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1 Introduction

We propose a control-function approach for estimating discrete Bayesian games when
observable payoff-relevant covariates are endogenous. Bayesian games provide a
powerful framework for analyzing strategic interaction between individuals or firms
with private information (a.k.a., types or signals) and have been studied in a wide range
of applied contexts. Examples include choices of effort by students and teachers in
classrooms in Todd and Wolpin (2018); choices of fitness exercises by adolescents in
Jackson, Lin, and Yu (2020); location choices in video retail industry in Seim (2006); timing
of commercials by radio stations in Sweeting (2009); and market entry and exit of grocery
stores in Grieco (2014). An important assumption required for inference in these empirical
studies is that the covariates, at both the player- and the game-level, are exogenous.

When covariates in a Bayesian game are endogenous, identification and estimation
require further assumptions on the joint distribution of covariates and private types.
First, this poses challenges that are analogous to endogeneity in single-agent qualitative
response models but are aggravated in settings with strategic interaction. More
importantly, if such endogeneity is due to unobserved market/game-level heterogeneity
that also influences the covariates and types of other players, then the private types
are generally correlated even after conditioning on all covariates. This complicates the
equilibrium characterization, as well as identification and estimation.1

Endogeneity in covariates is common in environments with strategic interaction. For
example, consider the decisions by cellphone service providers to deploy a new generation
of cellphone technology in local service markets. These providers rely on cellular network
infrastructures, such as transmission facilities and switching offices, to provide cellphone
services. As the technology evolved from 3G to 4G-LTE in the last decade, a provider
could reconfigure and upgrade its 3G network to deliver 4G-LTE services. In addition,
the spillover effects of a provider’s 4G-LTE deployment in neighboring markets could
reduce the deployment costs in a focal market. Therefore, a provider’s 3G deployment

1To see this, consider a binary game with two players i, j, individual-specific covariates Zi,Z j, and
private types ui,u j. Suppose that Zi,Z j and ui,u j are all correlated through some unknown market/game-
level factor v0. In this case, conditioning on (Zi,Z j) is not sufficient for attaining independence between
(ui,u j) in general. Thus i’s equilibrium belief about j’s decision D j would be a non-trivial function of its
own types E(D j|Zi,Z j,ui).
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in a local market and 4G-LTE deployment in neighboring markets are both important
covariates that influence its decision to enter a local 4G-LTE market. Endogeneity in
these covariates may result from several sources. For instance, there are unreported
demographic or geographic characteristics (e.g., topographic features) that affect both
existing 3G deployment and the costs of upgrading facilities for 4G-LTE in a focal market.
Besides, a provider’s spectrum holdings are not reported in the sample, but are strongly (if
not perfectly) correlated between focal and neighboring markets. More broadly speaking,
endogeneity is a concern in social-economic settings in which payoff-relevant states are
influenced by unreported player- or game-level factors. We are not aware of any paper that
allows for such flexible sources of endogeneity in empirical analysis of discrete Bayesian
games and investigates the impact on inference and policy implications when endogeneity
is ignored. The goal of our paper is to fill this gap.

We contribute to the econometric and empirical literature on Bayesian games in two
ways. First, we introduce a general, feasible control-function method for estimating
discrete Bayesian games with endogenous states. We model endogeneity in covariates
through a triangular system that is flexible enough to accommodate correlation through
both player-level and game-level unobserved heterogeneity. Control function variables
are created as residuals from auxiliary regressions using exogenous instruments. (In our
application of entry in 4G-LTE markets, we use the lagged demographics of neighboring
markets as instruments.) We propose a two-step nested pseudo-likelihood (2SNPL)
estimator, and show it is root-n consistent and asymptotically normal. Our Monte Carlo
simulation shows that the estimator works well in finite samples with moderate sizes.

Heckman (1978), Newey (1987) and Rivers and Vuong (1988) propose methods for
dealing with endogenous discrete and continuous covariates in single-agent qualitative
response models. While there are other solutions for endogeneity in the literature,2

the control function approach has proliferated due to its simplicity, flexibility and wide
applicability.3 We contribute to this extensive literature by bringing the control function

2Lewbel (2000), Blundell and Powell (2004), Rothe (2009) and Hoderlein (2014) deal with endogeneity
in semiparametric binary choice models; Vytlacil and Yildiz (2007) consider nonparametric identification
and estimation of average treatment effects of dummy endogenous variables in weakly separable models;
Dong and Lewbel (2015) estimate binary choice models with discrete, continuous, or censored endogenous
regressors. D’Haultfœuille and Février (2015) and Torgovitsky (2015) show that non-separable models with
continuous outcome and endogenous variables can be identified using discrete instruments.

3Since its inception by Heckman and Robb (1985), the control function approach has been used in a
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approach into a game-theoretic setting with incomplete information.4 We combine control
functions with a nested pseudo likelihood method to handle the simultaneity embedded
in the Bayesian game and the endogeneity in regressors at the same time.5

Our second contribution is empirical. We apply the 2SNPL estimator to analyze
a hypothetical T-Mobile and Sprint merger in the U.S. cellphone service market.6 In
addition to predicting firm entries in post-merger local markets and the population served,
we evaluate the impact of adding a fourth national provider, enabled by a government-
mandated partial divestiture of assets owned by the merging parties. This is a very
meaningful exercise for antitrust and regulatory agencies. For example, while reviewing
merger proposals, the Federal Trade Commission (FTC) and the Department of Justice
(DOJ) have often mandated that the merging firms divest certain assets and facilities to
rivaling firms. The goal of such a policy is to strengthen after-merger competition in local
markets and to alleviate the loss of consumer welfare due to increased market power of the
merged entity.7 In the case of the 2020 T-Mobile/Sprint merger case, the DOJ required the
merging parties to divest parts of Sprint’s prepaid businesses, Sprint’s 800 MHz spectrum
holding, decommissioned cell sites and retail locations to a potential competitor, DISH
Network.

A crucial step in our analysis is to allow for endogeneity in providers’ network
deployments while analyzing their strategic decisions to enter local markets. As noted
earlier, two covariates that influence strategic decisions are endogenous (3G deployment
in the focal market and 4G-LTE deployment in neighboring markets). Our estimates
indicate that unobserved factors in a firm’s 4G-LTE deployment decision are negatively

variety of settings. See, for example, Newey, Powell, and Vella (1999), Chesher (2003), Das, Newey, and
Vella (2003), Lee (2007), Florens, Heckman, Meghir, and Vytlacil (2008), Imbens and Newey (2009), Klein
and Vella (2010), Petrin and Train (2010), Hahn and Ridder (2011), and Kasy (2011) among others.

4For econometric analyses of static Bayesian games, see Aradillas-Lopez (2010), Bajari, Hong, Krainer,
and Nekipelov (2010), Florens and Sbaï (2010), Tang (2010), De Paula and Tang (2012), Misra (2013), Wan
and Xu (2014), Lewbel and Tang (2015), Aradillas-Lopez and Gandhi (2016), Lin and Xu (2017), Xu (2018),
Aguirregabiria and Mira (2019), Lin, Tang, and Yu (2020) and Aradillas-López (2020).

5The fixed-point algorithm is typically used to deal with simultaneity of strategic choices in discrete
Bayesian games. See Rust (1987), Aguirregabiria and Mira (2002, 2007) and Kasahara and Shimotsu (2012).

6T-Mobile and Sprint proposed a merger deal in 2019 and were approved to merge in 2020 after lengthy
legal battles surrounding antitrust concerns. In our simulations, we create a hypothetical merger between
these two firms by moving the 2020 merger to the end of 2015.

7For example, in 2015, the FTC required Albertsons and Safeway to sell 168 stores in 130 local markets
as a condition for approving their $9.2 billion merger case.
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correlated with its focal market’s 3G deployment and positively correlated with its 4G-
LTE deployment in neighboring markets. Both correlations are statistically significant,
providing evidence for the endogeneity of these two covariates. These covariates are
directly impacted by the merger (the new entity owns a union of network facilities of the
merging parties). Thus, any sound analysis of the merger’s impact need to start with a
valid, endogeneity-proof inference of covariate effects.

Using our endogeneity-proof estimates, we find that the hypothetical T-Mobile and
Sprint merger would substantially reduce the overall 4G-LTE deployment across local
markets. This finding counters a typical pro-merger argument that cost synergies lead to
wider cellular coverage and benefit consumers. Moreover, our simulations show that the
addition of a fourth national firm, mirroring the DOJ’s DISH Network merger remedy
through divestiture, would not completely offset the merger’s negative impact on market
entries and the population served.8 Lastly, we compare the estimation and simulation
results with and without taking into account the endogeneity in network deployment. This
comparison shows that ignoring such endogeneity would skew the policy implications
for antitrust agencies by underpredicting the merger’s negative impacts on entry and
overpredicting the merger remedy’s compensating effects.

As our work incorporates endogenous assets in oligopolistic firms’ strategic choices,
we build on the recent empirical literature in industrial organization that evaluates how
merger affects product offerings (Fan, 2013, Wollmann, 2018, Li, Mazur, Park, Roberts,
Sweeting, and Zhang, 2019, Fan and Yang, 2020) and entry (Berry and Waldfogel, 2001,
Sweeting, 2010). Mergers, in the first place, are consolidations of assets and resources,
including production facilities, retail outlets, investments, patents and more. Divestitures
are the regulators’ responses aimed at counteracting the increased concentration in post-
merger assets distribution. Empirical work evaluating the role of divestiture practices in
merger cases is scarce, due partly to the lack of data and partly to the lack of a tractable
framework to account for the endogeneity of assets and divestiture.9 To the best of our

8Our results are consistent with findings in Genakos, Valletti, and Verboven (2018), which used mobile
operators’ prices and accounting information across 33 OECD countries over a decade to show that both
prices and investment per operator increased after a merger and that total industry investment did not
change significantly.

9Two recent academic papers provide descriptive evidence on the effects of divestitures: Tenn and
Yun (2011) compare pre- and post-divestiture performances of divested brands from the 2008 Johnson &
Johnson’s acquisition of Pfizer’s consumer health division; Soetevent, Haan, and Heijnen (2014) evaluate
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knowledge, our work is the first to evaluate the role of assets and, more importantly,
the role of divestitures in firms’ strategic choices using a game-theoretic approach. More
broadly, our empirical method provides a very feasible solution to covariate endogeneity
in discrete Bayesian games.

The paper is organized as follows. Section 2 introduces the discrete Bayesian games
with endogeneity and characterizes the Bayesian Nash equilibrium. Section 3 describes
the two-step nested pseudo likelihood estimator (2SNPL) and derives its asymptotic
properties. Section 4 illustrates the finite-sample performance of the 2SNPL method
using two Monte Carlo experiments. Section 5 studies the 4G-LTE entry game of AT&T,
Verizon, T-Mobile and Sprint, comparing model estimates and policy implications with
and without accounting for endogenous covariates. Section 6 concludes. All proofs,
technical details, and robustness checks are rendered in the appendices.

2 Discrete Bayesian Games with Endogeneity

Consider a Bayesian game of simultaneous discrete choices among K players, indexed
by k ∈ K ≡ {1, 2, ...,K}. Each player k is characterized by a dx × 1 vector of exogenous
covariates Xk, and a dz × 1 vector of endogenous variables Zk. Each player k observes a
private shock uk ∈ R, and makes a simultaneous decision Yk ∈ {0, 1} based on the public
information I ≡ {Xk,Zk}k≤K and the private shock uk. For each player k, let Xk ≡ (Xk1,Xk2)
be partitioned into exogenous covariates Xk1 and instruments Xk2. A player k’s ex post
payoff for Yk = 1 is

X′k1βk + Z′kγk + αk

∑
j,k

Y j + uk, (1)

and that for Yk = 0 is normalized to be zero. The instruments Xk2 do not enter the ex post
payoffs, but contribute to the endogenous variables as follows:

Zk = Π′kXk + Vk, (2)

where Π′k is a dz × dx matrix of constant coefficients. Instrument validity requires the
coefficients for Xk2 in the matrix Πk to be non-zero. The regressor Zk is endogenous
whenever the error terms Vk ∈ Rdz and uk ∈ R are correlated.

the effects of the Dutch government’s divestiture requirement when allocating rights to operate highway
gasoline stations on prices of divested gasoline stations.
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In any pure-strategy Bayesian Nash equilibrium (psBNE), each player k follows a
decision rule Yk = 1{Y∗k > 0}:

Y∗k ≡ X′k1βk + Z′kγk + αk

∑
j,k

Ek(Y j|I,uk) + uk, (3)

where Ek(Y j|I,uk) is player k’s belief about others’ decisions, which is consistent with the
common prior of {u j} j≤K and others’ strategies in equilibrium. (We can generalize by letting
the strategic interaction term be a weighted sum of other players’ choice probabilities —
that is, by allowing the weights αk, j to differ across k as well as j.)

Our method for dealing with endogenous covariates in this model applies under
intuitive conditions on the unobserved errors, which are formalized as follows. For each
k, let ηk denote the error term in the linear projection of uk on {V j} j≤K. That is,

uk =
∑
j≤K

V′jλk, j + ηk,

where λk, j’s are coefficients in the linear projection.

Assumption 1. (i) {uk,Vk}k≤K are independent from X = {Xk}k≤K with zero means. (ii) {ηk}k≤K

are independent from {Vk}k≤K; and η′ks are independent across the players k = 1, 2, ...,K.

This assumption is flexible enough to accommodate different forms of endogeneity in
Zk, including those due to player- or game-level unobserved heterogeneity. For example,
consider a data-generating process whereby V j is arbitrarily correlated across j = 1, 2, ...,K,
possibly through some game-level unobserved heterogeneity. Suppose that, for each
player k, uk is a linear combination of {V j} j≤K and an idiosyncratic noise εk, with εk being
independent across k = 1, 2, ...,K, and jointly independent from {X j,V j} j≤K. Then, for all
k, the error term from a linear projection of uk on {V j} j≤K, denoted as ηk, is identical to εk.
Therefore, the conditions in Assumption 1 are satisfied.

Assumption 1 also accommodates situations in which endogeneity arises because of
unreported individual heterogeneity. For example, suppose that there is no unobserved
heterogeneity on the game level, and {uk,Vk}k≤K are independent across all players. For
each player k, the vector of individual noises (uk,V′k) is multivariate normal with non-zero
correlation between uk and the components in Vk due to some unobserved characteristics
of player k. Assumption 1 follows from an implication of the multivariate normality. The
zero mean restriction in (i) is just a location normalization.
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Using Assumption 1, we write the decision rule in (3) as

Yk = 1{Y∗k > 0} = 1
{
X′k1βk + Z′kγk + αk

∑
j,k

Ek(Y j|I) +
∑
j≤K

V′jλk, j + ηk > 0
}
. (4)

Note that the two conditions in Assumption 1 imply that ηk is independent from {X j,V j} j≤K

and, consequently, from I. Besides, the independence of ηk across k = 1, 2, ...,K implies
that the equilibrium belief Ek(Y j|I,uk) does not depend on {η j} j,k.10

Let Fk and fk denote the marginal distribution and the density function of ηk,
respectively. Thus, we characterize a psBNE through a vector of conditional choice
probabilities (CCPs) P : I 7→ [0, 1]K that solves a fixed-point equation:

P = Γ(θ,P), (5)

where Γ ≡ (Γ1, ...,ΓK)′ with

Γk(θk,P) ≡ Fk

(
X′k1βk + Z′kγk + αk

∑
j,k

P j +
∑
j≤K

V′jλk, j

)
, (6)

and θ ≡ {θk}k≤K with θk ≡ (γ′k, β
′

k, α
′

k, λ
′

k). The model admits a unique psBNE under the
following condition.

Assumption 2. For each k, the magnitude of αk is bounded above: |αk| < 1
(K−1)| supt fk(t)| .

This assumption restricts the strength of interaction between players so that Γ satisfies
the contraction mapping property.11

Lemma 1. Under Assumptions 1 and 2, there exists a unique psBNE.

Proof. See Appendix A. �

Let P∗ denote the profile of conditional choice probabilities in a Bayesian Nash
equilibrium. Identification using Equations (5) and (6) requires the usual rank conditions.
That is, the support of the vector (X′k1,Z

′

k,
∑

j,k P∗j,V
′

1, · · · ,V
′

K) is not contained in a linear
subspace. Note that this rules out the cases in which the coefficients for Xk2 in the matrix

10To see this, note that conditioning on I and uk is equivalent to conditioning on {Xk,Vk}k≤K and ηk, and
the claim follows from the independence of ηk across k.

11Assumption 2 is similar to the Moderate Social Influence (MSI) condition in the interaction game
literature (see Glaeser and Scheinkman, 2003, Horst and Scheinkman, 2006). It is used in the discrete game
literature (Brock and Durlauf, 2001, Lee, Li, and Lin, 2014, Lin and Xu, 2017, Xu, 2018, Jackson, Lin, and Yu,
2020, Lin, Tang, and Yu, 2020) for the uniqueness of Bayesian Nash equilibrium.
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Π are all zeros. This requires a necessary order condition that there are more instruments
in Xk2 than endogenous variables in Zk.

By Assumption 1-(i), {Vk}k∈K can be recovered directly as the residuals in the regression
of Zk on Xk in Equation (2), and therefore treated as known covariates for subsequent
identification. Aradillas-Lopez (2010) and Bajari, Hong, Krainer, and Nekipelov (2010)
provide two distinct sets of conditions under which the players’ ex post utility functions
are identified.

3 Estimation

Consider a sample of n independent games i = 1, 2, ...,n, each involving K players making
simultaneous binary decisions. Throughout this section, we use lower-case letters to
denote realization of random vectors in the sample. In each game i and for each player k,
the sample reports a binary choice yk,i, endogenous variables zk,i, and exogenous covariates
and instruments xk,i ≡ (xk1,i, xk2,i). Let Ii = {xk,i, zk,i}k≤K denote the information set that is
common knowledge shared by all players in a game.

Let Θ and P ⊆ [0, 1]K|X||Z| denote the parameter spaces for θ and P, respectively, with
X,Zbeing marginal support of Xk,Zk. Letθ0 ∈ int(Θ) denote the true value ofθ in the data-
generating process (DGP), and let P0

≡ {Pr{Y = y|I = (x, z)} : (y, x, z) ∈ {0, 1}K × XK
× Z

K
}

denote the actual equilibrium choice probabilities given θ0 in the DGP.

Assumption 3. (i) For any θ , θ0 and P(θ) that solves P = Γ(θ,P), P(θ) , P(θ0) ≡ P0; (ii)
common knowledge variables Xi and Zi have finite supports, denoted asX andZ; (iii) (Yi,Xi,Zi)n

i=1

are independent across games, and Pr{Ii = (x, z)} > 0 for all (x, z) ∈ XK
×Z

K.

Assumption 3(i) is a standard identification condition for estimating games in which
the equilibrium is characterized by the solution to a fixed-point problem. See, for example,
Assumption 5(C) in Aguirregabiria and Mira (2007) and Assumption 1(e) in Kasahara
and Shimotsu (2012). Other papers on asymptotic properties of nested pseudo likelihood
estimators in discrete games also assume finite support of states — e.g., Assumption 4 in
Aguirregabiria and Mira (2007) and §2.1 in Kasahara and Shimotsu (2012).

We propose a two-step nested pseudo likelihood (2SNPL) estimator that builds on a
sequential algorithm combining the nested pseudo likelihood estimator in Aguirregabiria
and Mira (2007) with the two-stage conditional maximum likelihood in Rivers and Vuong
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(1988). The pseudo likelihood is:

Ln(θ,P; Π) =
1
n

n∑
i=1

li(θ,P; Π),

where li(θ,P; Π) ≡
∑K

k=1 log fk,i(θ,P; Π), with Π ≡ {Πk}k≤K and fk,i(θ,P; Π) defined as

Pr{x′k1,iβk + z′k,iγk + αk

∑
j,k

P j +
∑
j≤K

(z j,i −Π′jx j,i)′λk, j + ηk,i ≥ (<)0}

if yk,i = 1 (yk,i = 0). Note that in the definition of fk,i, the probability measure relates to the
marginal distribution of ηk,i, and (xk, zk) are fixed realizations.12

With a slight abuse of notation, we let Γ(θ,P; Π) denote the mapping Γ(θ,P) as defined
in Equation (6) when V j is replaced by its identifiable counterpart Z j − Π′jX j. This
emphasizes how the mapping depends on the first-stage parameter Π.

Our 2SNPL estimator is defined as follows. In the first stage, regress zk,i on xk,i to
estimate Π̂k for each k ≤ K. In the second stage, plug Π̂ ≡ {Π̂k}k≤K into an iterative
algorithm in Aguirregabiria and Mira (2007) to construct a 2SNPL sequence of estimators
as follows:

Step 1. Pick an initial guess P̂0 for P0. For example, one can obtain such an initial guess
from a reduced-form Probit regression.

Step 2. For each s ≥ 1, calculate an s-stage estimator for θ as

θ̂s = arg max
θ∈Θ

Ln(θ, P̂s−1; Π̂), (7)

and update the choice probabilities recursively as

P̂s = Γ(θ̂s, P̂s−1; Π̂). (8)

If the initial guess P̂0 is a consistent estimator for the actual P0 in the DGP, then
all elements in the sequence of estimators are consistent for θ0. This follows from a
similar argument for the consistency of two-step pseudo maximum likelihood estimators
in Proposition 1 of Aguirregabiria and Mira (2007).

More importantly, there exists a neighborhood around P0 such that, starting from any
initial guess P̂0 in that neighborhood, the NPL sequence constructed above converges
almost surely to a root-n consistent and asymptotically normal (CAN) estimator, which

12The term “pseudo likelihood” is used because the argument P in Ln is a generic profile of choice
probabilities, rather than the equilibrium choice probabilities P0.
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we refer to as a 2SNPL estimator and characterize in the next paragraph.
Define a 2SNPL operator associated with the iterations in (7) and (8):

φn(P) ≡ Γ(θ̃n(P),P; Π̂), where θ̃n(P) ≡ arg max
θ∈Θ

Ln(θ,P; Π̂). (9)

The set of 2SNPL fixed points in a sample is defined as Λn ≡ {(θ̆, P̆) ∈ Θ × P : P̆ =

φn(P̆) and θ̆ = θ̃n(P̆)}. If the maximizer θ̃n(P) is unique for any P and Π̂ from a given
sample, then the mapping θ̃n is continuous by the theorem of maximum. Thus, the
2SNPL operator φn(·) is continuous in the compact and convex set [0, 1]K·|X|·|Z|

≡ P. It
follows from Brouwer’s fixed-point theorem that Λn is non-empty. We define a 2SNPL
estimator (θ̂2SNPL, P̂2SNPL) as the element in Λn that leads to the highest value of pseudo
likelihood.

3.1 Asymptotic Properties of the 2SNPL Estimator

Let Π0 denote the true value of Π in the DGP. For simplicity, we also use Π,Π0 to denote
their own vectorization, in which case Π,Π0 are K× dz × dx vectors. Define the population
counterparts of Ln, θ̃n, φn by

L0(θ,P) ≡ E
[
li(θ,P; Π0)

]
;

θ̃0(P) ≡ arg max
θ∈Θ

L0(θ,P) ; φ0(P) ≡ Γ(θ̃0(P),P; Π0).

The set of 2SNPL fixed points in the population is Λ0 ≡ {(θ,P) ∈ Θ×P : θ = θ̃0(P) and P =

φ0(P)}. Let sθ,i ≡ ∇θli(θ0,P0; Π0), and define

Ωθθ ≡ −E
[
∇

2
θθli(θ0,P0; Π0)

]
= E

(
sθ,is′θ,i

)
;

ΩθP ≡ −E
[
∇

2
θPli(θ0,P0; Π0)

]
= E

(
sθ,is′P,i

)
where sP,i ≡ ∇Pli(θ0,P0; Π0);

ΩθΠ ≡ −E
[
∇

2
θΠli(θ0,P0; Π0)

]
= E

(
sθ,is′Π,i

)
where sΠ,i ≡ ∇Πli(θ0,P0; Π0).

The equalities following the definition above are due to the information matrix equality
with regard to the vector of scores. We denote the Jacobian matrices evaluated at the true
value (θ0,P0; Π0) as Γ0

P ≡ ∇P′Γ(θ0,P0; Π0), Γ0
θ ≡ ∇θ

′Γ(θ0,P0; Π0), and Γ0
Π
≡ ∇Π′Γ(θ0,P0; Π0).

Define M ≡ Ωθθ + ΩθP(I − Γ0
P)−1Γ0

θ. We establish the asymptotic property of θ̂2SNPL under
the following regularity conditions.

Assumption 4. (i) Θ is a compact convex subset of a Euclidean space, and P is a compact convex
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subset of (0, 1)n·|X|·|Z|; (ii) E
[
supθ,P |li(θ,P; Π0)|

]
< ∞. (iii) (θ0,P0) is an isolated population NPL

fixed point (i.e., it is unique, or else there is an open ball around it that does not contain any other
element of Λ0); (iv) there exists a closed neighborhood of P0, denoted by N(P0), such that, for
all P in N(P0), L0(θ,P; Π0) is globally concave, and its second derivative with respect to θ is a
nonsingular matrix; (v) the operator φ0(P) − P has a nonsingular Jacobian matrix at P0; (vi) M is
nonsingular.

Recall that Π̂ consists of 1st-stage ordinary least squares (OLS) estimates and, therefore,
admits a linear, first-order asymptotic representation as

√
n(Π̂ −Π0) =

1
√

n

n∑
i=1

ri(Π0) + op(1),

where ri(Π0) ≡ r0,i is the influence function characterizing the limit distribution of the OLS
estimator.

Theorem 1. Under Assumptions 1 to 4, θ̂2SNPL is a consistent estimator, and
√

n(θ̂2SNPL − θ0) d
→ N

(
0,M−1E(s̃is̃′i)

(
M−1

)′ )
,

where

s̃i ≡ sθ,i − [ΩθP(I − Γ0
P)−1Γ0

Π + ΩθΠ]r0,i.

Proof. See Appendix A. �

The proof of the theorem amounts to writing down the first-order conditions and
the equilibrium constraints that define the 2SNPL estimator, and then using a first-order
expansion to account for the impact of the first-stage estimator Π̂, as well as the concurrent
iteration over conditional choice probabilities.

Similar to Kasahara and Shimotsu (2012), we can establish the following convergence
property of the 2SNPL sequence.

Theorem 2. Suppose that Assumptions 1 to 4 hold and Ωθθ is nonsingular. There exists a
neighborhoodN around P0 such that, starting from any initial value P̂0 ∈ N , lims→∞P̂s = P̂2SNPL

almost surely.

The contraction mapping property in Lemma 1 implies that ρ(Γ0
P) < 1, where ρ(·) is the

spectral radius function. The key condition for convergence in Proposition 1 of Kasahara

12



and Shimotsu (2012) holds.13 With uniform convergence of Ln(·; Π̂) to L0(·) established in
the proof of consistency in Theorem 1 (see Appendix A), the proof of Theorem 2 follows
from the same steps in Kasahara and Shimotsu (2012) and is, therefore, omitted for brevity.

4 Monte Carlo Evidence

In this section, we illustrate the finite-sample performance of our 2SNPL estimator by
several Monte Carlo experiments. We consider four players in the game, each associated
with X1 and X2, which are drawn from the bivariate normal distribution with mean zero,
unit variance, and covariances 0.5. A pair of independent standard normal variates (v, η)
were drawn. We consider two cases: homogeneous competitive effects and heterogeneous
competitive effects

4.1 Homogeneous competitive effects

We generate the error term as u = λv + η and the endogenous variable as

Z = π0 + π1X1 + π2X2 + v.

Denote Z = (Z1,Z2,Z3,Z4), X1 = (X11,X21,X31,X41), X2 = (X12,X22,X32,X42), v =

(v1, v2, v3, v4) and u = (u1,u2,u3,u4) for four players. (Xk1,Xk2)’s are drawn from bivariate

normal distribution with mean (0, 0) and variance-covariance matrix

 1 0.5
0.5 1

. We set

the true parameter (π0, π1, π2, λ) = (1, 1, 1, 1).
The conditional choice probabilities P0 = (P∗1,P

∗

2,P
∗

3,P
∗

4) in the BNE are solved by

P∗k = Φ
(
β0 + β1Xk1 + γZk + α

∑
j,k

P∗j + λvk

)
, k = 1, 2, 3, 4.

The decisions are then generated by

Yk = 1
{
β0 + β1Xk1 + γZk + α

∑
j,k

P∗j + uk > 0
}
, k = 1, 2, 3, 4.

We set the true parameter (β0, β1, γ, α) = (1, 1, 1,−0.5). Each simulation was based on a
random sample of (200,400,800) observations and was replicated 1000 times. We report
the average biases and the mean squared errors for true parameter (β0, β1, γ, λ, α) =

13See Section 2.3 of Kasahara and Shimotsu (2012) for more discussion.
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(1, 1, 1, 1,−0.5) in Table 1.

Table 1: Homogeneous Competitive Effects
Average Bias

n β γ λ α
200 0.042 0.027 0.016 -0.021 0.019
400 0.010 0.009 0.015 -0.006 0.012
800 0.008 0.010 0.003 -0.002 0.007

Mean Squared Error
n β γ λ α

200 0.102 0.040 0.017 0.021 0.024
400 0.048 0.018 0.009 0.011 0.011
800 0.023 0.010 0.004 0.005 0.006

Table 2: Heterogeneous Competitive Effects
Average Bias

n β γ λ α
200 0.021 0.024 0.028 0.028 -0.010 -0.029
400 0.013 0.016 0.012 0.015 -0.005 -0.015
800 0.000 0.008 0.010 0.006 -0.001 -0.008

Mean Squared Error
n β γ λ α

200 0.090 0.039 0.017 0.023 0.025 0.024
400 0.041 0.018 0.009 0.011 0.011 0.010
800 0.022 0.009 0.004 0.006 0.006 0.005

4.2 Heterogeneous competitive effects

In this section, we consider Monte Carlo designs in which the competition effects differ
across "strong" and "weak" players. All other settings are the same as in the homogeneous
case, except that the conditional choice probabilities P0 = (P∗1,P

∗

2,P
∗

3,P
∗

4) in BNE are solved
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by

P∗k = Φ
(
β0 + β1Xk1 + γZk + αk

∑
j,k

P∗j + λvk

)
, k = 1, 2, 3, 4,

where α1, α2 = αS and α3, α4 = αW.
The decisions are then generated by

Yk = 1
{
β0 + β1Xk1 + γZk + αk

∑
j,k

P∗j + uk > 0
}
, k = 1, 2, 3, 4,

where we have the true parameter (αS, αW) = (−0.5,−1). Each simulation is based on
a random sample of (200,400,800) observations and is replicated 1000 times. We report
the average biases and the mean squared errors for (β0, β1, γ, λ, αS, αW) with true values
(1, 1, 1, 1,−0.5,−1) in Table 2.

Both Tables 1 and 2 show that our estimator converges to the true parameter values at
the parametric root-n rate. In both cases, the variances of the estimators seem to be the
dominating component in the mean-squared error (relative to bias).

5 Empirical Study: An Entry Game of Cellphone Service

Providers

In this section, we illustrate the gain from our method, which takes account of the
endogenous covariates in a discrete Bayesian game, in a setting featuring oligopolistic
firms making strategic 4G-LTE deployment decisions in local markets. The firms are the
four national cellphone service providers in the U.S.: Verizon Wireless, AT&T Mobility,
T-Mobile US and Sprint Corporation (often collectively referred to as the “Big Four”).14

The time period we look into is from 2015 to 2018, a few years before the proposal of a
T-Mobile and Sprint merger in 2019, which eventually went through in early 2020 after
lengthy legal battles over antitrust concerns.

In this industry, firms make capital investments in cellular networks and transmission
facilities before providing services to consumers. Such investments have typically been

14We will refer to them as Verizon, AT&T, T-Mobile and Sprint henceforth. These cellphone service
providers are also known as mobile network operators, wireless service providers, wireless carriers, cellular
companies, mobile network carriers, etc. In this paper, we refer to them as firms, providers, and carriers
interchangeably.
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made in accordance with the dominant technology of the time. For example, throughout
most of the 2000s, the third generation of cellphone technology (3G) was the predominant
technology, utilizing the 1850 – 1990 MHz spectrum range. Starting from roughly 2010, it
was time for the next generation of technology, 4G-LTE.15 A firm with 3G deployment in
a local market can repurpose spectrum used by 3G to support 4G-LTE and can utilize
existing facilities, such as cell towers, with upgraded equipment. Such investment
also feature heavy spatial consideration. For example, extending coverage from central
Phoenix to nearby cities and towns would be easier than providing de novo services to
these markets. We measure a potential entrant’s network investment for a local market by
the firm’s 3G deployment in the focal market and 4G-LTE deployment in nearby markets.
These two sets of network investments are the firm-specific, endogenous covariates we
focus on in our empirical framework. They are important determinants of a firm’s decision
to provide a new generation of technology in a local market, driven by the same source
of the unobserved heterogeneity that underlies a firm’s entry decision.

In the following subsections, we will describe the background of the U.S. cellphone
service industry, the policy relevance of our empirical application, the data we construct,
and the empirical specification we use. In particular, we will evaluate a counterfactual
experiment in which T-Mobile and Sprint merged in 2016, which would have led to
different 4G-LTE deployment paths in markets that these firms had not yet entered in
2016. We will discuss the discrepancies in policy implications and recommendations with
and without accounting for the endogeneity in network investment.

5.1 The U.S. Cellphone Service Industry at a Glance

Up until April 2020, Verizon, AT&T, T-Mobile and Sprint were the four major cellphone
service providers in the United States. There were also a few regional providers, such
as U.S. Cellular and C Spire Wireless, and a fringe of local providers, such as Cricket
Wireless and TracFone Wireless, which often offered flexible, more economical prepaid
plans. Compared to the Big Four, the other providers’ network deployment and market

154G-LTE stands for the fourth generation, Long Term Evolution. LTE is the technology to deliver 4G
standards, defined as having peak upload and download speeds of at least 100 mbps (mega bits per second).
4G-LTE is still not fully 4G, but is considered the closest to 4G standards by international telecommunications
communities.
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presence were almost negligible.16

A consumer (or a household) chooses a plan offered by a provider, considering prices,
coverage, speed and customer service. A plan typically ranges from $30 to $100. Among
the Big Four, Verizon and AT&T were known for the best coverage, while T-Mobile
and Sprint were seen as offering comparable deals with lower prices but less coverage.
The Federal Communications Commission (FCC) is the main regulator of this industry,
while the Department of Justice (DOJ) and the Federal Trade Commission (FTC) share the
responsibility for evaluating anti-competitive conduct in this industry.

5.2 Cellular Network Investment

A cellular network is composed of cellphones, base transceiver stations (“cell sites”),
mobile telephone switching offices, and the public switched telephone network.17 When
joined together, cellular networks provide radio coverage over a wide geographic area,
enabling cellphones to communicate with each other. Globally, major telecommunications
providers have deployed cellular networks over most of the inhabited land area on Earth.

Building a cellular network takes decades of physical and financial investment from
a provider. In the past few decades, mobile wireless technologies have experienced
multiple generations of evolution — namely, from 0G to 5G. In the 2000s, 3G technology
was implemented, enabling media streaming with high connection speed. From the
start of the 2010s, 4G-LTE was rolled out gradually, accounting for more than half of
mobile connections, hitting 52% for the first time in 2019.18 Cellular networks need to
be maintained and updated constantly, with a substantial cost for sustaining network
operation. The Global System for Mobile Communications (GSM) Association projected
in 2020 that global network operators would invest more than $1.1 trillion in their networks
in the next five years.

During our study period, from 2015 to 2018, 4G-LTE grew to be the dominant network
technology. The Big Four have constructed their main 4G-LTE networks, but even

16The Big Four and US Cellular are the only Mobile Network Operators (MNOs) in the continental U.S.
— that is, providers that own and control the spectrum licenses and network infrastructure necessary to
provide services to subscribers. All other cellphone providers in the U.S. are Mobile Virtual Network
Operators (MVNOs), relying on other firms’ network infrastructure to provide services.

17We explain the components and evolution history of cellular networks in Appendix B.
18Industry experts predict that 4G will peak at just under 60% by 2023 (The GSM Association Intelligence,

“The Mobile Economy 2020.”)
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extending services to an unserved local market from this main network involves millions
to billions of dollars. A potential entrant for a local market needs to first acquire spectrum
licenses, depending on the size of the market served.19 A provider then needs to build
cell sites, purchase radio transmitters and receivers, and acquire access to intermediate
links connecting different wired networks (“backhaul”). The firm also must build a
distributional network and market its services to retail consumers. To sum up, the biggest
hurdle of deploying a new network technology is the substantial costs involved; these
costs can become prohibitive in areas with low population density and rugged terrains.
Retiring technologies of previous generations can free up spectrum and existing facilities
to accommodate the next generation of technology; at the same time, deploying a new
technology in a cluster of nearby markets, simultaneously or sequentially, helps a provider
to achieve economies of scale. For these reasons, it is essential to incorporate the “network
investment” effect in a potential entrant’s evaluation of the expected payoff from entering
a local market. When we study providers’ decisions to enter local markets, not accounting
for the network investment factor means ignoring a first-order difference between Verizon,
an industry leader, and Cricket Wireless, a fringe player.

5.3 T-Mobile and Sprint Merger: Policy Considerations

T-Mobile and Sprint announced a merger deal of $26 billion on April 29, 2019. The
proposed merger would reduce the number of national providers from four to three,
leading to antitrust concerns by state governments and regulating agencies.20 The merging
parties claimed a substantial saving of $43.6 billion via cost synergies, which would allow
the merged firm to become a stronger competitor against Verizon and AT&T. Proponents
of this merger argued that it would generate broader coverage, greater capacity, higher
service quality and a rapid deployment of a nationwide 5G network (Wallsten, 2019).
Opponents argued that the reduction in the number of providers would lead to higher

19A spectrum license gives its holder the exclusive option to use a certain range of frequencies in a well-
delineated geographic area. A firm can purchase these licenses in the FCC spectrum auctions or acquire
them in secondary markets through purchase or renting. Xiao and Yuan (2020) describe the 2008 FCC
auction to sell off 700 MHz, used mainly for 4G-LTE deployment.

20Internationally, the telecommunications industry has experienced a wave of consolidation activities
recently. Most notably, the European Commission allowed four-to-three mergers in the Netherlands,
Austria, Ireland, Germany and Italy, but blocked a similar merger in Denmark (Genakos, Valletti, and
Verboven, 2018).
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prices, fewer choices, lower quality, and a slow rollout of 5G services.21

On July 26, 2019, the DOJ approved the merger after T-Mobile and Sprint reached an
agreement to sell Sprint’s branded prepaid business,22 Sprint’s entire 800 MHz portfolio,
and other assets to the DISH Network (“DISH” henceforth). The DOJ believed that DISH
had the sufficient spectrum holdings and that the divestiture from the merger would help
DISH become the fourth national provider. The DOJ also prescribed detailed operational
instructions for DISH to enter as a facilities-based provider instead of just a reseller.23 The
DOJ argued that this remedy would restore the ex ante competitive market conditions
before the merger. However, opponents questioned the effectiveness of this remedy,
calling it “exceedingly optimistic” (Economides et al., 2019).

On October 18, 2019, the merger received formal approval from the FCC in a 3-2
commissioner vote, but attorney generals from 14 states soon filed lawsuits to block the
merger. After lengthy negotiations with the states and the DOJ, the merger officially
closed on April 1, 2020, with the Sprint brand discontinued on August 2, 2020.

Evaluating the overall effects of the merger is beyond the scope of this paper. Instead,
we focus on evaluating a key claim of the merger’s benefit: it would strengthen
competition in rural areas and alleviate the divide in cellular infrastructure across the
states (Wallsten, 2019). The pre-merger T-Mobile and Sprint did not have sufficient assets
and coverage to compete effectively with the industry leaders, especially in rural areas.24

The merged firm, aided by “the unique combination of spectrum, sites and equipment of T-
Mobile and Sprint”,25 would become a comparable rival to AT&T and Verizon. Opponents
of the merger, such as the Rural Broadband Association, argued that T-Mobile had shown
little incentive to invest in rural areas, and, therefore, its incentives were unlikely to change

21Department of Justice Complaint, U.S. et al. v. Deutsche Telekom AG, T-Mobile Us, Inc., Softbank
Group Corp., and Sprint Corporation, No. 1:19-cv-02232, at 3 (D.D.C. Jul. 26, 2019) Case 1:19-cv-02232, July
26, 2019.

22This includes Boost Mobile and Virgin Mobile, representing 9.3 million consumers.
23The DOJ imposes on the merging parties an obligation to permit DISH to operate as a reseller on the

merged firm’s wireless network for the entire seven-year term of the settlement. DISH promised to comply
with the network build commitments made to the DOJ by 2023. If DISH’s own network does not serve 70%
of the country by then, it will face penalties of up to $2.2 billion.

24The FCC reported that in December 2016, more than 98% of rural Census blocks had at least one LTE
provider, but only 57% had at least four providers, compared to 96% of non-rural blocks.

25T-Mobile and Sprint, “Description of Transaction, Public Interest Statement, and Related
Demonstrations,” June 18, 2018, page 16.
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following this merger.
We investigate how a hypothetical T-Mobile and Sprint merger in 2016 would

have affected the 4G-LTE deployment by national providers. This is an important
counterfactual analysis because no post-merger network deployment data are yet
available. We also evaluate the remedy proposed by the DOJ, which divests assets from
the merger to support DISH as a national provider. We exploit data and a structural model
of discrete Bayesian games to analyze the impact of the hypothetical merger and remedy,
taking into account the firms’ post-merger network consolidation and strategic responses.

5.4 Data Sources

We use three publicly available data sets to construct our sample. The first data are
from the FCC’s Mobile Deployment Form 477 from 2015 to 2018, which reports semi-
annually each provider’s 2G-4G coverage in every U.S. census block.26 The FCC requires
all facilities-based broadband providers to file Form 477, which discloses where they offer
Internet access service at speeds exceeding 200 kbps in at least one direction. In particular,
for each mobile network technology deployed in each radio frequency band, facilities-
based mobile providers must submit polygons representing their nationwide coverage
area of that technology and the advertised data upload and download speeds. Providers’
submission of data is mandatory, and they must certify the accuracy of the data submitted.

With providers’ submitted data on coverage polygons, the FCC reports the percentage
of the area in a census block covered by each technology (including 2G, 3G, 4G-non-LTE,27

and 4G-LTE) by each provider, using a computationally intensive process.28 In addition,
the FCC reports the percentage of a census block covered by “any” technology. From

26The FCC started to report the Mobile Deployment (including both voice and broadband) data from
December 2014, but 2015 was the first year that the FCC reported the actual area coverage within a census
block by each provider. Much of the information presented on data description is based on the FCC’s Public
Notice (DA 16-1107), released on September 30, 2016.

274G-non-LTE refers to technologies that do not reach 4G standards but were marketed as 4G by cellphone
providers. 4G-non-LTE will be ultimately replaced by 4G-LTE. Sprint and Clearwire, for example, invested
in WiMax rather than LTE and had to rebuild their 4G networks.

28The FCC first removes the spectrum and speed information from each shapefile filed by a provider,
and then consolidates different polygons for a particular technology for a particular provider into a single,
unique polygon. The FCC then determines how much of a census block is covered by this unique polygon.
The FCC has not calculated how much the coverage reported for one technology does or does not overlap
with coverage of another technology — e.g., 2G and 3G overlap within a census block.
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December 2015 to December 2018, the FCC data provide seven snapshots of each firm’s
granular-level network deployment information. Each snapshot of data has about 45
million observations at the firm-census block level.

The second data set is the 2016 American Community Survey. We obtain demographic
variables such as population size, age, gender and ethnicity profiles, income, and
commuting patterns that are potential determinants of a consumer’s cellphone use. The
third data set is the 2000 Population Census. We use exactly the same variables as the
ones we obtain from the 2016 American Community Survey, to be used to construct our
instrument variables – the lagged demographics of neighboring markets – for endogenous
network investment variables.

5.5 Variable Definition and Sample Construction

With the raw data, we define open markets for 4G-LTE deployment by the four major
national providers and then merge in demographic variables at the census tract level.

5.5.1 Aggregation to census tracts

We use the December editions of the FCC’s Mobile Deployment Form 477 data from 2015
to 2018, which yield a four-year snapshot of mobile network deployment for the universe
of U.S. census blocks. A census block is the smallest geographic unit in the U.S. Census,
amounting to more than 11 millions observations in the 2010 Census. A census block is
typically a very small geographic area; for example, it is often a city block bounded on all
sides by streets, and we do not think that deployment decisions are made on such a fine-
grained geographic basis. We, therefore, aggregate these census blocks to the universe of
73,057 census tracts. A census tract is designed to be a relatively homogeneous unit with
respect to population characteristics, economic status and living conditions, generally
encompassing a population between 2,500 to 8,000 people.29 A census tract usually covers
a contiguous area; however, the spatial size of census tracts varies widely depending on
the density of the settlement. A rough estimate of the radius of a typical census tract is
6.5 kilometers.30 Although cell towers have a maximum range of 50 to 70 kilometers, they

29Due to their size and internal homogeneity, Seim (2006) uses census tracts as location choices for video
retail stores.

30The total area of the U.S. is 9.857 million square kilometers, covering 73,057 census tracts. A census
tract covers 134.9 square kilometers, on average, with roughly 6.5 kilometers as the radius.
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are typically spaced two to three kilometers apart to adequately handle cellphone traffic.31

Based on the above comparison, we define census tracts as geographic markets based on
which cellphone providers make investment and network deployment decisions.

For every firm in every census tract, we calculate the percentage of census blocks
covered within the census tract by a given technology. The FCC-reported census block
coverage has a bipolar distribution, with a small peak between 0% and 10% coverage and
a major peak at 100%.32 We think that some census blocks may experience low, spillover
coverage from a nearby cell site in another census block, and this is not an actual entry.
Therefore, we define a provider’s coverage of a census block under a given technology
as a dummy variable that equals 0 if the FCC-reported coverage falls below 10%, and 1
otherwise. When we aggregate to census tracts, we use the same reasoning and define
the entry dummy for 4G-LTE as 0 if the percentage of census blocks covered by 4G-LTE
within a census tract falls below 10%, and 1 otherwise.

5.5.2 Sample construction

By December 2015, 4G-LTE has been well deployed by the Big Four across the U.S.,
although the fringe competitors (about 80 of them in total) lagged distantly behind.
Verizon had entered 98.8% of the 73,057 census tracts; AT&T followed closely with 98.1%;
and T-Mobile and Sprint trailed them, with 95.3% and 92.4%, respectively. The non-big-
four firms had much smaller coverage in comparison. Even the largest one, U.S. Cellular,
had entered only 13.9% of the 55,644 census tracts for which it could have been considered
a potential entrant.33 Other fringe competitors’ entry rates were typically below 5% in any
given year, and they often considered only urban markets or urban clusters in rural areas.

For the Big Four, we can safely argue that the national 4G-LTE network was mostly
laid out by the end of 2015, and the remaining task was about the leftover, often isolated,
open markets. We focus on their decisions to enter these local, isolated markets. For each

31In urban areas, cell towers may be 400 to 800 meters apart to accommodate the dense population.
32For example, for AT&T and Verizon, the 4G-LTE coverage of a census block was already 100% at the

10% percentile for most of our data period; for T-Mobile and Sprint, this number was at high 90% at the
10% percentile.

33A firm usually needs to obtain approval from a state before entry (Fan and Xiao, 2015). If a firm had
not operated in a single census tract in a state, we do not consider this firm as a potential entrant to any
census tracts of the state. Verizon and AT&T had operated in all states (including the District of Columbia);
T-Mobile had entered 50 states and Sprint 49 states.
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provider, a census tract is defined as an open market for 4G-LTE deployment (an entry
decision) if the deployment dummy was 0 in December 2015. We then use the 2018 data
to measure 4G entry into the open markets, as well as deployment of earlier technologies,
treating the time between 2016 and 2018 as a single period in the cross-sectional data.

To summarize, during 2006 and 2018, the Big Four were the main competitors in the
U.S cellphone industry, and they were strategically considering whether to enter the few
remaining, scattered, markets left open to 4G-LTE deployment. We define a potential
entrant to a market as a Big Four provider who had no 4G-LTE deployment in the market
by the end of 2015. A potential entrant is observed as having entered a market if it
made 4G-LTE deployment by the end of 2018.34 We drop all census tracks with only one
potential entrant in order to better focus on the game theoretic aspects in entry decisions.

5.5.3 Summary statistics: the Big Four’s cellphone deployment

In Table 3, we present summary statistics of the Big Four’s cellphone technology
deployment in their open 4G-LTE markets by the end of 2015. Of the 2,582 census tracts in
our sample, Verizon had not entered 645 by the end of 2015 (i.e., no 4G-LTE deployment
by the end of 2015); AT&T, 1,132 markets; T-Mobile, 2,185 markets; and Sprint, 2,182
markets. Table 3 shows how the Big Four differed in their technology mix of 2G, 3G,
4G-non-LTE, and 4G-LTE. From 2016 to 2018, Verizon focused almost completely on 4G-
LTE; AT&T retired 2G and pushed for 3G, 4G-non-LTE, and 4G-LTE, with 4G-LTE leading
the growth; T-Mobile grew all four technologies, again with 4G-LTE making the largest
strides; Sprint never deployed 4G-non-LTE and made relatively small steps compared to
its rivals. Of the four technologies, 4G-LTE is the one that experienced the most growth
across the board from 2015 to 2018. The 4G-LTE growth is also reflected by the percentage
of 4G-LTE coverage in other tracts of the same county (referred to as “neighboring tracts”
henceforth) and the number of incumbents offering 4G-LTE in the focal markets.

We use two network deployment variables to capture a potential entrant’s existing
facilities in the focal market and nearby areas. The first is the firm’s 3G deployment in the
focal market by the end of 2015 (we call it Zk1). The second is the firm’s 4G-LTE deployment
in neighboring tracts by the end of 2018(we call it Zk2). As we discussed in Section 5.2,
different generations of cellphone technologies can share some basic facilities(e.g., cell

34We keep the other fringe competitors when counting the number of incumbents in a census tract.
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towers), and nearby cell sites reduce the cost of extending the network extra miles (e.g.,
nearby conduits can be extended to bordering neighborhoods). Therefore, Zk1 and Zk2 can
be viewed as cost shifters for a provider k’s entry decision into the focal market.

A potential entrant’s network investment can be measured in different dimensions.
For robustness, we use a potential entrant k’s deployment via any previous generation
to 4G-LTE in the focal market by the end of 2015 as Zk1, and its 4G-LTE deployment in
neighboring tracts by the end of 2015 as Zk2. We discuss the robustness of our results
under different measurements of Zk1 and Zk2 in Appendix B.

5.5.4 Summary statistics: market attributes

In Table 4, we compare the market attributes of the census tracts in the sample for
our entry game and those of the remaining parts of the country. The most important
determinant of entry is population size. Demand for cellphone services depends on market
demographics such as gender, age, ethnicity profiles, education, labor force participation,
household income and size. Workers’ commuting patterns also contribute to the intensity
of cellphone use. Lastly, population density, ruralness and the presence of large areas of
water can be considered cost shifters for network deployment.

As shown in Table 4, the 2,582 census tracts, which have at least two Big Four potential
entrants, are notably different from the rest of the country in all dimensions. They have
much smaller populations and very different demographic compositions. They are more
rural, more sparsely-populated, poorer and less educated. They spend more time working
from home and less time commuting to work. In short, these markets seem to belong to
the bottom side of the “digital divide,” which refers to the significant disparity in Internet
access across different demographic groups and geographic areas in the country.

5.6 Instrumental Variables

To clearly specify our equations (1) and (2) in this cellphone 4G-LTE entry game
application, we reiterate our notation:

• Yk: potential entrant k’s 4G-LTE entry decision;

• Zk: include potential entrant k’s 3G deployment in the focal census tract, Zk1, and its
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Table 3: Cellphone Service Coverage (2015-2018), by the Big Four
2015 2018

Variable Mean S.D. Mean S.D.

Verizon: potential entrant to 645 tracts
% blocks with 2G 0.007 0.052 0.019 0.106
% blocks with 3G 0.005 0.043 0.016 0.094
% blocks with 4G-non-LTE 0 0 0 0
% blocks with 4G-LTE - - 0.122 0.233
% blocks 4G-LTE, neighbor tracts average 0.447 0.301 0.534 0.365
# incumbents with 4G-LTE 1.297 1.108 1.964 1.460
Entry with 4G-LTE - - 0.267 0.443

AT&T: potential entrant to 1,132 tracts
% blocks with 2G 0.233 0.357 0 0
% blocks with 3G 0.384 0.414 0.468 0.433
% blocks with 4G-non-LTE 0.357 0.409 0.403 0.424
% blocks with 4G-LTE - - 0.362 0.396
% blocks 4G-LTE, neighbor tracts average 0.336 0.372 0.545 0.334
# incumbents with 4G-LTE 1.479 0.877 2.511 1.329
Entry with 4G-LTE - - 0.542 0.498

T-Mobile: potential entrant to 2,185 tracts
% blocks with 2G 0.046 0.163 0.133 0.312
% blocks with 3G 0.011 0.083 0.164 0.315
% blocks with 4G-non-LTE 0.003 0.032 0.243 0.366
% blocks with 4G-LTE - - 0.496 0.423
% blocks 4G-LTE, neighbor tracts average 0.206 0.326 0.534 0.326
# incumbents with 4G-LTE 1.876 0.821 3.011 1.195
Entry with 4G-LTE - - 0.648 0.478

Sprint: potential entrant to 2,182 tracts
% blocks with 2G 0.154 0.314 0.195 0.345
% blocks with 3G 0.147 0.309 0.173 0.326
% blocks with 4G-non-LTE 0 0 0 0
% blocks with 4G-LTE - - 0.208 0.358
% blocks 4G-LTE, neighbor tracts average 0.107 0.231 0.259 0.317
# incumbents with 4G-LTE 2.055 0.787 3.286 1.015
Entry with 4G-LTE - - 0.293 0.455

Notes: This table is based on 6,244 tract-firm observations (2,582 Census Tracts, two to
four potential entrants in each tract). This table reports the Big Four’s coverage of census
blocks by each generation of technology, summarized over Census tracts each firm has
yet to enter with 4G-LTE by the end of 2015.
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Table 4: Census Tract Attributes
Markets to enter Other markets

Variable Definition Mean S.D. Mean S.D.
Pop(in 000’s) Population in thousands 2.901 1.758 4.414 2.171
% Female % female in population 0.495 0.045 0.508 0.050
% Senior % 65 and older in population 0.285 0.266 0.153 0.092
% White % White in population 0.862 0.209 0.724 0.253
% Black % Black in population 0.038 0.107 0.142 0.222
% Native % Native in population 0.044 0.161 0.008 0.035
% Asian % Asian in population 0.012 0.037 0.049 0.091
% Hispanic % Hispanic in population 0.072 0.129 0.163 0.215
% College % above 25, with college degree 0.193 0.092 0.294 0.190
% Labor force % above 16, in labor force 0.573 0.109 0.631 0.103
% Work home % above 16 & employed, working at

home
0.056 0.047 0.045 0.040

% Long comm. % above 16 & employed, commuting for
40+ minutes

0.167 0.106 0.201 0.129

HH income Median household income in 2016 $,
000’s

46.127 14.499 59.641 29.860

HH size Household size 4.651 5.688 2.915 1.835
Pop density Population/land area 0.0002 0.0007 0.002 0.005
% Rural % population in rural area 0.683 0.404 0.190 0.348
Mostly water If water area ≥ 90% 0.113 0.317 0.0007 0.027
Notes: This table is based on 73,057 Census tracts, which include 2,582 tracts for the final
sample we use for estimation and 70,475 tracts for the rest of the data.
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4G-LTE deployment in neighboring tracts, Zk2;

• Xk1: tract attributes from 2016 ACS + the number of 4G-LTE incumbents in the focal
census tract by the end of 2015;35

• Xk2: instrumental variables for Zk1 and Zk2 (all variables summarized in Table 4);

• uk: unobserved errors in the ex post payoffs (equation (1));

• Vk: unobserved errors that determine Zk1,Zk2 (equation (2)).

In the above specification, we focus on 4G-LTE competition. For example, we do not
consider an incumbent that offers 3G only as a legitimate competitor to a 4G-LTE provider.
We have two endogenous covariates in a potential entrant’s expected payoff function: Zk1

and Zk2. In this subsection, we discuss our choice of Xk2, which serves as instrumental
variables for Zk1 and Zk2.

In the ex post payoff function, the unobserved error uk is a potential entrant’s private
information. The potential entrant observes uk before deploying different generations of
technology in the focal and nearby markets. A good example of this unobserved term
is each firm’s spectrum holdings for the focal market. This unobservable enters both the
firm’s expected payoff function (equation (1)) and the technology deployment function
(equation (2)), causing the correlation between uk and Vk. Valid instruments for Zs need
to be excluded from the entry payoff function, to be orthogonal to uk and Vk, and to enter
the technology deployment equation.

For each focal census tract, we use demographics of its "neighbors" (i.e., other tracts in
the same county) in 2000 as instruments for Zk1 and Zk2. The 2000 demographic variables
of neighboring tracts determine the 3G and 4G-LTE deployment in these neighboring
markets, but they do not enter the 4G-LTE deployment of the focal market directly
conditioning on the focal market’s observables. Furthermore, it is plausible to assume that
these neighboring demographics are orthogonal to the unobserved factors determining
deployments in focal and neighboring markets (uk and Vk), once conditional on market-
level observables.

35We treat the number of incumbents as predetermined and uncorrelated with the unobserved uk in the
entry payoff equation. An incumbent’s entry decision was made earlier, before the realization of a potential
entrant’s time-varying private shocks.
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These instruments affect the 4G-LTE deployment decision of a firm in the focal market
indirectly through the “spillover” effect. The 3G deployment in neighboring markets
could lower the cost of 3G deployment in the focal market (Zk1), which, in turn, lowers
the cost of 4G-LTE deployment in the focal market. Similarly, the 4G-LTE deployment in
neighboring markets (Z2) could lower the cost of 4G-LTE deployment in the focal market.

One may worry that a potential entrant decides entry on a much larger scale than
a census tract, so these instruments will enter the payoff function of the focal market.
However, the remaining tracts to enter in 2016 were typically isolated spots with the
surrounding tracts well served before the start of our sampling period, as shown in
Table 3’s summary statistics on the percentage of census blocks covered with 4G-LTE in
the neighboring tracts. Therefore, modeling the Big Four providers’ post-2015 4G-LTE
deployment decisions on the level of local markets serves as a first-order approximation
that captures the firms’ main strategic concerns.

We choose neighboring markets’ attributes in 2000 (instead of in 2016) as our
instruments for several reasons. First, 3G technology was actively deployed between
2000 and 2010; therefore, the 2000 Census’s market attributes are more relevant to
3G deployment. Second, the correlation between 2000 Census’s market attributes and
2016’s market-level unobserved heterogeneity is weakened with time, giving us better
justification for the orthogonality of the instruments. Lastly, as we can reasonably
argue that the detailed market-level attributes we include in Xk1 capture the spatial
correlation across census tracts, we abstract away spatial correlation in the unobservables.
That is, conditional on Xk1, the error term uk, which captures firm- and market-specific
heterogeneity, is not spatially correlated.

5.7 Estimation Results

Among the Big Four, AT&T and Verizon lead in terms of spectrum holdings, network
built and customer base. Our baseline specification categorizes AT&T and Verizon as
“strong” competitors and T-Mobile and Sprint as “weak.” We estimate heterogeneous
competitive effects based on whether the potential entrant is strong or weak. We present
results treating all four firms as equal competitors in Appendix C. We adopt a specification
in which firms share the same coefficients for all covariates (other than the aforementioned
heterogeneous competition effects) in ex post payoffs. Thus, for simplicity, we suppress the
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generic index k in Zk1,Zk2,Vk1,Vk2 when reporting our estimation and simulation results.
Table 5 presents estimation results from two models, with and without accounting for

endogeneity in Z. In the latter case, all covariates in X1 and Z are considered exogenous
in MLE estimation. Using our estimator in Section 3 to allow for endogenous Z, we get
estimates that mostly conform to our expectations. The “expected competition” effects
(αk) are significantly negative, with a stronger negative effect for weak potential entrants.
The incumbent effect is also significantly negative. Population size contributes to 4G-LTE
entry positively, but the percentages of seniors and Natives, as well as water coverage, act
in the opposite direction. The percentage of labor force participation and the population
density, surprisingly, contribute to 4G-LTE entry negatively. We suspect that the markets
that some of the Big Four providers had not entered by 2016 may have inherent differences
from other markets, in terms of how population density and labor participation affect
profitability.

Allowing for potential endogenous Z’s turns out to have a big impact on the estimates
of network investment effects. Both models produce significantly positive estimates for
the coefficients of Z’s, but ignoring the endogeneity in Z underestimates the effect of Z1

while over-estimating that of Z2. The reason for such discrepancies can be attributed
to the roles of structural errors (Vs) in the expected entry payoff. These Vs are firm- or
market-level heterogeneity, which may contribute to 3G/4G-LTE deployment in the focal
market and 4G-LTE deployment in the neighboring markets in different directions. For
instance, V1 may have a positive effect on 3G deployment before 2015 but a negative
impact on 4G-LTE deployment after 2015, while V2 is the other way around.

A good example example of V’s that can lead to these patterns is each firm’s spectrum
holdings for different generations of cellphone technology. The spectrum of a certain
frequency often best serves a particular generation of cellphone technology and has
different suitability for urban, suburban and rural deployment. For example, 700 MHz
is considered the right band for 4G-LTE, while 2.5GHz is right for 5G. A firm may have
a rich stock of 3G spectrum but a poor stock of 4G-LTE spectrum, simply due to budget
constraints.36 The negative correlation between a firm’s 3G and 4G-LTE spectrum holdings

36For example, T-Mobile did not (and still does not) have enough low-band spectrum (600 MHz), which
has wider reach and is better suited for rural deployment; instead, it relies on 1,700MHz and 1900MHz for
4G-LTE deployment, which is better suited for urban and suburban areas.
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in a focal market (which are captured in V1 and u, respectively) is consistent with a negative
coefficient for V1 in our estimates, which account for endogenous Z1. In addition, this
negative correlation also explains the negative bias in the estimated coefficient for Z1

when its endogeneity is ignored (i.e., 2.024<3.809 ). At the same time, note that if a firm
owns a 4G-LTE spectrum license for the focal census tract, this license covers at least the
entire county due to its indivisible nature.37 Hence, there is a positive correlation between
the 4G-LTE spectrum holdings in the focal and neighboring markets (captured by u and
V2, respectively). This is consistent with a positive coefficient for V2 in our estimates
accounting for endogenous Z, and it leads to a positive bias in the estimated coefficient
for Z2 when endogeneity is ignored (i.e., 3.042>1.284).

5.8 Counterfactual Results: Evaluating the Merger and the Merger

Remedy

In this section, we investigate the impact of a hypothetical merger between T-Mobile
and Sprint in 2016. In the first scenario, we use the structural estimates from Table 5
to simulate market outcomes under a baseline scenario with no mergers. In the second
scenario for simulation, T-Mobile and Sprint are merged into a "strong" competitor with
integrated T-Mobile and Sprint network (henceforth referred to as a “New T-Mobile”).38

In the third scenario, we introduce DISH as a new potential entrant. It is modeled as
a "weak competitor" that takes over the decommissioned network originally owned by
Sprint. That is, in this scenario, the T-Mobile and Sprint merger is mandated to divest
assets to the new competitor DISH, enabling DISH’s entry as a facilities-based provider.
This scenario corresponds to the DOJ’s proposed remedy based on anti-trust concerns.
We keep all 2,582 open markets in the baseline simulation, which has a combined total

37The FCC’s smallest coverage for a spectrum license is the Cellular Market Area, which typically covers
three to four counties. Even if firms divide spectrum licenses for resale and lease in secondary markets,
they do not break down counties (Kavalar, 2014).

38After the merger, T-Mobile will bridge the two network cores by routing Sprint traffic to the T-Mobile
anchor network. An estimated 11,000 Sprint cell sites will be retained to improve capacity and/or coverage
in the new network. We implement the after-merger network integration in data by taking the union or the
maximum of T-Mobile’s and Sprint’s coverage at the census block level. These two methods yield almost
identical results because, in census tracts where both firms serve, they serve mostly at 100% coverage. We
report the maximum result in the paper.
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Table 5: Estimation Results of the 4G-LTE Entry Game: Structural Coefficients

Endogenous Z No endogenous Z
(1) (2)

Variable Estimate Std. Error Estimate Std. Error
Pop (in 000’s) 0.076*** 0.021 0.081*** 0.019
% Female 0.513 0.730 0.417 0.743
% Senior -1.033** 0.466 -1.110** 0.434
% White -0.367 0.563 -0.170 0.502
% Black -0.502 0.589 -0.367 0.527
% Native -1.493*** 0.573 -1.611*** 0.514
% Asian 0.593 1.562 1.290 1.302
% Hispanic -0.425 0.398 -0.185 0.313
% College -0.089 0.445 -0.063 0.404
% Labor force -1.020*** 0.328 -0.627** 0.308
% Work home 0.177 0.576 0.768 0.606
% Long comm. 0.213 0.346 -0.508* 0.307
HH income -0.002 0.003 -0.006* 0.003
HH size -0.037 0.028 -0.059** 0.025
Pop density -0.156* 0.093 -0.229*** 0.088
% Rural 0.184 0.135 0.188** 0.094
Mostly water -1.769*** 0.585 -2.418*** 0.532
# Incumbents -0.139*** 0.050 -0.225*** 0.041
Intercept 1.109 0.795 0.871 0.757
Network Investment Effects

Z1 3.809*** 0.855 2.024*** 0.176
Z2 1.284*** 0.390 3.042*** 0.096
V1 -1.791** 0.853 – –
V2 1.837*** 0.407 – –

Expected Competition Effects
Strong potential entrant -1.053*** 0.086 -1.084*** 0.085
Weak potential entrant -1.105*** 0.062 -1.133*** 0.062
Notes: The results are based on 6,244 observations, corresponding
to two to four potential entrants for 2,582 Census tracts. Standard
errors are obtained from resampling of markets with replacement
1,000 times. Asterisks indicate the statistical significance at the 1%
(∗∗∗), 5% (∗∗), and 10% (∗) levels.
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population of 17,209,450.39

We use the estimated coefficients in Table 5 to simulate the local market entry decisions
of Verizon, AT&T and New T-Mobile (and DISH in the third scenario). For comparison,
in each scenario, we simulate two sets of outcomes, one with and one without accounting
for endogenous Z. Panel A in Table 6 presents the simulated market entries across
different scenarios; Panel B in Table 6 reports the population still underserved (that is, the
population with a number of providers less than or equal to one) by the end of 2018 across
these scenarios.

Columns (1) to (3) of Table 6 are simulation results under the three scenarios, using
structural estimates that account for endogeneity (column (1) of Table 5). Comparing
column (1) to column (2), we can see that the T-Mobile and Sprint merger reduces the
number of total entry occurrences from 2,904 to 2,247, a 23% reduction rate. This leads
to a large increase (28%) in the underserved population, especially the rural population
(32%). There are two explanations for such a reduction: First, there are fewer potential
entrants on the markets after the merger. Second, the New T-Mobile resulting from the
merger is a strong competitor with integrated deployment from Sprint and T-Mobile and,
therefore, is more likely to deter entry by the other competitors. As for each firm’s entry
occurrences after the merger, New T-Mobile would gain sizable ground after the merger
(compared to the pre-merger T-Mobile), while AT&T and Verizon would stay roughly the
same. Overall, the reduction of total instances of market entry after the merger is due
mainly to the fact there would be fewer potential entrants.

Now, consider the scenario in which DISH is introduced after the merger as a fourth
competitor, enabled by divestiture from the New T-Mobile, as mandated by the DOJ
(assuming that DISH is able to achieve Sprint’s deployment in 2015). In this case,
our simulation suggests that the number of entry occurrences would be 2,908. This is
substantially higher than in the scenario without the divestiture required by the DOJ and
practically restores the level of market entries before the merger. However, the big gap
in the underserved population remains — the underserved population would increase

39If either T-Mobile or Sprint was a 4G-LTE incumbent in a census tract in 2015 and the other was a
potential entrant, we assume that after the merger, New T-Mobile will re-evaluate the profitability of the
market and decide about entry again. In this case, and in the case that Sprint was a 4G-LTE incumbent in a
census tract in 2015, the number of incumbents in 2016 will be reduced by one after the merger.
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Table 6: Counterfactual Results under Alternative Models
Panel A: Entry outcomes

Allow endogenous Z No endogenous Z
(1) (2) (3) (4) (5) (6)

# markets with Baseline 4 to 3 DISH Baseline 4 to 3 DISH
n entrants = 0 520 659 540 526 588 535
n entrants = 1 1,275 1,606 1,227 1,270 1,662 1220
n entrants = 2 733 310 765 735 323 774
n entrants = 3 53 7 49 49 9 47
n entrants = 4 1 – 1 2 – 6
Total # entry occurrences 2,904 2,247 2,908 2,895 2,335 2,933

by AT&T 723 724 708 722 745 715
by Verizon 175 176 148 173 192 153
by T-Mobile/New T-Mobile 1,195 1,347 1,257 1,185 1,398 1,255
by Sprint/DISH Network 811 – 795 815 – 810

Panel B: Population (in 1000’s) under-served (# incumbents in 2018 ≤ 1)
Allow endogenous Z No endogenous Z

(1) (2) (3) (4) (5) (6)
Underserved population Baseline 4 to 3 DISH Baseline 4 to 3 DISH
Total population 203 260 250 209 255 239
Minority population 123 133 128 121 129 124
Rural population 155 204 191 162 201 183
Notes: The above results are based on 2,582 census tracts, each with one
to four potential entrants. In Panel A, the number of entrants does not
include the number of incumbents prior to 2016; in Panel B, the number
of incumbents in 2018 includes both the incumbents prior to 2016 and
the entrants between 2016 and 2018.

by 23% from column (1) to column (3). This suggests that the New T-Mobile and DISH
would be inclined to choose to enter different census tracts after the merger, leading to a
change in the composition of markets served. Analyzing each firm’s entry pattern after
the merger with the DOJ-mandated divestiture, we can see that New T-Mobile would
increase its market presence at the cost of the other three firms. In this simulation, we
have DISH assuming exactly the same network deployment as Sprint in 2015, and AT&T
and Verizon staying the same as before, so these three firms’ reduction in entry could
only be a reaction to T-Mobile’s advances: T-Mobile not only has a stronger network, but
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also becomes a “strong” potential entrant after the merger, discouraging other potential
entrants to enter. The different responses of these three firms (notably, Verizon retracted
the most from entry) can only be a strategic, equilibrium response due to the different
configuration of strong and weak competitors in the markets.

Columns (4) to (6) of Table 6 report simulation results using estimates that do not
account for endogeneity in 3G and neighboring 4G-LTE deployment (the first column
in panel (2) of Table 5). Comparing column (1) to column (4), we can see a slight
underestimation of entry occurrences and a slight overestimation of the underserved
population, creating the impression that the impact of ignoring endogeneity in Z in the
counterfactual simulation is negligible. The predicted changes in market entry under the
second (merger) and third (merger + DOJ-mandated divestiture) scenarios in columns
(5) and (6), however, are very different from those predicted in columns (2) and (3).
Specifically, if we ignore endogeneity in Z, we will underestimate the effect of the T-Mobile
and Sprint merger on the reduction of entry (19% reduction from column (4) to column
(5) using the model with no endogenous Z) and on the population affected by reduced
entry (22% increase in population underserved and 24% increase in rural population
underserved from column (4) to column (5) using the model with no endogenous Z).
Moreover, we will overestimate the effect under the third scenario (merger + DOJ-
mandated divestiture). Using the model with no endogenous Z, with DISH entry the
number of entry occurrences would increase slightly, and the underserved population
would increase by only 14% from column (4) to column (6). The key message is that
researchers would paint a much rosier picture of the consequences due to the merger and
of the remedy of proposed divestiture to alleviate the negative merger effect if they were to
use the model without considering Z’s endogeneity. Relying on such a biased prediction,
policy makers would lean more toward approving the proposed merger.

6 Conclusion

We propose a new method for estimating discrete Bayesian games with endogenous
covariates. The approach is flexible enough to accommodate endogeneity due to player-
or game-level unobserved heterogeneity. We apply the method to estimating an entry
game of 4G LTE deployments between major wireless service providers in the U.S.. In
this setting, existing 3G network deployment and neighboring 4G-LTE deployment are
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endogenous covariates. Our results show that incorporating the endogeneity of network
investment affects our estimates of economic primitives, the counterfactual simulations
under a hypothetical merger between T-Mobile and Sprint, and the policy implications.
We find that this hypothetical merger would reduce 4G-LTE deployment significantly
and that the divestiture remedy would not completely reverse the negative outcomes
of the merger. Based on our results, we recommend that competition and regulatory
authorities fully consider the multi-dimensional trade-offs between market power effects
and efficiency gains from drastic changes in market structure.
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Appendix A Proofs

Proof of Lemma 1. The existence of BNEs follows from the continuity of the mapping Γ and
an application of the Schauder Fixed-point Theorem. We show the uniqueness of BNE by
contradiction.

Suppose that there are two distinct BNEs, P1
≡ (P1

1, · · · ,P
1
K) , (P2

1, · · · ,P
2
K) ≡ P2. From

Equation (5), we have

|P1
k − P2

k | =
∣∣∣∣ fk

(
X′k1βk + Z′kγk + αk

∑
j,k

P̃ j +
∑
j∈K

V′jλk, j

)
· αk ·

∑
j,k

(P1
j − P2

j )
∣∣∣∣

≤ sup
t

fk(t) · |αk| · (K − 1) max
j∈K
|P1

j − P2
j | < max

j∈K
|P1

j − P2
j |,

where P̃ = (P̃1, · · · , P̃K) is a vector of probabilities between P1 and P2. The first equality is
due to the Mean Value theorem, and the second inequality is due to Assumption 2. Taking
maximization of the left-hand side over K leads to a contradiction: maxk∈K |P1

k − P2
k | <

max j∈K |P1
j − P2

j |. �

Proof of Theorem 1. (Consistency of θ̂2SNPL) First, we show that Ln(·, ·; Π̂)
p
−→ L0(·, ·) uniformly

over Θ × P. By the mean value theorem, for any θ ∈ Θ, P ∈ P,

Ln(θ,P; Π̂) − Ln(θ,P; Π0) = ∇ΠLn(θ,P; Π+)(Π̂ −Π0), (10)

where Π+ denotes an intermediate value between Π̂ and Π0. By (10) and the triangular
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inequality,

supθ,P
∣∣∣∣Ln(θ,P; Π̂) − L0(θ,P)

∣∣∣∣
≤ supθ,P |∇ΠLn(θ,P; Π+)|

∣∣∣∣Π̂ −Π0

∣∣∣∣ + supθ,P |Ln(θ,P; Π0) − L0(θ,P)| .

Under our maintained conditions, supθ,P |∇ΠLn(θ,P; Π+)| = Op(1). Because Π̂
p
→ Π0, the

first term on the right-hand side of the inequality is op(1). By Assumption 4-(ii) and the
fact that li(θ,P; Π0) is continuous at each θ,P with probability one, the second term on the
right-hand side of the inequality is op(1). This establishes the uniform convergence of Ln

to L0(·) over Θ × P.
Note that, by Assumption 3-(ii) and the Kullback-Leibler information inequality,

(θ0,P0) uniquely maximizes L0(θ,P) in the set Λ0. Define

T(θ,P; Π0) ≡ max
c∈Θ

{
L0(c,P; Π0)

}
− L0(θ,P; Π0),

where we write out dependence of L0 on Π0 explicitly. Because L0(θ,P; Π0) is continuous
and Θ×P is compact, Berge’s maximum theorem establishes that T(θ,P; Π0) is a continuous
function. By construction, T(θ,P; Π0) ≥ 0 for any (θ,P). Define

E ≡

{
(θ,P) ∈ Θ × P : P = Γ(θ,P; Π0)

}
.

Since Θ×P is compact and Γ is continuous, E is a compact set. By definition, Λ0 is a subset
of E. For each element in Λ0, consider an arbitrarily small open ball that contains it. Let
Bε(θ0,P0) denote the union of such open balls containing elements of Λ0. Let Bc

ε denote
the complement of Bε. We then see that Bc

ε(θ0,P0)∩E is also compact. Define the constant

τ ≡ min
(θ,P)∈Bc

ε(θ0,P0)∩E
T(θ,P; Π0) > 0. (11)

Define the event

An ≡
{∣∣∣Ln(θ,P; Π̂) − L0(θ,P; Π0)

∣∣∣ < τ/2 for all (θ,P) ∈ Θ × P
}
.

Let
(
θ∗n,P∗n

)
be an element of Λn. Then, An implies that

L0

(
θ∗n,P

∗

n; Π0

)
> Ln

(
θ∗n,P

∗

n; Π̂
)
−
τ
2

; and

Ln

(
θ,P∗n; Π̂

)
> L0

(
θ,P∗n; Π0

)
−
τ
2

for any θ ∈ Θ.

Besides, Ln

(
θ∗n,P∗n; Π̂

)
≥ Ln

(
θ,P∗n; Π̂

)
by definition of Λn. Thus,

L0

(
θ∗n,P

∗

n; Π0

)
> Ln

(
θ∗n,P

∗

n; Π̂
)
−
τ
2
≥ Ln

(
θ,P∗n; Π̂

)
−
τ
2
> L0

(
θ,P∗n; Π0

)
− τ
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for any θ ∈ Θ. Therefore,

An ⇒
{
L0

(
θ∗n,P

∗

n; Π0

)
> L0

(
θ,P∗n; Π0

)
− τ,∀θ ∈ Θ

}
,

⇒

{
L0

(
θ∗n,P

∗

n; Π0

)
> max

θ∈Θ
L0

(
θ,P∗n; Π0

)
− τ

}
,

⇒

{
τ > T

(
θ∗n,P

∗

n; Π0

)}
,

⇒

{
min

(θ,P)∈Bc
ε(θ0;P0)∩E

T(θ,P; Π0) > T
(
θ∗n,P

∗

n; Π0

)}
by (11),

⇒

{
(θ∗n; P∗n) ∈ Bε(θ0; P0)

}
.

The last induction uses the fact that (θ∗n,P∗n) ∈ E. Therefore, Pr(An) ≤ Pr
(
(θ∗n,P∗n) ∈

Bε(θ0; P0
)
. By the uniform convergence of Ln(·; Π̂) to L0(·), Pr(An)→ 1 as n→∞. Thus,

Pr
(
(θ∗n,P

∗

n) ∈ Bε(θ0; P0)
)
→ 1. (12)

For the case in which Λ0 is a singleton, this suffices for consistency of θ̂2SNPL.
In the general case in which Λ0 has multiple elements, the proof follows from the same

arguments in Aguirregabiria and Mira (2007), who proceed by showing the following
results sequentially: (1)φn converges to φ0 in probability uniformly in a neighborhood
around P0; (2) with probability approaching 1, there exists an element (θ∗n,P∗n) of Λn in any
open ball around (θ0,P0); and (3) with probability approaching 1, the 2SNPL estimator is
the element of Λn that belongs to an open ball around (θ0,P0).

(Asymptotic Normality of θ̂2SNPL) We now derive the limit distribution of θ̂2SNPL. To simplify
notation, we drop the subscript 2SNPL from the notation of this estimator in the proof below.
By definition,

1
n

∑n

i=1
∇θli(θ̂, P̂; Π̂) = 0 and P̂ − Γ(θ̂, P̂; Π̂) = 0.

A stochastic mean value theorem between (θ0,P0; Π0) and (θ̂, P̂; Π̂), together with
consistency of (θ̂, P̂) and Π̂, implies that

1
√

n

n∑
i=1

sθ,i −Ωθθ

√
n
(
θ̂ − θ0

)
−ΩθP

√
n
(
P̂ − P0

)
−ΩθΠ

√
n
(
Π̂ −Π0

)
= op(1),(

I − Γ0
P

) √
n(P̂ − P0) − Γ0

θ

√
n(θ̂ − θ0) − Γ0

Π

√
n(Π̂ −Π0) = op(1).

Solving for
√

n(P̂ − P0) from the second set of equations and substituting into the first
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set, we get

[Ωθθ + ΩθP(I − Γ0
P)−1Γ0

θ]︸                        ︷︷                        ︸
≡M

√
n(θ̂ − θ0)

=
1
√

n

n∑
i=1

sθ,i − [ΩθP(I − Γ0
P)−1Γ0

Π + ΩθΠ]
√

n(Π̂ −Π0) + op(1)

=
1
√

n

n∑
i=1

{
sθ,i − [ΩθP(I − Γ0

P)−1Γ0
Π + ΩθΠ]r0,i

}
︸                                       ︷︷                                       ︸

≡s̃i

+ op(1),

where the second equality uses the asymptotic linear representation of
√

n(Π̂ − Π0) and
its influence function r0,i ≡ ri(Π0). The asymptotic distribution of θ̂then follows from the
continuous mapping theorem.

�

Appendix B Cellular Network Explained

A cellphone is a portable telephone that can make and receive calls over a radio frequency
(“spectrum”) while the user is moving within a service area. When a user makes a phone
call or sends a message, her cellphone converts her voice or message into electrical signals,
which are transmitted from her location to the nearest cell tower via radio waves. The
network of cell towers then relays the radio waves to the receiver’s cellphone, which
converts it to electrical signals and then back to sound, text, or image again. In this
process, data travel in a “cellular network,” which is composed of cellphones, base
transceiver stations (“cell sites”), mobile telephone switching offices, and the public
switched telephone network. A cellphone is a type of Mobile Subscriber Unit, which
consists of a control unit and a transceiver that transmits and receives radio transmissions
to and from a cell site. The term cell site refers to the physical location of radio equipment
that provides coverage within a cell. The hardware located at a cell site includes power
sources, interface equipment, radio frequency transmitters and receivers, and antenna
systems. A mobile telephone switching office is the central office for mobile switching. It
houses the mobile switching center, field monitoring, and relay stations for switching calls
from cell sites to wire-line central offices. The public switched telephone network is made
up of local networks, exchange area networks, and the long-haul network that interconnect
telephones and other communication devices on a worldwide basis. Boccuzzi(2019)
describes the basics of cellular communications.

A new generation of network technology has arrived in almost every decade since
the inception of such technology. The first two generations (0G and 1G) were before the
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widespread use of cellphones.40 In the 1990s, 2G started the use of digital transmission
instead of analog transmission, marking the start of widespread use of cellphones in our
lives. In the 2000s, 3G was the predominant technology, and in the 2010s, it was 4G-
LTE. Now we are facing the transformation from 4G-LTE to 5G, the newest generation of
network technology.

Appendix C Robustness of Table 5

We check the robustness of our Table 5’s results by: 1) restricting our analysis to
homogeneous competition effects; 2) using any generation of technology (2G, 3G, and 4G
non-LTE combined) instead of just 3G to measure a firm’s previous network investment in
the focal market; 3) using a firm’s 4G deployment in neighboring markets in 2015, instead
of that in 2018, to measure the firm’s network investment in neighboring markets.

Table 7 reports the results from these alternative specifications. In specification (1), the
Big Four are treated as equal competitors. Results in this specification are very close to
specification (1) in Table 5, suggesting only small differences in how AT&T/Verizon and
T-Mobile/Sprint reacted to expected competition. In specification (2), for Z1, we expand
from 3G to include any previous generation of technology deployment in the focal market.
Compared with specification (1) in Table 5, the biggest change is that the estimate of the
coefficient for V1 loses its statistical significance. This can be attributed to the multiple
dimensions of firm- and market-level unobserved heterogeneity, each contributing to
the deployment of different generations of cellphone technology in different directions.41

In specification (3), we do not consider the concurrent deployment of 4G-LTE in the
neighboring census tracts; instead, we restrict 4G-LTE deployment in the neighboring
census tracts to the status quo before the start of the entry game. In this specification,
Z2 would stay an endogenous variable, but how the unobserved heterogeneity in the
Z2 equation contributes to 4G-LTE entry in the focal market will have a confounding
direction. A firm selectively chose to enter the neighboring markets by 2015, and this
selection may have led to negative correlation between u and V2. The results support our
conjecture, with an insignificant Z2 effect and a much smaller V2 effect.

In summary, these alternative specifications often produce different magnitudes in
estimates, but they all point to the importance of the network investment effect, as well as
a consistently negative expected competition effect.

400G refers to pre-cellphone mobile technology, such as radio telephones that were placed in cars before
the advent of cellphones. 1G refers to Analog Cellular Networks, which employ multiple cell sites to transfer
calls from one site to the next as the user travels between cell sites during a conversation.

41As discussed earlier, each generation of technology is deployed in a different era with different demand-
and supply- side factors as well as under different regulatory regimes.
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Table 7: Robustness of Table 5
Homogeneous Use any G Use 2015’s 4G
Competition for Z1 for Z2

(1) (2) (3)
Variable Est. S.E. Est. S.E. Est. S.E.
Pop (in 000’s) 0.075*** 0.021 0.071*** 0.022 0.044*** 0.017
% Female 0.515 0.729 0.646 0.756 0.329 0.571
% Senior -1.041** 0.465 -0.981** 0.502 -0.746* 0.388
% White -0.357 0.564 -0.365 0.571 -0.506 0.466
% Black -0.503 0.590 -0.516 0.583 -0.734 0.483
% Native -1.492*** 0.573 -1.642*** 0.608 -1.012** 0.457
% Asian 0.613 1.566 0.806 1.417 0.200 1.298
% Hispanic -0.414 0.398 -0.188 0.445 -0.561* 0.319
% College -0.094 0.444 0.002 0.415 0.145 0.357
% Labor force -1.022*** 0.328 -0.855*** 0.318 -1.110*** 0.282
% Work home 0.168 0.574 0.351 0.571 -0.054 0.455
% Long commute 0.205 0.346 0.030 0.352 0.576** 0.245
HH income -0.002 0.003 -0.005 0.003 0.002 0.003
HH size -0.037 0.028 -0.039 0.029 -0.011 0.023
Pop density -0.157* 0.093 -0.169* 0.088 -0.061 0.074
% Rural 0.177 0.135 0.077 0.130 0.108 0.115
Mostly Water -1.792*** 0.583 -2.131*** 0.592 -1.324*** 0.487
# Incumbents -0.146*** 0.049 -0.162*** 0.050 0.008 0.037
Intercept 1.140 0.797 1.254 0.832 0.684 0.603
Network Investment Effects

Z1 3.745*** 0.853 2.176*** 0.841 3.931*** 0.685
Z2 1.286*** 0.390 1.589*** 0.393 0.102 0.306
V1 -1.731** 0.852 -0.213 0.823 -1.339** 0.679
V2 1.823*** 0.407 1.493*** 0.407 0.645* 0.339

Expected Competition Effects
Any P.E. -1.097*** 0.061 - - - -
Strong P.E. - - -1.008*** 0.081 -0.453*** 0.083
Weak P.E. - - -1.081*** 0.063 -0.365*** 0.062
Notes: The results are based on 6,244 observations, corresponding
to two to four potential entrants for 2,582 Census tracts. Standard
errors are obtained from resampling of markets with replacement
1,000 times). Asterisks indicate the statistical significance at the 1%
(∗∗∗), 5% (∗∗), and 10% (∗) levels.

44


	Introduction
	Discrete Bayesian Games with Endogeneity
	Estimation
	Asymptotic Properties of the 2SNPL Estimator

	Monte Carlo Evidence
	Homogeneous competitive effects
	Heterogeneous competitive effects

	Empirical Study: An Entry Game of Cellphone Service Providers
	The U.S. Cellphone Service Industry at a Glance
	Cellular Network Investment
	T-Mobile and Sprint Merger: Policy Considerations
	Data Sources
	Variable Definition and Sample Construction
	Aggregation to census tracts
	Sample construction
	Summary statistics: the Big Four's cellphone deployment
	Summary statistics: market attributes

	Instrumental Variables
	Estimation Results
	Counterfactual Results: Evaluating the Merger and the Merger Remedy 

	Conclusion
	References
	Appendices
	Proofs
	Cellular Network Explained
	Robustness of Table 5


