structure and equipment
capital.

We assume that both plant- and firm-specific components follow AR(1) stochastic processes:

znjt = ρpznjt−1 + ηnjt

zjt = ρfzjt−1 + ηjt.

with Eηnjt = Eηjt = 0, V (ηnjt) = (σf )2 and V (ηjt) = (σf )2. This persistence in technology
processes is quite realistic, but prevents a direct empirical implementation of equation (15). There
are several ways to overcome the problem which we detail below.

C.2 Identifying technology: Preferred benchmark

C.2.1 Estimating the production function and firm-level technology shocks

We can achieve identification of all parameters in equation (15) if we assume that the plant fixed
productivity effects sum to zero inside firms. This is not a strong a assumption for two reasons:
First, all αnj have to sum up to zero – any common long-run component is contained in A – which

41



is not very restrictive because “common” means 3-digit NAICS industry here. Second, the median
firm in U.S. manufacturing operates 36 plants which samples a considerable number of plant fixed
effects to sum to zero. We allow the stochastic processes to be different for firms and plants as
highlighted above. To get overcome the problem of autocorrelated error terms in equation (15), we
aggregate this equation to the firm level and then take quasi differences:

πjt = αkjt +A+ gt+At + zjt (16)

= αkjt +A+ gt+At + ρfzjt−1 + ηjt

πjt − ρfπjt−1 = αkjt − ρfαkjt−1 + (1− ρf )A+ ρfg + (1− ρf )gt+At − ρfAt−1 + ηnj . (17)

where πjt = 1
Nj

∑
n∈j πjt is the average log profit across the Nj plants of firm j (analogously for

capital). We also used the fact that 1
Nj

∑
n∈j znjt = 1

Nj

∑
n∈j αnj = 0. Since ηjt are iid over time

and across firms, we can estimate equation (17). Since it’s over identified, we use GMM with the
following instruments: lagged and twice lagged values of πjt, current, lagged and twice lagged values

of kjt and a complete set of time dummies to capture (1− ρf )gt+At − ρfAt. This way, we do not
have to specify a stochastic process for the aggregate technology shock.

C.2.2 Estimating plant-level components of TFP

We identify plant-level technology shocks from equation (15) as follows. Define the following two
objects at the plant and firm level respectively:

Xnjt ≡ πnjt − αknjt = A+ gt+At + αnj + znjt + zjt

Xjt ≡ πjt − αkjt = A+ gt+At + zjt.

We can compute the difference between those two objects and use it to estimate plant-level tech-
nology shocks in a fixed effects panel regression:

Ynjt ≡ Xnjt −Xjt = αnj + znjt

= αnj + ρpznjt−1 + ηnjt

= αnj + ρp
[
Ynjt−1 − αnj

]
+ ηnjt

= (1− ρp)αnj + ρpYnjt−1 + ηnjt (18)

This gives us estimates for the outstanding parameters ρp and σp which we report alongside the
other estimates for the median industry in Table 7.

C.3 Identifying technology: General case

We also present a more general identification than above which proceeds along the lines of Blundell
and Bond (1998). In particular, we relax the assumption

∑
n∈j αnj = 0. This means firms within

an industry are allowed to have long-run productivity differences. This added flexibility comes
at the cost of potentially weaker identification. For filtering out firm-level fixed effects requires
differencing equation (16) and then taking again the same quasi differences as above to overcome
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Table 7: Estimates

Aggregate Firm level Plant level
α ρf σf ρp σp

(Ia) 0.6268 0.7360 0.8533 0.2806 0.4985
(0.0028) (0.0016) (???) (0.0121) (???)

(Ib) 0.6268 0.7136 0.8628 0.3414 0.5939
(0.0118) (0.0073) (???) (0.0037) (???)

(Ic) 0.5924 0.6980 0.8407 0.3423 0.5955
(0.0206) (0.0131) (???) (0.0071) (???)

(II) 0.6268 0.1627 0.6153 0.2806 0.4985
(0.0028) (0.0502) (???) (0.0121) (???)

Note: Results from the GMM estimation of equation (17) and the fixed effects panel regression in equation (18),
standard errors in parentheses. Row Ia reports GMM estimates for α and the firm process (ρf and σf ) and FE panel

estimates for the plant process (ρf and σf ); row (II) reports GMM estimate of α and FE panel estimates for both
the firm and the plant processes.
(Ib) is like (Ia) except that all parameters are estimated at the NAICS-3 industry level and then averaged using value
added industry weights. (Ic) does the whole thing at the NAICS-4 level.
Estimating everything at the 3-digit NAICS industry level and then reporting median industry values is fairly similar.

the persistence problem.

∆πjt = α∆kjt + g + ∆At + ∆zjt

= α∆kjt + g + ∆At + ρf∆zjt−1 + ∆ηjt

= α∆kjt + g + ∆At + ρf
[
∆πjt−1 − α∆kjt−1 − g −∆At−1

]
+ ∆ηjt

∆πjt − ρf∆πjt−1 = α∆kjt − ρfα∆kjt−1 + (1− ρf )g + ∆At − ρf∆At−1 + ∆ηjt. (19)

As in our benchmark case, we estimate equation (19) with GMM. As instruments, we choose lagged
values of gross profits and current and lagged values of capital as above. But in this setup, where
we need to instrument for growth rates rather than levels, these instruments are notoriously weak.
This weakness manifests itself in estimates which are quite different from the accepted standard
in the literature (see Cooper and Haltiwanger (2006) or Kehrig (2015)), so we are not confident
they make a solid calibration target for your quantitative work. We get α̂ = 0.17, ρ̂f = −0.15. In
principle, one could follow the subsequent procedures outlined above to obtain estimates for the
aggregate and plant-level components of technology.

C.4 Identifying technology: Previous standard

Previous work that estimated technology shocks in the context of investment models ignored the
firm dimension. This implicitly assumed the same persistence of plant and firm technology and
also assumed no plant-level fixed effects. If we were to follow that procedure, the same persistence
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allows us to write ζnjt = znjt + zjt = ρζnjt−1 + ηζnjt. Then, we taking quasi differences as above:

πnjt = αknjt +A+ gt+At + ζnjt

= αknjt +A+ gt+At + ρζζnjt−1 + ηζnj

πnjt − ρζπnjt−1 = αknjt − ρζαknjt−1 + (1− ρζ)A+ ρζg + (1− ρζ)gt+At − ρζAt−1 + ηζnj .

We estimate this equation by GMM using as current and up to twice lagged values of capital and
lagged values of gross profits. In principle, one could follow the subsequent procedures outlined
above to obtain estimates for the aggregate and plant-level components of technology.

D How financial constraints shape investment empirically

D.1 Credit Constraints

D.1.1 Introducing time-varying financial frictions

In order to determine whether the predictions of the model with time-varying financial frictions are
in line with what we observe in the data, we need some measure of financial conditions that covers
a long enough time period. The National Financial Conditions Index (NFCI) from the Federal
Reserve Bank of Chicago seems well suited to our purposes. The NFCI is a weighted average of a
large number variables of financial activity, relative to their means. The index is therefore centered
around zero by construction. We will be using the Adjusted National Financial Conditions Index
(ANFCI), a version that isolates the component of financial conditions that is orthogonal to current
economic conditions, allowing us to focus solely on the impact of fluctuations in credit tightness
without worrying about endogeneity. Figure 8 shows the evolution of both the raw and adjusted
NFCI.

As one can see, the adjusted indicator lines nicely with NBER recessions in the 1970’s, 1980’s
and in 2008/09 while it does not increase before or during the 1991 and the 2001 recession – that
financial indicators such as credit spreads did not catch those recessions is a well-known fact and we
follow the literature to interpret these as non-financial recessions. In the subsequent analysis, we
will use the ANFCI time series as an exogenous variable that constrains a firm’s ability to borrow
funds for investment purposes.

D.1.2 Empirical joint dynamics in 2-plant firms

In this section we move away from comparative statics by incorporating a two-state process for
the financial friction: the firm will alternate between states with low or high degrees of financial
frictions. This exercise allows us to run on the simulated data regressions that are similar to the
empirical specifications discussed in the next section where we use a time-series index of financial
conditions to determine how investment dynamics are affected by changes in financial frictions.

For this exercise, we continue to set the fixed cost of borrowing, ζ, to 1% of the capital stock.
This parameter will be time-invariant and can be interpretred for example as the management costs
related to preparing a loan application and interacting with the financial intermediary The other
borrowing friction parameter, η, is time-varying: it can take the values 0 (low borrowing cost) or 5

44



Figure 8: Credit Tightness in the U.S. Economy
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Note: Annualised time series of the National Financial Conditions Index in the raw version (dashed line) and the
version that is adjusted for endogenous responses of financial indicators to non-financial shocks (solid line). Shaded
areas are NBER recessions.

(high borrowing cost) depending on the degree of credit tightness, and the probability of switching
between the two states is equal to 0.1. All the other parameters of the model are unchanged.

We simulate the model and run regressions on the simulated data. The move to regression
analysis is important if we want to link the predictions of the model with the data: while our
model allows us to perfectly isolate the role of borrowing constraints, in the real world investment
dynamics may be affected by multiple sources of heterogeneity unrelated to financial frictions. The
use of controls is therefore crucial.

It should be noted that we are in no way trying to calibrate the size and relative importance
of the firm-level financial frictions at this point. Therefore, what we are interested in determining
whether the model predictions are in line with what we observe in the data from a qualitative, not
quantitative, standpoint.

Table 8 shows results for plant-level investment regressions. Each regression uses the investment-
to-capital ratio for plant A at time t as the dependent variable (the two plants are perfectly sym-
metric in the model), (i/k)At. In order to determine the impact of firm-level financial frictions on
investment dynamics, we define a dummy variable, ςt, equal to one if credit is tight in period t (i.e.
η = 5) and zero otherwise.

The first two regressions of Table 8 focus on the role of output/cash flow variables in explaining
movements in investment. Not surprisingly, plant-level investment is on average lower in periods
of high borrowing costs (ςt = 1). In the top panel we can see that a 10% increase in the output-to-
capital ratio of the plant raises its i/k ratio by about 1.3%. Interestingly, plant A’s investment is
also affected by plant B shocks, to a lesser degree. There are two possible reasons for this result.
First, simultaneous increases in output at both plants A and B are potentially indicative of a firm-
wide shock. Since firm shocks are more persistent than plant-level shocks, the optimal decision is
to invest more.
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Second, the internal finance channel is also at play: in a context where funds are scarce and
borrowing costly (recall that ζ = 0.01K in all states), a good shock in plant B generates precious
cash flow that can be used to finance investment in plant A. This is also evident in the results
for the second regression of the same table. There, plant B’s output is replaced by cash flow at
the level of the firm, net of adjustment and fixed operating costs (notice that we do not use logs
as cash flow is sometimes negative) Not only is plant A investment higher when firm cash flows
are higher (conditional on the plant-specific shock), but we can see that this dependence on the
firm’s financial resources is particularly strong when credit is tight: the coefficient on cft/kt more
than doubles when ςt = 1. In other words, the existence of internal capital markets is particularly
relevant when external financial constraints are more binding.

The last regression of Table 8 looks at the correlation in investment activity across plants within
the firm. In periods where credit is cheap, (i/k)At is a positive function of investment activity in
plant B, though the relationship is somewhat weak: a 1 percentage point increase in (i/k)Bt raises
(i/k)At by less than 0.1 percentage point. The relationship, however, changes dramatically when
credit is tight: in periods where η = 5, the same 1 p.p. change in investment at plant B leads instead
to a fall of almost 0.5 percentage point in (i/k)At as investment activity in one plant crowds out
investment elsewhere. With scarce funds, the firm selects the most profitable projects, postponing
others as their marginal benefit is outweighed by the marginal cost of external funds.

The firm-level regression in Table 8 highlights another impact of financial frictions in multi-unit
firms: the serial correlation of firm-level investment increases. As shown earlier in Table 4, our
baseline calibration implies that the autocorrelation of it/kt is slightly negative, which should not
be too surprising as these firms are very small. However, a financial constraint shock makes firm-
level investment significantly smoother. On potential explanation for this result is related to our
earlier findings: when credit is tight, it makes the firm less likely to invest in both plants at the same
time in order to avoid costly borrowing. To understand why this may lead to higher autocorrelation
of investment for the firm, consider the example of a positive firm-level shock. Since both zAt and
zBt are now higher, both plants would now like to invest to reach their new optimal level of capital.
But given limited cash flows, this implies that the firm would need to obtain costly funds on capital
markets. Instead, it will sometimes find it optimal to stagger investment: plant A invests today,
while plant B waits until tomorrow. By construction, this makes firm-level investment smoother.
We show additional evidence for this kind of behaviour below.

In Table 10 we instead focus on investment spikes, having showed earlier that they were the
main contributor to aggregate investment empirically. All regressions are linear probability models.
In the first panel, the dependent variable is a dummy equal to 1 if the investment-to-capital ratio
in plant A is greater than 15%, our threshold for a spike. Both output levels for plants A and
B have a positive impact on the probability of a spike, in line with what we found earlier. Our
focus, however, is on the spike indicator for plant B: very clearly, the spike activity in one plant
does matter for the probability of a spike in the other. In periods of tight credit (ςt = 1), the
probability of observing an investment spike in plant A is 0.5 percentage point lower if plant B is
already spiking.

Another way to confirm this finding is to see whether occurrences of double spikes (i.e. spikes
in both plants) is more or less likely when external funds are more costly. Conditional on firm cash
flow and capital stock (coefficients not reported), the second panel of the same table shows that the
probability of observing both plants spiking in the same period basically falls to zero when credit
is tight.

46



Table 8: Plant-level investment regressions

Constant 0.419∗∗∗

Credit tightness ςt −0.075∗∗∗

Output plant A log(y/k)At 0.129∗∗∗

ςt · log(y/k)At −0.014∗∗∗

Output plant B log(y/k)Bt 0.063∗∗∗

ςt · log(y/k)Bt −0.011∗∗

R2 0.33

Constant 1.647∗∗∗

Credit tightness ςt −0.074∗∗∗

Output plant A (y/k)At 0.584∗∗∗

Firm cash flow (cf/k)t 0.246∗∗∗

ςt · (cf/k)t 0.356∗∗∗

R2 0.34

Constant 1.882∗∗∗

Credit tightness ςt 0.017∗∗∗

i/k plant B (i/k)Bt 0.085∗∗∗

ςt · (i/k)Bt −0.545∗∗∗

Cash flow firm (cf/k)t −0.007

ςt · (cf/k)t 0.882∗∗∗

R2 0.40

Note: Dependent variable is i/k of plant A. ςt = 1 in periods of high borrowing cost, 0 otherwise. Controls such as
capital stock or cash flow are included but not always reported. ∗, ∗∗ and ∗∗∗ indicate significance at the 10, 5 and 1
percent level respectively.
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Table 9: Firm-level investment regressions

(i/k)t = β0 + β1ςt + β2 log(i/k)t−1 + β3ςt · log(i/k)t−1 + εt

Variable Estimate

Constant β0 0.419∗∗∗

Credit tightness β1 −0.038∗∗∗

Lagged firm investment β2 −0.034∗∗∗

... interacted with credit tightness β3 0.125∗∗∗

R2 0.44

Note: Dependent variable is i/k of the firm. ςt = 1 in periods of high borrowing cost, 0 otherwise. Controls such as
capital stock and firm cash flow are included but not reported. ∗, ∗∗ and ∗∗∗ indicate significance at the 10, 5 and 1
percent level respectively.

Finally, the last regression in Table 10 revisits the question of staggered investment across
plants. We regress the spike indicator for plant A on its own lag, the spike indicator for plant B at
time t as well as its lagged value, both by itself and multiplied by the credit dummy, ςt. Our focus
is on this last variable: if the firm is more likely to stagger investment activity when borrowing is
costly, the coefficient on the interaction term should be positive. This is what we obtain, with a
value of 0.036, though the effect seems to be relatively small.

All these results seem to indicate that the firm-level financial frictions, whether in the form
of fixed or quadratic costs, alter significantly plant-level investment dynamics. In summary, the
firm optimises the timing of investment spikes, making sure that joint spikes are avoided in order
to minimise the need to borrow in a given period. Instead, following a positive firm-level shock
affecting both plants, one plant spikes immediately while the other waits one period to invest. This,
in turn, makes investment aggregated at the firm level more serially correlated in periods of tight
credit. In the next section, we investigate whether these predictions are borne out empirically using
a proxy for financial conditions.

D.2 Investment Dynamics of Plants, of Firms and Within Firms

We first focus on the time series properties of investment rates at the plant level, the firm level and
the joint investment dynamics of plants within firms. Table 4 is our benchmark.

D.2.1 Autocorrelation of plant-level investment

We start by examine the autocorrelation of investment at the plant and the firm level. Table 4 shows
how plant-level investment becomes less and firm-level investment becomes more autocorrelated in
the model. The latter is a response of firms where costly external credit induces the firm to smooth
borrowing and thus investment. Predictions about the autocorrelation of plant-level investment
are not as sharp and that is reflected in the data: Table 11 displays the estimates of regressing
plant-level investment on the credit constraints indicator (denoted by ςt). The estimates from the
panel regression (our preferred specification) are not significant. A simple pooled OLS regression
indicates that in tight credit times investment becomes more autocorrelated.
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Table 10: Spike (i/k > 0.15) regressions

Dependent variable I {(i/k)At > 0.15}
Constant 6.261∗∗∗

Credit tightness ςt −0.039∗∗∗

Output plant A log(y/k)At 0.504∗∗∗

Output plant B log(y/k)Bt 0.330∗∗∗

Spike plant B I {(i/k)Bt > 0.15} −0.254∗∗∗

ςt · I {(i/k)Bt > 0.15} −0.261∗∗∗

R2 0.44

Dependent variable I {(i/k)At, (i/k)Bt > 0.15}
Constant 0.069∗∗∗

Credit tightness ςt −0.075∗∗∗

R2 0.13

Dependent variable I {(i/k)At > 0.15}
Constant 6.651∗∗∗

Credit tightness ςt −0.108∗∗∗

Spike plant B I {(i/k)Bt > 0.15} −0.478∗∗∗

Lag spike plant A I
{

(i/k)At−1 > 0.15
}

−0.048∗∗∗

Lag spike plant B I {(i/k)Bt > 0.15} 0.061∗∗

ςt · I {(i/k)Bt > 0.15} 0.036∗∗

R2 0.48

Note: Dependent variable is spike dummy. ςt = 1 in periods of high borrowing cost, 0 otherwise. ∗, ∗∗ and ∗∗∗

indicate significance at the 10, 5 and 1 percent level respectively.

Table 11: Credit Constraints and Plant- and Firm-Level Investment

left panel (plant): (i/k)nt = β0 + β1(i/k)nt−1 + β2ςt · (i/k)nt−1 + β3ςt + εnt

right panel (firm): (i/k)jt = β0 + β1(i/k)jt−1 + β2ςt · (i/k)jt−1 + β3ςt + εjt

Coefficient OLS Panel

(0.0471) (0.0638)

β2 0.0145** 0.0109
(0.0069) (0.0095)

β3 0.0004 0.0017
(0.0008) (0.0011)

Controls Yes Yes
N 49k 17k

Coefficient OLS Panel

(0.0565) (0.0614)

β2 0.0264*** 0.0288***
(0.0074) (0.0075)

β3 0.0003 0.0003
(0.0007) (0.0007)

Controls Yes Yes
N 24k 9k
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The predictions about firm-level investment are much sharper. Table 11 reveals that investment
at the firm level significantly becomes more autocorrelated: A standard deviation to credit tightness
almost doubles the autocorrelation. The effect at the firm level is much stronger than any change
at the plant level where the autocorrelation increases only by 10%. Interestingly, tight credit itself
does not significantly lower investment levels as the estimate of β3 is not significantly negative as
one may expect – and neither it is with the plant regression in Table 11.

D.2.2 Investment Correlation Within Firms

A particularly sharp implication of credit constraints is that investment across the two plants within
the firm falls; Table 4 shows in fact that it may even become negative. This obviously reflects the
fact that in times of tight credit the firm needs to scale back investment in general. So if one plants
invests a lot, the the other one probably suffers when credit is tight.

Table 12 confirms this prediction of the model. The estimates of β2 are significantly negative
across both panel and OLS regressions. The estimate imply that a doubling of investment in the
other plant lowers the investment rate in the other plant by two percentage points.

Table 12: Credit Constraints and Within-Firm Investment

(i/k)At = β0 + β1(i/k)Bt + β2ςt · (i/k)Bt + εnt

Coefficient OLS Panel

(0.0017) (0.0016)

β2 –0.0035** –0.0031**
(0.0014) (0.0013)

Controls Yes Yes
N 66k 66k

D.2.3 Probability of investment spikes and spike size

We look at the likelihood of investment spikes in episodes of tight credit. It’s not obvious whether
there will be more or less investment spikes when credit is tight. On the one hand, spikes will
happen less often because tight credit limits overall investment resources. Then, tight credit results
in a “lumpiness” effect because investment looks more lumpy. On the other hand, tight credit
makes the firm smooth its borrowing so that investment spikes become more frequent. If that
latter outcome prevails, one would expect investment spikes to become smaller; we label this latter
effect the “smoothing effect.” We test both of these possible predictions and display the results of
this regression in Table 13. The results are overall weak and borderline significant. But if at all, one
sees that the probability of investment spikes increases and the level of investment spikes decreases
significantly.
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Table 13: Credit Constraints and Investment Spikes

I {(i/k)nt > 0.15} = β0 + β1ςt + β2ςt · I {Public}+ εnt

(i/k)nt = β̃0 + β̃1ςt + β̃2ςt · I {Public}+ εnt ∀n, s.t. (i/k)nt > 0.15

Coefficient OLS Panel

β0 0.0411*** 0.0519***
(0.0.131) (0.0092)

β1 0.0002 0.0003
(0.0012) (0.0011)

β2 –0.0055 –0.0004
(0.0067) (0.0066)

Controls Yes Yes
N 66k 66k

Coefficient OLS Panel

β̃0 .

β̃1 negative
(significant)

β̃2 positive (significant) ⇒ publicly
traded firms unaffected

Controls Yes Yes
N 66k 66k

D.2.4 Joint distribution of investment spikes within firms

While predictions about single investment spikes are not conclusive, the model has fairly strong
predictions about the joint distribution of investment spikes within firms. When credit is tight, a
firm cannot allow both of its plants to undergo an investment spike in the same period – at least
not if it’s financially constrained. As a consequence, the likelihood to see both plants undergoing an
investment spike should drop significantly when credit is dear. This is clearly borne out in the data
as Table 4 shows. An it does show up in the data as well: When credit gets tight, the likelihood
to undergo an investment spike when the other plant undergoes one is 2% lower than when credit
is loose. In that latter scenario, we can expect that one plant spiking raises the likelihood of the
other one spiking by 18% – probably reflecting a positive firm-specific productivity shock.

Note that this logic of reduced simultaneous spiker plants only applies to financially constrained
firms. If a firm wasn’t financially constrained, we would expect the coefficient β2 to be zero. To test
for that hypothesis, we include an interaction term of credit tightness and the other plant spiking
with a dummy variable that indicates whether or not the firm is publicly traded or not. The idea
is that publicly traded firm probably are not affected by ςt. As we can see, this is borne out in the
data, albeit it’s borderline significant.

D.2.5 Serial correlation of single investment spikes

So what can firms that are credit constrained do if both of its plants are so productive that
ideally they should btw undergo investment projects? If credit is tight and thus external finance
particularly costly, then it may see no other possibility than to focus its funds on investing in one
plant and postponing investment in the other plant. We call this spacing out of investment spikes
“adjacent investment spikes” and test for them by regressing a dummy variable that indicates such
“adjacent spike”-firms on credit conditions. The unconditional probability (without any especially
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Table 14: Credit Constraints and Firm-level Investment

I {(i/k)At > 0.15} = β0+β1I {(i/k)Bt > 0.15}+β2ςtI {(i/k)Bt > 0.15}+β3ςtI {(i/k)Bt > 0.15} I {Public}+εnt

Coefficient OLS Panel

β0 0.0378*** 0.0463***
(0.0130) (0.0089)

β1 0.1846*** 0.1812***
(0.0056) (0.0056)

β2 –0.0211*** –0.0205***
(0.0051) (0.0051)

β3 0.0237* 0.0201
(0.0132) (0.0135)

Controls Yes Yes
N 66k 40k

tight credit) is about 10% (see Table ??) and the regression results in Table 15 tell us that this
probability drops by 0.7%.11

11In this analysis, we consider firm that undergo exactly one spike today and one or two spikes last year. Instead,
we should have restricted the sample to only those firms that have at least 2 spikes within a two year window and
then see if they are more likely to stretch the at least 2 spikes out or if they choose to do it simultaneously and also
consider interaction terms with the publicly traded dummy. Since this sample is smaller than the one we consider
here, we see our estimates as a lower bound.
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Table 15: Credit Constraints and Serial Correlation of Investment Spikes

I
{

(i/k)At, (i/k)At−1 > 0.15
}

= β0 + β1ςt + β2ςt · (i/k)Bt + εnt

Coefficient OLS Panel

β0 0.2148*** 0.1836***
(0.0354) (0.0274)

β1 0.0069** 0.0069**
(0.0030) (0.0032)

β2 –0.0141 –0.0141
(0.0130) (0.0133)

Controls Yes Yes
N 17k 9k
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