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Abstract

An increasingly utilized class of general equilibrium models include inter-firm
productivity diffusion. Standard methods to calibrate critical diffusion parame-
ters require making assumptions about the economic environment, then using the
resulting structure to map these parameters onto more easily observed empirical
moments. Within this class of models, we provide conditions on the type of vari-
ation in learning opportunities that uniquely identify a small set of parameters
characterizing the diffusion process independent of the remaining economic envi-
ronment, then provide an application of our procedure in Kenya with a business
matching program. Despite matching the quick fade out of the empirical treatment
effect, the model implies a large general equilibrium diffusion externality. The es-
timated diffusion parameters push the partial and general equilibrium gains from
diffusion in opposite directions, implying such parameters are critical not only for
measuring the equilibrium importance of diffusion but also for interpretation and
extrapolation of smaller-scale empirical studies to at-scale policy significance.
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1 Introduction

A growing literature in both macro and microeconomic development focuses on the impor-

tance of productivity transfer among firms in the development process.1 The macro side

highlights the important general equilibrium consequences of such productivity diffusion: by

affecting the equilibrium distribution of productivity, diffusion affects future opportunities

for productivity gains, which can then amplify the importance of policy or generate sus-

tained growth. The micro literature, on the other hand, tends to instead focus on shocks

to individuals’ learning or diffusion opportunities, forgoing the equilibrium dynamics that

are central in the macro literature. This more limited scope comes with the benefit of tight

identification on the gains from changing learning opportunities. Whereas the macro liter-

ature tends to impose structure on the economic environment (such as the distribution of

shocks, how firms enter and exit, details of occupational choice, etc.) that allow a mapping

between theoretical parameters and easily-observed empirical moments (i.e., the aggregate

firm exit rate), the micro literature utilizes tools that allow for a clean identification of the

individual-level effect of changing learning opportunities.

Despite the seeming complementarity between these two approaches, they have tended

to operate independently. The goal of this paper is therefore to study the link between well-

identified individual-level returns from diffusion and the general equilibrium impact implied

by standard models. Merging these two approaches requires a theoretical mapping from

individual-level treatment effects to critical diffusion parameters in an equilibrium model.

Our first contribution is a theoretical one: we show how to identify a small set of diffusion

parameters in this lass of macro models with properly targeted variation in the data, and

moreover, show that this same procedure holds under many different diffusion processes and

assumptions on the remaining economic structure generally required in the aforementioned

literature. Thus, these micro estimates are indeed useful for understanding aggregate models.

Our second contribution is empirical. We actively create these required “identified moments”

(in the sense of Nakamura and Steinsson, 2018) with a randomized controlled trial that

shocks the learning opportunities of individual firm owners. The third is quantitative. We

show that the estimates derived from our first two steps are critical for understanding how

to interpret micro-level evidence for at-scale policy gains that can be derived from correcting

inefficiencies inherent in any aggregate model of diffusion.

We begin by constructing a theoretical mapping between micro-level evidence and key

diffusion parameters. We consider the class of models in which agents meet one another,

and each agent has the opportunity to imitate some of her match’s productivity. The key

identification – and as we show later, quantitative – issue is the estimation of parameters

that translate the characteristics of agents in the match into ex post productivity. We show

1On the macro side, see for example, Lucas (2009), Lucas and Moll (2014), Perla and Tonetti (2014), Perla et al. (2020),
Buera and Oberfield (2020), Hopenhayn and Shi (2018). On the micro side see work on the diffusion of new crops or high-
yielding seeds (Conley and Udry, 2010), specific planting or production techniques (Atkin et al., 2017; BenYishay and Mobarak,
2018; Beaman et al., 2020), or financial information (Banerjee et al., 2013; Cai and Szeidl, 2018)
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that two orthogonality conditions on the data generating process can alleviate this problem.

The first requires a shock that changes imitation opportunities for a subset of the population,

and is independent of initial conditions. This is akin to the standard exclusion restriction

required for measuring the (average) causal effect of some policy. The second is that the exact

imitation opportunity within this treatment group is also independent of initial conditions.

This allows variation within the treatment group to be interpreted causally as well.

This two-stage variation is sufficient to identify key diffusion parameters. We first focus

on outcomes of a given match. This requires understanding two forces – the gains from a

relatively better match and the persistence of those gains. The first follows almost immedi-

ately from the within-treatment exclusion restriction, which allows us to interpret variation

in ex post profit across matches as the causal impact of variation in match quality. The

complication in measuring persistence – relative to a model with exogenous productivity

– is that a firm with high profit at time t may have high profit at t + 1 for two reasons:

either because persistence is high in a technological sense (which we want to measure) or

because it matched with a high productivity firm at t. Thus, diffusion introduces a bias into

the standard lagged regression used to identify an exogenous AR(1) process that must be

corrected. As we formalize in Section 2, it turns out that measuring both forces requires only

two coefficient estimates from a single linear regression. The regression amounts to a lagged

profit regression properly adjusted for the diffusion bias, and thus allows a straightforward

map between empirics and model parameters.

The second step of our procedure focuses on understanding the distribution of returns

from imitation, conditional on the impact of a given match.2 We introduce a parameter

that governs the difference between the distributions of firm productivity distribution and

imitation draws. The complication on this front is that we cannot observe control matches.

Our insight here is that the average treatment effect provides critical information about

control group matches. If the treatment guarantees a high-quality imitation match, then a

small average treatment effect implies the control group must already be generating high

quality matches. Therefore, conditional on the fact that the first step identifies the parame-

ters governing the outcome of a given match, the average treatment effect reveals important

information about the control group without requiring us to directly observe their matches.

A useful implication of such orthogonality conditions of this procedure (i.e., by construct-

ing instruments or randomized controlled trials) is that the parameters are identified for a

wide range of assumptions on the diffusion process, including random search, bargaining

over knowledge transfer, the introduction of noise in the imitation process, and determinis-

tic assignment.3 Moreover, they are independent of much of the remaining model structure,

implying we are not required to take a stand on whether the economy is in a steady state or

2For example, one commonly used assumption is that firms uniformly draw from the existing distribution of other firms,
though that of course need not be the case. This is a special case of what we assume in this paper.

3While the interpretation of various parameters differs depends on how one chooses to model diffusion, the identification
procedure does not. In the main body of the paper, we generally discuss the intuition in terms of a random search model to fix
ideas. See the Appendix for examples of how to implement the procedure in other contexts.
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transition path or other features of the economy (e.g., occupational choice) to estimate the

parameters. Thus, these micro tools allow us to identify diffusion parameters for a variety

of models.

This independence result is in large part due to randomization. In applied work, the

power of RCTs stems from their ability to eliminate potential confounds with minimal re-

quirements on the data-generating process. Here, something similar occurs, except the con-

founds are structural. Various aspects of the modeled economic environment interact with

the diffusion process, thus making identification difficult without substantial structural as-

sumptions that map parameters to empirical moments. In both cases, properly differencing

from a control group helps limit many of the potential confounding factors. This allows us

to use moments like the average treatment effect to identify model parameters without spec-

ifying the complete economic environment. Our estimates can therefore be embedded into a

variety of models with different assumptions on the remaining structure of the economy.4 We

emphasize this in Section 2 by only laying out the assumptions required for identification,

leaving the details of the full model for Section 4, when we require them for the quantitative

results. Of course, not every diffusion model will satisfy the assumptions we use. In Sec-

tion 2 we therefore discuss in detail where our assumptions fail and how one would need to

augment our procedure to satisfy more complicated economic environments.

We then create the microeconomic conditions for our aforementioned theoretical results

to hold. While any instrument(s) satisfying the requisite conditions will do, we create the

required variation with a randomized controlled trial (RCT) in Nairobi, Kenya. We set

up a program in which we randomly match low-profit treatment firms with a randomly

selected high-profit firm. This involves two layers of randomization: the first into control

and treatment, then again when we create a one-to-one match among treated firms. This

guarantees both our conditions are satisfied. The full set of reduced form results are available

in Brooks et al. (2018). We trace out the impulse response of the one-time shock, finding

that profits are on average 19 percent higher in the treatment group relative to the control

and the effect is increasing in the relative profit gap between the two firms.5 Moreover, we

show that the more productive member of the match sees no change in profit or business

skills that one might associate with higher productivity. Finally, we find that the gains from

this match fade quickly. Six quarters after the shock, there is no difference in profitability

between control and treatment firms. This does not result from spillovers from treatment to

control, as the experiment was designed to eliminate them. These empirical results form the

basis of our parameter estimation.

Finally, we turn to the macroeconomic implications of the model. We build our empirical

4It is worth emphasizing that the goal of this paper is not provide a test that differentiates between diffusion models,
and indeed our empirical results are not suitable for such a task. The goal here is only to limit the assumptions required for
identification within a class of diffusion models commonly used in the literature.

5There are a number of potential explanations for such a result that are independent of diffusion. We consider a number of
such possibilities in Brooks et al. (2018), including profit sharing, loans, and bulk discounts, and find that none of them explain
the results.
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results into a model with random search and occupational choice, in which individuals in

the economy learn from firm owners by randomly meeting and costlessly internalizing some

of their entrepreneurial productivity. We use random search for two reasons. It satisfies

the assumptions required to implement our procedure and, on a more intuitive level, closely

tracks the underlying mechanics of the RCT in which we implement a program that includes

random matching. The remaining model parameters are calibrated in standard fashion.

We begin by asking simply how large the role is for diffusion, once built into a general

equilibrium framework. As is well known in these models, the key externality is that marginal

firms congest the learning process. We measure the scale of the diffusion externality by

comparing the laissez faire equilibrium with the efficient one. Despite the lack of long

run gains in the individual-level empirical treatment effect, we find that the steady state

equilibrium diffusion externality is large. Moreover, the model can replicate the RCT results,

with no treatment effects after 6 quarters. What generates this divergence between the RCT

and GE results? It turns out that the parameters estimated by our procedure play a critical

role in generating both the RCT and GE results. However, these parameters generally move

the two sets of results in opposite directions. That is, the same parameter values that

generate the quick fade of the RCT results simultaneously generate the large GE gains.

To see this intuitively, take as an example the elasticity translating the productivity of a

match into one’s own productivity. This turns out to be the key force governing the equilib-

rium gains, and is identified by our procedure. In the RCT, however, it has a negative effect.

The ability to internalize a large portion of a match’s productivity allows control agents to

quickly catch up to the treatment group. Thus, this same force pushing the equilibrium

gains up simultaneously pushes the RCT gains down. This result has critical implications

for understanding RCT results designed to inform economic policy in environments with

diffusion. Despite the large general equilibrium gains from policy we estimate, we show

that if a policy-maker were to intervene in the economy with the largest RCT impact, she

would instead minimize the gains from optimal equilibrium policy. Thus, not only are the

equilibrium gains large, the RCT provides little evidence of at-scale policy unless interpreted

through the lens of a model.

1.1 Related Literature

This paper joins a relatively small literature that uses causal empirical estimates to identify

critical model parameters in dynamic structural models, including Todd and Wolpin (2006),

Kaboski and Townsend (2011) and Brooks and Donovan (forthcoming). Our paper shares

a similar style but focuses on knowledge diffusion. Closest in this dimension are Lagakos et

al. (2018a) and Akcigit et al. (forthcoming), who use the results from randomized controlled

trials to, in part, identify the utility cost associated with migration and a key elasticity

to measure the stock of management skills, respectively. We share a similar goal of using a

randomized control trial to identify parameters not directly observable in data. Furthermore,
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our results emphasize caution when trying to infer general equilibrium outcomes from partial

equilibrium randomized controlled trials. Buera et al. (2017), Greenwood et al. (2019),

and Fujimoto et al. (2019) highlight similar points in microcredit, health, and education,

respectively.

Our work adds empirical evidence to the literature studying innovations and knowledge in

general equilibrium models (Romer, 1986; Kortum, 1997). Most closely related to this paper

is the more recent literature building on these papers, in which diffusion is modeled as a

stochastic process of “imitation” including Jovanovic and Rob (1989), Lucas (2009), Alvarez

et al. (2008), Lucas and Moll (2014), and Perla and Tonetti (2014). Hopenhayn and Shi

(2018) highlight the importance of congestion in a model where all surplus is not captured

by the recipient. Recent work has also extended these models to consider within and across

firm diffusion (Herkenhoff et al., 2018; Jarosch et al., 2020), international trade (Perla et al.,

2020; Buera and Oberfield, 2020), and the interaction of innovation and diffusion (Benhabib

et al., 2019; Lashkari, 2020).

At the same time, the micro-development literature cited in the introduction has long

highlighted the importance of diffusing specific pieces of information or technology. Our

contribution here is two-fold. First, we show that such RCT results allow tight identification

in aggregate models. Therefore, not only can tools from this literature be used to micro-

found models, they can also provide useful insights directly to aggregate models in a more

“top down” approach. Second, we show that the link from RCT-level evidence to at-scale

policy is not obvious, and the two can in fact can be negatively related. This also reinforces

the importance of the first point – understanding the link between empirical results and

structural parameters is a key input to understanding the link between empirical results and

at-scale policy.

2 Identification of the Diffusion Process

We begin by specifying the class of diffusion processes we will study. We start here so that

we can clearly lay out the class of models to which the identification results apply. The

goal is to lay out the required assumptions without the details of the full model in which we

will eventually embed the diffusion process, as they are both cumbersome and unnecessary

for the main identification results. Along the way, we will draw attention to the required

assumptions so that is clear what is required for the results, and at the end of this section,

discuss in detail where the results may fail.

2.1 Setting Up the Problem

Consider a dynamic economy populated by agents with heterogeneous entrepreneurial pro-

ductivities. We begin by describing how entrepreneurial productivity evolves over time.

Each period, every agent receives two types of shocks to their productivity. First, they
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receive an idiosyncratic imitation shock ẑ. If their own productivity z is greater than ẑ, then

the imitation opportunity is useless and it has no effect on the agent’s future productivity.

If ẑ > z, then the imitation opportunity contains some useful information that the agent

can incorporate into their own future productivity. The intensity with which this imitation

opportunity transmits to the agent’s productivity in the subsequent period is governed by the

parameter β. Second, firms receive random shocks ε that enter the next period’s productivity

multiplicatively. This shock is assumed to be uncorrelated with own productivity z or

the imitation draw ẑ.6 The functional form of the subsequent productivity z′ is given by

Assumption 1.

Assumption 1. Given a productivity z this period, an imitation opportunity ẑ, and a random

shock ε, productivity next period z′ is given by

z′ = ec+εzρ max

{
1,
ẑ

z

}β
, (2.1)

where the parameter c is a constant growth term, β is diffusion intensity, and ρ is persistence.

The final term is the benefit to productivity from imitation opportunities. If β = 0, this

law of motion collapses to a standard exogenous AR(1) process, log(z′) = c+ρ log(z)+ε. On

the other hand, β > 0 allows productivity to increase when presented with an opportunity

to imitate some ẑ > z. Furthermore, notice that the max operator in the diffusion process

rules out any productivity benefit accrued to a higher productivity firm from interaction

with lower productivity firms (as in Jovanovic and Rob, 1989, for example). We address

this issue directly in Section 3 and find no evidence that more productive firms gain profit

from interaction with less productive firms.7 For simplicity throughout, we refer to β as the

“intensity” of diffusion and ρ as “persistence.”

Given the notion of productivity we consider here, we cannot observe it directly. Thus,

we require a link between productivity and observable variables, in the case, profit. The

requirement is summarized in Assumption 2.

Assumption 2. In any period, profits are proportional to productivity. That is, for any two

firms i and j earning profits πi and πj, πi/πj = zi/zj.

This assumption is satisfied by much of the literature on diffusion. A simple way to

satisfy Assumption 2 is to assume πi = zi as in Lucas (2009) and Perla and Tonetti (2014).

A production function of the form y = zαn1−α, where n is labor, also satisfies Assumption 2

6Note that we need not assume that these are idiosyncratic shocks. They could, for example, have an aggregate and
idiosyncratic component where the first affects all agents in the same way. Therefore, we need not assume these shocks are i.i.d.
across agents.

7The assumption of no productivity gain accruing to the more productive firm is not a critical one. We could alternatively
allow for it, though looking ahead, our empirical results would require this channel to be shut down. We therefore exclude it
for simplicity.
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in a competitive labor market.89

Finally, we specify the assumptions on the distribution from which ẑ is drawn. We denote

the cumulative density function of ẑ as M̂(ẑ; z, θ). Writing it in this way emphasizes that

agents with different productivities z may draw from different distributions, and that these

distributions depend on a parameter θ. In particular, this parameter is assumed to order a

class of distributions in the sense of first order stochastic dominance. This is summarized in

Assumption 3.

Assumption 3. The imitation opportunity ẑ is drawn by a firm with productivity z from a

distribution characterized by the cumulative density function M̂(ẑ; z, θ), a known function.

For every z and ẑ, M̂ is continuous in θ and θ1 < θ2 =⇒ M̂(ẑ; z, θ2) first order stochastically

dominates M̂(ẑ; z, θ1).

This assumption admits a variety of search and assignment processes. For example,

one commonly used diffusion process is that agents draw randomly from the existing firms.

Denoting M as the cdf of operating-firm productivity, this would imply M̂(ẑ; z, θ) = M(ẑ).

Even within the random search framework, Assumption 3 allows us to be somewhat broader,

as agents may draw from better or worse distributions that the set of operating firms, where θ

indexes how much the distribution of matches differs from the firm productivity distribution.

We discuss this assumption in more detail in Section 2.3. We refer to θ as the “directedness”

parameter as shorthand, with the understanding that this is a technological parameter in

the model.

The assumptions laid out in this section allow us to do two things. First, they let

us translate a broad, unobservable notion of productivity to an observable characteristic,

profit. Second, they parametrize the forces of diffusion we wish to investigate. Intensity

β captures the static effect that governs how much individuals gain immediately from a

match. Persistence ρ governs how much of a past match can be transmitted in the future,

thus contributing to the dynamic impact of a single match. Finally, directedness θ governs

who individuals regularly interact with. All three of these play a potentially important role

in governing the total impact of diffusion.

Finally, while we note that all of the assumptions we have made are common in the

literature, one can of course come up with models that do not satisfy our assumptions.

While we emphasize that our goal in this paper is not to distinguish various diffusion models

that one could conceive of (and our empirics are not well-suited to this task), we come back

to this issue in Section 2.3 and discuss the limits of the structural assumptions made above

to hopefully provide some broader context for our results.
8Note, however, that assumption is violated in the presence of firm-specific distortions, such as those considered in Hsieh

and Klenow (2009). In the Appendix we argue that such distortions would imply that our estimated parameter values are
attenuated, suggesting that we are underestimating the effects of diffusion. We further show how the results change as the
importance of such distortions vary.

9This assumption is again not strictly required, as long as a method exists to identify z. For example, using input and
output data, one could estimate a production function from the control group and recover productivity as a residual. What we
require is the existence of a mapping from observables to unobserved productivity z, but the exact details of that mapping are
immaterial for our identification results to hold. Thus, we err on the side of simplicity here.
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2.2 Variation Required to Identify Diffusion

Section 2.1 laid out a set of assumptions on the primitives of the model. Our goal now is to

identify three key diffusion parameters – the intensity of transmission β, the persistence of

productivity ρ, and the parameter controlling the distribution of imitation draws θ – without

imposing any additional structure on the economy. To that end, Assumption 4 summarizes

variation in the data required to identify the parameters. After proving the identification

results, Section 3 details a randomized controlled trial that satisfies these assumptions, thus

allowing us to take the model to the data.

Assumption 4. A set of agents with productivity distributed H(z) are observed in two

consecutive periods. The set of agents is partitioned into two subsets characterized by distri-

butions HC(z) and HT (z) (i.e., “control” and “treatment”). The following conditions hold:

1. Agents in HT and HC draw their ε shocks from the same distributions

2. The matches for agents in HC are not observable, and distributed M̂(ẑ; z, θ)

3. The matches for agents in HT are observable, and distributed ĤT (ẑ) 6= M̂(ẑ; z, θ).

Moreover, every match ẑ is greater than the z to which it is matched.

4. For any arbitrary partition of the treatment group, characterized by H1
T (z) and H2

T (z),

agents in both groups draw their ε shocks from the same distribution

The first assumption imposes the usual exclusion restriction – that unobserved characteristics

do not systematically vary across treatment and control groups. The second formalizes the

intuitive notion that we cannot observe control group matches, and they proceed as defined

by the M̂ function. That is, control group continues to match as defined by the underlying

economy.10 Finally, the third and fourth lay out what we require from our treatment. The

third states that we can observe all treatment matches, and those matches are drawn from

some other distribution than the control group. Moreover, we assume that treatment firms

are always matched to a more productive agent.11 Finally, the last assumption states a sec-

ond exclusion restriction within the treatment group, guaranteeing that comparisons across

treatment firms are unbiased.12

Our procedure works as follows. Using only the treatment firm data, we show how to

identify β and ρ uniquely. We then add back the control data to show that θ can be identified

from the average treatment effect as only a function of (β, ρ). Thus, the three parameters

are uniquely identified under Assumption 4.

10Note at this point we still do not know the parameter θ. This assumption states that control matches occur via the (known)

function M̂ indexed by some unknown parameter θ.
11As we discuss later, the assumption that ẑ > z for all z in the treatment is not critical for the results but drastically

simplifies the formal proof. In the Appendix, we show that Assumption 4 without the ẑ > z assumption is still sufficient for
identification in the treatment.

12While this paper proceeds using randomization as a way to generate variation consistent with Assumption 4, it is worth
emphasizing that it is not necessarily required. Any instrument that satisfies these assumptions would be equally valid for the
results to hold.
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Using Treatment Data for (β, ρ) Identifying the intensity and persistence parameters use

only variation from treatment matches. This has the benefit that the identification follows

almost directly from the law of motion for diffusion. In logs, the law of motion is

log(z′i) = c+ ρ log(zi) + β log

(
max

{
1,
ẑi
zi

})
+ ε (2.2)

Applying Assumption 2 (π ∝ z) annd Assumption 4 (ẑ > z), this simplifies to

log(π′i) = c̃+ ρ log(πi) + β log

(
π̂i
πi

)
+ εi. (2.3)

where πi and π̂i are baseline profit for individual i in the treatment group and her match

and c̃ is a constant equal to the structural parameter c if π = z. Equation (2.3) is a linear

regression that can be estimated directly from panel data. Intuitively, there are two ways

to read (2.3). The first is that β measures the impact of receiving a better match (higher

π̂i/πi), controlling for initial income πi. Alternatively, one could read this as estimating the

decay in profit, measured by ρ, after controlling for variation in match quality (π̂i/π). Given

the orthogonality built into the data-generating process by Assumption 4, (2.3) measures

both forces simultaneously. Proposition 1 formalizes this.

Proposition 1. The estimates (β̂OLS, γ̂OLS) from (2.3) identify parameter values (β, ρ)

Proof. Follows directly from the within-treatment exclusion restriction of Assumption 4. �

The argument laid out above relies in part on the result that one can remove the max

operator from (2.2) via the assumption that ẑ > z. In the Appendix, we show that this

assumption is not required to identify β and ρ. The intuition is identical to that laid out

above, but the max operator introduces a bias that must be taken into account directly.

This requirements a two-step procedure, and thus existence and uniqueness require a more

substantive discussion.

“Directedness” of diffusion θ Now, we utilize both treatment and control groups to identify

θ, which controls the distribution of imitation draws. We admit from the outset that we

cannot observe individual-level matches in the control group. The critical insight here is that

we can draw inference about the control group by differencing from the treatment. Since

treatment firms are guaranteed a high productivity match, observing small differences in

average ex post profit implies that control firms must also be drawing from a distribution

with substantial mass on high productivity matches. Or put in our notation, M̂ must be

indexed by a high θ. Similarly, large differences in average profit between treatment and

control implies that the guarantee of a high productivity match generates a large effect

precisely because high productivity matches are not usually realized. This corresponds to

a low value of θ. The average difference in profit therefore allows us to infer θ, despite
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not observing the underlying matches in the control group. Figure 1 shows the intuition

graphically.

Figure 1: Identification of θ

Productivity

Figure notes: Figure shows the distribution of draws for treatment and control firms under different θ. The
distributions are drawn Pareto, but this is for the example’s sake only.

To formalize this argument, define z̄T and z̄C as average ex post productivity the treat-

ment and control groups. Following a similar procedure as above, the law of motion for

productivity (Assumption 1), combined with the implied variation in matches (Assumption

4), implies

z̄T
z̄C

=

∫ ∫ ∫
ec+ε max

[
z, ẑβz1−β]ρ dF (ε)dĤT (ẑ, z)dHT (z)∫ ∫ ∫

ec+ε max [z, ẑβz1−β]ρ dF (ε)dM̂(ẑ; z, θ)dHC(z)

Defining Γ3 := z̄T/z̄C and using the orthogonality of the exogenous shocks ε, we can re-write

the equation as

Γ3 =

∫ ∫
zρ max [1, ẑ/z]β dĤT (ẑ)dHT (z)∫ ∫

zρ max [1, ẑ/z]β dM̂(ẑ; z, θ)dHC(z)
. (2.4)

Given the values of intensity β and persistence ρ already identified, then all other parts of

this equation come directly from the data (after again applying Assumption 2 that π ∝ z),

except for the parameter θ.13 The assumed monotonicity of M̂ (Assumption 3) is sufficient

to prove that any θ that solves this equation is unique. Proposition 2 formalizes the results,

developing bounds to guarantee the results.

Proposition 2. Given the values (β, ρ), the value of θ that solves (2.4) is unique if Γ3 ∈

13This is conditional on Assumption 3, which assumes that M̂ is a known function. That is, we require that M̂ is a known
function indexed by an unknown parameter θ. It is in this sense that this paper is not designed to distinguish between different
possible matching technologies.
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[Γmin3 ,Γmax3 ], where

Γmin3 = inf
θ

∫ ∫
zρ max [1, ẑ/z]β dĤT (ẑ)dHT (z)∫ ∫

zρ max [1, ẑ/z]β dM̂(ẑ; z, θ)dHC(z)
(2.5)

Γmax3 = sup
θ

∫ ∫
zρ max [1, ẑ/z]β dĤT (ẑ)dHT (z)∫ ∫

zρ max [1, ẑ/z]β dM̂(ẑ; z, θ)dHC(z)
. (2.6)

Proof. First, note that the only unknown on the right hand side of (2.4) is θ. This follows

from Assumption 2 and Proposition 1. All that is left is to show that there exists a unique θ

that solves (2.4). The right hand side is continuous in θ by the continuity of M̂ in Assump-

tion 3. The intermediate value theorem then guarantees existence when Γ3 ∈ [Γmin3 ,Γmax3 ].

Finally, uniqueness follows from the strict monotonicity of the right hand side in θ, which is

guaranteed by the first order stochastic dominance assumed in Assumption 3. �

Thus, the three parameters (β, ρ, θ) are uniquely identified with the variation in the

data-generating process laid out in Assumption 4.14

2.3 Discussion

Before turning to the estimation and RCT results, it is worth discussing some context for

the preceding identification results, and laying out what the above procedure can and cannot

accomplish.

2.3.1 More Detail on Identification Results

First, the empirical moments required for the estimation are are easily obtained from data,

using only the average treatment effect and a properly-adjusted lagged profit regression.

Thus, the moments allow for a relatively straightforward link between model and data.

Second, we note that the identification results in Proposition 1 are actually broader than

we have written them. In theory, Assumption 4 allows us to semi-parametrically identify

(ρ, f) in the law of motion

log(z′) = c+ ρ log(zi) + f(x, x̂) + ε (2.7)

where f : X × X̂ → Z is a function that takes any combination of firm (x) and match (x̂)

characteristics and translates them into a contribution to future productivity. Again, the

key is the exclusion restriction. Since, in theory, all characteristics are randomly assigned

and thus orthogonal to the error term, they can be included in the regression. As a simple

example, imagine the treatment effect varied in the age gap between the two firm owners.

We could add interaction terms to our original regression (2.3), which would allow us to

14The bounds in Proposition 2 are only to guarantee the treatment effect stays within the set of values the model can possibly
rationalize. For example, if β = 0, (2.4) shows that the model cannot rationalize any positive average treatment effect. The
quantitative results are all within the required bounds for identification.
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identify age bin-specific β’s instead of a single β. Taking that type of intuition to its limit,

we can identify the function f in (2.7).

On a more practical level, doing so requires both a substantial sample size and enough

characteristic variation to be properly powered for such a test. Thus, we do not pursue this

further. We note it only to highlight that the methodology itself is potentially much broader

than we have written it here, and useful for other types of questions one may wish to ask in

these models.15

2.3.2 Where the Results Fail

An important question is the extent to which our identification results are robust to other

economies, or put differently, where our assumptions fail.

First, the identification of β and ρ holds in a broad set of economies. The key here is the

power of the (hypothetical) design. That the matches are randomized – and observable –

within the treatment group implies only treatment firm data are required to identify (β, ρ).

Thus, the details of who searches, or why, is irrelevant for the estimation (conditional on

Assumptions 1 and 2). However, one way in which Assumption 2 (π ∝ z) fails is if firms

are subject to idiosyncratic distortions νi. Then, we instead have π ∝ zν. We take this up

in the Appendix and show that our results would then be a lower bound on the size of the

diffusion externality.

A more subtle restriction is built into our assumption on M̂ in Assumption 3. Here, we

require that the draw of a match ẑ depends only on z and a parameter θ. This assumption

nests as a special case work by Jovanovic and Rob (1989), Lucas (2009), and Buera and

Oberfield (2020), who assume uniform draws from the existing distribution of operating

firms. In that case, if M is the cdf of operating firm productivity, M̂(ẑ; z, θ) ≡M(ẑ). Lucas

and Moll (2014) and Perla and Tonetti (2014) make the same uniform draw assumption,

but extend these models by endogenizing a tradeoff between production and searching for a

match. Models with this tradeoff generally fail Assumption 3, because the decision to search

depends on the remaining details of the model and equilibrium. In this case, we lose the

independence of θ from the remaining model structure.

Three things are worth emphasizing about this result though. First, assumptions on

M̂ only affect the estimation of θ. If we followed the literature and fixed θ ex ante, the

identification of β and ρ goes through unchanged. Second, Assumption 3 still allows for a

wide set of underlying processes. We detail a number of different underlying models that

satisfy our assumptions in the Appendix, and highlight the variety of interpretations one can

put on θ depending on the exact model details. Finally, even if one is not willing to fix θ,

the moment itself can still be quite useful. As long as the M̂ function still satisfies the first

order stochastic dominance assumption conditional on other parameters, there will still be a

15Most directly, one could use the empirical results of an RCT to identify which types of characteristics play the largest role
in productivity transfer, which may be useful to better design matches in future policy. Relatedly, it could provide empirical
support for the inclusion or exclusion of characteristics from an individual’s state variable in a model.
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unique mapping from parameters to θ in attempting to match the average treatment effect.

3 Application to Kenyan Firms

With the identification results in hand, we now turn to the data. We detail the randomized

controlled trial that allows us to estimate the parameters in the previous section, then

estimate these parameters. A complete description of the program and reduced-form results

are available in Brooks et al. (2018), though we reproduce some of the relevant results here

for simplicity’s sake.

Our experimental design randomly matches older, profitable entrepreneurs with younger

entrepreneurs. The younger owners were then followed for over 17 months to measure changes

in business practice and profit over time. Outcomes are compared to a control group of similar

firms.16 It is important to note that while this RCT in some sense takes the random matching

quite literally, this is not required to implement our procedure. Any policy intervention that

generates the requisite orthogonality conditions could be similarly utilized, including natural

experiments that generate the requisite change in imitation opportunities.

3.1 Details of RCT and Data Collection

The experiment took place in Dandora, Kenya, a dense urban slum on the outskirts of

Nairobi. Self-employment is ubiquitous in Dandora with a huge number of street-level busi-

nesses operating in a variety of industries, such as retail, simple manufacturing, repair and

other services. We began by conducting a large scale cross-sectional survey. We sampled a

random cross-section of 3290 businesses. Our goal was for this sample to be representative

of the population of enterprises, and it includes businesses of a variety of ages and industries.

This sample is used to estimate moments of the population of operating firms.

Qualitative Evidence on the Importance of Learning To begin, Figure 2 plots business scale

measures based on self-reported learning methods from the baseline survey. Fifty-five percent

of all firms claimed they were self-taught, while the rest claimed to learn either from another

business operator, in school, or through an apprenticeship. Figure 2a shows that the self-

taught earn less profit at any point over the lifecycle. The average profit of a self-taught firm

is 18 percent less than firms that learn from others, while Figure 2b show that self-taught

firms pay a smaller total wage bill.

16In Brooks et al. (2018), we further randomize another group into formal business training classes. While we do not utilize
this classroom training treatment arm here, it is interesting to note that the results differ substantially across these treatment
arms. We show that this to the fact that matching with local firms provides specific information about the local economy
whereas classroom training provides information on topics that are designed to be orthogonal to the market in which they are
deployed (accounting, marketing, etc.).
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Figure 2: Self-Reported Learning Methods and Business Scale
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Selection and Randomization We start from a sample of female business owners who have

been in operation for less than 5 years.17 We then randomly select a subset of these business

owners to randomly match with an older, more experienced owner. In this way, we guarantee

a high quality match for these business owners (in an intent-to-treat sense). Thus, the

randomization allows us to compare the owners chosen into the treatment against those

other business owners who were not.18 Firms were then surveyed over 6 quarters to track

the time series of treatment.

The older business owners who entered into a match were selected from those businesses

with owners over 40 years old and at least 5 years of experience. This hopefully minimized the

importance of “luck” in baseline profit realizations to allow us to focus on truly productive

business owners. We then recruited business owners with the highest profit until we had a

sufficient number for matches. Of those contacted to serve as a mentor, 95 percent accepted.

We reached a sufficient number of mentors at the 51st percentile of our recruitment frame.

These matches with treatment firms were random conditional on industry.

To summarize, Figure 3 plots the cumulative distribution function of baseline profit for

the entire sample, the population we study, and the selected matches. One can see that

our study population is somewhat poorer than the entire population, while the matches are

drawn from the far right tail of the baseline profit distribution.

Details of a “Match” What does it mean to enter into one of our matches? We designed the

program to remain as truthful to the theoretical counterpart of the model as possible. First,

matches were designed to only last for one month, though of course there was no restriction

on meeting after the formal end of the program.

17The sex selection criteria is to limit heterogeneity outside the model. Note, however, that females make up 65 percent of
business owners in Dandora and 71 owners with businesses open less than 5 years.

18Note that this procedure satisfies all the requirements in Assumption 4. We do not assume we can observe control matches
(part 2 of Assumption 4), but the randomization immediately satisfies the exclusion restriction (part 1). Our selection the
treatment matches satisfies the final aspect of Assumption 4 when combined with Assumption 2.
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Figure 3: Baseline Profit Distributions
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The program was pitched to both sides of the match as a mentee-mentor relationship, and

thus was explicitly focused on business success. The older, more successful business owners

were the “mentors,” while the younger owners were the “mentees,” consistent with both their

profitability and time engaged in business. The mentors were told they could potentially

help other business owners learn the requisite skills required to operate in Nairobi. However,

we provided no topics to discuss, instead preferring that the content of any discussions was

self-directed. As we show later, there is substantial heterogeneity in topics discussed. After

signing up mentors we simply provided the mentees with the mentor’s phone number and told

them that a prominent business owner in Dandora was willing to discuss business questions

with them. Whether they contacted the mentor, or ever met, was their decision. However,

all matches met at least once in the official month-long treatment period.19 For simplicity

and ease of reference to the more detailed discussion in Brooks et al. (2018), we refer to these

two groups as mentees and mentors throughout. We emphasize, however, that they should

more generally be thought of as the more and less productive members of a match.

3.2 Balance

Since our theoretical results rely on two layers of randomization, we need to verify balance

both on between control and treatment and within treatment. Brooks et al. (2018) shows

that the control and treatment groups are balanced. Here, we conduct a second balance test

yi0 = α0 + α1Mi + εi

19One might be concerned that we indirectly primed mentees to believe these matches would be beneficial. We can do little
to rule this out completely. We note, however, that evidence of the mentor’s business success are easily visible to the mentee.
Mentors had substantially more physical capital and workers, and had a fixed building from which they conducted business
(many mentees did not). Moreover, the first meeting took place at the mentor’s business. Thus, that the mentor was “good”
at running a business would likely have been understood with or without us.
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where Mi is an indicator denoting that firm i is a treatment firm matched with a bottom

25th percentile (denoted ML), 25-75 percentile (MM), or top 25 percentile firm (MH) in

terms of baseline profitability.20 Table 1 reports the results. The only significant difference

is in age, and the magnitude is small.

Table 1: Balancing Test at Baseline

Control Mean ML - Control MM - Control MH - Control
(1) (2) (3) (4)

Firm Scale:
Profit (last month) 10,054 -732.65 -1337.06 -760.08

(1314.56) (1393.38) (2128.41)

Firm Age 2.39 0.04 -0.19 0.08
(0.28) (0.30) (0.46)

Has Employees? 0.25 -0.10 -0.07 0.10
(0.07) (0.07) (0.11)

Number of Emp. 0.23 -0.05 0.00 0.18
(0.08) (0.08) (0.13)

Business Practices:
Offer credit 0.74 -0.07 0.04 -0.03

(0.07) (0.08) (0.12)

Have bank account 0.30 -0.04 -0.05 0.06
(0.07) (0.08) (0.12)

Taken loan 0.14 -0.07 -0.06 0.03
(0.05) (0.05) (0.08)

Practice accounting 0.01 -0.01 0.01 -0.01
(0.01) (0.02) (0.02)

Advertise 0.07 0.04 0.01 0.11
(0.05) (0.05) (0.07)

Sector:
Manufacturing 0.04 -0.02 -0.04 -0.04

(0.02) (0.03) (0.04)

Retail 0.69 -0.03 0.00 -0.10
(0.08) (0.08) (0.12)

Restaurant 0.14 -0.06 0.00 0.03
(0.05) (0.06) (0.09)

Other services 0.17 0.09 0.02 0.07
(0.06) (0.07) (0.10)

Owner Characteristics:
Age 29.1 0.92 -1.88 0.50

(0.79) (0.84)∗∗ (1.28)

Secondary Education 0.51 0.02 -0.08 0.13
(0.08) (0.09 (0.13)

Table notes: Columns 1-4 are the coefficient estimates from the regression above, with column one being the estimate of the constant
α̂0. Statistical significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***. All constants are significant at one percent.

20We have experimented with a number of different ways to compute the balance table, and all show the same results. We
report this indicator instead of a continuous measure to increase precision to give the data the best chance at uncovering a
difference, though the results are the same in either case.
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3.3 Estimating Diffusion Parameters from the RCT Results

In Brooks et al. (2018), we show that in the pooled regression over 6 quarters mentees see

a statistically significant increase in profit relative to control, and moreover, the impact is

increasing in mentor profit. Here, we restrict attention to the baseline and the survey wave

3 months post-treatment. We will estimate parameters off these two quarters. Later we test

whether the impulse response of the model-computed RCT results match the empirics.

Denoting the set of individuals in the treatment as M and control as C, we first estimate

equation (2.3) on treatment firm data,

log(π′i) = c̃+ ρ log(πi) + β log

(
π̂i
πi

)
+ εi for i ∈M.

As discussed in Section 2, this identifies β and ρ. We then require the average treatment

effect to measure θ,

π′i = γ + ν1[i ∈M] + ξi for i ∈M ∪C.

Both regression results are provide in Table 2.

Table 2: Identification Moments

(1) (2)

β 0.538
(0.273)**

ρ 0.595
(0.273)**

Treatment 891.990
(280.720)***

R2 0.053 0.047

Table notes: Standard errors are in parentheses. The top and bottom one percent of dependent variables are trimmed. Statistical
significance at 0.10, 0.05, and 0.01 is denoted by *, **, and, ***.

The estimates of β and ρ in column (1) can be directly ported into the model as their

structural counterparts. The results show that the technological component of productivity

persistence is ρ = 0.595, while the intensity parameter is β = 0.538. The former is lower

than persistence estimated in rich countries. This is consistent with the wide variety of topics

and problems discussed during business interactions, and provides an interesting avenue for

misallocation where persistence plays an important role (Buera and Shin, 2011; Moll, 2014).

Comparisons of β are naturally more difficult to come by.21 We study the importance of

both parameters in the quantitative results.

The average treatment effect in column (2) of Table 2 is not directly equal to θ. This

requires us to take a stand on the functional form of the imitation draw distribution, M̂ .

21Models studying balanced growth in this context usually require a condition similar to β = 1 to guarantee the the tail of
the productivity distribution maintains it shape over time. Because we estimate β < 1 the model is generically not consistent
with balanced growth and thus cannot be compared to those model parameters.
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We assume that M̂ takes the form

M̂(ẑ) = M f (ẑ)1/(1−θ)

where M f is the c.d.f. of the existing firm distribution (which we observe directly in the

data). That is, we assume that draws are random from the set of existing firms, adjusted by

the parameter θ. When θ = 0, this is the usual uniform random matching assumption. θ → 1

implies that all mass in the distribution of imitation draws concentrates on the upper bound

of the productivity distribution. As θ → −∞, imitation draws come from the lowest z firms,

thus implying that no operating firm receives a useful opportunity from imitation. Note that

this formulation allows for the possibility that our intervention has an effect on members in

the match (via β > 0), but none of those gains diffuse in equilibrium (via θ → −∞). Using

the results in column (2) implies θ = −0.417. These results form our diffusion parameter

estimates.

3.4 Impact on Higher Profit Business Owner

Though not directly related to the estimation, we note that the diffusion process in Section 2

assumes that there should be no gains to the more productive members of the match via the

use of the max function in law of motion for productivity (Assumption 1). These individuals

were not randomly selected relevant to their peers, and thus cannot be directly compared to

a control group. However, our design allows us to use the selection procedure to identify the

causal impact of being chosen using a regression discontinuity after resurveying both those

chosen for the program and those just below the cutoff for selection. We find no change in

profitability, scale, or any practices one may associate with productivity (e.g., better book

keeping, more marketing). The details and robustness of these results are available in Brooks

et al. (2018) but we reproduce them in the Appendix for simplicity’s sake.

3.5 Discussion During Meetings

As part of the study, we recorded the topics discussed during meetings between mentors

and mentees. Discussions varied both within and across matches, highlighting the wide

variety of skills and problems that make up firm-level productivity (and, at a more micro

level, the difficulty inherent in designing firm training curriculum). Figure 4a plots the share

of businesses that discuss each of 10 topics with their mentors. Topics include attracting

customers, keeping records, lowering costs, and types of products. Moreover, Figure 4b show

that this is not only a cross-firm phenomenon, but within-firm as well. Over 50 percent of

treatment firms discuss at least 5 of the 10 listed topics with their mentors, with nearly 20

percent discussing all 10.22

22We included an “other” option that allowed for any additional topics that may have arisen, but it was rarely selected.
These 10 topics seemed to cover the vast majority of discussion in matched firms.
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Figure 4: Discussion Topics within Matches

(a) Fraction of matches that discuss each topic

0 .2 .4 .6 .8 1
Fraction of Businesses

Take out loans

Location

New investments

Hours

Product types

Where to buy

Product pricing

Lower cost

Record keeping

Attract customers

(b) C.d.f. of number of topics discussed

0
.2

.4
.6

.8
1

0 1 2 3 4 5 6 7 8 9 10
No. topics discussed

We view this as evidence that there is not one specific issue that constraints these firms,

but instead that z is collectively comprised of various issues that face firms in developing

countries. It also highlights the role played by open-ended knowledge transfer, instead of

focusing on a specific topic.

4 Full Model

With the estimated diffusion parameters in hand, we now close the model to study the

quantitative importance of diffusion. As we have emphasized throughout, this is only one

potential model in which one could deploy these results. However, because measuring the

impact of diffusion requires the solution to a fixed point problem, the remaining structure

is required to compute the effect. Naturally, the exact policy levers used and the quantita-

tive magnitudes change depending on the model specification, but the estimated diffusion

parameters do not.

We build a model in which agents can act as firms or workers, re-optimizing their occupa-

tion each period. To model diffusion, we assume random search, adjusted by the directedness

parameter θ. The rationale for this is because random search mirrors closely our RCT, in

which we randomly match firms. As we will show later, even in this similar context, RCT

and GE results can look quite different.

Model Basics Time is discrete and infinite. In each period there is a unit mass of risk-

neutral agents. Each agent has an exogenous probability δ of dying each period, while δ

agents are born. Each agent is characterized by productivity z which evolves over time via

the diffusion process laid out in Assumption 1.
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Occupational Choice and Recursive Formulation In every period, each agent can choose to

be a worker or an entrepreneur. Workers sell their labor to entrepreneurs for the market

clearing wage w, while entrepreneurs produce an undifferentiated consumption good using

their skill and hired labor. Worker wages are taxed at rate τ .23

An entrepreneur’s profit is

π(z) = max
l≥0

zαl1−α − wl (4.1)

where w is the equilibrium wage. Recursively, the value of having entrepreneurial skill z is

v(z,M) = max{π(z), w(1− τ)}+ (1− δ)γEz′|zv(z′,M ′) (4.2)

where M is the equilibrium distribution of productivity, and is the aggregate state of the

economy. Solving the entrepreneur’s problem yields

π(z) = α

(
1− α
w

) 1−α
α

z

which satisfies Assumption 2 on the proportionality of profit and productivity. This further

implies that agents face a cutoff rule to determine their occupation. For a given wage w,

there is a z(w) such that any agent with z < z becomes a worker, while agents with z ≥ z

become entrepreneurs.

Diffusion Continuing agents have productivity that evolves according to our Assumption

1,

log(z′) = c+ ρ log(z) + β log (max{1, ẑ/z}) + ε. (4.3)

As discussed in Section 3.3 (and with a slight change in notation to remain consistent with

the model), we assume matches are drawn from the operating firm distribution, adjusted by

θ:

M̂(ẑ; θ) =

0, if ẑ < z(
M(ẑ)−M(z)

1−M(z)

) 1
1−θ

, if ẑ ≥ z
(4.4)

Note that a key difference from the earlier discussion is that M̂ now depends on the economy-

wide productivity distribution M and the cutoff z, both equilibrium objects. It must there-

fore be consistent with the the diffusion process in the economy. The law of motion for M

is

M ′(z′) := Λ(M(z′)) = (4.5)

δG(z′) + (1− δ)
∫ ∞

0

∫ ∞
0

F (log(z′)− log(max{ẑβzρ−β, zρ})− c)dM̂(ẑ; θ)dM(z)

23This distortion is set to generate the correct share of entrepreneurs and workers in the economy. It could, for example, be
a stand-in for search costs. Alternatively, one could assume individuals differ in some non-pecuniary benefit between the two
occupations, such as entrepreneurship providing a more flexible work schedule.

20



where G is the exogenous distribution from which new entrants draw productivity.24

4.1 Definition of Equilibrium

A competitive equilibrium of this economy is a wage function w, a distribution of productiv-

ities M , and a value function v such that v satisfies (4.2) with the associated decision rules

for labor and occupational choice, the evolution of M is consistent with the decision rules

and is given by (4.5), the wage w clears the labor market, which requires a solution to the

implicit equation

w = (1− α)

(∫∞
z(w)

zdM(z)

M(z(w))

)α

.

A stationary competitive equilibrium is a competitive equilibrium in which the distribution

M∗ is such that Λ(M∗) = M∗.

4.2 Calibration of Remaining Parameters

The remaining parameterization of the model follows relatively standard calibration proce-

dures and we choose parameters to match moments of the same set of firms in which the

experiment was conducted. We make use of both the baseline field data that conducted on

a random subset of firms in Dandora, Kenya. Care was taken in collecting this data that it

be representative of the whole population of operating firms in the area, and we use it here

to measure the distribution of operating firms.

The model parametrization can be broken into three different parts that can be considered

separately. First, as we showed previously, the diffusion parameters are independent of

the remaining model parameters. Thus, we can simply impose our estimated parameters

β = 0.538, ρ = 0.595, and θ = −0.417.

The remaining parameters are the death rate of agents δ, the labor share of output α,

the growth term c, the exogenous distribution of shocks F , and the exogenous distribution

of entrants G. We assume that G is log-normally distributed with parameters µ0 and σ0,

and that F is log-normally distributed with parameters µ and σ. We normalize µ0 = 0. We

note that c and µ are not separately identified, so we choose µ = −σ2/2 so that E[eε] = 1.

We set α = 0.67.

The death rate δ is used to match the average age of the population under study, which is

34. Because agents in the model can move between working and entrepreneurship frequently

over the course of their lives, we match the age of the agent rather than the age of the firm.

Moreover, we interpret a new agent in the model to be an eighteen year old in the data, so

an average age of 34 in the data corresponds to 16 in the model. Because the rate of death

is constant in the model, the age distribution is geometrically distributed with a mean equal

24Other papers, such as Luttmer (2007) and Da Rocha and Pujolas (2011), assume that G varies with the existing distribution
of productivity. This would have no effect on any of our identification results, and thus we exclude it for simplicity.
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to the reciprocal of δ. Moreover, a period in the model is interpreted as a quarter in the

data. Therefore, to match an age of 16 years (or 64 quarters), we set δ = 0.016.

Our remaining parameters are σ, σ0, c and τ . The parameter σ0 is matched to the

variance of log-profit among new firms open less than one year (0.961). The remaining three

parameters match three moments jointly: the standard deviation of log-profit in the overall

population of operating firms (1.400), the ratio of the average profit of firms overall to the

average profit of new entrants (1.558), and the fraction of agents that operate as workers

(28.7 percent).25 These moments and parameter values are reported in Table 3. The model

matches these moments well.

25While jointly calibrated, each moment has a clear intuitive counterpart. σ matches the standard deviation of log profit. c
is the exogenous growth in productivity, thus governs the relative average profit ratio. Finally, τ matches the share of workers
in the economy by lowering the value of working relative to business operation.
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Table 3: Targets and Parameter Choices

Model Parameter Description Parameter Target Moment Source Target Model

Value Value Value

Group 1

β Intensity of diffusion 0.538 Estimated parameter from regession (2.3) RCT results 0.538 0.538

ρ Persistence of productivity 0.595 Estimated parameter from regession (2.3) RCT results 0.595 0.595

θ Directedness of search -0.417 Treatment effect in quarter 2 (as % above control) RCT results 0.403 0.403

Group 2

σ St. dev. of exogenous productivity shock distribution 0.877 Variance of log profit in all firms Baseline survey 1.400 1.440

c Growth factor in productivity evolution -3.107 Ratio of average profit of all firms to new entrants Baseline survey 1.558 1.559

τ Tax on wage earnings 0.999 Fraction of agents employed as workers Gollin (2008) 0.287 0.287

Group 3

δ Death rate of firms 0.016 Average age of baseline business owners Baseline survey 34 34

σ0 St. dev. of new entrant productivity distribution 0.961 Variance of log profit among new entrants Baseline survey 0.961 0.961

α Cobb-Douglas exponent on labor 0.67 Standard value – – –

Table notes: Group 1 is jointly chosen from the experimental data. Parameters in Group 2 are calibrated to jointly match moments. Group 3 are also set to match baseline data
moments, but match 1-1 with target moments.
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5 The Quantitative Impact of Diffusion

We next turn to the quantitative results. Our goal here is two-fold. First, we ask the extent

to which the model predicts that diffusion matters at scale and study the extent to which our

estimated parameters drive that result. Second, we compare general equilibrium policy gains

and our partial equilibrium RCT results. Informed by our first set of results, we show that

while many sets of parameters can generate the same impulse response to the treatment they

generate drastically different gains from equilibrium policy, suggesting that understanding

the underlying structural parameters is critical for policy.

5.1 Impact of Diffusion and Gains from Policy

The equilibrium in this model is inefficient due to the well-known externality driven by the

fact that individuals do not internalize the impact of their occupational choice on learning.

Because knowledge diffuses via random search (conditional on directedness parameter θ),

marginal firms decrease the likelihood of an individual learning from the right tail of the

knowledge distribution. The planner thus wishes allocate marginal firm owners as workers

to increase average firm quality. We measure the size of this equilibrium externality by

solving for the efficient allocation of agents between workers and entrepreneurs and compare

the stationary equilibrium when agents choose optimally and without intervention. We refer

to this as the laissez faire equilibrium.

The planner maximizes total production in the stationary equilibrium, subject to consis-

tency with the law of motion for productivity,

max
z

∫ ∞
z

y(z)dM∗(z) (5.1)

s.t. M∗(z′) = δG(z′) + (1− δ)
∫ ∞

0

∫ ∞
0

F (log(z′)− log(max{ẑβzρ−β, zρ})− c)dM̂(ẑ; θ)dM∗(z)

M̂(ẑ; θ) =

0, if ẑ < z(
M∗(ẑ)−M∗(z)

1−M∗(z)

) 1
1−θ

, if ẑ ≥ z.

The solution to (5.1) balances more production from setting a lower z for a given distribution

M∗ with the fact that lower z also decreases learning via the constraints to the planner’s

problem.26

As discussed above, the planner has an incentive to shift marginal firms out of the market

to increase learning. Figure 5 shows the c.d.f. of equilibrium productivity and confirms this

intuition.

26Note that we model θ here as a technological parameter, meaning the planner cannot change it. In reality, this parameter
may be made of up distortions in the matching process (e.g. Beaman and Dillion, 2018). This does not affect the interpretation
of our identification results, as the procedure can applied identicaly to both interpretations of θ. It may, however, affect the
gains from optimal policy. In our baseline model, we fix θ here to focus on the diffusion externality directly. In the Appendix
we study how the results change if the planner can additionally adjust θ and find that this margin has limited impact, even if
we allow the planner to adjust θ costlessly.
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Figure 5: Stationary Productivity CDF
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Table 4 then compares key moments between the laissez faire and efficient equilibriums.

At our estimated parameters, the efficient economy has an average income 309 percent

higher than the laissez faire equilibrium. The efficient equilibrium has only 1 percent of the

population engaged in entrepreneurship compared to 71 percent in the baseline economy.

Correspondingly, average entrepreneurial productivity increases by over 800 percent. The

overall gains in the economy then come from two places. The first is the 48 percent increase

in the wage. The second is that – through the equilibrium learning externality – the gains

to the most productive entrepreneurs increase substantially.

Table 4: Equilibrium Moments

Laissez faire Efficient ∆ Outcome

Average Income 0.14 0.59 3.45

Fraction working 0.31 0.99 2.17

Average entrepreneurial productivity 1.72 17.13 8.97

Wage 1.37 2.02 0.48

Table notes: Equilibrium changes are measured as the ratio of efficient to laissez faire minus one.
Multiply by 100 for percentage change.

5.2 Importance of Estimated Diffusion Parameters in GE

What role do our various diffusion parameters play in generating these results? We vary β

and study the response under the re-calibrated model. The re-calibration does the following:

we fix β, re-estimate the remaining diffusion parameters ρ and θ, then re-calibrate the three

additional parameters σ, c, and τ to hit the same three moments discussed above. The

results are in Table 5.
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Table 5: Variation in Equilibrium Response with Diffusion Parameters

Assumed value Implied estimates ∆ Equilibrium Outcomes

Average Fraction Avg.

β ρ θ income working Entrepreneur z Wage

Baseline:

0.538 0.595 -0.417 3.45 2.17 8.97 0.48

Full recalibration with low β:

0.25 0.314 -2.578 1.56 2.24 1.33 0.02

Varying diffusion parameters individually:

0 .25 0.595 -0.417 1.84 1.69 2.98 0.16

0.538 0 .314 -0.417 3.94 5.76 3.97 0.01

0.538 0.595 −2 .578 3.19 1.81 9.20 0.55

Table notes: Equilibrium changes are measured as the ratio of efficient to laissez faire minus one. Multiply by 100 for
percentage change. In the last three rows, we vary individual diffusion parameters holding fixed the remaining
calibration at its baseline values. The italicized parameter in the last three rows is the parameter that is varied.

Understanding the Induced Bias in Other Diffusion Parameters Before turning to the out-

comes, we first note that bias in β induces bias in the estimates of ρ and θ. The latter is

intuitive – the treatment effect is increasing in β, thus matching the same moment at a lower

level of β requires that impact to be made up by some other parameter. This happens by

forcing the control to draw from a worse distribution. Thus, lowering β from 0.538 to 0.25

(a 54 percent decline) lowers θ from -0.417 to -2.578 (518 percent).

The change in ρ follows from the estimating equation (2.3). Specifically, if we observe

substantial movement in profit between the two periods but counterfactually assume no role

for β, the regression rationalizes this intertemporal variation with low estimated persistence.

To see this more directly, we can rearrange (2.3) as

log(π′i) = c+ (ρ− β) log(πi) + β log(π̂i) + εi.

If γ∗ is the estimated coefficient on log(πi), we can write ρ = γ∗ + β. Thus, implied bias in

ρ and θ both positively co-vary with the assumed bias in β.

Impact on Equilibrium Diffusion To what extent do these various parameters impact the size

of the diffusion externality? Lowering β from 0.538 to 0.25 (a 54 percent decline) implies that

the impact of optimal policy declines from 345 to 156 percent in an economy characterized

by the same empirical moments (a 55 percent decline). This is the full effect of β, in that it

re-estimates the remaining model parameters under the mis-specified value of β.

We next ask how our estimated diffusion parameters β, ρ, and θ matter individually.

Here, we vary these parameters holding the remaining parameters fixed at their baseline

value. The first shows that the direct impact of β is substantial. When β = 0.25, but the
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remaining parameters are held fixed, optimal policy increases income by 184 percent. Thus,

the direct effect of a lower β captures 85 percent of the difference between the two models (

= (3.45-1.84)/(3.45-1.56)). The remainder comes from changes in other parameters induced

by the lower β.

The final two rows vary ρ and θ sequentially. Lowering ρ actually increases the role

for policy by 14 percent. This is driven by two forces. First, lower persistence puts more

relatively more weight on the diffusion term in the law of motion.27 However, it simulta-

neously makes it more difficult to spread knowledge over time. These two forces work in

opposite directions, and the former outweighs the latter here. The final row changes only θ

and shows it plays little role. Lowering θ from -0.417 to -2.578 lowers the impact of policy

to 319 percent, only a 8 percent decline from baseline value.

Overall, the results show that the quantitative magnitude of the diffusion externality is

governed primarily by the elasticity β that translates matches into innovations in produc-

tivity.

To emphasize this further, Figure 6 shows how varying (β, ρ, θ) impacts the size of the

diffusion externality (measured by the impact of optimal policy on income) across a broader

range of possible values, while holding all other parameters fixed. As expected given the

previous results, β plays the largest role. Across a large range of the parameter space, θ and

ρ play a relatively minor role.28 29

Figure 6: Impact of Estimated Diffusion Parameters on Size of Diffusion Externality
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The key result from this section is that choosing β correctly plays a critical role in

27Recall the law of motion in (2.1) is z′ = ec+εzρ max
{

1, ẑ
z

}β
.

28β and ρ have non-monotonic gains from policy. For β, this is because efficient income is roughly linear in β while the lassez
faire income level is increasing and convex at high levels of β. For ρ, the laissez faire income is linear while the efficient income
level is convex at high ρ. These different shapes generate the patterns in Figure 6. See the Appendix for details.

29Note that the scales are different between θ and (β, ρ) in Figure 6. The scale of θ is not chosen to skew the results in any
particular way – a point estimate of θ = −20 is well within reasonable ranges for β if ρ is held fixed at its baseline value 0.595.
The rationale for this is because θ(·, ρ) is strongly concave. Thus, lowering β causes a steep decline in θ, implying that the
reasonable range for θ is larger than those for β and ρ.
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understanding the equilibrium importance of diffusion in equilibrium. This induces bias in

ρ and θ, but these parameters play a substantially smaller role. The remaining 15 percent

comes from the biases induced in the calibrated innovation process conditional on a lower

β, including the growth rate of productivity (c) and the standard deviation of exogenous

innovations to z (σ). Anticipating our next set of results, we will show that this critical

parameter – β – plays a much different role in understanding the RCT results.

5.3 Comparison with the RCT Results

We next turn to a comparison with the RCT results. In many ways, the RCT we implement

mirrors the underlying model mechanics, in that we randomly vary matches to increase

profitability. Thus, we use the model to ask the following question: could a policy maker

simply read the treatment effect on profit from the RCT to identify economies in which

optimal diffusion policy will have the largest effect? Or put differently, does the model

provide any additional information relative to the RCT results? In this section we show that

using the RCT results to extrapolate general equilibrium policy significance can be highly

misleading in this context, again highlighting the importance of understanding the map from

empirical moments to underlying structural parameters.

To study this question we implement the RCT in our model. We start the economy

from the stationary equilibrium defined by aggregate state M∗(z). We then create a control

and treatment group with the same properties as our study group, including average and

variance of profitability relative to the full economy.30 Similarly, we draw a “mentor” group

from M∗ with the same properties as our empirical mentors. We then shock the treatment

group with a one-period random draw from the mentor group. After that period, treatment

firms continue to draw from M∗, while control group draws from M∗ in every period. We

refer to these as the “partial equilibrium” (PE) results, as we do not allow the distribution

M to respond to change in imitation shocks.

In both the model and empirics, we measure the per-period average treatment effect as

πit = α0t + α1tTit + εit for each t = 1, . . . , 5

where πit is the profit of individual i at time t and Tit = 1 if i is in the treatment group,

implying that α1t measures the gains from treatment at period t. Figure 7 plots the implied

dynamics of the treatment effect in the model and data, measured as the percentage gains

(α̂1t/α̂0t). The empirics show little persistent effect of the treatment and the model matches

this result. While the first two quarters (i.e., t = 0 and t = 1) are matched by construction,

both the model and data predict no treatment effect by t = 3. The model under-predicts

the effect in t = 2, so if anything, the model understates the partial equilibrium gains.

Despite the lack of long-term treatment effect, the model still predicts a large role for

30The age cutoff is irrelevant here, given the constant death probability in the model.
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Figure 7: Dynamics of Treatment Effect on Profit
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policy. This suggests that perhaps the average treatment effect may not be a particularly

useful metric for understanding gains from at-scale policy. Our remaining results show that

this is indeed the case.

5.4 Linking Treatment Effects and the Equilibrium Gains from Policy

The results in Section 2 show how to map RCT results to structural parameters. How

important is this? One could instead imagine that the average treatment effect would be

sufficient on its own. For example, a policy-maker could potentially rank the gains from

at-scale policy by the gains observed in the RCT. The previous results suggest this may not

be correct, pointing to the quick fadeout of the treatment.

We compute a single value for the RCT impact by measuring the pooled average treat-

ment effect (ATE), a moment used in various policy contexts.

πit = α0 + α1Tit + εit, for all t = 0, . . . , 5. (5.2)

As before, Tit = 1 if individual i is in the treatment at quarter t and 0 otherwise. Since

such metrics are widely used as indicators of “good” policy tested at the RCT level, we ask

the extent to which the average treatment effect α̂1 predicts the gains from at-scale optimal

policy. We do so in the context of the intensity parameter β, because it plays a critical role

in generating the at-scale policy gains detailed in Section 5.2.

Specifically, we do the following: we fix ρ at its baseline value ρ = 0.595. We then vary

β and recompute θ to hit the same one-period average treatment effect. This gives us a set

of economies defined by different β’s, but the same one-period average treatment effect. We

then derive the pooled ATE and optimal at-scale policy in each model economy, and study
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the correlation between the two.31 The resulting relationship is in Figure 8.

Figure 8: Relationship Between Pooled Average Treatment Effect and GE Policy Gains
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Figure notes: X-axis is the average treatment effect defined in (5.2) and y-axis are gains from optimal policy in equilibrium.
Multiply values by 100 for percentage change.

The result shows that maximizing the partial equilibrium ATE minimizes the gains from

optimal policy in equilibrium.32 Put differently, if a policy-maker attempted to use the RCT

to directly extrapolate where diffusion policy would have the largest gains, she would rank

last the economy with the (true) largest gains.

The rationale for this result highlights the divergent roles played by diffusion intensity

(β) in partial and general equilibrium. As discussed in Section 5.2, β plays a critical role in

generating returns from policy. In essence, high β makes the planner’s job easier by allowing

agents to internalize more productivity from a given match. The same, of course, is true in

partial equilibrium. However, the key feature to remember when measuring the treatment

effect is that the control group continues to engage in matches during this time. A high

β therefore allows control firms quickly catch up to the treatment group – not because of

contamination from treatment to control, but because they are able to internalize a large

portion of a good match’s productivity.

To see this more clearly, Figure 9 plots the impulse response of the treatment effect for

various levels of β for a fixed initial treatment effect. Figure 9a fixes persistence ρ at its

estimated value (as was the case in Figure 8) while Figure 9b generates the same results

with a high persistence, ρ = 0.99. One can see why high β is associated with a low average

31See the Appendix for more details on how the model-implied ATE varies with the diffusion parameters (β, ρ, θ). There,
we vary each parameter individually and show how the ATE responds, comparing to changes in the gains from at-scale policy
discussed in Section 5.2.

32See Section 5.2 for a discussion on the non-monotonic shape seen in Figure 8. This is related to how the GE gains vary
with β.
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treatment effect – it quickens the decay of the treatment effect over time.

Figure 9: Relationship between Treatment Persistence and Diffusion Intensity β
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(b) At High Persistence ρ = 0.99
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The result highlights that the average treatment effect is nearly completely uninformative

about the gains from policy at scale. Using the RCT results to inform at-scale policy decisions

requires the a way to link these results to the critical structural parameters in the underlying

economy. Thus, our identification procedure in Section 2 is not only a way to calibrate a

model, but also play an important role in understanding and interpreting RCT results in the

context of optimal at-scale policy.

5.5 What does the ATE Directly Tell Us About At-Scale Policy?

The previous section shows that the diffusion intensity β plays a divergent role in GE and

PE. It highlights the importance of the link from RCT to structural parameters. As a final

piece of evidence that the ATE provides little help directly without the structural model, we

show here that we can generate a continuum of economies with identical time paths of the

average treatment effect that all have substantially different gains from policy at scale.

Our procedure works as follows. We first fix β ex ante. For this given β, we search for

the (ρ, θ) that minimize the sum of squared errors between the implied treatment effect and

the baseline. Specifically, we solve

min
ρ,θ

t=6∑
t=1

(
ATEt(ρ, θ; β)− ATEbase

t

)2
(5.3)

where ATEt(ρ, θ; β) is the implied average treatment effect at quarter t given a value of β,

and ATEbase
t is the same moment from our baseline estimated model (the solid line in Figure

7).

Roughly, the procedure works by setting θ to match the initial treatment effect ATE1,
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then solving the ρ then matches the fade out over ATE2, . . . , ATE6. The model has no

trouble matching the time series for any level of β. Across our various β ∈ [0.2, 0.8], the

maximum error in (5.3) is 10−5. Thus, the average treatment effects can be easily generated

period-by-period across a wide set of economies with different underlying parameters. Figure

10 shows the implied values for ρ and θ required to match the time series (Figure 10a), while

Figure 10b shows that gains from optimal policy in general equilibrium still vary widely. The

gains more than double across the range of β. This shows that averages alone are insufficient

to understand the equilibrium gains from at-scale policy.

Figure 10: Gains from Equilibrium Policy in Models with Identical ATE Time Series
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Figure notes: Each line varies the listed parameter holding all other model parameters fixed at baseline
values. The points indicated by circles and diamonds are our baseline estimates.

The key intuition for this result is that β can always be made up for by a different value

of (ρ, θ). As we show in the Appendix, the ATE responds strongly to θ. Recall that β is

identified from heterogeneity in the treatment effect, which by definition, is not accounted

for in the average treatment effect.

We emphasize this further in the Appendix. We show that the directedness parameter θ

plays a critical role in driving the ATE, while Section 5.2 showed it played almost no role in

the GE policy gains. Moreover, the ATE is declining in θ, while the GE gains are increasing

in θ. The rationale for this result is similar to the divergent roles played by β – the treatment

effect is maximized when control firms are unable to find good matches, which requires a

low θ. However, this is exactly the same force that limits the ability of the planner to direct

matches toward good firms with her available policy levers: agents learn only from the worst

remaining firms, increasing the cost for the planner to generate an average match of a given

(high) quality.
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6 Conclusion

We show how proper variation in the data generating process can identify a model of firm-to-

firm productivity transmission. We implement this procedure with a randomized controlled

trial in Kenya. Our results imply an important role for diffusion. The efficient level of the

learning externality increases income substantially and depend critically on proper estimation

of the diffusion parameters. Moreover, our results show that the critical parameters for

partial equilibrium impact play a limited role at scale, and may even push the results in

different directions. Thus, the extrapolation of such PE results can generate misleading

expectations of GE impact. Instead, it is critical to understand how those results map into

the key structural parameters in the underlying economy.

We view these results as an important first step that highlights the possibilities of link-

ing equilibrium diffusion models with causal identification. Our results show that generating

required empirical moments with well-designed experiments in a “top down” approach can

provide important information for equilibrium models. There are two broad implications for

future work. First, we note that while our implementation took quite literally the idea of

random matching, any shock to imitation opportunities that generates the correct orthog-

onality conditions can be similarly utilized. This opens up alternative ways to implement

such a strategy, including the combination of natural experiments with necessary data (e.g.

Giorcelli, 2019; Bianchi and Giorcelli, 2019).

Second, the results can be used to identify more complicated models as well. This requires

a more detailed investigation of the link between model and data. For example, one question

that remains unanswered both in this paper and the broader literature is why individuals do

not seek out the most productive business owners to learn from, given the seemingly large

benefits observed at the individual level (though, as we show, such frictions need not play a

large role in equilibrium). Our model builds this in as a technological constraint, but that

need not be the case. Beaman and Dillion (2018) point to frictions in the information market,

while Fogli and Veldkamp (forthcoming) point out that growth-reducing network structures

can be an optimal response to the possibility of detrimental flows through the network (e.g.,

disease). These are important questions that may, for example, help rationalize low life-

cycle earnings growth in poor countries (Lagakos et al., 2018b). Different field experiments,

designed with an eye toward aggregate theory, could provide more detailed information to

help further refine such model choices.
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A Identification with Different Diffusion Processes

In this section, we provide additional interpretations of models that fall under our assump-

tions.

A.1 Multiple Draws

Suppose each period each agent takes K independent, uniform draws from the distribution

M , labeled ẑ1, ..., ẑK . The agent then has to select the most useful of these draws. Hence:

ẑ = max{ẑ1, ...ẑN} (A.1)

The distribution of ẑ then follows the well-known form:

M̂(c) = Prob(ẑ ≤ c) = Prob(max{ẑ1, ...ẑN} ≤ c) =
K∏
i=1

Prob(ẑi ≤ c) =
K∏
i=1

M(c) = (M(c))K

(A.2)

where the third inequality comes from the fact that they are independent and the fourth

from the fact that each draw is from M .

Note that this example is a special case of the version considered in the body of the paper

when 1/(1− θ) is a natural number.

A.2 Effort Choice and Bargaining

Each period, every agent characterized by productivity z is matched to an agent that owns

a potential imitation opportunity zm as a uniform draw from the distribution of operating

firms M . The agent has an effort endowment of 1 that must be divided between imitation

and providing a utility benefit to the owner of the imitation opportunity zm. If z ≥ zm, then

no effort is put into imitation and ẑ = z. If zm > z, then the agent and the owner of the

imitation opportunity must first agree on the distribution of effort, then the choice of effort

x and the values of z and zm together generate the value of ẑ for the agent in that period

according to:

ẑ =
(zm
z

)x
z (A.3)

That is, by putting in more effort x ∈ [0, 1] the agent is able to close the gap between

their z and zm. The benefit to the owner of zm is given by the function b(x), which is

decreasing in x.

Agents and owners of imitation opportunities have one-off interactions and each receive

0 benefit if no agreement is made. They bargain over the assignment of the agent’s effort

between imitation and utility benefits for the owner of the imitation opportunity according

to a Nash bargaining problem where the bargaining weight of the agent is θ. The bargaining
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problem is:

max
x∈[0,1]

([zm
z

]x
z
)θ
b(x)1−θ (A.4)

Suppose that b(x) is given by b(x) = 1− x. Then it is easy to show that:

x = max

[
0, 1− 1− θ

θ log(zm/z)

]
(A.5)

ẑ = max
[
z, zme

1−1/θ
]

(A.6)

As expected, the more bargaining power that the learning agents have, the greater is x,

resulting in greater ẑ.

Note that, in the model, draws of imitation opportunities ẑ < z are not useful. Hence,

the distribution M̂ can be written, for any value c, as:

M̂(c) = Prob(ẑ ≤ c) = Prob(zme
1−1/θ ≤ c) = Prob(zm ≤ ce1/θ−1) = M(ce1/θ−1) (A.7)

or following the notation more standard in the paper:

∀z, M̂(ẑ, z, θ) = M(ẑe1/θ−1) (A.8)

A.3 Noise in the Imitation Process

Here we show how the Buera and Oberfield (2020) environment maps into that considered in

this paper. In their model (adapted to our notation), an agent with productivity z receives

new arrivals of ideas that have two components: zm that comes from a random match from

another agent, and γ a random innovation on that idea. Then ẑ = γ1/θzm. Here, zm is a

uniform draw from the distribution of productivities. Then if γ has a cumulative density

function given by Γ, then:

M̂(c) = Prob(ẑ ≤ c) = Prob(zm ≤ cγ−1/θ) =

∫
M(cγ−1/θ)dΓ(γ) (A.9)

A.4 Deterministic Assignment

Here we consider a case where M̂ arises when all agents can interact with one another

and sort into relationships endogenously. Suppose that every agent with productivity ẑ has

the option to influence any other agent that has productivity z. Every agent can only be

influenced by one other agent each period, and they always prefer to be influenced by the

highest productivity possible.

The utility of an agent with productivity ẑ influencing an agent with productivity z is
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given by:
ẑ

z
− 1− 1

2θ

(
ẑ

z
− 1

)2

(A.10)

That is, the agent with ẑ gains benefit in proportion to how large the benefit is for the

other agent, but their cost is quadratic in the distance between their productivities. For

example, the influencer is happy when the other agent is helped by their influence, but it

takes more effort to influence when the distance between them is great. Therefore, if there is

a continuous distribution of z < ẑ, the ideal agent that the influencer would like to interact

with has productivity:

z∗(ẑ) = ẑ/(1 + θ) (A.11)

That is, the lower is the cost of influencing low productivity firms, the deeper into the left

tail of the distribution is the agent willing to go.

However, since every agent can only be influenced by one agent each period and they

strictly prefer to be influenced by agents of higher productivity, it is possible that (even

if the distribution is continuous) that the ideal agent for ẑ is already matched to another

influencer. Therefore, intuitively, the probability distribution over assignment between ẑ

and z is constructed by starting at the upper support of the distribution M , allowing the

highest productivity firms to choose their most preferred matches, then descending down

through the distribution letting each firm choose to influence its preferred firm among those

remaining. Note that not all firms need have another firm to influence if their utility from

doing so be negative.

Formally, the probability distribution over imitation opportunities can be constructed in

the discretized case as follows, when the productivity grid takes values z ∈ {z1, ...zN}, which

are ordered (i < j =⇒ zi < zj).

Define µ̃(z, ẑ) as the measure of ẑ influencing z (a N ×N matrix). We can construct µ̃

in the following steps given the measure µ of agents of each z type:

1. Let U(z, ẑ) be the N×N matrix of utilities of ẑ influencing z, and µ̃ be a N×N matrix

of zeros. Let µ̄ be the N×1 vector of unassigned influencers and µu be the N×1 vector

of unassigned imitators. Set µ̄ = µu = µ, n = N , and m = 1.

2. Let l be the m-argmax of U(·, zn). If U(zl, zn) ≤ 0, set µ̃(z1, zn) = µu(zn) and skip to

step 5.

3. If µ̄(zn) ≤ µu(zl), then µ̄(zn) = 0, µu(zl) = µu(zl) − µ̄(zn), and µ̃(zl, zn) = µ̄(zn). Skip

to step 5. Otherwise, go to 4.

4. If µ̄(zn) > µu(zl), then set µ̃(zl, zn) = µu(zl), µu(zn) = 0 and µ̄(zn) = µ̄(zn) − µu(zl).
Set m = m+ 1 and return to step 2.

5. Set n = n− 1 and m = 1. If n = 0, go to step 6. Otherwise, go to step 2.

6. Set µ̃(·, z1) = µ̃(·, z1) + µu, and stop.

40



Given this matrix µ̃(z, ẑ), the measure of assignments M̂ is given by:

M̂(ẑi, zj) =

∑i
k=1 µ̃(zj, ẑk)

µ(zj)
(A.12)

A.5 Congestion

As discussed in the main text, θ may sometimes fail to be independent of the remaining

model structure. One such example of that is in a model with congestion, in which firms

decide whether to be “teachers” or “students.”

Let X = (x,X), where x is the individual state and X the aggregate state of the economy,

and o(X; θ) = 1 be the decision rule to become a student. Individuals could choose to

become teachers or students based on any number of reasons, including some warm-glow

preferences or transfers made for their services, but that rationale is irrelevant here. Let

s(X; θ) =
∫
o(X; θ)dX be the measure of students.

The matching function is sθ(1−s)1−θ. Conditional on drawing a match, the exact match

is a uniform random draw from the set of teachers. Then, for any value c (and dropping the

dependence on X for notational simplicity),

M̂(c; θ) = Prob(ẑ ≤ c)

= s(θ)θ(1− s(θ))1−θProb(zm ≤ c)

= s(θ)θ(1− s(θ))1−θM t(c; θ)

where M t is the c.d.f. of teacher productivity.

From here, there are two possibilities. The first is if we can observe who is a student and

who is a teacher. In this case, there no issue and the identification of θ goes through as the

main text. The second is if we cannot identify student/teacher type. In this context, as long

as the last line satisfies the FOSD assumption in θ, there will be a unique mapping between

model parameters and the value of θ required to match the average treatment effect. Thus,

it still provides a valuable moment in estimation. However, the value of θ will generally

not be independent of the remaining model structure in this context, as that structure is

required to back out the distribution M t from some overall distribution M that includes the

productivity of both students and teachers.

Note that we have not mentioned β or ρ here, since those results go through identical to

the main text.
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B Identification without More Productive Treatment Draws

In the main body of the paper, we assumed that for all treatment firms i, their matches are

more productive. That is, ẑi > zi for all i in the treatment. This assumption is not necessary

for the main identification results, and we relax it here. The key difference is that β and

ρ must now be jointly identified, requiring more work on the existence and uniqueness of a

fixed point. Proposition 3 shows the result is not required. Below we detail the procedure.

The transmission parameter β is identified by comparing the effects on two initially

identical participants from receiving a very high productivity ẑ match to those receiving a

relatively low ẑ match. If those receiving a high ẑ realize much bigger returns compared to

their receiving a lower ẑ, we conclude that β is high. The persistence term ρ is then read off

the persistence of profit among the treatment firms.

To formalize this idea, we first compare treatment that received a “high” productivity

ẑ draw to those receiving a “low” ẑ draw.33 Letting Ω(z, ẑ) be the set of all realized treat-

ment matches, we can define disjoint subsets ΩH and ΩL with associated probability density

functions mH(z, ẑ) and mL(z, ẑ) such that:

∀ẑ0,

∫ ẑ0

0

∫ ∞
0

mH(z, ẑ)dzdẑ <

∫ ẑ0

0

∫ ∞
0

mL(z, ẑ)dzdẑ. (B.1)

That is, the ẑ draws within ΩH are “better” than those within ΩL.

Now we define the first moment condition using these subsets. Defining the average profit

after treatment as E[πTH ] and E[πTL ] for members of ΩH and ΩL, our first empirical moment

is

Γ1 ≡
E[πTH ]

E[πTL ]
=

∫ ∫ ∫
ec+εzρ max

[
1, ẑ

z

]β
mH(z, ẑ)dzdẑdF (ε)∫ ∫ ∫

ec+εzρ max
[
1, ẑ

z

]β
mL(z, ẑ)dzdẑdF (ε)

. (B.2)

Note that Γ1 is simply a measure of the heterogeneity in treatment effect for some measure

of “high” (H) and “low” (L) quality matches. This empirical moment can be read directly off

a regression given our randomization, and thus is observable. Furthermore, given the inde-

pendence of the ε terms along with the fact that several constants appear in the numerator

and denominator, this can be written more simply as

Γ1 ≡
∫ ∫

zρ max
[
1, ẑ

z

]β
mH(z, ẑ)dzdẑ∫ ∫

zρ max
[
1, ẑ

z

]β
mL(z, ẑ)dzdẑ

. (M1)

Since Γ1, mH and mL come directly from the data, only β and ρ are yet unknown in this

equation. Thus, (M1) pins down β as a function of ρ. We therefore need a second moment

to separate them.34

33These are only relative classifications. The “low” draws are still from the upper tail of the population distribution.
34The reason that Γ1 only identifies β(ρ) instead of β directly stems from the fact that Γ1 is a measured response to a

treatment. Any measurement that occurs over time, such as this one, requires taking into account the decay of the effect. Thus,
this moment cannot separate β from ρ. The easiest way to see this is to assume that there is no productivity decay over time,
so that ρ = 1. In that case, Γ1 would directly pins down β.
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The second moment used to identify these parameters is the relationship between initial

productivity z and final productivity z′ among the set of treatment participants i ∈ T . The

identification strategy is similar to that employed in standard firm dynamics models with

AR(1) processes, but much be adjusted to take into account the diffusion process, which is

inherently asymmetric. Specifically, the moment we use is

Γ2 ≡
Cov[z, z′]

E[z]E[z′]
+ 1 =

∫ ∫
z1+ρ max

[
1, ẑ

z

]β
m(z, ẑ)dzdẑ∫

z
∫
m(z, ẑ)dẑdz ·

∫ ∫
zρ max

[
1, ẑ

z

]β
m(z, ẑ)dzdẑ

. (M2)

A simple way to highlight the empirical availability of Γ2 is to note that we can rewrite

Γ2 = 1 + V ar(z)
E[z]E[z′]

γ̂OLS, where γ̂OLS is the coefficient estimate from a lagged profit regression

πi,t = η + γπi,t−1 + ν

run on all treatment individuals. Thus, this moment, like Γ1 is easily observed in the data.

This moment allows us to pin down ρ as a function of β. For some intuition on why this

is the case, note that in an economy with no diffusion and exogenous shocks drawn from

F ∼ N(µ, σ2) then this moment simplifies to Γ2 = exp(σ2ρ). Thus, with knowledge of the

distribution of exogenous shocks, the normalized lagged profit regression coefficient identifies

persistence of productivity. This result is used in a variety of firm dynamics models that do

not include diffusion, and identifies the persistence of an exogenous AR(1) process.

Diffusion introduces a slight complication to this result – if we observe two individuals

with different initial productivities that converge over time, it is no longer possible to con-

clude that persistence is low. Instead, it could be that the less productive individual was hit

with a higher match productivity. Thus, we can only identify ρ conditional on the ability to

internalize match productivity, β. That is, this same procedure now identifies ρ(β).

The last step is summarized in Proposition 3, which is to find a fixed point (β∗, ρ∗) that

jointly matches the moments (Γ1,Γ2).

Proposition 3. If the following two conditions hold, then there exists a unique pair (β∗, ρ∗)

that solve equations (M1) and (M2). Those conditions are:

Γempirical1 ∈
(

1,

∫
π(ẑ)mH(z, ẑ)dẑ∫
π(ẑ)mL(z, ẑ)dẑ

)
(C1)

Γempirical2 ∈
(
1, 1 + CV (z)2

)
(C2)

where CV (z) is the coefficient of variation of baseline productivity among treatment firms.
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Proof. Define:

G1(ρ, β̃) = Γ1

∫ ∫
zdM(z, ẑ)

∫ ∫
zρ max

[
1, (ẑ/z)β̃

]
dM(z, ẑ)∫ ∫

z1+ρ max
[
1, (ẑ/z)β̃

]
dM(z, ẑ)

G2(ρ, β̃) = Γ2

∫ ∫
zρ max

[
1, (ẑ/z)β̃

]
dML(z, ẑ)∫ ∫

zρ max
[
1, (ẑ/z)β̃

]
dMH(z, ẑ)

Then define:

T (ρ, β̃) =

[
ρG1(ρ, β̃)

β̃G2(ρ, β̃)

]
Last, define:

B(ρ, β̃) = (G1(ρ, β̃)− 1)2 + (G2(ρ, β̃)− 1)2

The proof works as follows:

1. Prove G1 and G2 are strictly convex.

2. Prove (ρ, β̃) ∈ [0, 1]2 =⇒ T (ρ, β̃) ∈ [0, 1]2. This is true under the conditions above.

3. Since T is obviously continuous, then T has a fixed point in [0, 1]2 by Brouwer’s FPT.

The (ρ, β̃) that is a fixed point in T solves both moment equations above, proving

existence.

4. Any (ρ, β̃) that is a fixed point of T also solves B(ρ, β̃) = 0. Since G1 and G2 are

strictly convex, B is strictly convex. Also, clearly all values of B are weakly positive.

Therefore, any zero of B is unique. Therefore, T has a unique fixed point. This proves

uniqueness.

Proofs of parts 1 and 2 follow. The arguments above prove parts 3 and 4, conditional on the

first two parts being true. �
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C Empirical Impact on More Productive Member of the Match

Since the more productive members of treatment matches were not randomly selected, we

require a different approach to identify any effect on these business owners. Our design allows

us to use the selection procedure to identify the causal impact of being chosen. Specifically,

we surveyed both those chosen for the program and those just below the cutoff for selection,

then employed a regression discontinuity design to study the impact of being chosen into the

program.

Figure 11 plots profit along with a fitted quadratic and its 95 percent confidence interval.

Figure 11a uses the entire sample, while Figure 11b uses the Imbens and Kalyanaraman

(2012) procedure to choose the optimal bandwidth. Both use 15 bins on either side of the

cutoff. Figure 11 suggests no statistically discernible discontinuity around the cutoff.

Figure 11: Profit for mentors and non-mentors (from Brooks et al., 2018)
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We next test this more formally. In particular, letting ε be the cut-off value for mentors,

we run the regression

πi = α + τDi + f(Ni) + νi (C.1)

where πi is profit, Di = 1 if individual i was chosen as a mentor (ε̂i ≥ ε, f(Ni) is a flexible

function of the normalized running variable Ni = (ε̂i − ε)/σε, and νi is the error term. The

parameter τ captures the causal impact of being chosen as a mentor. We use local linear

regressions to estimate the treatment effects on profit and inventory, along with business

practices of record keeping and marketing. The results are in Table 6, and we find that being

a mentor has no statistically significant effect on profits. Moreover, there is no change in

marketing or record-keeping practices, which one might associate with productivity. There is

some evidence that inventory spending decreases, but it cannot be statistically distinguished

from zero. Overall, we find little evidence that entering into a match changes either business
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scale or business practices for the more productive member of the match. This is consistent

with the max function in the forward equation for productivity (equation 2.1), which is

assumed here and in much of the existing literature.

Table 6: Regression discontinuity results for matched firm treat-
ment effect (Brooks et al., 2018)

Percent of IK Scale Practices

optimal bandwidth Profit Inventory Marketing Record

keeping

100 -503.18 -3105.87 0.01 0.02

(1321.82) (2698.11) (0.11) (0.18)

150 300.19 -2585.22 0.01 0.07

(1407.26) (2291.34) (0.09) (0.14)

200 322.09 -123.59 0.01 0.10

(1324.17) (1964.08) (0.08) (0.13)

Treatment Average 4387.34 8435.79 0.08 0.85

Control Average 1794.09 4039.20 0.13 0.63

Table notes: Statistical significance at 0.10, 0.05, and 0.01 is denoted
by *, **, and, ***. Profit and inventory are both trimmed at 1 percent.
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D Allowing for Idiosyncratic Distortions

The model assumes throughout that π ∝ z. One scenario in which this would not be the

case is if individuals were subject to some unobserved distortion ν. We take this up in this

section, showing how such distortion bias both the estimates of our diffusion parameters, and

how that feeds into the quantitative results. We therefore augment the model and assume

that on birth, agents still draw their initial productivity z ∼ G, but now also draw an i.i.d.

productivity shifter ν where log(ν) ∼ N(0, σν) and is fixed throughout life. This requires

another state variable for the model, and profit is now defined as

π(z, ν) = max
l≥0

(νz)αl1−α − wl (D.1)

which implies an update to our original assumption (π ∝ z). Now, we have π ∝ zν. The

value of having entrepreneurial skill z and distortion ν is

v(z, ν,M) = max{π(z, ν), w(1− τ)}+ (1− δ)γEz′|zv(z′, ν,M ′). (D.2)

Note that this has the additional implication of changing occupational choice among model

agents, who now make decisions in part based on their additional parameter ν. We assume

that ν is not transmitted, in the sense that a distortion would not be transmitted across

agents, and so the rest of the model is unchanged.

Our goal is to study how the quantitative gains from policy change as σν varies. To do

so, we re-estimate the model with σν > 0 and measure the gains from optimal policy, as in

the main text. In the main text, this involves the following steps: (1) estimate (β, ρ), (2)

estimate θ, (3) calibrate remaining parameters, and (4) solve for the efficient allocation. The

introduction of ν changes each step, which we discuss in turn.

D.1 Bias in Diffusion Coefficients β and ρ

We first note that such distortions will bias our estimates of parameters in the law of motion

for productivity, β and ρ. With π ∝ z, these could be read off the main estimating regression

in the text,

log(π′i) = c̃+ ρ log(πi) + β log

(
π̂i
πi

)
+ εi. (D.3)

Now, these estimates are biased. To see this, rearrange the structural equation

log(z′i) = c+ ρ log(zi) + β log

(
ẑi
zi

)
+ εi (D.4)

under the assumption that we observe πi ∝ ziνi to get

log(π′i) = c̃+ (ρ− β)︸ ︷︷ ︸
≡η

log(πi) + β log(π̂) +
[
εi + log(νi)− (ρ− β)︸ ︷︷ ︸

≡η

log(νi)− β log(ν̂i)
]
. (D.5)

47



The term in brackets is the regression error.35 Estimating this regression implies

plim η̂ = η

(
σ2
z

σ2
z + σ2

ν

)
plim β̂ = β

(
σ2
ẑ

σ2
ẑ + σ2

ν

)
and thus the estimates of β and η ≡ ρ−β are both biased toward zero. This further implies

that ρ = η + β is biased downward as well. Thus, under a given value of σ2
ν , unbiased

structural parameters (β, ρ) require an adjustment to the coefficients we observe from the

regression.

D.2 Updating the “Directedness” Parameter θ and Remaining Calibration

The “directedness” parameter θ uses only the average treatment effect. Since profit shows

up only as a dependent variable in this regression, the distortions induce no direct bias in the

point estimate of this regression, only increasing the standard error of the point estimate.

We leave this latter issue aside here to focus in the induced bias in the structural parameters.

Note, however, θ depends on the value of (β, ρ) and thus will change in response idiosyncratic

distortions. Similarly, the remaining calibration will be updated to take into account the

new values.

D.3 Quantitative Results

D.3.1 Quantitative Experiment and Parameter Updates

Procedure Given the discussion above, our procedure therefore works as follows. Assume

some value for σν . Since we observe the variance of log profit for both treated firms and

their matches (σ2
π = 0.671 and σ2

π̂ = 0.204), we can use them to compute σ2
z = σ2

π − σν and

σ2
ẑ = σ2

π̂−σν . Then use our regression results in (D.5) to back out the structural parameters

(β, ρ) as

β = β̂OLS
(
σ2
π̂

σ2
ẑ

)
= 0.538

(
0.204

σ2
ẑ

)
=

0.110

σ2
ẑ

ρ = η̂OLS
(
σ2
π

σ2
z

)
+ β̂OLS

(
σ2
π̂

σ2
ẑ

)
= 0.057

(
0.671

σ2
z

)
+ 0.538

(
0.204

σ2
ẑ

)
=

0.038

σ2
z

+
0.110

σ2
ẑ

From there, update the remaining diffusion parameter θ and calibrated parameters (σ, c, τ)

to match the same moments in the main text.36

35Note that we assume the max operator does come into play. This is not critical, but focuses the discussion on the distortions
themselves.

36Recall, they are (1) the variance of log profit among all firms, (2) the ratio of average profit of all firms to new entrants,
(3) the fraction of agents employed as workers.
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Implementation In our quantitative experiment, we set σ2
ν such that it induces a true pa-

rameter value of β = 0.807, implying that our regression estimate β̂OLS = 0.538 is two-thirds

of the structural parameter β.37 This implies that σν = 0.26. Table 7 shows the updated

parameter values.

Table 7: Updated Parameter Values

Model Description Parameter Parameter

Parameter (Baseline) (Distortions)

Exogenously varied:

σν St. dev. of distortions 0 0.260

Group 1

β Intensity of diffusion 0.538 0.807

ρ Persistence of productivity 0.595 0.870

θ Directedness of search -0.417 -0.161

Group 2

σ St. dev. of exogenous productivity shock distribution 0.877 0.746

c Growth factor in productivity evolution -3.107 -2.310

τ Tax on wage earnings 0.999 0.998

Group 3

δ Death rate of firms 0.016 0.016

σ0 St. dev. of new entrant productivity distribution 0.961 0.922

α Cobb-Douglas exponent on labor 0.67 0.67

Group 2 Sum

of Squared Errors 2.73× 10−6 4.86× 10−6

Table notes: Group 1 is jointly chosen from the experimental data. Parameters in Group 2 are calibrated to
jointly match moments. Group 3 are also set to match baseline data moments, but match 1-1 with target
moments. Both are set to match the same set of moments discussed in the main text (see Table 3 for
details). SSE measure includes only parameters in Group 2 that are jointly set.

D.3.2 Quantitative Gains from Policy

We now study the gains from optimal policy. We assume that the planner can observe

the distortions ν but cannot change them, allowing us to focus on the diffusion externality.

This amounts to the planner choosing a cut-off function z(ν) in which in all individuals

with distortion ν and z ≥ z(ν) operate a firm and those with z < z(ν) become workers.

Specifically, the planner’s problem is now

max
z(ν)

∫ ∞
0

∫ ∞
z(ν)

y(z, ν)dM∗(z)dH(ν) (D.6)

s.t. M∗(z′) = δG(z′) + (1− δ)
∫ ∞

0

∫ ∞
0

F (log(z′)− log(max{ẑβzρ−β, zρ})− c)dM̂(ẑ; θ)dM∗(z)

M̂(ẑ; θ) =

( ∫∞
0

∫ ẑ
0

1[z ≥ z(ν)]dM∗(z)dH(ν)∫∞
0

∫∞
0

1[z ≥ z(ν)]dM∗(z)dH(ν)

) 1
1−θ

.

The main results are in Table 8. Column 1 reproduces the baseline results from the main

text, while column 2 covers the updated model with idiosyncratic distortions.
37Or, said differently, variance in true productivity z makes up two-thirds of observed profit variation within the firms we

use to match treatment firms.
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Table 8: ∆ Outcomes

Baseline Distortions

(1) (2)

Average Income 3.45 7.03

Fraction working 2.17 2.05

Average entrepreneurial productivity 8.97 984.70

Wage 0.48 1.63

Table notes: Equilibrium changes are measured as the ratio of efficient to laissez
faire minus one. Multiply by 100 for percentage change.

The gains from policy are approximately twice as large as the baseline case. The rationale

for this follows from the previous discussion. As we showed in Section D.1, our estimate β̂OLS

is biased downward in the presence of idiosyncratic distortions. Relative to our baseline

model, our structural value of β is 50 percent higher in this case. As we showed in the main

text, β plays a critical role in governing the gains from policy. Combined, these results show

that our results in the main text are a lower bound on the estimated gains from policy.
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E Additional Results

E.1 Income Changes by Parameters in Laissez Faire and Efficient Economies

Figure 12: Average Income Changes as Diffusion Parameters Vary

(a) Varying β
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(b) Varying ρ
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(c) Varying θ
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Figure notes: For each subfigure, laissez faire income is normalized to 1 at the smallest parameter value
value.

E.2 Allowing the Planner to Change Search Frictions (via the directedness

parameter θ)

Our RCT adjusts the set of matches available to the treatment group. Roughly, this amounts

to a change in the value of θ for the treatment group. Therefore, one might suspect that θ

is not policy-invariant and is in fact an additional policy lever for the planner to deploy. We

study that here, and show that the additional gains relative to the baseline case is small.38

38This is essentially a corollary of the results in Section 5.2, where we show that varying θ induces small changes in the gains
from policy.
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Of course, we have no sense of what the costs the planner faces when changing θ. We

therefore take an extreme case and assume that it can be changed costlessly, studying the

gains from policy when θ can costlessly be increased to a fixed higher value. We then vary

this fixed higher value and show how the results change.

To be explicit, denote L(θ) and E(θ) as the level of income in the laissez faire and efficient

economies defined by parameter θ. The object of interest in the main text is therefore

W (θ) := E(θ)/L(θ). Here, we ask how much larger those gains are if the planer is allowed to

change θ from its baseline value θ∗ = −0.417 to some other value θ′. The gains from policy

in this case are given by

W̃ (θ′) =
E(θ′)

L(θ∗)
.

where W̃ (θ∗) = W (θ∗) by definition. We measure the excess gains from this additional

margin of adjustment, given by

G(θ′) :=
W̃ (θ′)

W̃ (θ∗)
− 1 =

E(θ′)

E(θ∗)
− 1

This measure G measures how much larger the gains are by allowing the planner to simul-

taneously achieve a higher θ relative to the baseline. The results are in Figure 13.

Figure 13: Excess Gains from Policy When θ is Allowed to Change
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Recall that the baseline gain from policy (denoted here as W̃ (θ∗)) is 345 percent. The

additional gains shown in Figure 13 are substantially smaller. For example, if the planner

is allowed to shift θ from its baseline value θ = −0.417 to θ = 0.20, the gains from optimal

policy increase by an additional 4 percent. Even in the extreme case, where the planner can

push all matches into the right tail as θ → 1 (which we view as unrealistic, as some of the
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search friction is surely structural), the excess gains are 25 percent. The rationale for this

result is that the planner’s baseline policy level – a wage subsidy to eliminate firms – is a

substitute for shifting matches via the θ parameter. Thus, allowing the planner this second

policy lever plays a relatively minor role.

E.3 Importance of Diffusion Parameters in Model-Run RCT

Figure 14 shows how the average treatment effect varies as one varies the diffusion parameters

(β, ρ, θ) individually.

Figure 14: Impact of Estimated Diffusion Parameters on the Average Profit Treatment Effect

(a) Varying intensity and persistence, β and ρ
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Figure notes: Each line varies the listed parameter holding all other model parameters fixed at baseline
values. The points indicated by circles and diamonds are our baseline estimates.

There are a number of results that stand out here. First, θ plays a substantially larger

role in generating the treatment effect than either β or ρ. This is the opposite of the impact

on the GE externality (Figure 6), where β dominates. The impact of θ ranges from an

average treatment effect of 53 percent when θ = −20 to -12 percent when θ = 0.99 (the

rationale for the scale differences is discussed in the main text).39

The second important result is that the treatment effect is in fact decreasing in θ, while

the gains from equilibrium policy were increasing in θ. Thus, not only do the parameters

generate different magnitudes between PE and GE results, but inferring GE relevance from

the RCT would push a policy maker in the wrong direction. The rationale for this difference

highlights the divergent roles played by θ in the partial equilibrium RCT and in general

equilibrium. In PE, the treatment effect is maximized in economies in which the treatment

provides the largest shock – that is, in economies in which control firms find it difficult

to meet with high-productivity individuals on a regular basis. Thus, the treatment effect

39Note that negative effects are consistent with the model. As θ → 1 all the mass is being moved to the best possible firm.
Since our empirical draws include a distribution of firms, negative treatment effects are feasible in such extreme cases.
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declines in θ. This same force, however, limits the planner’s ability to extract gains from

the economy. If individuals create matches by seeking out mostly agents from the left tail

of the productivity distribution (i.e., low θ), the planner has limited ability to shift the

distribution of matches toward the right tail. Put differently, the scope for learning increases

when individuals can more easily find the best firms to learn from. This requires a high θ.

These divergent results highlight the crucial importance of understanding key structural

parameters for policy making in such a context. If a policymaker näıvely looked only at

treatment effects to extrapolate GE impact, she would run the risk of choosing economies

based exactly on parameters that play little role at scale. Thus, not only do the parameter

estimates matter for quantifying the gains from policy in equilibrium, they can similarly

confuse estimates of results commonly used to identify economies in which policymakers will

deploy such policy instruments. To study this in more detail, we break the model-derived

RCT results into two pieces: understanding the initial impact at t = 1 then the fade-out in

quarters t = 2, . . . , 5.
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F Cheat Sheet of Parameters and Assumptions

This Appendix summarizes the key assumptions and parameter values used in the main text,

for simplicity and to facilitate ease of comparison within the paper. Our goal is to identify:

• “Intensity” parameter β

• “Persistence” parameter ρ

• “Directedness” parameter θ

The relationship between these parameters is detailed below in our assumptions on the

economic environment.

Three Assumptions on the Economic Environment

Our economic environment requires three assumptions, Assumptions 1, 2, and 3 in the main

text.

Assumption 1. Given a productivity z this period, an imitation opportunity ẑ, and a random

shock ε, productivity next period z′ is given by

z′ = ec+εzρ max

{
1,
ẑ

z

}β
, (F.1)

where the parameter c is a constant growth term, β is diffusion intensity, and ρ is persistence.

Assumption 2. In any period, profits are proportional to productivity. That is, for any two

firms i and j earning profits πi and πj, πi/πj = zi/zj.

Assumption 3. The imitation opportunity ẑ is drawn by a firm with productivity z from a

distribution characterized by the cumulative density function M̂(ẑ; z, θ), a known function.

For every z and ẑ, M̂ is continuous in θ and θ1 < θ2 =⇒ M̂(ẑ; z, θ2) first order stochastically

dominates M̂(ẑ; z, θ1).

Assumption on Variation in the Data-Generating Process

With the three assumptions on the economic environment, we summarize the requirements

on the data generating process in Assumption 4.

Assumption 4. A set of agents with productivity distributed H(z) are observed in two

consecutive periods. The set of agents is partitioned into two subsets characterized by distri-

butions HC(z) and HT (z) (i.e., “control” and “treatment”). The following conditions hold:

1. Agents in HT and HC draw their ε shocks from the same distributions

2. The matches for agents in HC are not observable, and distributed M̂(ẑ; z, θ)
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3. The matches for agents in HT are observable, and distributed ĤT (ẑ) 6= M̂(ẑ; z, θ).

Moreover, every match ẑ is greater than the z to which it is matched.

4. For any arbitrary partition of the treatment group, characterized by H1
T (z) and H2

T (z),

agents in both groups draw their ε shocks from the same distribution
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