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Abstract

We provide a repeated-choice foundation for stochastic choice. We obtain neces-

sary and sufficient conditions under which an agent’s observed stochastic choice can

be represented as a limit frequency of the agent’s choice over time. In the representa-

tion, the agent repeatedly chooses today’s consumption and tomorrow’s continuation

menu, aware that future preferences will evolve according to a subjective ergodic util-

ity process. Using our model, we demonstrate how not taking into account the agent’s

preference for early (late) resolution of uncertainty would lead an analyst to underes-

timate (resp., overestimate) the agent’s risk aversion. Estimation of preferences can

be performed by the analyst without explicitly modeling continuation problems (i.e.

stochastic choice is independent of continuation menus) if and only if the utility pro-
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cess takes on the standard additive and separable form. Applications include dynamic

discrete choice models even when agents have non-standard intertemporal preferences.

1 Introduction

Modeling choice behavior as stochastic is common across many economic applications. In

many of these applications, stochasticity is interpreted as a result of unobserved heterogene-

ity in a population of agents (henceforth, the “population interpretation”). On the other

hand, the psychological origins of stochastic choice point to a single agent interpretation.1

There, stochasticity is interpreted as a result of one agent making choices from the same

decision problem repeatedly (henceforth, the “individual interpretation”). The literature

on stochastic choice, however, has mostly taken such choice frequencies as given without

considering when such a repeated-choice interpretation is possible.

In this paper, we provide the first repeated-choice foundation for stochastic choice. Given

an agent’s stochastic choice, we obtain necessary and sufficient conditions under which the

agent’s observed stochastic choice can be represented as a limit frequency of his repeated

choices over time; in the representation, the agent repeatedly chooses today’s consumption

and tomorrow’s continuation menu, aware that future preferences will evolve according to a

subjective utility process.

Applying our model, we show that whenever the agent has non-standard intertemporal

preferences, such as a preference for early (or late) resolution of uncertainty, his stochastic

choice would be highly sensitive to the frequency of the repetition. In particular, an agent

who prefers early resolution of uncertainty would choose risky options more frequently in

repeated than static choice. As a result, failure to take repetition into account would natu-

rally lead an analyst (an outside observer such as an econometrician) to biased estimates of

the agent’s preferences. Even with the population interpretation, we can use our results to

understand the systematic ways in which non-standard intertemporal preferences affect the

estimation of any dynamic discrete choice model.

To present our model, we first describe the formal setup. Based on the works of Kreps

and Porteus (1978), Epstein and Zin (1989), and Gul and Pesendorfer (2004), we develop

1 Early work on models of stochastic choice include Thurstone (1927), Luce (1959), Block and Marschak
(1960), and Falmagne (1978). The adoption of these models in economics to study unobserved heterogeneity
naturally led to the population interpretation. For an overview of this history, see McFadden (2001).
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an infinite-horizon framework to study the agent’s problem. Every period, the agent faces

a menu (i.e., a choice set) which consists of risky prospects over consumption today and a

continuation menu tomorrow. We focus on menus such that regardless of what he chooses or

which outcome is realized, the agent will always face the same menu again after some finite

time.2 We call such menus repeated. Repeated menus are important since, given the infinite

time horizon, the agent could choose from the same menu infinitely many times, generating

an infinite time series of choices. Thus, an agent’s stochastic choice on repeated menus can

be interpreted as the long-run frequency of choices from repeated menus.

Based on this interpretation, we introduce a new tractable model of stochastic choice.

The agent’s utility at time period t depends on some state variable st that evolves according

to an ergodic Markov process. The Markov process is fixed and known to the agent but

unknown to the analyst, which makes the agent’s choice stochastic from the perspective of

the analyst. For example, the state could be the agent’s mood on a particular day, which

affects how risk-averse and how impatient he is that day. Given the realization of state

st at time t, the agent’s utility of a pair (c, z) of today’s consumption c and tomorrow’s

continuation menu z is recursively given by

ut (c, z) = φst

(

c,Est

[

max
p∈z

ut+1 (p)
])

. (1)

There are two parts to this utility. First, the stochastic aggregator φst specifies the agent’s

intertemporal attitudes toward current consumption and future continuation value. Second,

continuation values are evaluated by taking expectations with respect to the Markov process

of the state. In other words, the agent is fully sophisticated; he knows the Markov process

and takes expectations with the understanding that he will be choosing from the menu z

tomorrow. The utility function (1) can be seen as a stochastic version of the model from

Kreps and Porteus (1978) where continuation values are evaluated according to the additive

linear representation of Dekel et al. (2001).

The utility process ut defined in (1) is ergodic and describes the agent’s stochastic in-

tertemporal preferences at every time period t. In our representation theorem, for any menu

z that repeats every t periods, the probability ρz (p) that an option p is chosen from the

2 It is straightforward to extend our domain to include menus that repeat with some positive probability
as long as the probability does not depend on the agent’s choice (otherwise, selection issues may complicate
the identification exercise).
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menu z is given by

ρz (p) = lim
n→∞

1

n

n∑

i=0

1 {uit+1 (p) ≥ uit+1 (q) for all q ∈ z} , (2)

where 1 {·} is the indicator function and ut (p) =
∫

ut (c, z) dp with ut (c, z) described as in

(1). In this case, we say ρ is ergodic. Here, the probability that p is chosen from a set z is

exactly the long-run frequency of the event that p is the best element in z according to the

utility process. This is exactly the individual interpretation of stochastic choice models. We

thus provide a theoretical foundation for this interpretation.

The representation has two interesting features. First, despite the generality of the model

and the fact that our domain is restricted to only repeated menus, we show that the analyst

can fully identify the agent’s utility process from stochastic choice over repeated binary

menus. Second, the analyst can use the identified utility process to pin down the distribution

of the entire time series of choices (once an initial state is determined), even though the

observable data only consists of stochastic choice, i.e. the long-run choice frequencies.

We discuss two applications to illustrate the types of biases that can arise if the analyst

ignores repetition and the agent’s intertemporal preferences. In both applications, we con-

sider a special case in which the stochastic aggregator φ takes on the well-known formula

provided by Epstein and Zin (1989); we call this special case stochastic Epstein-Zin. Consider

an analyst interested in eliciting an agent’s risk aversion. Understanding that the agent’s

preferences may be stochastic, the analyst asks the agent to repeatedly choose between a

safe option (e.g., $5 for sure) and a risky option (e.g., $10 or $0 with equal probability)

every day. If the agent is myopic and only considers current consumption, then the long-run

frequency of choosing the safe option would correspond exactly to the probability that the

agent is risk-averse, which is the standard individual interpretation of stochastic choice.

However, if the agent is sophisticated, then he would take into account the fact that he

will be choosing again between the safe and risky options tomorrow. We show that if he has a

preference for early resolution of uncertainty, then the probability of choosing the risky option

increases when repetition becomes more frequent. In the Epstein-Zin model, a preference for

early resolution of uncertainty corresponds to the agent’s desire for consumption smoothing

being lower than his relative risk aversion. For such an agent, the risky option feels “safer”

under repeated choice; intuitively, even if today’s outcome is bad, repeating the choice

means that there is always a chance that tomorrow’s outcome will be good. As a result, the
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risky option becomes more attractive as repetition becomes more frequent. This is a novel

behavioral phenomenon absent in stochastic choice models that do not explicitly address

repetition. Moreover, if the analyst misspecified the model and ignored repetition, then she

will underestimate the agent’s atemporal risk aversion. All this demonstrates the importance

of modeling repetition when analyzing stochastic choice data.

In the second application, we consider a simple two-period example of a dynamic discrete

choice model. Based on the same insight as in the first application, we illustrate the inherent

inference issues that can arise if intertemporal preferences are not taken into account in

applications of dynamic discrete choice estimation.

The two applications suggest that modeling repetition is crucial for inference when agents

have non-standard intertemporal preferences. We also address the question of when an

agent’s preferences can be correctly inferred without modeling repetition explicitly. We define

this formally using an axiom called Independence of Continuation Menu (ICM) and show that

it is satisfied if and only if the utility process is standard, i.e., the stochastic aggregator takes

the form of φs (c, v) = (1 − βs)ws (c)+βsv where ws is a random von Neumann–Morgenstern

(vNM) utility function and βs is a random discount factor. In the case of stochastic Epstein-

Zin preferences, Indifference to Timing of Resolution of Uncertainty (IRU) would ensure

that the utility process is standard. In general, however, this is not true; IRU characterizes

a stochastic version of Uzawa-Epstein preferences in which discount factors also depend on

consumption.3 In this case, ICM would still be violated since continuation menus would

still affect inference. We show that the gap between IRU and ICM is exactly a repeated

version of the classic independence axiom, which we call Repeated Independence (RI). We

thus demonstrate the following three-way equivalence:

ICM ⇔ IRU + RI ⇔ Standard Utility.

The takeaway is that any generalization of standard utility will require the analyst to take

into account repeated choice when conducting estimation or inference from stochastic choice.

Finally, we provide an axiomatic characterization of our model. While we focus only on

the smaller domain of repeated menus, we show that the set of repeated menus is in fact

dense in the set of all menus. In other words, for any generic menu z, we can construct a

sequence of repeated menus that approximate z with arbitrary closeness. By considering a

3 The model is originally proposed by Uzawa (1968) and later axiomatized by Epstein (1983) in an
extended lottery setup.
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continuous extension, we can therefore focus on a stochastic choice function ρ over all finite

(but not necessarily repeated) menus.

For our representation, we construct a random expected utility model on an infinite-

dimensional space where continuation menus are evaluated according to the representation

in Dekel et al. (2001). This exercise faces two technical challenges. First, extending Dekel

et al. (2001) to countably-additive probability measures on an infinite-dimensional space is

difficult due to the lack of compactness in the infinite-dimensional setting (see Krishna and

Sadowski (2014) for an outline of the technical issues). Second, the extension of Gul and

Pesendorfer (2006) to an infinite-dimensional space with a countably-additive measure is also

highly nontrivial.4 We provide a unified methodology using the set of Lipschitz continuous

utilities to address both challenges.

Our axioms combine the axioms of Gul and Pesendorfer (2006) with the linearity and con-

tinuity axioms of Dekel et al. (2001). We introduce three new axioms. The first two axioms

(Deterministic Stationarity and Average Stationarity) are weaker analogs of the stationarity

axiom of Koopmans (1960) for stochastic choice.5 They allow us to construct a recursive and

stationary Markov utility process. The last axiom (D-continuity) is a continuity condition

stating that preference for flexibility is robust to small perturbations. It ensures ergodicity of

the utility process. Finally, the representation is obtained by an application of the Birkhoff

ergodic theorem. See the discussion after Theorem 4 for details.

The rest of the paper is organized as follows. Section 2 introduces our repeated menus

setup and our model with ergodic utilities. Section 3 presents the two applications of esti-

mation under stochastic Epstein-Zin and dynamic discrete choice. In Section 4 we introduce

ICM and its relationship with intertemporal preferences. Finally, Section 5 contains the

axiomatic characterization. All omitted proofs are contained in the appendices.

1.1 Related Literature

Our paper is mainly related to four strands of literature in the following areas: (i) random

expected utility, (ii) menu preferences, (iii) intertemporal choice, and (iv) dynamic discrete

choice. The first strand of literature is on stochastic choice models of random expected

utility. Gul and Pesendorfer (2006), Ahn and Sarver (2013), Lu (2016), and Lu and Saito

4 See Ma (2018) and Frick et al. (2018) for recent extensions.
5 A similar axiom appears in Lu and Saito (2018).
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(2018) study static models of stochastic choice, while Fudenberg and Strzalecki (2015) and

Frick et al. (2018) study dynamic random choice.6 Our paper is most closely related to

the latter. The main differences are in motivation and the mathematical modeling. Given

their motivation to study history dependency, Frick et al. (2018) study stochastic choice

conditional on past menus, past choices, and consumption realizations, while our stochastic

choice function is not conditional on these. Although they can interpret stochastic choice in

their model as the result of a single agent, in contrast to our paper, they mainly focus on the

population interpretation as it facilitates the interpretation of their primitive.7 They consider

any menus in a finite-horizon setup, while we consider repeated menus in an infinite-horizon

setup.8

The second relevant strand consists of the modern literature on menu preferences, which

began with Dekel et al. (2001) and Gul and Pesendorfer (2001). The former was extended to

an objective state space by Dillenberger et al. (2014). Gul and Pesendorfer (2004) extends

menu preferences to a dynamic setting by proposing an infinite-horizon consumption setup,

which we have adopted in our paper. Other papers that make use of this framework include

Higashi et al. (2009) and Krishna and Sadowski (2016). The first considers a random dis-

counting model in which the agent anticipates the stochasticity of his future discount factor.

The second extends the additive linear representation into an infinite-dimensional space.

While their extension is finitely additive, our extension is countably additive while still pre-

serving the uniqueness of the representation. More recently, Krishna and Sadowski (2014)

and Dillenberger et al. (2017) augment the dynamic setup with an informational structure.

See Dillenberger et al. (2017) for a review of this literature.

Thirdly, our paper is related to the classical literature on intertemporal choice. As men-

tioned, our model can be seen as a stochastic version of Kreps and Porteus (1978), including

the popular special case of Epstein and Zin (1989) and Weil (1990). We also characterize

a stochastic version of Uzawa-Epstein preferences, which was originally proposed by Uzawa

6 A more recent paper is Duraj (2018), which extends Frick et al. (2018) to a setting with an objective
state space. Ke (2018) also studies expected utility in a Luce model.

7 As explained above, our motivation is to provide a theoretical repeated-choice foundation for the stochas-
tic choice of a single agent. Although we can adopt the population interpretation in some cases (see Section
3.2), we mainly focus on the individual interpretation.

8 On the technical side, they also provide an extension of Gul and Pesendorfer (2006) to an infinite-
dimensional setting. While they use the finiteness condition of Ahn and Sarver (2013) to extend the rep-
resentation to a finitely additive measure, we use Lipschitz continuity to extend the representation to a
countably additive one.
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(1968) and later axiomatized by Epstein (1983) in an extended setup with lotteries.9 More

recently, Bommier et al. (2017) also characterize standard utility via a monotonicity axiom.

Finally, our paper is related to the large literature on dynamic discrete choice. While the

importance of considering non-standard intertemporal preferences (e.g., a preference for early

resolution of uncertainty) is well-known, the literature has assumed standard intertemporal

preferences for the sake of tractability.10 As far as we know, we are the first to analyze the

effects of non-standard intertemporal preferences on inference under dynamic discrete choice.

In addition, our ergodic representation (2) features in estimation methods of dynamic discrete

choice models. Expanding on the work of Rust (1987), Hotz and Miller (1993) introduced an

estimation methodology that is computationally less demanding. Their method of calculating

conditional choice probabilities (CCP) from a sequences of choices uses a formula similar to

our ergodic representation (2). On the other hand, a typical model in dynamic discrete

choice assumes both observable states as well as unobservable states. While our model only

includes unobservable states, it would be possible to extend our model to allow for observable

states as well.11

2 A Model of Ergodic Utility

In this section, we first formally define repeated menus and then introduce our stochastic

choice primitive. We then define a utility process and present our general model, an ergodic

representation of stochastic choice. Finally, we discuss identification and uniqueness.

2.1 Repeated Menus

This section describes the basic setup of the model. Let time T = {1, 2, . . .} be discrete and

M = [0, m] denote a closed interval representing consumption (e.g., money). The agent is

faced with an infinite-horizon consumption problem (IHCP), that is, a menu of choice options

9 Recent papers that study the macroeconomic implications of stochastic intertemporal preferences include
Alvarez and Atkeson (2017) and Barro et al. (2017).

10 From Rust (1994), “expected-utility models imply that agents are indifferent about the timing of the
resolution of uncertain events, whereas human decision-makers seem to have definite preferences over the
time at which uncertainty is resolved. The justification for focusing on expected utility is that it remains
the most tractable framework for modeling choice under uncertainty.”

11 Such an extension would study stochastic choices conditional on the observable state, which corresponds
exactly to CCP.
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in which each option corresponds to a lottery over consumption today and a continuation

menu tomorrow. We will refer to IHCPs simply as menus and denote them by z ∈ Z. From

Gul and Pesendorfer (2004), we know that Z is homeomorphic to K (∆ (M × Z)), where

∆ (·) denotes the set of probability measures and K (·) denotes the set of nonempty compact

subsets. Thus, we will associate Z with K (∆ (M × Z)) without loss of generality. We also

let X = M × Z denote the set of possible outcomes. For x ∈ X, we sometimes let x ∈ ∆X

denote the degenerate lottery δx. For p ∈ ∆X, we also use p ∈ Z to denote the singleton

menu {p}. We let ap+(1 − a) q ∈ ∆X denote the usual mixture between any two probability

measures p, q ∈ ∆X and a ∈ [0, 1].

The main focus of our study will be on menus that repeat themselves after a fixed number

of periods. The following example illustrates what we mean by such repeated menus.

Example 1 (Safe vs. Risky Option). Consider an analyst interested in eliciting an agent’s

risk aversion which may be stochastic every period. Every day, the agent is offered a choice

between a safe option p and a risky option q from the menu z = {p, q}. The safe option

p ∈ ∆X yields $5 for sure today and the menu z ∈ Z again for sure tomorrow. The risky

option q ∈ ∆X yields either $10 or $0 with equal probability today and the menu z ∈ Z again

for sure tomorrow. Note that the agent is sophisticated and understands that regardless of

what he chooses today and which outcome is realized, he will always be faced with the menu

z again for sure tomorrow.

Example 1 illustrates a menu that is repeated every period. More generally, we consider

menus such that, regardless of what the agent chooses and which outcome is realized, he

will always face the menu again for sure after a fixed number of time periods. Formally, for

z ∈ Z, let R0 (z) = {z} and for t ∈ T , define

Rt (z) := K (∆ (M ×Rt−1 (z))) .

Thus, Rt (z) ⊂ Z are the subset of menus that yield z for sure after t periods.

Definition. A menu z is t-period if z ∈ Rt (z). The menu z is repeated if it is t-period for

some t > 0.

The menu in Example 1 is 1-period since z ∈ R1 (z). Let Zr ⊂ Z denote the set of

repeated menus. In general, for a repeated menu, the agent will always face the same menu

again after some fixed number of time periods. For example, if the menu is t-period, then
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the agent chooses from the menu at periods 1, 1+ t, 1+2t and so forth. Since this is repeated

ad infinitum, this can generate an infinite time series of choice data.

Repeated menus have three interesting properties. First, for repeated menus, repetition

is independent of the agent’s choices. As a result, the analyst need not worry about selection

biases interfering with the data collection process.

Second, even though repeated menus are restrictive, they are rich enough in that they

are in fact dense in the set of all menus. In other words, repeated menus can be used

to approximate any menu. This is especially important for the analyst when performing

identification which we will see in Section 2.5. Section 5.1 discuss this property in further

detail.

Third, there is always some minimal t∗ for which z is t∗-period. Note that every t-period

menu is also trivially kt-period for any positive integer k. In fact, t∗ is the greatest common

divisor of all possible periods of the menu; this is simply the first time z appears after the

initial period. See Section F.2 in the Appendix for details.

Finally, let us mention an extension of our setup which can incorporate more common

consumption-savings problems. In many consumption-savings problems however, menus may

not be repeated; the agent may not face the same menu again in finite periods, independent of

his choices. To address this, it is possible to extend our domain to include menus that repeat

with some positive probability. We can then approximate a consumption-saving problem by

making the probability of repetition arbitrarily small. This extension is straightforward as

long as the repetition probability does not depend on the agent’s choice.

2.2 Stochastic Choice

In our model, the main observable data, or primitive, is stochastic choice. Given repeated

menus, we can interpret stochastic choice as the long-run frequency of the time series of

choices. This interpretation of stochastic choice is standard in the literature, although it

has not been modeled explicitly. For instance, in the random expected utility model of Gul

and Pesendorfer (2006), stochastic choice can be interpreted as the long-run frequency of the

time series choices from 1-period menus. See Luce (1959) and Luce and Suppes (1965) for

more detailed descriptions of the individual interpretation of stochastic choice.

We now provide a formal definition of stochastic choice. Let Zf ⊂ Z denote the set of

finite menus and let Z∗ = Zr ∩ Zf denote the set of finite repeated menus.
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Definition. A stochastic choice is a mapping ρ : Z∗ → ∆ (∆X) such that for every z ∈ Z∗,

ρz is a probability distribution on z.

Given a repeated menu z ∈ Z∗ and an option p ∈ z, the stochastic choice ρz (p) designates

the probability of choosing p from z. We deal with ties following Lu (2016) and Lu and Saito

(2018) in allowing for some probabilities to be unspecified. This is analogous to how under

standard deterministic choice, indifference characterizes exactly when the model is silent

about which option the agent will choose. This approach allows the analyst to be agnostic

about data that is orthogonal to the parameters of interest. For example, if two options are

tied, then the stochastic choice is silent about the choice frequency for each option. Formally,

we model this as non-measurability and let ρ denote the corresponding outer measure without

loss of generality.12 To simplify notation going forward, we sometimes let ρ (z, y) = ρz∪y (z)

for z, y ∈ Z∗.13 Thus, ρ (p, q) denotes the frequency with which p is chosen over q.

While we assume that the analyst observes stochastic choice (i.e. the long-run choice

frequency), we do not assume she also observes the actual time series of choices. This is a

common assumption in many applications of stochastic choice, especially those that adopt

the population interpretation. In dynamic discrete choice for instance, the analyst collects

choices across both time and agents who are observationally identical under a standard i.i.d.

assumption.14 Since agents are i.i.d. across time, keeping track of the actual time series

choice data is unnecessary so most models assume only stochastic choice is observable.

For the individual interpretation, our paper is the first to connect stochastic choice with

long-run choice frequencies; we represent stochastic choice as if it is generated from an

infinite time series of choices. Our focus on stochastic choice as a primitive is motivated

by the existing literature and the fact that stochastic choice in our model is sufficient for

identifying all the relevant parameters (see Theorem 1). Studying models that adopt time

series choice data as a primitive would be interesting avenues for future research.15

12 Let F be a σ-algebra on ∆X . Given any z ∈ Z∗, let ρz be a measure on the σ-algebra generated by
F ∪ {z}. We can let ρ denote the outer measure with respect to this σ-algebra without loss of generality.
See Lu (2016) for details.

13 Note that if z contains no ties, then ρ (z, y) =
∑

p∈z ρz∪y (p) as all choice probabilities are specified.
Otherwise, ρz∪y (z) denotes the outer measure.

14 That is, the distribution of states is i.i.d. across both time and agents.
15 If we consider the time series of choices as a primitive, then the behavioral restrictions (on time series

choice data) for representation would be more stringent. This is because there are different choice paths that
generate the same long-run choice frequency. We thank Tomasz Strzalecki for discussions on this issue.
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2.3 Utility Process

In our model, the agent’s utility at every period is stochastic and depends on the realization

of state variable s ∈ S that is unobserved by the analyst. We could interpret S as a set

of subjective states that influence the agent’s utility. For example, the state could be the

agent’s mood on a particular day, which affects how risk-averse or how patient he is on that

day. We could also interpret the state as the realization of some private news arriving every

period which affects the agent’s utility that period.

The state evolves according to a Markov process (st)t∈T with transition probabilities

P : S → ∆S and a stationary distribution π ∈ ∆S. The Markov process is fixed and known

to the agent but unknown to the analyst. We assume the Markov process satisfies the

continuity condition that Ps ≥ δπ for some δ > 0. This ensures that the Markov process has

full support with respect to its stationary distribution and guarantees ergodicity.16 Going

forward, we let [P ] denote such a Markov process on the subjective state space.

We now describe the agent’s utility. Let U denote the set of all utilities u : X → [0, 1]

normalized such that u (x) = 0 and u (x̄) = 1, where x and x̄ correspond to consuming 0

and m forever, respectively. For any measurable u ∈ U , we let

u (p) :=
∫

X
u(x)dp

denote the expected utility of p ∈ ∆X.

Every period t ∈ T , a state st ∈ S realizes and determines two things: (i) the agent’s

utility ust ∈ U at period t, and (ii) his expectation Est about next period’s state st+1 ∈ S

according to the transition probability Pst . For example, the agent’s mood determines his

risk aversion and discount factor today and also informs his beliefs about his mood tomorrow.

The agent is fully sophisticated and has correct beliefs; he anticipates what his mood will

be tomorrow in order to determine his utility tomorrow as well as his beliefs about what his

mood will be the day after, and so forth.

Following Kreps and Porteus (1978), we model utilities recursively as aggregator functions

of current consumption and future continuation value. To accommodate changing utilities,

we allow the aggregator function to be stochastic. A stochastic aggregator φs (c, v) specifies

how the agent evaluates his current consumption c versus his future continuation value v

16 The classic Doeblin’s condition states that Pn
s ≥ δλ for some n ≥ 1 and probability measure λ. Our

condition obtains if we set n = 1 and λ = π.
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given state s ∈ S. Formally, the stochastic aggregator φs : M × [0, 1] → [0, 1] is Lipschitz

continuous (with some bound N) and strictly increasing in the second argument. Since the

agent anticipates that he may be choosing again next period, future continuation values are

evaluated via the additive linear representation of Dekel et al. (2001). We now define a

utility process as follows.

Definition. A stochastic process (ut)t∈T on U is a utility process if there exists a Markov

process [P ] on S and a stochastic aggregator φ such that a.s.

ut (c, z) = φst

(

c,Est

[

sup
p∈z

ut+1 (p)

])

, (3)

where the expectation Est is taken with respect to Pst .

In this case, we say the utility process is generated by (P, φ). Given any Markov process

[P ] and stochastic aggregator φ, we can always construct a utility process (ut)t∈T generated

by (P, φ). At a period t ∈ T , if st = s for some s ∈ S, we sometimes write us or ust, instead

of ut.

Every utility process is also an ergodic Markov process on the space of utilities. To see

why it is a Markov process, note that if us = us′, then the agent’s expectations Es and Es′

are the same. Since the agent has correct beliefs, this means that the distribution of the

next period’s utility induced by Ps and Ps′ is also the same. Moreover, the following lemma

shows that the utility process is ergodic as well.

Lemma 1. A utility process is an ergodic Markov process.

Proof. See Appendix A.1. �

2.4 Ergodic Representation of Stochastic Choice

We are now ready to define the main model. We say the utility process is regular if us (p) =

us (q) with π-probability of either zero or one for all p, q ∈ ∆X. In other words, ties either

never occur or occur for sure.

Definition. ρ is ergodic if there exists a regular utility process generated by (P, φ) such that

for any t-period z ∈ Z∗, a.s.

ρz (p) = lim
n→∞

1

n

n∑

i=0

1 {uit+1 (p) ≥ uit+1 (q) for all q ∈ z} .

12



If ρ is ergodic, then we say it is represented by (P, φ).

In our model, the stochastic choice of an option p ∈ z corresponds exactly to the long-run

frequency of choosing p in an infinite sequence of choices by the agent. At every period, p is

chosen only if it is ranked the highest in z according to realization of the utility process u.

Recall that the utility process has a rich intertemporal structure as discussed previously. Note

that this is an as-if representation that corresponds exactly to the individual interpretation

of stochastic choice in a repeated setup. Moreover, this features prominently in dynamic

discrete choice estimation.17 In Section 5, we provide the axiomatic characterization of the

representation.

For a simple illustration, consider a well-known special case of our model.

Definition. A utility process is standard if there is a random vNM utility ws and a random

discount factor βs such that a.s.

φs (c, v) = (1 − βs)ws (c) + βsv. (4)

The standard utility process correspond to the random expected utility model of Gul and

Pesendorfer (2006).

Example 2 (Random Expected Utility). Let [P ] denote an i.i.d process and let the stochastic

aggregator satisfy

φs (c, v) = (1 − βs)ws (c) + βsv,

where ws is a random vNM utility and βs ∈ (0, 1) is a random discount factor. Thus,

ut (c, z) = (1 − βs)wst (c) + βstE

[

sup
p∈z

ut+1 (p)

]

.

Suppose ρ is represented by (P, φ). Consider a 1-period z ∈ Z∗. As a result, for any p, q ∈ z,

we have ut (p) ≥ ut (q) if and only if wst (p) ≥ wst (q) by canceling out the continuation value

of the menu z. From the ergodic representation, we thus have

ρz (p) = lim
n→∞

1

n

n∑

i=1

1 {wsi (p) ≥ wsi (q) for all q ∈ z}

= π {s ∈ S : ws (p) ≥ ws (q)} ,

17 For instance in Hotz and Miller (1993), similar formulas are used for the computation of conditional
choice probabilities which are then used to estimate value functions for identifying parameters of interest.
This methodological approach is now commonly used in the literature.
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which corresponds to the random expected utility model of Gul and Pesendorfer (2006).

Example 2 illustrates the fact that when the aggregator is standard (i.e., additive and

time-separable), the analyst does not need to model repetition explicitly. For instance,

repetition can be delayed for an arbitrary number of periods without affecting stochastic

choice. More generally, the agent’s long-run choice frequency is the same regardless of how

often choices are repeated, that is, stochastic choice is independent of future continuation

menus. As we will see in Section 4, this is no longer true once we move away from standard

utilities.

2.5 Identification and Uniqueness

Given an ergodic representation, Theorem 1 below shows that the analyst can completely

identify the agent’s utility process from stochastic choice. In other words, the analyst does

not require the full time series of choices for identification. Moreover, this can be done by

focusing only on repeated binary menus.

Theorem 1. Let ρ and ρ′ be represented by (P, φ) and (P ′, φ′) respectively. Then the fol-

lowing are equivalent:

(i) ρ (p, q) = ρ′ (p, q) for all p, q ∈ z ∈ Z∗.

(ii) (P, φ) and (P ′, φ′) generate the same utility process.

Proof. See Appendix B. �

Note that Theorem 1 does not mean that the Markov process on S can be identified

uniquely; nonuniqueness can be trivially obtained by relabeling or adding redundant states.

Nevertheless, if we focus on a “minimal” state space such that no two states have the same

utility, then unique identification holds.

Given that stochastic choice data consist of only long-run frequencies, one may wonder

how it would be possible to identify the agent’s utility process completely beyond its station-

ary distribution. To see how this is possible, consider two different utility processes where

one is i.i.d. and the other exhibits persistence but both have the same stationary distri-

bution. Since the agent’s utility also encodes information about his expectation regarding

tomorrow’s utilities, the analyst can distinguish between the two processes via the agent’s

attitudes toward continuation menus. Intuitively, in the i.i.d. case, tomorrow’s utilities are
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more dispersed than in the persistent case so the agent would exhibit a greater preference

for larger menus in the i.i.d. case than in the persistent case.

3 Applications

We now demonstrate how the failure to take into account the agent’s intertemporal pref-

erences in stochastic choice models will lead to estimates and inferences that are biased.

We present two applications. The first involves eliciting risk aversion under Epstein-Zin

preferences. The second involves inferences in a simple two-period dynamic discrete choice

example.

3.1 Stochastic Epstein-Zin

In this section, we apply our model to the widely used intertemporal preferences of Epstein

and Zin (1989) and Weil (1990). We consider the case where Epstein-Zin preferences are

stochastic at every period.

Definition. A utility process is stochastic Epstein-Zin if there are RRAs 6= 1, ψs < 1, and

βs ∈ (0, 1) such that a.s.

φs (c, v) =
(

(1 − βs) c
1−ψs + βsv

1−ψs
1−RRAs

) 1−RRAs
1−ψs

. (5)

If ρ is ergodic with a stochastic Epstein-Zin utility process, then we say ρ is stochastic

Epstein-Zin. In a stochastic Epstein-Zin utility process, each realized utility function is

characterized by three stochastic parameters: (i) the relative risk aversion RRA, (ii) the

elasticity of intertemporal substitution EIS = ψ−1, and (iii) the discount rate β. Since EIS

captures how the agent is willing to shift consumption across periods in response to changes

in interest rates, its reciprocal ψ = EIS−1 can be interpreted as the agent’s preference for

consumption smoothing.

A useful special case is when ψ = RRA, in which case the model reduces to random

utility with constant relative risk aversion (CRRA).18 Note that this is the only case when

18 One simple case is when the subjective state space itself is s = (RRA,EIS, β). Note that this is
not without loss of generality, since utilities encode not only intertemporal preferences (in the form of the
stochastic aggregator) but also the agent’s expectations regarding tomorrow’s state. The allowable subjective
state space can thus be much richer than the three parameters (RRA,EIS, β).
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the agent is indifferent to the timing of the resolution of uncertainty. The followings are

extensions of the classic definitions of preference for early or late resolution of uncertainty

in our repeated choice setup.

Definition. ρ satisfies Preference for Early Resolution of Uncertainty (PEU) if for all α ∈

[0, 1],

ρ
(

αδ(c,z) + (1 − α) δ(c,y), δ(c,αz+(1−α)y)

)

= 1.

ρ satisfies Preference for Late Resolution of Uncertainty (PLU) if for all α ∈ [0, 1],

ρ
(

δ(c,αz+(1−α)y), αδ(c,z) + (1 − α) δ(c,y)

)

= 1.

It is well known that PEU corresponds to ψ ≤ RRA and PLU corresponds to ψ ≥ RRA

(see Epstein et al. (2014)). This naturally extends to our setup as well.

Corollary 1. Suppose ρ is stochastic Epstein-Zin.

• Then ρ satisfies PEU if and only if a.s. ψs ≤ RRAs.

• Then ρ satisfies PLU if and only if a.s. ψs ≥ RRAs.

Proof. The proof follows from Proposition 3 in Section 4. �

We now show how the proper modeling of repeated menus is important when the agent’s

utility process is stochastic Epstein-Zin. Consider Example 1, in which the analyst is eliciting

the risk aversion of an agent by repeatedly offering him the choice between a safe option p

that yields $5 for sure and a risky option q that yields $10 and $5 with equal probability.

In that example, repetition is modeled explicitly as occurring every period. On the other

hand, in most models of stochastic choice (e.g., Gul and Pesendorfer (2006)), repetition is

not modeled explicitly. In the following, we will show how ignoring repetition in stochastic

choice models would lead to estimates and inferences that are biased.

3.1.1 Delayed Repetition

To demonstrate the importance of modeling repetition, suppose we elicited choice every two

periods instead of one. Denote this delayed repeated menu as z+1. Let p+1 ∈ z+1 denote

the delayed safe option which yields $5 today, $0 tomorrow, and the repeated menu z+1

on the day after. Let q+1 denote the delayed risky option which yields $10 and $5 with
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equal probability today, $0 tomorrow, and the repeated menu z+1 on the day after. We call

z+1 = {p+1, q+1} “the menu z delayed by 1 period”.

We can generalize this concept of delayed repetition to any finite number of time periods.

Given a 1-period menu z ∈ Z∗ and t ∈ T , let z+t denote the menu obtained by delaying

repeated choice by t periods. Formally, for every p ∈ z, p+t ∈ z+t is such that

p+t =




p1, $0, . . . , $0

︸ ︷︷ ︸

t

; z+t




 ,

where p1 ∈ ∆M is today’s consumption distribution. Note that z+t is t + 1-period. The

following result shows that when the agent’s desire for consumption smoothing is less (more)

than risk aversion, the probability that a safe option is chosen increases (resp., decreases)

under delay.19

Proposition 1. Suppose ρ is stochastic Epstein-Zin. For 1-period menu z and p ∈ z such

that p = δ(c,z) for some c ∈ M ,

(i) ψs ≤ RRAs a.s. implies ρz
(

δ(c,z)

)

≤ ρz+t

(

δ+t
(c,z)

)

.

(ii) ψs ≥ RRAs a.s. implies ρz
(

δ(c,z)

)

≥ ρz+t

(

δ+t
(c,z)

)

.

Proof. First, suppose ψs ≤ RRAs a.s. Let r = ($0, . . . , $0 ; z+t) and note that

vst (z) = Est

[

max
q∈z

ust+1 (q)
]

≥ Est

[

ust+1 (r)
]

= vst (r) .

Let v2 = vs (r) and v1 = vs (z) so v2 ≤ v1. Define

σs :=
1 − ψs

1 − RRAs
.

Since φs (c, v2)
σs − βsv

σs
2 = (1 − βs) c

1−ψs , we have

φs (c, v1) = (φs (c, v2)
σs + βs (vσs1 − vσs2 ))

σ−1
s .

Now, if RRAs < 1, then σs ≥ 1 as ψs ≤ RRAs. On the other hand, if RRAs > 1, then

σs < 0 as ψs < 1. In either case, this means that φs (·, v1) is more convex than φs (·, v2) so

19 For convenience, we present Proposition 1 in its weak form but it also holds with strictness. That is, if

ψs < RRAs holds with some probability implies ρz

(
δ(c,z)

)
< ρz+t

(

δ+t
(c,z)

)

.
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φs (·, v2) is more risk-averse than φs (·, v1). This implies that for every q ∈ z, if

us
(

δ(c,z)

)

= φs (c, v1) ≥
∫

M
φs (c′, v1) dq1 = us (q)

then

us
(

δ+t
(c,z)

)

= φs (c, v2) ≥
∫

M
φs (c′, v2) dq

+t
1 = us

(

q+t
)

.

The conclusion follows. The case for ψs ≥ RRAs a.s. is analogous. �

To understand the implication of Proposition 1, consider Example 1. In that example, the

menu z contains only two options, the safe option and the risky option. Consider an agent

whose desire for consumption smoothing is always smaller than his relative risk aversion (i.e.,

ψs ≤ RRAs a.s.). Notice that Proposition 1 implies that the probability of choosing the risky

option increases when repetition becomes more frequent (i.e., the delay +t becomes smaller).

This result can be understood intuitively as follows: under repeated choice the risky option

feels “safer” because even if today’s outcome is bad, there is always a chance that tomorrow’s

outcome will be good. Thus, the risky option becomes more attractive as repetition becomes

more frequent whenever the agent’s preference for consumption smoothing is low compared

to his risk aversion.20

This behavior may be natural in our daily life; for instance, a consumer may choose

more “risky” brands if he knows he will visit the grocery store every day but stick to “safer”

brands if he can visit the store only seldom. The reasoning for ψ ≥ RRA is symmetric. A

static model of stochastic choice that ignores repetition would fail to capture such behavioral

phenomena.

3.1.2 Biased Estimation

We now show how ignoring the repetition of choice would lead to systematic biases in esti-

mation of the agent’s risk aversion. To illustrate, note that by making delay arbitrarily long,

we can set the value of continuation menus arbitrarily small so that the agent behaves as if

he ignores repetition. In this way, we can approximate the agent’s static stochastic choice.

Applying Proposition 1 to Example 1, we get that when ψ ≤ RRA,

ρz
(

δ($5,z)

)

≤ lim
t→∞

ρz+t

(

δ+t
($5,z)

)

= π
{

ws (5) ≥
1

2
ws (10) +

1

2
ws (0)

}

, (6)

20 Another example is when people would be willing to bet on a repeated lottery but not on a one-time
lottery as in the well-known Law of Large Numbers fallacy of Samuelson (1963).
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where ws (c) = c1−RRAs .

The right-hand side is the stochastic choice of an agent with standard CRRA utility,

which exactly coincides with the static distribution of risk aversion. The inequality in (6)

implies that an analyst who incorrectly assumes standard intertemporal preferences would

underestimate the agent’s risk aversion if the agent in fact has a preference for early resolution

of uncertainty. In other words, the analyst may incorrectly conclude that the agent is

mostly risk-loving, while in reality, he is mostly risk-averse but chooses the risk-free option

infrequently due to intertemporal preferences.

Note that in the special case in which ψ = RRA, intertemporal preferences are stan-

dard (see Example 2) and repetition does not matter. In this case, any inference from a

static model that ignores repetition would be correct. For this reason, there is an implicit

assumption in static models of stochastic choice that the agent’s intertemporal preferences

are standard. In general, whenever intertemporal preferences are non-standard, there will

always be some biases in estimation. We formally show this in Section 4.

3.2 Dynamic Discrete Choice

In this subsection, we apply our model to a simple two-period dynamic discrete choice

example to illustrate the effects of intertemporal preferences on inference. Following most

applications in dynamic discrete choice, we adopt the population interpretation of stochastic

choice in this subsection only. In other words, we consider a population of observationally

identical agents facing the same choice problem. This is possible in our model under two

assumptions. First, even though choices are not technically repeated (we consider only two

periods), we can model this as the limit of delaying repetition for an arbitrarily number of

periods (see Section 3.1.1). Second, we assume the state follows an i.i.d. process where the

distribution of each agent’s state tomorrow is exactly equal to the population distribution

π.21 Under these assumptions, the long-run choice frequency that corresponds to stochastic

choice also reflects the population choice. We can thus reinterpret stochastic choice in our

ergodic model as a result of unobserved heterogeneity in a population of agents. The latter

assumption is a typical assumption when estimating conditional choice probabilities in the

dynamic discrete choice literature (see Hotz and Miller (1993)).

21 We can relax this assumption as long as the stationary distribution of the (possibly non-i.i.d.) state
process is the same as the population distribution.
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The setup is as follows. There is a population of agents who decide whether to purchase

phone insurance (e.g., AppleCare) at the beginning of years 1 and 2. We are interested in

modeling their choice of insurance. Let cs be the annual consumption value of the phone for

an agent at state s ∈ S. We assume s is i.i.d. with stationary distribution π, which is also

the population distribution of s. The price of insurance is a. In year t ∈ {1, 2}, there is pt

probability that the phone breaks down, in which case an agent’s estimated repair cost for

fixing a broken phone is θs. The analyst knows a, p1, and p2 and would like to estimate the

distribution of the repair cost θs. For simplicity, we assume that cs ≥ a and cs ≥ θs so all

agents have positive final consumption. Note that in contrast to the application in Section

3.1, utilities in this example appear stochastic to the analyst due to unobserved heterogeneity

in the population (e.g., each agent’s repair cost).

First, consider the case where all agents have risk-neutral standard preferences (i.e.,

stochastic Epstein-Zin from (5) with RAAs = ψs = 0). We study whether agents choose to

buy insurance in year 1. Let βs be the discount rate and v denote an agent’s continuation

value.22 An agent will choose insurance if the following holds:

(1 − βs) (cs − a) + βsv ≥ p1 ((1 − βs) (cs − θs) + βsv) + (1 − p1) ((1 − βs)cs + βsv) ,

or, equivalently, θs ≥ a/p1. If we let p denote the “buy insurance” option, q denote the “not

buy insurance” option and z = {p, q} denote the menu, then the probability that insurance

is purchased is given by

ρ∗
z (p) = π {s ∈ S : θs ≥ a/p1} . (7)

Naturally, lower values of θs correspond to fewer agents choosing insurance.

Next, we consider the case where all agents have non-standard preferences. For instance,

suppose the utility of an agent in state s ∈ S is given by stochastic Epstein-Zin with risk

neutrality (i.e., RAAs = 0):

φs (x, v) =
(

(1 − βs)x
1−ψs + βsv

1−ψs
) 1

1−ψs , (8)

where ψs captures the agent’s desire for consumption smoothing as in the previous subsection.

Note that when the continuation value v is zero, this reduces to standard risk-neutral utility.

22 This is the same for all agents since the distribution of next period’s state is π for everyone.
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Now, the probability that insurance is chosen is given by

ρz (p) = π {s ∈ S : φs (cs − a, v) ≥ p1φs (cs − θs, v) + (1 − p1)φs (cs, v)} , (9)

where

v :=
∫

S
max {φs (p′) , φs (q′)} dπ

is the value of the continuation menu z′ = {p′, q′}, where p′ and q′ correspond to purchasing

insurance or not respectively.

We now demonstrate how ignoring intertemporal preferences would lead to biased es-

timation of θs in this dynamic discrete choice problem. Suppose that agents’ utilities are

non-standard and given by equation (8) and, hence, the insurance adoption rate is given

by ρz (p) from equation (9). The analyst however misspecifies the model and assumes that

utilities are standard. In this misspecified model, the insurance adoption rate is given by

ρ∗
z(p) from equation (7). The following proposition characterizes the comparison between

ρ∗
z(p) and ρz(p) depending on the agents’ intertemporal preferences.

Proposition 2. Suppose that ρ∗ and ρ are given as in equations (7) and (9), respectively.

(i) ψs ≤ 0 (i.e. RRAs) a.s. implies ρz (p) ≤ ρ∗
z (p).

(ii) ψs ≥ 0 (i.e. RRAs) a.s. implies ρz (p) ≥ ρ∗
z (p).

Proof. Note that φs (·, v) is convex if ψs ≤ 0 . Thus, φs (·, v) is risk-loving so

φs (cs − a, v) ≥ p1φs (cs − θs, v) + (1 − p1)φs (cs, v)

implies cs − a ≥ p1 (cs − θs) + (1 − p1) cs. This means that ρz (p) ≤ ρ∗
z (p) as desired. The

case for ψs ≥ 0 is symmetric. �

Proposition 2 implies that if almost all agents prefer early resolution of uncertainty (i.e.,

ψs is negative a.s.), then ignoring intertemporal preferences will result in underestimation of

repair costs. To see this, note that the analyst misinterprets the observed adoption rate ρz(p)

as ρ∗
z(p) and will estimate θs based on the misspecified model (7). Proposition 2 shows that

ρz (p) ≤ ρ∗
z (p) when ψs is negative a.s. This means that if the analyst observes a low adoption

rate, she would incorrectly infer that repair costs are low.23 In reality however, agents are

more willing to decline insurance due to their intertemporal preferences. The implication

23 Recall that a lower adoption rate corresponds to lower values of θs from equation (7).
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for when almost all agents prefer late resolution of uncertainty (i.e., ψs is positive a.s.) is

symmetric.

For an intuitive understanding of why Proposition 2 holds, recall Proposition 1. Note

that buying (not buying) insurance in Proposition 2 corresponds to choosing the safe option

(resp., the risky option) in Proposition 1. This is because if agents purchase insurance, their

payoffs are constant. Note also that assuming the standard model corresponds to delaying

forever (i.e., ρ∗
z = ρz+∞). Therefore, under the assumption of risk neutrality (i.e., RAA = 0),

statements (i) and (ii) in Proposition 2 correspond respectively to statements (i) and (ii) in

Proposition 1 with infinite delay (i.e., t = ∞). The reasoning for Proposition 2 then follows

as in Proposition 1.

This example illustrates how our model can be readily applied to problems of discrete

choice estimation that allow for more general temporal preferences. Although we assumed

risk neutrality for simplicity, this example can be easily generalized to accommodate non-

trivial risk attitudes. Our example is straightforward but it serves to illustrate the inherent

inference issues that can arise if intertemporal preferences are not taken into account in

many applications of dynamic discrete choice estimation. While ignoring intertemporal pref-

erences would obviously affect inference, our main point is understanding the systematic way

in which intertemporal preferences affect estimation as outlined in Proposition 2.

3.2.1 Relationship with Dynamic Discrete Choice

We end this section on intertemporal preferences with a discussion of our results in relation

to models of dynamic discrete choice. In a typical model of dynamic discrete choice, the

agent’s utility satisfies

ust (c, z) = (1 − β) (w (c) + ǫst (c, z)) + βEst

[

sup
p∈z

ust+1 (p)

]

, (10)

where the shocks ǫ are i.i.d. across consumption c and continuation menus z. If shocks do

not depend on continuation menus or the continuation menu is the same regardless of what

option the agent chooses, then this model (10) coincides with our standard utility process.

This is the case in the example of Section 3.2, where shocks represent unobserved repair

costs, as well as in many dynamic discrete choice problems such as Rust (1987) and Hotz

and Miller (1993).

To see how the dynamic discrete choice model (10) coincides with our standard model,
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note that when shocks are independent of continuation menus, we can write the shock ǫs (c, z)

simply as ǫs (c). We can then express the sum of current consumption utility w and the shock

ǫs as a new current consumption utility ws as

ws (c) := w (c) + ǫs (c)

As a result, model (10) coincides with our model with a standard utility process. In this

way, we can consider extensions of typical models in dynamic discrete choice to allow for

more general aggregators such as stochastic Epstein-Zin.24

With the above relationship with mind, it is easy to see how to extend the result from

the previous section to a more general dynamic discrete choice setting with additive shocks.

Recall that the stochastic Epstein-Zin aggregator with risk-neutral utility (i.e., RRAs = 0)

is given by

φs (c, v) :=
(

(1 − βs) c
1−ψs + βsv

1−ψs
) 1

1−ψs

Now, the utility if the phone breaks is given by

us (cs − θs, z) = φs (cs − θs + ǫs (cs − θs) , vs (z))

where θs is the repair cost. The same argument for Proposition 2 then applies in this

setting. If almost all agents prefer early resolution of uncertainty (i.e., ψs is negative a.s.),

then ignoring intertemporal preferences will result in underestimation of repair costs. Vice-

versa, if almost all agents prefer late resolution of uncertainty (i.e., ψs is positive a.s.), then

ignoring intertemporal preferences will result in overestimation of repair costs.

4 Intertemporal Preferences

4.1 Independence of Continuation Menus

In Section 3, we demonstrated how the explicit modeling of repeated choice is paramount for

an analyst interested in elicitation or inference when the agent has non-standard intertem-

poral preferences. In this section, we formalize when repeated choice needs to be taken into

24 One difference is that utilities in our model are bounded and Lipschitz continuous which would not be
technically satisfied if shocks are extreme-value distributed. However, if we consider only a finite subset of
choice options which is the case in most applications, then our conditions can be satisfied without loss of
generality.
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account by the analyst versus when it is unnecessary to do so as in static random choice. In

the case of the latter, we say the stochastic choice satisfies an axiom called Independence of

Continuation Menus.

To illustrate, recall Example 1 where the menu consists of a risky option that yields

$10 and $0 with equal probability and a safe option that yields $5 for sure. Proposition 1

implies that the probability of choosing the risky option over the safe option depends on the

timing of the next repetition; in other words, continuation menus matter unless the agent

is indifferent to the timing of resolution of uncertainty. On the other hand, in Example 2

where we assume standard utility, the only thing that matters is the distribution of current

consumption; in that case, choice is independent of continuation menus.

We now formalize these concepts. Fix a menu z ∈ Z and for every p ∈ z, let pZ1 ∈ ∆Z

denote the distributions of next-period continuation menus. Given a menu z, suppose pZ1 =

qZ1 for all p, q ∈ z so the distribution of the agent’s next-period continuation menu is the

same regardless of what the agent chooses. We call such a menu 1-period invariant.25

The following definition characterizes when choice is independent of next-period contin-

uation menus. To introduce the definition, for any menu z ∈ Z and for every p ∈ z, let

pM1 ∈ ∆M denote the distributions of current consumption and let

zM1 :=
{

pM1 ∈ ∆M : p ∈ z
}

denote the menu of consumption distributions.

Consider a menu z where pZ1 = r for all p ∈ z so z is 1-period invariant. Now, construct

another menu from z by switching the distribution of next-period menus from r to r′ but

leaving the distribution of current consumption the same. Call this new menu y. In other

words, zM1 = yM1 and qZ1 = r′ for all q ∈ y. Note that both z and y are 1-period invariant.

1-Period Independence of Continuation Menus states that choice probabilities in y and z

are the same; in other words, switching the common distribution of next-period menus does

not alter stochastic choice.

Definition. ρ satisfies 1-Period Independence of Continuation Menus (1-ICM) if for all

1-period invariant z, y ∈ Z∗, p ∈ z and q ∈ y,

pM1 = qM1 and zM1 = yM1 =⇒ ρz (p) = ρy (q) .

25 Note that every 1-period menu is 1-period invariant. The converse is not true.
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Under 1-ICM, the agent evaluates current consumption independent of next-period con-

tinuation menus. In fact, it implies the separability axiom of Frick et al. (2018) which is

the stochastic analog of the standard separability axiom of Fishburn (1970). This follows

from the fact when current consumption is evaluated independent of next-period continua-

tion menus, the agent will naturally ignore correlations between current consumption and

next-period menus.

1-ICM is applicable only to menus that are 1-period invariant. This is the case in Propo-

sition 1 where y = z+t for some t so zM1 = yM1 . Note that for all p ∈ z, pZ1 = δz while

for all q ∈ y, qZ1 = δ(0,...,y) which corresponds to 0 consumption for t periods followed by y.

Hence, both y and z are 1-period invariant. Proposition 1 implies that if ψs = RRAs a.s.,

then ρz
(

δ(c,z)

)

= ρzt
(

δ+t
(c,z)

)

which agrees exactly with 1-ICM. In general however, we may

consider menus that are not 1-period invariant. Suppose the analyst is interested in eliciting

the agent’s discount factor. In order to do this, she would need to offer repeated menus

of at least 2 periods. For instance, let p correspond to an early option of consuming $10

today and q correspond to a later option of consuming $15 tomorrow. Let z = {p, q} where

p = (10, 0; z) and q = (0, 15; z). In this case, pZ1 = δ(0,z) 6= δ(15,z) = qZ1 so z is not 1-period

invariant. As a result, 1-ICM no longer applies.

We now extend our notion of independence beyond the first period. For simplicity, we

will focus on menus such that every continuation menu before time t is degenerate. We call

such menus t-simple. For every option in a t-simple menu, we can consider its distributions

over t-period consumptions and continuation menus. Formally, let M1 := M , and recursively

define Mt := M × ∆Mt−1. Let pMt ∈ ∆Mt denote the t-period distribution of consumption

and let

zMt :=
{

pMt ∈ ∆Mt : p ∈ z
}

denote the menu of t-period consumption distributions. Also let pZt ∈ ∆ (∆ (· · · ∆Z)) denote

the t-period distribution of continuation menus where the ∆ (·) operator is applied t times.

Given a menu z, if pZt = qZt for all p, q ∈ z, then the menu is t-period invariant.26

The next definition characterizes when choice is independent of all continuation menus. It

extends 1-ICM from one period to t periods. Similar to the reasoning for 1-ICM, ICM implies

that switching the common distribution of continuation menus does not alter stochastic

26 As in 1-period menus, every simple t-period menu is t-period invariant but the converse is not true.
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choice.

Definition. ρ satisfies t-Period Independence of Continuation Menus (t-ICM) if for all t-

period invariant z, y ∈ Z∗, p ∈ z and q ∈ y,

pMt = qMt and zMt = yMt =⇒ ρz (p) = ρy (q) .

Moreover, ρ satisfies Independence of Continuation Menus (ICM) if it satisfies t-ICM for all

t ∈ T .

In the following, we characterize utility processes that satisfy ICM. First, consider the

following class of separable utility processes.

Definition. A utility process is separable if there is a random vNM utility ws, a random

function ϕs and a random discount factor βs such that a.s.

φs (c, v) = (1 − βs)ws (c) + βsϕs (v) .

Note that a separable utility process is standard if and only if ϕs (v) = v a.s.

The main result of this section shows that 1-ICM exactly characterizes separable utility

while ICM exactly characterizes standard utility. Standard utility has been widely assumed

in dynamic discrete choice analysis (see Section 3.2.1 for details).27

Theorem 2. Suppose ρ is ergodic. Then,

• it satisfies 1-ICM if and only if its utility process is separable.

• it satisfies ICM if and only if its utility process is standard.

• it satisfies ICM if and only if it satisfies 1-ICM and 2-ICM.

Proof. See Appendix E.1. �

Theorem 2 shows that while separability is sufficient to ensure 1-ICM, it is insufficient

to ensure ICM. In other words, when an agent has a separable utility process, the analyst

can ignore repetition for 1-period menus but not 2-period ones. Satisfying both 1-ICM and

2-ICM is sufficient for full ICM. Moreover, only a standard utility process will ensure full

ICM.

27 It corresponds to an infinite-horizon Markovian version of the Bayesian Evolving Utility model of Frick
et al. (2018).
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Standard utility was exactly the case assumed in Example 2 where our ergodic model

reduces to the static model of random expected utility. While it may not be surprising that

standard utility ensures ICM, Theorem 2 interestingly shows that ICM implies standard

utility. In other words, whenever the agent has non-standard intertemporal preferences (i.e.,

non-standard utility), there exists some repeated choice problem where continuation menus

matter; ignoring repeated choice in such a problem would result in biased inference.

4.2 Resolution of Uncertainty and Repeated Independence

In this subsection, we relate ICM with other well-studied intertemporal preferences. This

allows us to provide an alternate characterization of ICM and clarifies its relationship with

other behavioral properties studied in the literature.

Consider the stochastic Epstein-Zin preferences of Section 3.1 and note that if the agent

satisfies Indifference to Timing of Resolution of Uncertainty (IRU) (i.e., both PEU and

PLU), then the utility process is standard (i.e., ψs = RAAs a.s.). Given Theorem 2, this

means that under stochastic Epstein-Zin preferences, IRU ensures ICM is satisfied. For

general utility processes however, IRU does not imply ICM; it implies a stochastic version

of the classic Uzawa-Epstein preferences.

Definition. A utility process is stochastic Uzawa-Epstein if there are vNM utilities ws and

βs such that a.s.

φs (c, v) = (1 − βs (c))ws (c) + βs (c) v.

Proposition 3. Suppose ρ is ergodic. Then,

• it satisfies PEU (PLU) if and only if φs (c, ·) is convex (resp., concave) a.s.

• it satisfies IRU if and only if its utility process is stochastic Uzawa-Epstein.

Proof. Suppose ρ exhibits PEU. We thus have a.s.

αφs (c, vs (z)) + (1 − α)φs (c, vs (y)) ≥ φs (c, αvs (z) + (1 − α) vs (y)) .

Since this is true for all z and y, the result follows. The case for PLU is symmetric. If φ (c, ·)

is both concave and convex, then it is linear. Thus, φs (c, v) = (1 − βs (c))ws (c) + βs (c) v

for βs (c) > 0 for all c ∈ M . �
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Proposition 3 is the stochastic analog of Theorem 1 of Epstein (1983). Since stochastic

Uzawa-Epstein is strictly more general than the standard model, Proposition 3 implies that

IRU is too weak to ensure ICM. In fact, since Uzawa-Epstein utilities are not even separable,

IRU will not even ensure 1-ICM. It is easy to see this in the functional form of Uzawa-Epstein

utility as the value of continuation menus has nontrivial effects on current consumption utility

via the term βs (c).

Given that IRU does not ensure ICM but ICM implies IRU (since every standard utility

satisfies IRU), it is natural to ask what additional property will bridge the gap between IRU

and ICM. It turns out to be a repeated version of classic independence axiom. To illustrate,

recall Example 1 where the 1-period menu z consists of a risky option that yields $10 and $0

with equal probability and a safe option that yields $5 for sure. Suppose we wanted to test

the independence axiom in this repeated setup by mixing both the risky and safe options

with a third option r that yields $3 for sure. Let y denote this new 50-50 mixture of z and

r. Note that y is also a 1-period menu and consists of two options: one option that yields

$10 with probability 0.25, $0 with probability 0.25, and $3 with probability 0.50; the other

option yields $3 and $0 with equal chance. Importantly, regardless of what happens, the

agent will face y for sure next period so this mixture is repeated every period ad infinitum.

We use the notation y = 0.5z� 0.5r to denote this 50-50 repeated mixture between z and r.

This corresponds exactly to repeated testing of the classic independence axiom.

We now formalize this concept. First consider a 1-period menu z ∈ Z∗ in which every

p ∈ z can be expressed as (p1 ; z). Consider repeatedly mixing z with some r ∈ ∆M . This

yields the new 1-period menu, denoted by αz� (1 − α) r ∈ Z∗, such than any element of the

1-period menu is of the form

(αp1 + (1 − α) r ; αz � (1 − α) r) .

In other words, every option is mixed with r every period. We denote the element of

αz� (1 − α) r ∈ Z∗ by αp� (1 − α) r. We can extend this to all t-period simple menus (see

Appendix G) and define repeated independence as follows.

Definition. ρ satisfies Repeated Independence (RI) if for all t-simple z ∈ Z∗, α > 0 and

r ∈ ∆M

ρz (p) = ραz�(1−α)r (αp� (1 − α) r) .

RI is exactly the classic independence axiom in our repeated choice setup. In fact, it
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corresponds to the linearity axiom in the static random expected utility model of Gul and

Pesendorfer (2006). The main result of this subsection shows that IRU in addition to RI

exactly characterizes ICM. Moreover, under IRU, RI is equivalent to 1-ICM.

Theorem 3. Suppose ρ is ergodic. Then the following statements are equivalent:

(i) it satisfies ICM.

(ii) it satisfies IRU and RI.

(iii) it satisfies IRU and 1-ICM.

Proof. For the equivalence between (i) and (ii), see Appendix E.3. The equivalence between

(i) and (iii) follows from Theorem 2, Proposition 3 and the fact that any separable Uzawa-

Epstein utility must be standard. �

Theorem 3 suggests that with stochastic choice, intertemporal preferences complicate

tests of the classic independence axiom. Even though the agent may satisfy the static

independence axiom for a single time period, he may violate this repeated version of the

independence axiom (i.e., RI). 28 Moreover, as we will show in the next section, any ergodic

ρ satisfies the independence axiom over menus (i.e., Linearity (Axiom 1.2)). These facts

show the importance of specifying the appropriate domain when we test the independence

axiom with stochastic choice.

5 Characterization

This section provides an axiomatic characterization of our model. First, we show how re-

peated menus can be used to approximate any menu. This allows us to extend our primitive

to the set of all (finite) menus.

5.1 Extending Repeated Menus

Given any menu z ∈ Z, consider replicating the menu z for the first t periods and ending

with a menu y ∈ Z for sure. We use the notation ry,t (z) to denote such a menu and construct

28In Appendix G, we study the relationship between non-standard intertemporal preferences and particular
patterns of RI violations along with comparative statics.
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it inductively as follows. First, for any y ∈ Z, let ry,0 (z) = y. Given ry,t−1, for any p ∈ ∆X,

let py,t ∈ ∆X denote the lottery induced by ry,t−1, that is, for all measurable A× B,

py,t (A× B) = p
(

A× r−1
y,t−1 (B)

)

.

Finally, for any z ∈ Z, define

ry,t (z) := {py,t : p ∈ z} .

In other words, ry,t (z) ∈ Z is the menu that follows z for the first t periods ending with y

for sure. Lemma 13 shows that this is well-defined.

Given any menu z ∈ Z, we can now define what it means to construct a repeated menu

that approximates z up to t periods. We let zt denote this t-period repeated version of z.

Definition. Given z ∈ Z, let zt be t-period such that zt = rzt,t (z).

The following lemma shows this is well-defined. Moreover, given any menu z ∈ Z, we

can use its t-period repeated version to approximate it as we increase the number of periods

between each repetition.

Lemma 2. For every z ∈ Z, zt exists and zt → z as t → ∞.

Proof. See Appendix F.1. �

Recall Z∗ = Zr ∩Zf where Zf is the set of finite menus. We can now use finite repeated

menus to approximate any finite menu.

Corollary 2. Z∗ is dense in Zf .

Proof. Fix some finite menu z ∈ Zf so from Lemma 2 above, we can find repeated menus

zt such that zt → z. Since zt = rzt,t (z) and z is finite, zt is also finite by definition. Thus,

zt ∈ Z∗ as desired. �

5.2 Axiomatic Characterization

The results in the previous section allow us to extend the observed stochastic choice on

repeated finite menus to all finite menus as follows. Consider a random choice ρ̄ on all finite

menus Zf such that ρ̄z = ρz for every z ∈ Z∗. In other words, ρ̄ agrees with ρ on all repeated
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menus Z∗. From Corollary 2, we know that Z∗ is dense in Zf . Thus, for any z ∈ Zf , we can

find zt ∈ Z∗ such that zt → z. If ρ̄ is continuous, then ignoring ties,

ρ̄z = lim
t
ρzt

Thus, we can think of ρ̄ as the continuous extension of ρ from Z∗ to Zf . We model ties in

the same way as ρ (see the discussion on ties in Section 2.1) and let Z◦ ⊂ Zf denote the set

of finite menus that contain no ties. To simplify notation going forward, we let ρ denote ρ̄

without loss of generality.

We are now ready to state our axioms on stochastic choice. The first set of axioms

consists of conditions on random expected utility. Note that mixtures here are taken ex-ante

at time 0 and we let ext (z) denote the extreme options of some menu z ∈ Zf . Also recall

that x̄ and x are the consumption streams that yield the best outcome (i.e., m) and the worst

outcome (i.e., 0) respectively forever. Note that we sometimes let x denote the singleton

menu that yields consumption x ∈ X forever.

Axiom 1.1 (Monotonicity). For any z, y ∈ Zf and p ∈ z,

z ⊂ y =⇒ ρz (p) ≥ ρy (p) .

Axiom 1.2 (Linearity). For any z ∈ Zf , α > 0, p ∈ z, and q ∈ ∆X,

ρz (p) = ραz+(1−α)q (αp+ (1 − α) q) .

Axiom 1.3 (Extremeness). For any z ∈ Zf , ρz (ext (z)) = 1.

Axiom 1.4 (Continuity). ρ : Z◦ → ∆ (∆X) is continuous.

Axiom 1.5 (Best-Worst). ρ (x, x̄) = 0 and ρ (x̄, x) = ρ (x, x) = 1 for all x ∈ X.

Axiom 1.6 (L-continuity). There exists N > 0 such that for any α ∈ [0, 1] and any x, x′ ∈

X,

|x− x′| ≤
α

N
=⇒ ρ

(

αδx̄ + (1 − α) δx, αδx + (1 − α) δx′

)

= 1.

Axioms 1.1-1.4 are direct from Gul and Pesendorfer (2006). Best-Worst (Axiom 1.5)

ensures that x̄ and x truly are the best and worst outcomes. Finally, L-continuity (Axiom

1.6) is the stochastic version of the Lipschitz continuity axiom from Dekel et al. (2007). It

guarantees that utilities are sufficiently well-behaved in that they are Lipschitz continuous
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with respect to some common bound N . This is important for the representation and ensures

that it is unique.29 To understand L-continuity intuitively, note that when N = ∞, then

x1 = x2 = x for some x and the axiom reduces to

ρ
(

αδx̄ + (1 − α) δx, αδx + (1 − α) δx
)

= 1,

which holds by Best-Worst and Linearity. L-continuity requires that this holds for large

enough but finite N .30 Taken together, Axiom 1 characterizes a random expected Lipschitz

utility with best and worst outcomes. Continuation Linearity (Axiom 2) below ensures

that agent’s preference toward continuation menus satisfy linearity with respect to ex-post

mixing. First, we define component-wise ex-post mixing. For λ ∈ [0, 1], c, c′ ∈ M and

z, z′ ∈ Z, define ex-post mixing as

λδ(c,z) ⊕ (1 − λ) δ(c′,z′) := δ(λc+(1−λ)c′,λz+(1−λ)z′).

Here, the first mixture λc + (1 − λ) c′ corresponds to the standard mixing of monetary

consumptions (i.e., real numbers) while the second mixture λz + (1 − λ) z′ corresponds to

Minkowski mixing of menus.31 For any c ∈ M , let Zf
c be the set of finite menus such that

every option p ∈ z is degenerate and yields consumption c for sure today (i.e., p = δ(c,w) for

some w ∈ Z). For any z ∈ Zf
c , define

λz ⊕ (1 − λ) δ(c′,z′) :=
{

λp⊕ (1 − λ) δ(c′,z′) : p ∈ z
}

,

which is the Minkowski version of ex-post mixing.

Consider a lottery p in a menu z ∈ Zf
c . Lets mix p and z with a pair (c′, z′) ex post and

call them q and y, respectively (i.e., q = λp ⊕ (1 − λ) δ(c′,z′) and y = λz ⊕ (1 − λ) δ(c′,z′)).

Then y ∈ q and the independence axiom with respect to the ex-post mixing would state that

ρz (p) = ρy (q) .

The axiom below strengthens this to independence even with respect to mixtures between z

29 When the outcome space is infinite-dimensional, allowing for all possible vNM utilities would be too
permissive and result in identification issues.

30 Notice that if the condition is satisfied for N , then it must also be satisfied for all N ′ ≥ N so testing
the axiom involves finding a large enough N such that the condition holds.

31 One could only impose mixing in menus in cases where tomorrow’s consumption is the same. The same
characterization would then lead to a random utility model where the transition probabilities Ps could also
depend on the consumption each period and they all share the same stationary distribution. This could
accommodate consumption-dependent stochastic preferences such as habit formation or experimentation.
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and y.

Axiom 2 (Continuation Linearity). If p ∈ z ∈ Zf
c , y = λz ⊕ (1 − λ) δ(c′,z′) and q = λp ⊕

(1 − λ) δ(c′,z′) for c, c′ ∈ M , z′ ∈ Z and λ > 0, then

ρz (p) = ραz+(1−α)y (αp+ (1 − α) q) .

The next two axioms are conditions with respect to the classic stationarity axiom orig-

inally proposed by Koopmans (1960). In classic stationarity, an agent’s choices remain

unchanged if all consumptions are delayed by the same number of time periods. Given

stochastic preferences, classic stationarity would obviously be violated. One way to extend

stationarity to a stochastic setup is to require an agent’s choice frequencies to remain un-

changed if all consumptions are delayed by the same number of time periods.32 Formally,

for any z, y ∈ Zf and c ∈ M ,

ρ (z, y) = ρ
(

δ(c,z), δ(c,y)

)

.

Classic stationarity is normatively appealing and necessary if the agent is a standard expo-

nential discounter. Stochastic stationarity retains much of the flavor of classic stationarity

but allows for stochastic choice due to stochastic utilities.

However, stochastic stationarity would be violated in our model of ergodic utility. For

example, consider the standard utility process, in which the state follows an i.i.d. process

(i.e., Ps = π for all s ∈ S). Let p correspond to the option of consuming c1 today and 0

tomorrow and q correspond to the option of consuming 0 today and c2 tomorrow. Thus,

ρ (p, q) = π {w (c1) ≥ βs1w (c2)} ,

which depends on the distribution of the stochastic discount rate βs1. Here, the choice

between the original options depends on the realization of the agent’s stochastic discount

rate. On the other hand, if all consumption is delayed by one period, then

ρ
(

δ(c,p), δ(c,q)

)

= π {✚✚βs1w (c1) ≥ ✚
✚βs1δw (c2)} = π {w (c1) ≥ δw (c2)} ,

which is not stochastic as δ = E [βs2] is deterministic. Notice here that, the choice between

the delayed options depends on the agent’s expectation of the discount rate, which is deter-

ministic in this i.i.d. example. In general, when realizations and expectations are different,

32 See Lu and Saito (2018) for a stochastic version of the stationarity axiom in a different setup.
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stochastic stationarity will be violated.33

Given the example above, we consider two relaxations of Stochastic Stationarity. The

first condition, Deterministic Stationarity (Axiom 3) is exactly the classic deterministic sta-

tionarity axiom of Koopmans (1960) extended to menus.34 It states that choices should

satisfy stationarity whenever they are deterministic.

Axiom 3 (Deterministic Stationarity). For any z, y ∈ Zf and c ∈ M ,

ρ (z, y) = 1 ⇒ ρ
(

δ(c,z), δ(c,y)

)

= 1.

The second condition, Average Stationarity (Axiom 4), states that choice frequencies

should satisfy stationarity on “average”. The axiom can be interpreted as the stationarity

on the surplus of menus. To see the interpretation, recall from McFadden (1978, 1981) that

the surplus of a menu z is given by

∫

S
max
p∈z

us (p) dπ. (11)

Following this definition, the surplus of a menu z delayed by one period is given by

∫

S

(∫

S
max
p∈z

us′ (p) dPs

)

dπ. (12)

If the Markov process is stationary (i.e., π =
∫

S Psdπ), then these two surpluses must be the

same. This is exactly the implication of the axiom.

We now show how surpluses are calculated using “average” stochastic choice. For α ∈

[0, 1], let pα denote the lottery that yields the best outcome with probability α and the worst

outcome with probability 1 − α, that is

pα := αδx̄ + (1 − α) δx.

Thus, pα is the worst option when α = 0 and the best option when α = 1. Since ρ (z, pα) is

33 In the i.i.d. example, the discount factor for consumption at period t is given by

βs1
E
[
βs2

E
[
· · ·βst−1

E [βst
]
]]

= βs1
E [β]t−1 = βs1

δt−1,

where δ := E [β]. Interestingly, this particular example corresponds to a model of random quasi-hyperbolic
discounting where present bias occurs if βs1

< δ and future bias occurs if βs1
> δ.

34 It is very similar to the menu stationarity axiom of Higashi et al. (2009) except we only require impli-
cation in one direction.
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the demand for z given the outside option pα, we can interpret

z̄ :=
∫ 1

0
ρ (z, pα) dα (13)

as the “average” demand for z. It is straightforward to show that z̄ is exactly the surplus

of the menu and coincides with (11) via standard integration by parts.35 Similarly, we can

define
∫ 1

0 ρ
(

δ(c,z), δ(c,pα)

)

dα as the “average” demand for z delayed by one period and show

that it coincides with (12). The following axiom states that average stochastic choice is the

same if consumption is delayed by one period.

Axiom 4 (Average Stationarity). For any z ∈ Zf and c ∈ M ,

∫ 1

0
ρ (z, pα) dα =

∫ 1

0
ρ
(

δ(c,z), δ(c,pα)

)

dα.

While Average Stationarity ensures stationarity of the utility process, it does not guaran-

tee ergodicity of the utility process which is crucial for our representation. This is obtained

by a final axiom called D-continuity (Axiom 5). First, note that by Monotonicity, if z ⊃ y,

then clearly ρ (z, y) = 1. By Deterministic Stationarity, this implies that

ρ
(

δ(c,z), δ(c,y)

)

= 1,

which demonstrates classic preference for flexibility. We now require preference for flexibility

to be “robust” in the following sense. For any menu z ∈ Z, let pz̄ := z̄δx̄ + (1 − z̄) δx denote

its probability-equivalent where z̄ is its average demand from equation (13). Since average

demand is equivalent to the surplus of the menu, the agent is ex-ante indifferent between the

menu and its probability-equivalent. The last axiom states that preference for flexibility is

robust even if we perturb the menus z and y slightly by mixing them with the probability-

equivalents pȳ and pz̄ respectively.

Axiom 5 (D-continuity). There exists ε > 0 such that for any z, y ∈ Z and c ∈ M ,

z ⊃ y =⇒ ρ
(

δ(c,(1−ε)z+εpȳ), δ(c,(1−ε)y+εpz̄)

)

= 1.

D-continuity implies that the utility process satisfies Doeblin’s condition and is thus

ergodic. We are now ready to state our main representation theorem.

35 To see this, note that z̄ =
∫ 1

0
π {s : maxp∈z us (p) ≥ α} dα =

∫

S
maxp∈z us (p) dπ. This is similar to the

use of test functions in Lu (2016)
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Theorem 4. ρ satisfies Axioms 1-5 if and only if it is ergodic.

Proof. See Appendix D. �

We now provide an outline for the proof of Theorem 4. The first step is the construction of

a random expected utility representation where the probability measure is countably additive

and continuation menus are evaluated according to the additive linear utility function of

Dekel et al. (2001). This exercise faces two technical challenges. First, we need to extend

the random expected utility representation of Gul and Pesendorfer (2006) to an infinite-

dimensional space while keeping the countable additivity (Theorem 5 in the Appendix).

Next, we need to extend the representation of Dekel et al. (2001) to countably-additive

probability measures in an infinite-dimensional setting (Theorem 6 in the Appendix). Both

extensions are known challenges in the literature as the set of utilities over an infinite-

dimensional space (without any restrictions) can be no longer compact.36 We employ a

unified methodology that achieves both. The main technical innovation is focusing on the

set of Lipschitz continuous utilities with common bound; this forms a nice compact set

according to the Arzela-Ascoli theorem (see Appendix A). This is obtained using the L-

continuity (Axiom 1.6) which is the stochastic version of the Lipschitz continuity axiom

from Dekel et al. (2007). Note that this is not only important for the representation but also

crucial for identification in both settings (Theorem 1). In fact, without such a restriction on

the set of utilities, identification would not be possible.

Once we have a random expected utility representation where continuation menus are

evaluated according to the additive linear functional form, the next step is to show that the

random utilities are derived from the stationary distribution of an ergodic utility process.

This is where the last three axioms come into play. First, by using Deterministic and Aver-

age Stationarity, we show that the random utility is recursive. This allows us to construct a

Markov utility process with a stationary distribution that coincides exactly with the distri-

bution of the random utility from the representation. Next, D-continuity ensures that this

Markov utility process is ergodic. Finally, the representation is obtained by an application

of the Birkhoff ergodic theorem.

36 For instance, the unit ball is compact in finite-dimensional space but not in infinite-dimensional space.
See the discussion after Theorem 3 in Krishna and Sadowski (2014) for more details.

36



Appendices

A Lipschitz Continuous Utilities

Remember that X = M × Z. Since M and Z are compact metric spaces, X is a compact

metric space. Let C (X) denote the set of continuous functions defined on X, L (X) denote

the set of Lipschitz continuous functions defined on X, and LN (X) the set of Lipschitz

functions defined on X with Lipschitz bound N . We endow C (X) with the topology of

uniform convergence. Fix x, x ∈ X and define

UN : = {u ∈ LN (X) : 0 = u (x) ≤ u (x) ≤ u (x) = 1 for all x ∈ X} . (14)

For each u ∈ C (X) and p ∈ ∆X, let

u (p) =
∫

X
u dp

denote its expectation. The following result shows that the set of utilities we consider is

compact. It is crucial for both characterization and identification, and highlights the role of

Lipschitz functions.

Lemma 3. UN is compact in C (X).

Proof. We will show this using the Arzela-Ascoli Theorem (Theorem 4.43 of Folland

(2013)). First, we show that LN (X) is equicontinuous. Fix x ∈ X and ε > 0 and con-

sider y ∈ X such that |x− y| < 1
N
ε. Thus, for all u ∈ LN (X)

|u (x) − u (y)| ≤ N |x− y| < ε.

Since this holds for all x ∈ X, UN is equicontinuous. Since 0 ≤ |u| ≤ 1 for all u ∈ UN , UN is

pointwise bounded.

Next, we show that UN is closed. Consider uk ∈ UN such that uk → u. We will show

that u ∈ UN . Since uk is bounded, we have

u (x) − u (y) = lim
k

(uk (x) − uk (y)) ≤ lim
k
N |x− y| = N |x− y|

for all x, y ∈ X. Thus, u ∈ LN (X). Next, note that for all k,

0 = uk (x) ≤ uk (x) ≤ uk (x̄) = 1
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so 0 = u (x) ≤ u (x) ≤ u (x̄) = 1. This shows u ∈ UN , hence UN is closed. By the

Arzela-Ascoli (Theorem 4.43 of Folland (2013)) , UN is compact in C (X). �

A.1 Proof of Lemma 1

We first show the following lemma which characterizes distributions on a compact subset of

C (X).

Lemma 4. Let µ, ν ∈ ∆U where U is a compact subset of C (X). If for all r ≥ 0 and

p ∈ ∆X,
∫

U
eru(p)dµ =

∫

U
eru(p)dν

then µ = ν.

Proof. Let Φ denote the set of continuous functions φ defined on U such that

φ (u) =
n∑

i=1

aie
riu(pi)

for some n, ai ∈ R, ri ≥ 0 and pi ∈ ∆X for each i ∈ {1, . . . , n}. Thus, for all φ ∈ Φ,

∫

U
φ (u) dµ =

∫

U

n∑

i=1

aie
riu(pi)dµ =

∫

U

n∑

i=1

aie
riu(pi)dν =

∫

U
φ (u) dν

We will show that Φ is uniformly dense in C (U) by the Stone-Weierstrass Theorem

(Theorem 9.13 of Aliprantis and Border (2006) (henceforth, AB)). First note that Φ is a

vector space that includes constants since e0u(p) = 1 ∈ Φ.

To show that Φ is closed under multiplication. Consider a1e
r1u(p1), a2e

r1u(p2) ∈ Φ. If

r1 + r2 > 0, then

a1e
r1u(p1)a2e

r2u(p2) = a1a2e
(r1+r2)u

(
r1

r1+r2
p1+

(

1−
r1

r1+r2

)

p2

)

∈ Φ

On the other hand, if r1 + r2 = 0, then r1 = r2 = 0 and

a1e
r1u(p1)a2e

r2u(p2) = a1a2 ∈ Φ

This means that Φ is closed under multiplication.

Next, we show that Φ separates points in U . Suppose u, v ∈ U such that u 6= v. Thus,

there is some x ∈ X such that u (x) > v (x) without loss of generality. If we let p = δx, then

u (p) = u (x) > v (x) = v (p) so eu(p) > ev(p). This establishes that Φ separates points in U .
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Since U is compact, Φ is a subalgebra, contains the constant function and separates

points in U , Φ is uniformly dense in C (U) by the Stone-Weierstrass Theorem. This means

that for any φ ∈ C (U), we can find φk ∈ Φ such that φk → φ uniformly. Hence, if we fix

some ε > 0, then there exists some n such that |φk − φ| ≤ ε for all k > n. This implies that

for all u ∈ U ,

φk (u) ≤ |φk (u) − φ (u)| + |φ (u)| ≤ |φ (u)| + ε.

Thus, φk are all dominated by a integrable function, so by dominated convergence,

∫

U
φ (u) dµ = lim

k

∫

U
φk (u) dµ = lim

k

∫

U
φk (u) dν =

∫

U
φ (u) dν.

By AB Theorem 15.1, µ = ν. �

We now prove Lemma 1. Define the mapping ξ : S → U as in equation (3), or

ξs (c, z) = φs

(

c,
∫

S
sup
p∈z

us̃ (p) dPs

)

.

Consider two states s, s′ ∈ S such that ξs = ξs′. We will show that this means that Ps◦ξ
−1 =

Ps′ ◦ ξ−1. Let ν = Ps ◦ ξ−1, ν ′ = Ps′ ◦ ξ−1 and z =
{

p, αδx̄ + (1 − α) δx
}

. Since ξs = ξs′ and

φ· is strictly increasing in the second argument, we have

∫

U
max {u (p) , α}dν =

∫

S
sup
p∈z

us̃ (p) dPs =
∫

S
sup
p∈z

us̃ (p) dPs′ =
∫

U
max {u (p) , α} dν ′

for any α ∈ [0, 1]. By Theorem 1.57 of Müller and Stoyan (2002), for any increasing convex

function ϕ,
∫

U
ϕ (u (p)) dν =

∫

U
ϕ (u (p)) dν ′.

Thus by Lemma 4, ν = ν ′ because ν and ν ′ are probability measures on UN , which is compact

by Lemma 3.

We can now define a transition kernel νv on U such that νv := Ps ◦ ξ−1 where v = us. If

we let µ = π ◦ ξ−1, then

∫

U
νv (B) dµ =

∫

S
νus (B) dπ =

∫

S
Ps
(

ξ−1 (B)
)

dπ = π
(

ξ−1 (B)
)

= µ (B) ,

where the first and the last equality hold by the definition of µ, the second equality holds

by definition of νv, and the third equality holds because π is a stationary distribution of P .

Thus, the utility process is a stationary Markov process. Moreover, for any measurable B,
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we have µ-a.s.

νv (B) = Ps
(

ξ−1 (B)
)

≥ δπ
(

ξ−1 (B)
)

= δµ (B)

so the Markov process satisfies Doeblin’s condition and is thus ergodic.

B Proof of Theorem 1 (Uniqueness)

From Lemma 1, the utility process is ergodic so let µ and µ′ denote the stationary utility

distributions for ρ and ρ′ respectively. For every z = {p, q} ∈ Z∗, we have

ρz (p) = lim
n→∞

1

n

∑

k≥0

1B(p,z) (stk+1) = µ {u ∈ U : u (p) ≥ u (q)}

and likewise for ρ′ and µ′, where the first equality is by the ergodic representation and the

second equality is by the Birkoff ergodic theorem.

Choose any binary menu z = {p, q} ∈ Z. For each t ∈ T , define

pt = pzt,t, qt = qzt,t.

Then pt → p and qt → q as t → ∞. By definition zt = {pt, qt} ∈ Z∗ and zt → z by Lemma

2.

Step 1: If u (p) = u (q) with µ-measure zero, then limt→∞ ρ (pt, qt) = µ {u (p) ≥ u (q)}.

Proof. First, note that µ-a.s.

lim
t

1u(pt)≥u(qt) = 1u(p)≥u(q)

To see why, first suppose u (p) ≥ u (q), but lim inft 1u(pt)≥u(qt) = 0. Thus, we can find a

subsequence pk, qk such that u
(

pk
)

< u
(

qk
)

so u (p) ≤ u (q) yielding a contradiction as

u (p) 6= u (q) µ-a.s.. On the other hand, if u (p) < u (q), then clearly lim supt 1u(pt)≥u(qt) = 0.

By the dominated convergence theorem, we thus have

lim
t
ρ
(

pt, qt
)

= lim
t

∫

U
1u(pt)≥u(qt)dµ =

∫

U
1u(p)≥u(q)dµ = µ {u (p) ≥ u (q)}

as desired. �

Step 2: If u (p) = u (q) with µ′-a.s., then u (p) = u (q) with µ-a.s.

Proof. Let q = pα := αδx̄ + (1 − α) δx and suppose that u (p) = u (q) = α µ′-a.s. We will

show that this implies u (p) = α µ-a.s. Fix a positive number ε. Consider pα+ε and pα−ε
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and note that u (pα+ε) > u (p) > u (pα−ε) µ
′-a.s. for all ε > 0. By regularity, without loss of

generality, we can choose ε such that u (p) = u (pα+ε) and u (p) = u (pα−ε) with µ-measure

zero. Thus,

µ {u (p) ≥ u (pα−ε)} = lim
t
ρ
(

pt, ptα−ε

)

= lim
t
ρ′
(

pt, ptα−ε

)

= µ′ {u (p) ≥ u (pα−ε)} = 1,

where the first and the third equality hold by Step 1, the second equality holds by the

supposition of Theorem 1 that ρ and ρ′ coincide on binary sets, and the last equality holds

by the supposition that u (p) = α µ′-a.s.. By the symmetric argument for p and pα+ε,

µ {u (pα+ε) ≥ u(p)} = lim
t
ρ
(

ptα+ε, p
t
)

= lim
t
ρ′
(

ptα+ε, p
t
)

= µ′ {u (pα+ε) ≥ u (p)} = 1.

Thus, u (p) ∈ [α − ε, α+ ε] µ-a.s. Since ε is an arbitrary positive number, u (p) = α µ-a.s.

as desired. �

Step 3: For any p ∈ ∆(X), u (p) has the same distribution under µ and under µ′.

Proof. Fix any p ∈ ∆(X) and α ∈ R to show

µ {u (p) ≥ α} = µ′ {u (p) ≥ α} .

By the regularity of µ, it suffices to consider the following two cases.

Case 1: The case when µ{u(p) = α} = 0. Let q = pα := αδx̄ + (1 − α) δx. By Step 1

µ{u(p) ≥ α} = lim
t→∞

ρ(ρt, q) = lim
t→∞

ρ′(ρt, q) = µ′{u(p) ≥ α}.

Case 2: The case when µ{u(p) = α} = 1. By Step 2, µ′{u(p) = α} = 1 = µ{u(p) =

α}. �

Now, by Step 3,
∫

U
eru(p)dµ =

∫

U
eru(p)dµ′

for all r ≥ 0 and p ∈ ∆X. Since µ and µ′ are probability measure on UN , which is compact

by Lemma 3. Thus, µ = µ′ by Lemma 4. Since each u ∈ U determines the transition kernel

on U , this means that the Markov utility process induced by µ and µ′ are the same. The

converse is trivial.
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C Extension Theorems

In this section, we employ a unified methodology to extend both Gul and Pesendorfer (2006)

(henceforth GP) and Dekel et al. (2001) (henceforth DLR)37 to countably-additive probabil-

ity measures in infinite-dimensional settings. In both cases, we achieve this by focusing on

the set of Lipschitz continuous utilities with a common bound. Note that this is a compact

set by the same argument as in Lemma 3 which ensures our representations are unique. We

first focus on finite-dimensional settings and then apply Kolmogorov’s extension theorem

followed by Tietze extension theorem (Theorem 4.16 of Folland (2013)). On an abstract

level, this is analogous to the extension to uniformly continuous paths for the construction

of Brownian motion.38

Throughout this section, we will let X be a compact metric space and UN be the set of

Lipschitz continuous utilities with common bound N defined by (14). We will assume that

X contains two elements x̄ and x.

The following preliminary lemma modified from Dekel et al. (2007) characterizes Lipschitz

continuous functions on a dense subset.

Lemma 5. Let X∗ be a dense subset of X and suppose v : X∗ → R is such that v (x̄) = 1

and v (x) = 0. Then the following statements are equivalent:

(i) There exist N > 0 such that if |x1 − x2| ≤ α
N

for x1, x2 ∈ X∗ and α ∈ [0, 1], then

αv (x̄) + (1 − α) v (x1) ≥ αv (x) + (1 − α) v (x2) .

(ii) v is Lipschitz continuous with bound N .

Proof. Suppose (i) is true. Fix some ᾱ < 1 and consider x1, x2 ∈ X∗. First suppose

|x1 − x2|N = α ≤ ᾱ < 1. We thus have αv (x) + (1 − α) v (x2) ≤ αv (x̄) + (1 − α) v (x1).

Hence

v (x2) − v (x1) ≤
α

1 − α
=

N

1 − α
|x1 − x2| ≤

N

1 − ᾱ
|x1 − x2| .

37 See also Dekel et al. (2007).
38 Other papers that also employ Kolmogorov’s extension in this manner include Lu and Saito (2018), who

do not address the continuity of utilities, and Frick et al. (2018), who obtain a measure with finite support
(ignoring ties).
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Now suppose |x1 − x2|N = α > ᾱ. Since X is a convex metric space, we can find yi :=
(

1 − i
n

)

x1 + i
n
x2 ∈ X for i ∈ {0, 1, . . . , n} such that

|yi+1 − yi| =
1

n
|x1 − x2| <

ᾱ

N

Since X∗ is dense in X and the metric mapping is continuous, we can choose n large enough

such that for each ε > 0, we can find y∗
i ∈ X∗ such that |yi − y∗

i | ≤ ε and
∣
∣
∣y∗
i+1 − y∗

i

∣
∣
∣ < ᾱ

N

for all i. From the argument above, we have

v
(

y∗
i+1

)

− v (y∗
i ) ≤

N

1 − ᾱ

∣
∣
∣y∗
i+1 − y∗

i

∣
∣
∣

≤
N

1 − ᾱ

(

|yi+1 − yi| +
∣
∣
∣y∗
i+1 − yi+1

∣
∣
∣+ |y∗

i − yi|
)

≤
N

1 − ᾱ
(|yi+1 − yi| + 2ε) =

N

1 − ᾱ

(
1

n
|x1 − x2| + 2ε

)

Since we can let y∗
0 = y0 = x1 and y∗

n = yn = x2, this implies that

v (x2) − v (x1) ≤
∑

1≤i≤n

∣
∣
∣v (y∗

i ) − v
(

y∗
i−1

)∣
∣
∣ ≤

N

1 − ᾱ
(|x1 − x2| + 2nε)

Taking ε → 0 yields

v (x2) − v (x1) ≤
N

1 − ᾱ
|x1 − x2|

Since N
1−ᾱ

→ N as ᾱ → 0, this means that |v (x2) − v (x1)| ≤ N |x1 − x2| for all x1, x2 ∈ X∗.

Thus, v is Lipschitz continuous with bound N as desired.

Now, suppose (ii) is satisfied. Note that if α = 1, then the result is trivial so assume

α < 1. Suppose that |x1 − x2| ≤ α
N

and since v ∈ LN (X∗),

v (x2) − v (x1) ≤ N |x1 − x2| ≤
N

1 − α
|x1 − x2| ≤

α

1 − α

Rearranging yields

αv (x) + (1 − α) v (x2) ≤ αv (x̄) + (1 − α) v (x1)

as desired. �
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C.1 Extension of Gul and Pesendorfer (2006)

In this section, we extend the main theorem of GP. Let Z = K (∆X) denote the set of

non-empty compact subsets of ∆X. We consider a stochastic choice function ρ on Zf , the

finite menus in Z. That is for every z ∈ Zf , ρz is a Borel probability measure over z. We

model ties as in Lu (2016) and let Z◦ ⊂ Zf denote the set of finite menus that contain no

ties.

Condition 1.1 (Monotonicity). z ⊂ y implies ρz (p) ≥ ρy (p)

Condition 1.2 (Linearity). ρz (p) = ραz+(1−α)q (αp+ (1 − α) q)

Condition 1.3 (Extremeness). ρz (ext (z)) = 1

Condition 1.4 (Continuity). ρ : Z◦ → ∆ (∆X) is continuous

Condition 1.5 (Best-Worst). ρ (x, x̄) = 0 and ρ (x̄, x) = ρ (x, x) = 1 for all x ∈ X.

Condition 1.6 (L-continuity). There exists N > 0 such that for α ∈ [0, 1], |x1 − x2| ≤ α
N

implies ρ
(

αδx̄ + (1 − α) δx1, αδx + (1 − α) δx2

)

= 1.

We will now prove the following extension of GP to an infinite-dimensional setting. We

say a probability measure on UN is regular if u (p) = u (q) occurs with probability zero or

one for all p, q ∈ ∆X

Theorem 5 (GP extension). ρ satisfies C1 if and only if there exists a regular probability

measure µ on UN such that for any z ∈ Zf ,

ρz (p) = µ {u ∈ UN : u (p) ≥ u (q) for all q ∈ z}

The necessity of the axioms is straightforward. C1.1-C1.3 follow from the same arguments

as in GP while C1.4 follows from the same argument as in Lu (2016). It is easy to see C1.5

from the representation while C1.6 follows from Lemma 5 above.

We now show sufficiency and suppose ρ satisfies C1. Since X is separable, let X∗ ⊂ X

be a countable dense subset of X and without loss of generality, assume x, x̄ ∈ X∗.

Lemma 6. There exists a probability measure µ on the Borel σ-algebra corresponding to

uniform convergence on UN such that for all finite W ⊂ X∗ and finite z ⊂ ∆W ,

ρz (p) = µ {u ∈ UN : u (p) ≥ u (q) for all q ∈ z} .
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Proof. We prove this in a series of steps.

Step 1: There exists a probability measure π on the Borel σ-algebra corresponding to point-

wise convergence on R
X∗

such that for all finite W ⊂ X∗ and finite z ⊂ ∆W ,

ρz (p) = π
{

u ∈ R
X∗

: u (p) ≥ u (q) for all q ∈ z
}

.

Proof. From Gul and Pesendorfer (2006) and Lu (2016), C1.1-C1.4 imply that for each

finite W ⊂ X∗ where x, x̄ ∈ W , there exists a probability measure πW on R
W such that for

any finite z ⊂ ∆W ,

ρz (p) = πW
{

u ∈ R
W : u (p) ≥ u (q) for all q ∈ z

}

Moreover, C1.5 implies that we can assume µ-a.s. 0 = u (x) ≤ u (x) ≤ u (x̄) = 1 for

all x ∈ X∗ without loss of generality. By the uniqueness result of GP, all these πW are

consistent.39 Thus, by Kolmogorov’s extension, there exists a measure π on R
X∗

such that

for all finite W ⊂ X∗ and finite z ⊂ ∆W ,

ρz (p) = π
{

u ∈ R
X∗

: u (p) ≥ u (q) for all q ∈ z
}

Moreover, we can assume that π is a measure on the Borel σ-algebra corresponding to

pointwise convergence on R
X∗

(i.e., the product topology, see exercise I.6.35 of Çınlar (2011)).

�

Step 2: There exists N > 0 such that π-a.s. for all α ∈ [0, 1] and x1, x2 ∈ X∗,

|x1 − x2| ≤
α

N
=⇒ α+ (1 − α)u (x1) ≥ (1 − α) u (x2) .

Proof. For α ∈ [0, 1] and x1, x2 ∈ X∗, define

Ux1,x2
α :=

{

u ∈ R
X∗

: |x1 − x2| ≤
α

N
=⇒ α + (1 − α) u (x1) ≥ (1 − α)u (x2)

}

.

By C1.6, there exists N > 0 such that π (Ux1,x2
α ) = 1 for all α ∈ [0, 1] and x1, x2 ∈ X∗. Let

Uα :=
⋂

x1,x2∈X∗ Ux1,x2
α so by the countable additivity of π and the fact that X∗ is a countable

dense subset of X, π (Uα) = 1 for any α ∈ [0, 1]. Let I∗ be the rationals in [0, 1] so by the

same argument, π (
⋂

α∈I∗ Uα) = 1.

We will show that π
(
⋂

α∈[0,1) Uα
)

= 1. It suffices to show that
⋂

α∈I∗ Uα ⊂
⋂

α∈[0,1) Uα.

39 Note that this requires normalized utilities.
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We will show that for any u ∈
⋂

α∈I∗ Uα and α ∈ [0, 1), u ∈ Uα. Choose any x1, x2 ∈ X∗

such that |x2 − x1| ≤ α/N and consider a sequence αk of I∗ such that αk → α and αk ≥ α.

Since |x2 − x1| ≤ αk/N and u ∈
⋂

α∈I∗ Uα, we have u (x2) − u (x1) ≤ αk/(1 − αk) for each k.

Since αk → α, we have u (x2) − u (x1) ≤ α/(1 − α) so u ∈ Uα. Thus, π
(
⋂

α∈[0,1] Uα
)

= 1 as

desired. �

By Step 2, Lemma 5 yields π (LN (X∗)) = 1. By the Lipschitz version of the Tietze

extension theorem (see McShane (1934)), we can extend π on LN (X∗) to a probability

measure µ on LN (X).

Step 3: µ (UN) = 1.

Proof. For each x ∈ X, define

Ux :=
{

u ∈ LN (X) : 0 = u (x) ≤ u (x) ≤ u (x̄) = 1
}

.

Then π (Ux) = 1 for any x ∈ X. By the countable additivity of π, we have π (
⋂

x∈X∗ Ux) = 1.

We will show that π (
⋂

x∈X Ux) = 1. It suffices to prove that ∩x∈X∗Ux ⊂ ∩x∈XUx. Suppose

that u ∈ ∩x∈X∗Ux and consider x ∈ X. If x ∈ X∗, then the result holds trivially so suppose

x 6∈ X∗. Since X∗ is dense in X, there exists a sequence xk of X∗ such that xk → x. Since

0 ≤ u (xk) ≤ 1 for each k, we have 0 ≤ u (x) ≤ 1 by the continuity of u. �

Finally, since X is compact, pointwise convergence is equivalent to uniform convergence

on UN . Thus, µ is a measure on the Borel σ-algebra corresponding to uniform convergence.

�

Define

B (p, z) := {u ∈ UN : u (p) ≥ u (q) for all q ∈ z}

so B (p, z) is µ-measurable. Also define B (p, q) := B (p, {p, q}) to simplify notation.

We will show that ρz (p) = µ (B (p, z)). First, we prove a series of lemmas. The following

is straightforward but will be useful for latter analysis.

Lemma 7. For every p ∈ ∆X, there exists a sequence pn → p such that each pn has a finite

support in X∗.

Proof. Since X∗ is dense and Dirac measures are extreme points in ∆X, the result follows

from the Krein-Milman theorem (AB Theorem 15.10). �

The next two lemmas deals with ties in the stochastic choice.
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Lemma 8. Suppose z ∈ Z◦ and pn → p for every p ∈ z where each pn has finite support in

X∗. If zn := {pn : p ∈ z} ∈ Z◦, then ρz (p) ≤ µ (B (p, z)).

Proof. First, note that since pn → p for every p ∈ z, zn → z. Since zn, z ∈ Z◦, Continuity

(C1.4) implies that

ρz (p) = lim
n
ρzn (pn) = lim

n
µ (B (pn, zn))

where the last equality follows from the representation as each pn has finite support in X∗.

Note that

lim sup
n

1B(pn,zn) ≤ 1B(p,z)

To see why, note that if lim supn 1B(pn,zn) (u) = 1, then there exists a subsequence {(pk, zk)}

such that u (pk) ≥ u (qk) for all qk ∈ zk so u (p) ≥ u (q). Thus, we have

ρz (p) = lim
n

∫

UN

1B(pn,zn)dµ ≤
∫

UN

lim sup
n

1B(pn,zn)dµ ≤
∫

UN

1B(p,z)dµ = µ (B (p, z)) ,

where the first inequality follows from Fatou’s Lemma. �

Lemma 9. The following statements hold:

(i) If p and q are tied, then u (p) = u (q) a.s.

(ii) If p and q are not tied, then u (p) 6= u (q) a.s.

Proof. First, we show that if p is not tied with x, then ρ (x, p) = 0. By Lemma 7, there

exists pn → p where pn has finite support in X∗. Let p̃n :=
(

1 − 1
n

)

pn + 1
n
δx̄ and note that

p̃n cannot be tied with x since a.s.

u (p̃n) =
(

1 −
1

n

)

u (pn) +
1

n
> 0

Note that p̃n → p and each p̃n also has finite support in X∗. Since {x, p̃n} ∈ Z◦ and

{x, p̃n} → {x, p} ∈ Z◦, Continuity (C1.4) yields

ρ (x, p) = lim
n
ρ (x, p̃n) = lim

n
µ {0 ≥ u (p̃n)} = 0

as desired. We now prove the lemma via two steps.

Step 1: If p and q are tied, then u (p) = u (q) a.s.

Proof. First, suppose p is not tied with x so ρ (x, p) = 0 from above. Let pε := (1 − ε) p+εδx

so ρ (pε, p) = 0 by Linearity (C1.2). Since p and q are tied, ρ (pε, q) = 0 by Lemma A.2 of
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Lu (2016). Consider zεn = {pεn, qn} where pεn → pε, qn → q and pεn and qn both have finite

support in X∗ as from Lemma 7. If pεn is tied with qn, let

p̃εn :=
(

1 −
1

n

)

pεn +
1

n
δx

q̃n :=
(

1 −
1

n

)

qn +
1

n
δx̄

so {p̃εn, q̃n} ∈ Z◦. Since {p̃εn, q̃n} → {pε, q} ∈ Z◦, by Lemma 8,

1 = ρ (q, pε) ≤ µ (B (q, pε)) = µ {u (q) ≥ (1 − ε)u (p)}

Thus, a.s.

u (p) − u (q) ≥ −εu (p) ≥ −ε

for all ε > 0 so u (q) ≥ u (p) a.s. By the symmetric reasoning, we have u (p) ≥ u (q) a.s.

Hence u (p) = u (q) a.s.

Finally, note that if p is tied with δx, then 1
2
p+ 1

2
δx̄ is tied with 1

2
δx+ 1

2
δx̄ where the latter

is not tied with δx. Applying the above argument yields 1
2
u (p) + 1

2
= 1

2
a.s. or u (p) = 0 a.s.

as desired. �

Step 2: If p and q are not tied, then u (p) 6= u (q) a.s.

Proof. Let p and q be not tied. Consider pε := (1 − ε) p+ εδx and qε := (1 − ε) q + εδx for

ε > 0. Note that if pε and qε are tied, then from (i), we have a.s.

u (p) = u (q) +
ε

1 − ε

Thus, we can choose ε → 0 such that pε and qε are not tied. Consider zεn = {pεn, q
ε
n} where

pεn → pε, qεn → qε and pεn and qn both have finite support in X∗ as above. Again, let

p̃εn :=
(

1 −
1

n

)

pεn +
1

n
δx

q̃εn :=
(

1 −
1

n

)

qεn +
1

n
δx̄

so {p̃εn, q̃
ε
n} ∈ Z◦. Since {p̃εn, q̃

ε
n} → {pε, qε} ∈ Z◦, by Lemma 8,

ρ (pε, qε) ≤ µ (B (pε, qε)) = µ
{

u (p) − u (q) ≥
ε

1 − ε

}
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As ε ց 0, {pε, qε} → {p, q} ∈ Z◦ so by Continuity (C1.4),

ρ (p, q) = lim
εց0

ρ (pε, qε) ≤ lim
εց0

µ
{

u (p) − u (q) ≥
ε

1 − ε

}

= µ {u (p) > u (q)}

By symmetric reasoning, we have ρ (q, p) ≤ µ {u (p) > u (q)} so

1 = ρ (p, q) + ρ (q, p) ≤ µ {u (p) > u (q)} + µ {u (p) > u (q)}

Thus, u (p) = u (q) has µ-measure zero. �

�

We now complete the proof of Theorem 5. Let z ∈ Z◦ and pn → p for every p ∈ z where

each pn has finite support in X∗. Note that zn := {pn : p ∈ z} → z. Suppose there exists

an infinite subsequence such that zn 6∈ Z◦. Thus, there must be a subsequence pn, qn ∈ zn

that are tied for each n. By Lemma 9, u (qn) = u (pn) a.s. so u (q) = u (p) a.s. By Lemma 9

again, this means p and q are tied, contradicting z ∈ Z◦. Thus, we can assume that zn ∈ Z◦

so by Lemma 8, we have ρz (p) ≤ µ (B (p, z)).

Finally, let z0 ⊂ z be such that z0 ∈ Z◦ so ρz0 (p) ≤ µ (B (p, z0)). Suppose ρz0 (p) <

µ (B (p, z0)) for some p ∈ z0. Thus,

1 =
∑

p∈z0

ρz0 (p) <
∑

p∈z0

µ (B (p, z0)) ≤ 1

where the last inequality follows from Lemma 9 and the fact that z0 has no ties. Since this

yields a contradiction, it must be that ρz0 (p) = µ (B (p, z0)) for all p ∈ z0. Now, for any

p ∈ z, we can find some p0 ∈ z0 tied with p. By Lemma A.2 from Lu (2016), we have

ρz (p) = ρz0 (p0) = µ (B (p0, z)) = µ (B (p, z))

as desired.

C.2 Extension of Dekel et al. (2001)

In this section, we extend the main theorem of DLR. We consider a binary relation � on

Z = K (∆X).40 The methodology by which we extend DLR parallels the way in which we

extended GP. The one technical difference is that there is no need to deal with ties, which

40 While DLR formally considers all non-empty subsets of ∆X , it is without loss to focus on those that
are compact.
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simplifies the DLR extension.

Condition 2.1. � is a preference relation

Condition 2.2 (Flexibility). z ⊂ y implies z � y

Condition 2.3 (Independence). z � y implies αz + (1 − α)w � αy + (1 − α)w

Condition 2.4 (Continuity). � is continuous

Condition 2.5 (Best-Worst). x̄ � {x, x̄} and x � {x, x} for all x ∈ X

Condition 2.6 (L-continuity). There exists N > 0 such that for α ∈ [0, 1], |x1 − x2| ≤ α
N

implies

(1 − α) δx1 + αδx̄ �
{

(1 − α) δx1 + αδx̄, (1 − α) δx2 + αδx
}

We will now prove the following extension of DLR to an infinite-dimensional setting.

Theorem 6 (DLR extension). � satisfies C2 if and only if there exists a probability measure

ν on UN such that � is represented by the function v : Z → R where

v (z) =
∫

UN

sup
p∈z

u (p) dν

The necessity of the axioms is straightforward. C2.1-C2.4 follow from the same arguments

as in DLR. It is easy to see C2.5 from the representation while C2.6 follows from Lemma 5

above.

We now show sufficiency and suppose � satisfies C2. Since X is separable, let X∗ ⊂ X

be a countable dense subset of X and without loss of generality, assume x, x̄ ∈ X∗.

Lemma 10. There exists a probability measure ν on UN such that for all finite W ⊂ X∗,

the function v : Z → R where

v (z) =
∫

UN

sup
p∈z

u (p) dν

represents � on K (∆W ).

Proof. From DLR, C2.1-C2.4 imply that for each finite W ⊂ X∗ where x, x̄ ∈ W , there

exists a probability measure µW on R
W such that

∫

RW
sup
p∈z

u (p) dµW
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represents � on K (∆W ). By C2.5, we have u (x) ≤ u (x) ≤ u (x̄) µW -a.s. for all x ∈ X.

Thus, we can assume that u (x̄) = 1 and u (x) = 0 without loss of generality. With this

normalization of utilities, the DLR representation is unique so all these µW are consistent.

By Kolmogorov’s extension, there exists a measure µ on R
X∗

such that

∫

RX
∗

sup
p∈z

u (p) dµ

represents � on K (∆W ) for all finite W ⊂ X∗.

By C2.6, there exists N > 0 such that for all α ∈ [0, 1] and x1, x2 ∈ X∗, µ-a.s. |x1 − x2| ≤

α/N implies α + (1 − α)u (x1) ≥ (1 − α)u (x2). Since X∗ is countable dense subset of X,

[0, 1] is separable, and µ is countably-additive, by the same argument as in Step 2 of Lemma

6, there exists N > 0 such that µ-a.s. for all α ∈ [0, 1] and x1, x2 ∈ X∗, |x1 − x2| ≤ α/N

implies α + (1 − α)u (x1) ≥ (1 − α)u (x2). Applying Lemma 5 yields µ-a.s. u is Lipschitz

continuous with bound N .

By the Lipschitz version of the Tietze extension theorem, we can extend µ on R
X∗

on

to a probability measure ν on LN (X). Moreover, 0 = u (x) ≤ u (x) ≤ u (x̄) = 1 ν-a.s. for

all x ∈ X∗. Since X∗ is countable dense in X and µ is countably additive, by the same

argument as in Step 3 of Lemma 6, this means that ν-a.s. 0 = u (x) ≤ u (x) ≤ u (x̄) = 1 for

all x ∈ X so ν (UN) = 1. Thus,

v (z) :=
∫

UN

sup
p∈z

u (p) dν

represents � on K (∆W ) for all finite W ⊂ X∗. �

We now complete the proof of Theorem 6. First we show that v is continuous. Note

that zn → z implies supp∈zn u (p) → supp∈z u (p) for all u ∈ UN . By dominated convergence,

v (zn) → v (z) so v is continuous.

Now, consider a generic z ∈ Z. Notice that z ∼ αδx̄ + (1 − α) δx where α = v (z). For

any p ∈ ∆X, by Lemma 7, we can find pn with finite support in X∗ such that pn → p.

Let zn := {pn : p ∈ z} so zn → z and zn ∈ K (∆Wn) for some finite Wn ⊂ X∗. Define

αn := v (zn) ∈ [0, 1] and without loss of generality, assume αn → α∗. Since v is continuous,

α = v (z) = α∗. Note that by C2.4, x � zn � x̄ for all zn implies x � z � x̄. Now, suppose

z ≻ αδx̄ + (1 − α) δx so we can find some β > α such that z ≻ βδx̄ + (1 − β) δx. Since
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αn → α < β, this means that for large enough n,

βδx̄ + (1 − β) δx ≻ αnδx̄ + (1 − αn) δx ∼ zn

where the indifference follows from the representation. By C2.4, we have βδx̄+(1 − β) δx � z

yielding a contradiction. The case z ≺ αδx̄+ (1 − α) δx is symmetric so z ∼ αδx̄+ (1 − α) δx.

Finally, to complete the proof, note that z � y if and only if

v (z) δx̄ + (1 − v (z)) δx � v (y) δx̄ + (1 − v (y)) δx

if and only if v (z) ≥ v (y). Thus, v represents � on Z.

Notice that the arguments in Lemma 10 corresponds exactly to those of Lemma 6 in the

previous section. The remaining arguments are significantly simpler than those in Lemma

7–9 as there is no need deal with ties. Other than this technical difference, the methodology

for extending DLR is identical to that for extending GP.

D Proof of Theorem 4 (Representation)

D.1 Sufficiency of Axioms

We first prove the sufficiency of the axioms. Note that Axiom 1 corresponds exactly to C1

so by Theorem 5, there exists a regular probability measure µ on UN such that for any finite

z ∈ Z,

ρz (p) = µ {u ∈ UN : u (p) ≥ u (q) for all q ∈ z}

Choose any z1, z2 ∈ Z. Let z = {p1, p2} and y = {q1, q2} where pi = δ(c,zi) and qi =

1
2
pi ⊕ 1

2
δ(d,w) for i ∈ {1, 2}. Applying Axiom 2 for α = 1

2
, we have

µ {u (p1) ≥ u (p2)} = ρz (p1) = ρ 1
2
z+ 1

2
y

(
1

2
p1 +

1

2
q1

)

= µ {u (p1) ≥ u (p2) and u (q1) ≥ u (q2)}

Applying Axiom 2 for α = 0 and α = 1
2
, we have

µ {u (q1) ≥ u (q2)} = ρy (q1) = ρ 1
2
z+ 1

2
y

(
1

2
p1 +

1

2
q1

)

= µ {u (p1) ≥ u (p2) and u (q1) ≥ u (q2)} .

Thus, we have

0 = µ {u (p1) ≥ u (p2) and u (q1) < u (q2)} = µ {u (p1) < u (p2) and u (q1) ≥ u (q2)}
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so u (p1) ≥ u (p2) if and only if u (q1) ≥ u (q2) µ-a.s.

For all c, d ∈ M , z1, z2, w ∈ Z, and λ ∈ [0, 1], we thus have µ-a.s.

u (c, z1) ≥ u (c, z2)

⇔ u (λc+ (1 − λ) d, λz1 + (1 − λ)w) ≥ u (λc+ (1 − λ) d, λz2 + (1 − λ)w) (15)

Since Z,M and [0, 1] are all separable and any u ∈ Un is continuous, by the countable

additivity of µ, we have that the above holds µ-a.s. for all c, d ∈ M and z1, z2, w ∈ Z and

λ ∈ [0, 1]. In particular, this holds for the special case when d = c. Moreover, we also have

that µ-a.s. that for all c, c′ ∈ M and z1, z2, w ∈ Z,

u (c, z1) ≥ u (c, z2)

⇔ u
(

1

2
c+

1

2
c′,

1

2
z1 +

1

2
w
)

≥ u
(

1

2
c+

1

2
c′,

1

2
z2 +

1

2
w
)

⇔ u (c′, z1) ≥ u (c′, z2) (16)

We can now define a preference relation �u on Z for each u ∈ UN such that z �u y if and

only if u (c, z) ≥ u (c, y). Note that this is well-defined as it does not depend on c ∈ M by

(16) above.

We now show that �u satisfies C2 µ-a.s. Note that C2.1 is trivial and C2.3 follows from

(15) above. To see C2.2, note that from Axiom 3, for any z, y, if z ⊃ y, then

1 = ρ (z, y) = ρ
(

δ(c,z), δ(c,y)

)

= µ {u (c, z) ≥ u (c, y)} .

Since µ is countably additive, u ∈ UN is continuous and Z is separable, C2.2 follows. Note

that C2.4 follows from the continuity of u ∈ UN . Finally, by applying Axiom 3 to Axioms

1.5 and 1.6, we obtain C2.5 and C2.6 respectively by the same argument as before.

Applying Theorem 6, this means that �u is represented by

vu (z) :=
∫

UN

sup
p∈z

ũ (p) dνu

where νu is a probability measure on UN . Since for every c ∈ M , u (c, ·) and vu represent

the same preference, we can write

u (c, z) = φu (c, vu (z))

where φu : M × [0, 1] → [0, 1] is strictly increasing in the second argument. Note that this is
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well-defined as it does not depend on c ∈ M by (16).

The following result shows that µ is the invariant measure of the transition kernel νu.

Lemma 11. For any measurable set B ⊂ UN ,

µ (B) =
∫

UN

νu (B) dµ

Proof. Define the measure µ∗ on UN such that for every measurable B ⊂ UN , µ∗ (B) =
∫

UN
νu (B) dµ. We will show that µ∗ = µ. Consider finite z ∈ Z and note that ρ (z, pα) =

µ
{

supp∈z u (p) ≥ α
}

. Thus,

∫

[0,1]
ρ (z, pα) dα =

∫

UN

sup
p∈z

u (p) dµ (17)

On the other hand, ρ ((c, z) , (c, pα)) = µ {φu (c, vu (z)) ≥ φu (c, vu (pα))} = µ {vu (z) ≥ α},

so

∫

[0,1]
ρ
(

δ(c,z), δ(c,pα)

)

dα =
∫

UN

vu (z) dµ. (18)

Applying Axiom 4 to the left-hand sides of (17) and (18), we thus have

∫

UN

sup
p∈z

u (p) dµ =
∫

UN

vu (z) dµ =
∫

UN

(
∫

UN

sup
p∈z

ũ (p) dνu

)

dµ =
∫

UN

sup
p∈z

u (p) dµ∗.

Letting z = {p, pα}, we have
∫

UN
max {u (p) , α} dµ =

∫

UN
max {u (p) , α} dµ∗. By Theorem

1.57 of Müller and Stoyan (2002), for any increasing convex function φ,

∫

UN

φ (u (p)) dµ =
∫

UN

φ (u (p)) dµ∗.

Since UN is compact by Lemma 3, µ = µ∗ by Lemma 4. �

Let U1 be the set of u ∈ UN such that there exists φu and νu where

u (c, z) = φu

(

c,
∫

UN

sup
p∈z

ũ (p) dνu

)

so µ (U1) = 1. Recursively define Un+1 := {u ∈ Un : νu (Un) = 1} and let U∗ :=
⋂∞
n=1 U

n.

We show that µ (U∗) = 1. First, we show that µ (Un) = 1 for all n by induction. Suppose

µ (Un) = 1 so by Lemma 11,

1 = µ (Un) =
∫

UN

νu (Un) dµ.
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Thus, νu (Un) = 1 µ-a.s. so µ (Un+1) = 1. Since µ (U1) = 1, this means that µ (Un) = 1 for

all n. Since Un+1 ⊂ Un, by Proposition 3.6 of Çınlar (2011), µ (U∗) = limn µ (Un) = 1.

By Lemma 11 again, we have

1 = µ (U∗) =
∫

UN

νu (U∗) dµ

so νu (U∗) = 1 µ-a.s. This means that µ-a.s. that

u (c, z) = φu

(

c,
∫

U∗

sup
p∈z

ũ (p) dνu

)

and ρz (p) = µ (B (p, z)) for any finite z ∈ Z where B (p, z) := {u ∈ U∗ : u (p) ≥ u (q) for all q ∈ z}.

We can now define a Markov process [P ] on S := U∗ with invariant distribution µ and tran-

sition kernel Ps := νu for all s = u ∈ U∗.

We now prove that the Markov process [P ] satisfies Doeblin continuity (i.e., there exists

some δ > 0 such that µ-a.s. νu (A) ≥ δµ (A) for all measurable A). For this purpose,

we will show a lemma on the density of the set of support functions For any z ∈ Z,

define the support function σz : UN → R by σz (u) := supp∈z u (p). Define the sets

Σ := {r (σz − σy) : r > 0 and z, y ∈ Z} and Σf :=
{

r (σz − σy) : r > 0 and z, y ∈ Zf
}

,

where σz is the support function of z ∈ Z.

Lemma 12. Σf is dense in C (UN ).

Proof. Note that for any z ∈ Z, we can find zk ∈ Zf such that zk → z (see Lemma 0 of

Gul and Pesendorfer (2001)). Thus, σzk → σz by Theorem 7.52 of AB. So Σf is dense in Σ.

To show the lemma, therefore, it suffices to show that Σ is dense in C (UN).

First, we show that Σ is a linear subspace of C (UN). Consider the singleton menu

z = δx and note that by definition, σz (u) = u (x) = 0 for all u ∈ UN . Thus, 0 ∈ Σ. Next,

note that if r (σz − σy) ∈ Σ, then clearly λr (σz − σy) ∈ Σ for all λ ∈ R. Finally, suppose

r1 (σz1 − σy1) , r2 (σz2 − σy2) ∈ Σ. Since r1, r2 > 0, define λ := r1

r1+r2
so we have

r1 (σz1 − σy1) + r2 (σz2 − σy2) = (r1 + r2) [(λσz1 + (1 − λ) σz2) − (λσy1 + (1 − λ)σy2)]

Since λσz1 + (1 − λ) σz2 = σλz1+(1−λ)z2
∈ Σ (see Lemma 7.54 of AB), we have r1 (σz1 − σy1) +

r2 (σz2 − σy2) ∈ Σ. This shows that Σ is a linear subspace of C (UN ).

We now prove that Σ is dense in C (UN) using the Stone-Weierstrass Theorem. Note

that for z = δx, σz (u) = u (x) = 1 for all u ∈ UN so Σ includes constants. That Σ is a vector
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lattice follows from the same arguments as in Lemma 11 of DLR. Finally, we show that Σ

separates C (UN). Choose any u, v ∈ UN such that u 6= v. Thus, there exists x ∈ X such

that u (x) 6= v (x). If we let z = δx, then

σz (u) = u (x) 6= v (x) = σz (v)

Thus, Σ separates C (UN). Since UN is compact by Lemma 3, the Stone-Weierstrass Theorem

(AB Theorem 9.12) shows that Σ is dense in C (UN ). �

Consider any h ∈ C (UN ) such that h ≥ 0. By Lemma 12, we can find hk ∈ Zf such

that hk → h. Define gk = max {hk, 0} and note that gk → h as h ≥ 0. Moreover, for

hk = r (σz − σy) where z, y ∈ Zf , we have

gk = rmax {σz − σy, 0} = r (σz∪y − σy) ∈ Σf

By Axiom 5, there exists some ε > 0 such that µ-a.s.

∫

U∗

σ(1−ε)(z∪y)+εpεȳdνu ≥
∫

U∗

σ(1−ε)y+εp
ε(z∪y)

dνu

⇔ (1 − ε)
∫

U∗

σz∪ydνu + εȳ ≥ (1 − ε)
∫

U∗

σydνu + ε(z ∪ y)

⇔
∫

U∗

(σz∪y − σy) dνu ≥
ε

1 − ε

(

(z ∪ y) − ȳ
)

= δ
∫

U∗

(σz∪y − σy) dµ,

where δ := ε
1−ε

. Thus, µ-a.s.
∫

U∗ gkdνu ≥ δ
∫

U∗ gkdµ. Since gk → h, this implies that µ-a.s.
∫

U∗ hdνu ≥ δ
∫

U∗ hdµ by the dominated convergence theorem.

Since UN is compact, C (UN) is separable by Lemma 3.99 of AB. Thus, by the countably

additivity of µ, µ-a.s.
∫

U∗

hdνu ≥ δ
∫

U∗

hdµ (19)

for all nonnegative h ∈ C (UN). Now, by the regularity of νu and Urysohn’s lemma (Theorem

4.15 of Folland (2013)), for any measurable A ⊂ U∗, there are nonnegative hk ∈ C (UN ) such

that hk → 1A νu-a.s. Thus, by the dominated convergence theorem, µ-.a.s.

Ps (A) = νu (A) =
∫

U∗

lim
k
hkdνu = lim

k

∫

U∗

hkdνu ≥ lim
k
δ
∫

U∗

hkdµ = δ
∫

U∗

lim
k
hkdµ = δµ (A) ,

where the inequality is by (19).

Since this implies Doeblin’s condition, the Markov process [P ] is uniformly ergodic (see
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Theorem 16.2.3 of Meyn and Tweedie (2012)). By the Ergodic theorem, µ-a.s.

lim
n→∞

1

n

n∑

k≥0

1B(p,z) (sk) = µ (B (p, z)) = ρ (p, z)

for all z ∈ Zf as desired. This concludes the sufficiency proof.

D.2 Necessity of Axioms

We now show necessity of the axioms. Note that by Lemma 1, we can consider the ergodic

utility process ut = ust with stationary distribution µ. For any z ∈ Zf , define

B (p, z) := {u ∈ UN : u (p) ≥ u (q) for all q ∈ z}

By the Ergodic theorem, we have for every z ∈ Zf ,

ρ (p, z) = lim
n→∞

1

n

n∑

k≥0

1B(p,z) (uk) = µ (B (p, z)) .

Axiom 1 then follows immediately from Theorem 5.

For Axiom 2, let p ∈ z ∈ Zf
c , y = λz⊕(1 − λ) δ(c′,z′) and q = λp⊕(1 − λ) δ(c′,z′) ∈ y where

c, c′ ∈ M , z′ ∈ Z and λ > 0. Note that for p = δ(c,w) , u (p) ≥ u (p′) for all p′ = δ(c,w′) ∈ z if

and only if vu (w) ≥ vu (w′) for all w′ where

vu (w) :=
∫

UN

sup
p∈w

ũ (p) dνu

and νu is the transition kernel corresponding to the ergodic utility process. On the other

hand, for all p′ ∈ z and all q′ = λp′ ⊕ (1 − λ) δ(c′,z′) ∈ y,

u (q) ≥ u (q′) ⇔ u (λc+ (1 − λ) c′, λw + (1 − λ) z′) ≥ u (λc+ (1 − λ) c′, λw′ + (1 − λ) z′)

⇔ vu (λw + (1 − λ) z′) ≥ vu (λw′ + (1 − λ) z′)

⇔ vu (w) ≥ vu (w′)

for all w′ as λ > 0. Thus, u (p) ≥ u (p′) for all p′ ∈ z iff u (q) ≥ u (q′) for all q′ ∈ y. This
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means that

ρz (p) = µ {u (p) ≥ u (p′) for all p′ ∈ z}

= µ {αu (p) + (1 − α)u (q) ≥ αu (p′) + (1 − α)u (q′) for all p′ ∈ z, q′ ∈ y}

= µ {u (αp+ (1 − α) q) ≥ u (αp′ + (1 − α) q′) for all p′ ∈ z, q′ ∈ y}

= ραz+(1−α)y (αp+ (1 − α) q)

as desired.

For Axiom 3, suppose ρ (z, y) = 1. Let

B :=
{

u ∈ UN : max
p∈z

u (p) ≥ max
q∈y

u (q)
}

so µ (B) = 1. Since µ is the stationary distribution, 1 =
∫

UN
νu (B) dµ so νu (B) = 1 µ-a.s.

This implies that vu (z) ≥ vu (y) µ-a.s. so ρ
(

δ(c,z), δ(c,y)

)

= 1 as desired.

For Axiom 4, note that by the same arguments as in Lemma 11,

∫

[0,1]
ρ (z, pα) dα =

∫

UN

sup
p∈z

u (p) dµ,

∫

[0,1]
ρ
(

δ(c,z), δ(c,pα)

)

dα =
∫

UN

vu (z) dµ =
∫

UN

(
∫

UN

sup
p∈z

ũ (p) dνu

)

dµ.

The result follows from the fact that µ is the stationary distribution.

Finally, for Axiom 5, suppose y ⊂ z so

ȳ =
∫

UN

sup
p∈y

u (p) dµ ≤
∫

UN

sup
p∈z

u (p) dµ = z̄

From Lemma 1, we know there exists some δ such that νu (B) ≥ δµ (B) for all measurable

B so
∫

UN
ϕdνu ≥

∫

UN
ϕdµ for all positive measurable functions ϕ. Let ε := δ

1+δ
so δ = ε

1−ε
.

We thus have

vu ((1 − ε) z + εpȳ) − vu ((1 − ε) y + εpz̄) = (1 − ε) (vu (z) − vu (y)) + ε (vu (pȳ) − vu (pz̄))

= (1 − ε)
∫

UN

(

sup
p∈z

ũ (p) − sup
p∈y

ũ (p)

)

dνu + ε (ȳ − z̄)

≥ (1 − ε)
ε

1 − ε
(z̄ − ȳ) − ε (z̄ − ȳ) = 0

Thus, ρ
(

δ(c,(1−ε)z+εpȳ), δ(c,(1−ε)y+εpz̄)

)

= 1 as desired. This concludes the proof.

58



E Proofs for Section 4

E.1 Proof of Theorem 2

Let µ denote the stationarity distribution for the utility process so by the Ergodic theorem,

we have ρ (p, q) = µ {u ∈ U : u (p) ≥ u (q)} for all {p, r} ∈ Z∗. That separability implies

1-ICM and standard implies both 1-ICM and 2-ICM are straightforward. We now show that

1-ICM implies the utility process is separable. Fix z, y ∈ Z. Consider {p, r} ∈ Z∗ such that

p =
1

4
δ(0,z) +

1

4
δ(0,y) +

1

4
δ(c,z) +

1

4
δ(c,y), r =

1

2
δ(0,z) +

1

2
δ(c,y)

Note that pM = rM = 1
2
δ0 + 1

2
δc and pZ = rZ = 1

2
δz + 1

2
δy. Let {q} ∈ Z∗ denote the singleton

1-period menu such that qM = 1
2
δ0 + 1

2
δc = pM and qZ = 1

2
δz + 1

2
δy. By 1-ICM, we thus

have 1 = ρ{q} (q) = ρ (p, r) = ρ (r, p). Thus a.s. 1
4
u (0, z) + 1

4
u (0, y) + 1

4
u (c, z) + 1

4
u (c, y) =

1
2
u (0, z) + 1

2
u (c, y). That is, u (0, y) + u (c, z) = u (0, z) + u (c, y).

Let y = xt → x so u (0, xt) → u (x) = 0. If we let

vs (z) := Es

[

sup
p∈z

us′ (p)

]

then vs (xt) → 0. Thus, we have a.s. φs (c, vs (z)) = φs (0, vs (z))+φs (c, 0). Letting ws (c) :=

φs (c, 0) and βs (v) = φs (0, v), we have a.s. φs (c, v) = ws (c) + βs (v) as desired.

We now show that imposing 2-ICM in addition to 1-ICM implies the utility process must

be standard. By 1-ICM, we have a.s. φs (c, v) = ws (c) + βs (v) from above. Consider

{p, r} ∈ Z∗ such that

p =
1

4
δ(0,p0) +

1

4
δ(0,δ(0,y)) +

1

4
δ(0,q0) +

1

4
δ(0,r0), r =

1

2
δ(0,p0) +

1

2
δ(0,r0)

where p0 = bδ(0,z)+(1 − b) δ(0,y), q0 = abδ(m,z)+a (1 − b) δ(m,y)+(1 − a) bδ(0,z)+(1 − a) (1 − b) δ(0,y),

and r0 = aδ(m,y) + (1 − a) δ(0,y) for a, b ∈ [0, 1]. Note that the distribution of 2-period

consumptions of p and r are 1
2
δ(0,δ0) + 1

2
δ(0,aδm+(1−a)δ0) while their menu distributions are

1
2
δ(bδz+(1−b)δy) + 1

2
δδy . Thus, by 2-ICM, 1 = ρ(p, r) = ρ(r, p). Hence, we have a.s. 1

4
u (0, p0) +

1
4
u
(

0, δ(0,y)

)

+ 1
4
u (0, q0) + 1

4
u (0, r0) = 1

2
u (0, p0) + 1

2
u (0, r0). That is, u

(

0, δ(0,y)

)

+u (0, q0) =

u (0, p0) + u (0, r0). Thus, we have a.s.

βs (Es [us′ (0, y)]) + βs (Es [us′ (q0)]) = βs (Es [us′ (p0)]) + βs (Es [us′ (r0)])
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Let y = {xt} → {x} and z = x̄t → x̄ so us (0, xt) → us (x) = 0 and vs (x̄t) → 1.

By definition, βs (0) = φs (0, 0) = 0 and ws (0) = φs (0, 0) = 0. Thus we have a.s.

βs (Es [aws′ (m) + bβs′ (1)]) = βs (Es [aws′ (m)]) + βs (Es [bβs′ (1)]), or

βs (aEs [ws′ (m)] + bEs [βs′ (1)]) = βs (aEs [ws′ (m)]) + βs (bEs [βs′ (1)]) (20)

for all a, b ∈ [0, 1].

Let ξs := min {Es [ws′ (m)] ,Es [βs′ (1)]}. Since

Es [ws′ (m)] + Es [βs′ (1)] = Es [ws′ (m) + βs′ (1)] = Es [φs (m, 1)] = 1,

ξs > 0. From equation (20), we have βs (x+ y) = βs (x) + βs (y) for all x, y ∈ [0, ξs]. This

is a Cauchy functional equation with bounded domain, and since βs is continuous, we have

a.s. βs (x) = βsx for all x ∈ [0, ξs] where βs is a constant (see pg. 45 of Aczel (1966)). Now,

for v ∈ [0, 2ξs],

βs (v) = βs

(
v

2
+
v

2

)

= 2βs

(
v

2

)

= βsv.

By iteration, we have βs (v) = βsv for all v ∈ [0, 1] as desired.

E.2 Definition of Repeated Independence (RI)

In the main part of the paper, we explained how to mix 1-period menus with a lottery

r ∈ ∆M . In this subsection, we formally define how to mix simple t-period menus. Fix

some t-period menu z ∈ Z∗ that is also t-simple. For any lottery p that yields z in t′ ≤ t

periods, we will define rt′ (p) as the t′-times repeated mixture between p and r ∈ ∆M . This

is constructed as follows. First, define r1 (·) exactly as in the 1-period case where for every

p,

r1 (p) = (αp1 + (1 − α) r ; αz � (1 − α) r)

Now for 1 < t′ ≤ t, we will recursively define rt′ (·). First, given rt′−1 (·) and some p, define

two lotteries p̂ and r̂ such that

p̂ (A× B) : = p
(

A × r−1
t′−1 (B)

)

r̂ (A× B) : = r (A) p
(

∆M × r−1
t′−1 (B)

)
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for all measurable A and B. Note that p̂ and r̂ are the continuation lotteries where all future

lotteries are also mixed with r. Next, define

rt′ (p) = αp̂+ (1 − α) r̂

Finally, set αp� (1 − α) r = rt (p) and

αz � (1 − α) r := {αp� (1 − α) r : p ∈ z}

E.3 Proof of Theorem 3

Note that by Theorem 2, all we need to show is that the utility process is standard if and

only if ρ satisfies IRU and RI. Since a standard utility process trivially satisfies IRU and RI,

we will show the converse. By IRU, we have

φs (c, v) = ws (c) + βs (c) v

Note that 0 = φs (0, 0) = ws (0) and 1 = φs (m, 1) = ws (m) + βs (m). Consider a 2-

period z = {p0, q0} ∈ Z∗ where p0 = 1
2
δ(c1,p) + 1

2
δ(c2,δ(c2,z)),q0 = 1

2
δ(c1,q) + 1

2
δ(c2,q), p =

λ1δ(m,z) + (1 − λ1) δ(c2,z) and q = λ2δ(m,z) + (1 − λ2) δ(c2,z) for c1, c2 ∈ (0, m). Note that

us (p0) = ws

(
1

2
δc1 +

1

2
δc2

)

+
1

2
βs (c1)Es [us′ (p)] +

1

2
βs (c2)Es [us′ (c2, z)]

us (q0) = ws

(
1

2
δc1 +

1

2
δc2

)

+
(

1

2
βs (c1) +

1

2
βs (c2)

)

Es [us′ (q)]

To simplify notation, let βi := βs (ci) and ũs := Es [us′]. Now, us (p0) ≥ us (q0) if and only if

us (p0) ≥ us (q0) ⇔ β1ũs (p) + β2ũs (c2, z) ≥ (β1 + β2) ũs (q)

⇔ β1 (ũs (p) − ũs (q)) ≥ β2 (ũs (q) − ũs (c2, z))

⇔ β1 (λ1 − λ2) (ũs (m, z) − ũs (c2, z)) ≥ β2λ2 (ũs (m, z) − ũs (c2, z))

⇔ β1λ1 ≥ (β1 + β2)λ2,

where the last inequality follows from the fact that ũs (m, z) ≥ ũs (c2, z) a.s. as m ≥ c2.

Let r = δc2 and consider the 2-period z′ = az � (1 − a) r ∈ Z∗. Note that z′ =
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{ap0 � (1 − a) r, aq0 � (1 − a) r} where

ap0 � (1 − a) r =
1

2

(

aδ(c1,p′) + (1 − a) δ(c2,p′)

)

+
1

2
δ(

c2,δ(c2,z
′)

),

aq0 � (1 − a) r =
1

2

(

aδ(c1,q′) + (1 − a) δ(c2,q′)

)

+
1

2
δ(c2,q′)

and p′ = aλ1δ(m,z′) + (1 − aλ1) δ(c2,z′) and q′ = aλ2δ(m,z′) + (1 − aλ2) δ(c2,z′). Note that

us (ap0 � (1 − a) r) = ws

(
a

2
δc1 +

(

1 −
a

2

)

δc2

)

+
1

2
(aβ1 + (1 − a) β2) ũs (p′) +

1

2
β2ũs (c2, z

′)

us (aq0 � (1 − a) r) = ws

(
a

2
δc1 +

(

1 −
a

2

)

δc2

)

+
(
a

2
β1 +

(

1 −
a

2

)

β2

)

ũs (q′)

To simplify notation, let βa := aβ1 + (1 − a) β2 and recall ũs = Es [us′]. Now we have

us (ap0 � (1 − a) r) ≥ us (aq0 � (1 − a) r)

⇔ βaũs (p′) + β2ũs (c2, z
′) ≥ (βa + β2) ũs (q′)

⇔ βa (ũs (p′) − ũs (q′)) ≥ β2 (ũs (q′) − ũs (c2, z
′))

⇔ βaa (λ1 − λ2) (ũs (m, z′) − ũs (c2, z
′)) ≥ β2aλ2 ((ũs (m, z′) − ũs (c2, z

′)))

⇔ βaλ1 ≥ (βa + β2)λ2

where the last inequality again follows from the fact that ũs (m, z) ≥ ũs (c2, z) a.s.

By RI, we have

µ

{

βa
βa + β2

≥
λ2

λ1

}

= ρ (ap0 � (1 − a) r, aq0 � (1 − a) r) = ρ (p0, q0) = µ

{

β1

β1 + β2

≥
λ2

λ1

}

.

Since this is true for all λ1, λ2 ∈ (0, 1), it must be that β1

β1+β2
and βa

βa+β2
have the same

distribution for all a > 0. If we let ξ := β1

β2
, then ξ has the same distribution as

βa
β2

= aξ + (1 − a)

Equivalently, this implies that ξ − 1 has the same distribution as a (ξ − 1) for all a > 0. Let

κ be the infimum of the support of ξ − 1. Since β1

β2
≥ 0, κ ≥ −1. Since ξ − 1 and a (ξ − 1)

have the same distribution, it must be that κ = 0. Thus, a.s.

0 ≤ ξ − 1 =
β1

β2

− 1

or βs (c1) = β1 ≥ β2 = βs (c2) a.s. Since this was for arbitrary c1, c2 ∈ (0, m), it must be that
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β (c1) = β (c2) for all c1, c2 ∈ (0, m). Continuity of β then yields β must be constant on M .

F Repeated Menus

F.1 Proof of Lemma 2

In this section, we formally define zt and prove Lemma 2. In order to do so, we first formally

define the space of menus following Gul and Pesendorfer (2004). First, define Z0 := {0} and

Zt+1 := K (∆ (M × Zt))

Also, let Xt+1 = ∆ (M × Zt). Recall that ry,t (z) is the menu that follows z ∈ Z for t periods

and then ends with y ∈ Z for sure. First, we show that this is well-defined.

Lemma 13. For any y ∈ Z, ry,t : Z → Z is well-defined.

Proof. We will show by induction that ry,t : Z → Z is continuous. Clearly this is true

for ry,0 = y. Now, suppose that ry,t−1 is continuous so py,t ∈ ∆X is well-defined. We show

that py,t is continuous in p ∈ ∆X. Consider pn → p and let u : X → R be continuous and

bounded. Note that since ry,t−1 is continuous,

∫

X
u (c, z) dpny,t =

∫

X
u (c, ry,t−1 (z)) dpn →

∫

X
u (c, ry,t−1 (z)) dp =

∫

X
u (c, z) dpy,t

so pny,t → py,t as desired. Lemma 1(i) from Gul and Pesendorfer (2004) ensures that ry,t is

continuous. Thus, by induction, ry,t is well-defined. �

We now extend this notation to menus that end in finite periods, i.e. menus in Zt. In

other words, we will inductively construct the menu ry,t (z) that replicates z ∈ Zi for t ≤ i

periods and ends with y ∈ Zj for sure for some j. First, for any y ∈ Zj , let ry,0 (z) = y for

any z ∈ Zi. Given ry,t−1, for any p ∈ ∆Xi and t ≤ i, let py,t ∈ ∆Xt+j denote the lottery

induced by ry,t−1, that is, for all measurable A× B,

py,t (A ×B) = p
(

A× r−1
y,t−1 (B)

)

Thus, py,t is the lottery that follows p for t ≤ i periods and then yields y for sure. Finally,

for any z ∈ Zi, define

ry,t (z) := {py,t : p ∈ z}
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In other words, ry,t (z) ∈ Zt+j is the menu that follows z ∈ Zi for t ≤ i periods and then ends

with y for sure. Note that by the same argument as in Lemma 13, ry,t is also well-defined.

In the following, we define zt and show that zt is t-period. If we let y = 0 ∈ Z0, then

r0,t (z) ∈ Zt is the t-truncated version of z ∈ Zi for t ≤ i. Following Gul and Pesendorfer

(2004), we can now define the space of menus as

Z :=

{

z ∈
∏

t∈T

Zt

∣
∣
∣
∣ zt = r0,t (zt+1)

}

,

where zt denote t-th argument of z for any t ∈ T . We endow Z with the product topology.

Theorem A1 of Gul and Pesendorfer (2004) shows that Z is homeomorphic to K (∆ (M × Z)).

Given z, we now formally define zt by constructing a menu z̃ ∈ Z as follows. First, for

any i ≤ t, let z̃i = zi. For i > t, set z̃i = rz̃i−t,t (zt) iteratively. Thus, z̃ follows z for i ≤ t

periods and then replicates itself going forward. Thus

z̃ := (z1, z2, . . . , zt, rz̃1,t (zt) , rz̃2,t (zt) , . . . ) = rz̃,t (z)

We abuse the notation here and the following; the second equation means z̃ ∈ Z corresponds

to rz̃,t (z) ∈ K(∆(M × Z)) by the homeomorphism between Z and K (∆ (M × Z)). Define

zt = z̃.

We now show that zt is t-period. We show that ry,t (Z) ⊂ Rt (y) by induction. First,

note that for all z ∈ Z,

ry,1 (z) = {py,1 : p ∈ z} ∈ K (∆ (M × {y})) = R1 (y)

so ry,1 (Z) ⊂ R1 (y). Assume the induction step that ry,t−1 (Z) ⊂ Rt−1 (y). Thus, for any

p ∈ ∆ (M × Z),

py,t (M × Rt−1 (y)) ≥ py,t (M × ry,t−1 (Z)) = p (M × Z) = 1

Thus, we have

ry,t (z) = {py,t : p ∈ z} ∈ Rt (y)

so ry,t (Z) ⊂ Rt (y). This shows that

zt = rzt,t (z) ∈ Rt

(

zt
)
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so zt is t-period, where the equality means the correspondence based on the homeomorphism.

Finally, since zti = zi for all i ≤ t, zt → z as i → ∞ in the product topology. This concludes

the proof.

F.2 Property of Repeated Menus

As mentioned in Section 2.1, there is always some minimal t∗ for which z is t∗-period and,

in fact, t∗ is simply the first time z appears after the initial period. The following lemma

implies the results.

Suppose that z is a repeated menu (i.e., z ∈ Rt (z) for some t) and the menu z appears

at some period t′ before period t (i.e.z ∈ Rt−t′ (z)). The following lemma shows that the

menu is also t′-period.

Lemma 14. If z is a repeated menu (i.e., z ∈ Rt(z) for some t) and z ∈ Rt−t′ (z) for some

t′ < t, then z is t′-period.

Proof. We first show that Rt (z) ∩Rτ (z) 6= ∅ implies Rt−1 (z) ∩Rτ−1 (z) 6= ∅. Suppose y ∈

Rt (z)∩Rτ (z) and choose some p ∈ y. By definition, p (M ×Rt−1 (z)) = p (M × Rτ−1 (z)) =

1 so

p (M × (Rt−1 (z) ∩ Rτ−1 (z))) = 1

Thus, Rt−1 (z) ∩Rτ−1 (z) 6= ∅.

We now prove the lemma. Suppose z is t-period and z ∈ Rt−t′ (z). Thus, z ∈ Rt (z) ∩

Rt−t′ (z). Applying the above argument repeatedly yields Rt′ (z)∩R0 (z) 6= ∅. Since R0 (z) =

{z}, we have z ∈ Rt′ (z) as desired. �

G Stochastic Epstein-Zin and RI

Under stochastic Epstein-Zin, non-standard intertemporal preferences manifest themselves

in spurious violations of the classic independence axiom. Recall from Theorem 3 that RI

along with IRU characterize ICM. For an Epstein-Zin agent, PEU (i.e., ψs ≤ RRAs) or PLU

(i.e., ψs ≥ RRAs) can be detected by how RI is violated. Let ≥FOSD denote first-order

stochastic dominance.
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Proposition 4. Suppose ρ is stochastic Epstein-Zin. For 1-period z ∈ Z∗ and p1 ≥FOSD r

for all p ∈ z,

• ψs ≤ RRAs a.s. implies ρz
(

δ(c,z)

)

≤ ρaz�(1−a)r

(

aδ(c,z) � (1 − a) r
)

• ψs ≥ RRAs a.s. implies ρz
(

δ(c,z)

)

≥ ρaz�(1−a)r

(

aδ(c,z) � (1 − a) r
)

Proof. First, suppose ψs ≤ RRAs a.s. Let y = az � (1 − a) r. Since p1 ≥FOSD r for all

p ∈ z,

vst (z) = Est

[

sup
q∈z

ust+1 (q)

]

≥ Est

[

sup
q∈y

ust+1 (q)

]

= vst (y)

Let v2 = vs (z) and v1 = vs (z) so v2 ≤ v1. Now, for any p ∈ z,

us
(

δ(c,z)

)

≥ us (p) ⇔ φs (c, v1) ≥
∫

M
φs (d, v1) dp1.

On the other hand,

us
(

aδ(c,z) � (1 − a) r
)

≥ us (ap� (1 − a) r)

⇔ aus (c, y) + (1 − a)
∫

M
us (c′, y) dr ≥ a

∫

M
us (c′, y) dp1 + (1 − a)

∫

M
us (c′, y) dr

⇔ φs (c, v2) ≥
∫

M
φs (c′, v2) dp1

Since ψs ≤ RRAs, φs (·, v1) is more convex than φs (·, v2) as in the proof of Proposition 1.

Thus, for every p ∈ z, us
(

δ(c,z)

)

≥ us (p) implies us
(

aδ(c,z) � (1 − a) r
)

≥ us (ap� (1 − a) r)

so the conclusion follows. The case for ψs ≥ RRAs a.s. is symmetric. �

Proposition 4 illustrates the type of permissible violation of the classic independence

axiom in the repeated choice setup. For example, under strict PEU, if z consists of a risky

and a safe option, then the probability of choosing the safe option will strictly increase if we

mix all options with the worst consumption. Note that the act of mixing changes the agent’s

continuation value; when intertemporal preferences are non-standard as in Epstein-Zin, this

generates violations of repeated independence. We can interpret this as a spurious violation

of the independence axiom due to ignoring the intertemporal structure of the problem.

Note that this does not permit any violation of independence; for example, the agent

will never strictly prefer mixtures. This is because the agent is still an expected utility

maximizer on the larger outcome space of pairs of consumption and continuation menus.

For example, given a repeated menu z = {(p1, z) , (q1, z)}, the agent will never choose the
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mixture
(

1
2
p1 + 1

2
q1, y

)

in the repeated menu

y =
{

(p1, y) ,
(

1

2
p1 +

1

2
q1, y

)

, (q1, y)
}

Even though there may be consumption smoothing due to intertemporal preferences, a

stochastic Epstein-Zin agent will never exhibit a strict preference for ex-ante hedging; in

other words, our model satisfies the stochastic version of betweenness from Dekel (1986) and

Chew (1989).

Let r = δ0 and note that for any 1-period z ∈ Z,

aδ(c,z) � (1 − a) δ0 → δx

as a → 0. This suggests the following comparative statics result.

Proposition 5. Suppose ρ and ρ′ are both stochastic Epstein-Zin with respective risk aver-

sion distributions πRRA and π′
RRA. Then πRRA ≥FOSD π′

RRA iff for all 1-period z ∈ Z∗,

lim
a→0

ρaz�(1−a)δ0

(

aδ(c,z) � (1 − a) δ0

)

≤ lim
a→0

ρ′
az�(1−a)δ0

(

aδ(c,z) � (1 − a) δ0

)

Proof. Let z =
{

δ(c,z), p
}

and ya = az � (1 − a) δ0. Note that ya → δx as a → 0 so

lim
a→0

vst (ya) = vst (x) = 0

Let ws (c) = c1−RRAs denote CRRA utility. We thus have

lim
a→0

ρaz�(1−a)r

(

aδ(c,z) � (1 − a) δ0

)

= lim
a→0

π
{

φs (c, v (ya)) ≥
∫

M
φs (c′, v (ya)) dp1

}

= π
{

φs (c, 0) ≥
∫

M
φs (c′, 0) dp1

}

= πRRA {ws (c) ≥ ws (p1)}

The conclusion follows from the fact that πRRA ≥FOSD π′
RRA iff

πRRA {ws (c) ≥ ws (p1)} ≤ π′
RRA {ws (c) ≥ ws (p1)}

for all c ∈ M and p1 ∈ ∆M . �
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